CNN-BASED SINGLE IMAGE SUPER-RESOLUTION NETWORK
AND BIOMEDICAL IMAGE APPLICATIONS

by

Samet Bayram

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical and
Computer Engineering

Winter 2018

(© 2018 Samet Bayram
All Rights Reserved



CNN-BASED SINGLE IMAGE SUPER-RESOLUTION NETWORK
AND BIOMEDICAL IMAGE APPLICATIONS

by

Samet Bayram

Approved:

Mark Mirotznik, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:

Mark Mirotznik, Ph.D.
Acting Chair of the Department of Electrical and Computer Engineering

Approved:

Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:

Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education



ACKNOWLEDGMENTS

It is a big pleasure to thank everyone who helped me with my research and
writing this thesis.

I would like to thank my advisor, Dr. Kenneth E. Barner who is also chair of
Electrical and Computer Engineering Department at the University of Delaware. His
patience, guidance and encouragement have led me to achieve the success of my study.

To Dr. Mark Mirotznik, the acting chair of Electrical and Computer Engineering
Department, for his support during my thesis approval, thank you.

I am grateful to my friends, my colleagues in my research group and all school
faculty for their kindness and support.

I would like to give my special thanks to Turkish Ministry of National Education
for their financial support and guidance from the first day of my master’s education to
this thesis study.

Lastly, I would like to dedicate this thesis to my dear mother Hava and my all

family. They have always been supporting me and believing me with love.

111



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . e vi

LIST OF FIGURES . . . . . . . . . .. . vii

LIST OF SYMBOLS . . . . . . . . . ix

ABSTRACT . . . . e X
Chapter

1 INTRODUCTION . . . . . . e 1

1.1 Thesis Structure .. . . . . . . . ... 2

2 BACKGROUND AND RELATED WORK .. ... ... ...... 3

2.1 Super Resolution Basics . . . . . . ... ... 3

2.2 Interpolation Methods . . . . . . . .. ... ... ... ... ... 4

2.2.1 Nearest-Neighbor Interpolation . . . . . ... ... ... ... 4

2.2.2  Bilinear Interpolation . . . . . . . .. ... 6

2.2.3 Bicubic Interpolation . . . . . ... ..o 7

2.3 Image Quality Evaluation . . . . . ... ... ... .. .. ...... 12

3 LITERATURE REVIEW . . . . .. ... . ... . ... ... 14

3.1 Single-Image Super-Resolution (SISR) Methods . . . .. .. ... .. 14

3.1.1 Sparse Coding . . . . . . . . . ... 15

3.1.1.1  Dictionary Learning . . . . . . . ... ... ... .. 15

v



3.1.1.2

Sparse Coding for Image Super Resolution . . . . . .

3.1.2  Deep Network for Image SR . . . . ... ... ... ... ...

3.1.2.1

Convolutional Neaural Network (CNN) Based Image
SR .

3.2 Multi-Frame Image SR Methods . . . . . . . .. ... ... ... ...

3.2.1 Interpolation methods for Multi-frame image SR.. . . . . . ..
3.2.2  Frequency Domain Methods . . . . . . .. ... .. ... ...
3.2.3 Regularization Methods . . . . . ... ... ... ... ....

4 THE PROPOSED WORK . . . . . .. ... ... ... .. ...,

4.1 Contribution
4.2 Motivation .

4.3 Framework of Proposed Method . . . . . . . .. .. ... ... .. ..

4.4 Summary .

5 EXPERIMENTS AND RESULTS . . . ... ... ... ........

5.1 Experiment-1
5.2 Expriment-2:
5.3 Expriment-3:
5.4 Summary .

6 CONCLUSION

BIBLIOGRAPHY

: Simulation for Existing Datasets . . . . . .. ... ..
Retinal Image Super Resolution . . . . . ... ... ..
Brain MRI Image Super Resolution . . . . .. ... ..

16

16

17
20
20
20
21
22
22
22
24
27
28
28
37
39
39
41

42



4.1

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

LIST OF TABLES

PSNR(dB) results of SC, SRCNN, SCN and interpolation methods.
PSNR(dB)/SSIM results of HR images, scaling factor=2, set5. . . .
PSNR(dB)/SSIM results of HR images, scaling factor=3,set5.
PSNR(dB)/SSIM results of HR images, scaling factor=4, set5. . . .
PSNR(dB)/SSIM results of HR images, scaling factor=2, set14.
PSNR(dB)/SSIM results of HR images, scaling factor=3, set14.
PSNR(dB)/SSIM results of HR images, scaling factor=4, set14.
Image quality matrix for HR images, scaling factor=3 . . . . . . . .

Image quality matrix for HR images, scaling factor=2 . . . . . . . .

vi

23

29

29

29

33

33

33

37

39



2.1

2.2

2.3

24

2.5

2.6

2.7

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

LIST OF FIGURES

Taxonomy of super-resolution techniques [15]. . . . .. .. ... ..
Nearest neighbor interolation . . . . . . .. ... ... ... ....
Original image and nearest neighbor interpolated image. . . . . . .
Bilinear interolation . . . . . . ... ... oL
Original image and bilinear interpolated image. . . . . . . .. . ..
Original image and bicubic interpolated image. . . . . . . .. ...
Original image and the comparison of interpolation methods. . . . .

(a) Uses LR pixels from multiple LR images to create a HR image.

(b) Extracts LR patches from a single LR image and uses them to

reconstruct a HR image of the same scene with LR image. [30] . . .
SRCONN layers [2] . . . . . .o o o
VDSR Network [31]. . . . . .. ... .

MSCN Network [33] . . . . ... ...

An example for multi-frame SR [34] . . . . . ... ... ... ...

Visual comaparison of State-of-the-Art models and interpolation

methods . . . . . . .
Framework of proposed method . . . . . .. ... ... ... ....
Example feature maps learned by CNN [2] . . . ... ... ... ..

LISTA network generates sparse coefficients a as an output from LR
image patchy. . . . . ... .

Vil

10

11

15

17

18

19

20

23

24

25

26



5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

Visual comaparison between proposd method and State-of-the-Art
models and interpolation methods under scaling factor=2, set5.

