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ABSTRACT

Human Attention Simulation is a long-standing problem in computer vision area. Re-

searchers either attempt to locate the most interesting objects for human beings in images or

predict where people will look at in nature scenes. Accurate and reliable human attention de-

tection can benefit numerous tasks ranging from tracking and recognition in vision to image

manipulation in graphics. For example, successful saliency detection algorithms facilitate

automated image segmentation, more reliable object detection, effective image thumbnail-

ing and retargeting. However, state-of-the-art techniques neglect some essential problems

that limit saliency models from precisely simulating human attention mechanism. On the

input front, images used for saliency detection tasks always fail to preserve the high dimen-

sional information of the scene; on the task front, it is inevitable to observe inconsistency

among ground truth provided by different persons, resulting in uncertainty on prediction

performances.

Regarding the input data, existing saliency detection approaches using images as in-

puts are sensitive to foreground/background similarities, complex background textures, and

occlusions. I explore the problem of utilizing light fields as input for saliency detection.

The proposed technique is enabled by the availability of commercial plenoptic cameras that

capture the light field of a scene in a single shot. I show that the unique refocusing capabil-

ity of light fields provides useful focusness, depths, and objectness cues. I further develop

a new saliency detection algorithm tailored for light fields. To validate the approach, I ac-

quire a light field database of a range of indoor and outdoor scenes and generate the ground

truth saliency map. Experiments show that the saliency detection scheme can robustly han-

dle challenging scenarios such as similar foreground and background, cluttered background,

complex occlusions, etc., and achieve high accuracy and robustness.

xiii



As for methods using high-dimensional data beyond regular images as saliency in-

put, they are tailored for different data types. Those techniques adopt very different solution

frameworks, in both types of features and procedures on using them. In this dissertation,

I present a unified saliency detection framework for handling heterogeneous types of input

data. The proposed approach builds dictionaries using data-specific features. Specifically,

I first select a group of potential foreground superpixels to build a primitive saliency dic-

tionary. I then prune the outliers in the dictionary and test on the remaining superpixels

to iteratively refine the dictionary. Comprehensive experiments show that the proposed ap-

proach universally outperforms the state-of-the-art solution on all 2D (regular image), 3D

(image with depth information) and 4D (light field) data.

Regarding the saliency detection task, tremendous efforts have been focused on ex-

ploring a universal saliency model across users despite their differences in gender, race, age,

etc. Yet recent psychology studies suggest that saliency is highly specific than universal: in-

dividuals exhibit heterogeneous gaze patterns when viewing an identical scene containing

multiple salient objects. In this dissertation, I show that such heterogeneity is common and

critical for reliable saliency prediction. The conducted study also produces the first database

of personalized saliency maps (PSMs). I model PSM based on universal saliency map (US-

M) shared by different participants and adopt a multi-task CNN framework to estimate the

discrepancy between PSM and USM. Comprehensive experiments demonstrate that the new

PSM model and prediction scheme are effective and reliable.
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Chapter 1

INTRODUCTION

Human Attention Simulation is a long-standing problem in computer vision area.

Researchers either attempt to locate the most interesting objects for human beings in images

or predict where people will look at in nature scenes. Saliency refers to a component (object,

pixel, person) in a scene that stands out relative to its neighbors and has been considered

key to human perception and cognition. Traditional saliency detection techniques attempt to

extract the most pertinent subset of the captured sensory data for predicting human visual

attention. Applications are numerous, ranging from compression [46] to image re-targeting

[100], and most recently to virtual reality and augmented reality [19].

By far, nearly all previous approaches have focused on using RGB low-dimensional

data as input. In the meantime, the majority algorithms attempt to explore a universal salien-

cy model, i.e., to predict potential salient regions common to users while ignoring their

differences in gender, race, age, personality, etc. In this dissertation, I thoroughly explore u-

tilizing the light field data as input of the salient object detection frameworks. I further study

the inconsistency eye fixation problems among individuals and propose a novel framework

that can encode the personalized gaze discrepancy into the prediction model.

1.1 Challenging problems in Saliency Prediction

Regular RGB Image as Input

State-of-the-art solutions [8] have focused on integrating low-level features (pixels

or superpixels) and high-level descriptors (regions or objects). However, existing solutions

have many underlying assumptions, e.g., the foreground should have a different color from

the background, the background should be relatively simple and smooth, the foreground is

occlusion free, etc. In reality, many real images violate one or multiple assumptions, and

1



existing saliency algorithms are inherently different from how human visual system detects

saliency. Human eyes have two unique properties that are largely missing in existing saliency

solutions on regular images. First, human eye can conduct dynamic refocusing that enables

rapid sweeping over different depth layers. Hence, for humans, the input is a focal stack

instead of a single. Second, human uses two eyes to infer scene depth, e.g., via stereo, for

more reliable saliency detection whereas most existing approaches assume that the depth

information is largely unknown.

Heterogenous Types of Input Data

There is an emerging interest in using high-dimensional datasets beyond regular im-

ages (2D) in saliency detection. For instance, the using of image with depth information (3D)

[88, 67] and more recently 4D light field data [75]. Despite their effectiveness by adopting

high dimensional information, saliency detection algorithms based on 2D, 3D and 4D data

have adopted completely different frameworks, due to the heterogenous low-level features

directly from the data. A unified saliency prediction methods, that can handle different types

of data simultaneously, benefits the related several vision applications, such as object detec-

tion [5, 32] and retargeting [97].

Universal Saliency Prediction

By far, nearly all previous approaches have focused on exploring a universal saliency

model, i.e., to predict potential salient regions common to users while ignoring their differ-

ences in gender, race, age, personality, etc. Such universal solutions are beneficial in the

sense they are able to capture all ”potential” saliency regions. Yet they are insufficient in

recognizing heterogeneity across individuals. Examples in Fig. 5.1 illustrate that while mul-

tiple objects are deemed highly salient within the same image (eg, human face (first row),

text (last tow rows) and object of (high color contrast), different individuals have very differ-

ent fixation preferences when viewing the image. For the rest of the dissertation, I use term

universal saliency to describe salient regions that incur high fixations across all subjects and

term personalized saliency to describe the heterogeneous ones.

2



1.2 Dissertation Statement

In this dissertation, I first explore how to conduct salient object detection using light

field as input and further present a universal saliency detection framework for handling het-

erogenous types of input data. I then explore the personalized saliency prediction problem,

which encode the incongruent gaze pattern of individuals into the prediction model.

Saliency Detection with High-dimensional Input.

We first thoroughly discuss the benefits, modeling and the adopted features of utiliz-

ing the high-dimensional scene data as input for the salient object detection tasks. I construct

the first light field data sets for saliency detection tasks and provide a unified solution for

handling regular RGB (2D), image with depth information (3D), and 4D light field data. Ex-

periments show that our saliency detection scheme can robustly handle challenging scenarios

such as similar foreground and background, cluttered background, complex occlusions, etc.,

and achieve high accuracy and robustness on different dimensional datasets.

Personalized Saliency Prediction.

I then present a comprehensive analyze of the inconsistent gaze pattern problems a-

mong different persons. I show that such heterogeneity is common and critical for reliable

saliency prediction. Our study also produces the first database of personalized saliency maps

(PSMs). We model PSM based on universal saliency map (USM) shared by different par-

ticipants and adopt a multi-task CNN framework to estimate the discrepancy between PSM

and USM. Comprehensive experiments demonstrate that our new PSM model and prediction

scheme are effective and reliable.

1.3 Contributions

This dissertation makes the following contributions in computer vision.

Saliency Detection on High-dimensional datasets:

• The first light field dataset for salient object detection is proposed. We acquire a light

field database of a range of indoor and outdoor scenes and generate the ground truth

3



saliency map. We have already shared this database, i.e., Light Field Saliency Detec-

tion (LFSD) Dataset, to community online1.

• The first saliency algorithm tailored for light fields input. The key advantage of using

a light field instead of a single image is that it provides both focusness and depth

cues. Our solution echoes these observations and also provides an alternative and more

robust method to extract these cues through the analysis of light fields. Experiments

show that our technique can handle many challenging scenarios that cast problems on

traditional single-image-based algorithms.

• The first unified framework for different dimensional data types. I present a novel

saliency detection algorithm that is applicable to 2D image data, 3D stereo/depth data,

and 4D light field data without modifying the processing pipeline. We first develop a

data-specific feature vector descriptor. For 2D data, it corresponds to color and tex-

tures. For 3D, we append depth information. For 4D, we further append focusness

measures. We show that two types of feature descriptors are complimentary to each

other for handling variational types of texture/color scene compositions. Compared

with state-of-art techniques that commonly adopt different solution frameworks for

handling different data inputs, our technique does not require modifying the algorithm

but only the input descriptor. Comprehensive experiments have shown that it outper-

forms previous tailored solutions for different data types.

Personalized Saliency Prediction:

• The first dataset for personalized saliency prediction. We present the first dataset of

personalized saliency maps (PSMs) that consists of 1600 images viewed by 20 human

subjects. To improve reliability, we ensure that each image is viewed by every sub-

ject for 4 times over about one week interval. We use the ‘Eyegaze Edge’ eye tracker

to track gaze and produce a total of 32,000 (1600 × 20) fixation maps. To correlate

the acquired PSMs and the image contents, we manually segment each image into

a collection of objects and semantically label them. Our annotated dataset provides

1 http://www.eecis.udel.edu/˜nianyi/LFSD.htm
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fine-grained semantic analysis for studying saliency variations across individuals. For

example, we observed that certain types of objects such as watches, belts would intro-

duce more incongruity (possibly due to gender differences) whereas other types such

as faces would lead to more coherent fixation maps.

• Encoding the gaze inconsistency into the prediction model. We further present a com-

putational model towards this personalized saliency detection problem. Notice that

saliency maps from different individual still share certain commonality via the USM.

Hence, we model the PSM as a combination of USM and a residual map which is

related to the identity and the image contents. We adopt a multi-task convolutional

neural network (CNN) to identify the discrepancy between PSM and USM for each

person. Experimental results demonstrate the effectiveness of our framework.

1.4 Blueprint of the Dissertation

This dissertation is organized as follows. I give a more thorough review of the salien-

cy detection models and related features to this thesis in Chapter 2. In Chapter 3, we explore

the problem of using light fields as input for saliency detection. Specifically, I first show

that the unique refocusing capability of the light fields provides useful focusness, depth and

objectness cues and then introduce our acquired light field datasets and our tailored algorith-

m on this dataset. Chapter 4 discusses a unified saliency detection framework for handling

heterogenous types of input data. Chapter 5 presents our framework for predicting the fixa-

tion maps for individuals. We introduce how we construct the image dataset for personalized

saliency prediction and then discuss our multi-task CNN model for computing the discrepan-

cy map between the universal and personalized eye fixation prediction. Chapter 6 concludes

the thesis and discusses future extensions.
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Chapter 2

BACKGROUND AND PREVIOUS WORK

This chapter discusses the background and the previous work on human attention

simulation (Saliency prediction) in computer vision. We first explore the classical computa-

tional models to simulate human visual attention and then outlining two divisions of models

based on their architectures. We then discuss the most related features/cues that we use

in this dissertation in Section 2.2. Next, we summarize the state-of-the-arts deep learning

methods in modeling visual attention in Section 2.3.

2.1 Simulating human visual attention in computer vision

There is an increasing interest in locating the objects/regions/gaze points that attract

human beings’ attention in computer vision, robotics, computational photography, computer

graphics and design, human-computer interaction. An efficient human attention mechanism

can help to assign priorities to different image parts and thus directs the analysis process to

exam more interesting locations first. Simulating the human visual attention can also help

researchers to understand human perception, and to improve vision system. The highly ef-

fective attention simulation algorithms have been studied extensively from the psychological

theories of the human visual system. The computer vision community uses the term salien-

cy, borrowed from cognitive psychology, for two different tasks, i.e., the attention-motivated

saliency and the saliency in local feature detection [6, 59, 58]. The antention-motivated

saliency aims to assign a probability value to each pixel in the image or the scene to indicate

the likelihood of attending to every location in an image/scene, thus achieving more efficient

analysis. In local feature detection tasks, saliency refers to a relatively large number of points

(or small regions), whose location are stable under pose and illumination changes w.r.t. the
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(a) Regular image (b) Salient object (c) Eye fixation

Figure 2.1: Illustration of the ground truth of two categories of saliency models. (a) A nature
image. (b) Salient Object detection methods aim at detecting the whole salient objects in the
scene. (c) Fixation prediction models tend to simulate the gaze pattern (red indicate higher
possibility for human looking at this point).

objects in the scene. In this dissertation, we only discuss the first category, and the term

”saliency” in the following content are all indicating the attention-motivated saliency.

The literature for saliency prediction is huge and existing solutions can be roughly

classified into two categories by their targeting tasks: Salient Object Detection and Eye

Fixation Prediction. In salient object tasks, image labelers are asked to annotate an image by

drawing either bounding box or pixel-accurate contour lines of the objects that they believe

to be salient in the given images. The goal of a salient object method is to generate a map

that matches the annotated salient object mask. Unlike the salient object detection algorithms

that tend to highlight specific objects/regions in an image, the saliency in fixation prediction

experiment is defined by pixel-wise eye gaze points. Specifically, participants are asked to

view each image/scene for seconds while their eye fixations are recorded by a eye tracker.

