

Creating New Artificial Life

by

Cara Reedy

A thesis submitted to the Faculty of the University of Delaware in partial

fulfillment of the requirements for the degree of Bachelor of Science in Cognitive

Science with Distinction

Spring 2015

© 2015 Cara Reedy

All Rights Reserved

Creating New Artificial Life

by

Cara Reedy

Approved: __

 Daniel Chester, Ph.D

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Kathleen McCoy, Ph.D

 Committee member from the Department of Computer and Information

Sciences

Approved: __

 Nancy Getchell, Ph.D

 Committee member from the Board of Senior Thesis Readers

Approved: __

 Michelle Provost-Craig, Ph.D.

 Chair of the University Committee on Student and Faculty Honors

 iii

ACKNOWLEDGMENTS

My advisor, Dr. Daniel Chester, was instrumental in helping me design and

complete this project. He also advised me during independent study work that led to

the development of this thesis project. I am grateful to the Summer Scholars Program

for funding a summer of full-time research on this project. My father, Dr. Terry J.

Reedy, a member of the Python Core Developers group, helped me with problems and

issues related to Python.

 iv

TABLE OF CONTENTS

LIST OF FIGURES .. v
ABSTRACT.. vi

1 INTRODUCTION .. 1

2 BACKGROUND .. 4

3 DESCRIPTION OF SIMULATION ... 9

4 CONCLUSION .. 19

REFERENCES .. 21

NOTES ABOUT CODE ... 22

 v

LIST OF FIGURES

Figure 1 Screenshot of simulation window. Left: a creature in the garden.

Right: visualization of its network. ... 14

Figure 2 Left: creature about to eat grass. Right: selective view of neural net

activity. .. 16

 vi

ABSTRACT

Artificial life is the simulation of life or life processes. There are many kinds of

artificial life programs available, but none that were exactly what I was looking for, so

I decided to program my own. Using Python, I wrote a simulation that contains agents,

which have neural networks as their brains and can learn, as well as genetics that

define the neural networks. They also have needs such as hunger and can starve to

death. The program shows a visualization of the agents and their environment, and it

can also show their brain structure and live activity. It can save the network structure

of any particular agent to a text file and later read it back in, making it suitable for

running experiments. These agents are simple, but the program is an expandable

platform for artificial life experiments, with little that is hardcoded. The code is freely

provided so that anyone can both look at the code and modify it for their own interests.

 1

Chapter 1

INTRODUCTION

I first grew interested in artificial life when I experimented with a series of

computer programs called Creatures. The first version of Creatures was released in

1996; the latest version was released in 2001. In each version of the program, the user

sees a simulated world full of different objects, such as plants and toys. This world is

inhabited by the titular creatures, which age, breed with each other, and through

disease, accident, old age, or even genetic weakness, eventually die. Although I had

seen the artificial intelligences used in games and virtual pet programs before, the

creatures of Creatures were different. Each creature has its own genetics that

determine how it processes food, how its immune system works, and even how its

brain is structured. Each creature's brain is an artificial neural network which allows it

to learn over time, both through its experiences and through interaction with the

human user. Over generations, new mutations can pop up in the genetics of new

creatures, and the population will change. This was a much more complex simulation

than anything I had ever seen before, and it was a sandbox that let me perform

experiments easily. Tools that were used in developing the game were also made

available for free to users. These tools let the user modify the genetics of any creature,

to view the structure and state of a creature's brain and watch it respond to input, or to

write small programs that could be run in the Creatures environment.

In the Spring 2014 semester, under Dr. Chester's advisement, I used these tools

and what information I could find on the program's workings, and specifically on how

 2

the artificial neural networks in the program work, to try to create creatures that

showed migratory behavior. I eventually had some success, and on the whole I was

impressed with the work behind Creatures and some of the ideas it had. However, I

also experienced some frustration with how the Creatures program worked and the

lack of information available about certain aspects of the brain simulation.

There are many other artificial life simulations besides Creatures. However,

none were suitable for the kinds of experiments I was interested in. The creatures of

AI.Planet, which is a program meant to simulate ecology, are too simple for what I

wanted to do; most of them do not learn, and those that do can only learn very narrow

things (Kerr & Murczak). Some, like Avida, have different aims than I do in that they

do not necessarily care about being biologically realistic. Avida is a simulation where

computer programs themselves evolve ("Avida"). Many artificial life programs, such

as EcoSim, are not available for download, and thus not accessible by the general

public (Gras). Because of these reasons, and because there were some specific

shortcomings with Creatures that I wanted to be able to address, I decided to write my

own artificial life program.