Visual comaparison between proposd method and State-of-the-Art
models and interpolation methods under scaling factor=3, set5.

Visual comaparison between proposd method and State-of-the-Art
models and interpolation methods under scaling factor=4, set5.

Visual comaparison between the proposd method and State-of-the-Art
models and interpolation methods under scaling factor=2, set14. . .

Visual comaparison between the proposd method and State-of-the-Art
models and interpolation methods under scaling factor=3, set14. . .

Visual comaparison the between proposd method and State-of-the-Art
models and interpolation methods under scaling factor=4, set14. . .

Super Resolution results for a retinal image. a is an original image
from the retinal image database. b is down sampled version of LR
image. c¢,d, and e are implementation results of Bicubic, Sparse
Coding [1] and SRCNN [2] respectively. e is the result of our
proposed method. . . . . . . ... L

Visual comaparison of MRI images between the proposed method and

State-of-the-Art models and interpolation methods under scaling
factor=2. . . . . .

Viil

30

31

32

34

35

36

38

40



sign

LIST OF SYMBOLS

Low resolution image

High resolution image

Low resolution image patch

High resolution image patch

Sparse coefficient

Low resolution image patch dictionary
High resolution image patch dictionary
Peak signal-to-noise ratio

Sructural similarity

Root mean square error

Standard deviation

Intensity

Regularization coefficient

Shrinkage threshold

Signum function

Step size for gradient descent

1X



ABSTRACT

In this thesis, we propose a convolutional neural network (CNN) based single
image super-resolution network model with sparse representation by combining three
existing state-of-the-art methods SC [1], SRCNN [2] and SCN [3] models with a mod-
ified pre-processing step. Firstly, standard gaussian box filter is applied to test image,
which is a low-resolution image (LR), to remove low-frequency noises. After that, the
given low-resolution image is up-scaled by bicubic interpolation method to the same
size with desired output high-resolution image (HR). Secondly, a convolutional neural
network based dictionary learning method is employed to train input low-resolution
image to obtain LR image patches. Also, a rectified linear unit (ReLU) thresholds
the output of the CNN to get a better LR image dictionary. Thirdly, to get optimal
sparse parameters, we adopted Learned Iterative Shrinkage and Thresholding Algo-
rithm (LISTA) [4] [5] network to train LR image patches. LISTA is a sparse-based
network that generates sparse coefficients from each LR image patches. Finally, in
the reconstruction step, corresponding high-resolution image patches are obtained by
multiplying low-resolution image patches with optimal sparse coefficients. Then cor-
responding high-resolution image patches are combined to get final HR image. The
experimental results show that our proposed method demonstrates outstanding per-
formance compare to other state-of-the-art. The proposed method generates clear and
better-detailed output high-resolution images since it is important in real life appli-
cations. The advantage of the proposed method is to combine convolutional neural
network based dictionary learning and sparse-based network training with better pre-

processing to create efficient and flexible single-image-super-resolution network.



Chapter 1

INTRODUCTION

We can classify images as high-resolution (HR) and low-resolution (LR) im-
ages basically. High-resolution images have more pixel density than low-resolution
images. With this feature, high-resolution images are desired for much real-life appli-
cation because HR images provide more detail and information about the scene. These
advantages lead much research to achieve higher resolution of images to get better per-
formance in their imaging systems. For instance, a medical doctor in neurology area
can achieve better diagnosis by using higher-resolution Magnetic Resonance Imaging
(MRI) images [6]. The output images of technical areas such as remote sensing, mag-
netic resonance imaging, etc. might be unsatisfying regarding resolution by several
factors. These factors can be technical or environmental. For example, low quality
of cameras and their limited resolutions, and non-stability of the observed object or
scene. Therefore, acquired images might be noisy, indistinct and insufficient in spatial
and temporal resolution [7]. Super-resolution techniques could be a remedy for these
ill-posed problems [8].

Super-resolution (SR) estimates high resolution (HR) image from one or mul-
tiple low resolution (LR)images of the same scene [9]. Single Image Super Resolution
(SISR) problem aims to gain an HR image from an LR image by deriving all the miss-
ing high-frequency components [3]. As long as super-resolution problem is concerned
significantly, besides other methods such as sparse coding [1], deep learning [3] and
machine learning [2]| techniques have been started applicable for this ill-posed problem.

In the medical imaging area, the quality and resolution of images are vital to
get better information for diagnosis or examination. SISR has been using for numerous

medical imaging applications such as X-Ray [10], MRI [11], PET scans [12] or cardiac



image super-resolution [13]. Image resolution is a fundamental feature of retinal image
inspection. An optical camera monitors through the pupil of the eye to the rear surface
of the eyeball. The parts of the human eye such as optic nerve, fovea, retinal layers,
and vessels are shown in images taken by the camera. Ophthalmologists, the medical
doctors of the human eye, use those images to understand the function, the structure
and the illness of the human eye. They consider visible differences or anomalies in the
eyes during a clinical test. Afterward, the ophthalmologists evaluate these examination

results to diagnose the subject [14].

1.1 Thesis Structure

In this thesis, we present an efficient and precise outstanding model for single
image super-resolution problem. We attempt to solve the problem by training low
resolution and high-resolution image patches for a deep learning network. We obtain
sparse codes as an output of the network to reconstruct our final high-resolution image.
Then we compare the results with some other available state-of-art methods.

After a brief introduction in the first chapter, we give some background informa-
tion in chapter II. Then we provide a literature review including some state-of-the-art
models related to the proposed method in chapter III. We explain details of the pro-
posed method in Section IV and show how it differs from traditional sparse coding
method [1]. In Section V, we present three different experiments to test the proposed
method and describe the implementation details with the simulation results. These re-
sults include a comparison of other state-of-art methods. Then we conclude proposed

method in the Sections IV.



Chapter 2

BACKGROUND AND RELATED WORK

Before taking a look at super-resolution literature and the proposed method, it
is helpful to give brief information of the background required for better understanding

of this study.

