

TECHNICAL REPORT HL-91-1

C&EE82

)ml

DATA EMPLOYED IN THE DEVELOPMENT OF A THREE-DIMENSIONAL , TIME-VARYING NUMERICAL HYDRODYNAMIC MODEL OF CHESAPEAKE BAY

by

Alan F. Blumberg

HydroQual, Inc. Mahwah, New Jersey 07430

Billy H. Johnson, Ronald H. Heath, Bernard B. Hsieh, Virginia R. Pankow

Hydraulics Laboratory

and

Keu W. Kim, H. Lee Butler

Coastal Engineering Research Center

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

January 1991 Final Report

Approved for Public Release; Distribution Unlimited

Prepared for US Army Engineer District, Baltimore Baltimore, Maryland 21203-1715 Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

REPORT D	OCUMENTATION PA	GE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of gathering and maintaining the data needed, a collection of information, including suggestio Davis Highway, Suite 1204, Arlington, VA 222	nformation is estimated to average 1 hour per re ind completing and reviewing the collection of im is for reducing this burden, to Washington Head 02-4302, and to the Office of Management and B	esponse, including the time for re- formation. Send comments regar- quarters Services, Directorate for udget, Paperwork Reduction Proje	viewing Instructions, searching existing data sources, ding this burden estimate or any other aspect of this information Operations and Reports, 1215 Jefferson et (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave bla	nk) 2. REPORT DATE January 1991	3. REPORT TYPE AND Final report	DATES COVERED
4. TITLE AND SUBTITLE	میرون مدد کمانیا، انبیبار کامل، بالله و بین علو بطان پر مطالب آیستان میش		5. FUNDING NUMBERS
	Development of a Three- al Hydrodynamic Model o		
Alan F. Blumberg, Bil	ly H. Johnson, Ronald H ginia R. Pankow, Keu W.		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
and Coastal Engineeri	ment Station, Hydraulic ng Research Center, 390	09 Halls Ferry	Technical Report
9. SPONSORING / MONITORING AC	39180-6199 GENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
USAE District, Baltim	ore, Baltimore, MD 212	203–1715	
11. SUPPLEMENTARY NOTES			
Available from Nation Springfield, VA 2216	al Technical Informatio	on Service, 5285	Port Royal Road,
12a. DISTRIBUTION / AVAILABILITY	STATEMENT		12b. DISTRIBUTION CODE
Approved for public r	elease; distribution ur	alimited	
13. ABSTRACT (Maximum 200 wor	rds)		
plied to an estuarine data sets must contai as well as at various tions, from which the rents, temperature, a In addition, the bath This report pre dimensional hydrodyna is a lack of synoptic extensive synoptic fi data sets were collect addition, for the pre physical model of Che	and salinity at several symetry must also be rep sents data sets employed mic model of Chesapeake data throughout the Ba eld data sets were iden ted during June-July 19 liminary calibration of	sets of self-con n tributaries; to teorological data and heat flux can locations throug presented on the ed in the develop a Bay. Since the ay and its tribut ntified for use 280, April 1983, f the hydrodynam Kent Island, Ma	nsistent data. These ides at ocean entrances a at one or more sta- be determined; and cur- ghout the modeled area. numerical grid. pment of a three- e Bay is so large, there taries. Three relatively in this study. These and September 1983. In ic model, data from the ryland, were identified.
Chesapeake Bay	Hydrodynami	ics	222
Estuary	Numerical m	nodel	16. PRICE CODE
Field data 17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	Three-dimer 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500		نده این می اور به می با اور با می اور این اور می اور می مرابع	Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18 299,100

<u>Preface</u>

Compilation of the data described herein and preparation of this report were conducted during 1988-89 for the US Army Engineer District, Baltimore, by the US Army Engineer Waterways Experiment (WES) under the general supervision of Mr. Frank Herrmann, Chief of the Hydraulics Laboratory (HL); Dr. James Houston, Chief of the Coastal Engineering Research Center (CERC); and Messrs. M. B. Boyd, Chief of the HL Waterways Division (WD), W. A. McAnally, Chief of the HL Estuaries Division (ED), and H. L. Butler, Chief of the CERC Research Division (CR). Dr. Robert W. Whalin, Technical Director of WES, was the director of the study; Mr. D. L. Robey, Chief of the Ecosystem Research and Simulation Division, Environmental Laboratory, was the Study Manager. Mr. H. L. Butler was the coordinator for the Hydrodynamics Modeling Team.

Dr. Alan F. Blumberg of HydroQual, Inc., and Dr. Billy H. Johnson of WES prepared this report with assistance from Mr. Ronald H. Heath, WD; Dr. Bernard B. Hsieh, ED; Ms. Virginia R. Pankow, ED; and Dr. Keu W. Kim and Mr. H. Lee Butler, CR. The Chesapeake Region Intensive Modeling Program data presented in the report were obtained from Dr. William Boicourt of the University of Maryland.

This report was edited by Mrs. Jessica Ruff of the WES Information Technology Laboratory.

Commander and Director of WES was COL Larry B. Fulton, EN. Technical Director was Dr. Robert W. Whalin.

This report should be cited as follows:

Blumberg, A. F., Johnson, B. H., Heath, R. H., Hsieh, B. B., Pankow, V. R., Kim, K. W., and Butler, H. L. 1991. "Data Employed in the Development of a Three-Dimensional, Time-Varying, Numerical Hydrodynamic Model of Chesapeake Bay," Technical Report HL-91-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

<u>Contents</u>

	Page
Preface	1
Conversion Factors, Non-SI to SI (Metric) Units of Measurement	3
Introduction	4
Background Calibration/verification needs	4 4
Bay Bathymetry Data	6
Numerical grid	6 6
Physical Model Reverification Data Set	6
Boundary conditions Tide data Current data Salinity data	7 7 8 8
1980 CRIMP Data	8
Current meter data Wind data Riverflow data Tide data Surface heat exchange data	9 9 10 10
Spring 1983 Data	10
Current meter data Wind data Riverflow data Tide data Surface heat exchange data	10 11 11 11 11
Fall 1983 Data	11
Current meter data Wind data Riverflow data Tide data Surface heat exchange data	12 12 12 12 12
Mean Circulation Data	
Summary	13
References	14
Tables 1-10	

Figures 1-156

<u>Conversion Factors, Non-SI to SI (Metric)</u> <u>Units of Measurement</u>

*

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply	By	<u>To Obtain</u>
cubic feet	0.02831685	cubic meters
degrees (angle)	0.01745329	radians
feet	0.3048	meters
miles (US statute)	1.609347	kilometers

DATA EMPLOYED IN THE DEVELOPMENT OF A THREE-DIMENSIONAL. TIME-VARYING, NUMERICAL HYDRODYNAMIC MODEL OF CHESAPEAKE BAY

Introduction

Background

1. Chesapeake Bay is one of the Nation's most valuable natural resources. It supports important commercial and recreational fisheries, transportation, industry, recreation, and tourism, and provides irreplaceable habitat for living marine resources and wildlife. However, the estuary has been subjected to increasing environmental stress in recent decades, and the productivity and beauty of the Chesapeake Bay have significantly declined.

2. The Chesapeake Bay Program (CBP) is a unique cooperative effort between state and Federal agencies to restore the health and productivity of America's largest estuary. An important component is the development of a strategy to numerically model the hydrodynamic and water quality processes of Chesapeake Bay as a means of addressing specific management issues. This modeling effort complements other efforts, such as the long-term monitoring, data compilation and analysis, and planning, which support CBP activities.

3. The overall Chesapeake Bay modeling strategy consists of three phases. Phase I was the conversion and refinement of an existing watershed model for the Chesapeake Bay basin; Phase II was the development of a steadystate (coarse grid) water quality model for the Bay; and Phase III is the development of three-dimensional (3D), time-varying, numerical hydrodynamic and water quality models of the Chesapeake Bay. The Administrator of the US Environmental Protection Agency (USEPA) and the Secretary of the Army signed a Memorandum of Understanding, dated 28 August 1987, committing the Department of the Army to develop the 3D models.

Calibration/verification needs

4. It is well known that water quality impacts in the Chesapeake Bay cannot be successfully assessed without an accurate description of hydrodynamic processes. The modeled processes should include at least the 3D flow circulation and the vertical turbulent mixing throughout the water column. The 3D model called CH3D (with boundary-fitted coordinates) satisfies these requirements and thus is being used for hydrodynamic simulations in the Bay.

This model was developed for WES by Sheng (1986) and is being substantially modified by WES to meet the requirements of this project.

5. A successful calibration/verification of the hydrodynamic model requires sets of self-consistent data. These data sets must contain freshwater inflows on the major tributaries; tides at the Bay entrance as well as at various interior stations; meteorological data at one or more stations, from which the surface wind stress and heat flux can be determined; and currents, temperature, and salinity at several locations throughout the Bay. In addition, the Bay bathymetry must also be represented on the numerical grid.

6. The Chesapeake Bay is one of the largest estuaries in the world. As shown in Figure 1, the main Bay extends approximately 190 miles* north from the ocean entrance to the Susquehanna River. The average depth of the Bay is about 28 ft; however, a natural channel with depths greater than 50 ft traverses the Bay for more than 60 percent of its length. The Bay is irregular in shape, varying in width from 4 miles between Annapolis and Kent Island to 30 miles in the middle bay off the Potomac River. The Bay is sufficiently long to accommodate one complete tidal wave at all times.

7. Since the Bay is so large, there is a lack of synoptic data throughout the Bay and its tributaries. Three relatively extensive synoptic data sets were identified for use in this study. These data sets were collected during June-July 1980, April 1983, and September 1983. In addition, for the preliminary calibration of the hydrodynamic model, data from the previous physical model of Chesapeake Bay located on Kent Island, Maryland, were identified.

8. The data sets identified from the physical model were labeled as the Potomac Estuary Study, the Low Freshwater Inflow Study, the Baltimore Harbor and Channels Deepening Study, the Norfolk Harbor and Channels Deepening Study, and the Model Reverification Study. Data on water surface elevation, velocity, and salinity were collected throughout the physical model during the Reverification Study. Due to the wide coverage of this data set, it was selected for use in the initial calibration of the hydrodynamic model.

9. This report presents each of the three field data sets used in the model calibration/verification-the bathymetry specified on the numerical

^{*} A table of factors for converting non-SI units of measurement to SI (metric) units is presented on page 3.

grid, the physical model reverification data, and the mean circulation data generated from the 1980 data set and data collected by the National Oceanic Service during 1981-83. These data are presented in a combination of graphical and tabular forms and should provide the reader with a good background for the conditions represented. However, those readers interested in using the data in future modeling activities on the Bay should request copies of floppy diskettes containing the data. The point of contact for such a request is Dr. B. H. Johnson, telephone number (601) 634-3425.

Bay Bathymetry Data

Numerical grid

10. The numerical grid employed in the 3D hydrodynamic model is shown in Figure 2. There are 734 active horizontal cells and a maximum of 15 vertical layers. To capture the important features of the hydrodynamic processes and bathymetry in the Bay, grid resolution is approximately 10 km longitudinal, 3 km lateral, and 1.52 m vertical. Major tributaries are modeled fully 3D in the lower reach and as constant width two-dimensional in the upper reach.

Water depth data

11. The water depths assigned to each of the computational cells are presented in Figure 3. These depths were obtained from a hydrographic map prepared by the Virginia Institute of Marine Science using bathymetry data obtained from the National Geophysical Data Center of the National Oceanic and Atmospheric Administration (NOAA). They roughly represent an average depth over a cell but have been selectively adjusted to better represent channels and to minimize abrupt changes in depth between cells.

Physical Model Reverification Data Set

12. As a result of concrete expansion during the summer of 1980, a rehabilitation of the Chesapeake Bay physical model was required. This necessitated a reverification of the model. Both dynamic and steady-state tests were conducted. The data set presented herein and used in the preliminary calibration of the numerical hydrodynamic model is only for the steady-state reverification test. All of the data presented and most of the narrative

below were taken from Granat, Gulbrandsen and Pankow (1985). Boundary conditions

13. For the steady-state test, the ocean tide was a repetitive cosine tide with the M_2 frequency of 12.42 hr and a tidal range from +1.3 to -1.7 ft National Geodetic Vertical Datum (NGVD); the ocean salinity was 30 ppt. The Chesapeake and Delaware Canal (C&D) was closed at the Delaware end. The total freshwater inflow was held constant at the long-term annual average of 70,000 cfs. Table 1 gives the freshwater inflow distribution for the inflow locations shown in Figure 4.

<u>Tide data</u>

14. Tide data were collected at 75 locations throughout the Bay and its tributaries. These stations are shown in Figure 5 and listed in Table 2. A least-squares cosine curve fitting routine with the M_2 frequency was employed to compute physical model phase, amplitude, and offset values for comparison with M_2 values extracted from a harmonic analysis of prototype data collected during 1970-74. The collection program was conducted through contracts with several outside agencies. The M_2 tide for both physical model and prototype is reconstructed using the relation

$$h(t) = A_{o} + a \cos \left(\frac{2\pi\omega t}{360} - \frac{2\pi\epsilon}{360} \right)$$
(1)

where

 $h(t) = M_2$ tide height at time t, ft

t = time, hr

 A_o = mean height above reference datum (mean tide level - sea level datum), ft

 $a = M_2$ amplitude, ft

- $\omega = M_2$ constituent angular velocity, deg/hr
- ϵ = phase angle (epoch) in degrees measured from 0 hr, the moon's transit over the 76-deg meridian

The A_o values were obtained by subtracting Sea Level Datum (SLD), 1929 NGVD, from mean tide level values obtained from the harmonic analysis (MTL - SLD).

15. Table 3 summarizes the final reverification M_2 values for physical model and prototype phase (time of arrival), amplitude, and offset (mean

tide level) for each station. The stations with no prototype data (sta 15, 23, 39, 63, 65, 71, and 73) have only physical model data listed. Sta 75, Chesapeake City in the C&D Canal, is not included because of the artificial C&D Canal boundary condition.

Current data

16. In all, 662 velocity readings during a 2-week data acquisition period were taken for comparison to the prototype. Locations of the velocity stations used in the preliminary calibration of CH3D are shown in Figure 6. As discussed by Granat, Gulbrandsen, and Pankow (1985), the record lengths of the prototype current measurements were too short to accurately extract the M_2 component, and thus some adjustment was required. The reader is referred to the referenced report for details on the approach used. Only the final results as employed in the preliminary calibration of the 3D hydrodynamic model are presented in Table 4.

17. As with the tidal data, the current data have been reduced to values of phase, amplitude, and offset by a least-squares cosine curve fit routine. Therefore, the M_2 currents are constructed from

$$V(t) = MA_{o} + a \cos\left(\frac{2\pi\omega t}{360} - \frac{2\pi\epsilon}{360}\right)$$
(2)

where

 $V(t) = M_2$ velocity at time t , fps $MA_o =$ mean or residual velocity, fps a = amplitude, fps

No direction is associated with these data.

Salinity data

18. As discussed in the report by Granat, Gulbrandsen, and Pankow (1985), a bubbling system was installed in the physical model to enhance vertical mixing. For the steady-state reverification test, the bubbler system was carefully controlled to maintain a constant bubbling rate of 0.01 scfm. The source salinity at the ocean boundary was maintained at 30 ppt.

19. Figure 7 shows the location of the four salinity sampling stations at which the salinity data presented in Figure 8 were taken.

1980 CRIMP Data

20. During the Chesapeake Region Intensive Modeling Program (CRIMP),

prototype data were collected during the summer of 1980 from approximately the end of June to the end of July. The data presented are from 23 June-31 July and were collected by Dr. William Boicourt during an extensive, synoptic baywide field program conducted by the Chesapeake Bay Institute for the USEPA.* The period represents well-stratified conditions and is a good characterization of the summer circulation that may occur in any year.

<u>Current meter data</u>

21. Current speed and direction, salinity, and water temperature were measured continuously at various locations throughout Chesapeake Bay. The locations of the 18 stations situated within the confines of the bay are shown in Figure 9.

22. Table 5 summarizes the availability of data and the period of record for these stations. The measurement increment was either 10 or 30 min. Time series plots of current, salinity, and temperature data at each location and at specific depths are presented in Figures 10-75. A positive U-velocity is directed toward the north, while a positive V-velocity is directed toward the west.

<u>Wind data</u>

23. Surface wind observation data for the summer 1980 period were obtained from the National Climatic Data Center.** Three stations were available: the Baltimore-Washington International Airport and the Patuxent River Naval Air Station (in Maryland) and the Norfolk International Airport (in Virginia). The Baltimore-Washington International Airport data represent winds in upper Chesapeake Bay, the Patuxent River Naval Air Station data represent winds in mid-Chesapeake Bay, and the Norfolk International Airport data represent winds in lower Chesapeake Bay. The locations of the three stations are shown in Figure 9.

24. Observations were made at either 1- or 3-hr intervals. These results are presented in Figures 76-78. Riverflow data

25. Daily riverflow data at the tributary fall-lines were obtained from

US Geological Survey (USGS) Water Resources Data Reports (USGS 1981a,b). These data are presented for the James, Mattaponi, Pamunkey, Rappahannock,

^{*} Personal Communication, Dr. William Boicourt, Horn Point Environmental Laboratories, Cambridge, MD.

^{**} Personal Communication, National Climatic Data Center, Asheville, NC.

Patuxent, Potomac, and Susquehanna Rivers in Figure 79. Tide gage data

26. Hourly tidal height data at five locations were obtained from the National Ocean Service (NOS)* for the July 1980 period. All except the Annapolis gage have been corrected to the National Geodetic Vertical Datum. Locations of these gages are shown in Figure 80. Tidal plots are presented as Figures 81-85.

Surface heat exchange data

27. In modeling the temperature of the Bay, the concept of equilibrium temperature is employed. Table 6 provides the equilibrium temperature, surface heat transfer coefficient, and short-wave solar radiation for the period 23 June-31 July 1980. These values are based on meteorological data from the Patuxent Naval Air Station.**

Spring 1983 Data

28. The spring 1983 data were obtained from a circulation survey of Chesapeake Bay conducted by the NOS during April 1983.* This data set represents conditions during a large spring runoff event. Current meter data

29. Current meter data were available for four long-term stations (Bay Entrance (BE), Mid Bay (MB), Wolf Trap (WT), and Bay Bridge (BB)) and two short-term stations (Pooles Island (PI) and Havre de Grace (HG)).* These data include current direction and amplitude, water temperature, pressure, and conductivity. The data were measured at a 10-min interval. The temperature and conductivity were used to compute salinity from the expression below.