I used Python to program my simulation, creating an environment with objects

and creatures that interact with their environment. The creatures have simulated brains

made of artificial neural networks and learn from their experiences. They also have

genetics, and can thus evolve over time. This work is presented in the following three

chapters. In Chapter 2, I present background information about artificial life and

artificial neural networks that informed my design of the project. In Chapter 3, I

describe the actual simulation itself in detail, including how I used the PyBrain neural

network library as a basis for my project and how the genetics and neural networks

 3

work. Chapter 4 provides some conclusions and discusses future directions for this

program. The link to the actual code itself as well as the instructions for running it can

be found in the appendix.

 4

Chapter 2

BACKGROUND

Artificial life simulations are those that seek to emulate life or life processes.

Artificial life can be used to test hypotheses about life that might be difficult or

impossible to replicate in the real world. For example, a program that is used to study

the evolution of predator and prey dynamics can run tens of thousands of generations

of simulated lifeforms in a short amount of time, each of which can have extensive

data collected automatically – a task which is impossible in real life. Artificial life can

also be used to observe and study new forms of life, some of which may not even be

possible to see on Earth, or which could only be possible on computers (Adamatzky

and Komosinski, 2005). Though these programs may not be alive by the usual

meaning of the word, their dynamics and evolution can still be interesting to observe.

An early form of artificial life, Thomas Ray's Tierra, consisted of 'organisms' that

were just small computer programs that required memory space in which to 'live' and

processing time to run and a function that killed off old or non-functional programs.

As documented in chapter 15 of Out of Control, Tierra soon evolved not just

programs that were smaller and more efficient than the initial program that was

introduced to the memory space, but also parasitic programs that needed other, larger

programs to replicate themselves, hyper-parasites that needed the parasitic programs,

and even hyper-hyper-parasites (Kelly, 1994).

The term artificial life covers quite a variety of simulations, from small and

simple, to extremely complex, to simulation of thousands of digital organisms. On the

 5

most simple level, cellular automata are often considered to be a form of artificial life

(Grand, 2001). The most famous example of cellular automata is perhaps Conway's

Game of Life. In the Game of Life, the world consists of many square cells that can be

either 'alive' or 'dead', and simple rules govern whether a cell will be alive or dead in

the next time step. From this simple basis, an astounding number of patterns can

emerge, including ones that seem to move across the grid or which induce the creation

of other moving patterns (Grand, 2001). On the other end of the scale, there is

OpenWorm, a project to simulate the nematode Caenorhabditis elegans in extremely

fine detail. C. elegans has one of the simplest nervous systems known, making it an

important object of study for understanding the basics of how neurons work and

connect together. It is also used as a model organism for a number of topics of study,

as it is a simple multicellular organism that still needs to find food and mates while

avoiding being eaten. The people working on OpenWorm hope that it will lead to a

better understanding of the biology of C. elegans, which would lead to a better

understanding of biology as a whole ("Getting Started").

Creatures is on a different level than many artificial life programs. Programs

meant to study ecology might simulate a large number of relatively simple creatures or

agents at a time. Programs like OpenWorm are highly detailed, but might only

simulate one or perhaps a few agents at any one time. However, what I call mid-level

simulations have anywhere from a dozen to perhaps a few hundred relatively complex

(but not extremely fine-detailed – for example, not including details of biochemical

interaction) agents in the world at any one time, each with its own 'brain' and details

such as body layout or biochemistry. The creatures of the last version of Creatures

have about 900 genes each and 1000 neurons in their artificial brains, and on a modern

 6

computer the program can run several hundred of these creatures at a time with no

slowdown. Each creature's genome is haploid; that is, they only have one copy of each

gene, unlike real-life animals, which generally are diploid, having two copies of each

gene. These genes detail exactly how the creatures age, their instincts, their automatic

reactions to stimuli, the chemical processes going on in their bodies, and so on, along

with how the brain lobes and connections are structured and how they work (Grand,

2001). Although the workings of these do not need to be understood in order to enjoy

the program, understanding them allows more advanced users to design new types of

creatures, such as ones that can breathe underwater, which photosynthesize like plants,

or which have even more realistic and detailed biochemistry than the creatures which

come with the program.

Most forms of artificial life involve not just evolution of form or function, but

some kind of learning as well. There are different ways to represent concepts and

actions and thus allow learning, but a popular one is artificial neural networks.