2.1 Super Resolution Basics

Development of hardware has a significant impact on image resolution. However,
replacing the equipment in an imaging system might cost a lot. Digital image processing
techniques are a remedy to avoid big hardware costs. SR assigns to obtain a high-
resolution image as output from single or multiple low-resolution images by using digital
image processing techniques. There are three primary type of SR models regarding the

number of inputs and outputs [15].
1. Single input single output (SISO)
2. Multiple input multiple output (MISO)

3. Multiple input multiple output (MIMO)

Figure 2.1 shows the taxonomy of super-resolution techniques and their relations
regarding the number of input and output.

We can conclude two main SR methods from [15]: Single image super-resolution
(SISR) and multi-frame super-resolution. SISR uses single LR image as an input,
and reconstruct HR by finding missing high-frequency components. There are several
methods to estimate those missing components and reconstruction. We can categorize

SISR algorithms into two types [8]:
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Figure 2.1. Taxonomy of super-resolution techniques [15].

1. Learning Methods: HR components are estimated locally by using ML tech-
niques. These may be pixel based [16] [17] or patch-based [18]. we can put
Neighbor embeding [19] and sparse coding [1] algorithms in this category.

2. Reconstruction methods: Most of them are example based methods which use
prior information from LR and HR. Neighbor embedding regressin [20] and deep
convolutional neaural network (CNN) [2] represent this type.

2.2 Interpolation Methods
There are three most common interpolation methods: nearest-neighbor, bilinear

and bicubic interpolations.

2.2.1 Nearest-Neighbor Interpolation

Nearest neighbor interpolation is the most simple method to interpolate the
pixels to the input low-resolution image. According to this method, each interpolated
output pixel is referred from nearest sample pixel in the input image. In the figure
4.1a, known pixel values, (i,j), (i+1,j), (i,j+1), (i+1,j4+1) and unknown pixel P to be

interpolated were shown.



-

\ - -

\‘ . .
\ - -
‘\ - -

o7 Plixy
4 T~ -
/s e -a
—g o—
| (ij+1) (i+1,j+1) |

Figure 2.2. Nearest neighbor interolation

We first determine the distance from unknown point (x,y) to each known pixel
point. Then we select nearest pixel values; in other word, minimum distance to un-

known point as shown below:
Din = min{ D|(z.,y), (i, )], D[(z,y), (i, + 1)}, (2.1)
D[(w,y), (i +1,5)}, Dl(z,y), (i + 1,5 + 1)]} (2.2)
where D represents the distance between points. We can see in the figure 2.2 obviously
that Dy = Dl(x,y), (i, + 1)] . Therefore, the value of the unknown point P will
be (i,j+1) [6]. This interpolation technique uses a limited spatial kernel to estimate

neighbor pixel values. The kernel for the nearest-neighbor interpolation is defined as:

0 lz| > 0
y(e) = (2.3)
1 lz] < 0

The frequency response of the interpolation is
y(w) = sinc(w/2) (2.4)

Although this interpolation method is quite simple, the quality of the output image
is very poor [21]. Blurring and aliasing usually occur after applying the kernel [22]
As we see in the figure 2.3, there is a minor improvement in the image quality. Thus,
nearest-neighbor interpolation is less efficient method compare to other interpolation

techniques.



Original Image

Nearest-Neighbor

Figure 2.3. Original image and nearest neighbor interpolated image.

2.2.2 Bilinear Interpolation

Bilinear interpolation provides better image performance compare to the nearest

neighbor interpolation. This interpolation method takes weighted average of the four

closest pixels Py, P, P3, P, to the certain point P(x,y) in the input image as shown

in Figure 2.4. Then, refers that average value to the output image. The two linear

interpolations are applied in one direction, and the next linear interpolation is applied

in the perpendicular direction.

We assume an unknown function f takes values of those four known pixels as

f(P), f(Py), f(Ps), f(Py) to determine unknown pixel value P(x,y). First, we interpo-

late in x direction as:

f(Pr2)
f(Psa) =

To — X r — I
2L f )+ f () (25)
To — X r — I
el (IR (10 (26
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Figure 2.4. Bilinear interolation

Then we interpolate in y direction between P and P34 to find f(P) as in 2.7.

1

To — I

f(P) = F(P)(x2 = 2)(y = y1) + [(P2) (2 — 21)(y — 1)

+ f(P3) (22 — 2)(y2 — y) + f(Pa) (2 — 21)(y2 — v)

The bilinear interpolation kernel is defined as

0 lz| > 1
fx) =

1 — |z lz] < 1

where x is distance between two points in the input image to interpolate [21].

We can see the resolution improvement in the figure 2.5 obviously.

2.2.3 Bicubic Interpolation

(2.8)

In two dimensional space, the bicubic interpolation provides a better quality

image as an output than above techniques, bilinear, and nearest-neighborhood in-

terpolations. The interpolated image has better and smoother surface with bicubic

interpolation. This method assigns polynomials or cubic convolution algorithm. The

Cubic Convolution Interpolation obtains the grey level value from the weighted average



Bilinear

Figure 2.5. Original image and bilinear interpolated image.

of the 16 closest pixels to certain input image points and employs the grey level values
to the output image. Bicubic Interpolation evaluates 16 grid points with interpolation
function. We Assume that w know the function f and its derivatives f,f, and f,, at
the unit square (0,0),(1,0),(0,1),(1,1) on the input image. Then interpolated surface

can be defined as:

3 3
p(z,y) = Z Y aga'y (2.9)

To interpolate the certain unit square, we need to find 16 coefficients «;;. Four function

values correspond with matching p(x,y) points:

£(0,0) = p(0,0) = ago (2.10)
f(1,0) =p(1,0) = ayg (2.11)
f(0,1) =p(0,1) = an (2.12)
fL 1) =p(1,1) =an (2.13)



The derivatives of eight functions in the x and y directions:

fy(0,0) :py(070) =
fy(L 0) = py(L 0) = ap + o1 + az + ag

fy(O, 1) = py(O 1) = Q1 + 20602 + 30&03

f,(1,1) =p,(1,1) = ZZ%

=1 7=0

fx(070> = pz<070) = Q0
fI(L 0) = px(L O) = o + 200 + 3z

f2(0,1) = p,(0,1) = aqo + 11 + 12 + a3

f(L1) =p(1,1) =) Z iij

1=0 j=1

Lastly, four equations from partial derivatives for xy :

fay(0,0) = pyy(0,0) =
fry(la 0) = pmy(L 0) = Q11 + 20[21 + 30631

fzy(07 1) = Pwy(o 1) = a1 + 20112 + 33

fay(1,1) = pay(1, 1) ZZQUU

i=1 j=1

(2.14)
(2.15)