(3)

where

 $RF = RT + RT * RD * TF * (BR + TF + FRT)10^{-5}$

* Personal Communication, National Ocean Service, Rockville, MD. ** Personal Communication, National Climatic Data Center, Asheville, NC. and

with

RT = C/CKT RD = RT - 1.0 BR = (((-26.9 * RD + 3.09) * RD - 8.52) * RD + 67.1) FRT = -0.25 * RD * TF $CKT = (((-2.217 * 10^{-8} * T - 2.5813 * 10^{-5}))$

$$CKT = (((-2.217 * 10 * T - 2.5813 * 10^{-1}) * T + 4.6704 * 10^{-3}) * T + 0.86062) * T + 29.0473$$
$$TF = T - 15.0$$

In the above expressions, T is temperature in degrees Celcius, C is conductivity in micromhos per centimeter, and S is salinity in parts per thousand. Table 7 gives the location and period of record for each of the stations. These locations are shown in Figure 80. Plots of currents, salinity, and temperature are presented in Figures 86-109. Wind data

30. Hourly wind data at the Baltimore-Washington International Airport, the Patuxent River Naval Air Station, and the Norfolk International Airport were available for the April 1983 period.* Figures 110-112 present these data (including wind direction and wind amplitude) for the three stations. Locations of the stations are shown in Figure 9. <u>Riverflow data</u>

31. Daily riverflow data at the tributary fall-lines were obtained from USGS Water Resources Data Reports for the April 1983 period (USGS 1984a,b). These data are presented in Figure 113 for the James, York, Rappahannock, Potomac, Patuxent, Patapsco, Susquehanna, and Choptank Rivers. Tide gage data

32. Hourly tidal height data at six locations were available from NOAA/NOS for the April 1983 period.** Locations of these gages are shown in Figure 80. The values have been corrected to the National Geodetic Vertical Datum. Tidal plots are presented in Figures 114-119.

Surface heat exchange data

33. Equilibrium temperatures, surface heat transfer coefficients, and

^{*} Personal Communication, National Climatic Data Center, Asheville, NC. ** Personal Communication, National Ocean Service, Rockville, MD.

short-wave solar radiation computed from meteorological data at the Patuxent River Naval Air Station for the April 1983 period are presented in Table 8.*

<u>Fall 1983 Data</u>

34. The fall 1983 data were obtained from a circulation survey of Chesapeake Bay conducted by the NOS during September 1983. This data set contains a strong wind mixing event as well as an event causing rapid cooling of the surface waters.

Current meter data

35. Current meter data were available for four-long term stations: Mid Bay (MB), Bay Entrance (BE), Wolf Trap (WT), and Bay Bridge (BB).** These data include current direction and amplitude, water temperature, pressure, and conductivity. They are measured at a 10-min time interval. The temperature and conductivity were used to compute salinity from Equation 3. Table 9 gives the location and period of record for these stations, the location of which is shown in Figure 80. Plots of current magnitude and direction, salinity, and temperature are presented in Figures 120-135.

Wind data

36. Hourly wind data at the Patuxent River Naval Air Station were available for the September 1983 period.* Wind data at Baltimore-Washington International Airport and Norfolk International Airport for the September 1983 period were available in the Local Climatological Data Monthly Summary reports published by NOAA at 3-hr intervals. The wind data are given in terms of wind direction and speed. Figures 136-138 are plots of wind data from these stations. Locations of the stations are shown in Figure 9. Riverflow data

37. Daily riverflow data at the tributary fall-lines were obtained from USGS Water Resources Data Reports for the September 1983 period (USGS 1984a,b). These data are presented for the James, York, Rappahannock, Potomac, Patuxent, Patapsco, Susquehanna, and Choptank Rivers in Figure 139. <u>Tide gage data</u>

38. Hourly tidal height at six locations were available from NOAA/NOS

^{*} Personal Communication, National Climatic Data Center, Asheville, NC. ** Personal Communication, National Ocean Service, Rockville, MD.

for the September 1983 period.* These locations include Havre de Grace, MD, Colonial Beach, VA, Annapolis, MD, Solomons, MD, Hampton Roads, VA, and Chesapeake Bay Tunnel, Virginia, and represent values to hundredths of feet corrected to the National Geodetic Vertical Datum. Locations of the gages are shown in Figure 80. Plots of the tidal data are presented in Figures 140-145. <u>Surface heat exchange data</u>

39. Equilibrium temperatures, surface transfer coefficients, and shortwave solar radiation computed from meteorological data at the Patuxent River Naval Air Station for the September 1983 period are presented in Table 10.**

Mean Circulation Data

40. Mean circulation plots were generated from data collected from a circulation survey of Chesapeake Bay conducted by the National Ocean Service during the period 1981-83* and from the 1980 CRIMP data (paragraphs 20-27). In the NOS survey, currents were taken at 132 locations at various times during the 3-year period. These data were collected using an interval of 15 min and a variable record length of 2 to 57 days. Those records with a length of 15 days or greater were averaged and classified as surface (0 to 6 m), bottom (within last 10 m of total depth), or middepth (6 m to above last 10 m of total depth). Stations with record length less than 15 days were discarded. Figure 146 shows the locations of the current meters analyzed. Results are shown in Figures 147-152.

41. The locations of the CRIMP stations are presented in Figure 9. As with the NOS data, only those records with a length of at least 15 days were employed in constructing the mean circulation plots presented in Figures 153-156.

Summary

42. A successful calibration/verification of a 3D numerical hydrodynamic model requires sets of synoptic data. These data must include freshwater inflows, tides, meteorological data, salinity, water temperature, and

^{*} Personal Communication, National Ocean Service, Rockville, MD. ** Personal Communication, National Climatic Data Center, Asheville, NC.

currents. The data employed in the development of the 3D hydrodynamic model of Chesapeake Bay have been presented herein.

43. Data from the physical model representing a steady-state test with the M_2 tide and a freshwater inflow of 70,000 cfs were presented first. Three relatively extensive synoptic field data sets were collected during June-July 1980, April 1983, and September 1983. The 1980 data set represents a stratified summer condition with the April 1983 set representing a large spring runoff event and the September 1983 a major wind mixing event. These data are presented in a combination of graphical and tabular form.

44. Finally, mean circulation plots generated from the 1980 data and data collected by the National Oceanic Service in various parts of the Bay during 1981-83 are presented.

References

Granat, M. A., Gulbrandsen, L. F., and Pankow, V. R. 1985 (Apr). "Reverification of the Chesapeake Bay Model," Technical Report HL-85-3, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sheng, Y. P. 1986 (June). "A Three-Dimensional Model of Coastal, Estuarine and Lake Currents Using Boundary-Fitted Grid," ARAP Report Number 585, Titan Systems New Jersey, Inc., Princeton, NJ.

USGS. 1981a. "Water Resources Data--Maryland, Water Year 1980," US Geological Survey, Towson, MD.

USGS. 1981b. "Water Resources Data--Virginia, Water Year 1980," US Geological Survey, Richmond, VA.

USGS. 1984a. "Water Resources Data--Maryland, Water Year 1983," US Geological Survey, Towson, MD.

USGS. 1984b. "Water Resources Data---Virginia, Water Year 1983," US Geological Survey, Richmond, VA.

Inflow	River		Flow, cfs (prototype)
1	Nansemond		676
2	Chickahominy		289
3	Appomattox		967
4	James		7,249
5	York		2,659
6	Rappahannock		2,842
7	Wicomico		412
8	Occoquan		2,370
9	Anacostia		582
10	Potomac		7,699
11	Patuxent		881
12	Severn		231
13	Patapsco		613
14	Gunpowder		802
15	Susquehanna		36,000
16	Bohemia		386
17	Chester		502
18	Wye		190
19	Choptank		817
20	Nanticoke		1,619
21	Pocomoke		997
22	Susquehanna		1,217
		Total	70,000

	Tab1	le 1	
Average	Total	Bay	Discharge

Table 2

<u> Tide Height Stations</u>

37 Cornfield Harbor Potomac River	Station	Name	Location
2 Tue Point Main Bay - York River 3 Old Point Comfort James River 4 Hampton Roads 5 Portsmouth 6 Holliday's Point 7 Huntington Park 8 Burwell Bay 9 Scotland 10 Ferry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown 17 Kiptopeke 18 Gloucester 20 Roane Point 21 West Point 22 Belleville Mojack Bay 23 Dixie 24 Jackson Creek 25 Gaskin Point 26 Mill Creek Bayport Pahannock River 26 Mill Creek Bayport Poymana 23 Dixie 24 Jackson Creek 25 Gaskin Point 26 Mill Creek Bayport Poyman Landing 33 Massaponax 34 Windmill Point 35 Guard Shores </td <td>1</td> <td>Virginia Beach</td> <td>Atlantic Ocean</td>	1	Virginia Beach	Atlantic Ocean
3 Old Point Comfort James River 4 Hampton Roads 5 Portsmouth 6 Holliday's Point 7 Huntington Park 8 Burwell Bay 9 Scotland 10 Ferry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown 17 Kiptopeke 18 Gloucester 19 Cheatham Annex 20 Roame Point 21 West Point 22 Belleville 23 Dixie 24 Jackson Creek 25 Gaskin Point 26 Mill Creek 27 Urbanna 28 Bayport 29 Wares Wharf 30 Rappahannock River 31 Saunder's Wharf 32 Hopyard Landing 33 Massaponax 34 Windmill Point 35 Guard Shores 36 Fleet Point 37 Cornfield Harbor			Main Bay - York River
4 Hampton Roads 5 Portsmouth 6 Holliday's Point 7 Huntington Park 8 Burwell Bay 9 Scotland 10 Perry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown 17 Kiptopeke 18 Gloucester 19 Cheatham Annex 20 Roane Point York River 21 West Point York River 22 Belleville Mobjack Bay 23 Dixie 24 Jackson Creek 25 Gaskin Point 26 Mill Creek Rappahannock River 29 Wares Wharf 30 Rappahannock 31 Saunder's Wharf 32 Hopyard Landing 33 Massaponax 34 Windmill Point			
5 Portsmouth 6 Holliday's Point 7 Huntington Park 8 Burwell Bay 9 Scotland 10 Ferry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown York River 17 Kiptopeke Lower Bay - Eastern Shore 18 Gloucester York River 20 Roame Point York River 21 West Point York River 22 Belleville Mobjack Bay 23 Dixle Plankatank River 24 Jackson Creek Plankatank River 25 Gaskin Point Lower Bay - Eastern Shore 26 Mill Creek Rappahannock River 27 Urbanna Bayport 28 Bayport Bayport 29 Wares Wharf Main Bay - Rappahannock Ri 31 Saunder's Wharf Main Bay - Rappahannock Ri			
6 Holliday's Point 7 Huntington Park 8 Burwell Bay 9 Scotland 10 Ferry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown York River 17 Kiptopeke Lower Bay - Eastern Shore 18 Gloucester York River 19 Cheatham Annex York River 20 Roane Point York River 21 West Point York River 21 West Point York River 22 Belleville Mobjack Bay 23 Dixie Plankatank River 24 Jackson Creek Plankatank River 25 Gaskin Point Lower Bay - Eastern Shore 26 Mill Creek Rappahannock River 27 Urbanna 28 Bayport 29 Wares Wharf 30 Rappahannock 31 Saunder's Wharf 32 Hopyard Landing 33 Massaponax 34 Windmill Point Main Bay - Rappahannock River 35 Guard Shores Pocomoke Sound 36 Fleet Point Mid Bay - Great Wicomico R 37 Gornfield Harbor Potomac River			
7 Huntington Park 8 Burwell Bay 9 Scotland 10 Ferry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown 17 Kiptopeke 18 Gloucester 19 Cheatham Annex 20 Roane Point 21 West Point 22 Belleville 23 Dixie 24 Jackson Creek 25 Gaskin Point 26 Mill Creek 27 Urbanna 28 Bayport 29 Wares Wharf 30 Rappahannock 31 Saunder's Wharf 32 Hopyard Landing 33 Massaponax 34 Windmill Point Main Bay - Rappahannock Ri 35 Guard Shores Pocomoke Sound 36 Fleet Point Mid Bay - Great Wicomico R <t< td=""><td>5</td><td>2020500000</td><td></td></t<>	5	2020500000	
8 Burwell Bay 9 Scotland 10 Ferry Point 11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown 17 Kiptopeke 18 Gloucester 19 Cheatham Annex 20 Roane Point 21 West Point 22 Belleville 23 Dixie 24 Jackson Creek 25 Gaskin Point 26 Mill Creek 27 Urbanna 28 Bayport 29 Wares Wharf 30 Rappahannock 31 Saunder's Wharf 32 Hopyard Landing 33 Massaponax 34 Windmill Point Main Bay - Rappahannock Ri 35 Guard Shores Pocomoke Sound 36 Fleet Point Mid Bay - Great Wicomico R 37 Cornfield Harbor Potomac River </td <td>6</td> <td>Holliday's Point</td> <td></td>	6	Holliday's Point	
9Scotland10Ferry Point11Claremont12Willcox Wharf13Hopewell14Chester15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportBayport29Wares WharfBayport30RappahannockSin Main Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri33MassaponaxMain Bay - Great Wicomico R34Windmill PointMain Bay - Great Wicomico R35Guard ShoresFocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	7	Huntington Park	
10Ferry Point11Claremont12Willcox Wharf13Hopewell14Chester15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportJona Rappahannock River31Saunder's WharfJona Rappahannock Ri32Hopyard LandingJaster Point33MassaponaxJaster Point34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborFotomac River	8	Burwell Bay	
11 Claremont 12 Willcox Wharf 13 Hopewell 14 Chester 15 Richmond 16 Yorktown York River 17 Kiptopeke Lower Bay - Eastern Shore 18 Gloucester York River 19 Cheatham Annex York River 20 Roane Point York River 21 West Point York River 22 Belleville Mobjack Bay 23 Dixie Piankatank River 24 Jackson Creek Piankatank River 25 Gaskin Point Lower Bay - Eastern Shore 26 Mill Creek Rappahannock River 27 Urbanna Bayport 28 Bayport Powares Wharf 30 Rappahannock Sin Bay - Rappahannock River 31 Saunder's Wharf 32 Hopyard Landing 33 Massaponax 34 Windmill Point Main Bay - Rappahannock Ri 35 Guard Shores Pocomoke Sound	9	Scotland	
12Willcox Wharf13Hopewell14Chester15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson GreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport29Wares WharfBayport30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri33MassaponaxMain Bay - Creat Wicomico R34Windmill PointMain Bay - Great Wicomico R35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	10	Ferry Point	
12Willcox Wharf13Hopewell14Chester15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson GreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportPoyard Landing30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri33MassaponaxMain Bay - Creat Wicomico R34Windmill PointMain Bay - Great Wicomico R35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	11	Claremont	
13Hopewell14Chester15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson GreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportBayport29Wares WharfBoyyard Landing31Saunder's WharfMain Bay - Rappahannock Ri31Saudar's SharfSound34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River		Willcox Wharf	
14Chester15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportBayport29Wares WharfBayport30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
15Richmond16YorktownYork River17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport29Wares WharfBayport30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport29Wares WharfSaunder's Wharf30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri33MassaponaxYores34Windmill PointMain Bay - Great Wicomico R36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River		Richmond	
17KiptopekeLower Bay - Eastern Shore18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport29Wares WharfSaunder's Wharf30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri33MassaponaxYores34Windmill PointMain Bay - Great Wicomico R36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	16	Vorktown	York River
18GloucesterYork River19Cheatham AnnexYork River20Roane PointYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport29Wares WharfSaunder's Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
19Cheatham Annex Roane PointYork River20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport29Wares WharfSaunder's Wharf30RappahannockMain Bay - Rappahannock Ri31Saunder's WharfMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
20Roane PointYork River21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27Urbanna28Bayport29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill Point35Guard Shores36Fleet Point37Cornfield Harbor30River			
21West PointYork River22BellevilleMobjack Bay23DixiePiankatank River24Jackson GreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill GreekRappahannock River27Urbanna28Bayport29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill Point35Guard Shores36Fleet Point37Cornfield Harbor34Mid Bay - Great Wicomico R			
22BellevilleMobjack Bay23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportWares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill Point35Guard Shores36Fleet Point37Cornfield Harbor34Mid Bay - Great Wicomico R	20	Roane roine	IOIK KIVEI
23DixiePiankatank River24Jackson CreekPiankatank River25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27UrbannaBayport28BayportVares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill Point35Guard Shores36Fleet Point37Cornfield Harbor			
24Jackson Creek Gaskin PointPiankatank River Lower Bay - Eastern Shore26Mill Creek UrbannaRappahannock River27Urbanna BayportRappahannock River29Wares Wharf Mares WharfRappahannock31Saunder's Wharf Hopyard LandingMain Bay - Rappahannock Ri33MassaponaxMain Bay - Rappahannock Ri34Windmill Point Guard ShoresMain Bay - Great Wicomico R36Fleet Point Gornfield HarborMid Bay - Great Wicomico R		Belleville	
25Gaskin PointLower Bay - Eastern Shore26Mill CreekRappahannock River27Urbanna28Bayport29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill Point35Guard Shores36Fleet Point37Cornfield Harbor			
26Mill CreekRappahannock River27Urbanna28Bayport29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
27Urbanna28Bayport29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	25	Gaskin Point	Lower Bay — Eastern Shore
27Urbanna28Bayport29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	26	Mill Creek	Rappahannock River
29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	27	Urbanna	
29Wares Wharf30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	28	Bayport	
30Rappahannock31Saunder's Wharf32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	29	J 1	
32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	30		
32Hopyard Landing33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River	31	Saunder's Wharf	
33Massaponax34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
34Windmill PointMain Bay - Rappahannock Ri35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
35Guard ShoresPocomoke Sound36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			Main Box - Poppahannack Divor
36Fleet PointMid Bay - Great Wicomico R37Cornfield HarborPotomac River			
37 Cornfield Harbor Potomac River			rocomote bound
		Fleet Point	Mid Bay — Great Wicomico River
		Cornfield Harbor	Potomac River
	38	Lewisetta	
39 Piney Point			
40 Coles Point	40	Coles Point	
41 Colton Point	41	Colton Point	

(Continued)

