
MEMORY STATE FLOW ANALYSIS AND ITS

APPLICATION

by

Xiaomi An

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Winter 2011

c© 2011 Xiaomi An
All Rights Reserved

MEMORY STATE FLOW ANALYSIS AND ITS

APPLICATION

by

Xiaomi An

Approved:
Guang R. Gao, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Michael J. Chajes, Ph.D.
Dean of the College of Engineering

Approved:
Charles G. Riordan, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGEMENTS

First of all, I wish to thank my advisor Prof. Guang R. Gao, who gave

me the chance to study in CAPSL and always supported me in my research. The

experiences in CAPSL broadened my views in the whole field of computer science

and I believe this will benefit me for my whole life.

I particularly thank Dr. Vugranam Sreedhar, who is my mentor and has been

giving me selfless help both mentally and technically all along.

I thank all CAPSL members, including Juergen, Joseph, Sunil, Chen Chen,

Xiaoxuan, JushuaSu, Tom, Stephane, Josh L, Aaron, Lucas, Mark, Robert, Daniel,

Elkin, Cloudia, Gan, Xu, Handong, etc. Because of you, I had a happy time in the

big family of CAPSL.

During my thesis writing, Joseph helped me to understand XMT architecture

and its programming model; Juergen always encouraged me when I felt frustrated

and tired; Twin Josh made a great effort to improve my English writing; and Mark

helped me to acquire an account on Cray XMT supercomputer which is very im-

portant for my research. I won’t be able to finish my thesis without your help.

I thank Peggy Gao, although we only met two times, her sincereness and

enthusiasm impressed me and encouraged me to have a good attitude toward life.

I also thank my dear friends, Yuanqu, Xiaoting, Qunhui, etc. Your accom-

pany helped me get through those tough days.

Finally, I thank my spouse Xiaoning, who always supported my work and

gave me great patience.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii

ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

1.1 Data Centric Programming Model on Cray XMT 1

1.2 Fine-Grain Synchronization Problem 2

1.3 Contributions . 5

1.4 Synopsis . 6

2 BACKGROUND . 7

2.1 Full/Empty Bits based Fine-Grain Synchronization and Data-centric
Program Model . 7

2.1.1 Full/Empty Bits . 8

2.2 Tera MTA System and Programming Model 8

2.2.1 Tera MTA System Overview 9

iv

2.2.2 Programming on Tera MTA 10

2.3 Cray XMT System and Programming Model 11

2.3.1 Hardware and Software Overview 13

2.3.2 Fine-Grain Parallelism and Generic functions 15

2.3.3 Implicit and Explicit Parallelism 19

2.4 Cyclops SSB and Programming Model 21

2.4.1 SSB Design and Implementation 21

2.4.2 SSB Programming Model . 22

2.5 Static Single Assignment Form . 24

3 MEMORY STATE FLOW ANALYSIS 27

3.1 Parallel Control Flow Graph . 27

3.2 Concurrency and Exclusion . 29

3.2.1 Concurrency Relation . 29

3.2.2 Exclusion Relation . 30

3.3 Augmented SSA Form . 30

3.4 MSSA Form . 31

3.5 Construction of MSSA form . 33

3.6 Memory State Verification . 38

3.7 Array Region Memory State Verification 41

3.8 Discussion . 43

4 IMPLEMENTATION AND EMPIRICAL RESULTS 48

4.1 Implementation . 48

v

4.2 Application Introduction . 51

4.2.1 GraphCT . 51

4.2.2 STINGER . 52

4.2.3 SSCA2 . 52

4.3 Implementing Parallel Applications By Synchronized Operations . . . 54

4.3.1 Lock . 55

4.3.2 Critical Section . 55

4.3.3 Barrier . 56

4.3.4 Atomic Operation . 57

4.3.5 Fine-Grain Lock . 57

4.4 Empirical Results . 58

4.4.1 Count problem: Straightline Codes 58

4.4.2 Count Problem: Conditional Statements 59

4.4.3 Count Problem: More Synchronization Types 59

4.4.4 Order Problem: access same memory location 59

4.4.5 Order Problem: access different memory locations 59

5 MEMORY STATE FLOW ANALYSIS FOR SINGLE ASSIGNED
DATA STRUCTURE . 64

5.1 Language Model . 64

5.2 Memory State Flow Analysis . 65

6 RELATED WORK . 68

7 CONCLUSION AND FUTURE WORK 72

APPENDIX: SOURCE CODE ACQUISITION, AND USAGE 73

BIBLIOGRAPHY . 75

vi

LIST OF FIGURES

2.1 Cray XMT Hardware System Architecture 12

2.2 Threadstorm Processor Architecture 13

2.3 Cray XMT Software Stack . 15

2.4 Data Word with Tag Bits . 16

2.5 Data Word with Tag Bits . 21

3.1 PCFG Construction . 28

3.2 Memory State Model . 32

3.3 Memory State lattice. e is the Empty state, f is the Full state, fw is
the Full Wait state, and ew is the Empty Wait state. 33

3.4 Extended Memory State Model . 34

3.5 MSSA example . 37

3.6 Deadlock Examples: Count Problem 39

3.7 Deadlock Examples: Order Problem 44

3.8 Heuristic: Quantitative Verification 45

3.9 Heuristic: Ordering Verification . 46

3.10 Array MSSA Form . 47

4.1 MSFA Implementation Phase . 49

vii

4.2 MSFA Implementation Flow Diagram 50

4.3 A diagram of the STINGER data structure 53

4.4 Count problem: Straight line codes 60

4.5 Count problem: Conditional Statements 61

4.6 Count problem: More Synchronization Types 62

4.7 Order Problem: access same memory location 63

4.8 Order Problem: access different memory locations 63

5.1 Memory State Model . 66

5.2 MSSA Form . 67

viii

ABSTRACT

The Cray XMT supercomputer system is the third generation of the Cray

MTA supercomputer architecture. It is a scalable massively multithreaded platform

which is based on the Cray XT infrastructure and uses the Cray massively parallel

processing (MPP) system design. The XMT system uses Threadstorm processors

which have a global shared memory.

A very interesting feature of XMT is that it provides a fine-grain data-centric

synchronization for managing concurrency by extending each memory word with

tag bits. A tag bit can be in one of two states: full or empty. Cray XMT supports

a number of synchronized memory operations to read from and write to tagged

memory. A synchronized read/write operation can be suspended if a corresponding

memory cell is not in an expected state. For example, a synchronized memory

operation can be suspended if it reads from an empty memory address or writes to

a full memory address. If in a parallel program a suspended operation can never

get to an expected memory state, the operation will be suspended forever. We say

that the program/operation is “deadlocked”.

Although the synchronized operations provide extreme flexibility to imple-

ment fine-grain parallelization of both regular and irregular applications, it is very

easy to get programs into deadlock. And due to the lack of parallel program de-

bugging tools and runtime support to detect such program deadlocks, it is hard to

locate this kind of synchronization errors. So it is important to develop an effective

static analysis algorithm which can detect them as early as possible. The typestate

ix

analysis is a static program verification technique which can identify illegal opera-

tions performed on some objects due to the wrong object state. However, almost

all the previous works on typestate analysis only deal with sequential programs and

cannot work for concurrent programs.

In this thesis we present a new analysis technique, called memory state flow

analysis to determine whether a given parallel program with synchronized read/write

operations will deadlock. We extend the classical static single assignment (SSA)

form with memory state information (called MSSA form) and use that to compute

the memory state of each program variable at certain program points. Based on

the MSSA form, we perform memory state verification to determine whether a

synchronized read or write operation will ever be deadlocked. Our approach can

also handle pointer variables and array sections.

The main contributions of our work are: (1) a framework to do memory

state analysis is built, which catches the main features related to the memory state

of parallel programs. (2) a memory state verification method to detect a potential

program deadlock is developed. Thus, the essentially exponential-complex problem

is decoupled and solved using dataflow analysis with simple heuristics, and most

program deadlocks problems can be caught by careful heuristics design.

We have implemented our analysis using the Open64 compiler, and we present

some preliminary results. The preliminary results show that our memory state flow

analysis can detect most of the program deadlock problems. For example we can

detect program deadlocks due to unbalanced synchronized operation types, defective

operation order, etc.

We also include a survey of related work, such as static program verification

for concurrent systems, program representation and dataflow analysis for parallel

programs, typestate analysis, etc. A conclusion and a survey of future work are also

presented.

x

Chapter 1

INTRODUCTION

In this chapter, we firstly give a brief introduction to the Cray XMT super-

computer’s fine-grain programming model. Such a model requires the programmer

to focus on data and the dependencies between data. Next, we explain the syn-

chronization problems that can occur using fine-grain synchronization. Lastly, we

illustrate our main contributions to detect these problems using static dataflow

analysis based on static single assignment (SSA) form.

1.1 Data Centric Programming Model on Cray XMT

Computer architects and designers have been exploring the massively multi-

core and supercomputer architecture areas with the hope of improving execution

time of large-scale scientific and server applications for many years. Over the past

few years, the underlying programming model for such architectures has also been

evolving. Parallel programming models such as OpenMP[41] and Pthreads have

been two popular choices for these architectures. Both of them focus on providing

thread-centric parallelism. In general, a thread is a unit work a processor can do. In

thread-centric parallelism, multiple units of work or threads can be run in parallel.

As such, a programmer needs to focus on coordination among multiple threads when

developing software based on these programming models.

The Cray XMT[1] supercomputer is massively multithreaded machine with

a global shared memory, which is especially tailored for developing large-scale irreg-

ular applications. These irregular applications are usually organized around pointer

1

based data structures such as trees and graphs with random access patterns to their

memory. Cray XMT architecture supports a data-centric parallel programming

model where programmers focus data dependences when developing applications.

In more detail, the hardware fine-grain synchronization model provided by

the XMT is a simple bit extension of memory to indicate the state of data. Every

word in the memory is extended with a tag bit. The tag bit can be either full or

empty. 1 This allows for synchronized read and write operations to be supported.

For example, a synchronized read operation can read from a memory address if

the tag bit is full. Once it is read, the tag bit state can change to empty (known

as readfe operation) or leave as full (known as readff operation). Similarly, a

synchronized write operation can write to a memory address if the tag bit is empty.

Once it is written, the tag bit state is changed to full (known as writeef operation).

1.2 Fine-Grain Synchronization Problem

A synchronized operation may be suspended when the expected tag bit is

not satisfied. For example, the readfe operation will be suspended when it reads

from memory word whose tag bit state is empty until a writeef operation changes

its state to full. Similarly the writeef operation will be suspended when it writes

to memory word whose tag bit state is full until a readfe operation changes its

state to empty. One difficulty with data-centric parallel programming model is

determining whether synchronized memory operations respect the underlying data

dependencies of the program. In other words, if programmers are not cautious in

using synchronized operations, certain synchronized operations will be suspended

for ever; we call this kind of synchronization problem a “deadlock”.

