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ABSTRACT

Turbulent pipe flows are encountered in a multitude of engineering applications.

Some of the examples include removal of moisture, odors and other harmful gases us-

ing exhaust pipes; transporting crude oil and cooling water in oil refineries; circulation

of coolants through the engine in automobiles and motorcycles; etc. They have been

studied experimentally for more than a century and by direct numerical simulations

(DNS) for more than two decades. Over the past twenty years, there has been an

increase in the involvement of computation in studying turbulent flows, including tur-

bulent pipe flows. The low cost and time consumption of computer simulations, along

with the ability to study complex dynamic processes that are practically intractable at

all scales, have resulted in the increase in their use in research. At the same time, the

presence of curved boundary remains a challenge for accurate DNS of this simple flow.

In the recent past, lattice Boltzmann method (LBM) has emerged as an attrac-

tive option for simulating wall-bounded turbulent flows. It offers several advantages

compared to the conventional models of computational fluid dynamics, due to the lo-

cal nature of operations involved and easy implementation of boundary conditions.

Despite the advantages posed by the LBM, no DNS of turbulent pipe flow has been re-

ported using LBM. Hence, the objective of this study is to develop a lattice Boltzmann

model to simulate turbulent pipe flow and implement it into a computer code using

FORTRAN and MPI. This code is then used to simulate fully developed turbulent pipe

flow and validate the results with the existing benchmark data.

In this thesis, the lattice Boltzmann model in three spatial dimensions using 27

mesoscopic velocities on a cubic grid was designed using an “inverse design” analysis.

Yu et al.’s double interpolation scheme was used to satisfy the no-slip condition at the

solid-liquid interface.
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The code was first validated by simulating laminar channel and pipe flows. The

profiles of streamwise velocity for the laminar pipe and channel flow simulations were

observed to be in excellent agreement with the analytical results. Further, the results

of the time evolution of the centerline streamwise velocity for the laminar pipe and

channel flow also matched the analytical results. Hence, the validity and accuracy of

the code was established.

Turbulent pipe flow was then simulated using the D3Q27 model. The first and

second order statistics of the turbulent pipe flow simulation from the D3Q27, D3Q19

model were compared with the reference data being obtained from the spectral and

finite volume discretizations of the Navier-Stokes equation. The mean velocity profiles

of the D3Q27 simulation matched well with the reference data. On the other hand,

the D3Q19 model under-predicts the mean velocity, especially near the center. In

addition, the contours of the streamwise velocity for the D3Q19 simulation showed a

certain preference along particular directions. This was not observed in the D3Q27

simulation. The erroneous results of the D3Q19 model could be explained by the

hypothesis stated in White et al., stating that the presence of “defective planes” could

be a plausible reason for the errors in the measurement of streamwise velocity in the

D3Q19 model. Hence, the D3Q27 model, seems like a suitable option to simulate

wall-bounded turbulent flows with a curved boundary. The only drawback to using the

D3Q27 model, is its slower execution speed as it takes 21% more CPU time than the

D3Q19 model.
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Chapter 1

INTRODUCTION

1.1 Motivation and Objectives

Pipe flow is the flow of fluids inside a closed circular conduit and is commonly

encountered in many engineering and biological processes. The water we use is dis-

tributed to our homes using a network of pipes. Blood is also transported to and from

different parts of our bodies through arteries and veins. In HVAC applications, exhaust

pipes are used to remove moisture, odors, carbon dioxide and other harmful gases. In

oil refineries, crude oil, and cooling water are transported directly from their sources

through pipes which are kilometers in length. The oil is then processed in the refinery

and refined to more useful components. These components are transported from one

refinery unit to another with the help of pipes. In automobiles and motorcycles, the

engine temperature is maintained by circulating a coolant through the engine. This

coolant is then transported to and from the radiator with the help of tubes. Further,

toxic gases generated during the burning of fuel in an automobile must be completely

removed with the help of exhaust pipes. These pipes must be carefully designed and

maintained and any mismanagement of these pipes could result in fatal accidents. An-

other application where the design of pipes has a great impact is nuclear engineering. A

more recent application is in the area of microfluidics, where we use pipes of diameters

less than 1 mm in niche applications such as inkjet printing, gas chromatography, lab-

on-a-chip and advanced drug delivery systems. The majority of the flows mentioned

above are turbulent flows. Turbulent flows are characterized by random and chaotic

three-dimensional vorticity. When turbulence is present, it usually dominates all other

flow phenomena and results in increased energy input, viscous dissipation, mixing, heat

transfer and drag. [1]
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Figure 1.1: Reynolds pipe flow experiment, taken from his 1883 paper [2].

Fully developed turbulent pipe flows have been studied experimentally for more

than a century and by direct numerical simulations, for more than two decades [3].

Osborne Reynolds (1883) in his path-breaking experiment visually demonstrated the

transition from laminar to turbulent flows and found that below a certain critical

velocity laminar flow prevails. This critical point can be expressed in terms of a di-

mensionless quantity known as the Reynolds number. In an attempt to determine the

average flow profiles and viscous drag, Reynolds rewrote the equations of motion, sep-

arating the quantities into two parts: average and fluctuating terms. This method is

known as the Reynold’s decomposition and is one of the seminal concepts in studying

turbulent flows [4]. Nikuradse (1933) conducted a comprehensive study of turbulent

flow in pipes of varying relative roughness with Reynolds numbers ranging from Re =

104 to 106. He also compared the velocity distributions for a given relative roughness

with varying Reynolds number and remarked that the velocity profiles show a very

slight dependence on the Reynolds number. Moody (1944) drew a chart comparing

the friction factor against the Reynolds number and relative roughness. This chart is

known as the Moody’s diagram and is still one of the most widely accepted and used

charts in engineering. Laufer (1954) in his report to the National Advisory Committee
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for Aeronautics, gave a description of how the mean and the statistical quantities such

as Reynolds stresses, turbulent dissipation, and energy spectra vary in fully developed

turbulent pipe flow. Lundgren (1971) pursued an analytical treatment of steady, wall-

bounded turbulent flows using the equations proposed by Prandtl. Kline (1978) in his

talk at the ”Workshop on coherent structure of turbulent boundary layers” empha-

sized the role of flow visualization in understanding complicated turbulent phenomena.

Three years later, Carlson et al. used flow visualization techniques to study the tran-

sition from laminar to turbulent in a plane Poiseulle flow. Tu and Ramaprian (1983)

conducted an experimental investigation of periodic turbulent pipe flow and compared

these results with numerical calculations using a quasi-steady turbulence closure model.

Reich (1989) studied the effect of rotation on the velocity and temperature distribution

in a turbulent pipe flow. During the last two decades, owing to the growth in computa-

tional capabilities, numerical simulations of turbulent flows have become an important

research tool in studying the basic physics of turbulence [11]. In 1991, Eggels pre-

sented his work on Large-eddy simulation of turbulent pipe flow at the 1st European

Fluid Mechanics conference in Cambridge, United Kingdom. Two years later, Eggels

et al. performed the first Direct Numerical Simulation(DNS) of pipe flow in which

they simulated fully developed turbulent flow using a finite volume discretization of

the Navier-Stokes equation by resolving all scales of motion. The agreement between

the simulation data and experimental data was reasonable for turbulence statistics up

to fourth order.

In the last two decades, there has been a renewed interest in studying wall-

bounded turbulence stimulated by some controversial results. Barenblatt et al. (1997)

suggested that the velocity profile in the intermediate region of the turbulent pipe,

flow obeys a power law rather than the von Karman-Prandtl log law. By contrast,

George and coworkers have suggested that the overlap velocity profiles and friction law

for boundary layers are power laws, however, the corresponding relations for pipes and

channels are logarithmic [1]. The study from the superpipe experiment conducted by

Zagarola and Smits (1998) states that the mean velocity profile in the overlap region is
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given by the power law for small Reynolds number. However, as the Reynolds number

increases to greater than 400 × 103, another overlap region is apparent and the mean

velocity profile in this region is described by the log-law. Xu et al. (2004) formulated

a compressible finite volume model based on the Navier-Stokes equation for large eddy

simulation of compressible turbulent pipe flows at low Mach number. Peixinho and

Mullin (2006) worked on the decay of turbulence in pipe flow. They devised a novel

experiment in which they decreased the turbulence by reducing Reynolds number and

observed how the disordered motion decayed.

Over the last ten years, several groups have been working hard to make break-

throughs in understanding the fundamental problem posed by Prof. Reynolds i.e.

turbulent transition in pipe flow. Eckhardt and colleagues stated that the features of

turbulence can be accounted by assuming that the turbulent state corresponds to a

chaotic saddle. Wu and colleagues focused on the direct numerical simulations of tur-

bulent pipe flow. In an article to the “Proceedings of the National Academy of Sciences

in the United States of America”, Wu et al. tried to understand the dynamics behind

the pipe transition by developing a direct simulation of the gradual transition to the

turbulent state as opposed to an abrupt transition. They achieved this by a weak but

a finite perturbation of the laminar flow. Bailey et al. (2014) tried to find an estimate

for von Karman’s constant in turbulent pipe flow by conducting experiments in the

Princeton/ONR superpipe. Finally, Chin et al. (2015) tried to provide a comparison

between numerical simulations and experiment. They tried to compare LES, DNS and

hot-wire experiment data for a turbulent pipe flow with friction Reynold’s number

equal to 1000 and observed that the turbulence statistics showed good agreement up

to the fourth order.

In the studies mentioned above, one can notice the increasing involvement of

computation in turbulence research over the last twenty years. Computational fluid

dynamics (CFD) is developing into a powerful tool capable of simulating turbulent

flows directly, resulting in a database which gives us a complete solution of flow field

across the whole domain. The development has been so rapid that CFD is now used as
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much as the traditional didactic and research methods of experimentation and analyt-

ical modeling to solve fluid flow problems. This recent adoption of CFD has been both

inevitable and progressive, as the high costs and time consumption associated with

experimentation has often precluded the desire to produce efficient in-depth results. In

addition, experiments cannot be used to study complex processes that are practically

intractable. Moreover, the assumptions, generalizations, and approximations associ-

ated with analytical models have swayed their reduction in the development of flow

solutions. By considering these limitations coupled with recent achievements in the de-

velopment of numerical solutions for the Navier-Stokes equations and the amelioration

of computing power and efficiency, it is easy to understand why confidence has both

increased and advanced the application of CFD as a viable alternative in industry and

science [18].

The traditional approach for computational treatment of fluid flows consists of

solving the Navier-Stokes and the continuity equation using numerical analysis and

computer algorithms. In recent years, the lattice Boltzmann method (LBM) has de-

veloped into an alternate and promising computational tool for simulating fluid flows

and modeling physics in fluids [19].

LBM is a mesoscopic method based on solving the Boltzmann equation gov-

erning the distribution of fluid-particle velocity at the given location and time. The

following are the advantages LBM offers as compared to the conventional models of

CFD:

1. It is conveniently easy and straightforward to derive LBM models for fluid

flow and implement these models in numerical algorithms.

2. Modeling of multi-phase flows and flows in complex boundaries are relatively

simple due to easy implementation of boundary conditions.

3. Pressure is calculated using an equation of state as opposed to solving the

Poisson equation for the incompressible Navier-Stokes equation. This eliminates the

numerical challenges which require special treatments, such as iteration or relaxation.

4. The local nature of the operations involved in LBM makes the method very

5



easy to implement in parallel computer systems.