<u>Station</u>	Name	Location
42	Dahlgren	
43	Port Tabacco	
44	Riverside	
45	Aquia Creek	Potomac River
46	Quantico	
47	Indian Head	
48	Marshall Hall	
49	Washington, DC	
50	Chance	Tangier Sound
51	Vienna	Nanticoke River
52	Hoopers Island	Mid Bay — Eastern Shore
53	Solomons Island	Patuxent River
54	Brooms Island	Patuxent River
55	Lower Marlboro	Patuxent River
56	Benedict	Patuxent River
57	Cove Point	Mid Bay — Western Shore
58	Taylors Island	Little Choptank River
59	Chesapeake Beach	Mid Bay — Western Shore
60	Cambridge	Choptank River
61	Dover Bridge	Choptank River
62	Matapeake	Upper Bay — Eastern Shore
63	Gingerville Creek	South River
64	Love Point	Upper Bay — Eastern Shore
65	Cliffs Wharf	Chester River
66	Chestertown	Chester River
67	North Point	Upper Bay — Patapsco River
68	Baltimore	Patapsco River
69	Tolchester	Upper Bay — Eastern Shore
70	Betterton	Sassafrass River
71	Town Point	Elk River
72	Havre de Grace	Susquehanna River
73	Annapolis	Severn River
74	Colonial Beach	Potomac
75	Chesapeake City	C&D Canal

Table 2 (Concluded)

						-
<u></u>	Phas		Amplitu	de, ft	Offsé	t, ft
<u>Sta</u>	<u>_M_</u>	<u> </u>	<u> M </u>	<u>P</u>	<u> </u>	P
			James Rive	<u>er</u>		
3	240	248	1.19	1.19	-0.44	-0.04
4	245	254	1.22	1.18	0.05	-0.03
5	251	260	1.39	1.34	-0.04	-0.03
6	276	276	1.36	1.39	-0.24	-0.04
7	263	270	1.21	1.25	-0.02	-0.07
8	292	290	1.09	1.16	0.30	0.04
9	335	332	0.91	0.88	0.29	0.07
10	2	359	0.89	0.89	0.16	0.11
11	1	2	0.84	0.82	0.13	0.11
12	43	47	0.83	0.96	0.34	0.10
13	76	77	1.02	1.10	0.42	0.21
14	106	107	1.24	1.30	0.60	0.37
15	112		1.22		0.95	
			<u>York Rive</u>	r		
2	224	251	1.05	1.04	0.03	-0.13
16	253	257	1.07	1.09	-0,02	-0.09
18	255	260	1.14	1.15	0.05	-0.06
19	264	272	1.25	1.18	0.04	-0.06
20	284	298	1.42	1.35	0.08	-0.11
21	315	315	1.18	1.30	0.16	-0.05
		Ē	Rappahannock	<u>River</u>		
34	309	309	0.55	0.55	-0.23	-0.07
26	314	320	0.68	0.59	0.17	-0.04
27	326	341	0.79	0.70	-0.29	0.07
28	347	358	0.80	0.79	0.08	0.17
29	13	12	0.83	0.83	0.12	0.22
30	31	37	0.81	0.82	0.05	0.12
31	90	96	0.76	0.69	0.14	0.25
32	181	168	0.48	0.95	0.65	0.42
33	214	189	0.53	1.13	0.91	0.47
			<u>Potomac Ri</u>	ver		
37	15	18	0.64	0.59	-0.06	0.04
38	15	22	0.66	0.59	-0.14	0.06
39	28		0.72		0.12	
40	30	34	0.75	0.69	0.11	0.22
41	46	47	0.82	0.80	0.09	0.18
74	63	62	0.84	0.79	0.05	0.13
42	70	65	0.83	0.76	0.33	0.12
43	88	82	0.70	0.65	0.02	0.11
44	103	101	0.68	0.56	0.06	0.12
45	160	159	0.63	0.51	0.16	0.12
46	169	178	0.64	0.62	0.20	0.14

 Table 3

 Physical Model (M) and 1970-1974 Prototype (P) M2 Tide Data

(Continued)

	Phas	e, deg	Amplit	ude, ft	Offse	t, ft
<u>Sta</u>	M	P	_ <u>M</u>	<u> </u>	<u>M</u>	P
		Roto	nac River (Co	ontinued)		
47	193	190	0.82	0.80	0.20	0.08
48	205	207	1.02	0.99	0.13	0.18
49	224	222	1.39	1.32	0.25	0.31
			<u>Patuxent Ri</u>			0.01
53	38	45	0.61	0.55	-0.08	0.07
54	43	56	0.72	0.64	0.04	0.11
56	52	68	0.88	0.75	0.15	0.11
55	81	98	1.02	0.83	0.14	0.12
55	01		Bay - Weste		0.14	0.20
-					A A7	
1	203	211	1.48	1.59	-0.07	-0.07
3	240	248	1.19	1.19	-0.44	-0.04
2	244	251	1.05	1.04	0.03	-0.13
22	248	250	1.09	1.14	-0.07	-0.06
23	297 294	301	0.69 0.66	0.54	0.17	
24 34	309	309	0.55	0.54	-0.13 -0.23	-0.06 -0.07
36	330	339	0.59	0.52	0.03	0.07
37	15	18	0.64	0.52	-0.06	0.00
53	38	45	0.61	0.55	-0.08	0.04
57	43	57	0.52	0.62	-0.24	0.39
59	82	101	0.46	0.46	0.12	0.13
63	117		0.43		0.13	·
73	136		0.40		-0.19	
67	198	183	0.52	0.45	-0.03	0.09
68	183	185	0.49	0.49	0,09	0.11
72	276	281	0.94	0.83	0.34	0.35
		<u>Main Bay</u>	- Eastern Sh	ore and Rive	rs	
17	231	239	0.94	1.30	0.09	-0.08
25	312	309	0.47	0.81	0.27	-0.14
35	358	353	0.89	1.07	-0.07	0.02
50	54	29	0.34	0.95	0.19	-0.04
51	104	108	0.95	0.97	0.21	-0.06
52	30	40	0.67	0.74	-0.12	0.04
58	89	88	0.54	0.59	-0.13	0.07
60	105	105	0.72	0.77	0.16	0.01
61	166	158	0.82	0.79	0.03	0.06
62	140	140	0.37	0.46	0.10	0.02
64	171	170	0.48	0.53	0.07	0.06
65	188		0.61		0.03	
66	211	201	0.74	0.89	0.20	0.13
69 70	194	195	0.55	0.54	0.11	0.07
70 71	243	253	0.82	0.73	0.28	0.23
71	261		0.89		0.07	

Table 3 (Concluded)

Table 4

Physical Model Reverification Current Velocity Data

				•		Mean
						<u>fps</u>
		<u>Amplitude, fps</u>			<u>Phase, deg</u>	
Station	<u>Depth</u>	ADJ	MODEL	PPHSE	MPHSE	MAO
	r	R	ange CB-00			
CB-00-01	4	2.34	1.60	277	232	-0.95
	32	1.54	1.66	227	183	-0.05
СВ-00-02	4	2.02	1.43	287	236	-0.52
	22	2.16	1.59	271	227	0.19
	42	2.13	1.52	262	224	0.38
	52	2.17	1.58	256	223	0.33
	71	1.19	1.36	246	212	0.23
CB-00-03	4	0.69	1.43	271	271	-0.5
	32	1.47	1.43	238	214	0.06
	38	1.02	1.27	216	212	0.08
СВ-00-04	12	2.53	1.56	243	232	-0.18
	22	1.88	1.77	243	216	0.21
	28	1.21	1.52	217	211	0.13
CB0005	12	2.00	2.08	215	231	-0.20
	16	1.56	1.81	225	225	-0.17
СВ-00-06	4	2.46	2.45	235	234	-0.47
	12	1.90	2.25	240	230	-0.18
СВ-00-07	4	2.49	2.29	224	236	-0.40
-	12	1.84	2.18	223	227	-0.14
	16	1.52	1.92	218	225	-0.04

Summary Interpretation

(Continued)

- Note: The depths listed are model velocity test depths. In most cases, comparisons are made with prototype data of equivalent depths. When an equivalent prototype depth does not exist, model data are compared with the nearest prototype depth available.
 - * Column headings are defined as follows:
 - Depth = Meter position in feet below NGVD.
 - $ADJ = Adjusted prototype M_2$ current velocity amplitude in feet per second.
 - MODEL = Model current velocity amplitude in feet per second.
 - PPHSE = Maximum prototype current velocity time of arrival in degrees (12.42 hr = 360 deg).
 - MPHSE = Maximum model current velocity time of arrival in degrees.
 - MA_o = Model average velocity in feet per second.

(Sheet 1 of 16)

		Cu	nary			
						Mean
		Amplit	ude, fps	Phase	e, deg	<u>fps</u>
Station	Depth	ADJ	MODEL	PPHSE	MPHSE	MA o
		Range C	B-00 (Contir	nued)		
СВ-00-08	12	2.23	2.65	225	000	0 / 5
00-00-00	22	2.23	2.85		232	-0.45
	32			220	227	-0.15
		1.92	2.14	214	198	-0.09
	42	1.25	1.71	214	216	0.28
СВ-00-09	16	2.57	3.18	232	208	-0.05
		R	ange CB-01			
CB-01-01	12	0.67	1.43	256	250	-0.15
СВ-01-02	12	0.79	1.43	289	253	-0.06
	16	0.48	1.33	259	255	0.02
CB-01-03	12	0.84	1.36	280	258	-0.23
00-01-00	22	0.72	1.24	230	248	
	22	0.72	1.24	211	240	-0.08
CB-01-04	12	0,90	1.26	276	251	-0.23
	22	0.75	1.23	280	257	0.03
CB-01-05	12	1.86	1.55	284	259	-0.01
	37	0.70	1.29	252	239	0.19
СВ-01-06	12	2.03	1.63	290	256	-0.11
01 01 00	22	1.47	1.30	272	269	0.32
	22	1.47	1.50	272	207	0.52
CB-01-07	12	2.02	1.59	298	255	-0.04
	22	1.02	1.64	98	255	0.08
	27	0.86	1.13	269	249	0.14
СВ-01-08	4	2.18	1.36	276	252	-0.32
00 01 00	14	1.95	1.52	284	249	-0.08
	28	1.07	1.53	261	236	0.11
CB-01-09	4	2.29	1.45	272	264	-0.34
CD-01-03	12	2.29	1.47	272	264	
	22					-0.23
		1.93	1.42	285	291	0.07
	32	1.83	1.35	280	289	0.08
	42	1.83	1.34	276	261	0.03
	52	1.52	1.38	262	266	0.02
	62 72	1.39 0.94	1.19 1.09	264 263	223 203	0.00 0.18
	,	V, J7	1.07	200	200	0.10
CB-01-10	4	2.50	1.83	260	220	-0.50
	12	1.58	1.63	251	245	-0.22
	1 5	1.30	1.50	240	244	-0.13

(Continued)

(Sheet 2 of 16)

			crent Velocit			
						Mean
		Amplitu	<u>ıde, fps</u>	Phase	, deg	<u>fps</u>
<u>Station</u>	<u>Depth</u>	ADJ	MODEL	PPHSE	MPHSE	MAO
		<u>R</u>	ange CB-02			
св-02-01	4	1.37	0.93	281	286	-0.47
00 02 01	12	1.85	1.08	185	260	-0.47
	18	1.08	0.88	267	249	-0.25
	,	7 61	1 07			
CB-02-02	4	1.64	1.07	307	288	-0.21
	12	2.13	0.98	312	290	0.05
	22	1.36	1.04	294	276	0.01
	26	1.20	0.89	276	265	-0.05
СВ-02-03	4	1.62	1.67	322	282	-0.34
	12	1.09	1.60	313	287	-0.15
	30	0.69	1.23	280	263	0.00
СВ-02-04	12	1.08	1.53	301	286	-0.16
	22	1.10	1.39	312	291	0.11
	31	0.56	1.01	266	265	-0.01
GD 00 05	10	1 00	1 05	200		
СВ-02-05	12	1.99	1.35	306	260	-0.10
	22	2.12	1.36	314	287	0.15
	32	1.12	1.07	290	273	0.03
СВ-02-06	4	1.71	1.38	297	293	-0.19
	12	1.70	1.42	303	291	-0.10
	22	1.74	1.41	316	291	0.08
	32	1.74	1.28	287	287	0.17
	40	0.82	1.13	284	275	0.01
СВ-02-07	4	1.56	1.27	331	288	-0.29
	12	2.16	1.36	302	260	-0.16
	22	2.16	1.47	300	283	0.09
	32	1.81	1.23	297	284	0.15
	42	1.63	1.17	292	266	0.06
СВ-02-08	4	1.62	1 05	216	0.07	0.05
00-02-08	12	2.01	1.05	316	287	-0.25
	22		1.13	303	291	-0.24
		2.01	1.24	303	261	-0.04
	32	1.92	1.18	289	252	0.29
	42	1.65	1.24	282	275	0.23
	52 54	1.55 1.15	1.22 1.13	277 263	266 265	0.06 0.04
						0.04
CB-02-09	4	1.16	1.15	340	286	-0.28
	12	1.96	1.27	347	283	-0.22
	22	1.89	1.34	350	279	-0.18
	30	0.87	1.08	316	281	0.15

(Continued)

(Sheet 3 of 16)

	Current Velocity Data Summary							
	,					Mean		
	– 1		ude, fps	Phase		<u>fps</u> MA		
Station	<u>Depth</u>	ADJ	MODEL	<u>PPHSE</u>	<u>MPHSE</u>	MA o		
		<u>Range</u> (<u>B-02 (Contir</u>	nued)				
CB-02-10	4	1.95	1.24	335	269	-0.04		
	12	1.69	1.28	315	264	0.06		
	23	1.23	1.19	304	250	-0.09		
		<u> </u>	lange CB-03					
CB-03-01	4	1.55	1.35	340	316	-0.54		
	12	1.66	1.33	323	307	-0.58		
	22	1.65	1.32	323	308	-0.55		
	32	1.29	1.23	254	309	-0.26		
СВ-03-02	4	1.64	1.71	5	342	-0.27		
	12	1.57	1.42	336	341	0.09		
	22	1.59	1.56	348	329	0.01		
	32	1.79	1.47	338	328	0.16		
	42	1.60	1.54	330	321	0.27		
	49	1.11	1.97	258	10	0.13		
CB-03-03	4	0.88	1.32	352	329	-0.28		
	12	1.17	1.38	328	331	-0.11		
	22	1.25	1.26	324	341	0.04		
	32	1.34	1.27	324	333	0.17		
	42	1.40	1.29	300	332	0.34		
	52	1.33	1.28	287	322	0.24		
	62	1.36	1.35	290	318	0.25		
	67	1.19	1.22	291	308	0.16		
св-03-04	4	1.34	1.11	320	337	-0.29		
00-00-04	12	1.26	1.15	339	339	0.10		
	32	1.35	1.15	329	332	0.10		
	42	1.34	0.96	310	329	0.20		
	52	1.24	1.22	316	326	0.19		
	62	1.24	1.32	312	326	0.01		
(IP 02 05	0.0	1 15	1 10	202	210	0.00		
CB-03-05	22 32	$1.15 \\ 1.35$	1.16	323 335	340 335	0.06 0.20		
	JZ	1.35	1.05		222	0.20		
CB-03-06	4	1.95	1.24	335	269	-0.04		
	12	1.69	1.28	315	264	0.06		
	22	1.23	1.19	304	250	-0.09		
	32	1.00	0.88	311	333	0.05		
	37	0.88	0.84	309	326	0.05		
СВ-03-07	4	1.30	0.99	314	333	0.31		
	12	1.00	0.94	325	328	-0.21		
	18	0.86	0.75	334	318	-0.08		

(Continued)

(Sheet 4 of 16)