Artificial neural networks are a kind of machine learning algorithm based on

biological neural networks, although highly simplified. In an artificial neural network,

there are nodes, which have an input, an output, and a function that transforms the

input in some way to produce an output. Connecting the nodes together are weights,

the equivalent of biological synapses, which link together neurons. The weights might

also transform the numbers that they pass along, and the numerical value of the weight

determines how much the output of one node influences the input of the next

node. Groups of nodes are called layers; a simple two-layer network would consist of

a layer of input nodes, which receive and transform input to the network, and output

nodes, which receive their input from the input nodes via the weights. A network with

 7

random weights will probably not produce a useful answer, so like in biological neural

networks, there is a mechanism for the network to learn over time. When the network

receives feedback from its output, it has an algorithm that uses the feedback to adjust

the numerical values of the weights. Networks can be very simple or very complex,

and can use different transformation functions in their nodes and weights. Because of

their analog to biological brains, they are sometimes used to provide the brains of

artificial life creatures, as they were in Creatures.

Creatures actually has its own variation on artificial neural networks which is

more complex and in some ways perhaps more able to replicate real behavior. For

example, in a standard network, weights do not change except when the feedback

algorithm adjusts them. In real organisms, however, forgetting occurs. This is

necessary, as sometimes connections between, for example, actions and consequences,

are spurious, and forgetting allows an organism to focus more on connections that are

more meaningful. The networks of Creatures included a forgetting mechanism: each

weight had two values, a short-term and a long-term value. The short-term value falls

back towards the long-term value, while the long-term value more slowly approaches

the short-term value. For some layers, connections with weights that stay weak for

long enough eventually disappear and new connections between different pairs of

nodes are forged. If something turns out not to be relevant to a creature, it is

eventually forgotten, letting it learn new things (Grand, 2001). Other artificial life

programs have their own versions of neural networks, or use other structures

altogether to give their creatures the ability to learn.

I decided to use neural networks for my project, as I was already somewhat

familiar with them from working with Creatures, though I used a much simpler

 8

version. Like OpenWorm, I drew inspiration from real biology when possible, though

my project is much more simplified from that biology than OpenWorm, and supports

multiple creatures rather than just one. For example, I drew more on real aspects of

genes and how two genomes create a child genome than the genetics of Creatures did.

While the artificial ecology of a system like Tierra is fascinating, for this particular

project I wanted to use concepts from the natural world when it was possible or

practical to do so.

 9

Chapter 3

DESCRIPTION OF SIMULATION

My program is written in Python, a language which is easy to use and

understand and which has useful packages available for public download. In addition,

I was already familiar with it before starting this project and I know an experienced

Python user who could help me with language difficulties. Two packages were used in

this project. One of these was PyGame, a package for making games which was used

for displaying graphics, and the other was PyBrain, an artificial neural network

package that was used to program the neural network brains of the creatures.

The neural networks for the creatures use reinforcement learning. That is to

say, rather than learning from sets of problems where they are told whether or not they

came up with the right answer or something similar, they take actions in an

environment and receive a reward (positive or negative) based on the outcome of their

actions. In the case of the creatures, this reward is based on changes in the creatures'

drives. The neural network receives negative reward (that is, punishment) when the

creature causes itself pain, for example, and positive reward when it fulfills its hunger

and need for stimulation.

The way that reinforcement learning works in PyBrain is that one runs an

'experiment'. This experiment contains the agent, which consists of at least a neural

network and a learning algorithm, and a task. This task contains the environment itself

and acts as the go-between for the environment and agent. The task tells the agent

what it can observe from the environment, tells the environment what actions the

 10

agent has taken, and calculates the reward from the agent's action and gives it to the

agent. During a time step, the agent receives its observation from the task and runs it

through its neural network. It then sends the result of this to the task and receives the

reward that the task calculated. The learning algorithm uses this reward to decide how

to change the weights in the neural network.

PyBrain has some documentation, but it is not complete, and it took me several

days of looking through the code to understand how all the objects work together and

how to use them for my simulation. Part of this is that the PyBrain documentation

assumes that the reader is already familiar with not just the basic concept of neural

networks, but with different learning methods and algorithms that beginner texts do

not mention. I had difficulty either finding a text to take me up to the level PyBrain

expected or understanding the definitions of the concepts that were mentioned in the

tutorials. I ended up having to do a lot of experimentation rather than being able to

rely on the documentation, and this led to further issues later on.