(2.16)

(2.17)

(2.18)
(2.19)

(2.20)

(2.21)

(2.22)
(2.23)

(2.24)

(2.25)

Above unknwn parameters o;; and functions f;; can be shown in vector form as:

_ T
o = [0400,041070420;043070401,04117a2170431,040370413,a237a33] and

= [f(O, 0)7 f(lv O)a f(07 1)7 f(17 1)7 fﬂ&(ov O)v fx(la 0)7 fx(oa 1)7 f:c(lv 1)’
£4(0,0), fy(1,0), £y (0, 1), fy(1,1); foy (0, 0), fay (1, 0); foy (0, 1), fa (1, DI

Then we can define above definations with a linear equation:

Aa = z.

And unknown coefficients can be found when we invert the equation

Al =«

(2.26)

(2.27)



Those coefficients are used in equation.2.9 to find bicubic interpolated points P(z,y)
[23].
The bicubic convolution interpolation kernel is presented as:

(

(@+2)]zf = (@+3)zf+1  |z[< 1

h(z) = { alz]® — balz|?> + 8alz| — 4a 1<|z|< 2 (2.28)

0 otherwise
\

where « is between -0.5 and -0.75 in most cases [21].

Original Image Bicubic
- “ FIH
e ]

Figure 2.6. Original image and bicubic interpolated image.

As we see in the figure 2.6, there is a significant improvement on the bicubic
interpolated image compare to the original image.

In the figure 2.7, we visually compared interpolation methods. We can see the
differences regarding image qualities obviously. As we monitor the visual results, bicu-
bic and bilinear interpolated images outperformed over nearest-neighbor interpolated

image regarding image quality.

10



Original Image

Bilinear Bicubic

Figure 2.7. Original image and the comparison of interpolation methods.
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2.3 Image Quality Evaluation

Image quality evaluation is a very significant task that will show the ability
and strength of the methods in image processing area. There is various image quality
methods are presented in the literature. The most common techniques in single image
super-resolution are Structural Similarity(SSIM), Peak Signal-to-Noise Ratio (PSNR)
and Root Mean Square Error (RMSE) because they are simple and efficient. In our ex-
perimental results, these three methods have been chosen to evaluate the reconstructed
high-resolution images from our proposed algorithm. Then we use these image quality
evaluations to compare our proposed way with other state-of-the-art techniques.

The most famous evaluation method in signal processing, especially in image
processing, is PSNR. To calculate PSNR, we first find the mean squared error (MSE),

which is defined as:

3
\

n

1

mn <
%

MSE = [1,(i,7) — La(i, 5)]” (2.29)

I
o
.

Il
o

where I, is the ground truth, and I, is the output image with size m x n. We obtain

the smiliarity between two image I; and I; by using equation 2.29. Then we define

PSNR via MSE as:

(MAX; — MIN;)?
MSE

Where M AX; stands for the most significant pixel value and M 1INy is the smallest
pixel values of the image. Typically, this definition satisfies one channel images such as
gray images. However, If we want to evaluate RGB images, then we need to calculate
PSNR for each of channels then compute the average of them. The smaller MSE means,
the higher PSNR. Thus, we can say that higher PSNR indicates better image quality.

Structural Similarity(SSIM) [24] is another image quality evaluation method
that is used commonly. This technique focuses on the structural features similarity
between two images. These features are luminance, contrast and their structures. The

SSIM uses a combination of these features to get a better comparison between two

12



images. It has been shown that SISM has more visual reliability compare to PSNR [6].
The definition of the SISM of two images x and y is shown as:

SSIM(z,y) = [I(z,y)]" - [c(ﬁ,y)}ﬁ- [s(z,y)]” (2.31)

where [,c,s stands for luminance, contrast, structure functions of x and y respectively,
and «, 3, v are their parameters. When we set the parameters o, 3, v as 1 then we
can express SSIM as:

(12 + p2 + Cr)(02 4 02+ ()

SSIM (z,y) = (2.32)

where p, and p, are represents the intensity of # and y which are shown as:
>3 >3 (233
T = N7 i, = AT i :
i=1N i=1N
where o, and o, stand for the standard deviation of z and y which are dfined as:

N

o, = {ﬁ i(r» - ux] Loy = {ﬁ S ) - uy} 2.31)

i=1

also C; and Cy are constants which are shown as:
C1 = (0.01L)?, Cy = (0.03L)? (2.35)

where L defines the dynamic range of the pixel values [6].
The last image quality evaluation method that we use in this thesis is Root Mean
squared error (RMSE). The computation of RMSE of two image x and y is defined as:

RMSE = \/ Lima (7 = 4’ (2.36)

n

The RMSE is also defined as simple as:
RMSE =+V1—-1?-0, (2.37)

where o, stands for standard deviation of y and r is between -1 and 1. This equation

is more simple and efficient than previous one.

13



Chapter 3

LITERATURE REVIEW

There are several methods to solve super-resolution problem in the literature be-
sides interpolation techniques. Super-resolution through neighbor embedding (NE+)
[19] uses the nearest neighbor embedding method to find nearest neighbors among
LR patches in the dictionary and search their corresponding HR patches to recon-
struct final SR output. In [1], image super-resolution via sparse representation (SrSC)
represents low-resolution image patches with sparsity coefficients and then finds corre-
sponding HR patches sparsely by using their coefficients to reconstruct SR image. A
sparse coding-based super-resolution image algorithm [25] proposes a method to im-
prove sparse coding method [26] regarding efficient dictionary learning by combining
K-SVD and Orthogonal Matching Pursuit (OMP). Anchored Neighborhood Regres-
sion (ANR) [27] and the further study of [27], advanced ANR (A+) [28], use ridge
regression in addition to K-SVD and SC to get better performance. The centerpiece
work [2] and [29] of deep learning along SISR is Super-Resolution Convolutional Neural
Network (SRCNN). Since this work was published, numerous works have been using
the method as a benchmark [8]. In this chapter, we will try to describe a different type
of SR models in the literature and give some examples of state-of-the-art methods in

single image super-resolution (SISR) area.