5. In small-scale flows where the continuity approximation in the Navier-Stokes

equation does not hold, LBM with some modifications could still work.
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Figure 1.2: Number of journal publications vs the year published. Information obtained
from “Web of Science”.

From the reasons mentioned above, LBM is fast emerging as an attractive

method for CFD. This is demonstrated in Fig. 2, where we can see how the number of

journal publications in LBM has increased over time. In spite of these advantages, it

is fraught with stability issues and has difficulties in simulating high Reynolds number

flows. These are some of the challenges we have come across while simulating turbulent

pipe flow using LBM.

Turbulent flows are characterized by a wide range of length and time scales.

This has been the reason for their innate complexity and has inspired remarks ranging
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from Lamb’s “chief outstanding difficulty of our subject” to Bradshaw’s more cynical

“invention of the Devil on the seventh day of creation”. One way to model these flows

is by spatially filtering the smaller scales of motion and then solving for the others. The

effects of the smaller scales of motion are then approximated by a model. This method

is known as large eddy simulation (LES) and is widely used to simulate turbulent

flows using LBM. An alternative method involves resolving all length scales including

the Kolmogorov’s length scale (smallest scale of motion in turbulent flow) and solving

numerically for the velocity and pressure as a function of space and time. These

numerical solutions are termed direct numerical simulations (DNS) . The first DNS

was performed in 1972 at the National Center for Atmospheric Research by Orszag &

Patterson. They performed a 323 computation of isotropic turbulence at a Reynolds

number (based on Taylor micro scale) of 35. However, it wasn’t until 1987 that the DNS

of wall-bounded turbulent flow was first performed by Kim et al., using the spectral

method [20].

One of the major disadvantages of performing DNS is the computational cost

involved. This restricts the application of DNS to low Reynolds number flows. For

example, in order to simulate what happens inside the atmospheric planetary boundary

layer (PBL), you need to model length scales on the order of millimeters to length

scales on the order of kilometers; the entire scale range spans more than six orders of

magnitude. Hence, DNS of a turbulent required at least 1018 numerical grid points.

To put this into perspective, the DNS performed in this thesis used approximately

5.4 × 107 grid points and the largest DNS performed today uses approximately 1010

grid points. This is far beyond today’s computing capacity or that in the foreseeable

future [22].

In spite of this, there is a myriad of advantages and applications involved with

DNS. Some of these include [20]:

1. The most important contribution of DNS has been in phenomenological

modeling for engineering applications. Several terms needed for the Reynolds stress

7



equations, which form the basis for closure of the Reynolds averaged mean flow equa-

tions, contain several terms that must be modeled but are difficult to measure exper-

imentally. However, in DNS, all the terms in the Reynolds stress equations can be

directly computed.

2. DNS simulations possess the highest degree of exactness in the data. This

attribute of DNS helped us provide a more realistic view of the structure of turbulent

boundary layer. Instead of predicting experimentally measured statistical correlations,

DNS can be used to yield information that may be impossible to obtain from experi-

ments. The confidence in DNS data has progressed to the point where modern ideas

on coherent structures of turbulence are routinely evaluated using DNS data.

Hence, DNS can be viewed as a numerical experiment producing a series of

non-empirical solutions, from first principles, for a virtual or realistic turbulent flow.

Its great strength is the ability to provide complete knowledge, unaffected by approxi-

mations, at all points within the flow, at all times within the simulation period.

From the information stated above, it is desirable to develop new and alternative

DNS methods to study turbulent pipe flow. The lattice Boltzmann method seemed to

be an apt choice for this purpose due to the parallel nature of its algorithm. However,

according to the best of the author’s knowledge, no DNS of turbulent pipe flow has

been reported using LBM. The difficulty might be the treatment of curved wall using

a structured lattice grid. Hence, the objective of this study is to develop a lattice

Boltzmann model to simulate turbulent pipe flow and to incorporate it into a numerical

tool using FORTRAN and MPI. The final goal of this study is to simulate turbulent

pipe flow and validate the results with the existing benchmark data.

1.2 Outline of the Thesis

In Chapter 2 we present a brief introduction of LBM, i.e. a description of the

Boltzmann equation and a derivation of the lattice Boltzmann equation. We discuss

the different types of LBM collision models: the Bhatnagar-Gross-Krook model and

the multi-relaxation-time model [21]. Next, we describe the 3 common lattices that are

8



used in the 3D simulation of turbulent flows: D3Q15, D3Q19, and the D3Q27 lattice.

We end the chapter by discussing the many applications of the lattice Boltzmann

method over the last 20 years.

In Chapter 3, we derive the model used to simulate turbulent pipe flow. We

also provide a brief description of the boundary conditions used for the simulation. We

end the chapter by explaining the algorithm used for implementing the LBM model in

a FORTRAN code.

In Chapter 4 we validate the code by comparing laminar channel and pipe flow

simulation results with the analytical results and compare the performance of two LBM

models with each other and with the benchmark, for laminar and turbulent pipe flow

simulations. Chapter 5 starts with a discussion of the results obtained and culminates

by stating the conclusion of the study.
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Chapter 2

THEORETICAL BACKGROUND: THE LATTICE BOLTZMANN
METHOD

2.1 The Boltzmann Equation

A statistical description of a fluid system is given by the quantity f(r, c, t),

otherwise known as the particle or molecular distribution function. The distribution

function describes the number of molecules at time t positioned between r and r + dr

which have velocities between c and c + dc. The distribution function is governed by:

∂f

∂t
+
∂f

∂r
· c +

F

m
· ∂f
∂c

= Ω (2.1)

where Ω is the collision term representing the effects of molecular interactions, F is the

external force applied and m is the mass of the particle [23].

The above equation is known as the Boltzmann equation and was established

by Ludwig Boltzmann in 1872. It is the cornerstone of “kinetic theory”, which is a

branch of statistical mechanics dealing with dyamics of non-equilibrium processes and

their relaxation to thermodynamic equilibrium.

If the external force applied is zero, then Eq. (2.1) becomes:

∂f

∂t
+ c · ∇f = Ω (2.2)

The L.H.S in the above equation represents the change in the number of molecules

due to advection and the R.H.S represents the change in the number of molecules due

to collisions. The relation between the above equation and the macroscopic quantities

such as fluid density ρ, fluid velocity vector u, and internal energy e, is as follows:

ρ(r, t) =

∫
mf(r, c, t)dc (2.3)
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ρ(r, t)u(r, t) =

∫
mcf(r, c, t)dc (2.4)

ρ(r, t)e(r, t) =
1

2

∫
mu2

af(r, c, t)dc (2.5)

where ua is the velocity of the particle relative to the fluid.

2.2 From the Boltzmann Equation to the Lattice Boltzmann Equation

The lattice Boltzmann equation is a discretized form of the continuous Boltz-

mann equation. The Boltzmann equation can be expressed in the following form:(
∂

∂t
+ c · ∇

)
f = Ω (2.6)

According to the Bhatnagar-Gross-Krook approximation, the collision term can be

expressed as [25]:

Ω =
1

τ
(f eq − f) (2.7)

where τ is the relaxation parameter, the rate at which the system relaxes to equilibrium

and f eq is the particle distribution function at equilibrium. Eq. (2.6) can then be

integrated with respect to time∫ ((
∂

∂t
+ c · ∇

)
f

)
dt =

∫ (
1

τ
(f eq − f)

)
dt (2.8)

Applying the trapezoidal rule of integration, we have:

f(r+c∆t, t+∆t)−f(r, t) = −∆t

2τ
(f(r+c∆t, t+∆t)−f (eq)(t+∆t))−∆t

2τ
(f(r, t)−f (eq)(t))

(2.9)

where ∆t is the value of time increment. Rearranging the above equation and redefining

the particle distribution function, we have:

f(r + c∆t, t+ ∆t) = f(r, t) +
1

1
2

+ τ
∆t

(f
(eq)

(t)− f(r, t)) (2.10)

11



When we further discretize the above equation in velocity space, we get the final

form of lattice Boltzmann equation based on the BGK approximation as:

f i(r + c∆t, t+ ∆t)− f i(r, t) =
1

1
2

+ τ
∆t

(f
(eq)

i (t)− f i(r, t)) (2.11)

where i represents a particular direction. We can further simplify Eq. 2.11 into

f i(r + c∆t, t+ ∆t)− f i(r, t) =
1

τLBM
(f

(eq)

i (t)− f i(r, t)) (2.12)

where τLBM = 1
2

+ τ
∆t

.

2.3 Theory of the Lattice Boltzmann Method

The lattice Boltzmann method which incorporates Eq. (2.11) as its governing

equation, can be viewed as a special finite difference scheme for the kinetic equation

of the discrete-velocity distribution function. The fundamental idea of the LBM is to

construct simplified kinetic models that incorporate the essential physics of microscopic

or mesoscopic processes so that the macroscopic averaged properties obey the desired

macroscopic equations. The assumption one has to make for using these simplified

kinetic-type methods for simulating macroscopic flows is that the collective behavior

of many microscopic particles in the system is not sensitive to the underlying details

in microscopic physics [24].

The key steps in the lattice Boltzmann method are streaming and collision,

which are represented by the LHS and RHS of the lattice Boltzmann equation. Figure

2.1 shows graphically how the streaming step takes place for the interior nodes [19].

The collision step has already been described in the previous section. Hence, to

design a lattice Boltzmann model based on the BGK approximation, one has to state

the following:

1. Initialize the distribution functions.

2. The relaxation parameter which is related to the viscosity as:

τLBM =
1

2

(
6ν

∆t

(∆x)2
+ 1

)
(2.13)
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Figure 2.1: Illustration of the streaming process of a lattice node

3. The equilibrium distibution functions which is given by the equation:

f eqi = ωiρ

[
1 + 3(ci · u) +

9

2
(ci · u)2 − 3

2
u2

]
(2.14)

Eq. (2.11), otherwise known as the lattice BGK equation, is the simplest lattice

Boltzmann equation (LBE) and is based on a single-relaxation-time approximation.

Due to its extreme simplicity, the lattice BGK equation has become the most popular

lattice Boltzmann model. Another lattice Boltzmann model which was developed at

the same time is the multiple-relaxation-time (MRT) lattice Boltzmann equation. The

MRT lattice Boltzmann equation, also known as the generalized lattice Boltzmann

equation (GLBE) or the moment method helps rectify some defects of the LBGK

model, such as fixed Prandtl number (Pr = 1 for the BGK model) which is equal to

the ratio of kinematic viscosity over thermal diffusivity, and fixed ratio between the

kinematic and bulk viscosities. Though the MRT LBE schemes are slower than their

BGK counterparts, they are numerically more stable [21]. As its name suggests, the

multi-relaxation-time scheme consists of multiple relaxation times for different mo-

ments that may be independently adjusted. In the MRT scheme the discrete velocity

vectors are converted into an equal number of moments with the help of an orthogonal
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transformation matrix M. The collision step is then performed in the moment space

instead of the velocity space. The final form of the MRT LBE is:

fi(r + ci∆t, t+ ∆t)− fi(r, t) = −M−1ŜM((fi(r, t)− f eqi (r, t)) (2.15)

where Ŝ is a diagonal matrix (Ŝ ≡ diag(s0, s1, ...., sN)), consisting of the relaxation

parameters. It is known as the relaxation matrix

2.4 Different Lattices used in 3D LBM

The most important component of the lattice Boltzmann method is a discrete

phase space defined by a regular lattice in D dimensions and each lattice node is

connected to its neighbors with a set ofN discrete velocity vectors. The most commonly

used lattices in 3 dimensions are discussed next.