The eye fixation prediction algorithms aim to compute a probabilistic map of an image to

indicate the actual human gaze patterns. Generally, for salient object detection task, the test

saliency maps are binary maps obtained by first averaging the individual segmentations from

the ground-truth subset, and then threshold with a fix value Th to generate the binary masks

for each subset. In the fixation task, the ground-truth map for each image is generated by

first plotting all the fixation points from either all or individual participants, and then filter

the fixation points map by a 2D Gaussian kernel with a fixed σ of the image width.
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The salient object detection models aim to identify salient regions/objects in the

image/scene. Generally, a salient object detection model should, first detect the salient

attention-grabbing objects in a scene, and second, segment the entire object [8]. The saliency

map generated by the algorithm highlight the pixels which are more likely belonging to the

salient object. A precisely salient object detection methods benefits various computational

applications, i.e., image processing and understanding [45, 59, 104, 82]. Saliency detection

is related to many vision applications, e.g., object detection/recognition [5, 32],image/ video

compressing [12, 36], effective image thumbnailling [103] and retargeting [97].

The goal of the fixation based saliency is to compute a probabilistic map (saliency

map) to simulate the eye movement behaviors of human. Typically, pixel/region with higher

saliency value indicate larger possibility that human will look at it when free-viewing the

images. After Itti et al. [45] introducing the first computational models for fixation pre-

diction to the computer vision community, numerous models have been proposed during

the recent decades to predict both the fixation and salient objects in images. Utilizing the

pixel-based [40, 34] or region-based [45, 13, 50] features, these fixation models compute the

pixel-wise saliency map by a local or global interaction step that combines the re-weighted

or re-normalized feature saliency values.

Recent studies have shown that the two tasks of salient object detection and eye fix-

ation prediction are correlated [120, 78]. Specifically, based on the fact that the locations of

salient objects in the scenes providing guidance to human eye fixations, Li et al. [78] utilize

a simple eye fixation based model for segmenting salient objects in an image and achieved

state-of-the-art results. Nevertheless, it is usually hard to apply the algorithms tailored for

salient object detection to predict eye fixation and vice versa. It is because that unlike salient

object models, which generate smooth connected areas, the fixation prediction models often

pop-out sparse blob-like salient regions. Typically, detecting large salient areas are doomed

to cause severe false positives for fixation prediction. Moreover, popping-out only sparse

salient regions causes massive misses in detecting salient regions and objects. However, the

developing of deep learning methods makes it possible to simultaneously address the related

aspects of eye fixations and object saliency, a more detailed discussion of the deep learning
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application in saliency detection is in the Section 2.3 of this thesis.

2.1.1 Bottom-up and top-down saliency models

According to whether the detection procedure requires human interaction or not, ex-

isting methods are divided into two categories: bottom-up and top-down approaches. The

first category usually determines the saliency of a pixel based on low-level stimuli-driven fea-

tures without any prior of the salient region or object [45, 33, 68]. On the contrary, the second

one often describes the saliency by the visual knowledge constructed from the training pro-

cess, and then use such knowledge for saliency detection on the test images [35, 80, 108].

During normal human perception, both mechanisms interacts.

State-of-the-arts computational models that are merely based on bottom-up methods

have shown high performance in large scale datasets, due to the successfully application of

several effective low-level features, e.g., color contrast feature [48, 63, 80, 20], background

features [112, 117], focusness features [55, 75], and sparse coding [74]. Results from per-

ceptual research [28, 91] and previous approaches [49, 93] indicate that the most influential

factor in bottom-up visual saliency is contrast. The definition of contrast in previous work-

s is mainly based on different types of image features, such as color variation, edges and

gradients [45], spectral analysis [39], histograms [21], multiscale descriptors [80], or com-

binations thereof [9]. Both types of methods tend to rely solely on the local center-surround

contrast [45, 80] or the global contrast [1, 20] with respect to the entire scene for estimating

the saliency.

Methods using the bottom-up architecture are usually built on the scheme proposed

by Koch et al. [63]. In their method, an image is represented by various low-level attributes

such as color, intensity, and orientation across several spatial scales which are then linearly or

non-linearly normalized and combined to form a master saliency map. Another major con-

tribution of their work is the idea of the center-surround contrast framework, which define

saliency as distinctiveness of an image region to its immediate surroundings. This scheme

also proposes a solution for both object detection and fixation models. Base on their mod-

el, Itti et al. [45] adopt a Difference of Gaussians (DoG) approach to process the captured
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color, intensity and orientation features, and linearly combine the generated feature maps to

produce the final saliency maps. However, [21] point out that the resulting saliency maps

by [45] are often blurry and overemphasize the small, purely local features, leading to this

the method less useful for applications such as segmentation and detection. Ma and Zhang

[82] propose an alternate local contrast analysis for computing saliency maps, which is then

extended utilizing a fuzzy growth model. Harel et al. [50] normalize the features of [45]

to assign high saliency values to distinct regions and enable the combination with other es-

sential maps to further generate the final saliency. This simple framework is biologically

plausible and allowing parallelization. Liu et al. [80] usea Gaussian image pyramid to lin-

early combine multi-scale contrast. Cheng et al. [21] define saliency of an object by its local

and global color uniqueness and spatial distribution. They use super-pixel to classify the

nearby pixels into small regions, and generate 3D histograms to represent each super-pixel.

The saliency in their work refers to the incongruity between the histogram bin.

Top-down approaches [83, 116] use visual knowledge commonly acquired through

learning to detect saliency. Approaches in this category are highly effective on task-specified

saliency detection, e.g., identifying human activities [84]. For this kind of algorithms, it is

essential to effectively learn the differences between salient objects and background from

images. Some top-down factors are already well known, and some is still waiting for being

further explored. Einhäuser et al. [29] propose that objects are better indicators for fixa-

tion than the bottom-up saliency. [18] show that faces and text attract human gaze. [95]

demonstrate that objects with specific emotion, e.g. the angry bird, and object with action

motivation are more likely to attract attention. Judd et al. [57] point out that human figures,

faces, cars, text, and animals attract visual attention most. Alongside, cultural and charac-

teristic factors, age, and experience will also affect the gaze pattern of human being [22].

It has been increasingly popular to use deep networks for saliency detection, because that

the top layers of the neural networks contains rich high-level information of images. Huang

et al. [42] propose to fine-tune CNNs pre-trained for object recognition via a new objec-

tive function based on saliency evaluation metrics such as Normalized Scanpath Saliency

(NSS), Similarity, or KL-Divergence,etc. Pan et al. [90] propose to use a shallow convnet
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trained from scratch and fine-tune a deep convnet that trained for image classification on the

ILSVRC-12 dataset, we will discuss the deep learning methods in detail in Section 2.3.

Integrating the top-down information into the bottom-up framework is proved to be

more efficient than merely using one type of features [18, 95, 29, 57]. Phycological research

[16, 122, 106] on human gaze pattern indicate that, at the first few hundred milliseconds of

the early stages of free viewing, the core factor to determine visual attention is the image-

based conspicuity. As the viewing time increasing, high-level factors, e.g. the image context,

will take charge of the attention mechanism. However, these high-level factors may not

necessarily translate to saliency boosted by low level-features, such as color, intensity, and

orientation, and should be considered separately. For example, a face of a human or an

animal in the image may not attract the most of attention of people compared with other

object in the scene, and people may still notice the faces in the scene. Cerf et al. [18]

refined the bottom-up model by Itti and Koch [63], and add a conspicuity map indicating the

location of faces and text and show impressive improvement on the detection performance.

They also add a human defined object-map to further refine the saliency result. Moosmann

et al. [85] propose an iterative algorithm based on the online estimation of the position of

object parts. They treat saliency as the set of attributes that distinguishes a concept (object

category) the most from others. Goferman et al. [35] employ the object-specific information

in their detection framework and use its detection results to generate the binary map. Then

also take a max operation to combine the bottom-up and top-down result.

2.1.2 Salient detection on high dimensional data

A main contribution of this dissertation is that we build computational models to

predict saliency in high dimensional data, and extent the saliency detection to new areas. In

this section, we category state-of-the-arts saliency models based on the data type they adopt

as input. To avoid duplicate statement with Section 2.3, we do not include the deep learning

based algorithms in this section.

2D saliency. Human vision system is particularly sensitive to high-contrast stimulus

[44, 89, 96] and traditional approaches have focused on applying this model to 2D images.
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Most contrast-based methods measure saliency by feature (color, texture,gradient, shape,

etc.) difference between pixels/superpixels. The performance of 2D image-based techniques

depend highly on the choice of feature descriptors. For example, if the color difference

between foreground and background is small, methods based on color feature descriptors

can lead to poor performance. To address this issue, recent algorithms incorporate high-level

reasoning into the solution framework. For example, additional cues that emulate human

vision systems such as focusness, objectness, location of specific types of object (e.g., faces)

[54, 93, 113] have been added onto the feature descriptor.

3D saliency. More recent approaches acknowledge that 2D images do not complete-

ly represent how human eyes perceive the world [88, 67]. In particular, depth perception

provided by two eyes has been largely ignored in saliency detection. Therefore, several

new approaches have been proposed to incorporate 3D depth information into saliency de-

tection. In [88] work, a disparity map is first inferred from a stereo pair and later used to

enhance saliency detection. The results are promising. For example, the depth map can help

distinguish foreground from background even if they have similar appearance. One major

challenge in those approaches is how to effectively combine traditional features with depth

features without modifying the solution framework.

4D saliency. There is also emerging interest on using datasets beyond 3D such as

the light field towards the scene [75]. A unique feature of light field is that it enables dy-

namic refocusing through light field rendering. In [75], the focal stack is used to infer fo-

cusness and objectness of superpixels for more reliably selecting the background candidates

and foreground saliency candidates. It then integrates other cues based on color and texture

contrast. This 4D saliency method eliminates the need of 3D depth maps and shows impres-

sive results on challenging scenarios including similar foreground and background, clustered

background, complex occlusions, etc. Nevertheless, the solution framework is significantly

different from previous 2D and 3D solutions.
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2.2 Related Features/Cues

The features/cues used in saliency detection are various. Here, we only introduce the

most related ones to our proposed models in this thesis.

2.2.1 Center vs. Background Priors.

Many saliency detection schemes exploit contrast cues, i.e., salient objects are ex-

pected to exhibit high contrast within certain context. Koch and Itti [45] are the first to use

center-surround contrast of low level features to detect saliency. Motivated by their work,

many existing approaches compute the center-surround contrast either locally or globally.

Local methods compute the contrast within a small neighborhood of pixels by using color

difference [13], edge orientations [80], or curvatures [107]. Global methods consider statis-

tics of the entire image and rely on features such as power spectrum [39], color histogram

[21], and element distributions [101].

Although the center-surround approaches are proven highly effective, Wei et al. [112]

suggested that background priors are equally important. In fact, one can eliminate the

background to significantly improve foreground detection. Yang et al. [117] observed that

connectivity is an important characteristics of background and used a graph-based ranking

scheme to measure patch similarities. Since most existing approaches rely on color con-

trast, when the foreground and background have similar color, these approaches can easily

fail. Our approach resolves this issue by combining color contrast, background prior, and

focusness prior w.r.t. different depth layers obtain from the light field.

2.2.2 Focusness and Objectness Cue.

Jiang et al. [55] proposed that objects of interest in an image are often photographed

in focus. This naturally associates the focusness with that saliency. They estimated the

focusness by the scale of edges using scale-space analysis. In addition, they also proposed

an objectness estimation which utilized the probability of a region belongs to a complete

object in some local windows to measure. Regarding our techniques vs. [55], we want to

emphasize that our scheme is advantageous over [55] in several ways. First, our focusness
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cue is extracted directly from a complete focal stack produced by the 4D light field whereas

the cue has to be inferred from a single image in [55]. Therefore, our technique is more robust

and reliable especially on the images that contain similar foreground/background and/or lack

defocus cues. Second, the availability of light fields facilitates easier an effective extraction

of location, contrast and foreground cues. These cues, in many ways, serve the similar

purpose of uniqueness and objectness cues in [55] but are more robust. Third, our objectness

cue is concerned as to an focus stack slice not to a certain region or pixels, which accelerates

the computational speed.

2.2.3 Depth Cue.

Recent studies on human perception [67] have shown that depth cue plays a impor-

tant role in determining salient regions. However, only a handful of works incorporate depth

maps into saliency models. Maki et al. [84] used depth cue to detect human motions. Their

depth features are highly task-dependent and the detection is performed in a top-down fash-

ion. Niu et al. [88] computed saliency based on the global disparity contrast in a pair of

stereo images. Lang et al. [67] used a Kinect sensor to capture the scene depth. Ciptadi et al.

[23] used 3D layouts and shape features from depth maps. Peng et al. [92] detected saliency

taking account of both depth and appearance cues derived from low-level feature contrast,

mid-level region grouping and high-level priors enhancement.

2.3 Deep learning methods in saliency prediction

Even though by combining the hand-crafted bottom-up and top-down features salien-

cy models have achieve relative high performance on the popular dataset, recent advances in

deep learning and the availability of large datasets have enabled models to perform end-to-

end learning.

The seminal work of Krizhevsky et al. [65] introduce the Deep Convolutional Net-

works into the computer vision community, and bring a paradigm shift in vision research

from hand-crafting features to learning them directly from data. Motivated by the function-

ing of cells in visual cortex of primates, this early deep networks target at providing solutions
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to image classification. By using this network, Krizhevky et al. successfully captured rich

visual features with semantical meanings in a hierarchical fashion. They also show high

performance in the related pixel-level image processing tasks such as semantic object seg-

mentation [81] and depth estimation [27].