To further illustrate the problem, consider the following code. In the codes

below, readfe is a synchronized read operation, writeef is a synchronized write

1 Cray XMT has two bits with each word and the second bit is used for tracking
other kinds of states.

2

operation, and purge is a synchronized operation that will reset the tag bit state

of a memory address to empty. In this classical example of consumer/producer

problem, thread 1 places a 10 in x. And threads 2 and 3 both compete to consume

the resource. Only one readfe operation will complete, and consume the full bit

leaving it empty for the other thread. Thus, either thread 2 or thread 3 will be stuck

depending on which thread starts first, since the there is only one writeef operation

which “produces” a full memory state while there are two readfe operations which

“consume” the full memory state.

int x ; // shared variable

purge(&x) ;

cobegin { // creates parallel sections

section { // thread1

writeef(&x, 10) ;

}

section { // thread2

int y // local variable

y = readfe(&x) ;

}

section { // thread3

int z // local variable

z = readfe(&x) ;

}

}

Furthermore, the presence of pointer, array elements, and concurrency makes

the analysis even more complex for a programmer. Now let us consider the following

example. In the code below, readff is a synchronized read operation. The writing

of array a is conditionally dependent on the values of another array c. Hence,

3

the readff operation for each read of element of a may be deadlocked unless each

corresponding element of c is greater than 0.

for (i = 0; i < RANK; i++)

purge(a[i]);

// conditionally initialize the arrays

for (j = 0; j < RANK; j++) {

if(c[j] > 0)

writeef(&a[j], 1.0);

}

// parallel forall loop

forall (i = 0; i < RANK; i++) {

... = readff(&a[i]);

}

To highlight the impact of aliasing on the precision of memory state analysis,

consider the following snippet of code: Aliasing here indicates one memory location

can have multiple names. For instance f is an alias for x and also and alias for y.

s1: int x=0, y=0 ; // x and y initialized

s2: purge(&x) ; purge(&y) ; // x[empty], y[empty]

s3: writeef(&x, 10); // x is full

s4: f = &x ; // f->x[full], y[empty]

s5: while(?) { // f->x[bottom] f->y[bottom]

s6: z = readff(f) ; // f->x[bottom], f->y[bottom]

s7: if(?) {

s8: z=readfe(*f) ; // f->x[bottom], f->y[bottom]

s9: writeef(&y, 10) ; // f->x[empty], f->y[full]

4

s10 f = &y; // f->x[bottom], f->y[full]

s11: } // f->x[bottom], f->y[bottom]

s12: } // f->x[bottom], f->y[bottom]

One approach for dealing with aliases is to first perform alias analysis and

then perform memory state analysis. The result of a two-phase analysis is shown

above in the comment section. At statement s8, since f can point to either x or y,

and y can be either full or empty, the memory state of *f is made bottom. After

carefully examining the statements at s6 and s8, we can see that *f should never be

empty. We will show how to obtain a more precise result using our memory state

analysis that is based on static single assignment (SSA) form.

1.3 Contributions

In this thesis we describe a new memory state flow analysis (MSFA) to de-

termine the memory state that a variable can be at each program point. We then

use the result of MSFA to determine whether a program may be “deadlocked”. A

simple parallel programming model is used that consists of two basic kinds of par-

allel constructs: cobegin/coend for parallel sections and forall for parallel loops.

We will use an extended static single assignment form to precisely compute MSFA

for program sections where sequential semantics are respected.

The main contributions of our work are: (1) a framework to do memory

state analysis is designed, which take in consideration the main features related to

the memory state of variables in parallel programs; (2) a memory state verifica-

tion method based on simple heuristics to detect the potential program deadlock is

developed; (3) our analysis has been implemented in the Open64 compiler and pri-

mary experiments are performed which show that a wide types of program deadlock

problems can be detected by our framework.

5

As far as we know, this work is the first to perform memory state analysis

for synchronized memory operation using data flow analysis method. Our approach

is good because it essentially takes an exponentially complex problem, decouples

and solves it with dataflow analysis and simple heuristics. For the most part, many

program deadlock problems can be caught by careful heuristic design.

1.4 Synopsis

In Chapter 2, we will give a survey about the high performance architectures

which support fine-grained synchronization based on full/empty bits implementation

in hardware. In Chapter 3, we will introduce our memory state flow analysis. The

main techniques in both program representation and data flow analysis method will

be illustrated. In Chapter 4, we will show how we implement our analysis based

on Open64 compiler as well as the empirical results. We will also introduce some

real applications which have been successfully ported to XMT system and show

how the synchronized operations are used in their parallelization. In Chapter 5, we

will illustrate how to apply our MSFA for parallel programs with single-assignment

semantics. Chapter 6 includes a survey of related work, such as static program

verification techniques for concurrent systems, program representation and dataflow

analysis for parallel programs, typestate analysis, etc. In Chapter 7, we will draw a

conclusion of our work and give a survey of future work.

6

Chapter 2

BACKGROUND

In this chapter, a survey is provided on high performance architectures that

provide full/empty bits based fine-grain synchronization in hardware. The pro-

gramming model for each architecture is also provided to better understand the

architectures strengths and weaknesses when programming. The Cray XMT, Tera

MTA, and Cyclops SSB systems are focused on although there are many other ar-

chitectures with hardware support for fine-grain synchronization. Finally, a brief

introduction to the static single assignment form is given.

2.1 Full/Empty Bits based Fine-Grain Synchronization and Data-

centric Program Model

The granularity of parallelism is highly dependent on the performance of syn-

chronization mechanisms. Fine-grain synchronization with a data-centric program-

ming model is attracting more and more attention in the field of high performance

computing these days due to limited parallelism of coarse-grain synchronization.

Thus, a very fine-grain model is needed to extract as much parallelism as possible.

In such a model, each memory word can be lock and unlocked. This allows for point

to point synchronization with granularity at the single memory word level using

read and write operations.

However, the overhead of fine-grain synchronization is higher than coarse-

grain synchronization due to increase in synchronization operations. To achieve good

performance, hardware support is needed to implement fast synchronization. For

7

example, full/empty bits have been supported on many architectures. Applications

ported to these architectures have achieved very good performance and scalability

due to the abundant parallelism extracted.

2.1.1 Full/Empty Bits

Full/Empty bits are a kind of hardware bits which are supported by hardware

as tags to mark the status of memory(e.g. full or empty) to support word-level fine-

grain synchronization. Many high performance architectures have such support, e.g.

HEP, Tera, MDP, Alewife, M-Machine and Cray XMT. Based on the full/empty bits,

a producer-consumer style synchronization can be implemented, e.g. a synchronized

read waits for full state (wait for memory state to be produced) and will reset the

bit to empty after the read finishes (consume the memory state); and a synchronized

write waits for empty state (wait for memory state to be consumed) and will reset

the bit to full after the write finishes (produce the memory state).

Usually, in the whole memory system each word has their own associated

full/empty bits like in Tera MTA and Cray XMT; while on Cyclops, a synchro-

nization state buffer(SSB) is implemented to cache the synchronization data. We

will introduce the Tera MTA, Cray XMT and Cyclops SSB architectures and the

programming model supported by them in the following sections.

2.2 Tera MTA System and Programming Model

The Tera MTA (“Multi-Threaded Architecture”) is a revolutionary commer-

cial supercomputer. Compared with other parallel architectures, the Tera MTA

can effectively use high amounts of parallelism on a single processor. By running

multiple threads on a single processor, it can tolerate memory latency and keep

the processor saturated. It can also achieve performance benefit from running on

8

multiple processors, when the computation is sufficiently large[59]. The MTA archi-

tecture is applicable to a wide spectrum of problems, for example, applications that

do not vectorize well due to too much scalar computation or conditional statements.

2.2.1 Tera MTA System Overview

The Tera MTA system has the following features[60]:

• Shared memory

Each processor has uniform access to every location of a shared memory. There

is no memory hierarchy consideration, such as a data cache.

• High bandwidth Network

The high-bandwidth network avoids unexpected memory-traffic bottlenecks.

Each processor can issue a memory operation at each clock cycle without risk

of possible network or memory congestion.

• Multithreading and lookahead

The Multithreading and lookahead are supported which provide latency toler-

ance. At each cycle, a processor issues one instruction from any of the many

ready threads. Each memory operation is associated with a lookahead number

which tells how many more instructions it may execute from the same thread

prior to the completion of the memory operation. Thus, even greater latency

tolerance can be allowed.

• Memory state bits

Four state bits are associated with each memory word: a forwarding bit, a

full-empty bit, and two data-trap bits. The full-empty bit and one data-trap

bit can be used for lightweight synchronization.

9

• Wide instructions

Every instruction consists of up to three operations that can include one mem-

ory operation and a pair of arithmetic operations.

The Tera MTA comes with a sophisticated compiler which can automati-

cally parallelize sequential code by decomposing it into threads. Two other tools,

Traceview and Canal, are also provided which allow the programmer to profile per-

formance and to understand the program implementation. The Traceview analyzes

the execution trace and illustrates how well the executable uses the available hard-

ware. The Canal can provide an annotated version of the source file which can help

programmer get to know how the program has been decomposed into threads and

targeted to the hardware.

2.2.2 Programming on Tera MTA

The Compiler is responsible for exploiting parallelism existing in the pro-

grams. Pragmas which give hint of the available parallelism inside the loops can be

utilized by the compiler to perform more aggressive parallelization. For example,

the codes below give an example of parallel implementation of a sort algorithm:

for (i = 0; i < key_value_bound; i++)

count[i] = 0;

for (i = 0; i < nkeys; i++)

count[key[i]]++;

start[0] = 0;

for (i = 1; i < key_value_bound; i++)

start[i] = start[i - 1] + count[i - 1];

start$ = (sync int *) start;

10

#pragma tera assert parallel

for (i = 0; i < nkeys; i++)

rank[i] = start$[key[i]]++;

Barriers will be inserted by the compiler to separate the four main loops.

The first three loops can be automatically parallelized by the compiler. However we

had to add an assert to indicate that the last loop can be parallelized.

The variable start$ is declared as a pointer to sync int, and accesses to the

sync variable should be carried out atomically, so that no other iteration can possibly

cause a race condition. The atomic update can be performed using a fetch-and-add

operation provided by the Tera MTA system.

Other synchronized read and write primitives are also provided, like purge,

readff, readfe, writeef, etc[30].

2.3 Cray XMT System and Programming Model

The Cray XMT supercomputer system is a scalable, massively multithreaded

platform with a globally shared memory architecture, which is based on the Cray

XT infrastructure and uses the Cray massively parallel processing (MPP) system

design. The XMT system has the following features[1]:

• Performs large-scale data analysis.

• Uses Cray Threadstorm processors. Each processor is directly connected to

a dedicated Cray SeaStar2 interconnect chip, resulting in a high-bandwidth,

low-latency network characteristic.

• Scales from 16 to 512 processors providing over half a million threads, using

4 terabytes of system memory.

11

Figure 2.1: Cray XMT Hardware System Architecture

• Contains separately dedicated compute, service, and I/O nodes. Service nodes

have AMD Opteron processors and can be configured for I/O, login, network,

or system functions. Compute nodes have Threadstorm processors.

• Runs the Cray Linux Environment (CLE) operating system which distributes

a multithreaded kernel (MTK) to the compute blades and standard Linux on

the service and I/O blades. This enables the compute nodes to focus on the

application without being hampered by system administrative functions.

These features enable an efficient support of fine-grain parallelism.

12

Figure 2.2: Threadstorm Processor Architecture

2.3.1 Hardware and Software Overview

The Cray XMT system includes both compute nodes and service nodes. Each

node is a logical grouping of a processor, memory, and a data routing resource. The

Compute nodes run application programs, each of which consists of a Threadstorm

processor, DIMM memory, and a Cray SeaStar2 chip. Service nodes handle support

functions such as user login, I/O, and network management. Each service node con-

tains an Opteron processor, DIMM memory, and a SeaStar2 chip. Figure 2.1 shows

a conceptual view of 3-D torus network topology for compute and service nodes[1].

We can see that the services nodes are classified, according to their functions, into

login nodes, I/O service nodes,network service nodes, data base service nodes, etc.

13

Figure 2.2 shows the Threadstorm processor architecture which is included in

each compute node. Threadstorm processor is a multithreaded processor that can

support as much as 128 streams with 31 general purpose 64-bit registers, 8 target

registers. A stream is the hardware unit used to execute a single thread. There

are three functional units in the Threadstorm processor: a M unit which issues

memory operation, an A unit which executes arithmetic operation, and a C unit

which executes control or simple arithmetic operation. The Threadstorm ISA is a

kind of large instruction word (LIW) where each instruction can specify up to three

operations, one for each functional unit. Besides the instruction execution logic, it

also includes DDR memory controller, data cache, HyperTransport(HT) interface,

and a switch which connect the components[1].