In my simulation, the environment is called a garden. It is a square grid-like

environment that can be any size that is three-by-three or larger. Besides the creatures

themselves, the garden contains grass, which the creatures need to eat to survive, a

ball, which they can play with, a rock, which is not entertaining to play with and

which is painful to attempt to eat, and everywhere else is covered with dirt, which

does nothing but is the only surface the creatures can walk on. It loops around on each

edge; that is, when a creature tries to go down when it is in the bottom row of the grid,

it moves to the top row.

The experiment class of PyBrain is meant to run with only one agent at a time;

it cannot be set up to run a multi-agent system. Therefore, I had to make a sub-class to

 11

allow for multiple agents in one environment. In my simulation, the agents are actually

contained within another class, which is the class that defines the creatures. The

creature class contains a creature's genome, position, direction, neural net, and so on,

along with a PyBrain agent, which has the learning algorithm in addition to being

connected to the creature's neural network.

The neural networks gave me the most difficulty in programming the

simulation. On my first try, I attempted to follow the PyBrain tutorial and use a value-

based learner with a state-action value table, but this only resulted in an error after the

first time step until it was replaced with a policy-gradient learner and a network, which

became more complex over time. Initially it only consisted of a vision layer, a group

of neurons corresponding to the objects the creature can see, connected with an action

layer, corresponding to the various actions the creature can do: go forward, turn left or

right, eat what is in front of it, etc. When drives were added – pain, satiation,

stimulation – so was another corresponding layer that connects to the actions layer.

Initially this drives layer was set as a sigmoid layer, to squash the range of potential

drive values to something more manageable. However, I found that the numbers were

squashed too much and the creatures could not differentiate between being completely

full and starving to death, for example. To overcome this problem, I wrote a new

sigmoid function that squashed the drive values to a larger range.

Each creature has a simulated genome. This genome contains all of the

information needed to make a creature's brain, and is diploid – that is, there are two

'strands' of genes, and so there are two copies of each gene. There are three kinds of

genes: lobe genes, which define layers in the network; connection genes, which define

connections in the network; and synapse genes, which define the range of potential

 12

starting numbers for each weight in the network. While lobe genes and connection

genes do not mutate, synapse genes can. They have a special 'mutable field' parameter,

which contains the maximum and minimum ends of the range, the mutation rate (how

often that a gene will actually mutate when given the chance to do so), and numbers

related to how the range mutates. The mutation rate itself can mutate as well, so over

time, the population could change so that genes can mutate frequently or infrequently.

The main difficulty with working with a diploid genome is deciding on how to

handle dominance. In real-life genomes, when there are two alleles, or copies of a

gene on either chromosome, either the effects of the two can combine in some way, or

only one of them is used – that is to say, one is dominant over the other. For example,

if someone inherits from their mother a working allele for a certain protein, or copy of

the gene, and inherits from their father a mutated allele that will not produce the

correct protein that the body needs, the allele for the working protein will in most

cases be dominant over the allele for the mutated protein. Other genes can co-

dominate; for example, in some species of flower, a specific flower that receives an

allele for white coloring and an allele for red coloring might end up pink. In biology,

what determines which alleles are dominant over others and which can co-dominate

and so on, are complex processes such as proteins folding correctly or not, which is

beyond the level I am trying to simulate. Instead, I took something of a shortcut and

use integers to compute dominance. If one allele has a higher dominance number than

the other, then that allele is dominant. If both have the same dominance, then what

happens depends on the gene type. In the genes that code for layers and connections,

one copy is chosen randomly to be read. The genes that code for weights actually co-

dominate; the minimum weights and maximum weights encoded in both alleles are

 13

averaged together. This range is then used to randomly choose the starting weight of

that particular connection as usual.

The creatures that are created when the simulation is initialized are made from

a default genome. The parameters for the synapse genes are pulled from a file in the

directory; the values in this file can be altered, and were originally put together by

looking at the range of network values in successful runs of creatures that started with

completely random connection weights. However, as in real biology, genomes can

also be created by recombination. The strands 'cross over' at a random point. This

means that for both strands of genes, the strand up to the cross over point is inherited

from the first parent, and the strand after that cross over point is from the other parent.

This mixes the genes up between the strands, before all of the genes run their mutation

function.