Vig et al. [109] propose the first framework to model saliency with deep convolutional

networks (DCNs), where feature maps from different layers in a 3-layer ConvNet are fed into

a simple linear classifier for distinguishing salient from non-salient regions. However, due

to the limited number of image data online, this architecture fail to reach the state-of-the-

arts performance. This method facilitates another popular deep network architecture, i.e. the

DeepGaze [62]. This deep visual attention neural network use the existing AlexNet [65],

which is trained for image classification, to predict fixation maps. Particularly, they remove

the fully connected layers of AlexNet network and generate a high dimensional feature space,

which is then linearly combined to predict the fixation saliency. Based on the DeepGaze

framework, Srinivas et al. propose a DeepFix network kruthiventi2015deepfix, which adopts

very deep networks to capture semantic features at multiple scales, to predict saliency. This

method uses Location Biased Convolution filters to allow the network to exploit location

dependent patterns. The SALICON model [42] use a new objective function based on the

saliency evaluation metrics (Normalized Scanpath Saliency, Similarity, and KL-Divergence

etc.) to fine-tune the CNNs, which is pre-trained for object recognition (AlexNet [65], VGG-

16 [102] and GoogLeNet [105]). This model incorporate multiple scales to select attention at

different resolutions. Pan et al. [90] proposed to use a shallow CNN trained from scratch and

another deep CNN where the weights of its first 3 layers was adapted from VGG CNN M

trained for image classification. Liu et al. [79] proposed a multi-resolution CNNs where

three final fully connected layers are combined to form the final saliency map.

Other methods focused on saliency object detection. Zhao et al. [123] collect both

local and global context information by employing two parallel network to detect the salient

object in the scene. The input data of their framework contains a pre-processed superpixel-

centered window to feed the two ConvNets separately. They use a fully connected layers

to combine the outputs of the two ConNets and generate the final saliency map. Li and
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Yu [73] feed three nested windows to three different ConvNets at different scales, and then

fuse the three ConvNets to predict the salient object. Wang et al. [110] propose a two-step

deep network for integrate local and global information from the image. Specifically, they

first learn local saliency by local features detected from a deep neural network, i.e. DNN-

L. Next, they train another deep network (DNN-G) to assign values to each object based

on the local saliency, global contrast feature and geometric information. Kruthiventi et al.

[66] proposed a unified framework to predict eye fixation and segment salient objects. This

multi-task CNN shares the initial network layers to capture the objet level semantics and the

global contextual aspects of saliency. Then, they feed the captured low-level features to two

separate CNNs to address the task specific aspects.
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Chapter 3

SALIENCY DETECTION ON LIGHT FIELD

In this chapter, I explores the problem of using light fields as input for saliency de-

tection. Specifically, I first show that the unique refocusing capability of the light fields

provides useful focusness, depth and objectness cues and then introduce our acquired light

field datasets and our tailored algorithm on this dataset.

3.1 Motivation

State-of-the-art solutions [8] have focused on integrating low-level features (pixels

or superpixels) and high-level descriptors (regions or objects). However, existing solutions

have many underlying assumptions, e.g., the foreground should have a different color from

the background, the background should be relatively simple and smooth, the foreground is

occlusion free, etc. In reality, many real images violate one or multiple assumptions as shown

in Fig. 5.1.

By far, nearly all existing saliency detection algorithms utilize images acquired by a

regular camera. In this dissertation, we explore the salient object detection problem by using

a completely different input: the light field of a scene. A light field [14] can be essentially

viewed as an array of images captured by a grid of cameras towards the scene. Commercial

light field cameras can now capture reasonable quality light fields in a single shot. Lytro, for

example, mounts a lenslet array in front of the sensor (as shown in Fig. 3.2 (a) ) to acquire

a light field at a 360 × 360 (upsampled to 1080 × 1080) spatial resolution and 10 × 10

angular resolution. The Raytrix R11 camera can produce a higher spatial resolution at the

cost of lower angular resolution. The multi-view nature of the light field has enabled new

generations of stereo matching [60] and object segmentation algorithms [111]. In this paper,

we explore how to conduct salient object detection using a light field camera.
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 All-focus Image   Groud Truth    Saliency by RC   Our Saliency    Saliency by DRFI

Figure 3.1: Light field vs. traditional saliency detection. Similar foreground and background
or complex background imposes challenges on state-of-the-art algorithms (e.g., RC [20],
DRFI [52]). Using light field as inputs, our saliency detection scheme is able to robustly
handle these cases.

Human vision system has the refocusing ability which can help us pay more atten-

tion to the interesting objects, since the other objects are blurred when our eye focus on

certain object [47]. Due to above reason, we can easily distinguish the interesting object,

i.e., the salient object, regardless the texture or the color of other objects in the scene, i.e.,

the background. When it comes to detect the salient object from images, several problems

will be arisen if the objects in the image have similar color or texture appearance, as shown

in Fig. 5.1.

Conceptually, the light field data can benefit saliency detection in a number of ways.

First, the light field has a unique capability of post-capture refocusing [87], i.e., it can syn-

thesize a stack of images focusing at different depths. As shown in Fig. 3.2 (b), we can

always find right layers which focus on the salient object within focus stack. If we can pick

out the right layers which only focus on foreground, the salient object detection problem

will be equal to the focus measures algorithms. The availability of a focal stack is inline

with the recently proposed ”focusness” metric [55]. It is the reciprocal of blurriness and can

be estimated in terms of edge scales via scale-space analysis. Second, a light field provides

an approximation to scene depth and occlusions. In saliency detection, even a moderately
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Figure 3.2: (a) A Lytro light field camera can capture a light field towards the scene in a
single shot. The results can be then used to synthesize a focal stack and further a all-focus
image. (b) Focus stack(the first row) and its corresponding focus regions (second row).

accurate depth map can greatly help distinguish the foreground from the background. This

is also inline with the ”objectness” [55], i.e., a salient region should complete objects instead

of cutting them into pieces.

In addition to focusness and objectness, we also exploit the recent background prior

[112]. Instead of directly detecting salient regions, such algorithms aim to first find the back-

ground and then use it to prune non-salient objects. Robust background detection, however,

is challenging, especially when the foreground and background have similar appearance or

the background is cluttered. To resolve this problem, we utilize the focusness and object-

ness to more reliably choose the background and select the foreground saliency candidates.

Specifically, we compute a foreground likelihood score (FLS) and a background likelihood

score (BLS) by measuring the focusness of pixels/regions. We select the layer with the high-

est BLS as the background and use it to estimate the background regions. In addition, we

choose regions with a high FLS as candidate salient objects. Finally, we conduct contrast-

based saliency detection on the all-focus image and combine its estimation with the detected

foreground saliency candidates.

For validation, we acquire a light field database of a range of indoor and outdoor

scenes and generate the ground truth saliency map. We have already shared this database, i.e.,
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Figure 3.3: Processing pipeline of our saliency detection algorithm for light fields.

Light Field Saliency Detection (LFSD) Dataset, to community online1. Experiments show

that our saliency detection scheme can robustly handle challenging scenarios such as similar

foreground and background, cluttered background, and images with multiple depth layers

and with heavy occlusions, etc., and achieve high accuracy and robustness. In addition, the

comparison results show that our focusness cues using light field are more effective than or

equally as good as other state-of-arts depth cues.

Recent studies on human perception [67] have shown that depth cue plays a impor-

tant role in determining salient regions. However, only a handful of works incorporate depth

maps into saliency models. Maki et al. [84] used depth cue to detect human motions. Their

depth features are highly task-dependent and the detection is performed in a top-down fash-

ion. Niu et al. [88] computed saliency based on the global disparity contrast in a pair of

stereo images. Lang et al. [67] used a Kinect sensor to capture the scene depth. Ciptadi

et al. [23] used 3D layouts and shape features from depth maps. Peng et al. [92] detected

saliency taking account of both depth and appearance cues derived from low-level feature

contrast, mid-level region grouping and high-level priors enhancement. In this chapter, we

1 http://www.eecis.udel.edu/˜nianyi/LFSD.htm
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Figure 3.4: Foucsness detection comparison of UFO[55] vs. ours. (a) Focusness detection
results comparsion. (b) PRCs comparison.

exploit rich depth information embedded in the light field. Specifically, we use coarse depth

information embedded in a focal stack to guide saliency detection. To achieve more accurate

result, most depth cue based schemes need relatively accurate depth maps. In reality, depth

estimation from images (e.g., stereo) remains challenging in both computational cost and

accuracy on real scene. One can alternatively resort to active sensing (e.g., structured light

or time-of-flight). However, such schemes also have their limitations such as limited depth

range and interference with environment lighting. Focus stack rendering, on the other hand,

is more intuitive and precise. Also, isolating different objects by depth map is more likely to

break object into pieces, as we have no prior depth information of each object. Our proposed

scheme aims to resemble human perception using eye: the eyes can dynamically refocus at

different slices to determine saliency. This can be done by constructing focus stack using

light field rendering approach. Detecting on focus stack, on the other hand, is more likely

to preserve better objectness of salient object than depth map, if salient objects have narrow

depth range compared with the depth range of complete scene. More detailed discussion can

be found in Section 3.2.4.

3.2 Computing Light Field Saliency Cues

Fig. 4.2 shows our saliency detection approach using the light field. We first generate

a focal stack and an all-focus image through light field rendering. For each image in the
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focal stack, we detect the in-focus regions and use them as the focusness measure. Next,

we combine the focusness measure with the location prior to extract the background and the

foreground salient candidates. We further couple the background prior with contrast-based

saliency detection for detecting saliency candidates in the all-focus image. Finally, we use

the objectness as weights for combining the saliency candidates from the all-focus image

and from the focal stack as the final saliency map.

3.2.1 Focal Stack and All-Focus Images

A unique capability of light field is after-capture refocusing. Here we briefly reiterate

its mechanism. A light field stores regularly sampled views looking towards the scene on a

2D sampling plane. These views form a 4D ray database and new views can be synthesized

by querying existing rays. Given the light field of a scene, one can synthesize a Depth-of-

Field (DoF) effects by selecting appropriate rays from the views and blending them, as shown

in Fig. 3.2 (a). Isaksen et al. [43] proposed to render DoF by reparameterizing the rays onto

the focal plane and blending them via a wide aperture filter. Ng et al. [87] proposed a similar

technique in the Fourier space and the solution has been adopted in the Lytro light field

camera. Using the focal stack, we can fuse an all-focus image, e.g., through photomontage

[3]. We refer the readers to the comprehensive survey on light field imaging [70, 118] for

more details about the refocusing algorithm.

In this paper, we use the Lytro camera as the main imaging device to acquire the light

field. The Lytro camera uses an array of 360×360 microlenses mounted on an 11 megapixel

sensor, where each microlens resembles a pinhole camera. It can produce the refocused

results at a resolution of 360× 360.

We compose an all-focus image by focus fusion using existing online-tools 2 from

the focal stack so that the all-focus image has the same resolution as the focal stack. In

addition, it is worth noting that DoF effect is not significant in Lytro focal stack due to small

microlens baseline. As a result, each slice is just slightly defocused. Therefore, brute-force

2 http://code.behnam.es/python-lfp-reader/
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approaches such as applying saliency detection on each slice and then combine the results

are not directly applicable since all slices will produce similar results.

Before proceeding, we explain our notation. We denote {I i}, i = 1, ..., N as the

focal stack synthesized from the light field and I∗ the all-focus image by fusing the focused

regions of {I i}. Our goal is to compute a saliency map w.r.t. I∗. We segment each slice

{I i} and I∗ into a set of small non-overlapping regions (superpixels) using the mean-shift

algorithm [24]. This segmentation helps to preserve edge consistency and maintain proper

granularity. We use (x, y) index a pixel and r to index to a region.

3.2.2 Focusness Measure

We start with detecting the in-focus regions in each focal stack image I i and use

them as the focusness prior. In the recent focusness-based saliency detection work, Jiang et

al. [55] measured focusness via edge sharpness. However, edge-based in-focus detection is

only reliable when the out-of-focus regions appear severely blurred. In our case, the DoF

of Lytro is not as shallow as the one in DSLR. Therefore, edges in out-of-focus regions are

not as blurred as in the classical datasets, as shown in Fig. 3.4 (a). It is hence difficult to use

spatial algorithms to separate the in-focus/out-of-focus regions. Our approach is to analyze

the image statistics in the frequency domain. In Fig. 3.4, we compare the saliency detection

resutls vs. the focusness measure both visually and quantitatively. Specifically, we select 80

focus slices that have a clear boundary between in-focus and defocused regions. We then

segment out the in-focus region. Fig. 3.4 illustrates that the in-focus regions are often quite

different from the actual saliency maps. It is also worth noting that [55] attempts to segment

the complete in-focus object whereas our algorithm handels the focusness measures at region

level. Consequently, [55] is more likely to over-segement in-focus regions, i.e., it will cut

into part of the out-of-focus regions, as shown in Fig. 3.4 (a). Our method, on the other hand,

processes superpixels and prevents over-segmentation.

Given an n× n image I , we first transform I into frequency domain by the Discrete

Cosine Transform (DCT)

23



D(u, v) =
n−1∑
x=0

n−1∑
y=0

cos(
πu

2n
(2x+ 1)) cos(

πv

2n
(2y + 1))I(x, y). (3.1)

Next, we compute the image’s response with respect to different frequency compo-

nents. We first apply a series of M bandpass filters {Pm}, m = 1, ...,M on D(u, v) for

decomposing the signal and then transform the decomposed results back via the inverse DC-

T. Recall that out-of-focus blurs will remove certain high frequency components. Therefore,

only regions with a sharp focus will have high responses at all frequencies. In our imple-

mentation, we use a sliding window of 8 × 8 pixels and compute the variance τm within

each patch with respect to filter Pm. To ensure reliable focusness measurements, we use the

harmonic variance [72] to measure the overall variance over all M filters:

F(x, y) =

[
1

M − 1

M∑
m=1

1

τ 2m(x, y)

]−1
. (3.2)

We useF(x, y) as the focusness measure at pixel (x, y). Under this formulation, only

when the response of all filters are high, the harmonic variance F(x, y) will be high. Any

small τm will result in low F . Therefore, this formulation ensures that only local windows

preserving all frequency components would be deemed as in-focus. Since both DCT and

harmonic variance computations are effective, we compute F for every pixel in the image.