2.4.1 D3Q15

The lattice used in the D3Q15 model is shown in Fig. 2.2. The discrete velocities

Figure 2.2: D3Q15 lattice

of the D3Q15 model can be expressed as:

ci =


(0, 0, 0), i = 0;

c(±1, 0, 0), c(0,±1, 0), c(0, 0,±1), i = 1, 2, ....., 6;

c(±1,±1,±1), i = 7, 8, ....., 14
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and the lattice weights are

wi =


2/9, i = 0;

1/9, i = 1, 2, ...., 6;

1/72, i = 7, 8, ...., 14

2.4.2 D3Q19

The lattice used in the D3Q19 model is shown in Fig. 2.3. The discrete velocities

Figure 2.3: D3Q19 lattice

of the D3Q19 model can be expressed as:

ci =


(0, 0, 0), i = 0;

c(±1, 0, 0), c(0,±1, 0), c(0, 0,±1), i = 1, 2, ....., 6;

c(±1,±1, 0), c(±1, 0,±1), c(0,±1,±1), i = 7, 8, ......, 18

and the lattice weights are

wi =


2/9, i = 0;

1/18, i = 1, 2, ...., 6;

1/36, i = 7, 8, ...., 14
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Figure 2.4: D3Q27 lattice

2.4.3 D3Q27

The lattice used in the D3Q27 model is shown in Fig. 2.4. The discrete velocities

of the D3Q27 model can be expressed as:

ci =



(0, 0, 0), i = 0;

c(±1, 0, 0), c(0,±1, 0), c(0, 0,±1), i = 1, 2, ....., 6;

c(±1,±1, 0), c(±1, 0,±1), c(0,±1,±1), i = 7, 8, ....., 18;

c(±1,±1,±1), i = 19, 20, .......26

and the lattice weights are

wi =



8/27, i = 0;

2/27, i = 1, 2, ...., 6;

1/54, i = 7, 8, ...., 18;

1/216, i = 19, 20, ..., 26

2.5 LBM Simulations of Wall-Bounded Turbulent Flows

In recent years, several simulations of wall-bounded turbulent flows using LBM

have been performed. Most researchers have used the DNS or LES models to simulate
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turbulence as the turbulence model based on Reynolds-averaged-Navier-Stokes equa-

tion is not a predictive tool by itself for turbulence, but relies on empirical closure mod-

els. Lammers et al. (2005) performed the DNS of a turbulent channel flow of friction

Reynolds number 180, using the D3Q19 LBGK model. For the channel flow, friction

Reynolds number is calculated by using the friction velocity and the half channel width

as the velocity scale and the length scale respectively. The results obtained from the

DNS were compared with two data sets of a Chebhyshev psuedo-spectral method with

high-quality LDA laboratory measurement data used as a benchmark. The results

show that the lattice Boltzmann method produced lower-order statistics of the same

quality for comparable resolution. However, neither of the computational models could

produce reliable results with respect to the higher-order statistics, most notably, the

flatness of the normal velocity. The study thus shows that for the case of turbulence

statistics, the lattice Boltzmann codes are as reliable as the Chebyshev pseudo-spectral

codes. However, the lattice Boltzmann methods have lower comparable computational

cost as compared to the pseudo-spectral methods. Premnath et al. (2009) performed

large eddy simulation of a turbulent channel flow of friction Reynolds number equal

to 183.6 using a generalized lattice Boltzmann equation. They found that the MRT

model offered better solution fidelity as opposed to the BGK model which exhibited

spurious effects on velocity fluctuations in the near-wall region. Bespalko et al. (2010)

performed DNS of turbulent channel flow using a D3Q19 MRT-LBE. Freitas et al.

(2011) compared the performance of BGK, MRT and the cascaded lattice Boltzmann

methods while simulating wall-bounded turbulent flows. They concluded that based on

stability, advanced moment based schemes like the cascaded lattice Boltzmann model

and the multi-relaxation-time model are not necessarily better than the BGK model

for wall-bounded turbulent flows. Kang and Hassan (2013) investigated the effect of

lattice models on the simulation results of wall-bounded turbulent flows in a circular

pipe and in a square duct using LES turbulence models. They had discovered that

the D3Q19 model produced poor results compared to that of the D3Q27 model and

could not achieve the rotational invariance while the D3Q27 lattice model could. The
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poor results of the D3Q19 model were attributed to the defective 2-D planes with five

velocities, based on White and Chong’s [31] hypothesis. The defective planes are better

visualized in Fig. 2.5.

Figure 2.5: Definition of different planes associated with the pipe flow and unit lattices
on these planes. Source: [30]

From Fig. 2.5, we can observe the primary difference between a D3Q19 and a

D3Q27 model. The D3Q19 model only has five velocity vectors on diagonal planes

D1 and D2, while the D3Q27 model has nine velocity vectors. Hence, the D1 and D2

planes can be viewed as defective planes for the D3Q19 model.

Suga and Kuwata (2015) performed direct numerical simulation of turbulent

channel flow using a D3Q27 LBM model and confirmed that the method is as reliable

as the spectral method when the resolution of the LBM simulation is approximately two

times the resolution of the spectral simulation. In addition, they also performed large

eddy simulations of pipe and porous medium flows. They concluded that the results

produced by the D3Q27 model for simulating turbulent flows bounded by curved walls

are of satisfactory accuracy, which is not the case for the D3Q19 model. The important

features of the literature reviewed are summarized as follows:
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Table 2.1: Summary of the literature reviewed in this section

Reference
Nature of
simulation

LBM model
Reynolds
number

Resolution

Lammers et al. [26] DNS D3Q19 180 16H × 2H × H
Premnath et al. [27] LES D3Q19 183.6 6H × 3H × H
Bespalko et al. [28] DNS D3Q19 180 12H × H × 2H

Freitas et al. [29] DNS
D3Q19,
D3Q27

200 πH × 2H × 0.289πH

Kang et al. [30] LES
D3Q19,
D3Q27

360
5D(Pipe length),

H × H × 6H

Suga et al. [32] DNS, LES D3Q27 180, 360
2π H × H × π H,

400 × 75 × 75
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Chapter 3

NUMERICAL METHOD

3.1 D3Q27 Lattice Boltzmann Model

In this section, we design an MRT LBM model in three spatial dimensions using

27 mesoscopic velocities (also known as D3Q27 model) on a cubic grid that is fully

consistent with the Navier-Stokes equations with a body force term. In Section 2.3,

we mentioned the components needed to design an LBGK model. In [33], Anupindi

et al. use a D3Q27 BGK model to simulate three-dimensional lid driven flow in cubic

and cuboidal cavities. Turbulence modelling in this case is performed using large eddy

simulations. The steady-oscillatory transition Reynolds number in cubic and cuboidal

lid-driven cavities was determined for Reynolds numbers ranging from 2100 to 2350. A

mesh size of 803 was employed for the cubic case and 80×160×80 for the cuboidal case.

The values obtained for steady–oscillatory transition lie in the range of 10 - 17% to the

benchmark values obtained from Navier-Stokes based simulations and experimentally

measured results.

The turbulent pipe flow problem studied in this thesis has a maximum Reynolds

number in the range of 3500 - 4000. Hence, we adopt a D3Q27 MRT model to simulate

the turbulent pipe flow as it has been stated in Sec. 2.3 that MRT models exhibit

greater numerical stability than their BGK counterparts. To design an MRT model,

we need to specify the following components:

1. A set of moments corresponding to the discrete velocities in the model and

namely, construct a transformation matrix M that converts the distribution functions

into moments.

m = Mf (3.1)
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2. A set of independent relaxation parameters, which physically signify the

rates at which the thermodynamic quantities reach the equilibrium state. By tuning

the free relaxation parameters using sensitivity analysis, we can improve the stability

of the MRT-LBM [34].

3. The values of moments at equilibrium.

4. The mesoscopic formulation of the forcing term, as well as the effect of forcing

on other model details.

Let us begin with our endeavor of designing a D3Q27 lattice Boltzmann model

for simulating fluid flow. We denote, the 27 moments of the D3Q27 model as:

m = (δρ, jx, jy, jz, e, pxx, pzz, pxy, pyz, pxz, qx, qy, qz, πx,

πy, πz, φxyz, ε, ψxx, ψzz, ψxy, ψyz, ψxz, ξx, ξy, ξz, e
3)

(3.2)

where δρ is the zeroth-order moment representing local density fluctuation, δρ = ρ−ρ0

(ρ and ρ0 are the density and the average density respectively); jx, jy, jz are first-order

moments related to the momentum in the x,y and z-directions, respectively; e is a

second-order moment related to the energy; pxx, pzz are two second-order moments

corresponding to the normal stress components; pxy, pyz, pxz are three more second-

order moments related to the shear-stress components; qx, qy, qz are the third-order

moments and related to the energy flux in the x, y and z-directions, respectively; πx,

πy, πz are three third-order moments which are related to the flux of the corresponding

normal stresses in x, y and z directions; φxyz is an antisymmetric third-order moment

related to the flux of the shear stress; ε is a fourth-order moment which is physically

interpreted as the square of the kinetic energy; ψxx, ψzz are fourth-order moments

which are related to the product of the normal stress with the energy; ψxy, ψxz, ψyz

are more fourth-order moments which are related to the product of shear stresses with

the energy term; ξx, ξy, ξz are fifth-order moments related to the flux of the energy-

squared term; e3 is a sixth-order moment which is related to the cube of the energy.

To summarize, the D3Q27 model that we have proposed consists of one zeroth-order

moment (δρ), three first-order moments (jx, jy and jz), six second-order moments (e,
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pxx, pzz, pxy, pxz and pyz), seven third-order moments (qx, qy, qz, πx, πy, πz and φxyz),

six fourth-order moments (ε, ψxx, ψzz, ψxy, ψxz and ψyz), three fifth-order moments

(ξx, ξy and ξz) and one sixth-order moment (e3).

Through the “inverse” design analysis, we will show later that all the moments

of third-order or below can be uniquely determined while the moments of order greater

than three are irrelevant to the Navier-Stokes equations, and thus can be chosen some-

what freely. We construct their vectors by first exhausting all the lower order moments

i.e. the zeroth, first and second order. We then construct the higher order moments

based on the principle that they are independent of the lower order moments which

are already constructed:

|δρ〉 = |eα|0 (3.3a)

|jx〉 = eαx, |jy〉 = eαy, |jz〉 = eαz (3.3b)

|e〉 = e2
αx + e2

αy + e2
αz (3.3c)

|pxx〉 = 2e2
αx − e2

αy − e2
αz (3.3d)

|pzz〉 = e2
αy − e2

αz (3.3e)

|pxy〉 = eαxeαy (3.3f)

|pyz〉 = eαyeαz (3.3g)

|pxz〉 = eαxeαz (3.3h)

|qx〉 = (e2
αx + e2

αy + e2
αz)eαx (3.3i)

|qy〉 = (e2
αx + e2

αy + e2
αz)eαy (3.3j)

|qz〉 = (e2
αx + e2

αy + e2
αz)eαz (3.3k)

|πx〉 = (e2
αy − e2

αz)eαx (3.3l)

|πy〉 = (e2
αz − e2

αx)eαy (3.3m)

|πz〉 = (e2
αx − e2

αy)eαz (3.3n)

|φxyz〉 = eαxeαyeαz (3.3o)

|ε〉 = (e2
αx + e2

αy + e2
αz)

2 (3.3p)

|ψxx〉 = (2e2
αx − e2

αy − e2
αz)(e

2
αx + e2

αy + e2
αz) (3.3q)

|ψzz〉 = (e2
αy − e2

αz)(e
2
αx + e2

αy + e2
αz) (3.3r)

|ψxy〉 = eαxeαy(e
2
αx + e2

αy + e2
αz) (3.3s)
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|ψyz〉 = eαyeαz(e
2
αx + e2

αy + e2
αz) (3.3t)

|ψxz〉 = eαxeαz(e
2
αx + e2

αy + e2
αz) (3.3u)

|ξx〉 = (e2
αx + e2

αy + e2
αz)

2eαx (3.3v)

|ξy〉 = (e2
αx + e2

αy + e2
αz)

2eαy (3.3w)

|ξz〉 = (e2
αx + e2

αy + e2
αz)

2eαz (3.3x)

|e3〉 = (e2
αx + e2

αy + e2
αz)

3 (3.3y)

where α is the index of the velocity vector from 0 to 26. The transformation matrix

M is constructed from the above mentioned moment vectors as shown in Eq. (3.5).