The Cray XMT software system is optimized for applications that have fine-

grain synchronization requirements, large processor counts, and significant commu-

nication requirements. The software stack is shown in the Figure 2.3. The stack on

the left applies to the service nodes, and the stack on the right applies to compute

nodes. We can see that the compute nodes and service nodes run different operating

systems: the compute nodes run the MTK operating system and the service nodes

run the SUSE LINUX operating system. The MTK OS is monolithic running as a

single instance across all the compute nodes on the XMT system; this is different

from other Cray systems where the operating system runs independently on each

compute node. Because there is a single instance, MTK provides better support for

fast context switching and fine-grain parallelism. The user environment is similar to

the environment on a typical Linux workstation, including a development environ-

ment that provides compilers, libraries, parallel programming models, debuggers,

and performance measurement tools[1].

14

Figure 2.3: Cray XMT Software Stack

2.3.2 Fine-Grain Parallelism and Generic functions

The Cray XMT provides rich and efficient hardware level concurrency and

synchronization, e.g. the single-cycle context switching enables processors to switch

among multiple threads without involving the operation system, and the lightweight

synchronization operations can access the shared memory by using full/empty bit

without invoking the operating system. These features enable a fine-grain data-

centric parallel programming model. The XMT represents one multithreading ex-

treme, similar to pure data-flow machines. Its peculiar fine-grain thread manage-

ment techniques make it an ideal candidate to process applications with irregu-

lar memory access patterns. Examples of applications with these features include

15

Figure 2.4: Data Word with Tag Bits

Graph Analysis, social network, and triadic analysis. For these applications, irregu-

lar memory accesses cannot be predicted statically at programming or compile time,

therefore the Cray XMT is well-suited to for these types of applications.

The Cray XMT compiler provides a number of generic functions which

perform read and write, purge, touch, and int fetch add operations on variables.

Generic functions frequently affect, or have behavior that is dependent upon, the

full-empty state of the variable. Below gives a parallel dataflow algorithm of three-

point wavefront stencil which used the generic functions to perform synchronized

memory access operations like purge, readff and writeef. the semantics of these

generic functions will be illustrated later in this section .

for (i = 0; i < RANK; i++)

for (j = 0; j < RANK; j++)

purge(a[i, j]);

16

for (j = 0; j < RANK; j++) {

a[0,j] = 1.0; a[j,0] = 1.0;

}

#pragma mta assert parallel

#pragma mta interleave schedule

for (i = 1; i < RANK; i++) {

for (j = 1; j < RANK; j++) {

double N = readff(a[i-1] + j);

double W = readff(a[i] + j - 1);

double NW = readff(a[i-1] + j - 1);

double V = (N + W + NW) / 3.0;

writeef(a[i, j], V);

}

}

Generic write functions write new values to variables, depending upon the

full-empty state of the variable. The following generic write functions are supported

on XMT[3]:

• writeef(&v, value)

Writes value in variable v when v is in an empty state and sets v to a full

state. If v is in a full state, the write operation is blocked until v changes to

an empty state.

• writeff(&v, value)

Writes value in variable v when v is in a full state and leaves v in a full state.

If v is in an empty state, the write is blocked until v changes to a full state.

17

• writexf(&v, value)

Writes value in variable v and sets v to a full state.

• int fetch add(&v, i)

Atomically adds integer i to the value at address v, stores the sum at v, and

returns the original value from v (setting v to a full state).

• purge(&v)

Writes 0, using the appropriate data type, to variable v and sets v to an empty

state.

Generic read functions return the value of a variable, depending upon the

full-empty state of the variable. The following generic read functions are supported

on XMT[3]:

• readfe(&v)

Returns the value of variable v when v is in a full state and sets v to an empty

state.If v is in an empty state, the read operation is blocked until v changes

to a full state.

• readff(&v)

Returns the value of variable v when v is in a full state and leaves v in a full

state. If v is in an empty state, the read operation is blocked until v changes

to a full state.

• readxx(&v)

Returns the value of variable v but does not interact with the full-empty

memory state.

• touch(&v)

The touch function returns the value of future variable v, where v is associ-

ated with a future statement that has been spawned, but whose body may

18

or may not have already begun execution. If the future body that writes v

has not begun executing, the thread calling touch executes the future body. If

the future body associated with v is currently being executed or has finished

executing, touch(&v) acts like a readff(&v) function.

However, it is very easy to have synchronization errors if the generic functions

are not used properly. And any deadlocks that can occur at runtime cannot be

detected by the current Cray compiler.

2.3.3 Implicit and Explicit Parallelism

There are two kinds of programming models supported by the Cray XMT: im-

plicit parallelism and explicit parallelism. The implicit parallelism is expressed as a

loop using the same loop constructs that are part of most every standard program-

ming language. The compiler must be able to understand these loop constructs,

exploit, and implement the parallelism existing in them. Usually the number of

iterations contained in a loop must be determined before the loop begins.

Cray XMT compiler can auto-parallelize the following three types of loops[3]:

• Loops with independent iterations

• Linear recurrences

• Reductions

An example of linear recurrence loop is the following:

for (i = 1; i < n; i++) {

x[i] = x[i - 1] + m;

}

The compiler can identify that the above loop is equivalent to the codes below

and parallelize it.

19

for (i = 1; i < n; i++) {

x[i] = x[0] + i * m;

}

The compiler may also rely on directives to parallelize some loops. For exam-

ple, the three-point wavefront stencil uses pragmas to help compiler identify parallel

loop.

However, for some cases, loop parallelism cannot be used, such as searching

a linked data structure or implementing a recursive algorithm in parallel. In such

cases, we can use explicit parallelism. On Cray XMT, the explicit parallelism is

implemented by futures. Future is a kind of construct which explicitly indicates

which sections of code may execute concurrently with other sections.

The codes below show how a future structure is used to parallelize the binary

search tree algorithm[3].

int search_tree(Tree *root, unsigned target) {

int sum = 0;

if (root) {

future int left$;

future left$(root, target) {

return search_tree(root->llink, target);

}

sum = root->data == target;

sum += search_tree(root->rlink, target);

sum += touch(&left$);

}

return sum;

}

20

Figure 2.5: Data Word with Tag Bits

2.4 Cyclops SSB and Programming Model

The Cyclops SSB provides fine-grain synchronization using a novel design

without the hardware expense of extending each word. The design of SSB is moti-

vated by the a simple observation: at any instance during the parallel execution only

a small fraction of memory locations are actively participating in synchronization.

Based on this, a fine-grain synchronization can be implemented that records and

manages the states of frequently synchronized data by hardware with only a modest

cost. The SSB design has been implemented in the context of the IBM Cyclops-64

architecture[58].

2.4.1 SSB Design and Implementation

SSB is a small buffer attached to the memory controller of each memory bank.

It records and manages states of frequently synchronized data units to support and

accelerate word-level fine-grain synchronization.

The SSB includes a few entries, figure 2.5 shows the structure of a SSB entry.

Each SSB entry consists of four parts: (1) address field that is used to determine

a unique location in a memory bank, (2) thread identifier, (3) an 8-bit counter,

and (4) a 4-bit field that supports up-to 16 different synchronization modes. The

address bits are used as a key to search the buffer and locate the entry of the

synchronized location. The remaining three fields forms the synchronization state

for that memory location.

The number of SSB entries was decided by the following equations, 1) Eb ≤

Mb and 2) Eb ≥ Sb, where Eb represents the number of SSB entries, Mb represents the

21

number of memory banks, and Sb represents the average amount of synchronizations

at a memory bank.

2.4.2 SSB Programming Model

The SSB can be used to implement both mutual exclusion and satisfy read-

after-write data dependencies between a large number of threads. In the case of

mutual exclusion, SSB allows each memory word to be individually locked with

minimal overhead. It supports various types of locks: read lock (shared lock),

write lock (exclusive lock), and recursive lock. For data synchronization that

enforces the read-after-write dependencies between threads, several modes of

data synchronization are supported: two single-writer-single-reader modes,

and one single-writer-multiple-reader mode. Thus fine-grained synchroniza-

tion can be supplied to help exploit fine-grained parallelism in applications.

Below gives the detailed description of the lock/unlock operations supported

by SSB:

• (RT, Value) = swlock l(MemAddr)

Acquire write lock for memory location MemAddr, load the content. stores the

content of the memory location into Value and store the return value(success

or failure) into RT;

• (RT, Value) = srlock l(MemAddr)

Acquire read lock for memory location MemAddr, load the content. stores the

content of the memory location into Value and store the return value(success

or failure) into RT;

• sunlock(MemAddr)

Release the lock for memory location MemAddr;

22

• RT = sunlock r(MemAddr)

Release the lock for memory location MemAddr, and store the return

value(success or failure) into RT.

Below gives the descriptions of Single-Writer-Single-Reader (SWSR) Data

Synchronization operations:

• RT = sswrsr w1(MemAddr, Value)

SWSR synchronized write mode 1; write the data in Value into memory loca-

tion MemAddr and store the return value (success or failure) into RT;

• (RT, Value) = sswrsr r1(MemAddr)

SWSR synchronized read mode 1; read from memory location MemAddr,

stores the content into Value and store the return value (success or failure)

into RT;

• RT = sswrsr w2(MemAddr, Value)

SWSR synchronized write mode 2; the semantics are similar to SWSR syn-

chronized write mode 1;

• (RT, Value) = sswrsr r2(MemAddr)

SWSR synchronized read mode 2; the semantics are similar to SWSR synchro-

nized read mode 1;

The sswsr w1 and sswsr r1 support a busy-wait approach which coordinates

with the software and the sswsr w2 and sswsr r2 operations support a blocking

strategy with the support of instruction-level sleep/wakeup of the underlying multi-

core architecture.

Examples in the following codes show how to use the SWSR to enforce the

data dependence between read and write.

23

(a) Writer

tmp = ... // tmp is a local variable

// write tmp to shared variable data, and mark it as available

while(sswsr_w1(&data, tmp) != SUCCESS)

;

(b) Reader

// read from shared variable data to local variable tmp, if available

while(1){ // a busy-wait loop

(RT, tmp) = sswsr_r1(&data);

if(RT == SUCCESS)

break;

}

2.5 Static Single Assignment Form

SSA form is a type of intermediate representation in which every variable

is assigned exactly once. In this section, we will give a brief introduction of SSA

construction algorithm based on program control flow graph.

A control flow graph (CFG) of a program is a rooted directed graph G = (N,

E, r, t), where N is the set of nodes representing basic blocks in the program, E is

the set of edges representing the flow of control from one node to another node, r ∈

N is a distinguished root node with no incoming edges, and t ∈ N is a distinguished

terminal node with no outgoing edges. We assume that all nodes in N are reachable

from the start node s.

If x→ y ∈ E, then x is called the source node and y is called the destination

node of the edge; and sometimes we will say that y is a successor of x, and x is a

24

predecessor of y. The set of all successors of a node x is denoted by Succ(x) and the

set of all predecessors of x is denoted by Pred(x). A path P of length n is a sequence

of edges P : (x0 → x1 → xn), where each xi → xi+1 ∈ E. We will use the notation

P : x y to represent a path of length zero or more. A node x ∈ N dominates a

node y, denoted as x dom y, if and only if all paths from the start node s to y always

pass through x. If x6=y then x is said to strictly dominate y. If x strictly dominates

y and x is the closest node to y then x is said to immediately dominate y, and is

denoted as x = idom(y). For each node in the dominator tree we associate a level

number that is the depth of the node from the start of the tree. We write x : level

to indicate the level number of a node x (the level number of the start node is 0).

Similar to dominance relation we also use the dual post-dominance relation; a node

y postdominates another node x, denoted as y pdom x, if and only if all paths from

the node x to end node always pass through y. Similar to dominance relation, one

can dually define strict postdominance relation, immediate post-dominace relation,

and postdominator tree.