······································	·····	Cu	rrent Veloci	ty Data Summ	ary	
	-				- ,	Mean fps
Station	Depth	_AMPIIC	<u>ide, fps</u> <u>MODEL</u>	<u>Phase</u> <u>PPHSE</u>	<u>deg</u> MPHSE	MA
Deacion	Depen		B-03 (Contir		111 110 14	
an 00 00					21.0	0.0/
CB-03-08	4	0.77	0.84	306	318	-0.24
	12	0.91	0.75	309	314	-0.09
	18	0.56	0.77	305	315	0.02
св-03-09	4	1.38	0.93	330	324	-0.17
	12	1.23	0.82	332	320	-0.09
	22	1.37	0.85	337	315	0.01
	32	1.25	0.72	327	312	0.07
	42	1.13	0.73	321	308	0.14
	52	0.76	0.63	310	300	0.18
св-03-10	15	1.06	0.66	276	292	-0.09
		R	ange CB-04			
CB-04-01	4	1.38	1.07	36	47	-0.54
	12	1.62	1.17	32	46	-0.05
	22	1.62	1.11	31	45	-0.07
	32	1.60	1.04	25	12	0.07
		1 10				· · -
CB-04-02	4	1.19	0.94	55	52	-0.45
	12	1.36	1.04	65	56	-0.41
	22	1.30	1.14	65	58	-0.15
	32	1.34	1.08	64	54	0.08
	42	1.57	1.03	54	46	0.02
СВ-04-03	4	0.92	0.93	49	49	-0.46
	12	1.27	0.84	62	43	-0.31
	22	1.31	0.82	52	49	-0.16
	32	1.37	0.90	51	49	0.09
	42	1.41	0.83	50	47	0.18
	52	1.46	0.73	47	33	0.15
	62	1.10	0.57	49	25	0.01
СВ-04-04	12	1.62	0.87	52	43	-0.34
	22	1.27	0.95	57	50	-0.21
	32	1.29	0.94	53	53	0.03
	42	1.34	0.98	44	55	0.03
•	62	1.50	0.92	56	52	0.28
	72	1.55	0.98	47	45	0.22
	82	1.46	1.01	36	42	0.14
	92	1.36	1.10	43	38	0.08
GB0405	4	0.85	0.83	67	52	-0.54
	12	1.03	0.82	48	53	-0.34
	22	1.16	0.95	48	62	-0.44
	~~~	1,10	0.00	41	02	-0.12

(Continued)

(Sheet 5 of 16)

		Cu	rrent Veloci:	ty Data Summ	ary	
						Mean
		Amplit	ude, fps	Phase	, deg	<u>fps</u>
Station	<u>Depth</u>	ADJ	MODEL	PPHSE	MPHSE	MA O
		<u>Range</u> C	B-04 (Contin	ued)		
CB-04-05	42	1.13	0.75	49	60	0.19
(Cont'd)	52	1.23	0.87	51	49	0.29
(come d)	72	1.29	0.94	43	47	0.12
	82	0.90	0.93	34	35	0.12
	92	1.07	1.10	31	45	0.06
	97	1.24	0.99	36	40	
	57	1.24	0.99	20	40	0.06
СВ-04-06	4	0.79	0.85	68	51	-0.27
	12	1.13	0.71	43	43	-0.28
СВ-04-07	4	0.78	0.89	36	43	-0.26
	12	1.22	0.76	21	40	-0.14
		R	ange CB-05			
CB05-01	12	1.21	0.96	106	117	-0.17
	22	0.99	0.88	105	99	-0.06
	25	0.76	0.82	64	100	-0.04
CB-05-02	12	1.13	0.85	85	125	-0.16
	22	1.11	0.88	93	132	0.01
	32	0.87	0.74	93	116	0.02
СВ0503	12	1.30	0.83	109	131	-0.29
	42	0.93	0.94	111	130	0.16
CB-05-04	12	1.08	0.00	140	100	0 20
05-05-04	22	0.92	0.98	143	129	-0.32
			0.99	159	121	-0.04
	32	0.84	0.96	148	123	0.16
	42	1.09	0.92	162	121	0.28
	52	0.79	0.91	139	126	0.27
	61	0.59	0.78	125	116	0.39
CB-05-05	22	1.13	0.95	117	128	-0.03
	42	1.04	0.90	117	122	0.33
	52	1.02	0.89	111	120	0.12
	62	0.92	0.97	111	117	0.18
	72	0.92	0.97	110	118	0.29
	82	0.99	0.98	111	120	0.31
	92	0.53	1.04	92	110	0.30
	102	1.04	1.07	107	101	0.25
	112	0.91	1.06	111	104	0.23
CB-05-06	22	0.81	1.11	90	109	-0.16

(Continued)

(Sheet 6 of 16)

		Cu	rrent Veloci	ty Data Summ	lary	
						Mean
		Amplit	<u>ude, fps</u>	Phase	, deg	<u>fps</u>
Station	Depth	ADJ	MODEL	PPHSE	MPHSE	MA
		<u>F</u>	lange CB-06			
СВ-06-01	4	0.91	0.83	186	136	-0.18
CD-00-01	12	1.13	0.83	180	144	-0.10
	18	0.67	0.69	178	132	-0.10
СВ-06-02	10	0.07	0.09	170	TDZ	0.01
00-02	4	0.99	0.85	194	156	-0.24
	12	1.20	0.88	186	138	-0.24
	16	0.97	0.84	178	132	
СВ-06-03	10					0.06
	,	1.06	1.04	195	149	-0.07
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4	1.34	0.72	194	133	0.00
СВ-06-04	22	0.70	0.61	167	110	0.12
	29	1 10	1 00	101	1/0	
		1.19	1.02	191	143	-0.34
CB-06-05	4	1.34	1.21	195	147	0.23
	22	0.97	1.09	172	115	0.30
	32					
		1.34	1.11	175	154	-0.29
	4	1.55	1.13	180	153	-0.17
	12					
		Ē	Range CB-07			
CB-07-01	4	1,53	0.96	172	160	0.14
	10	1.07	0.85	165	157	0.12
СВ-07-02	4	1.85	1.37	189	177	-0.22
0.00 0.00	13	1.78	0.82	188	169	-0.25
	10	2.70	0.02	100	105	0.25
CB-07-03	4	2.06	1.61	225	175	-0.32
	12	2.23	2.11	201	170	0.03
	22	1.80	1.72	196	168	0.06
	27	1.33	1.38	189	182	0.00
	27	1.33	1.50	107	102	0.00
СВ-07-04	4	2.00	1.97	189	171	-0.07
	12	1.97	0.91	181	173	-0.08
	21	1.50	1.74	185	170	-0.01
СВ-07-05	4	1.63	0.79	157	151	-0.01
	12	1.54	0.68	161	152	-0.07
	22	1.36	0.90	165	156	0.03
	31	1.33	1.29	162	157	-0.05
	<u>7</u>			TOT	1.71	-0.05
			lames River		4	
JG-01-01	4	1.43	2.07	141	173	-0.52
	11	0.93	1.65	158	164	-0.19

١

(Continued)

(Sheet 7 of 16)

			rrent Veloci	ey Daca Dam	<u></u>	
						Mean <u>fps</u>
_			ude, fps		deg	
<u>Station</u>	<u>Depth</u>	ADJ	MODEL	<u>PPHSE</u>	MPHSE	MA O
1 ₁₇		<u>James R</u>	liver (Contir	<u>ued)</u>		
JG-01-02	4	2.20	2.68	207	209	-0.59
	12	2.80	2.35	227	208	-0.4
	22	2.37	2.29	220	203	-0.4
	42	2.58	2.31	218	199	-0.02
JG-01-03	7	2.32	2.30	97	206	-0.43
	17	2.60	2.15	191	202	-0.24
	37	1.90	2.08	192	208	-0.10
	57	1.49	2.64	178	191	0.10
	67	1.32	2.69	149	184	0.35
	77	0.80	2.47	134	181	0.48
	83	0.54	1.98	148	180	0.48
JG-02-01	4	2.02	2.02	237	224	-0.32
	7	1.47	1.90	225	219	-0.24
		<b>1</b> ,	1.90	225	217	-0.25
JG-02-02	4	2.20	2.11	260	226	-0.45
	12	1.65	2.12	246	220	-0.15
	21	0.93	1.90	228	214	-0.01
JG-02-03	5	1.89	2.01	247	231	-0.44
	15	1.75	2.09	247	223	0.07
	25	1.79	1.89	250	220	0.07
	35	1.54	1.91	246	217	0.33
	45	1.30	1.30	234	217	0.33
JG-03-01	4	1.71	1.84	264	241	-0.15
	12	1.39	1.74	263	243	-0.04
	15	1.59	1.51	268	240	-0.02
						0.02
JG-03-02	4	1.91	1.85	274	254	-0.29
4	7	1.66	1.95	277	245	-0.20
	13	1.66	1.95	277	247	-0.14
	16	1.66	1.76	277	247	-0.07
JG-04-01	4	1.62	1.82	283	270	0.07
	9	1.86	1.79	294	269	0.07
	15	1.12	1.68	291	267	0.04
JG-04-02	4	1.45	1.16	297	278	0.05
	12	1.67	1.38	305	283	-0.18
	16	0.73	1.24	278	284	-0.20

(Continued)

(Sheet 8 of 16)

		0u.	crenc verocr	ty Data Summ		Maar
						Mean <u>fps</u>
<b>.</b>	D (1		<u>ude, fps</u>		deg	MA
Station	<u>Depth</u>	ADJ	MODEL	PPHSE	<u>MPHSE</u>	0
		<u>James R</u>	iver (Contin	nued)		
JG-05-01	4	1.97	1.93	309	287	-0.12
	11	2.05	1.90	307	287	-0.09
	20	1.50	1.58	305	291	-0.03
JG-05-02	3	2.23	1.93	316	320	0.12
	13	2.14	2.04	324	320	0.12
	23	2.10	1.98	329	321	0.11
	33	2.07	1.89	328	318	0.13
	43	1,56	1.71	329	320	0.16
JG-06-01	4	1.85	1.44	331	344	-0.11
	13	1.74	1.40	333	345	-0.09
	21	1.55	1.13	331	340	-0.04
JG-07-01	4	2.20	2.06	288	348	-0.15
	13	2.03	2.12	280	344	-0.21
	23	1.38	1.65	279	344	-0.15
	27	1.67	1.66	280	343	-0.12
JG-08-01	5	2.14	2.06	12	11	-0.45
	15	2.11	1.75	4	2	-0.38
	25	1.67	1.42	8	3	-0.42