The diagonal relaxation matrix S specifies all the relaxation parameters

S = diag(sρ, sjx , , sjy , , sjz , se, sn, sn, sc, sc, sc, sq, sq, sq,

sπ, sπ, sπ, sφ, sε, sψ, sψ, sψ, sψ, sψ, sξ, sξ, sξ, se3)
(3.4)

The next component concerns the values of moments at the equilibrium state

and the last component that we need to specify in order to complete the MRT LBM

model is the mesoscopic formulation of the forcing term. In the next section, we per-

form the Chapman-Enskog multiscale analysis for the D3Q27 model and derive the

equilibrium moments and the mesoscopic formulation of the forcing term by correlat-

ing the macroscopic dynamical equations with the ones obtained from the multiscale
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analysis.

M
≡
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We further orthogonalize the rows in the matrix using the Gram-Schmidt or-

thogonalization and arrive at the final form of the moment matrix:

M
≡
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(3.6)

25



3.2 Inverse Design Analysis

The Chapman-Enskog equations, which are derived in Appendix A, are as stated

below:

O(1) : m(0) = m(eq), (3.7a)

O(ε) :
(
I∂t1 + Ĉα∂1α

)
m(0) = −S

δt
(m(1)) + Ψ(1), (3.7b)

O(ε2) : ∂t2m
(0) +

(
I∂t1 + Ĉα∂1α

)[(
1− S

2

)
m(1) +

δt
2

Ψ(1)

]
= −S

δt
m(2) (3.7c)

where m(eq) are the values of moments at equilibrium, I is an identity matrix, Ĉα ≡M

diag(eiα) M−1, ∂t1 and ∂t2 stand for the time derivatives according to the different

time scales, ∂1α is the spatial derivative, S is the collision matrix and Ψ is the forcing

term. Each equation in Eq. (3.7) is a vector equation containing 27 scalar equations.

Based on the ordering of moments defined in Eq. (3.5), the first row of Eqs. (3.7b)

and (3.7c) should correspond to the continuity equation. The 2nd, 3rd and 4th row of

Eq. (3.7b) and (3.7c) should correspond to the hydrodynamic momentum equations

in x, y and z directions, respectively. Since density is a conserved moment ρ(eq) = δρ

and its relaxation parameter is irrelevant. We simply set sρ = 0. The first row of Eq.

(3.7b) thus becomes

p∂t1δρ+ ∂1xj
(eq)
x + ∂1yj

(eq)
y + ∂1zj

(eq)
z = Ψ

(1)
0 (3.8)

Eq. (3.8) should reproduce the continuity equation as stated below

∂t1δρ+ ∂1x(ρ0u) + ∂1y(ρ0v) + ∂1z(ρ0w) = 0 (3.9)

Comparing Eq. (3.8) with Eq. (3.9), we have j
(eq)
x = ρ0u, j

(eq)
y = ρ0v and j

(eq)
z = ρ0w.

The second, third and fourth row of Eq. (3.7b) become

∂t1(ρ0ux) + ∂1x

(
2

3
δρ+

1

3
e(eq) +

1

3
p(eq)
xx

)
+ ∂1y

(
p(eq)
xy

)
+ ∂1z

(
p(eq)
xz

)
= −sjx

δt
j(1)
x + Ψ

(1)
1

(3.10a)

∂t1(ρ0uy)+∂1x

(
p(eq)
xy

)
+∂1y

(
2

3
δρ−1

6
p(eq)
xx +

1

2
p(eq)
zz +

1

3
e(eq)

)
+∂1z

(
p(eq)
yz

)
= −

sjy
δt
j(1)
y +Ψ

(1)
2

(3.10b)
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∂t1(ρ0uz)+∂1x

(
p(eq)
xz

)
+∂1y

(
p(eq)
yz

)
+∂1z

(
2

3
δρ−1

6
p(eq)
xx −

1

2
p(eq)
zz +

1

3
e(eq)

)
= −sjz

δt
j(1)
z +Ψ

(1)
3

(3.10c)

The above equations must match the Euler momentum equations

∂t1(ρ0ux) + ∂1x

(
p+ ρ0u

2
x

)
+ ∂1y

(
ρ0uxuy

)
+ ∂1z

(
ρ0uxuz

)
= F (1)

x (3.11a)

∂t1(ρ0uy) + ∂1x

(
ρ0uxuy

)
+ ∂1y

(
p+ ρ0u

2
y

)
+ ∂1z

(
ρ0uyuz

)
= F (1)

y (3.11b)

∂t1(ρ0uz) + ∂1x

(
ρ0uxuz

)
+ ∂1y

(
ρ0uyuz

)
+ ∂1z

(
p+ ρ0u

2
z

)
= F (1)

z (3.11c)

In Eq. (3.11) the pressure is calculated from the ideal gas equation of state i.e. p = δρc2
s,

where cs is the speed of sound. By comparing the LHS of Eqs. (3.10) and (3.11), we

can write down six equations. These can be used to obtain the following six moments

as

p(eq)
xx = ρ0

(
2u2

x − u2
y − u2

z

)
(3.12a)

e(eq) =

(
3c2
s − 2

)
δρ+ ρ0

(
u2
x + u2

y + u2
z

)
(3.12b)

p(eq)
zz = ρ0

(
u2
y − u2

z

)
(3.12c)

p(eq)
xy = ρ0uv, p

(eq)
yz = ρ0vw, p

(eq)
xz = ρ0uw (3.12d)

By comparing the RHS of Eqs. (3.10) with (3.11), we have:

−sjx
δt
j(1)
x + Ψ

(1)
1 = F (1)

x (3.13a)

−
sjy
δt
j(1)
y + Ψ

(1)
2 = F (1)

y (3.13b)
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−sjz
δt
j(1)
z + Ψ

(1)
3 = F (1)

z (3.13c)

By manipulating the equations obtained from rows 5 - 10 of (3.7b), related to the

evolution of second-order moments and plugging in Euler’s equation, we have:

∂1x

(
1

3
ρ0ux +

1

3
q(eq)
x

)
+ ∂1y

(
1

3
ρ0uy +

1

3
q(eq)
y

)
+ ∂1z

(
1

3
ρ0uz +

1

3
q(eq)
z

)
= −se

δt

(
e(1)
)

+ Ψ
(1)
4 − 2(uxFx + uyFy + uzFz)

(3.14a)

∂1x

(
2

3
ρ0ux −

1

3
q(eq)
x

)
+ ∂1y

(
− 1

3
ρ0uy +

1

6
q(eq)
y − 3

2
π(eq)
y

)
+ ∂1z

(
− 1

3
ρ0uz +

1

6
q(eq)
z +

3

2
π(eq)
z

)
= −sn

δt

(
p(1)
xx

)
+ Ψ

(1)
5 − 2(2uxFx − uyFy − uzFz)

(3.14b)

∂1x

(
π(eq)
x

)
+ ∂1y

(
1

3
ρ0uy −

1

6
q(eq)
y − 1

2
π(eq)
y

)
+ ∂1z

(
− 1

3
ρ0uz +

1

6
q(eq)
z − 1

2
π(eq)
z

)
= −sn

δt

(
p(1)
zz

)
+ Ψ

(1)
6 − 2(uyFy − uzFz)

(3.14c)

∂1x

(
2

3
ρ0uy +

1

6
q(eq)
y − 1

2
π(eq)
y

)
+ ∂1y

(
2

3
ρ0ux +

1

6
q(eq)
x +

1

2
π(eq)
x

)
+ ∂1z

(
φ(eq)
xyz

)
= −sc

δt

(
p(1)
xy

)
+ Ψ

(1)
7 − (uxFx + uyFy)

(3.14d)

∂1x

(
φ(eq)
xyz

)
+ ∂1y

(
2

3
ρ0uz +

1

6
q(eq)
y − 1

2
π(eq)
z

)
+ ∂1z

(
2

3
ρ0uy +

1

6
q(eq)
y +

1

2
π(eq)
y

)
= −sc

δt

(
p(1)
yz

)
+ Ψ

(1)
8 − (uyFy + uzFz)

(3.14e)

∂1x

(
2

3
ρ0uz +

1

6
q(eq)
z +

1

2
π(eq)
z

)
+ ∂1y

(
φ(eq)
xyz

)
+ ∂1z

(
2

3
ρ0ux +

1

6
q(eq)
x − 1

2
π(eq)
x

)
= −sc

δt

(
p(1)
xz

)
+ Ψ

(1)
9 − (uxFx + uzFz)

(3.14f)
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Next, let us look at the moment equations of order O(ε2)

O(ε2) : ∂t2m
(0) +

(
I∂t1 + Ĉα∂1α

)[(
1− S

2

)
m(1) +

δt
2

Ψ(1)

]
= −S

δt
m(2) (3.15)

For simplicity, let us denote

A ≡
(
I − S

2

)
m(1) +

δt
2

Ψ(1) (3.16)

This simplifies Eq. (3.15) to

O(ε2) : ∂t2m
(0) +

(
I∂t1 + Ĉα∂1α

)
A = −S

δt
m(2) (3.17)

The first row of Eq. (3.17) gives:

∂t2(ρ0ux) + ∂1xAjx + ∂1yAjy + ∂1zAjz = 0 (3.18)

The above equation should match with the continuity equation at O(ε2), i.e. ∂t2δρ = 0.