The dominance frontier DF(x) of a node x is the set of all z such that x

dominates a predecessor of z, but does not strictly dominating z. The DF(X) of a

set of nodes X is defined as DF(X) =
⋃
x∈XDF(x). The iterated dominance frontier

IDF(X) for a set of node X is defined as a limit of the increasing sequence:

IDF1(X) = DF (X)

IDFi+1(X) = DF (X ∪ IDFi(X))

A Sparse Evaluation Graph (SEG) is a projection of a control flow graph

(CFG) for a specific data flow problem. A SEG is constructed from a CFG by

identifying the initial set of nodes Na ⊆ Nc that affects the data flow problem (that

is, whose transfer function is a non-identity function), computing Nφ = IDF (Na),

and inserting a sparse edge ns → ms between any two nodes in Ns = Na∪Nφ if there

is a path Pc from ns to ms in the original CFG and Pc does not contain any other

25

node in Ns (other than ns and ms at the end points of the path). For separable data

flow problems, such as reaching definition or live variable analysis, more than one

SEG is constructed, one for each different variable. SSA form is a special kind of

SEG for representing def-use chain and in which variables are renamed and explicit

φ-functions are introduced to ensure each variable has exactly only definition.

26

Chapter 3

MEMORY STATE FLOW ANALYSIS

Memory state flow analysis (MSFA) is a static data flow analysis to deter-

mine the memory (tag bit) state for each synchronized variable at each program

points. In this chapter we firstly introduce the parallel control flow graph and the

augmented SSA (ASSA) form we used to represent the parallel programs. We then

present a memory state SSA (MSSA) form, which is an extension of classical SSA

form augmented with memory state information, concurrency information, and ar-

ray regions. Lastly, we will show how to build the MSSA form and how to perform

memory state verification Based on it.

3.1 Parallel Control Flow Graph

We assume a simple parallel language which is made up of nested paral-

lel regions. A program begins execution as a single thread called the parent

thread(sometimes also called as the master thread). When a parallel region is en-

countered, the parent(master) thread generates a team of threads (child threads)

to execute the enclosed code sections. When they complete, they synchronize and

terminate, leaving only the parent thread to proceed. Parallelism is expressed us-

ing two parallel constructs: forall and cobegin/coend. When control reaches

a forall construct, all iterations of the loop body are started and proceed con-

currently, each by one thread. A cobegin/coend parallel region consists of a set

of sections. Each section in a cobegin/coend region is executed concurrently with

27

(a) Forall (b) Cobein/Coend (c) Statements

(d) Sequential for (e) Conditional switch

Figure 3.1: PCFG Construction

other sections in the region. To simplify the presentation, we restrict the class of pro-

grams that support only structured control flows for forall and cobegin/coend

one cannot jump in and out of these parallel constructs arbitrarily. We will also

assume a structured program and does not contain gotos, breaks, and continue

statements.

For synchronization we will follow Cray XMT synchronization reads and

writes with full/empty tag bits. We will use the following synchronization read

and write operations defined by Cray XMT: readfe, readff, writeef, writexf,

writeff, touch,int fetch add and purge[3].

The set of statements in a parallel program and the control flow among

them form a graph, called the parallel control flow graph(PCFG). Since we assume a

structured parallel program, the corresponding PCFG is a structured graph. Figure

3.1 illustrates how to construct PCFG for each program construct. We insert control

flow edges from a cobegin node to the first statement node of each of the parallel

sections of the corresponding parallel region, and we also insert control flow edges

28

from each of the last statement node in the corresponding parallel section to the

coend node. For forall we clone the body of the forall loop once and treat the

loop body and its clone as two parallel sections of a cobegin/coend parallel region.

Therefore we represent forall as in cobegin/coend parallel region. We interpret

the body and its clone as being two different iterations of the parallel loop, and

for our analysis purpose we do not care what those two iterations are, except when

dealing with arrays which we will discuss later in the paper.

3.2 Concurrency and Exclusion

3.2.1 Concurrency Relation

Two statements s1 and s2 in a program P is said to be concurrent if there

exists an execution of P such that there are two threads T1 and T2 which can execute

s1 and s2 either simultaneously or mutually exclusively. Recall that at the end of

cobegin/coend and forall statements all threads merge, and a barrier is typically

needed to merge different threads. The barrier semantics require that either all

threads in a team execute a barrier or none of them executes the barrier. The set of

barriers in a program divide the parallel region into a set of phases, and each phase

in the parallel region will be executed by all members of the team that belong to the

same parallel region. Notice that if two statements belong to the different phases,

they cannot be concurrent.

Let s and t be any two statements in a PCFG. We say that s and t are

concurrent, denoted as Conc(s, t) if: (1) s and t belong to two different parallel

sections of a parallel region, (2) s and t are in the same phase of the parallel region,

and

The first condition is straightforward since if the two statements s and t are

in the same parallel section, they cannot be concurrent. The second condition is

needed because two phases of a parallel region cannot be executed concurrently. It

is important to remember that our concurrency relation obtained using the above

29

proposition is conservative: Conc(s, t) implies that there exists an execution of

the program so that two threads can execute s and t concurrently or mutually

exclusively. It is possible, due to resource constraint or scheduling constraints, that

s and t can be ordered. The Conc(s, t) is not transitive but is symmetric. Sometimes

we will use the notation Conc(s) to denote the set of all statements (nodes) that are

concurrent with s. Note that r ∈ Conc(s) if and only if Conc(r, s).

3.2.2 Exclusion Relation

Two statements s1 and s2 in a program P is said to be exclusive to each other

if they cannot co-exist in any program path. A simple example is two branches of

an if statement.

Let s and t be any two statements in a PCFG. We say that s and t are

exclusive, denoted as Excl(s, t) if: (1) s and t belong to the same section of a

parallel region, and (2) there is no path from s to t or from t to s.

The first condition is sufficient but not necessary, however, since the exclusion

relation will only be used within one parallel region, we limit s and t belong to the

same section here. The second condition guaranteed that s and t will not co-exist

in one program path. We use Excl(s, t) to represent s and t are exclusive to each

other. Similar to concurrency relation, exclusion relation is also symmetric but not

transitive. We use Excl(s) to denote the set of statements that are exclusive to s.

And r ∈ Excl(s) if and only if Excl(r, s).

3.3 Augmented SSA Form

SSA form[47] is an intermediate representation where every variable is as-

signed only once. At control flow merge points φ-functions are added to ensure

that every use of a variable has exactly one definition. A φ-function is of the form

xn = φ(x0, ..., xn−1), where xi(i = 0, ..., n) are set of variables with static single

assignment. A SSA graph is a graph representation of SSA form and contains (1) a

30

set of SSA nodes representing definitions and uses of variables, including φ-nodes,

and (2) a set of SSA edges that connect the definition of a variable to all uses of the

variable.

For our PCFG we insert π-function at the end of the cobegin node and insert

ψ-function at the beginning of coend node. The π and ψ functions serve to connect

sequential and parallel regions. To represent the memory state of different array

elements, we extend the traditional SSA form to handle array regions. Thus, the

memory state of each array element can be defined at each program point. We will

use the term Augmented SSA (ASSA) form that combines traditional SSA form,

concurrent SSA form, and array region SSA form.

3.4 MSSA Form

During runtime the memory state of a variable can be either full or empty.

The goal of MSFA is to determine whether a memory operation will be suspended

forever due to inconsistency or errors in the memory state. To determine whether

a memory operation will be suspended forever we model the flow of memory state

using a finite state model. Our memory state model (MSM) consists of four states:

Full (F), Empty (E), Full Wait (FW), and Empty Wait (EW).

Figure 3.2 illustrates the MSM. The state transition edges are annotated with

different synchronization operations supported on Cray XMT (the semantics of these

are described in the Cray XMT Programming Environment Users Guide[3]). Since

readxx does not influence memory state transition and int fetch add is equivalent to

writeff in memeory state transition, we ignore them in the MSM and in the following

analysis.

To compute the memory state of a variable at each program point, we first

annotate each variable v with a state variable s and s can be in one of the four states

described above. We denote a state annotated variable as v : s where the variable

v is annotated with memory state s. We denote a state transition for a variable

31

Figure 3.2: Memory State Model

v as v : s1 o−→s2, where o is one of the synchronization operations that changes the

state of v from s1 to s2. Assume that a variable v is in E state, and we perform a

readfe operation on v, then we have v: E readfe−−−−→ FW. Here the state FW denotes

the fact that the readfe operation is waiting for a write operation (writeef or

writexf) to change the state of v to F. In the following analysis, we call operations

with FW/EW state as suspended operation and we call operations that can change

FW/EW state to F/E state as waited operation. We use Wop(o) to denote the set

of waited operations for suspended operation o.

We perform MSFA on a MSSA form, where memory state information is as-

sociated for each node in ASSA form. We will propagate memory state information

on the MSSA form using the lattice shown in Figure 3.3. Besides, we identify sus-

pended operations and collect waited operation set for them as part of the memory

state information.

32

Our MSFA consists of two steps: (1) constructing the MSSA form and (2)

inferring whether any memory operation will be suspended forever.

3.5 Construction of MSSA form

At each node in the MSSA form we associate two memory state cells, MCelli

and MCello to store memory state information. MCelli stores the input memory

state value of a node and MCello stores the output memory state value of a node.

For suspended operations, MCelli also stores their corresponding waited operations.

Each memory state cell is initialized with > lattice value. We then propagate

the memory state over the MSSA form. For each synchronized operation that define

a memory state s, we use the MSM shown in Figure 3.2 to compute state informa-

tion. We then use the lattice model shown in Figure 3.3 to merge memory state

information at φ-nodes and ψ-nodes. However, ⊥ state may be generated at some

program merge points, which means the memory state is unknown statically. To

handle the unknown memory state, we extend the original MSM, shown in Figure

3.4. We call the new MSM as extended memory state model (EMSM), and use it

in our MSSA form construction. The EMSM is consistent with the lattice and the

memory state verification based on it will generate conservative results.

Below gives the MSSA Construction Algorithm. We use dst(e) to denote the

destination node of an SSA edge e, and use src(e) to denote the source node of e. An

SSA edge is said to be root SSA edge if src(e) has no incoming edge. The algorithm

for memory state construction uses a worklist of SSA edge, MSSAWorklist. Note

L = {e, f, ew, fw,>,⊥}, a ∈ L
> ∧ a = a ⊥ ∧ a = >

e ∧ fw = fw f ∧ ew = ew
e ∧ f = ⊥ ew ∧ fw = ⊥
e ∧ ew = ⊥ f ∧ fw = ⊥

Figure 3.3: Memory State lattice. e is the Empty state, f is the Full state, fw is
the Full Wait state, and ew is the Empty Wait state.

33

Figure 3.4: Extended Memory State Model

that for a π-node, which marks the start of parallel regions, we consider the π node

as a fake synchronized operation, generating the same memory state as its input

state. This memory state will be the input memory state shared for all sections of

the parallel region.

MSSA Construction Algorithm

1. Initialize memory state in all memory cells to >.

2. Initialize the worklist MSSAWorklist with root SSA edges.

3. Do the following steps until MSSAWorklist is empty.

(a) Take an MSSA edge e from the MSSAWorklist and calculate the output

memory state of dst(e),

34

(b) If the dst(e) is a φ-node, the output memory state lattice value for the

φ-node is computed using the memory state lattice shown in Figure 3.3.

(c) If the dst(e) is a π-node, the output memory state of the π is same as its

input memory state.

(d) If the dst(e) is a ψ-node, handle it in the same way we handle φ-node.

(e) If the dst(e) is an synchronized operation, say o, then the value of the

output memory state cell is evaluated according to EMSM shown in Fig-

ure 3.4.

If the evaluated output memory state is E/F, then that is the final output

memory state of o.

If the evaluated memory state is FW/EW, mark o as suspended opera-

tion and calculate Wop(o). Wop(o) include all waited operations for o

existing in Conc(o). We then finish the state transition by following cor-

responding edges in EMSM (i.e. FW/EW Wop(o)
−−−−−→

F/E, and F/E o−→...),

and get the final output memory state of o.

Besides, If src(e) is a π-node, we mark o as suspended too, and calculate

Wop(o), considering π-node as a fake sync operation and a candidate for

Wop(o).

(f) Store output memory state into MCello(dst(e)); if the output memory

state changes the value of MCello, then add all the outgoing SSA edges

of dst(e) into MSSAWorklist.