		Pa	<u>tuxent River</u>			
PG-01-01	12	0.72	0.62	20	337	-0.00
	22	0.72	0.66	20	336	-0.04
	32	0.69	0.71	343	333	-0.05
	40	0.50	0.76	357	319	0.01
PG-01-02	4	1.07	0.64	351	345	0.06
	12	0.91	0.70	356	348	0.05
	22	0.90	0.71	6	344	0.01
	32	0.82	0.81	355	328	0.09
	42	0.69	0.74	358	313	0.06
PG-02-01	4	0.80	0.69	227	337	-0.09
	12	0.57	0.73	352	329	-0.04
	22	0.46	0.62	343	324	0.06
PG-02-02	4	1.05	0.72	12	336	-0.11
	12	0.85	0.73	16	335	-0.03
	22	0.67	0.68	16	334	0.02
	32	0.58	0.65	357	334	0.07
	42	0.59	0.57	8	339	0.09

(Continued)

(Sheet 9 of 16)

	·····	Cu	rrent Veloci	ty Data Summ	nary	
						Mean
		Amplit	ude, fps	Phase	e, deg	<u>fps</u>
<u>Station</u>	Depth	ADJ	MODEL	PPHSE	MPHSE	MA
		Patuxent	River (Cont	inued)		
PG-02-02	52	0.64	0.62	0	338	0.06
(Cont'd)	62	0.67	0.55	17	334	0.07
PG-03-01	4	0.88	0.82	12	341	-0.14
	12	0.86	0.78	18	339	0.07
	22	0.36	0.63	2	332	0.04
PG-04-01	4	0.93	0.90	33	351	-0.07
	12	1.01	0.96	34	347	-0.07
•	22	0.97	1.03	17	344	-0.06
	32	0.60	0.99	6	347	-0.07
PG-04-02	4	1.10	1.06	358	2	0.03
	10	0.69	0.86	41	353	0.06
PG-05-01	4	1.64	1.58	55	5	-0.18
	9	0.65	0.98	42	4	-0.09
PG-06-01	4	1.02	0.86	48	16	0.05
	12	0.84	0.99	63	7	0.04
		Po	tomac River			
PO-01-01	4	0.87	0.71	351	338	-0.22
	12	1.78	0.79	350	336	-0.17
	22	1.34	0.64	338	328	-0.12
	23	1.34	0.64	338	313	-0.07
PO-01-02	4	0.95	0.67	357	334	-0.27
	12	1.13	0.60	0	338	-0.22
	22	1.32	0.66	352	335	0.08
	35	0.55	0.62	334	319	0.01
PO-01-03	4	1.01	0.64	344	322	-0.18
	12	1.31	0.68	351	338	-0.15
	22	1.29	0.67	353	351	0.00
	32	1.04	0.71	355	331	0.10
	38	0.61	0.62	358	320	0.15
20-01-04	4	0.87	0.64	9	348	-0.24
	12	1.15	0.68	4	337	0.06
	22	0.90	0.67	5	328	0.13
	32	0.74	0.71	350	336	0.08
	42	0.62	0.74	337	338	0.09
	49	0.49	0.66	343	318	0.04

(Continued)

(Sheet 10 of 16)

	Current Velocity Data Summary							
						Mean _fps		
		<u>Amplit</u>	<u>ide, fps</u>	Phase		_ <u>Ps</u> MA		
<u>Station</u>	Depth	ADJ	MODEL	<u>PPHSE</u>	<u>MPHSE</u>			
		<u>Potomac</u>	<u>River (Conti</u>	nued)				
20-01-05	4	0.59	1.03	347	299	-0.1		
	12	0.84	0.77	328	300	-0.0		
	22	0.84	0.74	326	305	-0.0		
	28	0.33	0.62	304	297	-0.1		
20-02-01	4	0.60	0.45	353	348	-0.1		
0-02-01	22	0.60	0.45	349	352	-0.0		
	30	0.38	0.49	333	344	0.0		
	50	0.38	0.49	222	544	0.0		
20-02-02	4	0.77	0.46	0	351	-0.1		
	12	0.92	0.75	353	353	0.		
	22	0.74	0.71	357	356	0.		
	32	0.61	0.69	349	344	0.		
	42	0.57	0.67	358	339	0.		
	52	0.58	0.66	347	341	0.0		
	57	0.58	0.56	347	328	-0.0		
20-02-03	6	0.72	0.49	346	333	-0.		
	12	0.72	0.44	346	343	-0.		
	22	0.62	0.48	329	340	0.		
	30	0.38	0.47	315	318	0.		
PO-03-01	4	0.77	0.94	5	15	-0.		
10 00 01	12	0.69	0.85	294	16	-0.		
	22	0.75	1.04	354	9	0.		
	32	0.80	1.05	357	4	0.		
	42	0.72	1.01	359	30	0.		
	52	0.72	1.13	359	357	0.		
	57	0.80	1.03	352	357	0.		
PO-03-02	4	0.63	0.76	. 5	6	-0.		
10-03-02	22	0.88	1.06	د . 8	1	-0.		
	32	0.85		357	345			
	35	0.68	$1.14\\1.02$	340	341	0. -0.		
PO-04-01	ι.	1.00	0 07	21	0.0	0		
0-04-01	4		0.84	31	23	-0.		
	12 22	1.09 0.69	1.08 1.06	27 12	18 7	0. 0.		
PO-04-02	4	1.20	1.14	33	41	0		
	4 12	1.31		32	38	-0.		
	22		1.06			0.		
	22 41	1.42 0.71	0.94 0.97	31 10	27 9	0. 0.		

(Continued)

(Sheet 11 of 16)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Cu	rrent Veloci	ty Data Summ	arv	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				······································	· ·		Mean
Patuxent River (Continued)           P0-05-01         4         0.33         0.37         10         65         -0           P0-05-02         4         0.59         0.79         30         51         -0           10         0.81         0.88         37         48         -0           P0-05-03         4         0.92         0.98         35         44         -0           P0-05-03         10         0.89         1.05         35         57         -0           19         0.43         0.69         19         64         0           P0-06-01         4         1.51         1.79         78         86         -0           22         1.31         1.79         88         85         -0           32         1.26         1.66         86         78         -0           42         1.30         1.56         56         99         -0           P0-07-01         12         1.01         1.35         89         93         -0           P0-07-02         4         1.50         2.06         97         98         0           P0-07-02         10         1.35			Amplit	ude, fps	Phase	. deg	_fps_
Patuxent River (Continued)           P0-05-01         4         0.33         0.37         10         65         -0           P0-05-02         4         0.59         0.79         30         51         -0           P0-05-02         4         0.59         0.75         67         45         0           P0-05-03         4         0.92         0.98         35         44         -0           P0-05-03         4         0.92         0.98         35         57         -0           P0-06-01         4         1.51         1.79         78         86         -0           P0-06-01         4         1.51         1.79         78         86         -0           P0-06-01         4         1.51         1.79         78         86         -0           22         1.31         1.79         88         85         -0           32         1.26         1.66         86         78         -0           42         1.33         1.56         56         99         -0           P0-07-01         4         1.33         1.56         56         99         -0           P0-08-0	Station	Depth					MA MA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Patuxent	River (Cont	inued)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DO 05 01	4				65	0 07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P0-05-01						-0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12	0.47	0.40	19	42	-0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PO-05-02	4	0.59	0.79	30	51	-0.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	0.81	0.88	37	48	-0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16	0.30	0.75	67	45	0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PO-05-03	4	0.92	0.98	35	44	-0.34