Therefore, Ajx = Ajy = Ajz = 0, and the following three constraints are thus obtained(
1− sjx

2

)
j(1)
x +

δt
2

Ψ
(1)
1 = 0 (3.19a)

(
1−

sjy
2

)
j(1)
y +

δt
2

Ψ
(1)
2 = 0 (3.19b)

(
1− sjz

2

)
j(1)
z +

δt
2

Ψ
(1)
3 = 0 (3.19c)

Solving, the two sets of Eqs. (3.13) and (3.19), we have

Ψ
(1)
1 = F (1)

x

(
1− sjx

2

)
,Ψ

(1)
2 = F (1)

y

(
1−

sjy
2

)
,Ψ

(1)
3 = F (1)

z

(
1− sjz

2

)
(3.20a)

j(1)
x = −F

(1)
x δt
2

, j(1)
y = −F

(1)
y δt
2

, j(1)
z = −F

(1)
z δt
2

(3.20b)

The 2nd, 3rd and 4th row of Eq. (3.17) are

∂t2
(
ρ0ux

)
+ ∂t1Ajx + ∂1x

(
1

3
Apxx +

1

3
Ae

)
+ ∂1y

(
Apxy

)
+ ∂1z

(
Apxz) = 0 (3.21a)
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∂t2
(
ρ0uy

)
+∂t1Ajy +∂1x

(
Apxy

)
+∂1y

(
− 1

6
Apxx +

1

2
Apzz +

1

3
Ae

)
+∂1z

(
Apyz) = 0 (3.21b)

∂t2
(
ρ0uz

)
+∂t1Ajz +∂1x

(
Apxz

)
+∂1y

(
Apyz)+∂1z

(
− 1

6
Apxx−

1

2
Apzz +

1

3
Ae

)
= 0 (3.21c)

By comparing Eqs. (3.21) with the Navier-Stokes equations of order O(ε2)

∂t2(ρ0ux)− ∂1x

[
µV 51 u + µ

(
4

3
∂1xux −

2

3
∂1yuy −

2

3
∂1zuz

)]
−µ∂1y(∂1yux + ∂1xuy)− µ∂1z(∂1zux + ∂1xuz) = 0

(3.22a)

∂t2(ρ0uy)− ∂1y

[
µV 51 u + µ

(
4

3
∂1xuy −

2

3
∂1yux −

2

3
∂1zuz

)]
−µ∂1x(∂1yux + ∂1xuy)− µ∂1z(∂1zuy + ∂1yuz) = 0

(3.22b)

∂t2(ρ0uz)− ∂1z

[
µV 51 u + µ

(
4

3
∂1xuz −

2

3
∂1yuy −

2

3
∂1zux

)]
−µ∂1x(∂1yuz + ∂1zuy)− µ∂1y(∂1zux + ∂1xuz) = 0

(3.22c)

where51u ≡ ∂1xux+∂1yuy+∂1zuz, µ and µV are the dynamic shear and bulk viscosity,

respectively. It follows that

j(2)
x = j(2)

y = j(2)
z = 0 (3.23a)

Ae = −3µV (
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

) (3.23b)

Apxx = −2µ(2
∂ux
∂x
− ∂uy

∂y
− ∂uz

∂z
) (3.23c)

Apxx = −2µ(
∂uy
∂y
− ∂uz

∂z
) (3.23d)

Apxy = −µ
(
∂ux
∂y

+
∂uy
∂x

)
, Apxz = −µ

(
∂ux
∂z

+
∂uz
∂x

)
, Apyz = −µ

(
∂uy
∂z

+
∂uz
∂y

)
(3.23e)
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In Eq. (3.16), we have expressed A as functions of forcing components Ψ and non-

equilibrium moments m(1). Re-arranging Eq. (3.7b), m(1) can be obtained in terms of

equilibrium moment and the forcing term

m(1) = δtS
−1

[
Ψ(1) − (I∂t1 + Ĉα∂1α)m(eq)

]
(3.24)

Now, substituting Eq. (3.24) into Eq. (3.16), we can express A as

A = δtS
−1Ψ(1) −

(
S−1 − 1

2

)
(I∂t1 + Ĉα∂1α)m(eq) (3.25)

A comparison of Eqs. (3.23) and (3.25) allows us to design the equilibrium moments and

forcing terms such that they follow the Navier-Stokes equation. We should also note

that the mesoscopic forcing term Ψ(1) reproduces the macroscopic force. Therefore

we state two basic conditions: (a) all terms that contain macroscopic force F and

mesoscopic forcing term Ψ should balance each other and (b) they should be treated

seperately. Now, let us expand rows 5 - 10 of Eq. (3.25)

Ae = −
(

2− se
2se

)
δt

{
∂1x

[
1

3
ρ0ux +

1

3
q(eq)
x −

(
3c2
s − 2

)
ρ0ux

]
+ ∂1y

[
1

3
ρ0uy +

1

3
q(eq)
y

−
(
3c2
s − 2

)
ρ0uy

]
+ ∂1z

[
1

3
ρ0uz +

1

3
q(eq)
z −

(
3c2
s − 2

)
ρ0uz

]}
(3.26a)

Apxx = −
(

2− sn
2sn

)
δt

{
∂1x

[
2

3
ρ0ux −

1

3
q(eq)
x

]
+ ∂1y

[
− 1

3
ρ0uy +

1

6
q(eq)
y

−3

2
π(eq)
y

]
+ ∂1z

[
− 1

3
ρ0uz +

1

6
q(eq)
z +

3

2
π(eq)
z

]} (3.26b)

Apzz = −
(

2− sn
2sn

)
δt

{
∂1xπ

(eq)
x + ∂1y

[
1

3
ρ0uy −

1

6
q(eq)
y − 1

2
π(eq)
y

]
+∂1z

[
− 1

3
ρ0uz +

1

6
q(eq)
z − 1

2
π(eq)
z

]} (3.26c)

Apxy = −
(

2− sc
2sc

)
δt

{
∂1x

[
2

3
ρ0uy +

1

3
q(eq)
y − 1

2
π(eq)
y

]
+ ∂1y

[
2

3
ρ0ux +

1

6
q(eq)
x − 1

2
π(eq)
x

]
+∂1zφ

(eq)
xyz

}
(3.26d)
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Apyz = −
(

2− sc
2sc

)
δt

{
∂1xφ

(eq)
xyz + ∂1y

[
2

3
ρ0uz +

1

6
q(eq)
y − 1

2
π(eq)
z

]
+∂1z

[
2

3
ρ0uy +

1

6
q(eq)
y +

1

2
π(eq)
y

]} (3.26e)

Apxz = −
(

2− sc
2sc

)
δt

{
∂1x

[
2

3
ρ0uz +

1

6
q(eq)
z +

1

2
π(eq)
z

]
+ ∂1yφ

(eq)
xyz

+∂1z

[
2

3
ρ0ux +

1

6
q(eq)
x − 1

2
π(eq)
x

]} (3.26f)

Comparing the above equations with Eq. (3.23 b - d) we can design the equilibrium

values of moments as q
(eq)
x = aρ0ux, q

(eq)
y = aρ0uy, q

(eq)
z = aρ0uz, π

(eq)
x = 0, π

(eq)
y = bρ0uy,

π
(eq)
z = cρ0uz where a, b and c are random constants. By comparing the coefficients

of the different flux terms of both sets of equations we get the values of a = −2,

b = c = 0. From the shear stress group we derive the final equilibrium value of

moment which affects the macroscopic hydrodynamics equations i.e. φ
(eq)
xyz = 0.

We derive the forcing terms Ψ(1) by using the two basic conditions relating the

mesoscopic and the macroscopic forcing terms:

Ψ
(1)
4 = −2

(
1− se

2

)
(uxFx + uyFy + uzFz) (3.27a)

Ψ
(1)
5 = −2

(
1− sn

2

)
(2uxFx − uyFy − uzFz) (3.27b)

Ψ
(1)
6 = −2

(
1− sn

2

)
(uyFy − uzFz) (3.27c)

Ψ
(1)
7 = −2

(
1− sc

2

)
(uxFx + uyFy) (3.27d)

Ψ
(1)
8 = −2

(
1− sc

2

)
(uyFy + uzFz) (3.27e)

Ψ
(1)
9 = −2

(
1− sc

2

)
(uxFx + uzFz) (3.27f)
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To summarize, we have derived the equilibrium values of moments up to the

third order. These are the moments that affect the macroscopic hydrodynamic equa-

tions. The remaining moments do not affect the Navier-Stokes equations, so in principle

they can be of any value. In this model we obtain all their values according to the BGK

distributions, as discussed in Sec. 2.3. Similarly, the mesoscopic forcing terms which

affect the hydrodynamics of the flow problem have all been derived. The remaining

forcing terms can be set equal to zero since they do not affect the hydrodynamic equa-

tions in any way. The details that are needed to summarize the model are as listed

below:

m(eq) =



0

0

0

0(
3c2
s − 2

)
δρ+ ρ0

(
u2
x + u2

y + u2
z

)
ρ0

(
2u2

x − u2
y − u2

z

)
ρ0

(
u2
y − u2

z

)
ρ0uxuy
ρ0uyuz

ρ0uxuz
−2ρ0ux

−2ρ0uy
−2ρ0uz

0

0

0

0

2δρ− 4ρ0

(
u2
x + u2

y + u2
z

)
−ρ0

(
2u2

x − u2
y − u2

z

)
−ρ0

(
u2
y − u2

z

)
−ρ0uxuy
−ρ0uyuz
−ρ0uxuz
ρ0ux
ρ0uy
ρ0uz

−δρ+ 3ρ0

(
u2
x + u2

y + u2
z

)



(3.28a)
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Ψ(1) =



0

F
(1)
x

(
1− sjx

2

)
F

(1)
y

(
1− sjy

2

)
F

(1)
z

(
1− sjz

2

)
−2
(
1− se

2

)
(uxFx + uyFy + uzFz)

−2
(
1− sn

2

)
(2uxFx − uyFy − uzFz)

−2
(
1− sn

2

)
(uyFy − uzFz)

−
(
1− sc

2

)
(uxFx + uyFy)

−
(
1− sc

2

)
(uyFy + uzFz)

−
(
1− sc

2

)
(uxFx + uzFz)

0

.

.

.

0



(3.28b)

3.3 Boundary Conditions

The most popular set of boundary conditions used while trying to simulate fluid

flow phenomena at the solid-fluid interface is the bounce back scheme [35]

fα̃(rf , t+ ∆t) = f̃α(rf , t)− (f̃ (eq)
α (rw, t

+)− f (eq)
α̃ (rw, t

+)) = f̃α(rf , t) + 2wαρ0
eα̃ · uw
c2
s

(3.29)

where rf indicates the boundary fluid node as shown in Fig. 3.1, eα points into the

solid region and eα̃ = −eα, t+ denotes the time when the distribution f̃α(rf , t) arrives

at the fluid-solid boundary. The simplest bounce back scheme, Eq. (3.28), is of second-

order accuracy when the solid boundary is located half way between the lattice node

at the boundary and its subsequent node. However, when the boundary is not exactly

midway from the boundary node, the accuracy is of first order which is inconsistent
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with the design of the LB equation. To capture the actual shape of the solid boundary

and maintain the second-order accuracy, an interpolation scheme is used to find the

missing distribution function fα̃(rf , t + ∆t). The interpolation scheme that is used in

our study is the Yu et al.’s double interpolation scheme [36].

Figure 3.1: Sketch to show notations used to construct a bounce back scheme at the
fluid-solid boundary.

3.3.1 Yu’s Double Interpolation

For this boundary treatment, we need to go through three steps: By using the

existing populations at the nodes f, ff and fff for eα, the population at a temporary

location (distance ∆x from the wall boundary w) is interpolated, during the streaming

process [36]. After streaming the populations would propagate exactly to the wall.

Linear : f̃α(rw, t+ ∆t) = qf̃α(rf , t) + (1− q)f̃α(rff , t) (3.30a)

Quadratic : fα(rw, t+∆t) =
q(1 + q)

2
f̃α(rf , t)+(1−q)(1+q)f̃α(rff , t)−

q(1− q)
2

f̃α(rfff , t)

(3.30b)

The next step is an instantaneous bounce-back operation at the wall

fα̃(rw, t+ ∆t) = fα(rw, t+ ∆t) + 2wαρ0
eα̃ · uw
c2
s

(3.31)
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Eventually, the unknown population is interpolated from fα̃(rw, t+ ∆t), fα̃(rff , t+ ∆t)

and fα̃(rfff , t+ ∆t)

Linear : fα̃(rf , t+ ∆t) =
1

1 + q
fα̃(rw, t+ ∆t) +

q

1 + q
fα̃(rff , t+ ∆t) (3.32a)

Quadratic : fα̃(rf , t+∆t) =
2

(1 + q)(2 + q)
fα̃(rw, t+∆t)+

2q

1 + q
fα̃(rff , t+∆t)− q

2 + q
fα̃(rfff , t+∆t)

(3.32b)

3.4 LBM Algorithm

Figure 3.2: Flowchart representing the algorithm of the code, incorporating the lattice
Boltzmann solver.