When the program is run, a window comes up showing the graphical display of

the simulation. The PyGame library is used to run the graphics. The size of the

window is determined by the size of the garden environment. On the left side of the

screen, the garden is shown, displaying the creatures and objects. The right side of the

screen is initially blank. However, when a creature is clicked on, the right side

displays a live visualization of that creature's neural network (Figure 1). Each row or

column of squares of the same color represents one layer of the network, and each

square is an individual neuron in that layer. The vibrancy of the color represent the

level of activation of that neuron; neurons with very low (less than -5) activation

levels are grey, while ones that have higher activations have bolder colors. Each line

represents a connection between two neurons, and while it is harder to see than the

 14

colors on the neurons, the connections with higher weights have lighter lines than the

ones with lower weights.

Figure 1 Screenshot of simulation window. Left: a creature in the garden. Right:

visualization of its network.

The network has four layers, the Vision layer, the Drive layer, the Action layer,

and the STM (short-term memory) layer. The Vision layer has five neurons, one for

each object in the creatures’ environment: dirt, grass, balls, rocks, and other creatures.

The neurons of this layer are activated when the creature sees that particular object.

The creature can only see images that are directly in front of it and to its front left and

front right. It cannot see further away or directly to its side. The Drive layer has three

neurons, one for each drive (hunger, boredom, pain), and the higher the activation

level, the higher that drive is – higher hunger and boredom are more fulfilling for a

creature, while pain should remain at zero. The action layer has five neurons, one for

 15

each action the creature can carry out: moving forward, turning left, turning right,

attempting to eat what is in front of it, and attempting to play with what is in front of

it. The neuron that has the highest activation level is the one whose corresponding

action will be carried out. The STM layer also has five neurons, one for each neuron in

the action lobe, and is explained in more detail further on.

Clicking on a particular neuron will change the view to only show the

connections that originate in that particular neuron, along with the exact activation

level of that neuron at any given moment (Figure 2). Viewing all of the connections

and their weights in PyBrain is not straightforward; there is no one function or set of

functions that does this. Instead, one has to nest several loops that go through each

layer in the network, then use each layer to look up the connections that originate in

that layer, and then use parameters that are not, by default, actually defined for all of

the connection subclasses, to loop through all of the weights and find which neurons

they connect. Recurrent connections are in another parameter entirely than all of the

other connections, and have to be looped through separately. While this method works

quite well, it is confusing to understand at first and is not a feature included with

PyBrain or explained in its documentation, which made the visualization of the

network more difficult to program.

 16

Figure 2 Left: creature about to eat grass. Right: selective view of neural net

activity.

This method was also used to write functions that can print the state of a given

network, save it to a file, or overwrite a creature's network from a file. When I started

to use this to run experiments, I found that at some point the creatures' neural networks

had actually stopped learning. I am still not entirely sure why. I was not able to figure

out how to get the original learning algorithm working again, and I suspect that it

might be meant for episodic learning rather than continuous or continual learning.

After trying the other algorithms that come with PyBrain, the one called Episode

Natural-Actor Critic worked – despite the name, it seems to function in a continuous

environment. I did notice that the learning is quite slow for my purpose and that the

creatures can take a long time (many repetitions) to learn things like 'don't eat rocks,

it's very painful'. I experimented with the feedback to see if I could make the learning

faster, but was unable to do so.

 17

One consistent problem the creatures have had is that they often do the same

action repeatedly – spinning in place, running forward, continuously attempting to eat

something they cannot eat – in a way that feels unrealistic. The attempted solution for

this involves a new layer, which is named the short-term memory (STM) layer. The

action layer outputs to the STM layer via a custom connection class. The STM layer

has the same number of neurons as the action layer, and each neuron of the action

layer is connected only to the corresponding neuron in the STM layer. The connection

only transmits the output of the neuron whose output is highest (which is what

determines which action the creature will take). In the STM layer, the neuron which

corresponds to that action neuron has its activation increased by one; for all the other

neurons, their activations are decreased by half and rounded to zero if the new

activation is under one. The STM layer is then connected back to the action layer. This

solution did not work as well as hoped – there were some very strange patterns of

activation in the action neurons, though this may be due at least in part to my not

understanding how PyBrain handles neural networks that are recurrent (that is, which

point back at themselves). However, it did visibly decrease the repetitive behavior

somewhat, and in a small experiment it appeared to increase their lifespan. Their

lifespans were limited to 7000 steps for the sake of time, and the group with the STM

layer had a median lifespan that was 950 ticks higher than the group without the STM

layer.