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PO-06-01	4	1 51	1 79	78	86	-0.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-00-01						-0.30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-0.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							-0.04
61 $0.99$ $1.30$ $72$ $60$ $0$ $PO-07-01$ $4$ $1.33$ $1.56$ $56$ $99$ $-0$ $12$ $1.01$ $1.35$ $89$ $93$ $-0$ $PO-07-02$ $4$ $1.50$ $2.06$ $97$ $98$ $-0$ $12$ $1.71$ $1.84$ $75$ $96$ $-0$ $20$ $0.29$ $1.50$ $139$ $88$ $0$ $PO-08-02$ $10$ $1.35$ $1.55$ $98$ $108$ $-0$ $PO-09-01$ $4$ $0.15$ $1.11$ $137$ $100$ $-0$ $PO-09-02$ $4$ $0.43$ $1.28$ $90$ $114$ $-0$ $PO-09-02$ $4$ $0.43$ $1.28$ $90$ $114$ $-0$ $PO-09-01$ $12$ $1.27$ $1.53$ $114$ $112$ $-0$ $PO-10-01$ $12$ $1.27$ $1.53$ $114$ $112$ $-0$ $PO-10-01$ $12$ $1.27$ $1.53$ $114$ $107$ $-0$							-0.02
PO-07-0141.331.565699-0 $12$ 1.011.358993-0 $PO-07-02$ 41.502.069798-0 $12$ 1.711.847596-0 $20$ 0.291.50139880 $PO-08-02$ 101.351.5598108-0 $17$ 1.051.4396104-0 $PO-09-01$ 40.151.11137100-0 $PO-09-02$ 40.431.2890114-0 $PO-09-02$ 40.431.2890114-0 $PO-10-01$ 121.271.53114112-0 $PO-10-01$ 121.271.53114107-0							0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		61	0.99	1.30	12	60	0.05
PO-07-0241.502.069798-0121.711.847596-0200.291.50139880 $PO-08-02$ 101.351.5598108-0171.051.4396104-0 $PO-09-01$ 40.151.11137100-0100.531.008097-0 $PO-09-02$ 40.431.2890114-0111.381.1657109-0210.920.9568105-0 $PO-10-01$ 121.271.53114112-0271.021.29114107-0	PO-07-01	4	1.33	1.56	56	99	-0.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	1.01	1.35	89	93	-0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PO-07-02	4	1.50	2.06	97	98	-0.44
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-0.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PO-08-02	10	1 35	1 55	98	108	-0.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 00 02						-0.11
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 00 01	,	0.15		107	、 100	
PO-09-0240.431.2890114 $-0$ 111.381.1657109 $-0$ 210.920.9568105 $-0$ PO-10-01121.271.53114112 $-0$ 271.021.29114107 $-0$	P0-09-01						-0.08
11 $1.38$ $1.16$ $57$ $109$ $-0$ $21$ $0.92$ $0.95$ $68$ $105$ $-0$ PO-10-01 $12$ $1.27$ $1.53$ $114$ $112$ $-0$ $27$ $1.02$ $1.29$ $114$ $107$ $-0$		10	0.53	1.00	80	97	-0.06
21         0.92         0.95         68         105         -0           P0-10-01         12         1.27         1.53         114         112         -0           27         1.02         1.29         114         107         -0	PO-09-02						-0.14
PO-10-01         12         1.27         1.53         114         112         -0           27         1.02         1.29         114         107         -0							-0.08
27 1.02 1.29 114 107 -0		21	0.92	0.95	68	105	-0.09
27 1.02 1.29 114 107 -0	PO-10-01	12	1.27	1.53	114	112	-0.13
$P_{0-10-02}$ / 1 36 1 33 105 120 0							-0.05
	PO-10-02	4	1.36	1.33	105	120	-0.11
							-0.11
							-0.08

(Continued)

(Sheet 12 of 16)

	<u></u>	Cu	rrent Veloci	ty Data Sumr	nary	
		· · · · · · · · · · · · · · · · · · ·				Mean
		Amplit	ude, fps	Phase	e, deg	<u>fps</u>
Station	Depth	ADJ	MODEL	PPHSE	MPHSE	MA
	<u> </u>					
			<u>River (Conti</u>			
PO-11-01	4	1.41	1.73	111	138	-0.08
	12	1.44	1.58	128	131	-0.11
	22	1.31	1.51	123	130	-0.07
	30	1.17	1.43	119	124	0.00
PO-12-01						
	4	1.29	1.58	127	129	-0.20
	12	1.26	1.49	137	127	-0.23
	22	1.22	1.52	133	128	-0.19
	32	1.16	1.50	138	134	-0.06
	42	1.03	1.39	131	131	0.05
PO-13-01	52	0.92	1.25	135	129	0.06
	4	0.95	1.10	147	135	-0.33
	22	0.58	0.78	131	137	-0.24
		Pat	tapsco River			
PR-01-01	4	0.38	0.42	104	124	-0.13
IR OF OF	12	0.36	0.37	111	112	-0.13
PR-01-02	.L. Z.	0.50	0.37	***	11Z	-0.08
	4	0.44	0.38	90	126	-0.01
PR-01-03	13	0.39	0.37	103	119	-0.05
	4	0.56	0.07	77	20	0 10
	4	0.56	0.27	77	80	0.10
	12	0.41	0.28	102	82	0.00
	22	0.17	0.18	138	112	0.10
	32	0.21	0.27	150	123	0.12
	38	0.17	0.27	127	115	0.08
PR-02-01	4	0.19	0.02	128	46	0.01
	13	0.31	0.09	81	100	0.01
PR-02-02						
	4	0.09	0.12	149	101	0.02
	12	0.41	0.19	139	81	-0.04
	22	0.24	0.13	100	90	0.01
	32	0.27	0.17	91	79	0.05
	39	0.26	0.10	69	64	0.02
		Rappa	ahannock Rive	<u>er</u>		
RG-01-01	4	1.60	1.52	285	266	-0.06
	12	1.60	1.30	285	255	-0.16
	22	1.47	1.32	281	245	-0.02
		*• ** /	± , 44.	201	240	0.02

(Continued)

(Sheet 13 of 16)

_____

	Current Velocity Data Summary						
						Mean <u>fps</u>	
			<u>ude, fps</u>	<u>     Phase</u>		<u> </u>	
Station	<u>Depth</u>	ADJ	MODEL	<u>PPHSE</u>	<u>MPHSE</u>	MA	
7		<u>Rappahanno</u>	<u>ck River (Co</u>	ntinued)			
RG-01-02	4	1.34	1.05	296	273	-0.04	
	12	1.39	1.01	302	266	0.0	
	22	1.22	0.83	311	258	0.1	
	31	0.74	0.73	301	232	0.1	
RG-02-01	4	1.25	0.90	298	280	-0.1	
	13	1.36	0.85	297	276	-0.1	
	23	1.14	0.76	296	271	-0.04	
RG-02-02	4	1.08	0.96	317	283	-0.34	
	12	1.04	0.94	310	279	-0.20	
	22	1.02	1.02	314	272	0.0	
	32	0.94	0.99	319	261	0.14	
	42	0.94	0.94	305	250	0.19	
.v	52	0.79	0.63	295	252	0.1	
RG-03-01	4	0.86	0.79	313	282	-0.20	
	12	2,03	0.89	224	284	-0.13	
	22	1.09	0.78	326	282	-0.03	
	32	1.11	0.68	330	274	0.1	
	42	0.99	0.94	335	287	0.0	
	52	0.95	1.08	310	284	0.1	
RG-03-02	4	0.83	0.75	250	286	-0.09	
	13	0.78	0.67	254	270	0.0	
RG-04-01	4	1.22	1.14	321	289	-0.08	
	12	1.17	1.08	329	283	0.04	
	20	0.81	0.92	306	277	0.1	
RG-04-02	4	0.95	0.65	327	307	-0.33	
	12	1.03	0.61	315	300	-0.0	
	22	0.99	0.58	324	287	0.10	
	32	0.69	0.65	299	287	0.24	
RG-05-01	4	1.23	1.94	343	298	-0.2	
	9	1.34	1.46	241	299	-0.02	
	19	1.00	1.32	232	297	0.03	
RG-06-01	4	1.84	1.26	2	313	-0.18	
	12	1.37	1.27	350	302	-0.03	
	16	0.97	1.16	333	288	-0.1	

(Continued)

(Sheet 14 of 16)

		Current Velocity Data Summary				
						Mean
		Amplit	<u>ude, fps</u>	Phase	, deg	<u>_fps</u>
Station	<u>Depth</u>	ADJ	MODEL	PPHSE	MPHSE	MA
		Rappahanno	ck River_(Co	ntinued)		
RG-07-01	. 4	1.85	1.72	5	340	-0.29
KG-07-01	12	1.71	1.48			
				357	333	-0.11
RG-08-01	16	1.40	1.26	341	331	-0.02
	4	2.17	1.97	18	343	-0.43
	12	2.20	1.77	5	344	-0.29
RG-09-01	21	1.56	1.57	10	344	-0.18