Finally, to measure the focusness of a region, we simply compute the average of all pixels

within a region r

F(r) =
∑

(x,y)∈r

F(x, y)

Ar
, (3.3)

where Ar is the total number of pixels in r. We will use this region-based focusness prior

F(r) for selecting background and saliency candidates in Section 3.2.3 and 3.2.4. It is worth

noting that more sophisticated focusness estimation techniques such as scanning through the

focal volume can be used. In practice, our measure is sufficient for the task of saliency detec-

tion and is much faster. Notice that harmonic variance would fail at detecting regions with

single-directed edges or with homogeneous color, as can be seen from Fig. 3.4. However,
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(a) (b) (c) (d)

Figure 3.5: Foucsness detection result on focus stack. (a) All focus image. (b) Focusness
map on the nearest objects. (c) Focuseness map on objects at the middle of depth range. (c)
Focusness map on the furthest objects.

like the blue bottle case in Fig. 3.14, the wrongly suppressed regions could be correctly high-

lighted as salient region in the final saliency map by incorporating color contrast cue. More

details are discussed in Section 3.3.2.

3.2.3 Background Selection

Next, we set out to find the background slice. Notice that the background slice is

not equivalent to the farthest slice in the focal stack. Recall that we synthesize the focal

stack without any knowledge on scene depth range. Therefore, the farthest slice may not

contain anything in focus and hence provides little cues, as shown in the first row of Fig. 3.5.

Second, the slice that have the farthest object in focus does not necessarily translate to the

background slice, like what the second example in Fig. 3.5 shows, the object may be isolated

from majority of the background and should be treated as an outlier.

Our approach is to analyze both the distribution of the in-focus objects with respect

to their locations in the image: if the majority of in-focus objects (pixels) lies near the border

of the image, then they are more likely to belong to the background. Further, if the corre-

sponding depth layer is far away, its in-focus objects are also more likely to be background.
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We therefore scan through all focal slices. For each slice I i, we integrate (project) the focus-

ness measure F of all pixels along the x and y axes respectively to form two 1D focusness

distributions as

Dx =
1

α

h∑
y=1

F(x, y), Dy =
1

α

w∑
x=1

F(x, y), (3.4)

where w and h are the width and height of the image and α =
∑

x

∑
y F(x, y) is the nor-

malization factor.

A common assumption in saliency detection is that an salient object is more likely to

lie at the central area surrounded by the background [112]. If a focal slice corresponds to

the background, its Dx and Dy should be high near the endpoints but low in the middle. To

quantitatively measure it, we define a ”U-shaped” 1D band suppression filter

U(x,w) = (
1√

1 + (x/η)2
+

1√
1 + ((w − x)/η)2

), (3.5)

where η controls the suppression bandwidth in U depending on the image size/resolution,

i.e., a high resolution image should have a high η. The Lytro focal stack images have a

uniform resolution of 360× 360 and we use η = 47 in all experiments.

Finally, we scale the focusness distribution by the suppression filter to compute a

Background Likelihood Score (BLS) for each focal slice I i

BLS(Ii) = ρ · [
w∑
x=1

Di
x(x) · U(x,w) +

h∑
y=1

Di
y(y) · U(y, h)], (3.6)

where ρ = exp(λ·i
N

) is the weighting factor of layer i in terms of depth, N is the total number

of slices in the focus stack and λ = 0.3. We choose the slice with the highest BLS as the

background slice IB. It is important to note that each focal slice has a corresponding BLS

even though it is not chosen as IB.

3.2.4 Objectness and Foreground Measures

Alexe et al. [4] suggested that a salient object should be complete instead of being

broken into pieces and refer to this property as the objectness. Given a focal stack image I i,
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we measure the objectness of its focused region using a 1D gaussian filter with mean µ and

variance σ as

G(x) = exp(−x− µ
2σ2

), (3.7)

where µ corresponds to the centroid of the object and σ as its size. Recall that we have

already computed the focusness distributions Dx or Dy. Therefore, we can directly obtain

µ = xp or yp, that corresponds to the peak location of Dx or Dy respectively. If multiple

peaks exist, we simply take their average.

Next we estimate σ as the size of the object. If σ is too small, isolated small super-

pixels would be treated as an object. If σ is too large, i.e., it would treat the entire image as

an object. In our implementation, we choose σ = 45, i.e. 50% Gaussian covers half of the

Dx or Dy. We compute the objectness score (OS) for each focal slice

OS(Ii) =
w∑
x=1

Di
x(x) · G(x,w) +

h∑
y=1

Di
y(y) · G(y, h). (3.8)

Conceptually, if an object in a given slice is salient, it should have a low BLS and

high OS, indicating it belongs to the foreground. We therefore define a foreground likelihood

score (FLS) as

FLS(I i) = OS(I i) · (1−BLS(I i)). (3.9)

Same as how we select the background slice IB, we choose the foreground slices

{IF} as one with the higher FLS (FLS > 0.7×max(FLS)). Fig. 3.6 illustrates the process

of finding the background and foreground slices on a sample image. Notice that salienct

object can be separated into several layers, which might result in inaccurate FLS/BLS score

for some focusness layers. For instance, the first layer F1 in Fig. 3.6 focuses on the salient

object, but our algorithm regarded it more likely to be background layer. We would like to

point out that not all slices focusing on foreground are good choices for {IF}. In theF1 case,

even though its highlighted regions belong to salient object, they are scattered around image

boundary whereas our goal is to detect salient object as a whole. In reality, saliency objects

have narrow depth range in regard to the depth range of the complete scene. This indicates

that within a focal stack, there generally exists a slice where the entire salient object/region
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All-focus Image

FLS=0.5  BLS=0

FLS=1  BLS=0.1

FLS=0  BLS=1

 Objectness Measure

Background Measure

FLS=0.004  BLS=0.7

 FLS=0.3  BLS=0.02

Figure 3.6: Separating the foreground and background using focusness cues. Left: the com-
puted foreground likelihood score (FLS) and the background likelihood score (BLS) com-
puted on different focal slices. Right: Examples on computing objectness measure (up) and
background measure (bottom). Green curve is corresponding filter (U-shape or Gaussian);
blue curve is sample Dx/Dy; red curve is the scaled distribution by the filter.

exhibits high sharpness, such as the second layer F2 in Fig. 3.6. Once we are able to select

the correct candidate slices, i.e., slices with high FLS/BLS value, the inclusion of incorrect

FLS/BLS will not greatly affect the final saliency result. In fact, inaccurate FLS will affect

saliency detection only when the salient object has a large depth range in the complete scene.

3.3 Saliency Detection

Finally, we combine the cues obtained from the light field focal stack to detect salien-

cy in the all-focus image I∗.

3.3.1 Location Cues.

We first locate the background regions in I∗ using the focusness measure FB(r) of

the estimated background slice IB. To incorporate the location prior [101], we scale the
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focusness measure for each region Rr in terms of its distance to the center of the image and

use it as a new background cue

BC(r) =
1

γ
[FB(r) · ||pr − c||2], (3.10)

where γ is a normalization factor, pr is the centroid of r and c is image center. We further

threshold the BC for determining the background regions {Br′}, r′ = 1, ..., K in I∗ (where

K is the total number of background regions). We can then compute the Location cue as:

LC(r) = exp(−β ·BC(r)). (3.11)

In our experiment, we use β = 8.

3.3.2 Contrast Cues.

Once we obtain the background regions, we apply the color-contrast based saliency

detection on the non-background region. For each non-background region r and background

region r′ in I∗, we calculate their color difference δ(r, r′) w.r.t. r′ as δ(r, r′) = max{|red(r)−

red(r′)|2, |green(r) − green(r′)|2, |blue(r) − blue(r′)|2}. To improve robustness, we use

compute the harmonic variance of all δ(r, r′) for r

HV (r) =

[
1

K

K∑
r′=1

1

δ(r, r′)

]−1
. (3.12)

Combining the harmonic variance of color difference HV with location cue LC, we

obtain a color contrast based saliency map as

SC(r) = HV (r) · LC(r). (3.13)

3.3.3 Foreground Cues.

From the detected foreground salient candidates {IFj }, j = 1, ..., L via focusness

analysis (where L is the total number of foreground slices), we compute the foreground cues

the combining the focusness maps FFj (r) and the location cue LC:

SjF (r) = FFj (r) · LC(r). (3.14)
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3.3.4 Combine.

Finally, We use the objectness measure as weight for combining the contrast based

salience map SC(r) and foreground maps SjF (r) as:

S(r) =
L∑
j=1

ωj · SjF (r) + ωC · SC(r), (3.15)

where ωj = OS(SjF ) and ωC = OS(SC) are the objectness weights calculated by Eqn. 3.8.

3.4 Experiments

Recall that most previous approaches use a single image as input whereas our ap-

proach uses the light fields. Since a light field captures much richer information of the scene

than a single image, our comparisons do not intend to show that our technique outperforms

the state-of-the-art as any such comparisons would be unfair. Rather, our goal is to show that

the additional information provided by the light field can greatly improve saliency detection

tasks.

3.4.1 Dataset

Traditional benchmark data sets [80, 1] are all single images and cannot be used to

test our solution. Most online light field datasets, on the other hand, are not suitable for the

purpose of saliency detection. For example, several datasets are either too simple: they only

contain a single foreground object again a plain background, or too complex: foreground too

cluttered. Further, most light field datasets are captured by large baseline light field cameras,

to enhance the DoF effect in refocusing. Consequently, the rendered focus stacks are more

likely to break salient objects into smalls pieces, which would impact the final saliency map

as we discussed in Section 3.2.4.

We therefore first collect a dataset of 100 light fields using the Lytro light field cam-

era. The dataset consists of 60 indoor scenes and 40 outdoor scenes.

For each data, we ask three individuals to manually segment the saliency regions

from the all-focus image. The results are deemed ground truth only when all three results

are consistent (i.e., they have an overlap of over 90%).
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3.4.2 Evaluations on different Superpixel Algorithms

We first evaluate the impact of superpixel algorithms on our scheme. We compare

the most widely used two superpixel-generating algorithms in saliency detection, i.e., Mean-

Shift Clustering (MS)[24] and simple linear iterative clustering (SLIC)[2]. The rest parame-

ters were kept the same. It is worth noting that MS would generate more regions than SLIC

if they have same original superpixel number N. Consequently, we set the N of SLIC and

MS to 300 and 200 respectively.

To quantitatively compare different methods, we use the canonical precision-recall

curve (PRC) to evaluate the similarity between the detected saliency maps and the ground

truth. Precision corresponds to the percentage of salient pixels that are correctly assigned and

recall refers to the fraction of detected salient region w.r.t. the ground truth saliency. Fig. 3.8

shows the PRC comparison result on our light field dataset. Our experiment follows the

settings in [21], i.e., we binarize the saliency map at each possible threshold within [0, 255].

Fig. 3.9 is a visual comparison between the saliency maps of different schemes. We can see

that the saliency results adopting SLIC (LFS SLIC) resemble MS (LFS MS) whereas

SLIC is about 2.5 times faster, as validated in Fig. 3.8 and Fig. 3.10.

3.4.3 Evaluations on Regular Images

Next, we show our light field saliency detection results and the results using a range of

unsupervised schemes on regular images. These include algorithms based on spatiotemporal-

cues (LC[119]), graph-based saliency (GB [50]), frequency-tuning (FT [1]), spectral resid-

ual (SS [40]), global-contrast (HC [21] and RC [20]), Low Rank Matrix Recovery (LRMR

[101]), Graph-Based Manifold Ranking (GBMR [117]), focusness-based (UFO [55]), Hier-

archical Saliency (HS [116]) and Discriminative Regional Feature Integration (DRFI [52]).

Most these methods have open source code and we use the default parameter.
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LRMR[20] HS[17] GBMR[27]    GTUFO[13] DRFI[7] LS[30] SVR[44] RGBD[31] LFSImages RC[6]

Figure 3.7: Saliency results using all-focus images (the first and third rows) and partial-focus images (the second and forth rows)
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We first evaluate the performance of above methods on all-focus images. In Fig. 3.9,

we show the saliency detection results for visual comparisons. For very challenging scenes

such as the blue bird (second row) , our approach produces much better results than regular

image based techniques. It is important to note that all-focus image will degrade the sharp-

ness contrast between salient object and background, which would impact the performance

of algorithms based on sharpness/focusness cues. To ensure fairness, we then compare the

performance on partial-focus images, i.e., the image layer focusing at a fixed depth layer.