The first two steps of the above algorithm are straightforward. In step four

we propagate the memory state until a fixed point is reached. Consider the following

code as an example.

int x ; // shared variable

purge(&x) ;

35

cobegin { // creates parallel sections

section { // thread1

if (p) {

writeef(&x, 10) ;

} else {

writeef(&x, 20) ;

}

writeef(&x, 30) ;

}

section { // thread2

int y ; // local variable

y = readfe(&x) ;

}

section { // thread3

int z ; // local variable

z = readfe(&x) ;

}

}

The MSSA form constructed for the above codes is shown in Figure 3.5.

In the figure, we use MSin(o) to denote the input memory state of synchronized

operation o and Msout(o) denotes the output memory state of o. The dashed lines

represent SSA edge and the solid lines represent control flow edges.

The MSSAWorklist initially contains the root SSA edge starting from o1.

The output memory state cell of o3, o4 and o5 contains memory state value F, and

the output memory state cell of o1, o2, o6 and o7 contains E. Note that we take

the π-node as a fake synchronized operation and denote it as o2. We calculated

Wop(o3) and Wop(o4) since the source of their SSA edges is π node. We calculated

36

Figure 3.5: MSSA example

37

Wop(o5), since o5 may be suspended waiting for E state. Similarly, we calculated

Wop(o6) and Wop(o7) because o6 and o7 may be suspended waiting for F state.

3.6 Memory State Verification

Given the MSSA form, a naive way to do memory state verification is to

check whether the waited operation set of each suspended operation is empty. If it

is empty, the program will deadlock. However, due to the uncertainty caused by the

static analysis and the concurrency of multithreaded program, the naive method is

not able to catch many program deadlock issues.

For example, in Figure 3.6(a), the writeef will be included in waited

opeartion set of both the two readfe operations in the MSSA form, but the F

state generated by writeef can only enable one readfe operation, leaving the other

suspended forever. in Figure 3.6(b), the writeef may not be executed due to the

condition, thus the readfe may deadlock. We call this kind of program deadlock

problem “count problem”. That is, the number of waited operations is not enough

to generate the memory state waited by all the suspended operations, so that the

program will deadlock.

Another kind of deadlock problem is called “order problem”. In Figure 3.7(a),

all of the four synchronized operations will deadlock, since the two readfe’s will wait

for F state forever that can only be generated by writeef’s, which are dominated by

the readfe’s themselves. Example shown in Figure 3.7(b) is similar to (a), except

that the operations access different synchronization variables. In both (a) and (b),

the number of waited operations is enough, but they show in a defective order in

program, so that the suspended operations will deadlock.

In this paper, we apply a quantitative and a ordering analysis based on the

MSSA form. The intuition is: The MSSA form of any correct parallel program

(i.e. none of synchronized operations will deadlock), must satisfy the following two

conditions: 1) quantitative condition; 2) ordering condition.

38

(a) Straight line codes
int a;
purge(&a);
cobegin {

section {
int v = foo();
writeef(&a, v);
}
section {

int u = bar1(readfe(&a)) + bar2(readfe(&a));
}
}

(b) Conditional statement
int a;
purge(&a);
cobegin {

section {
int v = foo();
if (p)

writeef(&a, v);
}
section {

int u = bar(readfe(&a));
}
}

Figure 3.6: Deadlock Examples: Count Problem

Quantitative condition For any combination of k (k≥1) non-exclusive suspended
operations which access the same memory location and are suspended by the
same memory state (either FW or EW), the union of their corresponding
non-exclusive, non-self-consumed waited operations form a set, say W, |W| ≥
k must be satisfied.

Ordering condition For any combination of k (k≥1) non-exclusive suspended op-
erations which are suspended by the same memory state(either FW or EW),
the union of their corresponding waited operations form a set,say W, there
must exist an operation o, o ∈ W and o is not dominated by any of the k
suspended operations.

39

A self-consumed operation is an operation which is needed to enable(i.e.

generate the memory state required by) another operation in its own section. The

non-self-consumed operations can be easily identified on our MSSA form. For an

waited operation o1, follow its outgoing SSA edge e: if dst(e) is a non-suspended

operation o2 and MSout(o1) is the required memory state of o2, then o1 is self-

consumed; if des(e) is a φ-node, and MSout(o1) == MSout(φ), follow outgoing SSA

edges of the φ-node and check recursively. If no non-suspended operation can be

found to consume MSout(o1), then o1 is a non-self-consumed operation.

A non-exclusive operation set is an operation set where no two operations

are exclusive to each other. For example, in Figure 3.5, o3 and o4 are exclusive to

each other. Although o3 and o4 are both included in Wop(o6), only one of them

can be executed to produce a F state. We will use the exclusion relation to identify

the non-exclusive operations to avoid over-counting of the number of suspended or

waited operations.

Based on the above observations: we developed the heuristics to do quanti-

tative and ordering verification for synchronized operation groups in the program.

Our heuristics can detect the potential synchronization errors existing in Figure

3.6(a) and Figure 3.7(a),(b). A simple extension of our heuristic which can identify

conditional statement will be able to detect the synchronization error existing in

Figure 3.6(b) too.

Figure 3.8 shows the heuristic to do quantitative verification for synchro-

nization variable v with MSSA graph G. Function Non Self Consumed Set(Wop(o))

filters and returns the set of non-self-consumed operations contained in Wop(o).

Function Union Non Exclusive(waitset, Nscset(o)) unions waitset and Nscset(o)

by adding elements in Nscset(o) into waitset, and guarantees that only ele-

ments that keep the output set non-exclusive will be unioned. In function

Choose susp for Count(susp list FW, suspset, waitset), an item will be taken from

40

susp list FW which is not exclusive to any of the items in suspset, and the waited

operations of the item should have been partially included in waitset. If no such

item was found in susp list FW, return NULL.

Figure 3.9 gives the heuristic to do ordering verification given MSSA graph G.

In function Choose susp for Ordering(susp list FW, suspset, waitset), an item will

be taken from susp list FW which is not exclusive to any of the items in suspset, and

the item should dominate at least one of the elements already contained in waitset

if waitset is non-empty. If no such item was found in susp list FW, return NULL.

Function Dom(suspset, waitset) return true if each element of waitset is dominated

by some element contained in suspset.

3.7 Array Region Memory State Verification

Synchronized operations can also apply to array elements; to verify the cor-

rectness of these operations, we use a triple of three array regions to represent the

memory state of an array at each program point, which includes full region, empty

region, and unknown region. The full region include the array elements whose

memory state is full, the empty region include array elements whose memory state

is empty, and the unknown region include array elements whose memory state is

unknown. We use list of convex regions to represent array region. Set operations

like union, intersect, difference, etc can be implemented on convex regions while

maintaining good precision[48].

Array accesses usually happen inside loops, to reduce the complexity of anal-

ysis and get a better balance between efficiency and precision, we treat array access

inside loops in following way:

• For forall loops, ignore the possible interleaved execution among different

iterations and apply sequential semantics on array accesses within the loop.

Thus, forall loop can be handled as sequential loop, and memory verification

41

will be straightforward after propagating memory state and can be handled

as a forward dataflow problem.

• For loops inside parallel section of cobegin/coend construct, ignore the possi-

ble interleaved execution between loop iterations and other concurrent parallel

sections. Thus, we can treat array accesses inside loops as a whole, summarize

the array region accessed by the synchronized operation inside the loop and

consider the operation as an aggregate operation accessing the array region,

and use set operations on array regions to perform memory state verification.

To summarize the array accesses inside loops, we extended our MSSA form

by adding another η-node at the end of each loop which contains synchronized

operations accessing array elements.

Figure 3.10 gives an example, where loops exist inside each parallel sec-

tion. We inserted η-node after each loop, summarize the array region accessed

synchronized operation inside loops. We denote the aggregated operation using

AOi :< o,Ra >, where o represents the corresponding synchronization operation

inside the loop, Ra represents the array region accessed by o. Please note that the

accessed the region of the aggregated π-node is a triple of three array regions, i.e.

full region, empty region and unknown region.

We also insert π, psi nodes, propagate memory state according to the EMSM,

identify suspended operations and calculate the waited operation set for them. For

each suspended operation, the waited memory state and the suspended array region

are also calculated in the MSSA form. We denote the suspended information for

AOi using Suspended(AOi) :< s,Rs >, where s represents the waited memory state

(either FW or EW), and Rs represents the suspended array region.

To do memory verification based on the array MSSA form, we use the fol-

lowing method:

42

For each suspended aggregate operation AOi, with Wop(AOi) =<

AOi1 , AOi2 , ..., AOin >, if
⋃

(Ra(AOj), j = i1, ..., in) ⊇ Rs(AOi), then we will draw

a conclusion that AOi will not deadlock. Ra(AOi) represent the array region ac-

cessed by the aggregated operation AOi, and Rs(AOi) represent the array region

suspended on the aggregated operation AOi

We can see that since Ra(AO3) + Rs(AO4), AO4 will deadlock.

Although the current memory verification method is simple, it can be eas-

ily extended based on the array region MSSA form to catch more synchronization

problems caused by array access.

3.8 Discussion

In our analysis, we assumed that the input programs are structured programs

nested with parallel regions which can be either forall loop or cobegin/coend

construct. The synchronized operations can be included in both sequential region

and parallel region of the input program. After analysis, a warning will be outputted

if a synchronization error is detected to be existing in the input program.

However, our analysis cannot detect all the potential synchronization errors.

For example, due to the limitation of static analysis, some conditional statements

make it impossible to give precise result. Due to the randomness in execution order

of concurrent programs, a potential program deadlock may only appear in “some”

execution path, our analysis cannot detect such problems either. Conservative anal-

ysis can report more problems while may cause more false positive at the same time.

However, more careful designed heuristics can give more precise result and cause less

false positive.

43

(a) Access same synchronization variable
int a;
purge(&a);
cobegin {

section {
int v = readfe(&a);
writeef(&a, foo(v));
}
section {

int u = readfe(&a);
writeef(&a, bar(u));
}
}

(b) Access different synchronization variables
int a, b;
purge(&a);
purge(&b);
cobegin {

section {
int v = readfe(&a);
writeef(&b, foo(v));
}
section {

int u = readfe(&b);
writeef(&a, bar(u));
}
}

Figure 3.7: Deadlock Examples: Order Problem

44

Procedure Verify Count(VAR: v, MSSA Graph G)
WORKLIST susp list EW;
WORKLIST susp list FW;
SET suspset;
SET waitset;
for each suspended operation o accessing v in G {

Nscset(o) = Non Self Consumed Set(Wop(o));
if (Nscset(o) is empty) {

report o is potential deadlocked operation
exit
} else {

if (o is suspended due to FW)
add o into susp list FW

else
add o into susp list EW

}
}
while(susp list FW is not empty) {

suspset.clear()
waitset.clear()
o = Choose susp for Count(susp list FW,

suspset, waitset)
while (o) {

suspset = Union(suspset, o)
waitset = Union Non Exclusive(waitset,

Nscset(o))
if (size(waitset) < size(suspset)) {

report potential deadlock
exit
}
o = Choose susp for Count(susp list FW,

suspset, waitset)
}
}
while (susp list EW is not empty) {

... // similar as above
}

Figure 3.8: Heuristic: Quantitative Verification

45

Procedure Verify Order(VAR: v, MSSA Graph G)
WORKLIST susp list EW;
WORKLIST susp list FW;
SET suspset;
SET waitset;
for each suspended operation o in G {

if (o is suspended due to FW)
add o into susp list FW

else
add o into susp list EW

}
while(susp list FW is not empty) {

suspset.clear()
waitset.clear()
o = Choose susp for Ordering(sop list FW,

suspset, waitset)
while (o) {

suspset = Union(suspset, o)
waitset = Union(wait, Wop(o))
if (Dom(suspset, waitset)) {

report potential deadlock
exit;
}
o = Choose susp for Ordering(susp list FW,

suspset, waitset)
}
}
while (susp list EW is not empty) {

... // similar as above
}

Figure 3.9: Heuristic: Ordering Verification

46

int sum = 0;
int a[100];
MSin(AO1) =< E : ∅, F : ∅, U : [0 : 99] >
for (i=0; i<100; i++)

purge(&a[i]);
AO1 :< purge : Ra = [0 : 99] >
MSout(AO1) =< E : [0 : 99], F : ∅, U : ∅ >
cobegin {
< E : [0 : 99], F : ∅, U : ∅ >= π(MSout(AO1))
AO2 :< π,Ra =< E : [0 : 99], F : ∅, U : ∅ >>
section{ // Thread1

int i;
MSin(AO3) =< E : [0 : 99], F : ∅, U : ∅ >
Suspended(AO3) :< EW : Rs = [0 : 49] >
Wop(AO3) =< AO2 >
for (i=0; i<50; i++) {

writeef(&a[i], foo(i));
}
AO3 :< writeef : Ra = [0 : 49] >
MSout(AO3) =< E : [50 : 99], F : [0 : 49], U : ∅ >
}
section{ // Thread2

int v;
MSin(AO4) =< E : [0 : 99], F : ∅, U : ∅ >
Suspended(AO4) :< FW : Rs = [0 : 99] >
Wop(AO4) =< AO3 >
for (i=0; i<100; i++) {

v = readff(&a[i]);
sum += v;
}
AO4 :< readff : Ra = [0 : 99] >
MSout(AO4) =< E : ∅, F : [0 : 99], U : ∅ >
}
< E : ∅, F : [0 : 49], U : [50 : 99] >