3.1 Single-Image Super-Resolution (SISR) Methods

In this section, we will explain some main SISR methods and their detailed
backgrounds for better understanding the proposed method since SISR is the focused
method in this thesis. In the SISR techniques, the most remarkable part is that there

is only one input LR image Y and its recovered version HR image X as output.

14



Vi 7
I.J- -I':;J Ln n L
(a) Classical Multi-Image SR (b) Single-Image Multi-Patch SR

P TR

Figure 3.1. (a) Uses LR pixels from multiple LR images to create a HR image. (b)
Extracts LR patches from a single LR image and uses them to reconstruct a HR image
of the same scene with LR image. [30]

We can see a fundamental comparison between multi-frame image super resolu-

tion and SISR in figure 3.1.

3.1.1 Sparse Coding
3.1.1.1 Dictionary Learning

The frame work of sparse representation for single image SR [1] focuses on these
two constrains and finds their sparse representation to reconstruct final HR image.

Reconstruction constrain is defined as:
Y =SHX. (3.1)

where S represents downsampling operator and H blurring filter. X is upsampled and
deblurred version of Y.

First, LR image patches y € R™v are extracted from input image. From upper
left corner of the input image to the bottom right end, each LR patch is normalized by
its mean and variance before creating the LR patch dictionary D, . The same mean
and variance are used with standard stochastic gradient descent algorithm in equation
3.3 to obtain HR patch x € R™=, and to create HR patch dictionary D, [1]. Those

dictionary pair (D,, D,) is related to their sparse codes.
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3.1.1.2 Sparse Coding for Image Super Resolution

Super resolution based on sparse representation [1] takes each LR image patches
y from the input LR to obtain corresponding HR image patch x. Each LR and HR
image patch are saved in the dictionaries (D,, D,) which are not necessarily the same
size. We can represent the relation between x and y with some sparse linear coefficients
Qy, . Since y and x are almost linearly related we can assume that o, = o, = o [3].
Thus, the optimal sparse representation o between each input LR patch y and HR
patch x is defined in (3.2) as:

r=D,a st argmin ||y — D, z|5 + A 2|1, (3.2)

where A\ represents regularization coefficients, z represents sparsity coefficient matrix
z = |ag, o, a3, ..., ] € R™™ [3], and [; norm is to balance sparsity [1]. Finding appro-
priate sparse coefficients are crucial for final reconstruction. Therefore, training data
parameters and LR-HR patch sizes should be chosen carefully. After the optimazation
problem is solved as in equation 3.2 and high resolution image patches x are generated
we use gradient descent algorithm to obtain closest image to Xy which is as close as
possible to the ground truth image and keep updating the gradient descent to obtain
optimal output HR image X as below.

X* = argmin [[SHX — Y||35 + ¢[|X — Xo||3, (3.3)
X

where X* represent SR image as output. And the update of the gradient descent
algorithm is:

X =X, +v[HPST(Y — SHX,) + (X — Xo)], (3.4)

where X; represents the estimation of HR image after tth iteration, v is the step size

for the gradient descent algorithm [1].

3.1.2 Deep Network for Image SR
There is a various method that uses the deep network and the idea of SRCNN
2] [29] as a framework. We try to describe SRCNN and some other leading CNN-based

SR models in this section.
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3.1.2.1 Convolutional Neaural Network (CNIN) Based Image SR

The cornerstone of the convolutional neural network for single image Super Res-
olution is called ”Learning a Deep Convolutional Network for Image Super-Resolution”
(SRCNN) [2] published by C. Dong et al. The method employs convolutional neural
networks (CNN) for end-to-end mapping between the low-resolution image LR and the
high-resolution image HR. Instead of taking each feature components one by one in
the dictionaries like traditional sparse coding methods [1], SRCNN optimizes all layers
at one time. As a result of this process, fast and better image quality is obtained with
the SRCNN method. The SRCNN consists of three main steps as it is shown in the

figure below.

#11 feature maps feg feature maps
of low-resolution image of high-resolution image

High-resolution
i image (output)

(]
Low-resolution |
. . B
image (input)

Patch extraction

Non-linear mapping Reconstruction
and representation

Figure 3.2. SRCNN layers [2]

1. Patch extraction: The first layer is defined as a function set Fj as its shown in
equation 3.5 . These functions are used to extract image patches by convolving
the image.

Fi(Y) =maz(0, W, Y + By), (3.5)

where Y represents the input LR image, W, is filters and Bj is biases. The size
of Wi is ¢ x fi X fi x ny where ¢ represents the number of image channels, f; is
the size of filter, and n; is the number of convolution filters. Also, the Rectified
Linear Unit (ReLU) is applied on the filter output.
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2. End-to-end non-linear mapping: In this process, one high-dimensional is mapped
onto another vector. Each non-linearly mapped vector represents a HR image
patch. The equation 3.6 defines the second layer as:

FQ(Y) = ma:v(O,Wg *F1Y+B2), (36)

where B, represents no-dimensional vector, and W is filters with
ny X 1 X 1 X ng size. Each ny sized vector represents a HR image patch. Then
these vectors are used to reconstruct final HR image.

3. Reconstruction: In this layer,the generated overlapping HR patches are averaged
to create the final HR image. The construction step is defined with a convolution
layer which is presented as:

F(Y) = W3 x F,Y + Bs, (3.7)
where Bj is a vectoor with c-dimensional, and the size of W3 is no X f3 X f3 X

C.

Very Deep Super-Resolution (VDSR) [31] creates many convolutional layers (approxi-
mately 20 layers) inspired by VGG-net which was used for ImageNet classification in

previous works [32].