If there are several layers that focus on the same foreground object, we simply pick out the

one that produces the sharpest image of the salient object. Fig. 3.8 (a) provides the PRCs

comparison. In Fig. 3.7, we show a visual comparison between the resulting saliency maps

of various single-image based state-of-the-art schemes. We observe that only in cases where

a partial-focus image exhibits a severely defocused background, partial-focus slice would

produce better performance than an all-focus image, as shown in Fig. 3.7 (the blue flower

scene vs. the fruit scene). Notice though that the results using the complete light field still

outperforms the ones using either the best partial slice or the all-focus image. This illustrates

the significant advantage of using the light field as inputs for saliency detection.
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Contrast + Foreground+ Location (LFS_MS)

Contrast + Foreground

Contrast only

Contrast + Foreground+ Location (LFS_SLIC)

LS SVR RGBD

Solid line: partial-focus images Dash line: all-focus images
LFS_MS LFS_SLIC

Depth Map

 

SS FT LC HC RC LRMR HS
GBMR UFO DRFI LFS_MS

Solid line: partial-focus images Dash line: all-focus images
LFS_SLIC

Figure 3.8: PRC comparisons on our light field dataset. (a)Results of regular image based
algorithms. (b) Results of depthmap based algorithms.(c) Using different cues in our ap-
proach.
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LRMR HS GBMR    Depth Map    GTUFO DRFI LS SVR RGBD LFS_SLICLFS_MSPatial-focus 
Images

RC

Figure 3.9: Visual Comparisons of different saliency detection algorithms vs. ours on our light field dataset.
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We would like to point it out that the PRCs are less smooth than they appear in

traditional saliency works. This is due to the small amount of data in our dataset (100 light

field sets vs. 1000 images in classical benchmarks), although the curves still provide useful

insights on the performance. Also note that a large number of scenes in our light field

dataset is highly challenging to previous techniques, i.e., many have complex background or

similar foreground and background. Fig. 3.9 shows sample in-focus images of these difficult

scenes. We observe that recently proposed RC [20], HS [116] and DRFI [52] can still achieve

reasonable performance. This is partially due to the background prior refinement and color

space smoothing methods used in RC, the multi-scale features used in HS and the supervised

feature vector mapping approach used in DRFI. Results using our technique produces the

highest precision in the entire recall range. This illustrates the importance of focusness and

objectness prior provided by the light field.

Fig. 3.10 evaluates the running time of each methods. We implemented all methods

with open source code and list their average running time for one scene. Notice that even

though our algorithm needs processing much larger data (about 10 times) than others, the

average processing time is still comparable to those regular-image-based techniques using

the same programming platform.

Method FT LC HC SS RC LRMR HS GBMR DFRI Ours MS Ours SLIC
Time (ms) 8.11 3.30 231.16 102.59 918.91 12629.7 393.69 674.91 9104.18 9830.5 3755.1
Code C++ C++ C++ Matlab C++ Matlab C++ Matlab&C++ Matlab Matlab Matlab& C++

Figure 3.10: Comparison of average time taken for different saliency detection methods.

3.4.4 Evaluations on Images with Depth information

We further choose three recent proposed depthmap-based methods, i.e. SVR[26],

LS[23] and RGBD[92], to compare their performances with our model. The depth maps of

LFSD are generated directly from Lytro desktop. Fig. 3.8 (b) shows the PRC comparisons

among above mentioned algorithms, which illustrates that the focusness cues utilized in our

technique are equally or more useful than depth cue. Fig. 3.9 shows the visual comparisons
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on several LFSD images. We observe that LS and SVR may produce low precision results,

since they treat depth cues independently for saliency detection, while ignoring the strong

complementarity between appearance and depth cues and utilize depth cues as an indepen-

dent image channel for saliency detection. It is important to note that directly using depth

maps as saliency cues is not reliable. For example, simple thresholding on the depth maps

would produce large errors on images in row 3, 4, and 6 of Fig. 3.9 where both salient and

non-salient objects lie at the similar depth. In fact, in Fig. 3.8 (b), we have plotted the PRC

performance by using merely depth maps as saliency cues and the results show that it is

inferior to depth-based approaches.

We also evaluate their performance on both all-focus and partial-focus images. It

is noteworthy that all-focus images also degrade the performance of those depthmap-based

techniques. This is because that all these three methods incorporate depth saliency with

regular saliency models to obtain the final saliency maps. Moreover, the larger the regular

saliency features weigh, the more evident improvement will show.

3.4.5 The Effect of Camera-to-Object Distance

Recall that a Lytro camera has small baseline. In order to enlarge the infocusing and

defocusing contrast between foreground and background, most of the salient objects in our

dataset are placed near the Lytro camera. When the foreground object is faraway from the

camera, the change of depth-of-field when switching the focus from the foreground to the

background would be less significant. To test whether our algorithm is robust to the camera-

to-object distance d, we capture 50 more light fields where salient objects are located at

diverse d. Notice that the maximum d making the object notable is proportional to the object

size. In our experiment, instead of exploring the connection of performance vs. d, we analyze

the relevance of performance vs. objects’ depth-to-size ratioR:

R =
d ·max(depth range)

Height(Object) ·Width(Object)
. (3.16)

Typically, the range of R in our testing set is between [14, 170]. To plot the perfor-

mance vs. R curve, we divide the 50 light fields into 5 subsets according to their R value.
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Figure 3.11: (a) Performance comparisons of F-score regarding R. (b) Average precision,
recall and F-score on 50 testing light fields.

Each set contains about 10 light fields. Here, we adopt the F-score methodology:

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

. (3.17)

It is concluded in [80] that precision rate is more essential than recall in attention

detection. Accordingly, we choose β2 = 0.3 to weigh precision more than recall. For each

light field set, we calculate its average precision and recall rate. The average Fβ is derived

by Eqn. 3.17. Fig. 3.11 (a) shows the Fβ −R curves of different methods and Fig. 3.11 (b)

presents the comparison of average precision, recall and F-score on this 50 light fields set.

Fig. 3.12 provides the visual comparison of different methods when changing d. We can tell

that as R goes larger, the performance of most algorithms decrease. This is because that

when the object lies far away from the camera, in the slice where the object is in-focus, the

background appears nearly focused as well. Such a scenario resembles the classical all-focus

saliency detection case where the usefulness of most focusness cue is reduced. Due to the

effectiveness of our focusness detection algorithm, our method shows the best robustness in

Fβ −R curves and also achieves the highest average F-score.
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Figure 3.12: Saliency maps of red robot at differentR. From top to down,R = 14, 53, 92, 131, 170
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3.4.6 The Effect of Parameters

For all the experiments described above, the parameters were kept fixed, i.e., no user

fine-tuning was done. To test the robustness of our algorithm to the parameters and to analyze

their effect, we repeated the experiments, while varying η from Eqn. 3.5, σ from Eqn. 3.7, N

(the number of superpixels), β from Eqn. 3.11, and λ from Eqn. 3.6. To quantitatively show

these impact, we follow the F-score methodologies described in Section 3.4.5 to evaluate the

accuracy of the detected saliency when varying η, σ , N , β and λ, as shown in Fig. 3.13.

Parameter η controls U-shape filter while parameter σ controls the shape of Gaussian.

Since we have normalized both U-shape and Gaussian filter to a very small scale, those

two parameters causes barely modifications when changing values. N denotes the number

of superpxiels. It can be observed that our algorithm is very robust as well, due to the

performance is dominantly affected by the objectness of superpixels and less by the number

of superpixels. Certainly when the number of superpixels is too small, the salient and non-

salient regions will be merged and the performance of our approach will be inferior. It is

noticeable that the above three parameters are varying among different ranges. η should vary

between 0 and min(w, h), where w and h are the width and height of the image. Recall that

the Gaussian filter has relative large response between [µ−σ, µ+σ], during which the salient

objects should be located. Therefore, we normally keep σ between 0 and min(w, h). As for

N , we range it from 20 to 1000.

Parameter β effects the highlight extend of regions located at the center of images

and parameters λ controls the probability of picking the back layer as background slice. β

and λ of exponential functions, on the other hand, have much smaller ranges, i.e., [0,100], to

prevent from out of memory issues. Unlike η, σ and N , changing the values of β and λ has

specific impact on our final results, even though slightly.

Fig. 3.13 (b) reveals that when β goes large, the performance of our approach will

degrade. Notice that low recall occurs when highlighted regions in saliency maps are all

of high value. In our case, the larger β is, the higher values will be assigned to the central

regions by the location cue, i.e., LC. F-score, therefore, will be decreased consequently.

When λ is large (> 2), the performance will degrade slightly ( about 0.03). This is because
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Figure 3.13: F-score curvers when varying λ, β, η, σ, N .

that large λ value will enforce picking the furthest layer as background slice, which may fail

at cases we discussed in Section 3.2.3.

We also compare the saliency components obtained using different cues, i.e., color

contrast, location and focusness cues. Fig. 3.8(c) shows the PRC comparisons using indi-

vidual vs. combined cues. The plot illustrates that each cue has its unique contribution to

saliency detection, although in some cases, an image can be dominated by a specific cue as

shown in Fig. 3.14. In the first row, color contrast provides most valuable cues and the es-

timated saliency from it resembles the final one. This is mainly because the blue mug lacks

texture and hence is not robustly detected as the foreground object to provide focusness cues.

In contrast, in the flower scene in the second row, the color contrast result treats both the fore-

ground flower and the background clutter as saliency. The focusness cue, however, manages

to correct the errors by removing the background. In the last example, the color contrast

result misses the foreground bottle and the focusness cue manages to add it back.
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(a) (b) (c) (d)

Figure 3.14: Saliency detection using different cues. (a) All-focus images; (b) Detected
saliency using focusness cues; (c) Detected saliency using color contrast. (d) Saliency results
by combining (b) and (c).

3.4.7 Limitations.

The performance of our algorithm is largely dependent on the quality of the acquired

light field. Lytro, however, has a much narrow Field-of-View than regular cameras. There-

fore, objects in our light fields generally appear “bigger” than in other benchmarks. With

emerging interest on light field camera designs, we expect next-generation models to over-

come this limitation. There are also alternative approaches to use the light field for saliency

detection. For example, one can potentially first construct a depth map using stereo match-

ing. However, the quality of stereo matching depends largely on scene composition. Never-

theless, even a low quality depth map may provide useful cues comparable to the focusness

cue. Furthermore, it is also possible to first conduct saliency detection on the all-focus image

and then use the results to improve the quality and speed of light field stereo matching.
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3.5 Discussion

We have presented a saliency detection algorithm tailored for light fields. We be-

lieve this is the first light field saliency detection scheme. The key advantage of using a

light field instead of a single image is that it provides both focusness and depth cues. In

recent works [88, 55], these new cues have shown great success in improving accuracy and

robustness in saliency detection. Our solution echoes these observations and also provides

an alternative and more robust method to extract these cues through the analysis of light

fields. Experiments show that our technique can handle many challenging scenarios that cast

problems on traditional single-image-based algorithms. Another contribution of our work is

the construction of the light field saliency dataset which consists of the raw light field data,

the synthesized focal stacks and all-focus images, and the ground truth saliency maps. Our

immediate future work is to build a much larger and comprehensive database and share it

with the community.
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Chapter 4

A WEIGHTED SPARSE CODING FRAMEWORK FOR SALIENCY DETECTION

In this chapter, I provide a unified saliency detection framework for handling het-

erogenous types of input data.

4.1 Motivation

Existing 2D saliency algorithms are inherently different from how human visual sys-

tem detects saliency. Human eyes have two unique properties that are largely missing in

existing 2D saliency solutions. First, human eye can conduct dynamic refocusing that en-

ables rapid sweeping over different depth layers. Hence, for humans, the input is a focal stack

instead of a single, fixed-focus or all-focus image as has been used in traditional approaches.

Second, human uses two eyes to infer scene depth, e.g., via stereo, for more reliable salien-

cy detection whereas most existing approaches assume that the depth information is largely

unknown.

Recently there has been an emerging interest in emulating these the properties of

human eyes. For example, light field saliency uses the Lytro camera as the acquisition ap-

paratus and then synthesize a focal stack via light field rendering [71]. The focusness cues

are then extracted from the focal stack and integrated with color, location, and contrast cues.

Preliminary results seem promising although the image resolution is generally low due to

tradeoff between spatial-angular sampling. Several schemes have been proposed to incor-

porate stereo vision. Niu et al.[88] employed the disparity maps to better extract better

foreground/background separations. Lang et al.[67] used the Kinect sensor to acquire scene

depth and integrate the results with regular 2D saliency via a Gaussian mixture model. De-

spite their effectiveness, saliency detection algorithms based on 2D, 3D and 4D data have

adopted completely different frameworks. In particular, the features used for distinguishing
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Image(stack) Ground Truth DSR Ours

Figure 4.1: Our method vs. the latest feature-matrix-based DSR algorithm [77] on different
data inputs. From top to bottom: we show results on 2D images, 3D stereo data, and 4D
light field data.

saliency candidates and more importantly the procedures for utilizing them differ significant-

ly.

In this chapter, we present a universal saliency detection framework for handling

heterogenous types of input data. We set out to build saliency/non-saliency dictionaries using

data-specific features. Specifically, we first select a group of potential foreground superpixels

to build the saliency dictionary. We then prune the outliers and test on the remaining super-

pixels to iteratively refine the dictionaries. A major advantage of our technique is that it

provides a universal framework for all different types. The only variation to the algorithm is

input features: for 2D images, we use color, texture and focusness characteristics; for stereo

data, we add depth/disparity cues; and for the 4D light field data, we add focusness cues on

focus stack. Comprehensive experiments on a broad range of datasets (MSRA-1000 [80]

and SOD [86] for 2D, SSB [88] for 3D, and the light field saliency dataset[75] for 4D) show

that our technique outperforms state-of-the-art solutions.

The literature of saliency detection is huge and we only discuss the most relevant

ones. For a comprehensive survey state-of-the-art algorithms, we refer the readers to [11].
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Figure 4.2: Processing pipeline of our dictionary-based saliency detection algorithm.