= ψ(MSout(AO3),MSout(AO4))
}

Figure 3.10: Array MSSA Form

47

Chapter 4

IMPLEMENTATION AND EMPIRICAL RESULTS

In this chapter, we will show how we implement our analysis based on Open64

compiler. We will also introduce some real applications which have been successfully

ported to XMT system and show how the synchronized operations are used in their

parallelization. We will then give the empirical results which show the kinds of

synchronization errors that can be detected by our analysis.

4.1 Implementation

Our memory state flow analysis was implemented in Open64 compiler[49].

Figure 4.1 shows the infrastructure of Open64 compiler and indicates the phase

where our MSFA is implemented. Open64 compiler applies different program trans-

formations and optimizations while lowering IR from very high level IR to very low

level IR. The higher level IR keeps more program structures and semantics while

the lower level IR is subject to more kinds of optimizations. There are totally

three main phases in Open64 compiler: frontend, middle end and backend. All

the program analysis and transformations in the middle end use WHIRL, which is

a tree intermediate representation. There are four sub-phases in the middle end

in Open64 compiler: Very High Optimizer(VHO), Inter-procedural Analysis and

Optimization(IPA), Loop Nest Optimization(LNO), and Global(Scalar) Optimiza-

tion(WOPT). Our MSFA was implemented between VHO and the IPA. The reason

48

Figure 4.1: MSFA Implementation Phase

that we choose to implement our MSFA there is because, at this stage, all the struc-

tural representation of the program is still well maintained and it is easy to identify

parallel constructs.

Figure 4.2 shows the flow diagram of the MSFA implementation. Firstly we

build the PCFG, then construct MSSA form which includes: 1) build dominator tree;

2) inserting φ-nodes, π-nodes and ψ-nodes; 3) add SSA edges between definition and

their uses; 4) perform concurrent analysis and calculate concurrent operation set for

each synchronized operation; 5) perform exclusion analysis and calculate exclusive

operation set for each synchronized operation; 6) Propagate memory state informa-

tion, mark suspended synchronized operation, and calculate waited operation set

for each of them. Finally we perform memory state verification based on the MSSA

form. To handle array region, we also need to insert η-nodes, and perform array

region analysis while propagating memory state information.

49

Figure 4.2: MSFA Implementation Flow Diagram

To identify the generic functions which supplied the synchronized read and

write operations, we enhanced the compiler frontend to identify them as intrinsics.

We build the parallel control flow graph, using region (which is a kind of compiler

internal representation) to represent parallel sections. The region representation is

very efficient, since the parent region and its children form a tree, with which we can

easily identify whether two sections represent concurrent threads within the same

parallel region.

We use bit-vector to represent the set of synchronized operations, which

makes our implementation very efficient. We utilize the ARA(array region anal-

ysis) of Open64 to implement our array regions, which is based on convex region

representation.

50

4.2 Application Introduction

We will introduce several important applications which have been ported to

XMT by Prof. David Bader’s group[15].

4.2.1 GraphCT

GraphCT[16] is a parallel toolkit which is capable of applying complex anal-

ysis tools to massive graphs. GraphCT supplies multithreaded implementations of

known algorithms for the Cray XMT, taking advantage of the large shared memory

and fine-grained synchronization of the Cray XMT. Besides, GraphCT can also run

sequentially on POSIX-like platforms.

It provides an optimized library of functions including clustering coefficients,

connected components, betweenness centrality, graph diameter, and distribution

statistics. Functions are provided to read and write large data files in parallel using

the shared memory. GraphCT uses a single common graph representation for all

analysis kernels, and a straightforward API makes it easy to extend the library by

implementing your own custom routines.

GraphCT makes no assumptions about the type or structure being analyzed,

so that the user can choose a data representation according to the structure of the

graph and the analysis to be performed. The graph is stored in compressed-sparse

row (CSR) format, a common representation for sparse matrices. The number of

vertices and edges is known when ingesting the data, so the size of the allocated

graph is fixed.

The combination of GraphCT and the Cray XMT’s massive multithreading

permits exploration of graph data sets previously considered too massive.

51

4.2.2 STINGER

STINGER(Spatio-Temporal Interaction Networks and Graphs (STING) Ex-

tensible Representation)[17, 18] is an extensible representation for streaming, dy-

namic networks and graphs. Linking blocks of edges in a hybrid data structure,

STINGER is able to accommodate massive streams of edge insertions and deletions

while simultaneously supporting fast, parallel access to neighborhood information.

STINGER supports directed and undirected graphs, weighted and unweighted edges,

edge and vertex types, time stamps, and can be extended with additional meta data.

STINGER can be built on shared memory platforms including the Cray XMT and

commodity hardware using OpenMP + atomic intrinsics.

Figure 4.3 shows the diagram of the STINGER data structure. This data

structure provides a compromise between list- and array-based graph representations

to support both efficient updates and efficient analysis.

STINGER takes the efficient element of CSR, stores end vertices in arrays,

and loosens other requirements. STINGER also borrows from the list structure and

stores edge end vertices as a list of arrays. Its linked array structure permits simple

multithreaded traversal. STINGER is a compromise that permits dynamic updates

while supporting a wide variety of analytical algorithms on a single copy.

The basis operations of STINGER include: read-only queries of vertices and

edges, insertion and deletion both vertices and edges, aging off entities by time

stamp, and checkpoint/restart.

4.2.3 SSCA2

The intent of the Scalable Synthetic Compact Applications 2 (SSCA2)

benchmark[19, 20] is to develop a compact application that has multiple analy-

sis techniques (multiple kernels) accessing a single data structure representing a

weighted, directed graph. In addition to a kernel to construct the graph from the

input tuple list, there will be three additional computational kernels to operate

52

Figure 4.3: A diagram of the STINGER data structure

53

on the graph. Each of the kernels will require irregular access to the graphs data

structure, and it is possible that no single data layout will be optimal for all four

computational kernels.

The first kernel constructs the graph in a format usable by all subsequent

kernels. No subsequent modifications are permitted to benefit specific kernels. The

second kernel extracts edges by weight from the graph representation and forms a

list of the selected edges. The third kernel extracts a series of subgraphs formed by

following paths of specified length from a start set of initial vertices. The set of initial

vertices are determined by kernel 2. The fourth computational kernel computes a

centrality metric that identifies vertices of key importance along shortest paths of

the graph.

4.3 Implementing Parallel Applications By Synchronized Operations

The synchronized read/write operations can be used to implement multiple

synchronization primitives, such as lock, barrier, critical section, etc. These primi-

tives are used prevalently in traditional thread-centric parallel programming model

like openmp and pthread. Thus, the parallel applications written in traditional

thread-centric parallel programming model can be easily ported to XMT with the

help of synchronized read/write operations.

Besides, the tagged memory with full/empty bits support in XMT can be

taken as extremely fine-grain lock, which enables us to parallelize irregular applica-

tions which are hard to parallelize using thread-centric programming model.

Below gives a few examples which illustrate how the synchronized operations

are used to implement efficient parallel algorithms. All the examples come from real

applications already ported to XMT.

54

4.3.1 Lock

In the codes below, the readfe and writeef implement lock and unlock to

guarantee the mutual exclusive access to the same memory location.

void stinger_int64_swap (int64_t *x, int64_t *y) {

int64_t vx, vy, t;

vx = readfe (x);

vy = readfe (y);

writeef (x, vy);

writeef (y, vx);

}

4.3.2 Critical Section

In the example below, the pair of readfe and writeef implement a critical

section, it will have the equal semantics if we add omp critical pragma and replace

the readfe and writeef with normal read/write operations.

static struct stinger_eb **ebpool = NULL;

static void init_ebpool (void) {

// critical section

{

struct stinger_eb **new_ebpool;

new_ebpool = readfe (&ebpool);

if (new_ebpool) {

writeef (&ebpool, new_ebpool);

return;

}

new_ebpool = xcalloc (INIT_N_EBPOOL_PTRS, sizeof (*ebpool));

55

new_ebpool[0] = xmalloc (EBPOOL_SIZE * sizeof (struct stinger_eb));

which_ebpool = 0;

cur_ebpool_tail = 0;

writeef (&ebpool, new_ebpool);

}

}

4.3.3 Barrier

The purge, writeef and readff in the following codes implement a barrier,

where thread2 will be blocked until writeef in thread1 is finished and the two

threads get synchronized.

int search_tree(Tree *root, unsigned target) {

int sum = 0;

if (root) {

int left;

purge(&left);

cobegin{

section { // thread1

int v = search_tree(root->llink, target);

writeef(&left, v);

}

section { //thread2

sum = root->data == target;

sum += search_tree(root->rlink, target);

sum += readff(&left);

}

}

56

}

return sum;

}

4.3.4 Atomic Operation

The codes below use int fetch add to implement atomic operation to the

shared variable numMarkedEdges inside the forall loop.

void getStartLists(int weight, int *weight,

int *numMarkedEdges, int *markedEdges) {

int i;

*numMarkedEdges = 0;

forall (i = 0; i < NE; i++) {

if (weight[i] == maxWeight) {

int k = int_fetch_add(numMarkedEdges, 1);

markedEdges[k] = i;

}

}

}

4.3.5 Fine-Grain Lock

The readfe and writeef operations in the following example guaranteed the

mutual exclusive accessing to the each array element or array D. The fine-grain lock

implementation helped to achieve extremely fine-grain parallelism.

void floydWarshallFE(int m, int w[MAX][MAX], int d[MAX][MAX]){

int i, k;

forall(i=0; i<m; i++){

57

int j;

for(j=0; j<m; j++)

d[i][j]=w[i][j];

}

forall(k=0; k<m; k++){

int i;

forall(i=0; i<m; i++){

int j;

forall(j=0; j<m; j++){

int oldV, newV;

oldV=readfe(&d[i][j]);

newV=MIN(oldV,d[i][k]+d[k][j]);

writeef(&d[i][j],newV);

}

}

}

}

4.4 Empirical Results

In this section, we show how our MSFA can be used to identify several kinds

of program deadlock problems.

4.4.1 Count problem: Straightline Codes

Figure 4.4 shows two examples where the program is deadlocked due to not

enough waited operation count.

The deadlock in case1 is detected by quantitative verification which combines

suspended operations (i.e. readfe) belonging to different parallel sections; while the

58

deadlock in case2 is detected by quantitative verification which combines suspended

operations within the same section.

4.4.2 Count Problem: Conditional Statements

In Figure 4.5 (a), both readfe and writeef appear in the conditional state-

ments, so that there is no deadlock in the program. Since our MSFA can identify

that the two readfe’s are exclusive to each other and the so do the two writeef’s,

it can avoid the over-counting in quantitative verification so as to avoid the false-

positive.