Figure 3.3. VDSR Network [31]

In the VDSR network shown in figure 3.3, convolutional and nonlinear layers

are repeatedly cascaded to get better performance for output HR image from input
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single LR image. VDSR claims superior results over SRCNN by improving limitations
regarding training and network structure [31]. Although the popularity of algorithms
based on sparse coding have been decreased after the domination of deep learning and
CNN in the SISR area, sparse coding-based network (SCN) [3] and its advanced work
”Learning a Mixture of Deep Network for Single Image Super Resolution” (MSCN) [33]
show that sparse coding can be much more efficient if combined with appropriate deep
learning methods. SCN and MSCN not only provide efficiency and better training but
also reduces model size which means that better performance with fewer parameters

compare to other sparse coding methods [8]. The MSCN network consists of SR in-

15 HR
Estimat Aggregation
1% 5R Inference Module B \\
/ 2 HR

Estimat

e 2" SR Inference Module | —_—
. nt™ HR

hh"""'---..-‘ Estimat /
—

nt SR Inference Module

LR Input Final HR
\ Output
—
Waight Maps o

Each Inference

Figure 3.4. MSCN Network [33]

ference modules and one adaptive weight module which are applied to LR image to
obtain one HR image. Then all predicted HR images are combined in aggregation layer

by using adaptive weight module [33].
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3.2 Multi-Frame Image SR Methods

The second type of SR image method is multi-frame Image SR which uses

multiple LR images as the input of SR model to get one or multiple HR images as

output. An example of general multi-frame SR is shown in the figure 3.5.

High-resolution image

Warping

Blurring

Decimation

Wy,

By

Dy,

Super-resolution process

Sequence of low-resolution images

Figure 3.5. An example for multi-frame SR [34]

3.2.1 Interpolation methods for Multi-frame image SR

Interpolation methods for multi-frame image SR have three steps mostly: reg-

istration, interpolation, and deblurring [35]

3.2.2 Frequency Domain Methods

The studies such as ”Superresolution and noise filtering using moving least

squares” [36] take advantage of using Discrete Fourier Transform (DFT), Discrete Co-

sine Transform (DCT) or Discrete Wavelet Transform(DWT) of LR images to gather

absent high-frequency components of HR images.
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3.2.3 Regularization Methods

Regularization methods for image SR employ either standard stochastic or deter-
ministic regularization techniques when there is a limited number of input LR images.

This strategy incorporates prior limited information about unknown HR image [37].
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Chapter 4

THE PROPOSED WORK

In Chapter 3, we have shown CNN [2] and SCN [3] SR algorithms. However,
these two methods can be improved further by concatenating them. Therefore, in this
chapter, we propose a CNN dictionary learning based sparsity deep network method
for single image super-resolution framework. Also, we use Learned Iterative Shrink-
age and Thresholding Algorithm (LISTA) network [4] [5] to get better sparse coding

performance for the high-resolution image reconstruction.

4.1 Contribution

The proposed method is a combination of two existing state-of-the-art models.
We noticed that the accuracy of the CNN based dictionary learning at Dong’s work has
a good impact on feature extraction process. So we use these features to find optimal
sparse coefficients to represent each low-resolution LR image patches by using LISTA
non-linear mapping network [4] [5] as Wang et al. suggested in their work [3].

Furthermore, we apply a Gaussian filter and bicubic interpolation on input LR
image before the next step, patch extraction to get better image quality performance.
Filtering and then upsampling the input images provides better performance as it is

shown in the experimental results section.

4.2 Motivation

In Chapter 3, we reviewed deep network, CNN based and Sparse Coding (SC)
based methods for image super-resolution. There are pros and cons to each other
regarding preprocessing, dictionary training and reconstruction steps. In this section,

we have shown experimental results of SRCNN, SC, SCN and interpolation methods.
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(d) SC [1] (e) SRCNN [2] (f) SCN [3] ’

Figure 4.1. Visual comaparison of State-of-the-Art models and interpolation methods

Figure 4.1 shows results of SC, SRCNN, SCN and interpolation methods visually. For
the simulations, the scale factor was chosen as 3. The PSNR results of simulations

are presented in Table 4.1. As we see on the table, SC method has better PSNR

Table 4.1. PSNR(dB) results of SC, SRCNN, SCN and interpolation methods.

Method PSNR
Nearest Neighbor | 21.76
Bilinear 23.21
Bicubic 24.05
SC 25.16
SRCNN 27.95
SCN 32.51

performance compare to others. As we mentioned before, SCN uses a deep network
method (LISTA) to get optimal sparse coefficients from LR image patches. Due to

this information, we can say that this technique gives much better result than Yang’s
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sparse representation method. Also, SRCNN has a better PSNR performance than SC,
so that we can predict SRCNN has better dictionary learning method than SC.

From this conclusions, we can propose a method that concatenates above meth-
ods with improved preprocessing step. Moreover, we can take advantage of SRCNN

and SCN for better dictionary learning and better sparse coding performance.

4.3 Framework of Proposed Method

Input: LR image Qutput: HR image

| 15t LR patch to sparse code |

2nd LR patch to sparse code |
| - HR Patch Recovery

RelU ‘

| 3rd LR patch to sparse code and Combination

| kth LR patch to sparse code |

Pre-processing Feature Extraction Rectifier linear Non-linear mapping Reconstruction
(CNN) Unit (LISTA)

Figure 4.2. Framework of proposed method

The framework of proposed model has shown in Fig 4.2. We firstly apply a
pre-processing step on a given LR image Y. The pre-processing step consists of Bicu-
bic interpolation to upscale the LR image and Gaussian filtering to smooth it from
minor noises. Then the next step is feature extraction by using Convolutional Neural
Networks (CNN). We inspired from Dong’s model [2] to extract LR image patches from
the input image and create an LR image patch dictionary D,by using CNN. After each
convolutional operation to obtain the LR patch, the rectified linear unit (ReLU) is ap-

plied to the output of the convolutional operation. The ReLLU computes the function
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below:
f(p) = max(0, p) (4.1)

where p is a feature in our method. As it is seen in the Equation 4.1, the activation

threshold is held at zero. We use pre-trained feature wights in our model. An example