Fig. 3.2 is a flowchart representing the algorithm of the lattice Boltzmann solver.

This algorithm is implemented in a code written in FORTRAN and MPI, whose most

important feature is the one step implementation of both streaming and collision stages.

This implementation helps us make the code faster and more efficient by reducing data

dependency between the collision statement and the streaming statement.
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Chapter 4

RESULTS

4.1 Validation of the D3Q27 Model: Unsteady Laminar Flow Results

4.1.1 Unsteady Laminar Channel Flow Results

First, we use the two-dimensional, unsteady, laminar channel flow to validate

the D3Q27 model in the presence of flat solid walls. The Reynolds number(Re) based

on the maximum center line velocity attained by the flow and the half channel width

is 20. The flow begins from rest and is driven by a constant body force until it reaches

the steady state. The body force could represent the pressure difference at the two

ends of the channel. This body force can be written as

Fy =
8ρ0νVmax

H2
(4.1)

where Vmax is the maximum velocity at the channel centerline, at steady state, ν is the

kinematic viscosity and H is the channel height. Since the flow is laminar, there is no

variation in the streamise or the spanwise direction. We only need to resolve the flow in

the transverse direction. Hence, the grid resolutions in the streamwise and the spanwise

direction are comparitively smaller than the grid resolution in the transverse direction.

The computational domain size for this case is set to Nx × Ny × Nz = 40 × 8 × 8.

The height of the channel is thus H = 40∆x, where ∆x is the size of the grid-spacing.

The mid-link bounce back scheme is applied to fulfill the no-slip boundary condition

by placing the wall boundary half lattice away from the boundary fluid nodes. At

the boundary node, the outward post-streaming distribution is equal to the inward

pre-streaming distribution i.e. fĩ(rb, t + ∆t) = fi(rb, t) where rb is the location of

a boundary node, fi represents the pre-streaming distribution function with particle
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velocity ei, which points into the wall. fĩ represents the post-streaming distribution

function in the direction opposite to ei. We apply periodic boundary conditions in both

the streamwise and spanwise directions. In the code, x, y and z represent the transverse,

streamwise, and spanwise direction, respectively. The maximum streamwise velocity

Vmax is set to 0.05 and the speed of sound cs is 0.5773. Hence, the maximum Mach

number is much smaller than 1/3. The kinematic shear viscosity is calculated by using

the definition of the Reynolds number

ν =
VmaxH

Re
, (4.2)

The relaxation parameters introduced in Sec. 3.1 are then given by the relation

s =
1

3ν + 0.5
(4.3)

The results obtained from the simulation are then compared with the analytical results

obtained from solving the Navier-Stokes equation. For a laminar channel flow, the

Navier-Stokes equation reduces to a PDE where the velocity field is a function of

the time and distance from the channel wall. The PDE is solved using separation of

variables and the result is given as

utheory =
∞∑
n=1

32

k3
n

[
1− exp

(
− k2

nνt

H2

)]
sin

[
kn(x− 0.5)

H

]
(4.4)

where kn = (2n − 1)π. t is the number of the time step, x represents the coordinate

index of a specified point normal to the wall. Thus (x − 0.5) is the position of this

point in the physical space since the physical position is located at the center of lattice,

which is half grid from the boundary. In the simulation, it is impossible to sum infinite

terms to get the theoretical solution of velocity. Therefore, only the first 300 terms of

the analytical solution are summed to get the analytical result at a certain time and

position.

In Fig. 4.1, the time evolution of the streamwise velocity close to the channel

centerline has been plotted. The theoretical velocity at this location is also plotted

as the benchmark. We can see that the value of the streamwise velocity close to the
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Figure 4.1: Time evolution of the streamwise velocity at x/H = 0.4875(close to the
channel centerline). All the values are normalized as indicated.

Figure 4.2: Streamwise velocity profiles at six different times, tν/H2 = 0, 0.125, 0.25,
0.375, 0.5 and 0.625. All the values are normalized as indicated.
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channel centerline steadily increases from 0 to 1 under the application of a constant

uniform external force. The steady-state velocity is reached at roughly tν
H2 = 0.5 (

see Fig. 4.1). At the location x
H

= 0.4875, which is close to the channel centerline,

the value of uy
Vmax

is very close to 1, but not exactly equal. In Fig 4.1, we see good

agreement between the simulation results and the benchmark.

In Fig. 4.2, we plot the profiles of the streamwise velocity uy
Vmax

at different times

tν/H2 = 0, 0.125, 0.25, 0.375, 0.5 and 0.625. We also plot the analytical results at the

given times as the benchmark. From Fig. 4.2, we can see excellent agreement between

the analytical and the simulation results. The flow starts from rest and has already

reached the steady state at tν/H2 = 0.625. This can be deduced from the fact that

the maximum value of the streamwise velocity is equal to one at the position x
H

= 0.5.

4.1.2 Unsteady Laminar Pipe Flow Results

Next, we use the unsteady, laminar pipe flow to validate the D3Q27 model in the

presence of a curved wall. The Reynolds number (Re) based on the maximum center

line velocity attained by the flow and the radius of the pipe is 20. The flow begins from

rest and is simulated until it reaches steady state. Again, the flow is trigerred by the

pressure difference at the two ends of the channel and the external body force term Fy

according to the steady-state solution is

Fy =
4ρ0νVmax

R2
(4.5)

where Vmax is the maximum velocity at the center of the pipe, ν is the kinematic

viscosity and R is the pipe radius. Since the flow is laminar, there is no variation in

the streamwise and the azimuthal directions. We need to resolve the flow in the radial

direction. Hence, the length of the pipe can be set comparatively smaller than the

radius of the pipe. The radius of the pipe is taken to be R = 45∆x, where ∆x is the

size of the grid-spacing. For the simulation, apart from the nodes corresponding to the

fluid medium, we need two extra layers of nodes:

1. As buffer layers to be used after streaming.
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Hence, the value of Nx, Nz should be greater than 2R + 2. Hence, the com-

putational domain size for this case is set to Nx × Ny × Nz = 95 × 8 × 95. The

interpolated bounce back scheme is applied to fulfill the no-slip boundary condition.

At the boundary node, the outward post-streaming distribution is related to the in-

ward pre-streaming distributions by the quadratic interpolation scheme as explained in

Sec. 3.3.1. We apply periodic boundary conditions in the streamwise direction. In the

code, y represents the streamwise direction and x, z are the directions along θ = 0, 90

respectively. The maximum streamwise velocity Vmax is set to 0.05 and the speed of

sound cs is 0.5773. Hence, the maximum Mach number is much smaller than 1/3. The

kinematic shear viscosity is calculated by using the definition of the Reynolds number

ν =
2VmaxR

Re
, (4.6)

The relaxation parameters introduced in Sec. 3.1 are then given by the relation

s =
1

3ν + 0.5
, (4.7)

The results obtained from the simulation are then compared with the analytical results

obtained from solving the Navier-Stokes equation. For a laminar pipe flow, the Navier-

Stokes equation reduces to a PDE where the velocity field is a function of the time and

distance from the pipe center. The PDE is solved using separation of variables and the

result mentioned in [38], is given by:

utheory = 1−
(
r

R

)2

−
∞∑
n=1

8J0(λnr/R)

λ3
nJ1(λn)

exp

(
− λ2

nνt

R2

)
(4.8)

where J0 and J1 are Bessel functions of the zeroth and first order, respectively. t is

the number of the time step, r represents the distance of the specified point from the

center. λn is the nth root of the Bessel function, otherwise known as the zero of Bessel

function. In the simulation, it is impossible to sum infinite terms to get the theoretical

solution of velocity. Therefore, only the first 10 terms are summed to get the analytical

result at a certain time and position.

In Fig. 4.3, the time evolution of the streamwise velocity close to the pipe

center has been plotted. The theoretical velocity at this location is also plotted as the
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Figure 4.3: Time evolution of the streamwise velocity at r = 0(the pipe center). All
the values are normalized as indicated.

Figure 4.4: Streamwise velocity profiles at six different times, tν/R2 = 0, 0.222, 0.444,
0.666, 0.888 and 1.111. All the values are normalized as indicated.
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benchmark. We can see that the value of the streamwise velocity close to the pipe

centerline steadily increases from 0 to 1 under the application of a constant uniform

external force. The steady-state velocity is reached at roughly tν
R2 = 0.5 ( see Fig. 4.3),

similar to the case of laminar channel flow ( see Fig. 4.1). In Fig 4.3, we see good

agreement between the simulation results and the benchmark.

In Fig. 4.4, we plot the profiles of the streamwise velocity v
Vmax

at different times

tν/R2 = 0, 0.222, 0.444, 0.666, 0.888 and 1.111. We also plot the analytical results

at the given times as the benchmark. From Fig. 4.2, we can see excellent agreement

between the analytical and the simulation results. The flow starts from rest and has

already reached the steady state at tν/H2 = 1.111. This can be deduced from the fact

that the maximum value of the streamwise velocity is equal to one at the position x
R

= 1.0.

4.2 Effect of 3-D Lattice Models on the Simulation Results of Laminar

Pipe Flows

In this section, we compare the results obtained from laminar pipe-flow sim-

ulations using two different 3D models: D3Q19 and D3Q27. We choose these two

lattices over the D3Q15 lattice as they produce more accurate and stable results [30]

and the availability of better computational resources has enabled us to employ these

two models despite the increase in computational cost. The D3Q19 model used for the

laminar-pipe flow simulations has been adopted from [37]. The D3Q27 model which

we have used to simulate laminar-pipe flow has been derived in Sections. (3.1 and 3.2).

To evaluate the accuracy of the two models we use L1 and L2-error norms:

L1− error ≡ 1

n

i=n∑
i=1

|unum,i − utheory,i| (4.9a)

L2− error ≡

√∑i=n
i=1

(
unum,i − utheory,i

)2

n
(4.9b)
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Table 4.1: L1-norm for streamwise flow at different time steps.

Time Step D3Q19 D3Q27
1000 5.22e-04 1.04e-04
2000 6.16e-04 1.22e-04
3000 6.51e-04 1.47e-04
4000 6.61e-04 1.64e-04
5000 6.62e-04 1.74e-04
6000 6.60e-04 1.79e-04
7000 6.57e-04 1.82e-04
8000 6.55e-04 1.83e-04
9000 6.53e-04 1.84e-04
10000 6.52e-04 1.84e-04

where n is the number of points and unum,i, utheory,i are the numerical and theoretical

values of the stream wise velocity at a particular point, normalized with the maximum

centerline velocity.

Table 4.2: L2-norm for streamwise flow at different time steps.