DC 10 01	4	1 01	1 00	0.5	0	0.05
RG-10-01	12	1.91 1.37	1.80 1.61	25	8	-0.05
	12	1.37	T.01	34	6	-0.12
	4	2.37	1.46	55	19	-0.14
	12	2.09	1.35	57	19	-0.09
	22	1.75	1.29	51	17	-0.06
		Susq	uehanna Rive	er		
SU-01-01	4	0.54	0.59	190	186	-0.59
	14	0.22	0.53	191	158	-0.51
SU-01-02	12	0.25	0.51	208	186	-0.61
	22	0.21	0.47	201	180	-0.60
	24	0.19	0.52	134	186	-0.62
		-	<u>York River</u>			
YG-01-01	15	1.32	1.04	247	202	-0.13
	23	1.09	1.00	250	196	0.02
	33	0.96	0.89	229	186	0.10
YG-01-02	15	1.20	0.81	220	211	0.14
	35	1.04	0.96	214	196	0.06
	45	1.03	1.04	213	184	0.16
	53	0.75	1.03	233	173	0.06
VG 00 01	,	1 (0	1 70	050	01/	
YG-02-01	4	1.69	1.79	258	214	-0.39
	14	1.71	1.71	265	215	-0.24
	24	1.62	1.77	271	212	-0.20
	52 61	1.25 0.90	1.31	246	187	0.27
	σī	0.90	0.81	231	196	0.28
YG-03-01	13	1.24	1.40	251	209	-0.01
YG-03-02	3	2.03	1.64	272	223	-0.35
	13	1.98	1.58	274	215	-0.08
	23	1.53	1.42	250	206	0.19
	26	1.53	1.46	250	202	0.04

## Table 4 (Continued)

(Continued)

(Sheet 15 of 16)

		Cu	rrent Veloci	ty Data Summ	lary	
_Station	<u>Depth</u>	_Amplity _ADJ	ude, fps <u>MODEL</u>	<u>Phase</u>	e, deg <u>MPHSE</u>	Mean <u>fps</u> MA o
		<u>York R</u>	iver (Continu	ued)		
YG-04-01	13	2.21	1.65	286	235	-0.11
	23	1.90	1.65	278	227	0.11
YG0501	4	2.75	2.55	275	242	-0.48
	14	1.39	2.46	220	237	-0.05
	23	2.14	2.12	258	228	0.11
YG-06-01	14	2.53	2.08	287	256	-0.28
	24	2.02	1.66	286	254	0.11
YG-07-01	4	1.59	2.56	306	267	-0.20
	12	1.59	2.42	306	266	-0.27
YG-07-02	11	0.83	3.34	251	261	-0.46

## Table 4 (Concluded)

(Sheet 16 of 16)

		Period of Record		No. Measurement		Available Data		
	Depth	From	То	of	Increment	Cur-		Salin-
<u>Station</u>	<u>_ft</u>	mm/dd/yy/hour	<u>mm/dd/yy/hour</u>	<u>Days</u>	min	<u>rent</u>	<u>Temp.</u>	<u>ity</u>
WP	28	06/27/80/1230	07/08/80/0030	10.5	30	Х	-	-
BB1	9	06/22/80/0810	07/29/80/1230	37.2	10	_	х	х
BB1	50	06/22/80/0820	07/29/80/1240	37.2	10	_	x	X
CC1	56	06/22/80/1040	07/28/80/0920	36.0	10		x	Х
PX1	5	07/01/80/1300	08/01/80/1500	31.1	30	Х	-	
PX1	12	07/01/80/1250	08/01/80/1530	31.1	10	Х	х	X
PX1	30	07/01/80/1300	08/01/80/1500	31.1	30	Х	_	-
PX2	9	07/01/80/1430	08/01/80/1600	31.1	30	Х		
PX2	34	07/01/80/1430	08/01/80/1600	31.1	30	X	·	-
SPl	30	06/26/80/1200	07/13/80/1300	17.1	30	Х	_	_
SP1	60	06/26/80/1200	07/28/80/1420	32.1	10	x	х	_
SP1	90	06/26/80/1200	07/23/80/1150	27.0	30	x	_	
SP2	9	06/26/80/1100	07/28/80/1500	32.2	10	х	x	х
SP2	27	06/26/80/1110	07/28/80/1510	32.2	10	x	x	-
TS1	9	06/26/80/0930	07/28/80/1730	32.4	30	х	-	_
TS1	30	06/26/80/0900	07/28/80/1630	32.3	30	x		
TS1	55	06/26/80/0920	07/28/80/1710	32.3	10	x	X	_
WT1	9	06/25/80/1520	07/24/80/1920	29.2	10	_	x	Х
WT2	9	06/25/80/1440	07/30/80/1520	35.0	10	х	х	х
WT2	30	06/25/80/1500	07/30/80/1550	35.0	10	x	x	x
WT3	9	06/25/80/1610	07/30/80/1620	35.0	10	Х	х	х
WT3	30	06/25/80/1620	07/30/80/1630	35.0	10	x	X	_
WT4	9	06/25/80/1630	07/30/80/1630	35.0	10	х	х	х
WT4	30	06/25/80/1700	07/30/80/1700	35.0	10	X	X	X
WT4	58	06/25/80/1700	07/30/80/1700	35.0	10	X	x	-
WT5	9	06/25/80/1730	07/30/80/1700	35.0	30	х		-
WT5	29	06/25/80/1730	07/30/80/1700	35.0	30	x		-
M1	9	06/23/80/0850	07/31/80/0850	38.0	10	x	x	х
M1	35	06/23/80/0900	07/31/80/0840	38.0	10	x	x	X
Ml	50	06/23/80/0900	07/31/80/0900	38.0	10	x	X	X
M2	9	06/23/80/0920	07/31/80/0900	38.0	10	х	х	х
M2	20	06/23/80/0940	07/31/80/0900	38.0	10	x	x	x
M2	35	06/23/80/0940	07/31/80/0910	38.0	10	x	x	X
M2	50	06/23/80/0940	07/31/80/0920	38.0	10	x	x	X
M3	9	06/23/80/1040	07/31/80/0940	38.0	10	х	X	x
M3	20	06/23/80/1040	07/31/80/0940	38.0	10	X	X	X
M3	32	06/23/80/1030	07/31/80/0940	38.0	10	X	X	X
M4	10	06/23/80/1120	07/18/80/2250	25.5	10	x	X	x
M5	9	06/23/80/1220	07/31/80/1050	37.9	10	x	x	
M5	30	06/23/80/1240	07/31/80/1050	37.9	10	X	X	X X

____

Tab	le	5
-----	----	---

Summary of the Available CRIMP Data and Period of Record

-----

	Equilibrium Temperature	Surface Transfer Coefficient	Short-Wave
Date	<u>°C</u>	<u>(watts/m²/°C)</u>	Solar Radiation
6/23/80	24.7	58.2	522.8
6/24/80	24.4	90.6	429.2
6/25/80	23.5	80.2	316.7
6/26/80	22.3	59.8	278.1
6/27/80	21.7	31.0	652.2
6/28/80	24.1	23.9	531.2
6/29/80	22.9	28.6	287.1
6/30/80	26.9	49.7	492.6
7/01/80	27.3	36.6	558.8
7/02/80	27.9	29.8	559.7
7/03/80	28.0	32.0	648.2
7/04/80	26.8	48.0	588.4
7/05/80	24.7	69.1	283.9
7/06/80	24.1	47.1	286.4
7/07/80	22.2	47.5	263.0
7/08/80	24.2	34.4	659.8
7/09/80	23.4	47.7	575.8
7/10/80	23.6	31.3	302.4
7/11/80	23.4	55.7	298.9
7/12/80	26.7	43.6	465.4
7/13/80	25.9	63.9	433.6
7/14/80	24.3	24.8	343.7
7/15/80	21.3	38.6	252.3
7/16/80	22.8	52.7	280.6
7/17/80	21.3	24.6	287.1
7/18/80	19.5	33.8	268.0
7/19/80	21.7	25.9	257.0
7/20/80	23.6	25.3	270.8
7/21/80	25.4	28.5	281.7
7/22/80	27.6	31.5	283.7
7/23/80	27.2	29.2	282.7
7/24/80	26.6	40.1	397.2
7/25/80	25.3	44.9	429.9
7/26/80	26.4	42.8	561.1
7/27/80	26.3	45.9	412.5
7/28/80	27.8	30.3	445.9
7/29/80	25.7	42.8	252.4
7/30/80	25.4	35.2	229.1
7/31/80	25.5	43.1	329.2

Table 6 1980 Surface Heat Exchange Data

		N +1	
	ation	Depth	Devial of Do
Latitude	<u>Longitude</u>	<u> </u>	Period of Record
		<u>Bay Entrance</u>	
36° 58.8′	75° 59.88′	4.6	04/01/83 - 05/01/83
		10.4	04/01/83 - 05/01/83
		<u>Mid Bay</u>	
38° 18.73′	76° 18.75′	4.6	04/01/83 - 05/01/83
50 10.75	/0 101/0	14.6	04/01/83 - 04/05/83
		Wolf Trap	
37° 24.80′	76° 7.40′	4.6	04/01/83 - 05/01/83
57 24.00	/0 /110	10.1	04/01/83 - 05/01/83
		<u>Bay Bridge</u>	
38° 53.75′	76° 23.36'	5.8	04/01/83 - 05/01/83
		11.3	04/01/83 - 05/01/83
		21.3	04/05/83 - 05/01/83
		Pooles Island	
39° 18.70′	76° 13.00′	5.5	04/06/83 - 04/11/83
		<u>Havre de Grace</u>	
39° 32.22′	76° 4.80'	3.0	04/13/83 - 05/01/83

	Equilibrium Temperature	Surface Transfer Coefficient	Short-Wave Solar Radiation	
Date	°C	watts/m ² /°C		
4/01/83	13.8	15.7	455.8	
4/02/83	9.6	21.7	248.9	
4/03/83	14.2	29.4	310.4	
4/04/83	16.2	17.4	407.8	
4/05/83	14.6	11.8	266.2	
4/06/83	13.7	12.4	180.6	
4/07/83	14.6	12.8	174.5	
4/08/83	16.7	13.6	174.2	
4/09/83	12.6	23.0	177.3	
4/10/83	13.8	18.7	277.5	
4/11/83	12.4	21.9	305.2	
4/12/83	18.2	15.3	499.3	
4/13/83	15.7	19.2	458.6	
4/14/83	13.1	29.2	302.6	
4/15/83	13.6	33.9	183.4	
4/16/83	12.1	27.7	424.4	