Figure 4.3. Example feature maps learned by CNN [2]

of feature maps has been shown in Figure 4.3.
The Network for finding sparse coefficients is inspired by Learned Iterative Shrinkage
and Thresholding Algorithm (LISTA) [4], [5]. LISTA uses the relationship between
sparse coding and neural network. A LISTA network generates sparse coefficients «
from each LR patch y. The network for sparse coding has shown in figure 4.4:

The LISTA uses all network parameters such as linear weights W & R"*™y,
S € R™™ and the shrinkage thresholds § € R" and sparse coding parameters (D, «)

from training data [3]. The update of the network for sparse coding is shown as:
Zk41 = hg(Wy + SZk)7 and (42)
[ho(a)], = sign(o) (o] — ). (43)

where hy is an element-wise shrinkage function and 6 is positive threshold. The ac-

tivation thresholds 6 are updated during training process, and z represents sparsity
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Figure 4.4. LISTA network generates sparse coefficients o as an output from LR
image patch y.

coefficient matrix z = |ag, ag,as,...,a,] € R™". The threshold neuron consists of
three parts: two linear scaling layers and one unit-threshold neuron. Therefore, those
parts provide 6 adjustable threshold decomposition. We concatenate Wang’s model [3]
to reconstruct the HR image. The reconstruction part consists of two steps: HR image
patch recovery step H where HR patch dictionary D, generated and a patch combi-
nation step G. In the HR patch recovery step, sparse coefficients « are used to obtain
corresponding HR image patches x of size m, = s, X s, for each LR image patch y by

multiplying D, € R™=*" with sparse coefficient a as below:
x = D,a. (4.4)

In the next layer G, HR image patches are combined according to their corresponding
locations to reconstruct final HR image X. This steps includes a convolutional filter
with size s, X s, and m, channels. The number of s, defines the number of overlapping
pixels in each spatial direction. The appropriate filter weights assign each HR patches
in corresponding spatial locations in the final HR image. The standard gradient de-
cent algorithm is employed to train reconstruction layer. Standard gradient descent is
defined as:

X" = arg}r{ninHSHX—YH%—i—cHX—Xng, (4.5)

where X* presents SR image. Update of the gradient descent algorithm is :

X1 = Xy +v[HTST(Y — SHX,) + (X — X,)], (4.6)
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where X; presents the estimation of HR image after tth iteration, v is the step size for
the gradient descent algorithm [1]. Also, to train the network from LR to HR, mean

square error (MSE) is used as a cost function. This optimization process is shown as:
i F(Y®;0) — X2 4,
min 3~ [ F(Y;6) - X3 (4.7

where 6 denotes parameter used in training network, Y@ and X@ are i-th par of LR
and HR training images, F' (Y(i); 6) defines obtained HR image X by using LR image
Y and the set of parameters 6.

4.4 Summary

In this chapter, we proposed a CNN based single image super-resolution deep
network model with sparse representation by concatenating SC [1], SRCNN [2] and
SCN [3] models with modified preprocessing step. Firstly, we applied gaussian box
filter to remove low-frequency noises, and then we used bicubic interpolation method to
upscale the given low-resolution image. Secondly, we employed CNN based dictionary
learning method to train LR image to obtain LR image patches. Thirdly, to get optimal
sparse parameters, we adopted LISTA network to train LR image patches. Finally, in
the reconstruction step, we obtained corresponding HR patches then combined them

to get final HR image.
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Chapter 5

EXPERIMENTS AND RESULTS

In this chapter, we present three main experiments to test the performance of
our proposed method. The first experiment examines two of most familiar testing
data sets. The second and third experiments are focused on two different biomedical
imaging are brain MRI images and retinal images. Also, image quality evaluations are
presented in each test. We use Structural Similarity(SSIM) and Peak Signal-to-Noise
Ratio (PSNR) to evaluate obtained output HR images quantitatively. Also, we present

simulation results visually.

5.1 Experiment-1: Simulation for Existing Datasets

We use most commonly used data sets set5 [38] and set14 [39] which contain
5 and 14 colored images for testing super-resolution image models. The experiments
have performed under scale factor 2,3 and 4. Also, 91 images are used to train the
network to learn filters as it has done in [3] and [2]. We used those filters to convolve our
input image to create LR image patch dictionary. At the beginning of the simulations,
the input image LR is down-sized by bicubic interpolation method to obtain LR-HR
image couples for evaluation and training. The original image (HR image) is used for
evaluation, and the downsized LR image is used for training as an input to our network.

The Tables 5.1, 5.2 and 5.3 present the PSNR and SSIM of different methods
compare to our proposed method. This experiment has been done under scaling fac-
tor=2,3 and 4. Set) image data set is used as an input. We can see that PSNR result in
Table 5.1 is not satisfied compare to other methods, although it has got the best SSIM
performance among all methods that we compare. However, under scale factor 3 and 4

we can see that the proposed method achieved better PSNR/SSIM performance. Also,
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Figure 5.1, 5.2 and 5.3 present the visual comparison between methods and proposed

method under scaling factor 2,3 and 4.

Table 5.1. PSNR(dB)/SSIM results of HR images, scaling factor=2, set5.

Method PSNR | SSIM
Nearest neighbor | 27.13 | 0.9011
Bicubic 33.64 | 0.9292
SC 35.78 | 0.9485
SRCNN 36.28 | 0.9509
SCN 37.14 | 0.9667
Proposed Method | 34.96 | 0.9833

Table 5.2. PSNR(dB)/SSIM results of HR images, scaling factor=3,set5.

Method PSNR | SSIM
Nearest neighbor | 27.13 | 0.8112
Bicubic 30.39 | 0.8678
SC 31.34 | 0.8869
SRCNN 32.37 | 0.9025
SCN 33.26 | 0.9167
Proposed Method | 35.10 | 0.9399

Table 5.3. PSNR(dB)/SSIM results of HR images, scaling factor=4, set5.