Time Step D3Q19 D3Q27
1000 5.15e-04 1.25e-04
2000 5.95e-04 1.46e-04
3000 6.30e-04 1.76e-04
4000 6.42e-04 1.96e-04
5000 6.44e-04 2.07e-04
6000 6.43e-04 2.13e-04
7000 6.41e-04 2.16e-04
8000 6.40e-04 2.18e-04
9000 6.38e-04 2.19e-04
10000 6.37e-04 2.19e-04

In Tables 4.1 and 4.2, we compare the L1 and L2-error norms calculated for

the streamwise velocity at different time steps, and observe that the D3Q27 model

produces more accurate results while simulating laminar pipe flow. We now perform the

same error analysis for the secondary velocities in the radial and azimuthal directions.
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Theoretically, both ur and uθ in a laminar pipe flow are non-existent. Hence, equations

(4.9a) and (4.9b) become

L1− error ≡ 1

n

i=n∑
i=1

|unum,i| (4.10a)

L2− error ≡

√∑i=n
i=1 u

2
num,i

n
(4.10b)

Table 4.3: L1-norm for radial and azimuthal velocities at different time steps.

Time Step ur(D3Q19) ur(D3Q27) uθ(D3Q19) uθ(D3Q27)
1000 8.35e-06 4.84e-19 1.14e-04 5.50e-18
2000 1.12e-05 6.59e-19 1.51e-04 7.67e-18
3000 1.26e-05 8.19e-19 1.69e-04 9.19e-18
4000 1.34e-05 8.71e-19 1.79e-04 1.01e-17
5000 1.37e-05 9.07e-19 1.84e-04 1.05e-17
6000 1.39e-05 9.51e-19 1.87e-04 1.04e-17
7000 1.40e-05 9.36e-19 1.88e-04 1.05e-17
8000 1.41e-05 9.37e-19 1.89e-04 1.05e-17
9000 1.41e-05 9.23e-19 1.89e-04 1.08e-17
10000 1.41e-05 9.36e-19 1.89e-04 1.09e-17

From Tables. 4.3 and 4.4, we notice that the error-norms for the D3Q19 model

are many orders of magnitude higher than that of the D3Q27 model. The error norms

for ur are an order of magnitude lesser than uy and the error norms for uθ are of the

same order as uy for the D3Q19 model. However, for the case of a D3Q27 model, the

order of error-norms for ur is one order less than the order of truncation error for a

double precision number and the order of L1, L2 norms for uθ are of the same order

as that of the truncation error for a double precision number. Let us try to visualize

the secondary flows for both the models and try to gain a deeper understanding of the

source of the error for the case of a D3Q19 model.

In Fig. 4.5, we visualize the cross-flow vector fields for a laminar pipe flow after

it reaches a steady state. The same scaling factor has been used for the two plots and
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Table 4.4: L2-norm for radial and azimuthal velocities at different time steps.

Time Step ur(D3Q19) ur(D3Q27) uθ(D3Q19) uθ(D3Q27)
1000 1.17e-05 6.91e-19 1.95e-04 7.83e-18
2000 1.58e-05 9.47e-19 2.61e-04 1.11e-17
3000 1.78e-05 1.19e-18 2.94e-04 1.34e-17
4000 1.90e-05 1.27e-18 3.11e-04 1.48e-17
5000 1.96e-05 1.33e-18 3.21e-04 1.54e-17
6000 1.99e-05 1.38e-18 3.26e-04 1.52e-17
7000 2.01e-05 1.35e-18 3.29e-04 1.52e-17
8000 2.02e-05 1.37e-18 3.31e-04 1.53e-17
9000 2.02e-05 1.35e-18 3.32e-04 1.60e-17
10000 2.031e-05 1.36e-18 3.32e-04 1.60e-17
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(b) D3Q27 model

Figure 4.5: Mean cross-flow vector fields for the laminar pipe flow at time t∗ = 1.111.
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is equal to 5 × 10−4/unit length. By comparing the vector plots for the two models,

we notice that the D3Q19 model produces a strong secondary flow, especially, near

the wall. However, for the D3Q27 model, the secondary flow is just noise produced

due to the truncation of a double-precision floating-point number. In Fig. 4.5, we can

clearly see that the secondary flow can be construed as four vortices whose centers are

on diametrically opposite sides of the pipe. Fig.4.5 is a visual verification of Tables.

4.3 and 4.4, and we can conclude that using a D3Q19 model to simulate a laminar

pipe flow produces a weak secondary flow consisting of four vortices as opposed to the

D3Q27 model where the nonphysical secondary flow is not present.

4.3 Order of Accuracy for both the Models

Using the Chapman-Enskog analysis we can prove that the lattice Boltzmann

method recovers, both continuity and Navier-Stokes equations with second-order ac-

curacy [30]. The order of accuracy for the D3Q19 and the D3Q27 model can be

determined by using the L1 and L2 error-norms for the laminar pipe flow. The error-

norms are calculated for the streamwise velocity at time, t∗ = 1.111 i.e. after the

laminar pipe flow attains a steady state. To study the order of accuracy for laminar

pipe flow, we choose four different pipe radii: R = 10∆x, 15∆x, 30∆x and 45∆x, where

∆x is the grid-spacing. The order of accuracy n can now be estimated as

n(t) = log( r2
r1

)(εr1(t)

εr2(t)

)
(4.11)

where εr1 is the L1, L2 error-norm when the radius of the pipe is r1 and εr2 is the L1,

L2 error-norm when the radius of the pipe is r2. Graphically, the order of accuracy is

equal to the slope of the logarithm of the L1 error-norm or the L2 error-norm vs the

logarithm of radius of the pipe. Fig. 4.6 gives a summary of the results pertaining to

the order of accuracy. These results are discussed in more detail in the next section.

4.4 Turbulent Pipe Flow Results

The final test case is the turbulent pipe flow which is a wall-bounded turbulent

flow. As indicated in Sec. 1.1, no previous attempt has been made to perform direct
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(a) D3Q19 model (b) D3Q27 model

Figure 4.6: Log plots of error norms with respect to the pipe radius (grid resolution)
at time, t∗ = 1.111. The order of accuracy is equal to the negative slope of the curve.

numerical simulation of turbulent pipe flow using LBM. The flow is locally inhomoge-

nous and anisotropic, especially in the near-wall region. In this section, we study fully

developed turbulent pipe flow of Reynolds number based on the friction velocity and

the radius of the pipe, equal to 180. The friction velocity of the pipe is defined as

uτ =
√
τw/ρ. The dimensions of the pipe shown in Fig. 4.6 are D × D × 2D, where

D is the diameter of the pipe. The domain size is equal to 300 × 599 × 300. The

kinematic shear viscosity is set to 0.032 and the relaxation parameters are related to

the kinematic shear viscosity by the following relation:

s =
1

3ν + 0.5
(4.12)

The velocity of the fluid is maintained such that the Mach number is much smaller

than 1/3. The velocity is initialized by the “Law of the wall”, which is given by the

following equation:

u+ =

r
+, r+ < 10.8;

log(r+)
0.4

+ 5.5, r+ > 10.8

where u+ (u+ = u
uτ

) is the non-dimensionalized form of velocity and r+ (r+ = (R−r)×uτ
ν

)

is the wall coordinate. The friction velocity is calculated from the definition of Reynolds
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Figure 4.7: Flow geometry for turbulent pipe flow simulations

number i.e. uτ = 2Re ν
D

. A constant body force Fy is applied to the streamwise direction

and is equal to:

Fy =
4ρu2

τ

D
(4.13)

where uτ is the friction velocity. Along with the constant body force, we apply, what

is called a perturbation force to excite the flow for quick transition to a turbulent flow.

fy = f0B0
R

r
sin

(
2πt

T

)
sin

(
2π(R− r − l0)

l

)
sin

(
ky

2πy

Ly

)
cos(kθθ) (4.14a)

fr = −f0αB0
R

r

kyl

Ly
sin

(
2πt

T

)
cos

(
2π(R− r − l0)

l

)
cos

(
ky

2πy

Ly

)
cos(kθθ) (4.14b)

fθ = f0(α)B0
ky
kθ

2πR

Ly
sin

(
2πt

T

)
sin

(
2π(R− r − l0)

l

)
cos

(
ky

2πy

Ly

)
sin(kθθ) (4.14c)

where ky, kθ are two frequencies of the perturbation force, T is the forcing period, B0 is

the forcing magnitude , α is the weighting parameter that distributes perturbation in

radial and azimuthal direction and l0, l define the forcing region in the radial direction.

The two main principles to be observed behind designing such a force are:
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1. The perturbation force recovers the constant physical body force when aver-

aged over the whole domain.

2. The force satisfies the divergence free condition in cylindrical coordinate at

every point of the flow domain

5 ·
−→
f =

1

r
δr(rfr) +

1

r
δθ(fθ) + δy(fy) = 0 (4.15)

The boundary condition used to simulate behavior at a solid-fluid interface is given by

Yu et al.’s linear interpolation technique, as discussed in Sec. 3.3.1. We use periodic

boundary conditions along the directions parallel to the flow. Let us look at how the

value of the mean flow develops with time:

Figure 4.8: Time evolution of the streamwise velocity averaged over the whole domain.
All the values are normalized as indicated.

From, the above figure, we can divide the simulation into three stages:

1. Pre-transition stage: Starting from the initial flow, the application of the

perturbation force adds energy to the flow, but no obvious rapid transition of the

energy from the mean flow to the velocity fluctuations. During this period, the mean

velocity rises monotonically until the transition stage.
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Table 4.5: Reference data

Reference Scheme Reynolds Number Resolution (r ×θ× z) Pipe length
Loulou et al. [39] Spectral 190 72 × 160 × 192 5D
Wagner et al. [40] Finite volume 180 70 × 240 × 486 5D

2. Transition to turbulence: When the mean flow reaches to a high level, the

flow became unstable with rapid transition of energy from the mean motion to the

turbulent fluctuations. This period is represented by the decrease in the mean flow

velocity.

3. Fully developed turbulent pipe flow: At this stage, the flow is statistically

steady, though the instantaneous flow continues to change with time. At this stage,

flow statistics can be averaged over a long time to obtain the mean and RMS velocity

profiles. Similarly, higher order turbulence statistics such as Reynolds stress, skewness,

etc can be computed.

To obtain the turbulence statistics, we average over approximately 40 eddy

turnover times to compute the mean and the RMS velocity profiles. The details of the

benchmark data to be compared with are mentioned in Table 4.5:

In the figures below, we compare the mean and RMS velocity profiles of fully

developed turbulent pipe flow simulations using D3Q19 and D3Q27 models with the

benchmark data.

Next, we compare the second-order turbulence statistics for the D3Q19 and

D3Q27 model with the benchmark. The corresponding profiles of the Reynolds shear

stress − < u
′
yu

′
r/u

2
τ > are plotted in Fig. 4.11. Finally, in Fig. 4.12, we look at

the contour plots of streamwise velocity averaged over the transverse sections of the

pipe and time. To plot the contours, the streamwise velocity has been averaged over

approximately 40 eddy turnover times.
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Figure 4.9: Profiles of mean streamwise velocity as a function of r+ when the flow
reaches the stationary stage. All the values are normalized as indicated.

Figure 4.10: Profiles of RMS fluctuation velocities as a function of r+ when the flow
reaches the stationary stage. All the values are normalized as indicated.
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Figure 4.11: Profiles of average Reynolds stress as a function of r+ when the flow
reaches the stationary stage. All the values are normalized as indicated.