4.2 Feature Selection

Our approach is based on building saliency/non-saliency dictionaries and our ap-

proach is generic to 2D, 3D and 4D datasets. The dictionaries are built for superpixels.

Regarding different segmentation schemes, we use the widely adopted simple linear itera-

tive clustering (SLIC) algorithm [2] for its high efficiency, compared with other schemes,

e.g., mean-shift. We use SLIC to segment the reference image I into a set of small non-

overlapping regions/superpixel R = {r1, r2, ...rN}. For stereo pair data, the reference image

refers to the one used for generate the disparity map. For light field data, the reference is

the all-focus image. We use p to index pixel and r to superpixel. The ultimate goal is to

assignment each superpixel r a saliency value Sal(r).

4.2.1 Feature Extraction

For each pixel, we set out to associate with a feature vector. A good feature descriptor

should exhibit high contrast between saliency objects and background.

2D feature.

Color is the most intuitive feature to distinguish two regions. As shown in[10], cou-

pling RGB and Lab color spaces improves the accuracy of saliency maps. Here, we choose
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both RGB and Lab color spaces as color descriptors. For texture, Gabor filters have been

shown as an effective measure [31]. When using Gabor filters as orientation and scale tun-

able edge detectors, we can characterize the intrinsic texture information using the statistics

of microfeatures within the superpixel. We use the Gabor filter responses with 12 orienta-

tions and 3 scales as texture descriptors.

For focusness, we utilize the mean distance to its 8-neighbors in the RGB space:

σf (p) =
1

8

8∑
m=1

δm(p, pm) (4.1)

where δ(p, pm) = ‖prgb − prgbm ‖22 and prgb is the color vector of p in RGB color space.

3D feature.

3D data further provides depth/disparity information for each points in the scene. In

[88], disparity is used as a unique feature to distinguish objects from background. When

disparity/depth is available, we directly append it to the features vector.

4D feature.

For 4D light field, we can further synthesize a focal stack. We use the in-focus mea-

sure at each focal slice to derive an additional light field feature descriptor. For instance, if a

focus stack has L different focus slices, we calculate L focusness values σlf (p), l = 1, 2...L

by applying Eqn. 4.1 on each slice. After appending them to the feature vector, we get the

stacked vector fp = [σ1σ2...σC ]T of p.

4.2.2 Feature Matrix

From the feature vectors of all pixels, we generate two feature matrices for all super-

pixels.

Averaging.

The simplest approach to convert per-pixel feature vector to per-superpixel feature

vector is through averaging [113, 77]. We use the C × N matix FA to represent the result

feature matrix. Notice that FA is expected to perform well if the scene is composed of objects

with simple color and textures but will be less robust if the foreground and background
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Image RGB-Lab Color Histogram Combined Features GT

Figure 4.3: Saliency detection results using our approach on individual and combined feature
matrices.

contain highly complex textures, as shown in Fig. 4.3. This is because that averaging over

all pixels loses information that characterizes color variations within each superpixel.

Color Histogram.

To handle textures, our second scheme computes the histogram over three color chan-

nels. Specifically, we treat color in terms of ratios { R
R+G+B

, G
R+G+B

, B
R+G+B

} and compute

the histogram of the two channels (the third is dependent of the other two). Specifically, we

use the R and G channel and we discretize the two channels into 32× 32 bins for computing

the histogram. Consequently the color components of the feature vector for a superpixel

becomes {σri1 , σ
ri
2 ...σ

ri
1024}. The other feature components such as focusness and depth re-

main the same as the averaging scheme. We use the C ′ × N matix FH to represent the

resulting feature matrix. Notice that FH is suitable for handling scenarios where the scene

contains highly textured objects. However, it is fragile for the textureless cases, which is be-

cause that color histogram will introduce inner-region noises when images consist of smooth

foreground and background, as shown in Fig. 4.3. Notice that the two schemes are com-

plementary to each other and we can apply our saliency detection scheme (Section 4.3) on

each matrix and combine the results. Fig. 4.4 (a) shows some sample results using individual

matrices and their combined result.
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4.3 Dictionary Based Saliency Detection

From FA and FH , we develop a sparse coding framework: saliency superpixels cor-

respond to the ones that yield to low/high reconstruction error from the saliency/non-saliency

dictionary. Our solution is based on recent studies that show non-saliency regions can be

represented by a sparsely coded dictionary [77, 117]. We use the error measure to refine the

foreground superpixels and to identify foreground saliency ones.

In classical (unweighted) sparse coding scheme [77], the goal is set to find a sparse

code αi that can achieve the maximum/minimum reconstruction error. The coefficients

should encode the saliency value, if the template D denotes the set of K potential non-

saliency/saliency regions respectively:

αi = arg minαi
‖fi −Dαi‖22 + λ‖αi‖1 (4.2)

For saliency detection, we adopt the weighted sparse coding scheme [41]:

αi = arg min
αi

‖fi −Dαi‖22 + λ‖diag(ωi) ·αi‖1 (4.3)

where the jth value of ωi is the penalty for using the jth member in template D to encode fi

and we set λ=0.01 in our implementations.

Notice that large ωi will suppress nonzero entries αi and force the solution α to con-

centrate on indices where ωi is small. Therefore, the weight (penalty) ωi for saliency de-

tection should be inversely proportional to the similarity between the feature vector fi and

template members D. In other words, if the fi is similar to some template in D, the penalty

ωi should be small and vice versa. Fig. 4.4(b) shows that, by adding this penalty weight ω

into the framework, the performance of saliency detection is significantly improved.

4.3.1 Weighted Sparse Coding Saliency

Fig. 4.2 shows our framework. Given a set of superpixels S = {r1, r2...rK}, which

consists of indices of a certain subset of superpixels, we use their corresponding feature

vectors (of superpixels) A = {FA
r1
, FA

r2
...FA

rK
} and H = {FH

r1
, FH

r2
...FH

rK
} to construct two

dictionaries.
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We use ωAri and ωHri to represent the weight/penalty for superpixel ri. Here, the tem-

plate symbol D can be either A or H , i.e., D ∈ {A,H}. ωDri is a vector that computes the

similarity between superpixel ri (in feature matrix FD) to all the members in template D:

ωDri = [g(ri, D1), g(ri, D2)...g(ri, DK)]T

where g(ri, Dj) computes the similarity between the superpixel ri and the jth member of

template D:

g(ri, Dj) = e‖F
D
ri
−Dj‖ (4.4)

Next, we use (A, ωAri) and (H , ωHri ) as input to Eqn. 4.3 to generate to sparsely coded

dictionary αAri and αHri respectively. We then compute the reconstruction error εAri and εHri for

each ri:

εDri = ‖FD
ri
−DαDri‖

2
2

(4.5)

Two saliency value SalA(ri) and SalH(ri) are also computed for ri:

SalD(ri) = Sal∗(εDri) · Sal
L(ri) (4.6)

where SalL(ri) is the object-bias center prior defined in [77]. Sal∗(εDri) is the saliency func-

tion related to the dictionary’s type (saliency or non-saliency). For non-saliency dictionary,

it will assign high values to superpixels of a high εDri value. Similarly, for saliency dictionary,

Sal∗(εDri) will assign high value to superpixels with low εDri .

We define the saliency function for non-saliency dictionary:

Sal∗(εDri) = εDri (4.7)

For saliency dictionary:

Sal∗(εDri) = eβ·ε
D
ri (4.8)

where we set β = −5 in our implementation.

Finally, we combine SalA(ri) and SalH(ri) to get the saliency value for ri:

Sal(ri) = SalA(ri) + SalH(ri) (4.9)
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4.3.2 Dictionary Construction

We define saliency dictionary as a set of superpixels S = {rs1 , rs2 , ...rsk} which are

regarded as the potential saliency regions and will be refined through our framework. To get

the initial saliency dictionary, we use a non-saliency dictionary to reconstruct the reference

image, and patches with high reconstruction error are selected saliency dictionary.

Non-saliency Dictionary.

Non-saliency dictionary is the set of superpixels which are tagged as the non-saliency

regions. To obtain it, we first extract two sets of superpixel sets B1, B2 where B1 is the set of

superpixels on the reference image boundaries and B2 is the set of superpixels locate in the

out-of-focus regions. For 2D, B2 correspond to the ones whose focusness response is lower

than the average. For 3D data, B2 correspond to the ones lying far away, i.e., with a small

disparity value. For 4D data, we select B2 by detecting the in-focus regions of the farthest

away focal slice in the focal stack. Finally, we combine B1 and B2 as the non-saliency set

B = {B1, B2}.

To avoid redundancy, we adopt the recently proposed background measure scheme

[124]. In [64], similar superpixels are merged into some larger regionsAm = {rm1 , rm2 , ...rmS }.

A boundary connectivity score, which measures the extent of region Am connecting to the

boundary, is also assigned to each Am.

ωConAm
=

K√
Area(Am)

(4.10)

In our implement, instead of choosing the image boundary to measure the connectivity, we

use B to compute the connectivity score ωConAm
. Superpixels from the merged region have the

same connectivity score, namely ωConrj
= ωConAm

, rj ∈ Am. Superpixels whose connectivity

scores are non-zero are selected to form non-saliency dictionary.

Saliency Dictionary.

After we obtain the non-saliency dictionary, we use the weighted sparse framework

described in Section 4.3.1 to compute a saliency map. For each superpixel ri, we define the
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parameter weight g(ri, Dj) as:

g(ri, Dj) = e‖F
D
ri
−Dj‖ + ωConri

(4.11)

We choose superpixels whose saliency values are higher than the mean to construct the initial

saliency dictionary S0.

4.3.3 Iterative Refinement

We start with using S0 as input to the weighted sparse framework. At each iteration,

we will refine the saliency dictionary using the estimated saliency map. The algorithm ter-

minates when there is no change to the saliency dictionary. The parameter weight g(ri, Dj)

can be computed using Eqn. 4.4 and the saliency function is computed as Eqn. 4.8.

We use superscript to denote iteration number. At the kth iteration, we first classify

each superpixels using the saliency dictionary Sk and two template Ak and Hk according to

their reconstruction errors (Eqn. 4.3 and Eqn. 4.5). We then compute two saliency maps as

Eqn. 4.8. Next, we apply a center cue on two maps to make saliency regions more compact.

Finally, we sum the two saliency maps with respect to A and H . A new saliency dictionary

Sk+1 is generated with by using superpixels whose saliency values are higher than the mean.

The pseudocode of our iterative refinement is shown in Algorithm 1. Fig. 4.4 (c) illustrates

the change of average precision value of SOD dataset with different step lengths in iterative

refinement. We can tell that the algorithm converges within 50 iterations.

Notice that we combine two saliency maps to generate the final saliency map, which

will cause the ignorable noises on background becoming significant. Hence, we further

clamp the low value (¡ 50) to 0.

4.4 Experiments

We compare our approach with state-of-the-art techniques tailored for specific di-

mensional data.
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Figure 4.5: Visual Comparisons of different saliency detection algorithms vs. ours on 2D
(first two rows: MSRA-1000; last two rows: SOD), 3D and 4D datasets.
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Parameter Setup.

We set the number of superpixels to be 300 in all experiments. Initial backgrounds are

extracted from re-clustered segmentation map (re-clustering superpixels) with 2 clustering

levelsE = 1 for feature matrix using original RGB values andE = 3.5 for feature matrix for

RGB color histogram. E is the matching tolerance value (distance threshold). The reason

of choosing a smaller E for feature matrix using original RGB values is that RGB is less

representative than color histogram. If E is too high, a superpixel of uniform color and a

textural superpixel may be incorrectly merged.

We also test the robustness of our algorithm to the parameters and to analyze their

effect. Regarding different superpixels numbers, ranging from 50 to 500, we found that the

results are relatively uniform in precision value. We believe it is because the performance

is dominantly affected by the choice of the superpixel’s feature vectors instead of the num-

ber of superpixels. Certainly when the number of superpixels is too small, the salient and

non-salient regions will merge and the performance of our approach will ultimatly degrade.

Regarding different feature types, we have compared the contribution of individual features

to the final performance of our approach on different datasets. We can see from Fig. 4.4 (d)

that the addition of the focusness feature better improves 4D light field data than 2D image

data. The discrepancies can be attributed to the characteristics of the datasets: 4D light field

data provides a more reliable estimation to focusness.

2D databases.

We evaluate the performance of our algorithm vs. DSR [77], GBMR [117], LRM-

R [113], HS [116], SF [94], GS [112], HDCT[61], ORBD[124] on the MSRA-1000 [80]

dataset and the SOD [86] database. MSRA-1000 database contains 1000 images select-

ed from MSRA-5000 with corresponding binary ground truth maps. The SOD database is

derived from the Berkeley segmentation database where objects in each image have a consis-

tency score. Objects with high consistency scores are considered salient objects. The SOD

database is considered as the most challenge database in saliency detection since the contrast

between foreground and background is generally rather small.
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3D databases.

The PSU Stereo Saliency Benchmark (SSB) contain 1000 pairs of stereoscopic im-

ages and corresponding salient object masks for the left images. All the results are evaluated

on the left images of SSB. In addition to the above 2D schemes, we compared our results

with SS[88], which is tailored for this dataset. Before running our algorithm, we derive the

disparity maps for each left image by SIFT-flow[38]. In order to achieve a more fair com-

parison, we extend the feature matrix of DSR and LRMR to one more dimension to record

the depth information before implementing.

4D databases.