Method PSNR | SSIM
Nearest neighbor | 28.05 | 0.8012
Bicubic 28.42 | 0.8101
SC 29.07 | 0.8263
SRCNN 30.08 | 0.8525
SCN 31.04 | 08775
Proposed Method | 32.06 | 0.9678

Tables 5.4, 5.5 and 5.6 show the PSNR/SSIM of proposed method and other
methods under scaling factor=2, 3 and 4. Set14 image data set is used to test the net-
work. We notice that the proposed method obtained better PSNR/SSIM performance.
Moreover, Figure 5.4, Figure 5.5 and Figure 5.6 present the visual comparison between

methods and proposd method under scaling factor 2, 3 and 4.
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-Neighbor

(a) Nearest

(f) Proposd method

(e) SCN

Figure 5.1. Visual comaparison between proposd method and State-of-the-Art models

and interpolation methods under scaling factor

2, setb.
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(e) SCN (f) Proposd method

Figure 5.2. Visual comaparison between proposd method and State-of-the-Art models
and interpolation methods under scaling factor=3, set5.
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(a) Nearest-Neighbor (b) Bicubic

(d) SRCNN

(e) SCN (f) Proposd method

Figure 5.3. Visual comaparison between p2oposd method and State-of-the-Art models
and interpolation methods under scaling factor=4, set5.



Table 5.4. PSNR(dB)/SSIM results of HR images, scaling factor=2, set14.

Method PSNR | SSIM

Nearest neighbor 27.34 | 0.8121
Bicubic 30.22 | 0.8683
SC 31.64 | 0.8940
SRCNN 32.00 | 0.9012
SCN 32.71 | 0.9095
The Proposed Method | 33.37 | 0.9432

Table 5.5. PSNR(dB)/SSIM results of HR images, scaling factor=3, set14.

Method PSNR | SSIM
Nearest neighbor 25.12 | 0.7101
Bicubic 27.53 | 0.7737
SC 28.19 | 0.7977
SRCNN 28.90 | 0.8124
SCN 29.55 | 0.8271
The Proposed Method | 30.26 | 0.8308

Table 5.6. PSNR(dB)/SSIM results of HR images, scaling factor=4, set14.

Method PSNR | SSIM

Nearest neighbor 24.64 | 0.6863
Bicubic 25.99 | 0.7023
SC 26.40 | 0.7218
SRCNN 27.13 | 0.7395
SCN 27.76 | 0.7620
The Proposed Method | 30.26 | 0.8308
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(e) SCN (f) Proposd method

Figure 5.4. Visual comaparison between the proposd method and State-of-the-Art
models and interpolation methods under scaling factor=2, set14.
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(e) SCN (f) Proposd method

Figure 5.5. Visual comaparison between the proposd method and State-of-the-Art
models and interpolation methods under scaling factor=3, set14.
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(e) SCN (f) Proposd method

Figure 5.6. Visual comaparison the between proposd method and State-of-the-Art
models and interpolation methods under scaling factor=4, set14.
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5.2 Expriment-2: Retinal Image Super Resolution

In the second experiment, we focus on retinal images. Retinal imaging is an
essential branch of medical imaging. There is a various study in the literature and
ongoing regarding retinal image super-resolution. Therefore, we applied our method
to a single retinal image which is taken from Structured Analysis of the Retina project
database (STARE) [14]. Obtained results have shown that our proposed network has a
remarkable improvement in retinal images visually and quantitatively. As it is seen in
the results, fusing sparse coding with the deep network can be beneficial for retinal im-

age SR. Results have shown that proposed method has gained significant improvement

Table 5.7. Image quality matrix for HR images, scaling factor=3

Method PSNR | SSIM
Bicubic 43.51 | 0.9765
SC 44.05 | 0.9896
SRCNN 46.23 | 0.9825
SCN 47.02 | 0.9899
The Proposed Method | 47.50 | 0.9964

in SISR for the retinal image. To illustrate the results, we show output SR images in

the Figure 5.7
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e) SRCNN f) The Proposed Method

Figure 5.7. Super Resolution results for a retinal image. a is an original image from
the retinal image database. b is down sampled version of LR image. c¢,d, and e are
implementation results of Bicubic, Sparse Coding [1] and SRCNN [2] respectively. e is
the result of our proposed method.
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5.3 Expriment-3: Brain MRI Image Super Resolution

Brain Mri images are very significant to examine brain surface to get a better
diagnosis. Also, capturing an MRI image is very expensive. Therefore, single image
super-resolution fits very well to enhance their resolutions. In this section, we apply
our super-resolution image method on a brain MRI to obtain more clear texture and
clear image. Later on, the results are compared to other methods to measure the
performance. Testing images are taken from DICOM medical image library [40]. The

visual results of the simulation is shown in the Figure 5.8.

Table 5.8. Image quality matrix for HR images, scaling factor=2

Method PSNR | SSIM
Nearest 31.15 | 0.8611
Bicubic 35.00 | 0.8989
SC 36.01 | 0.9056
SRCNN 37.12 | 0.9101
SCN 38.57 | 0.9275
The Proposed Method | 38.66 | 0.9273

5.4 Summary

In this chapter, we presented simulation results of the proposed method. Then
we compared these results with other methods and interpolation techniques. We pro-
vided visual comparisons and image quality evaluation. Also, we defined what kind
of parameters were used during the experiments. The results have shown that the
proposed method can reach outstanding performance regarding both SSIM/PSNR and

visual comparison.
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(d) SRCNN (e) SCN (f) The proposd method

Figure 5.8. Visual comaparison of MRI images between the proposed method and
State-of-the-Art models and interpolation methods under scaling factor=2.
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Chapter 6

CONCLUSION

Image super-resolution has been one of the most studied topics in image pro-
cessing area. Specially single-image-super-resolution is the most focused branch of
super image resolution. Obtaining a high-resolution image by using only one single
input image is an outstanding and efficient idea for many reasons such as disability
of taking multiple images or affordability. For example, MRI is an expensive imaging
technique [41]. Taking it multiple times costs much. Therefore, the concept of single
image super-resolution is a very efficient way to an overcome this issues.

In this thesis, we propose a single image super-resolution network based on three
existing state-of-the-art methods SC [1], SRCNN [2] and SCN [3]. In the model, we
also applied the different pre-processing procedure to get a better PSNR /SSIM perfor-
mance. The experimental results show that the proposed method shows outstanding
performance regarding image quantitative and visual comparison. Thus, the proposed

method generates clear and better-detailed output HR images.
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