In Figure 4.5 (b), since writeef appear in the conditional statements, one of

the readfe will deadlock. This can be detected by our analysis.

4.4.3 Count Problem: More Synchronization Types

Besides readfe and writeef, there are other types of operations which do not

change the memory state after execution, e.g. readff. Figure 4.6 gives two examples

where the readff operations can be suspended and cause program deadlock. Our

MSFA can also identify these problems by quantitative verification.

4.4.4 Order Problem: access same memory location

Figure 4.7 shows an example where all the synchronized operations will dead-

lock due to defective operation order. Our MSFA will detect this using ordering

verification. After forming combination composed by the first readfe’s in both sec-

tions, we can see the all of their waited operation(i.e. writeef’s) are dominated by

themselves.

4.4.5 Order Problem: access different memory locations

Figure 4.8 shows an example where the defective operation order happen

among accesses to different memory locations. It can be detected by the same

technique as those happening within accesses to the same memory location.

59

(a) Case1
int a;
purge(&a);
cobegin {

section {
int v1 = readfe(&a);
}
section {

int v2 = readfe(&a);
}
section {

int v3 = readfe(&a);
}
section {

writeef(&a, foo());
}
section {

writeef(&a, bar());
}
}

(b) Case2
int a;
purge(&a);
cobegin {

section {
int v1 = readfe(&a);
int v2 = readfe(&a);
int v3 = readfe(&a);
}
section {

writeef(&a, foo());
writeef(&a, bar());
}
}

Figure 4.4: Count problem: Straight line codes

60

(a) Case1
int a;
purge(&a);
cobegin {

section {
int v;
if (p)

v = readfe(&a);
else

v = readfe(&a);
}
section {

if (p)
writeef(&a, foo());

else
writeef(&a, bar());

}
}

(b) Case2
int a;
purge(&a);
cobegin {

section {
int v1, v2;
v1 = readfe(&a);
v2 = readfe(&a);
}
section {

if (p)
writeef(&a, foo());

else
writeef(&a, bar());

}
}

Figure 4.5: Count problem: Conditional Statements

61

(a) Case1
int a;
purge(&a);
cobegin {

section {
int v1 = readff(&a);
}
section {

int v2 = readfe(&a);
}
section {

writeef(&a, foo());
}
}

(b) Case2
int a;
purge(&a);
cobegin {

section {
int v1 = readfe(&a);
int v2 = readff(&a);
}
section {

writeef(&a, foo());
}
}

Figure 4.6: Count problem: More Synchronization Types

62

sync int a;
int sum;
purge(&a);
cobegin {

section {
int v = readfe(&a);
writeef(&a, foo1());
writeef(&a, bar1());
v = readfe(&a);
}
section {

int u = readfe(&a);
writeef(&a, foo2());
writeef(&a, bar2());
u = readfe(&a);
}
}

Figure 4.7: Order Problem: access same memory location

sync int a;
sync int b;
purge(&a);
purge(&b);
cobegin {

section {
int v = readfe(&a);
writeef(&b, foo());
}
section {

int u = readfe(&b);
writeef(&a, bar());
};
}

Figure 4.8: Order Problem: access different memory locations

63

Chapter 5

MEMORY STATE FLOW ANALYSIS FOR SINGLE

ASSIGNED DATA STRUCTURE

Single-assignment is a primary feature of functional languages to avoid any

possible side-effect and achieve parallelism. A single assigned variable can only

be written once and read multiple times, so that a producer-consumer type of fine-

grained synchronization can be achieved. For example, I-structure is a data structure

to support parallel computing in data flow model based systems. The components

of an I-structure object can only be assigned once, but can be read for many times.

In I-structure, runtime check is needed to guarantee the write-once feature.

In this chapter, we will discuss how to use our memory state flow analysis

(MSFA) to statically detect whether a program may be “deadlocked”, when the

synchronized variables are claimed to have the single-assignment feature.

5.1 Language Model

We assume the same parallel language as chapter 3, which includes two kinds

of parallel constructs: forall loop and cobegin/coend construct.

To guarantee the single assignment attribute of synchronized variables, we

restrict the usage of generic functions, and make the following assumptions:

• The initial memory state of all the synchronized variable is empty;

64

• The synchronized variable(including array element) can only be written by

writeef operation when its memory state is empty and after that its memory

state is changed to full;

• The synchronized variable(including array element) can be only read by

readff operation when its memory state is full and its memory state is

left as full after that;

5.2 Memory State Flow Analysis

Based on the language model, we build a new memory state model(MSM),

shown in Figure 5.1, which is a simplified version of the MSM shown in Figure 3.2.

The new MSM also consists of four states: Full (F), Empty (E), Full Wait (FW), and

Empty Wait (EW). Here the state FW denotes that a readff operation is waiting

for a writeef operation to change memory state from E to F. The state EW denotes

that a writeef operation is waiting when the memory state is F; however, since no

operation can change the memory state from F to E, it will be suspended forever.

The state EW actually indicates the existence of multiple write operations to the

same memory location, which is a violation of single-assignment rule.

We use the same memory state lattice as that shown in Figure 3.3. We will

construct MSSA form based on the new MSM and the lattice in similar way as stated

in section 3.5. We associate memory state information for each node in the SSA

graph, propagate memory state of each synchronized variable, identify suspended

operations, and then calculate their corresponding waited operations. Based on

the MSSA form, we then perform memory state verification to infer whether an

suspended synchronized operation will deadlock. The program deadlock problems

are also classified into count problem and order problem, and they can be detected by

the quantitative verification and ordering verification respectively, using heuristics

shown in section Figure 3.8 and Figure 3.9.

65

Figure 5.1: Memory State Model

For example, for the following codes, the writeef operation in thread2 will

be deadlocked.

int a;

cobegin {

section { // thread1

int v = foo();

writeef(&a, v);

v = readff(&a);

}

section { // thread2

int u = readff(&a);

writeef(&a, bar(u));

}

}

66

Figure 5.2: MSSA Form

Figure 5.2 shows the MSSA form of the above example. We can see that

O5 (i.e. the writeef in thread2) is identified as a suspended operation, but its

waited operation set is empty. This can be detected by our quantitative verification

and the potential program deadlock can then be reported.

67

Chapter 6

RELATED WORK

In this chapter, we illustrate the related work in four fold, including 1)

static concurrent system verification, 2) program representation and dataflow anal-

ysis techniques for concurrent systems, 3) typestate analysis, 4) I-structure and

M-structure.

Static Program verification for Concurrent Systems

Concurrent Programs are usually hard to write and debug because of the

indeterminism caused by their inherent concurrency. Program bugs can be detected

either dynamically or statically. Static analysis tools which can identify program

bugs automatically are of great value, since they can consider different execution

paths exhaustively while incurring no runtime overhead. Static tools for finding

concurrency bugs can be classified into the following types: 1) Type systems, e.g.

rccjava[50] and Java atomicity types. Both of them extended the language type

system with atomicity-related properties like thread-local, shared, “protected by

lock”, etc. 2) Program analysis tools, e.g. Warlock[51] and RacerX[52]. They use

inter-procedural analysis, track the program behaviors and look for inconsistencies.

3) Model checking tools, e.g. Java Pathfinder[53] and Bandera[54]. Exhaustively

testing are performed by these tools, but usually on a simplified program model.

Our work performs program memory state analysis using SSA based dataflow

analysis method.

68

Program Representation and Dataflow Analysis for Concurrent Systems

There have a lot of works which perform dataflow analysis for concurrent

systems based on Parallel flow graph(PFG). For example, in [8], dataflow equations

are developed for explicit parallel programs, and global data flow analysis can be

applied on a parallel flow graph which is built to handle parallel sections. A reach-

def analysis for parallel programs is given which considered synchronization between

threads. In [10], bit-vector analysis for parallel programs is presented, which can

be used in multiple program optimizations, such as code motion, partial dead-code

elimination,etc. Sarkar and Simons proposed a parallel program graph(PPG)[13]

that subsumes program dependence graphs(PDG) and conventional control flow

graph. A reaching definition analysis on PPG was developed for deterministic par-

allel parallel programs.

Traditional SSA form for sequential programs is also extended to represent

parallel programs. E.g. a parallel static single assignment form(PSSA) was proposed

by Srinivasan et al[11, 12]. PSSA was developed for PCF Parallel Fortran parallel

sections construct with copy-in/copy-out semantics. Each thread receives its own

copy of the shared variables at a fork point and can modify only its own local copy.

However, PSSA form cannot handle parallel programs with truly shared memory

semantics where the result of a parallel execution depends on particular interleaving

of statements in parallel programs.

Lee and Padua proposed a CSSA[55] form based on concurrent control flow

graph(CCFG) for parallel programs with cobegin/coend and parallel for construct

and the post/wait synchronization mechanism. Based on that,several optimizations,

like constant propagation, dead code elimination, common subexpression elimination

can be extended to apply on parallel programs. And sequential consistency can be

guaranteed.

Our work is also based on SSA form with memory state information

69

embedded, and we handle both scalar and array regions.

Typestate Analysis

Typestate analysis[21, 22, 23, 27] has been given attention as an important

technique for static program verification. In this model, objects of a given type may

exist in one of finite states, the operations allowed on the object depend on the state

of it. And the operations may also change the object state. The goal of typestate

verification is to statically determine whether the execution of a given program may

cause an illegal operation performed on a object according to the state of the object.

For example, whether an object is used before it is initialized, or whether a file is

used after it is closed.

Research about typestate was usually disjoint from research about concur-

rency, while [25] tried to combine these two kinds of analysis to detect data race

and atomicity violation via type state guided static analysis. Our work is another

case to combine the typestate analysis and concurrent analysis to detect possible

synchronized errors(program deadlock) existing in parallel programs using memory

state flow analysis.

I-structure and M-structure

Both I-structure and M-structure are a nonfunctional feature introduced into

a functional language. An I-structure is a data structure proposed to facilitate

parallel computing[61] on dataflow model based systems. The components of an

I-structure object can only be single-assigned, but can be read many times; and

runtime check is used to guarantee write-once feature. An I-structure element can

be in one of three states: empty, full, and deferred. Producer-consumer type of

fine-grain data synchronization can be achieved by interacting with the state of

an I-structure when accessing it. Unlike I-structure, which regards the redefinition

70

of an element as an error, the M-structure is a fully mutable data structure such

that an element can be redefined repeatedly[62]. The M-structure provides implicit

synchronization by using take and put operations, which guarantee the necessary

serialization while avoiding loss of parallelism.

71

Chapter 7

CONCLUSION AND FUTURE WORK

Cray XMT provides a data-centric synchronization model where every word

in the memory is extended with tag bits so that synchronized read and write opera-

tions are efficiently supported by hardware, and extreme fine-grain parallelism can

be achieved. The synchronized read/write operations give programmers tremen-

dous flexibility to implement parallel algorithms and achieve high performance even

for irregular applications which are traditionally hard to parallelize. On the other

hand, they also bring problems since it is very easy for the programmer to generate

synchronization errors and introduce deadlocks into programs.

In this work, we developed MSFA(memory state flow analysis) which includes

two phases. In the first phase, a MSSA form is constructed where the memory state

information is associated to an ASSA(augmented SSA) form, and all the operations

which may be suspended are identified. In the second phase, we apply a memory

state verification on both operation count and operation order. We implemented

our analysis in Open64 compiler and the experiment results show that our analysis

is effective to detect many potential program deadlock problems.

Our future work will focus on improving our algorithm to deal with more

synchronization problems, some of which have already been illustrated in the previ-

ous chapters. And we will also try to use our MSSA form to exploit synchronization

optimizations which may enhance parallel program performance.