The recently proposed LFSD database contains 100 scenes, where each scenes’s light

field is recorded by Lytro camera. We compare the results of our algorithm with above 2D

methods and LFS[75] (designed for this dataset). For 2D algorithms, we use the all-focus

image as input. Again, to avoid unfair comparison, we add the light field features (defined in

section 4.2.1) into DRS and LRMR’s framework before evaluation.

We follow the canonical precision-recall curve(PRC) and F-measure methodologies

to evaluate the accuracy of the detected saliency on databases of different dimension. For

details about these two evaluation methods, we refer reader to [45]. The parameters setting

in our implement is the same as [21].

Fig. 4.6 shows the result of the two comparison architectures. Experimental results

show that the PRC of our unified approach achieves state-of-the-art and the best F-measure

in all the databases. It is important to note that our PRC only have values within certain recall

range. This is due to the fact that the difference between saliency and non-saliency values

assigned by our algorithm is much greater than others. In another word, the saliency maps

computed by our algorithms is of the best similarity to ground truth, as shown in Fig. 4.5.

Our approach can handle highly challenging cases such as the blue bird scene in LFS-

D and the fish scene in SOD where the deemed saliency regions have a similar color/texture

to the non-saliency regions. Notice that our recall values are still higher than other methods
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Image Ours GT

Figure 4.7: Failure cases. Top: our result appears segmented on a 4D light field data due to
incorrect focusness estimation. Bottom: our result incurs errors on a 2D image due to high
foreground/background similarity.

with favourable precision in most cases. This indicates that our algorithm is capable of lo-

cating most saliency regions with a high confidence. Fig. 4.5 shows that our technique also

produces more visually pleasing results, e.g., it generates more complete contours and more

accurate saliency maps.

4.5 Discussion

We have presented a novel saliency detection algorithm that is applicable to 2D image

data, 3D stereo/depth data, and 4D light field data without modifying the processing pipeline.

We first develop a data-specific feature vector descriptor. For 2D data, it corresponds to color

and textures. For 3D, we append depth information. For 4D, we further append focusness

measures. We show that two types of feature descriptors are complimentary to each oth-

er for handling variational types of texture/color scene compositions. We have then built a

dictionary based framework that constructs saliency and non-saliency dictionaries from the

stacked feature vectors. Compared with state-of-art techniques that commonly adopt differ-

ent solution frameworks for handling different data inputs, our technique does not require

modifying the algorithm but only the input descriptor. Comprehensive experiments have

shown that it outperforms previous tailored solutions for different data types.

A limitation of our technique is that it does not fully exploit the rich information
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embedded in 3D and 4D. By far, we only use the depth value and focusness cues inferred

from these data. If they do not provide additional information, our technique falls back to

the 2D case, as shown in Fig. 4.7. In the future, we plan to design more effective descriptors,

e.g., depth variations and view-dependency features, embedded in 3D and 4D data. Since

our approach requires building and refining dictionaries, we also plan to investigate more

efficient algorithms to accelerate the process. Finally, we expect other uses of our framework

such as tracking and recognition. In particular, there is limited work on using 3D depth and

in particular 4D light field data for such tasks. For example, the saliency results can be

directly used as inputs to existing tracking or streo matching algorithms, to improve their

performance in cluttered scenes.

Algorithm 1 Iterative Refinement

Require: S0, A0,H0,FA,FH , j = 0
Ensure: Sal

1: function ITERATIVEOPT(S0, A0, H0, FA, FH)
2: while not converge do
3: for superpixel ri = 1→ N do
4: αA

j

ri
, αH

j

ri
← Eqn. 4.3

5: εA
j

ri
, εH

j

ri
← Eqn. 4.5

6: SalA
j
(ri), Sal

Hj
(ri)← Eqn. 4.8

7: Sal(ri)← Eqn. 4.9
8: end for
9: Sj+1 ← {ri|Sal(ri) > mean(Sal(ri))}

10: Aj+1 ← FA(Sj+1)
11: Hj+1 ← FH(Sj+1)
12: j ← j + 1
13: end while
14: Sal < T ← 0
15: end function
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Chapter 5

PERSONALIZED SALIENCY DETECTION

In this section, I present our framework for predicting the fixation maps for individ-

uals. I introduce how we construct the image dataset for personalized saliency prediction

and then discuss our multi-task CNN model for computing the discrepancy map between the

universal and personalized eye fixation prediction.

5.1 Motivation

By far, nearly all previous approaches have focused on exploring a universal saliency

model, i.e., to predict potential salient regions common to users while ignoring their differ-

ences in gender, race, age, personality, etc. Such universal solutions are beneficial in the

sense they are able to capture all ”potential” saliency regions. Yet they are insufficient in

recognizing heterogeneity across individuals. Examples in Fig. 5.1 illustrate that while mul-

tiple objects are deemed highly salient within the same image (eg, human face (first row),

text (last tow rows) and object of (high color contrast), different individuals have very dif-

ferent fixation preferences when viewing the image. For the rest of the paper, we use term

universal saliency to describe salient regions that incur high fixations across all subjects and

term personalized saliency to describe the heterogeneous ones.

In fact, heterogeneity in saliency preference has been widely recognized in psychol-

ogy: ”Interestingness is highly subjective and there are individuals who did not consider any

image interesting in some sequences” [37]. Therefore, once we know a person’s personalized

interestingness over each image (personalized saliency), we shall design tailored algorithms

to cater to him/her needs. For example, in the application of image retargeting, the texts

on the table in the fourth row in Fig. 5.1 should be preserved for observer B and C when

resizing the image whereas such texts are less important for observer A. For applications in
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Images Semantic labels Observer A Observer B Observer C 

Figure 5.1: An illustration of PSM dataset. Our dataset provides both eye fixations of dif-
ferent subjects and semantic labels. Due to the large amount of objects in our dataset, for
each image, we didn’t fully segment it and only labelled objects that cover at least three
gaze points from each individual. A notable difference between PSM and its predecessors
is that each subjects looks 4 times on PSM data to derive solid fixation ground truth maps.
Both commonality and distinctiveness exist for PSMs viewed by different participant. This
motivates us to model PSM based on USM.
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VR/AR, one can design data compression algorithms that personalized salient regions should

be less compressed in order to both improve the users’ experience and reduce the size of data

in transmission. In addition, we can embed characters/logo/advertisement at those person-

alized salient regions for different individuals. Despite its importance, very little work has

been carried out on studying such heterogeneity, partially due to the lack of suitable datasets

and experiments. Further, the problem is inherently challenging as saliency variations across

individuals are determined by multiple factors, e.g., gender, race, education, etc., as well as

the content of the image such as the color, location, size and type of objects.

In this paper, we present the first dataset of personalized saliency maps (PSMs) that

consists of 1600 images viewed by 20 human subjects. To improve reliability, we ensure

that each image is viewed by every subject for 4 times over about one week interval. We

use the ‘Eyegaze Edge’ eye tracker to track gaze and produce a total of 32,000 (1, 600 ×

20) fixation maps. To correlate the acquired PSMs and the image contents, we manually

segment each image into a collection of objects and semantically label them. Examples in

Fig. 5.1 illustrate how fixations vary across three human subjects. Our annotated dataset

provides fine-grained semantic analysis for studying saliency variations across individuals.

For example, we observed that certain types of objects such as watches, belts would introduce

more incongruity (possibly due to gender differences) whereas other types such as faces

would lead to more coherent fixation maps, as shown in Table 5.2.

We further present a computational model towards this personalized saliency detec-

tion problem. Notice that saliency maps from different individual still share certain com-

monality via the USM. Hence, we model the PSM as a combination of USM and a residual

map which is related to the identity and the image contents. We adopt a multi-task convo-

lutional neural network (CNN) to identify the discrepancy between PSM and USM for each

person, as shown in Fig. 5.4.

The contributions of our paper are two-fold: i) To our knowledge, it is the first work

that specifically tackles the personalized saliency and we build the first dataset for personal-

ized saliency detection; ii) We present a USM based PSM detection scheme and a multi-task

CNN solution to estimate the discrepancy between PSM and USM. Experimental results
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demonstrate the effectiveness of our framework.

Tremendous efforts on saliency detection have been focused on predicting universal

saliency. For the scope of our work, we only discuss the most relevant ones. We refer the

readers to [7] for a comprehensive study on existing universal saliency detection schemes.

5.2 PSM Dataset

We start with constructing a dataset suitable for personalized saliency analysis.

5.2.1 Data Collection

Clearly, the rule of thumb for preparing such a dataset is to choose images that yield

distinctive fixation map among different persons. To do so, we first analyze existing datasets.

A majority of existing eye fixation datasets provide the one-time gaze tracking results of

each individual human subject. Specifically, we can correlate the level of agreement across

different observers with respect to the number of object categories in the image. When an

image contains few objects, we observe that a subject tends to fix his/her gaze at locations

where objects that have specific semantic meanings, e.g., faces, text, signs [57, 114]. These

objects indeed attract more attention and hence are deemed more salient. However, when an

image consists of multiple objects all with strong saliency as shown in Fig. 5.1, we observe a

subject tends to diverge his/her attention. In fact, the subject focuses attention on objects that

attract his/her most personally. We therefore deliberately choose 1,600 images with multiple

semantic annotations to construct our dataset for PSM purpose. Among them, 1,100 images

are chosen from existing saliency detection datasets including SALICON [53], ImageNet

[98], iSUN [115], OSIE[114], PASCAL-S [78], 125 images are captured by ourselves, and

375 images are gathered from the Internet.

5.2.2 Ground Truth Annotation

To gather the ground truth, we have recruited 20 student participants (10 males, 10

females, aged between 20 and 24). All participants have normal or corrected-to-normal vi-

sion. In our setup, each observer sits about 40 inches in front of a 24-inches LCD monitor
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of a 1920 × 1080 resolution. All images are resized to the same resolution. We conduct all

experiments in an empty and semi-dark room, with only one standby assistant. An eye track-

er (‘Eyegaze Edge’ eye tracker) records their gazes as they view each image for 3 seconds.

We partition 1,600 images into 34 sessions each containing 40 to 55 images. Each session

lasts about 3 minutes followed by a half minute break. The eye tracker is re-calibrated at

the beginning of each session. To ensure the veracity of the fixation map of each individual

as well as to remove outliers, we have each image be viewed by each observer 4 times. We

then combine the 4 saliency maps of the same image viewed by the same person, and use the

result as the ground truth PSM of the observer. To obtain a continuous saliency map of an

image from the raw data of eye tracker, we follow [57] by smoothing the fixation locations

via Gaussian blurs.

To further analyze the causes of saliency heterogeneity, we conduct the semantic

segmentation for all 1,600 images via the open annotation tool LabelMe [99]. Specifically,

we annotate 26,100 objects of 242 classes in total and identify objects that attract more

attention for each individual participant. To achieve this, we compare the fixation map with

the mask of a specific object and use the result as the attention value of the corresponding

object. We then average the result over all images that containing the same object, and use it

to measure the interestingness of the object to a specific participant. In Fig. 5.2, we illustrate

some representative objects and persons and show the distribution of the interestingness of

various objects for a same participant. We observe that all participants exhibit a similar level

of interestingness measure on faces where they exhibit different interestingness measures on

various objects such as watch, bow tie, et al. This validates that it is necessary to choose

images with multiple objects to build our PSM data.

5.2.3 Dataset Analysis

Why is each image viewed multiple times for ground-truth annotation?

To validate whether it is necessity for a subject to view each image multiple times, we

randomly sample 220 images, and each image is viewed by the same participant 10 times.

The time interval for the same person to view the same image ranges from one day to one
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Person 1 Person 4 Person 6 Person 7 Person 8
men bow tie 0.068388 0.046459 0.035015 0.07911 0.025138
women bow tie 0.014818 0.019792 0.078912 0.109666 0.004215
men hand watch 0.034834 0.034573 0.057979 0.036348 0.027059
women hand watch 0.035535 0.04356 0.041277 0.033336 0.022686
men face 0.025989 0.044911 0.04291 0.03387 0.03736
women face 0.027088 0.040768 0.043192 0.037849 0.035902

Figure 5.2: The distribution of the interestingness of various objects for a same participant.
The value is calculated as follows: we sum values of the fixation map intersecting with the
mask of a specific object, and divide it with the total of fixation maps over the whole image.
Thus higher value indicates that the participant puts more attention on the object.
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Figure 5.3: The point with x = n measures the differences between ground truth saliency
maps generated by viewing the same image n times and n+1 times. This figure shows that
when n ≥4, the ground truth saliency map generated by viewing the image n times has little
difference with that generated by observing the image n+1 times. Thus viewing each image
4 times is enough to get a robust estimation of the PSM ground truth.

week because we want to get the short term memory of the person for the given image. We

then calculate the differences of these saliency maps in terms of the commonly used metrics

for saliency detection [56]: CC, Similarity. We average these criteria for all persons and all

images, and we show the results in Fig. 5.3. We observe that the saliency map obtained by

viewing each image only once vs. multiple times exhibit significant differences. Further, the

saliency map averaged over 4 or more times is closer to the long term result.

Heterogeneity among different datasets.

To further illustrate that our proposed dataset is appropriate for personalized saliency

detection task, we compare the inter-subject consistency, i.e., the agreement among different
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viewers, in our PSM dataset and other related datasets. Specifically, for each dataset, we

first enumerate all possible subject-pairs, i.e., two different subjects, and then compute the

average AUC scores across all pairs. Recall that our PSM dataset consists of images from

different datasets, eg, MIT, OSIE, ImageNet, PASCAL-S, SALICON, iSUN etc., and only

MIT, OSIE, PASCAL-S are designed for saliency tasks1. Hence, we only compare the con-

sistency scores among ours and above three datasets, and we show the results in Table 5.1.