The main loop of the simulation goes like this: first, it checks for any events. If

there is a quit event (i.e. the user has just clicked on the ‘quit’ button), then the

simulation quits. If the user has clicked somewhere in the simulation window, the

program checks to see if the click was in the left side (the garden side) or the right side

 18

(the network visualization side). If a creature was clicked on the left side, that creature

becomes the selected creature and its network is displayed on the right. Otherwise, any

selected creature is de-selected. If there is a visualization on the right side, if a neuron

is clicked, that neuron becomes the selected neuron; otherwise any selected neuron is

de-selected. Next, the experiment is run for a single time step, so that all of the

creatures are given their input, carry out their actions, and learn. After this, all of the

graphics are updated and drawn, including the network visualization if it is being

shown, and the time step number. The simulation then checks to see if any creatures

have starved to death, and if so, removes them from the environment’s list of

creatures. The display is sent to the screen to be shown to the user, and then the

networks of all of the creatures are reset. This last step of resetting the networks is

done because recursive networks in PyBrain save the entire history of the network,

which is not very realistic, and which can take up a lot of memory and slow the

simulation down over time. Resetting the network erases this history. The main loop

continues to run until either the user quits the simulation or all of the creatures have

died.

 19

Chapter 4

CONCLUSION

The creatures of this simulation are simple in many ways. They can only see

what is right in front of them, they have no real memory, and to them every other

creature is the same, with no friends, enemies, or family. However, this simulation is

not just the creatures, but also a platform for performing artificial life experiments.

There is little that is hardcoded, so creating new brain structures, for example, is a

matter of adding a few genes. New objects could very easily be added to the

environment, as well. There are also built-in tools for recording useful data, such as

the state of the network, as well as a graphical interface for easily understanding what

is happening and the effects of changes to the network.

In the future, the program could be moved from a two-dimensional simulation

to a three-dimensional one, in order to better replicate the experience of most animals.

Along with this would come a better simulation of vision, and perhaps simulation of

other senses such as hearing or smell. In addition, there are many things that could be

done to make the neural network more complex – for example, adding object

recognition rather than 'cheating' and letting the program tell the creature what it sees,

or having the creature remember specific other creatures. Another thing that could be

done would be perhaps moving the neural network away from PyBrain and to

something more flexible and maybe more biologically-inspired.

Developing and experimenting with this simulation did meet my original

objectives. The genetics system is biologically realistic in several ways and it is quite

 20

flexible and easy to expand, as is the object system. The creatures do learn, and over

time as their neural networks and environment have improved, they have been able to

survive more consistently and for longer amounts of time. Through this project I have

also learned many things. In doing my background research I learned more about the

variety of artificial life available. By working on it, not only did I improve my ability

to code, both generally and in Python, but I also learned the uses and limitations of the

PyBrain package and what features I might look for if I were to use another neural

network library in the future. My knowledge of artificial neural networks, though not

as complete as I would like, has improved considerably by working on this project.

There are still more things I would like to do with this project, and even if I do not

continue with it, I can apply the things I learned from it to other artificial life projects I

take on in the future.

 21

REFERENCES

Adamatzky, A., & Komosinski, M. (Eds.). (2005). Artificial life models in software.

London: Springer.

Avida (2014, February 6). Retrieved from http://avida.devosoft.org/

Getting Started. (n.d.). Retrieved from http://www.openworm.org/getting_started.html

Grand, S. (2001). Creation: Life and how to make it. Cambridge, Mass: Harvard

University Press.

Gras, R. (n.d.). Ecosim: An ecosystem simulation. Retrieved from

https://sites.google.com/site/ecosimgroup/research/ecosystem-simulation

Kelly, K. (1994). Out of control: The rise of neo-biological civilization. Reading,

Mass: Addison-Wesley. Available from http://kk.org/books/out-of-control/

Kerr, D. & Murczak, D. The Artificial Planet User Manual. Retrieved from

http://aiplanet.sourceforge.net/manual/index.html

http://avida.devosoft.org/
http://www.openworm.org/getting_started.html
https://sites.google.com/site/ecosimgroup/research/ecosystem-simulation
http://kk.org/books/out-of-control/
http://aiplanet.sourceforge.net/manual/index.html

 22

Appendix

NOTES ABOUT CODE

This simulation was written in Python 3.4. It is available for download at

https://github.com/Lekyn/garden along with further instructions. It requires the

PyBrain and PyGame libraries. PyBrain is currently only available in Python 2 and

must be converted to Python 3 using the automatic 2to3 tool. PyGame is available in

Python 3.

https://github.com/Lekyn/garden