72

APPENDIX

SOURCE CODE ACQUISITION, AND USAGE

Source Code Acquisition

The version of the Open64 compiler which we used for implementation is

4.2.3, which can be downloaded from http://www.open64.net/download/open64-

4x-releases.html

The source codes of our implementation exist on capsl server atlantic, the

directory is: xan@atlantic:/fastlane/user/xan/workspace/open64-4.2.3-0

Below gives the list of the new source files created:

osprey/be/be/mssa main.cxx

osprey/be/be/mssa main.h

osprey/be/be/mssa bb.cxx

osprey/be/be/mssa bb.h

osprey/be/be/mssa cfg.cxx

osprey/be/be/mssa cfg.h

osprey/be/be/mssa dom.cxx

osprey/be/be/omp lower.cxx

osprey/be/be/Makefile.gsetup

Below gives the list of the modified source files:

osprey/be/be/driver.cxx

osprey/be/region/region util.cxx

osprey/be/region/region util.h

73

osprey/common/com/intrn entry.def

osprey/common/com/wn core.h

osprey/common/com/wn pragmas.cxx

osprey/common/com/wn pragmas.h

osprey/common/com/config opt.h

osprey/common/com/config opt.cxx

osprey/common/com/config.h

osprey/common/util/bitset.c

osprey/common/util/bitset.h

osprey/wgen/ wgen expr.cxx

libspin/gspin-tree.c

libspin/gspin-tree.h

osprey-gcc-4.2.0/gcc/tree.c

osprey-gcc-4.2.0/gcc/builtins.def

osprey-gcc-4.2.0/gcc/builtin-types.def

MSFA Usage

To invoke the MSFA, just use the following command:

opencc -mp -keep -Wb,-trLOW your programname.c

The analysis information will be stored in a trace file named

your programname.t, and error information will be printed on the screen if it is

detected.

74

BIBLIOGRAPHY

[1] Cray Inc. Cray XMT. System Overview. 2009.

[2] Cray Inc. Optimizing Loop-Level Parallelism in Cray XMT Applications, 2009.

[3] Cray Inc. Cray XMT Programming Environment User’s Guide. March 2009.

[4] Feo, John, David Harper, Simon Kahan, and Petr Konecny. ELDORADO.
Proceedings of the 2nd Conference on Computing Frontiers (May 2005): 28C34.

[5] George Chin Jr., Andres Marquez, et al. Implementing and Evaluating Multi-
threaded Triad Census Algorithms on the Cray XMT. IPDPS ’09. 2009.

[6] Jace A. Mogill and David J. Haglin. A comparison of Shared Memory Parallel
Programming Models. CUG2010. 2010.

[7] Yuan Zhang and Evelyn Duesterwald. Barrier Matching for Programs with
Textually Unaligned Barriers. PpoPP’07. san Jose, CA. March 2007.

[8] Dirk Grunwald and Harini Srinivasan. Data Flow Equations for Explicitly Par-
allel Programs. PPoPP’93, May 1993.

[9] Natthew Huntbach. A concurrent Programming Model using Single-assignment,
Single-writer, Multiple-reader Variables.

[10] Jens Knoop, Bernhard Steffen and Jurgen Vollmer. Parallelism for Free: Effi-
cient and Optimal Bitvector Analyses for Parallel Programs. ACM TOPLAS,
Vol. 18, No.3, May 1996.

[11] Harini Srinivasan. Optimizing explicitly parallel programs. Master’s thesis, De-
partment of Computer Science and Engineering, Oregon Graduate Institute of
Science and Technology, July 1994.

[12] Harini Srinivasan, James Hook and Michael Wolfe. Static single assignment for
explicitly parallel programs. POPL’93. Jan 1993.

[13] Vivek Sarkar and Barbara Simons. Parallel program graphs and their classifi-
cation. LCPC’93. August 1993.

75

[14] Jeanne Ferrante, Karl J. Ottentein and Joe J. Warren. The program dependence
graph and its use in optimization. ACM TOPLAS, 9(3)319-349, July 1987.

[15] http://www.cc.gatech.edu/ bader/code.html

[16] David Ediger, Karl Jiang et al. Massive Social Network Analysis: Mining Twit-
ter for Social Good. ICPP 2010.

[17] David Ediger, Karl Jiang et al. Massive Streaming Data Analytics: A Case
Study with Clustering Coefficients. MTAAP 2010.

[18] David A. Bader, Jonathan Berry et al. STINGER: Spatio-Temporal Interaction
Networks and Graphs (STING) Extensible Representation. Georgia Institute
of Technology, Tech. Rep., 2009.

[19] David A. Bader, John Feo, et al. HPCS Scalable Synthetic Compact Applica-
tions]2 Graph Analysis. (SSCA]2 v2.2 Specification). September 2007.

[20] David A. Bader, Kamesh Madduri et al. Designing Scalable Synthetic Com-
pact Applications for Benchmarking High Productivity Computing Systems.
CTWatch Quarterly, 2(4B):41–51, 2006.

[21] Robert E. Strom and Shaula Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Transactions on Software En-
gineering, 12(1):157-171, 1986.

[22] Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols in low-
level software. In Proceedings of the 2001 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2001.

[23] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP:Path-sensitive program ver-
ification in polynomial time. In Proceedings of the 2002 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 57-68,
2002.

[24] J. Field, D. Goyal, G. Ramalingam, and E. Yahav. Typestate verification: Ab-
straction techniques and complexity results. In Proceedings of the 10th Inter-
national Static Analysis Symposium, 2003.

[25] Yue Yang, Anna Gringauze, Dinghao Wu, and Henning Rohd. Microsoft
Research TechReport. Detecting Data Race and Atomicity Violation via
Typestate-Guided Static Analysis. MSR-TR-2008-108,2008.

[26] Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In the ACM
Symposium on Principles of Programming Languages, 2002.

76

[27] Efficient Hybrid Typestate Analysis by Determining Continuation-Equivalent
States. ICSE’10, May 2010, Cape Town, South Africa.

[28] Dean M. Tullsen. Jack L. Lo, et al. Supporting Fine-Grained Synchronization on
a Simultaneous Multithreading Processor. Proceedings of the 5th International
Symposium on High Performance Computer Architecture, January 1999.

[29] Diego Novillo, Ronald C. Unrau and Jonathan Schaeffer. Analysis and Opti-
mization of Explicitly Parallel Programs. Technical Report TR 98-11 University
of Alberta. August 1998.

[30] Jason Riedy and Rich Vuduc. Microbenchmarking the Tera MTA. Tech-report,
Berkeley. May 21, 1999.

[31] Douglas C. Schmidt and Tim Harrison. Double-Checked Locking - An Opti-
mization Pattern for Efficiently Initializing and Accessing Thread-safe Objects.
1997.

[32] JeanLouis Colaco, Bruno Pagano and Marc Pouzet. A Conservative Extension
of Synchronous Dataflow with State Machines. EMSOFT05, September 19C22,
2005, Jersey City, New Jersey, USA.

[33] Yuan Zhang, Vugranam C. Sreedhar and Weirong Zhu. Optimized Lock Assign-
ment and Allocation: A Method for Exploiting Concurrency among Critical
Sections. PPoPP07 March 14C17, 2007, San Jose, California, USA.

[34] David Mizell and Kristyn Maschhoff. Early experiences with large-scale Cray
XMT systems. IPDPS ’09 Proceedings of the 2009 IEEE International Sympo-
sium on ParallelδDistributed Processing. 2009.

[35] Jaeyong Shim, Dongsoo Han, and Hongsoog Kim. Communication Deadlock
Detection of Inter-organizational Workflow Definition. S. Bhalla (Ed.): DNIS
2002, LNCS 2544, pp. 43C57, 2002.

[36] Stephen P. Masticola and Barbara G. Ryder. A model of Ada programs for
static deadlock detection in polynomial times. PADD ’91, Proceedings of the
1991 ACM/ONR workshop on Parallel and distributed debugging. 1991.

[37] Shivali Agarwal, Rajkishore Barik and Dan Bonachea et al. Deadlock-Free
Scheduling of X10 Computations with Bounded Resources. SPAA07, June
9C11, 2007, San Diego, California, USA.

[38] Shivali Agarwal, Rajkishore Barik and Vivek Sarkar. May-Happen-in-Parallel
Analysis of X10 Programs. PPoPP07, March 14C17, 2007, San Jose, California,
USA. 2007.

77

[39] John Thornley. A parallel Programming Model with Sequential Semantics. PHD
Theis, California Institute of Technology. 1996,

[40] Rajiv Gupta. Generalized dominators and post-dominators. POPL’92, Pro-
ceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 1992.

[41] Ruud van der Pas. An Introduction Into OpenMP. IWOMP 2005.

[42] George Chin, Andres Marquez. Sutanay Choudhury and Kristyn
Maschhoff.Implementing and evaluating multithreaded triad census al-
gorithms on the Cray XMT. IPDPS’09, Proceedings of the 2009 IEEE
International Symposium on ParallelδDistributed Processing.

[43] Diego Novillo, Ron Unrau and Jonathan Schaeffer. Concurrent SSA Form in
the Presence ofMutual Exclusion. 1998 International Conference on Parallel
Processing(ICPP’98), Minneapolis,Minnesota, August 1998.

[44] Dorit Naishlos, Joseph Nuzman, Chau-Wen Tseng and Uzi Vishkin.Evaluating
the XMT Parallel Programming Model. HIPS’01, Proceedings of the 6th Inter-
national Workshop on High-Level Parallel Programming Models and Supportive
Environments.2001.

[45] Rob Farber. Experimental comparison of emulated lock-free vs. fine-grain
locked data structures on the Cray XMT. Parallel δ Distributed Processing,
Workshops and Phd Forum (IPDPSW). 2010.

[46] Jong-Deok Choi, Jong-Deok Choi and Jeanne Ferrante. Automatic construction
of sparse data flow evaluation graphs. POPL’91, Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.1991.

[47] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, et al. Efficiently computing
static single assignment form and the control dependence graph. Transactions
on Programming Languages and Systems (TOPLAS),Oct 1991.

[48] Saman P Amarasinghe. Parallelizing Compiler Techniques Based on Linear
Inequalities. Phd thesis, Stanford University. 1997.

[49] http://www.open64.net/

[50] MARTIN ABADI, CORMAC FLANAGAN and STEPHEN N. FREUND.
Types for Safe Locking: Static Race Detection for Java. ACM Transactions
on Programming Languages and Systems, Vol. 28, No. 2, March 2006, Pages
207C255.

78

[51] N. Sterling. Warlock - a static data race analysis tool. USENIX Winter Tech-
nical Conference, pages 97-106, 1993.

[52] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race
conditions and deadlocks. SOSP ’03, Proceedings of the nineteenth ACM sym-
posium on Operating systems principles.

[53] http://babelfish.arc.nasa.gov/trac/jpf

[54] http://bandera.projects.cis.ksu.edu/

[55] Jaejin Lee, David A. Padua, Samuel P. Midkiff: Basic Compiler Algorithms for
Parallel Programs. PPOPP 1999: 1-12

[56] Matthew B. Dwyer.Data Flow Analysis Frameworks for Concurrent Programs.
Technical Report. University of Massachusetts. 1995.

[57] Weirong Zhu, Vugranam C Sreedhar, Ziang Hu and Guang R. Gao. Synchro-
nization state buffer: supporting efficient fine-grain synchronization on many-
core architectures. ISCA ’07, Proceedings of the 34th annual international sym-
posium on Computer architecture. 2007.

[58] http://en.wikipedia.org/wiki/Cyclops

[59] Allan Snavely, Larry Carter, Jay Boisseau, et al. Multi-processor Performance
on the Tera MTA. Supercomputing’98, Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDROM). 1998.

[60] Gail Alverson, Preston Briggs, Susan Coatney, et al. Tera Hardware-Software
Cooperation. Supercomputing’97, Proceedings of the 1997 ACM/IEEE confer-
ence on Supercomputing (CDROM). 1997.

[61] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: data struc-
tures for parallel computing. ACM Trans. Program. Lang. Syst., 11(4):598C632,
1989.

[62] P. S. Barth, R. S. Nikhil, and Arvind. M-Structures: Extending a Parallel, Non-
Strict, Functional Language with State. In in Proc. of Conf. on 1991 Functional
Programming Languages and Computer Architectures, pages 538C568, 1991.

79