We observe that our dataset achieves the lowest inter-subject consistency values among all

relative ones, indicating that the heterogeneity in our saliency maps are more severe than the

others.

AUC judd scores
Ours MIT OSIE PASCAL-S
79.11 89.34 88.47 88.10

Table 5.1: Inter-subject consistency of different datasets. To compute the inter-subject con-
sistency, we compute AUC judd for pair-wise saliency maps viewed by different observers
for each image, then we average the results over all images. For fair comparison, the AUC
judd of our method reported here is based on the saliency maps viewed by each observer
once.

5.3 Approach

5.3.1 Problem Formulation

[25][90] employed CNN in an end-to-end strategy to predict saliency map and now

serves as the state-of-the-art. Intuitively, we can follow the same strategy for PSM prediction,

i.e. training a separate CNN for each participant to map the RGB images to PSM. However,

such strategy is neither scalable nor feasible for a number of reasons. Firstly, it needs a

vast amount of training samples to learn a robust CNN for each participant. This requires

subjects to view thousands of images with high concentration, which is hard and extremely

1 Even though SALICON and iSUN are also saliency fixation datasets, the ground truth
were annotated based on mouse-tracking and web camera respectively.
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time consuming. Secondly, training multiple CNNs for different subjects is computationally

expensive and inefficient.

While each participant is unique in terms of their gender, race, age, personality, etc,

resulting in their incongruity in saliency preference, different participants still share com-

monalities in their observed saliency maps because certain objects, such as faces and logos,

always seem to attract the attention of all participants as shown in Fig. 5.1.

For this reason, instead of predicting the PSM directly, we set out to explore the

difference map between USM and PSM. The discrepancy map ∆(Pn, Ii) for the given image

Ii (i = 1, . . . , K) of the n-th participant Pn (n = 1, . . . , N ) is of the form:

SPSM(Pn, Ii) = SUSM(Ii) + ∆(Pn, Ii) (5.1)

where, SPSM(Pn, Ii) is the desired personalized saliency map and SUSM(Ii) is the

universal saliency map.

Note that the USMs by traditional saliency method entail the commonality in a salien-

cy map observed by different participants. We convert the problem of predicting PSMs to

estimating the discrepancy ∆(Pn, Ii) and we show it is much more efficient than directly

estimating PSMs from RGB images as shown in . This is because that the universal saliency

map SUSM(Ii) itself already provides a rough estimation of the PSM, and predicting the dis-

crepancy ∆(Pn, Ii) is actually easier than directly estimating the PSM from an RGB image.

In addition, if we take the discrepancy ∆(Pn, Ii) as an error correction function, the PSM

prediction problem can be therefore viewed as a regression task to correct the inaccurate in-

put (USM), which can be implemented in high performance CNN scheme as shown in [17].

Given Ii and SUSM(Ii), we propose a Multi-task CNN network to estimate ∆(Pn, Ii).
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Figure 5.4: The pipeline of our Multi-task CNN based PSM prediction.
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5.3.2 Multi-task CNN

Since ∆(Pn, Ii) is subject-dependent and at the same time dependant to the content of

the input image, we construct a Multi-task CNN network to tackle it. The inputs of network

are images with their corresponding universal saliency map and our goal is to estimate the

discrepancy maps ∆(Pn, Ii) for n-th participants through n-th task. The network architecture

of our Multi-task CNN is illustrated in Fig. 5.4.

Suppose we have N participants in total. We concatenate a 160 × 120 resolution

RGB image with its USM from general saliency models and generate a 160× 120× 4 cube

as the input of the multi-task network. For image Ii, ∆(Pn, Ii) is the output of the n-th

task corresponding to the discrepancy between PSM and USM for the n-th person. There

are four convolutional layers shared by all participants after which the network is then split

into N tasks which is exclusive for N participants. Each task has three convolutional layers

followed by an ReLU activation function.

[25] and [69] show that by adding the supervision in the middle layers, the features

learned by CNN will be more discriminative and can boost the performance of an given task.

Consequently, we set an additional Loss Layer on conv5 and conv6 layer of the n-th task to

impose the middle layer supervision , which can help the prediction of ∆(Pn, Ii). For the

n-th task, fn` (SUSM(Ii), Ii) ∈ Rh`×w`×d`(` = 5, 6, 7) is the feature map after the `-th con-

volutional layer (the first convolutional layer corresponds to the first exclusive convolutional

layer, so ` starts from 5). For each feature map fn` (SUSM(Ii), Ii), a 1× 1 convolutional layer

was employed to map it to S`(SUSM(Ii), Ii) ∈ Rh`×w`×1, which is the target discrepancy. To

make S`(SUSM(Ii), Ii) close to ∆`(Pn, Ii), we set the objective function as:

min
7∑
`=5

N∑
n=1

K∑
i=1

‖Sk(SUSM(Ii), Ii)−∆`(Pn, Ii)‖2F (5.2)

Then we use mini-batch based stochastic gradient descent to optimize all parameters in our

Multi-task CNN.

Remarks: Compared with techniques that use separate CNNs to predict ∆(Pn, Ii)

for different participants, our Multi-task CNN architecture has the two key advantages:
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Methods CC Similarity AUC judd
RGB based MultiConvNets 62.24 65.27 77.83
RGB based Multi-task CNN 64.68 66.28 79.98

LDS [30] 65.73 63.34 82.96
LDS + MultiConvNets 70.71 75.65 83.69
LDS + Multi-task CNN 72.19 76.07 84.97

ML-Net [25] 41.35 51.30 71.80
ML-Net + MultiConvNets 65.35 79.42 81.70
ML-Net + Multi-task CNN 67.53 80.17 83.45

BMS [120] 59.59 71.36 80.26
BMS + MultiConvNets 68.68 79.66 83.79
BMS + Multi-task CNN 70.33 80.41 85.03

SalNet [90] 72.66 74.18 84.67
SalNet + MultiConvNets 74.85 77.89 85.09
SalNet + Multi-task CNN 76.28 79.08 85.94

Table 5.2: The performance comparison of difference methods on our PSM dataset.

1. Previous approaches [76] [121] have shown that features extracted by the first

several layers can be shared between multiple tasks. In a similar vein, we treat PSMs as some

distinct but related regression tasks across different individuals. Different from the multi-

task CNN for USM prediction [76], our network shares lots of parameters which reduces the

number of parameters and the memory consumption. Therefore, we are able to train these

shared parameters using all training samples from all participants.

2. Note that in our architecture, the first few layers are shared and trained by all par-

ticipants. In the deployment stage, given any unrecorded observer, our model only requires

training the last three layers. Thus such a multi-task framework makes the problem scalable

for open set settings.

5.4 Experiments

5.4.1 Experimental Setup

Parameters.

We implement our solution on the CAFFE framework [51]. We train our network

with the following hyper-parameters setting: mini-batch size (40), learning rate (0.0003),
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Figure 5.5: The effect of the number of training samples on the accuracy of PSM prediction.

momentum (0.9), weight decay (0.0005), and number of iterations (40,000). In our exper-

iments, we randomly select 600 images ar training data, and use the rest 1,000 images for

testing. To avoid over-fitting while improving model robustness, we augment the training

data through left-right flip operations.

The parameters corresponding to the universal saliency map channel and 1× 1 conv

layers for middle layer supervision are initialized with ‘xavier’. Using the initialization step

in [90] and [66], we use the well-trained DeepNet model to initialize the corresponding

parameters in our network. The network architecture of our Multi-task CNN is identical

to that of DeepNet [90] except that i) the parameters corresponding to tasks of different

participants are different; ii) middle layer supervision is imposed by adding 1× 1 conv layer

after conv5 and conv6; iii) a channel corresponding to USM is added in the input.

Baselines.

Based on the performance of existing methods on the MIT saliency benchmark [15]

in terms of similarity, we choose LDS [30], BMS [120], ML-Net [25], and SalNet [90] to

predict the universal saliency maps on our dataset. The first two methods are based on hand-

crafted features, and the latter two are based on deep learning techniques. We use their code

provided online to generate USMs.
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Figure 5.6: The effect of supervision on middle layers in our Multi-task CNN.

To validate the effectiveness of our model, we have compared our scheme with sev-

eral baseline algorithms:

• RGB based MultiConvNets: MultiConvNets are trained to predict ∆(Pn, Ii) for each

participant independently, with RGB images as input.

• RGB based Multi-task: Multi-task CNN architecture is trained to predict ∆(Pn, Ii)

for all participants simultaneously, with RGB images as input.

• X+MultiConvNets: MultiConvNets are trained to predict ∆(Pn, Ii) for each partic-

ipant independently, with RGB images and USM provided by method X as input,

where X donates LDS, BMS, ML-Net, and SalNet respectively.

Notice that network architectures of the baseline ones are similar. The major differ-

ences are the number of input channels and whether the parameters are shared in the first few

layers. For fair comparisons, we have employed the same strategies on data augmentation,

middle layers supervision, and parameter initializations.

Measurements.

We adopt the same evaluation metrics in [79], [90] and [66] and choose CC, Similari-

ty, and AUC [56] to measure the differences between the predicted saliency map and ground

truth.
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5.4.2 Performance Evaluation

The performance of all methods are listed in Table 5.2. We also show some predicted

saliency maps for different participants in Fig. 5.7. We observe that our solution achieves the

best performance in locating the incongruity fixation among individuals. Furthermore, the

discrepancy based personalized saliency detection methods consistently outperform directly

predicting PSM from RGB images. This validates the effectiveness of our ”error correction”

strategy for personalized saliency detection. In addition, the multi-task CNN scheme shows

higher performance for fixation prediction for individuals tasks than simply training a CNN

for each individual.

The effect of supervision on middle layers

Fig. 5.6 shows the accuracy gain from imposing supervision on middle layers in our

Multi-task CNN. We observe that middle layer supervision is helpful for PSM prediction in

line with previous findings [69].

The effect of the number of training samples on the PSM prediction accuracy.

Fig. 5.5 shows that increasing the number of training samples from 200 to 600 (the

testing data are fixed) helps to improve the testing accuracy. However, training a more robust

deep network requires large-scale training samples which would increase the time complex-

ity tremendously.

5.5 Discussion

Our work demonstrates that heterogeneity in saliency maps cross individuals is com-

mon and critical for reliable saliency prediction, consistent with recent psychology studies

showing that saliency is highly specific than universal. We have built the first PSM dataset

and presented a framework to model such heterogeneity in terms of the discrepancy between

PSM and USM. We have further presented a Multi-task CNN framework for the prediction

of this discrepancy. To our knowledge, this is the first comprehensive study on personalized

saliency and it is expected to stimulate significant future research.
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Image LDS Ours1 GT1 GT2  Ours2 

Figure 5.7: Some images, their ground truth PSM for different persons, and PSM predicted
by our approach. The subscript indexes the ID of the participant.

In our data collection process, each participant needs to observe thousands of images

on a single eye-tracker device, which is a bottleneck to increase both the number of images

and participants. Clearly additional eye trackers will greatly improve the PSM collection

process and can help build an even bigger dataset. Further, a key finding in our study is that

personalized saliency is closely related to the observers’ personal information (gender, race,

major, etc.). If we obtain such information in prior, we can directly incorporate it into the

PSM prediction to further improve the accuracy and efficiency.
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Chapter 6

CONCLUSION AND FUTURE WORK

Many computational models of attention exist which aim to either detect the salient

objects or predict where general people look, but they usually ignore some substantial prob-

lems that prevent the computational model accurately simulating real human visual attention

on the nature scene. On one hand, the majority of available datasets for saliency detec-

tions are regular images, which have already lost the high dimensional information of the

real scene. On the other hand, the ground truth annotated by existing datasets overlook the

incongruent gaze patterns of individuals, which impact the prediction performances. This

dissertation introduces solutions for both of the problems.

We show that by integrating the high dimensional information into the regular images,

we can greatly improve the detection performance compared with traditional method. We

built the first light field dataset for salient object detection task. This dataset consists of

plenty of both indoor and outdoor scenes and ground truth maps for one all-focus image in

the scene.

The models using different types of scene data differ in both low-level features and

processing procedures. Our second contribution is providing a unified framework to handel

different types of input scene data. This novel saliency detection algorithm is applicable to

regular image, image with depth information, and light field scene. The prediction perfor-

mance of our model achieves state-of-the-art.

If the scene consists of several objects, the inconsistency of individual gaze pattern

will become indispensable. To address this problem, we present a multi-task CNN frame-

work to encode the discrepancy gaze information between personal gaze and general gaze

into the state-of-the-art saliency models, which improve the fixation prediction accuracy for
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simulating individual visual attention. We also built the first dataset for personalized salien-

cy prediction tasks. This dataset contain 1,600 images, and 30 observers’ gaze fixation are

provided. We asked each of the paticipant to free-viewing the dataset four times. We note

that certain types of objects such as watches, belts would introduce more gaze incongruity

whereas other types like faces and text would lead to more coherent fixation maps.

6.1 Future work

Our immediate future work is using eye gaze information to predict the depth of

objects in the scene. We find it possible to do this based on the fact that the pupil shape and

gaze pattern of human eyes will change when people look at object on diverse depth. The

recent developing of Virtual Reality technique makes it possible to provide enough number

of eye images for us to learn the relationship between the depth and the gaze. This work

benefits the several computer vision tasks. An intuitive application is that we can get the

3D information of the scene just by an eye tracker. Also, we can generate the depth map

for single image when providing the gaze information towards the scene. We are currently

working on building an eye tracker system to capture the gaze data and clearly there are still

plenty of interesting questions waiting for us to investigate in the future.
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