(a) D3Q19 model (b) D3Q27 model

Figure 4.12: Mean stream wise velocity contour plot for fully developed turbulent
pipe-flow
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4.4.1 Relation between the Friction Reynolds Number and the Bulk Reynolds

Number

The two major velocity scales taken into consideration while calculating the

Reynolds number for laminar pipe flow are the friction velocity and the maximum

velocity at the centerline. In this section, we derive the relation between the friction

Reynolds number and the Reynolds number based on the maximum centerline velocity

for a steady state laminar pipe flow. The streamwise velocity profile for a steady state

laminar flow is given by the equation

u

ucl
= 1−

(
r

R

)2

, (4.16)

The shear stress at the wall is then derived by using the Newton’s law of viscosity i.e.

τ = −µ∂u
∂r
, (4.17)

where µ is the dynamic viscosity. From Eqs. (4.16) and (4.17), we have

τ =
2µucl
R

, (4.18)

The friction velocity is given by the relation

uτ =

√
τ

ρ
=

√
2µucl
ρR

=

√
2νucl
R

, (4.19)

where ν is the kinematic viscosity. Hence, according to the definition of the Reynolds

number, we have

Reτ =
2uτR

ν
=

2

ν

√
2νucl
R

R = 2

√
2uclR

ν
, (4.20)

However, 2uclR
ν

= Recl, where Recl is the Reynolds number based on the maximum

centerline velocity. Hence, Eq. (4.20) reduces to

Reτ = 2
√
Recl (4.21)

4.5 Timing Comparison of the D3Q27 Model with the D3Q19 Model

The wall clock index used to compare the execution speed of the codes incorpo-

rating the D3Q19 and D3Q27 models is given by the equation

WCI =
W

Nt

× Np

Nx ×Ny ×Nz

(4.22)
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where W is the wall clock time taken to run the simulation, Nt is the number of time

steps for which the simulation has been run, Np is the number of processors used to

run the simulation and Nx ×Ny ×Nz is the resolution of the domain being simulated.

In Table 4.6, we provide the details used for the calculation of the wall clock indices’s

for the two models:

Table 4.6: Calculation of wall clock indices’s for the two models

D3Q19 D3Q27
Wall clock time (seconds) 587 713

Nt 10000 10000
Np 450 450

Nx ×Ny ×Nz 300 × 599 × 300 300 × 599 × 300
WCI 4.90E-07 5.95E-07
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Chapter 5

CONCLUSIONS AND FUTURE SCOPE

In this chapter, we summarize the results of the study to arrive at some conclu-

sions regarding the performance of the D3Q27 MRT model in comparison to the D3Q19

model. The prospective path forward is stated by discussing the future directions of

this study.

5.1 Discussion and Conclusions

In Sec. 4.1, we validate the D3Q27 model used for the study by simulating the

following cases:

Table 5.1: Summary of the test cases used for model validation

Flow case Reynolds Number Dominant length scale
Laminar channel flow 20 40 (Half-channel width)

Laminar pipe flow 20 45 (Radius of the pipe)

We select the above mentioned cases for validation of our model due to the

presence of analytical results for cross-verification. From Figs. 4.1, 4.2, 4.3, and 4.4

we find perfect agreement of the simulation results with the analytical results, and as

a result, can affirm to the accuracy of the D3Q27 model.

After the validation of the numerical code written in FORTRAN and MPI, we

compare the performance of the D3Q27 model with the D3Q19 model for laminar

pipe flow simulations. From Tables. 4.1 and 4.2, we can observe that the D3Q27

performs more accurately compared to the D3Q19 model for velocity in the stream

wise direction. One of the more interesting observations from this study is the presence

of an unphysical secondary flow in the D3Q19 simulation. From Fig. 4.5, we clearly
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notice the presence of four vortices’s at diametrically opposite ends. Tables. 4.3 and

4.4, further corroborate to the presence of a secondary flow while simulating laminar

pipe flow with the D3Q19 model. However, no secondary flow is manifested in the

simulation of a laminar pipe flow with the D3Q27 model. This can be deduced from the

order of the L1 and L2 error-norms calculated for the radial and tangential velocities.

We finally look at the order of accuracy for the D3Q19 and D3Q27 models. From

Fig. 4.6 (a), one can observe the discrepancy between the results obtained and theory

for the D3Q19 model. The order of the D3Q19 model is observed to be 1.3 and 0.45,

which is significantly different from the theoretical prediction of 2. This discrepancy

can be explained by the error induced at the curved boundary. From the vector plots

in Fig. 4.5, one can notice a strong manifestation of errors near the curved boundary

for the D3Q19 model. For the D3Q27 model, this is of much lesser intensity which

renders the D3Q27 model approximately second order accurate. However, the D3Q19

model is not second order accurate due to the reasons discussed above.

Table 5.2: Summary of the turbulent pipe flow results used for comparison

Case Method Reynolds Number Length of the Pipe
Loulou et al. [39] Spectral 190 5D
Wagner et al. [40] Finite volume 180 5D

D3Q27 LBM 180 2D
D3Q19 LBM 180 2D

In Table 5.2, we summarize all cases of turbulent pipe flow for which the first

and second-order turbulent statistics have been compared. Before discussing the results

in Sec. 4, let us discuss the effects of pipe length on turbulence statistics.

In a letter to Physics of Fluids, Chin et al. discuss the influence of pipe length

on turbulence statistics. They state that the influence of pipe length on lower order

statistics (such as the mean velocity profile) is less significant as compared to the higher

order statistics (such as the RMS velocity profiles). They also state that one of the

artifacts of a short pipe length is a higher peak RMS velocity value in the streamwise

direction. From Fig. 4.9, we can observe that the mean velocity profile for the D3Q27
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simulation agrees well with the reference data. However, the D3Q19 simulation under

predicts the mean velocity away from the pipe wall. The mean velocity profile obtained

from the D3Q27 simulation also conforms to the observation made by Eggels et al.,

which states that the mean velocity profile fails to the conform to the law of the wall

even at Reynolds numbers considerably above 3000. The under-prediction of stream

wise velocity by the D3Q19 model, especially near the center can be attributed to the

lack of velocity vectors in the stream wise direction for the D3Q19 lattice, as stated in

White et al. (2011).

An increase in the peak streamwise RMS velocity for the D3Q19 and D3Q27

simulations was observed in Fig. 4.10. This can be construed as an artifact of the

short pipe length. In Fig. 4.11, we can further see that the Reynolds stress profiles

have good agreement with the reference data for both the models. Finally in Fig. 4.12,

we observe that the contours of the stream wise velocity for the D3Q19 model show a

certain preference along the planes H and V ( see Sec. 2.5). However, for the D3Q27

model, we do not observe obvious preference along a particular direction. The values

of the streamwise velocity along D1 and D2 are observed to be lower than the value

of streamwise velocity along H and V planes for the D3Q19 simulation. This provides

further evidence of the hypthesis stated in White et al., as the planes along which lower

value of streamwise velocity are observed are defective planes (i.e. planes consisting

of lattices which have 5 velocity vectors instead of 9). These defective planes do not

transfer momentum efficiently compared to the planes with 9 velocity vectors and this

results in lower values of streamwise flow averaged over the whole domain.

In Sec. 4.4, we compare the execution speed of the D3Q19 and D3Q27 models.

From Table 4.6, we can see that the D3Q27 model requires 21% more CPU time than

the D3Q19 model. The relative difference is in fact lower than the expected value of

42%. However, the D3Q27 model produced more accurate results for both laminar and

turbulent pipe flow cases. The statistics of the mean streamwise velocity away from

the pipe wall is predicted much better by the D3Q27 model. In addition, the D3Q27

model exhibits rotational invariance, as opposed to the D3Q19 model.
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5.2 Future Directions

The initial motivation of this study was to develop a model which successfully

simulates a fully developed turbulent flow with a curved boundary. In Chapter 3,

we identify the important components of the model and derive the model using an

“inverse analysis”. In Chapter 4, the model has been validated by comparing the

results obtained from the laminar channel and pipe flow simulations with the analytical

results, and the turbulent first and second order statistics with the benchmark results.

The performance of the D3Q27 model has also been compared with the D3Q19 model.

The D3Q19 takes lesser CPU time, but it fails to properly reproduce the exact physics

for the case of laminar and turbulent pipe flow. Having identified a valid model (D3Q27

MRT) used to simulate turbulent flows with a curved boundary, we can now apply this

model in the following manner:

1. Further study is needed to understand and improve the numerical stability

of the MRT model, especially the D3Q27 model. In [43], the influence of the free

parameters of the MRT model on its numerical stability was analyzed. In the above

reference, Lallemand & Luo use linear stability analysis to improve the stability of their

LBM model. They linearize the lattice Boltzmann equation by expressing the distri-

bution function as a mean term and a fluctuation term. This results in an eigen-value

problem known as the dispersion equation. We could optimize the values of the free

parameters by solving for the eigen-values of the dispersion equation. An alternate

method of improving the stability of the model might be, using different implementa-

tions of boundary conditions. The effects of a boundary condition implementation on

the numerical stability are not well understood.

2. We can further extend the functionality of the code incorporating the D3Q27

model, and use it to simulate particle-laden turbulent pipe flows. In Wang et al. (2016),

the authors simulate particle-laden turbulent channel flow using particle-resolved sim-

ulations. We can employ a similar treament to study particle-laden turbulent pipe flow

and explore the effects of particles on turbulence modulation. Such interface resolved

simulations open up a host of opportunities for turbulent particle-laden flow research.
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Appendix A

CHAPMAN-ENSKOG ANALYSIS

The lattice Boltzmann equation with the multiple-relaxation-time collision model

is expressed as:

fi(x + eiδt, t+ δt)− fi(x, t) = −M−1S [m(x, t)−meq(x, t)] + Φi (A.1)

where fi is the distribution function associated with the molecular velocity ei, x and t

are spatial and time coordinates, respectively. The first term on the right hand side of

Eq. (A.1) describes the MRT collision operator and the second term Φi[kg ·m−3] is used

to represent the mesoscopic forcing term which accounts for the effect of macroscopic

forcing F ≡ (Fx, Fy, Fz)[kg ·m−2 ·s−2]. After multiplying Eq. (A.1) by M/δt, we obtain

(
I∂t + Ĉα∇α

)
m +

δt
2

(
I∂t+ Ĉα∇α

)2

m = −S

δt

(
m−m(eq)

)
+ Ψ (A.2)

where I is an identity matrix, Ψ ≡ MΦ/δt denote the moments associated with the

forcing term, ∂t stands for the time derivative, ∇α with α = x, y, or z denotes the

spatial derivatives and Ĉα ≡ Mdiag(e1α)M−1. The following multiscale expansion is

then applied to m, m(eq), ∂t, ∇α, and Ψ:

m = m(0) + εm(1) + ε2m(2) + ... (A.3a)

m(eq) = m(eq,0) + εm(eq,1) (A.3b)

∂t = ε∂t1 + ε2∂t2 (A.3c)

∇α = ε∇1α (A.3d)
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Ψ = εΨ(1) (A.3e)

where ε is the Knudsen parameter, t1 is the fast (advection) time scale and t2 is the slow

(diffusion) time scale. Substituting Eq. (A.3) into Eq. (A.2) and using perturbation

analysis, we obtain the Chapman-Enskog equations:

O(1) : m(0) = m(eq), (A.4a)

O(ε) :
(
I∂t1 + Ĉα∂1α

)
m(0) = −S

δt
(m(1)) + Ψ(1), (A.4b)

O(ε2) : ∂t2m
(0) +

(
I∂t1 + Ĉα∂1α

)[(
1− S

2

)
m(1) +

δt
2

Ψ(1)

]
= −S

δt
m(2) (A.4c)
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