4/17/83	14.3	18.6	508.0	
4/18/83	9.9	18.7	388.4	
4/19/83	4.6	26.2	202.4	
4/20/83	6.5	28.4	323.2	
4/21/83	18.4	15.1	546.1	
4/22/83	19.1	15.8	486.0	
4/23/83	14.7	19.6	283.2	
4/24/83	12.4	29.6	194.1	
4/25/83	7.4	30.6	207.8	
4/26/83	15.2	25.3	474.9	
4/27/83	20.9	18.9	432.6	
4/28/83	21.8	27.1	538.3	
4/29/83	17.9	32.6	241.4	
4/30/83	17.9	38.8	253.9	

		Table	8	
April 19	983 Sur	face He	<u>at Excha</u>	nge Data

.

Loc	ation	Depth	·····
Latitude_	Longitude	<u>m</u>	Period of Record
		<u>Bay Entrance</u>	
36° 58.80′	75° 59.88′	4.6 10.4	09/01/83 - 09/30/83 09/01/83 - 09/30/83
		<u>Wolf Trap</u>	
37° 24.80′	76° 7.40′	4.6 10.1	09/01/83 - 09/30/83 09/01/83 - 09/06/83
		<u>Mid Bay</u>	
38° 18.73′	76° 18.75′	5.2 14.9	09/01/83 - 09/30/83 09/01/83 - 09/30/83
		<u>Bay Bridge</u>	
38° 53.75′	76° 23.36′	5.8 11.3 21.3	09/01/83 - 09/30/83 09/01/83 - 09/30/83 09/01/83 - 09/30/83

/

Table 9Location of Current Meters for Fall 1983 NOS Data Set

	Equilibrium Temperature	Surface Transfer Coefficient	Short-Wave Solar Radiation
Date	° C	watts/m ² /°C	watts/m ² /°C
9/01/83	26.1	26.6	315.8
9/02/83	25.4	20.4	219.2
9/03/83	. 27.8	18.4	337.4
9/04/83	27.7	28.6	272.1
9/05/83	31.2	22.2	334.8
9/06/83	31.2	27.0	419.2
9/07/83	31.0	21.6	346.6
9/08/83	25.9	18.6	308.8
9/09/83	28.8	18.7	448.5
9/10/83	30.2	19.4	438.8
9/11/83	28.3	27.4	429.8
9/12/83	27.4	27.5	320.8
9/13/83	22.3	27.1	164.1
9/14/83	18.1	28.65	167.1
9/15/83	20.5	24.7	431.9
9/16/83	21.9	19.7	376.1
9/17/83	24.3	21.3	289.1
9/18/83	25.2	19.7	390.8
9/19/83	25.4	31.3	403.3
9/20/83	25.1	37.8	392.0
9/21/83	21.6	38.4	157.7
9/22/83	14.7	29.2	378.0
9/23/83	18.3	14.3	364.8
9/24/83	18.6	15.1	404.7
9/25/83	20.6	13.6	389.8
9/26/83	18.2	13.3	240.2
9/27/83	22.8	15.2	374.2
9/28/83	19.0	25.6	265.7
9/29/83	15.3	33.7	175.4
9/30/83	17.4	35.5	131.9

		Table	10		
September	1983	Surface	Heat	Exchange	Data

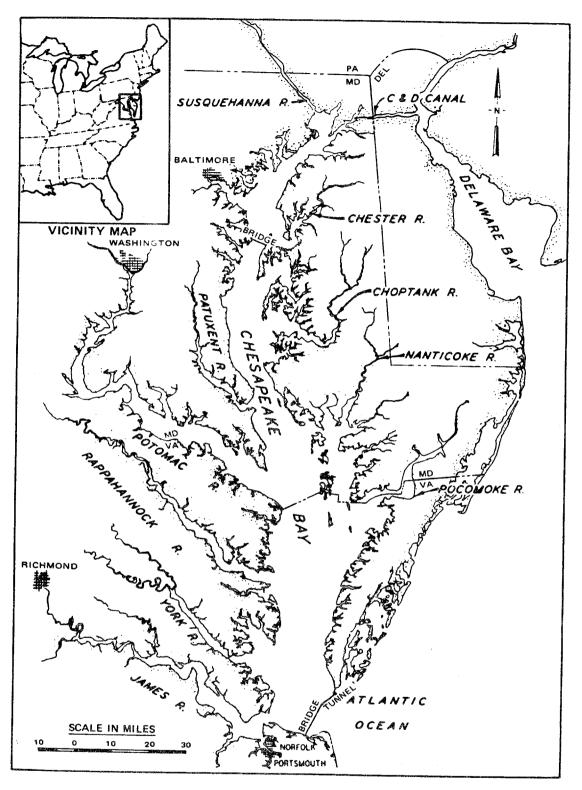
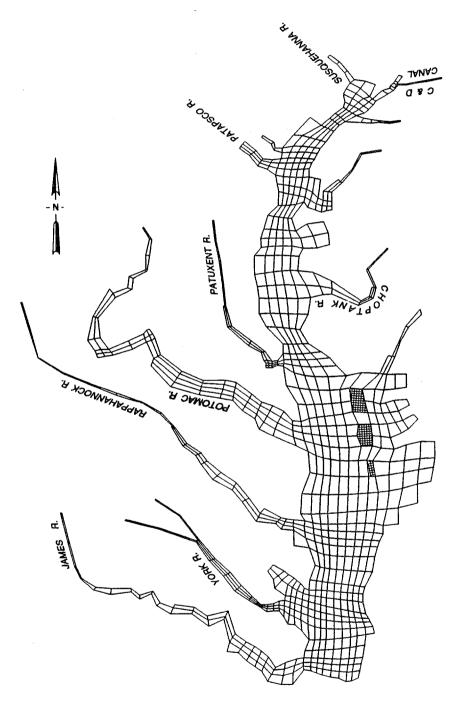




Figure 1. Chesapeake Bay



÷

Figure 2. Planform boundary-fitted grid of Chesapeake Bay

~

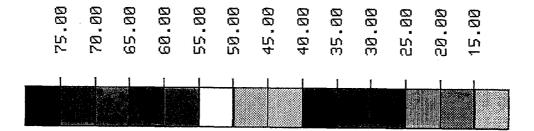
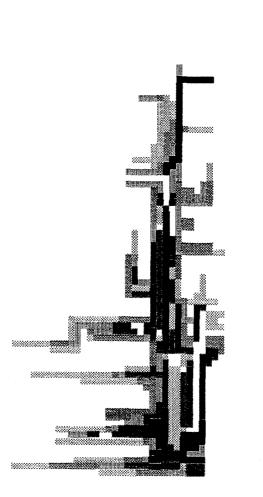




Figure 3. Chesapeake Bay bathymetry

## CHESAPEAKE BAY, CELL CENTERED DEPTHS IN FEET



. . .

. .

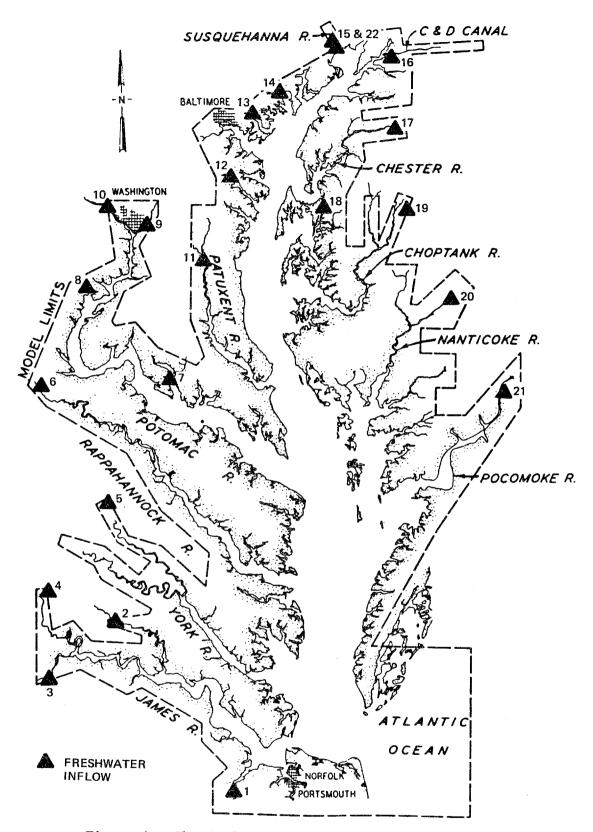
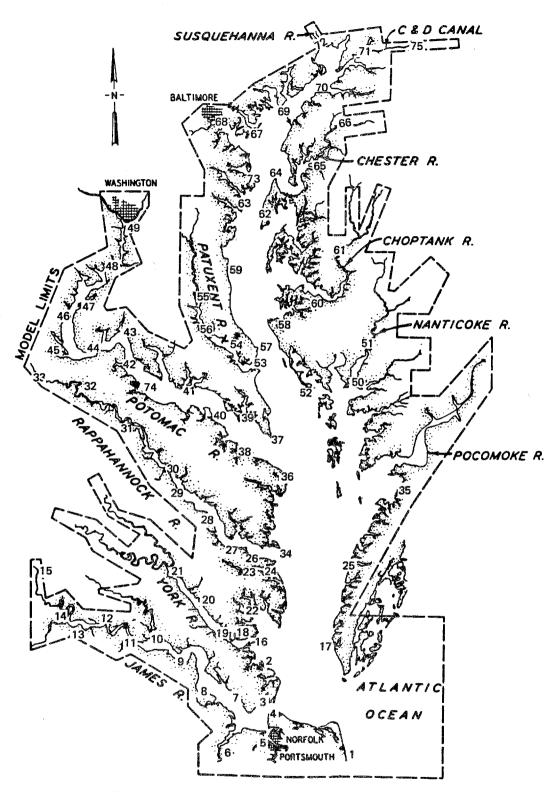
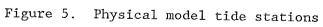





Figure 4. Physical model freshwater inflow locations





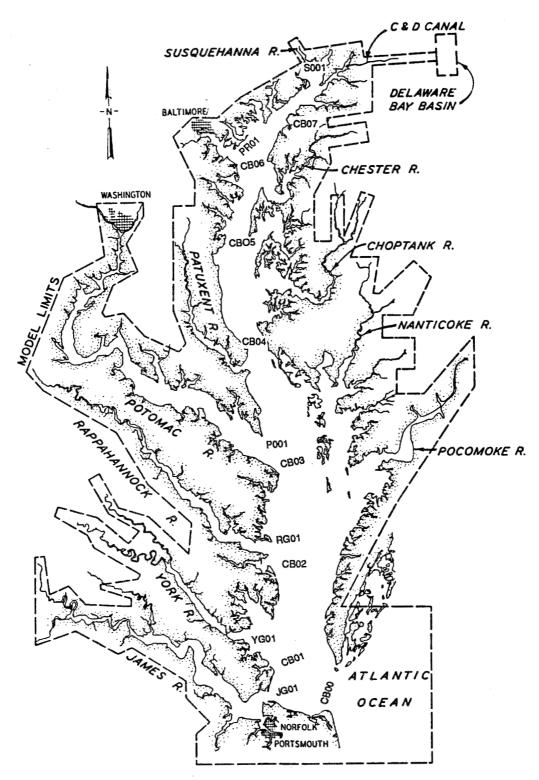
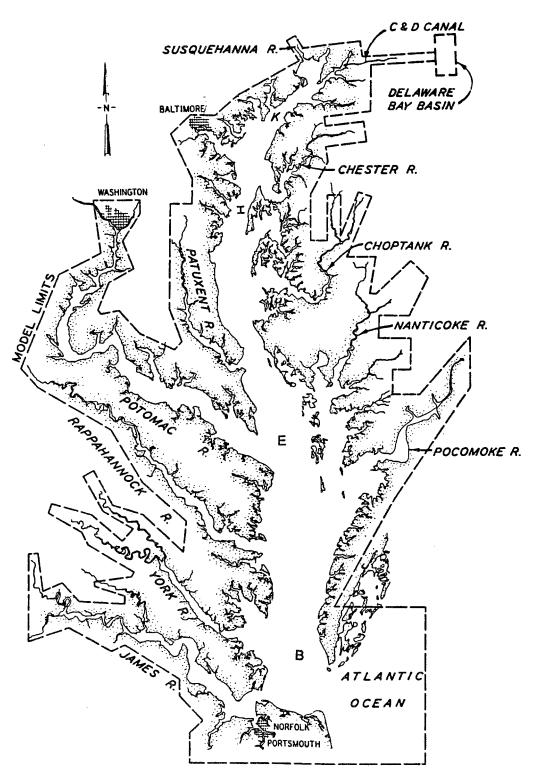
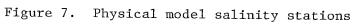





Figure 6. Physical model velocity sampling ranges along Chesapeake Bay and its major tributaries





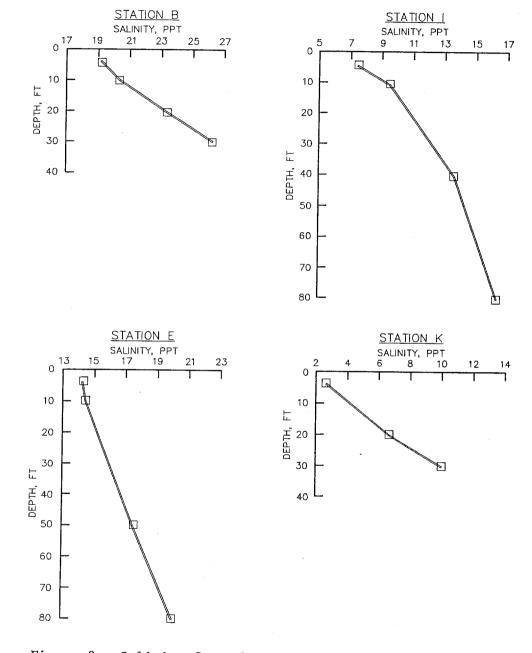



Figure 8. Salinity from physical model during steady-state testing conditions

.

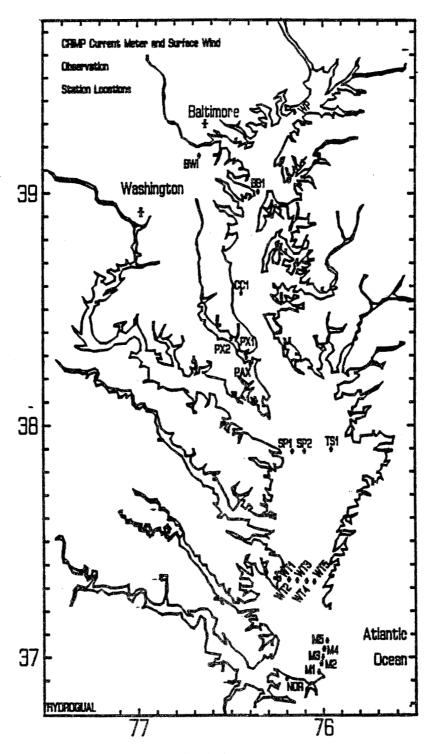



Figure 9. Location of 1980 CRIMP current meter and 1980/1983 surface wind observation stations

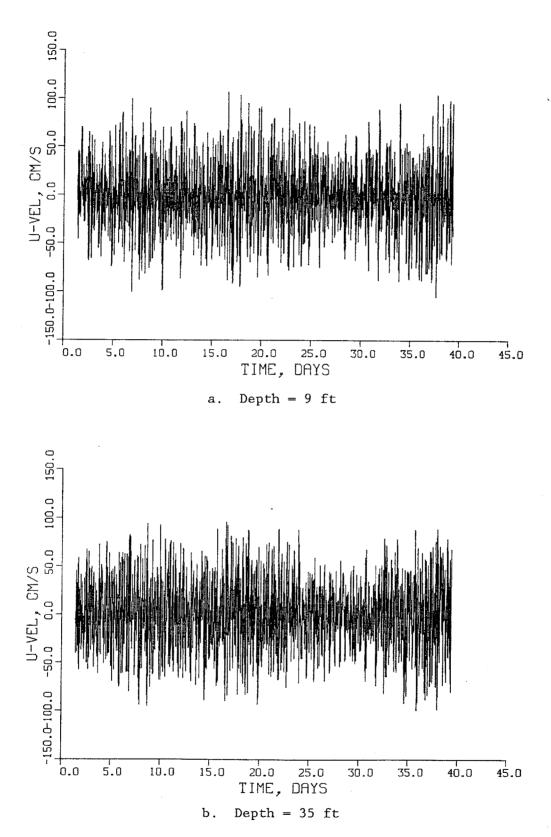
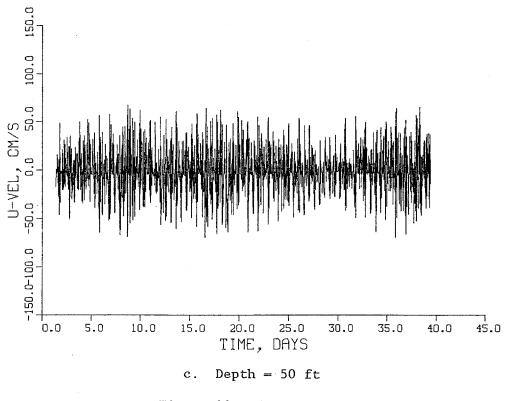
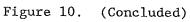





Figure 10. U-velocity at station M1 from CRIMP data (Continued)





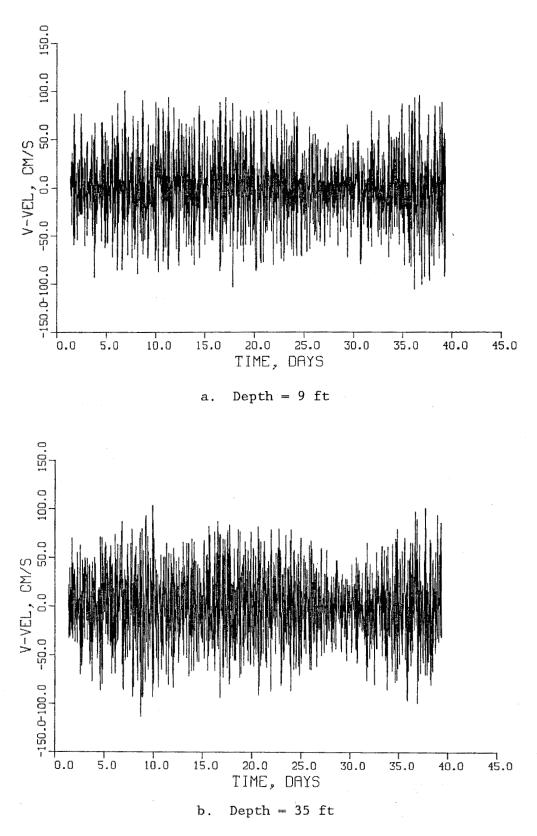
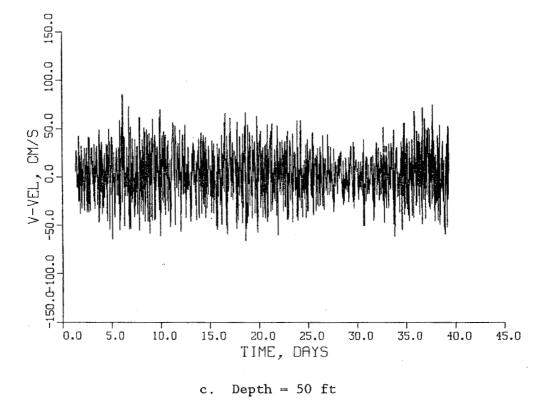
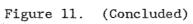





Figure 11. V-velocity at station M1 from CRIMP data (Continued)





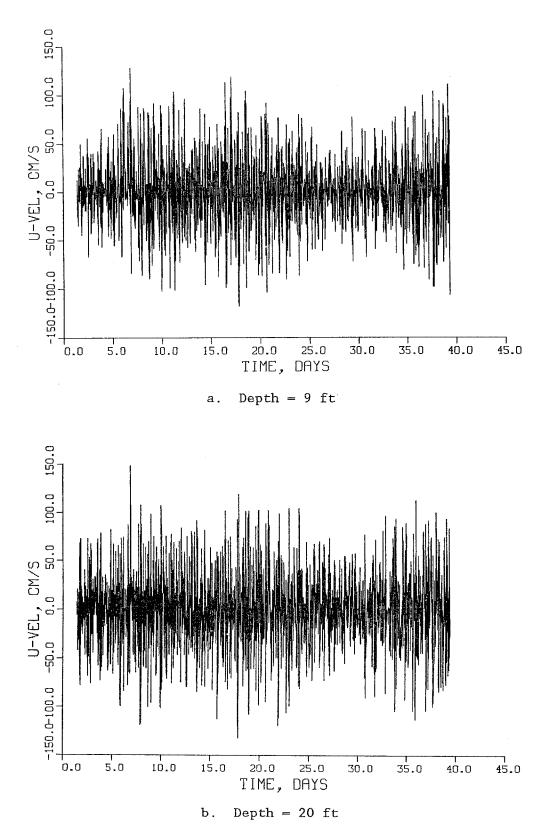
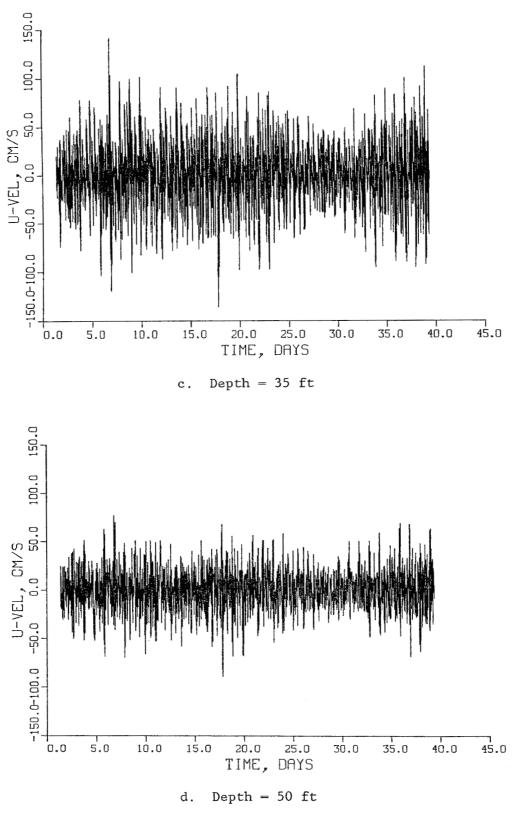
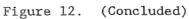





Figure 12. U-velocity at station M2 from CRIMP data (Continued)





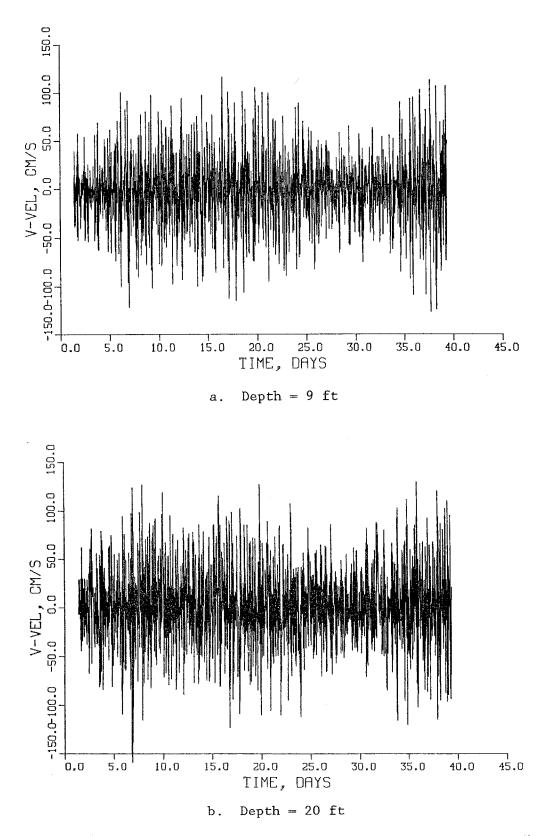
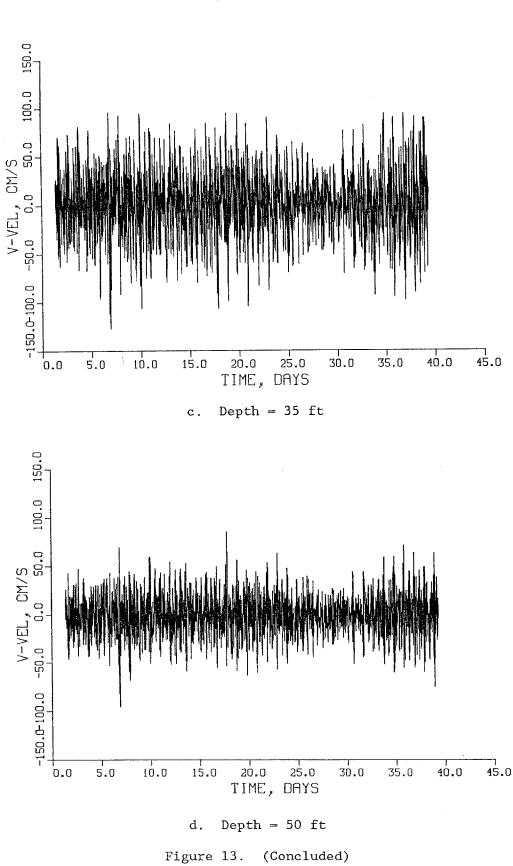
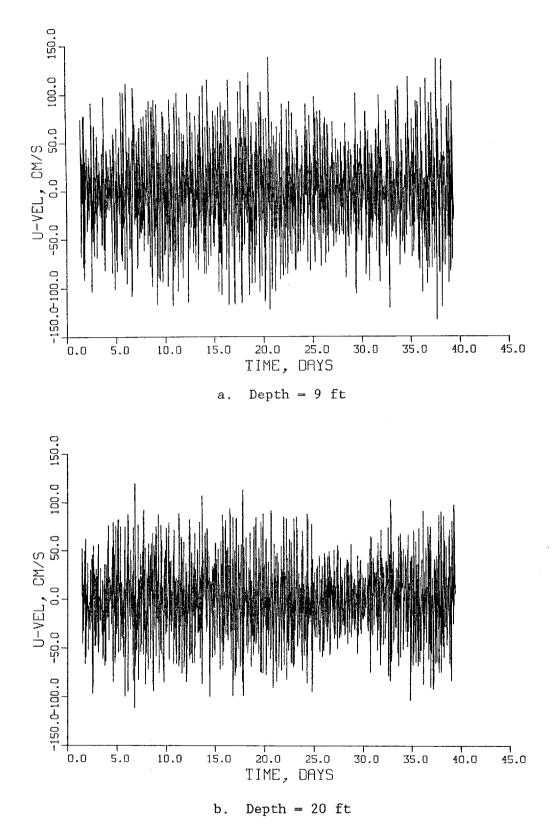
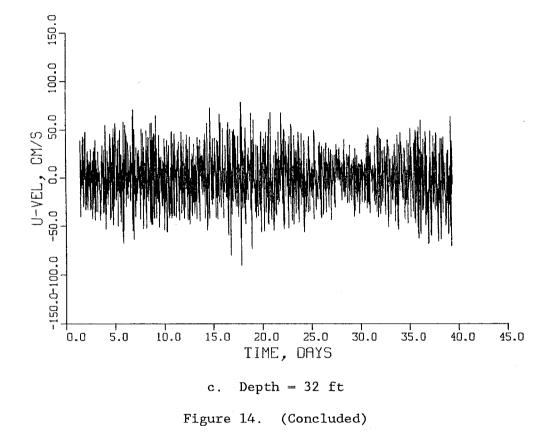





Figure 13. V-velocity at station M2 from CRIMP data (Continued)








1

Figure 14. U-velocity at station M3 from CRIMP data (Continued)



η.

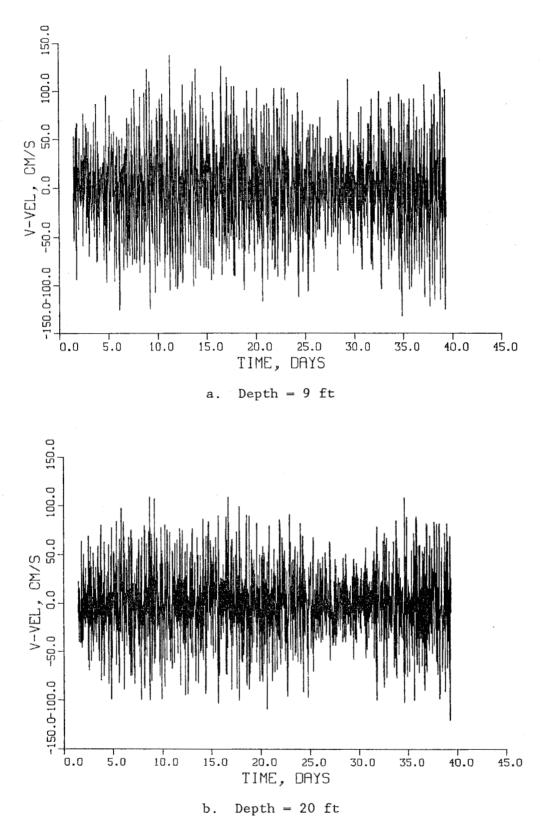
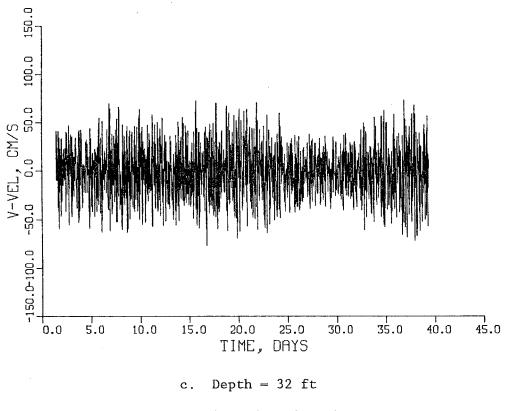
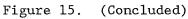
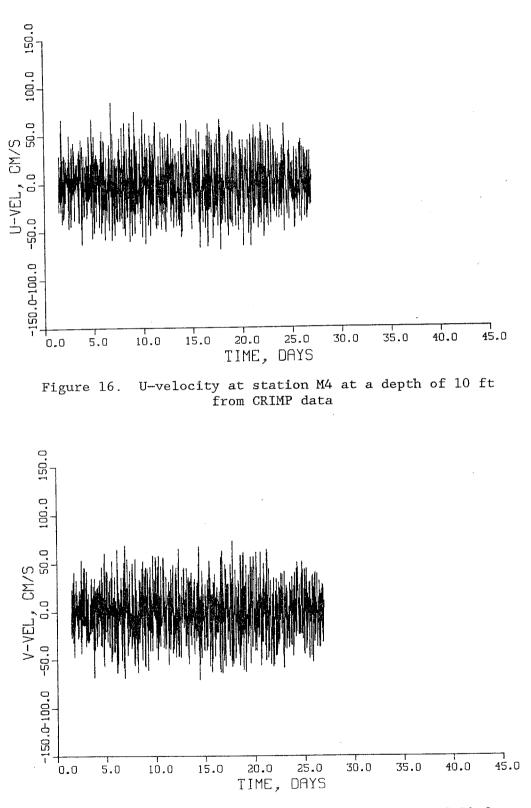
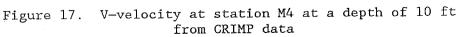







Figure 15. V-velocity at station M3 from CRIMP data (Continued)









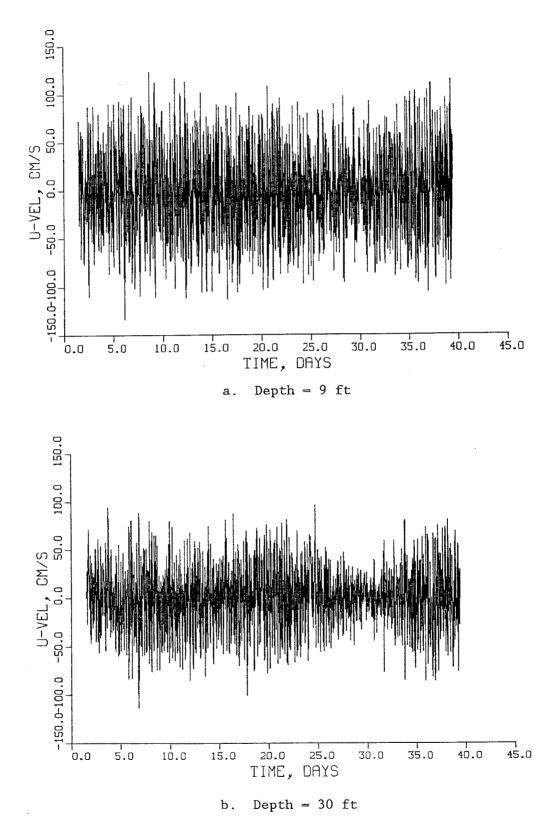



Figure 18. U-velocity at station M5 from CRIMP data

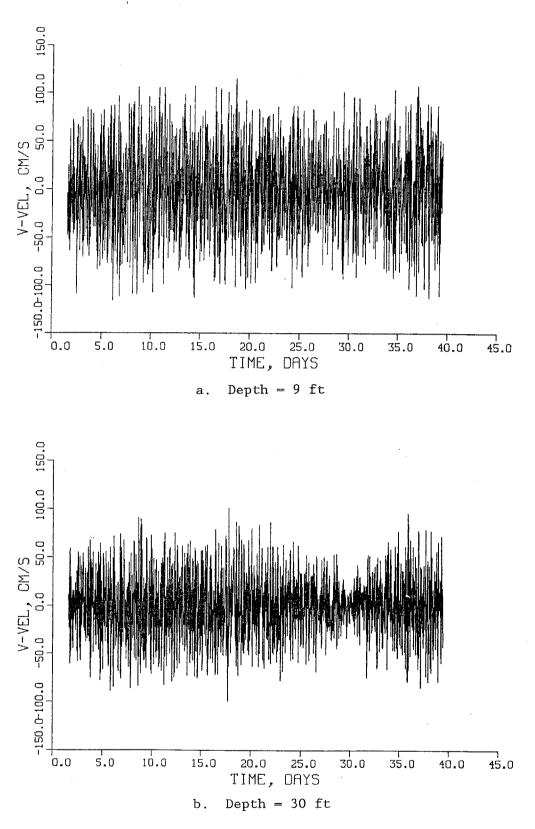



Figure 19. V-velocity at station M5 from CRIMP data

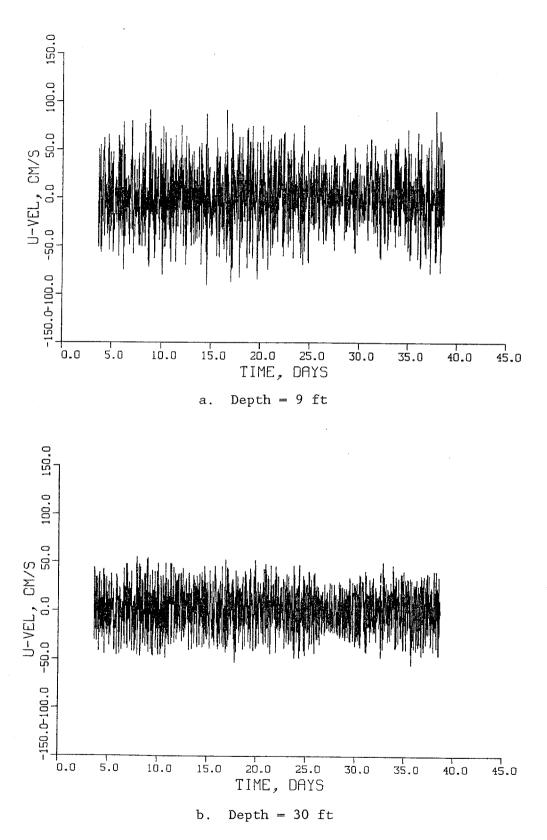
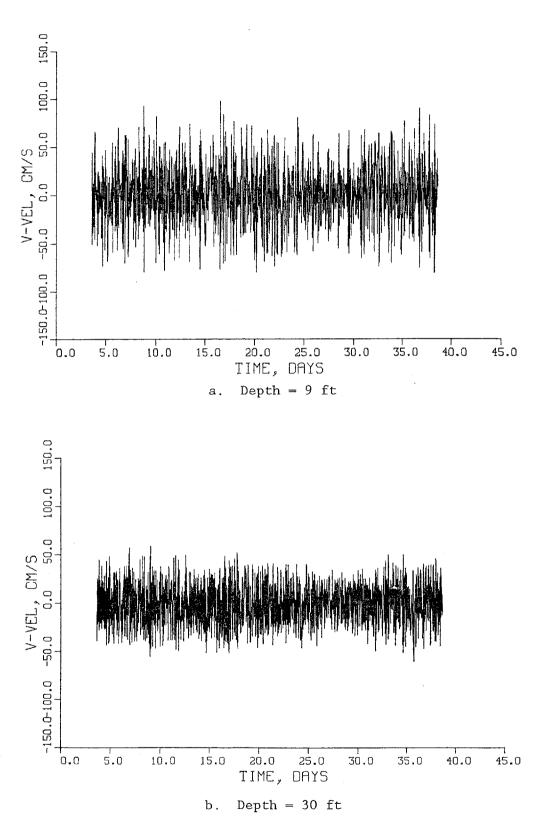
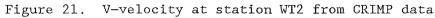





Figure 20. U-velocity at station WT2 from CRIMP data

.





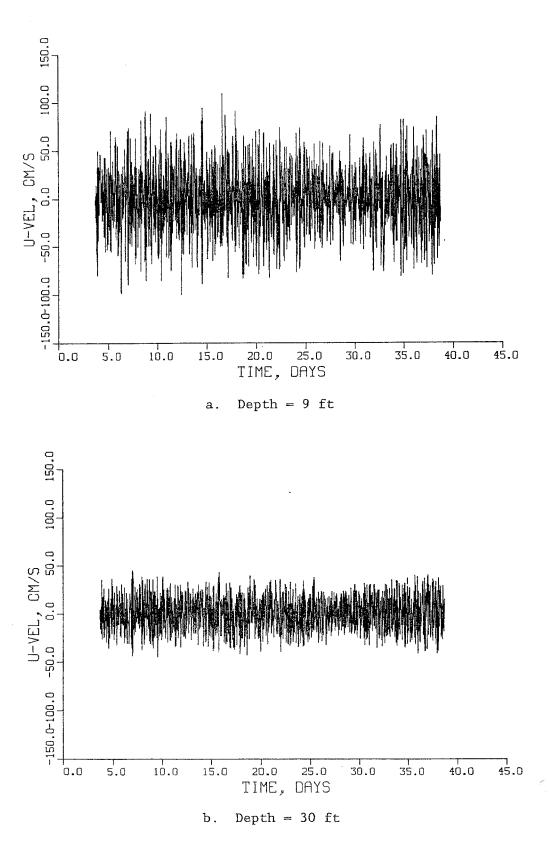
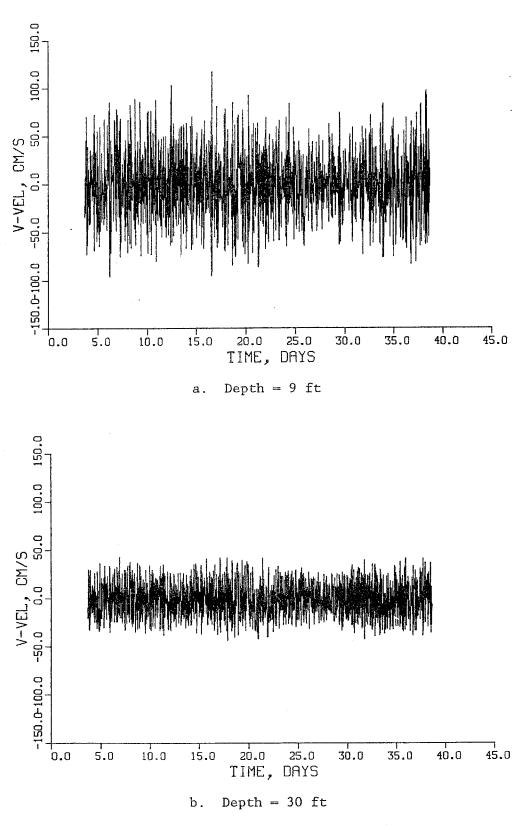
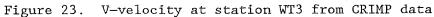





Figure 22. U-velocity at station WT3 from CRIMP data





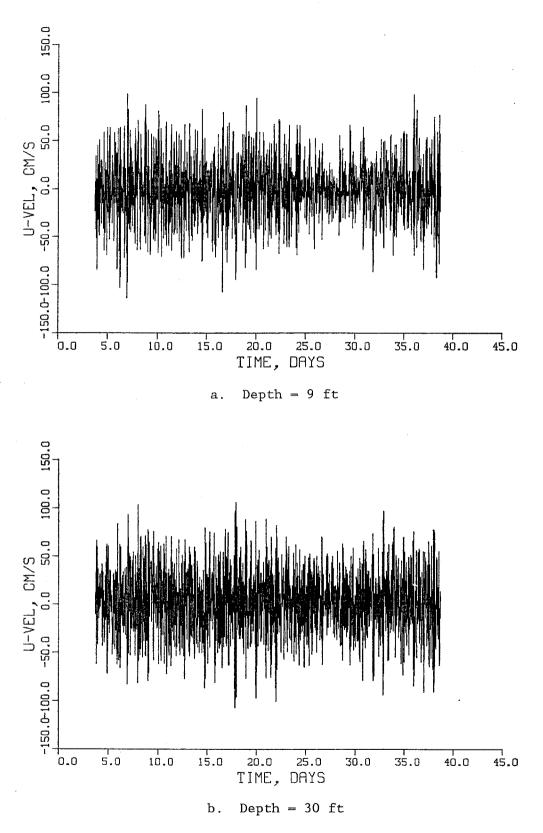
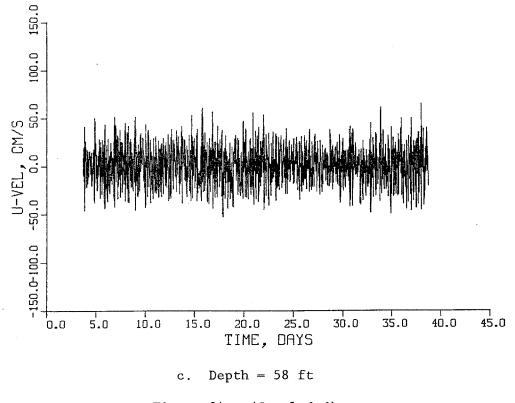
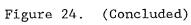





Figure 24. U-velocity at station WT4 from CRIMP data (Continued)





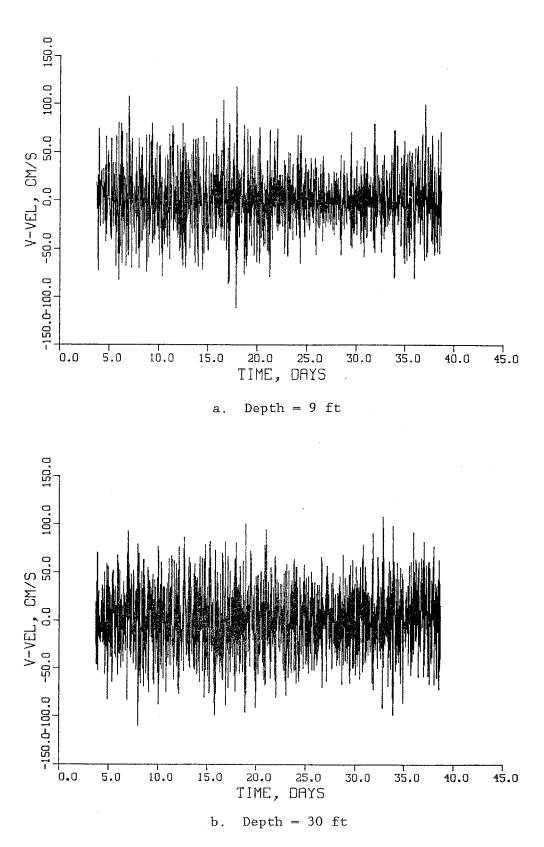
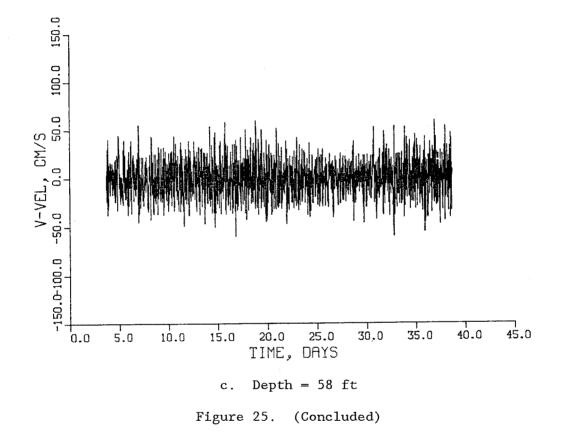
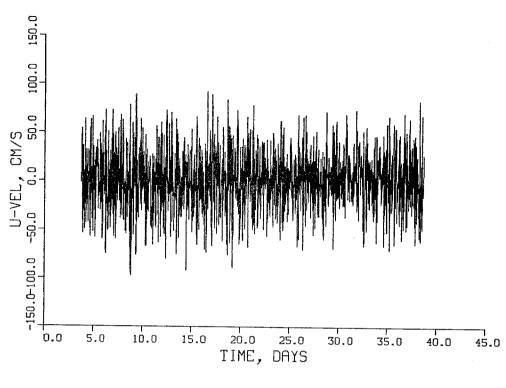





Figure 25. V-velocity at station WT4 from CRIMP data (Continued)





a. Depth = 9 ft

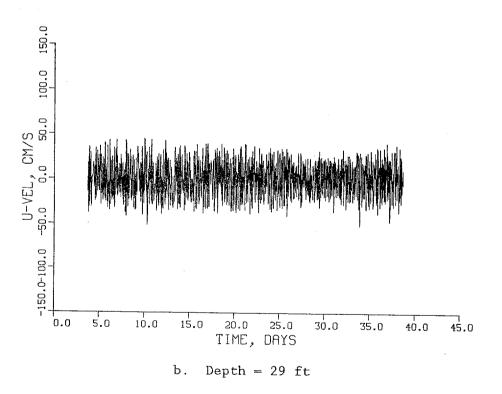
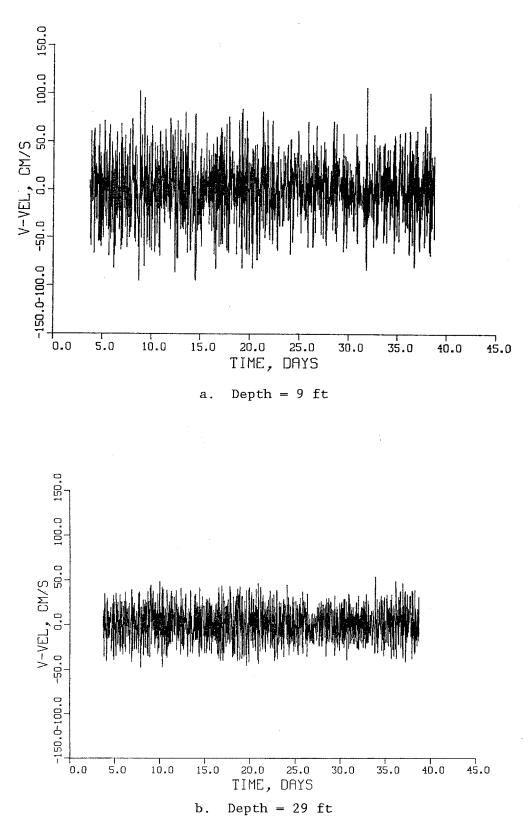
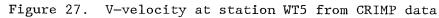





Figure 26. U-velocity at station WT5 from CRIMP data





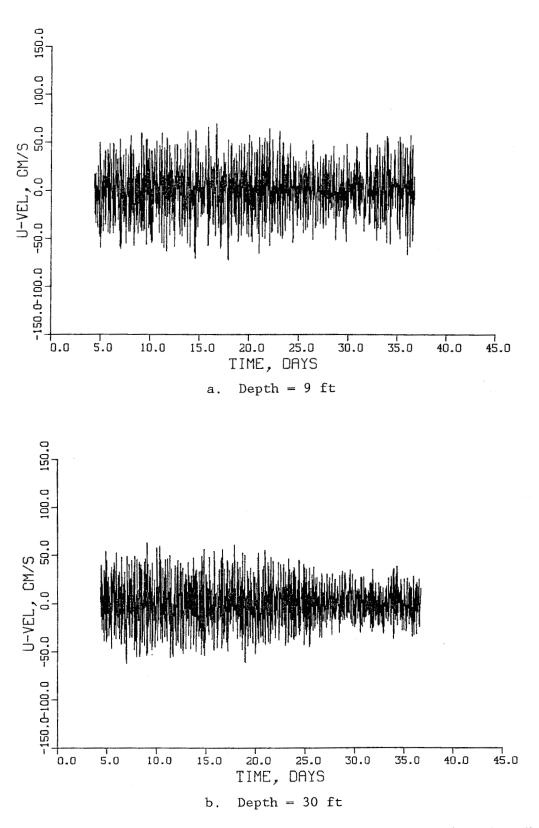
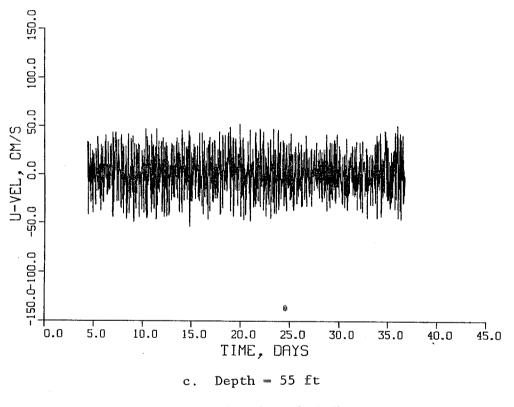
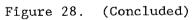





Figure 28. U-velocity at station TS1 from CRIMP data (Continued)





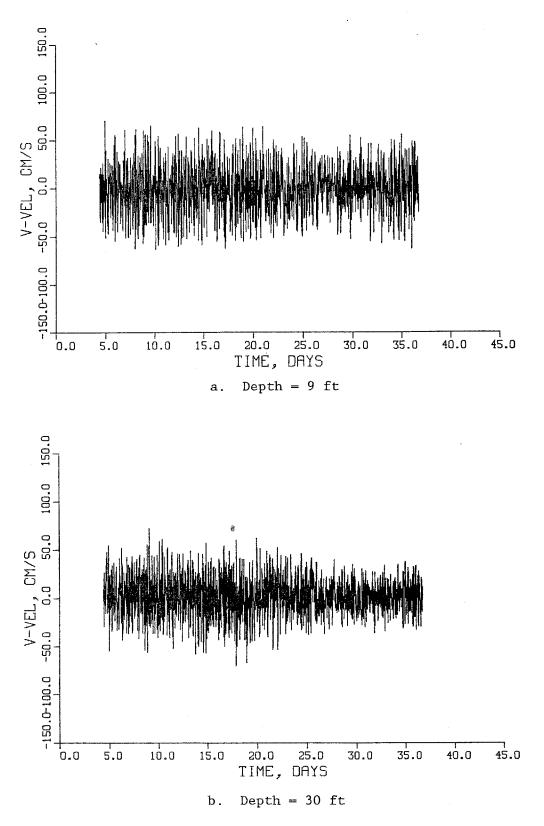
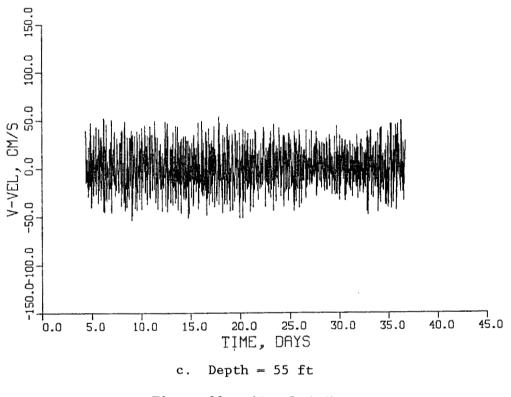
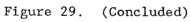





Figure 29. V-velocity at station TS1 from CRIMP data (Continued)





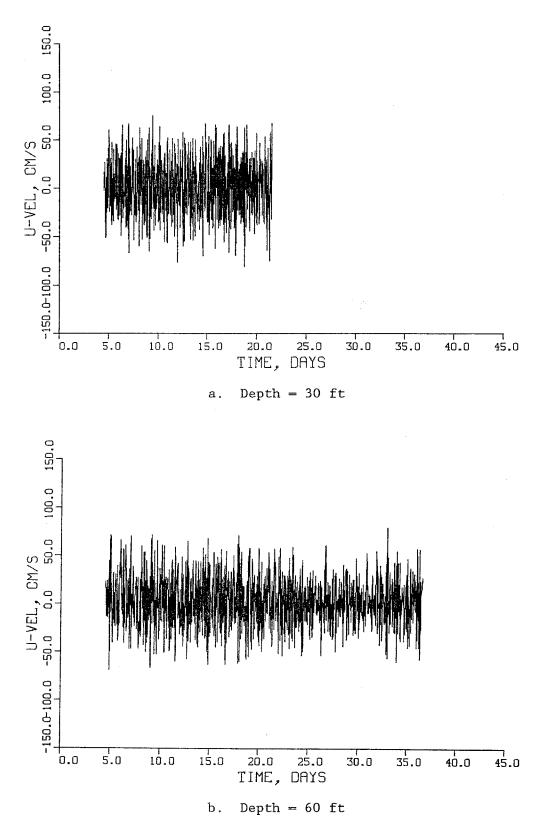
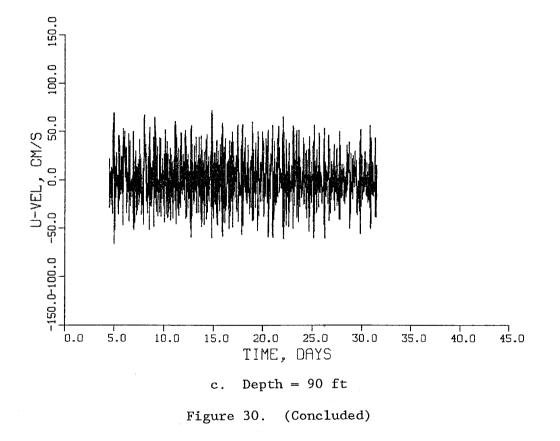




Figure 30. U-velocity at station SP1 from CRIMP data (Continued)



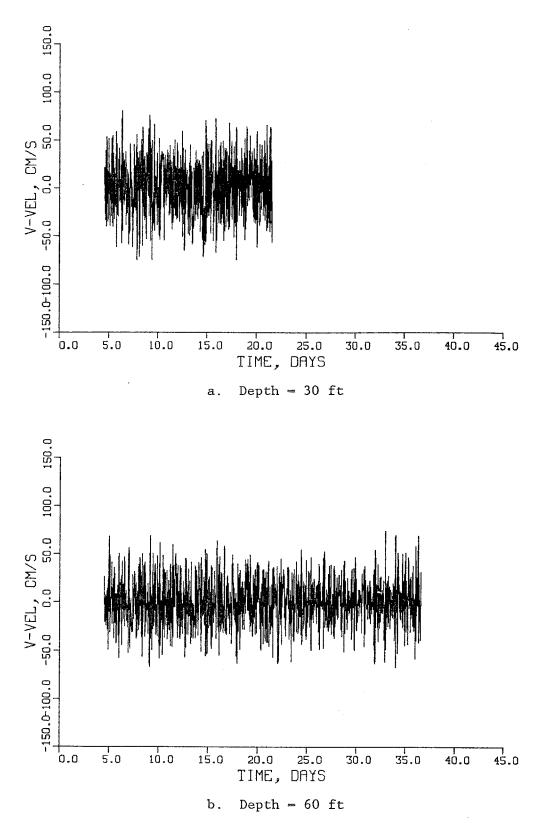
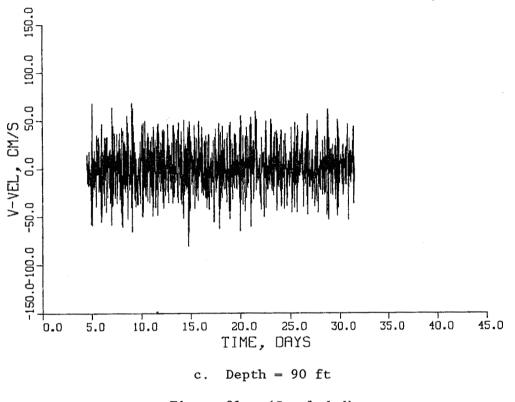
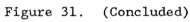





Figure 31. V-velocity at station SP1 from CRIMP data (Continued)

•





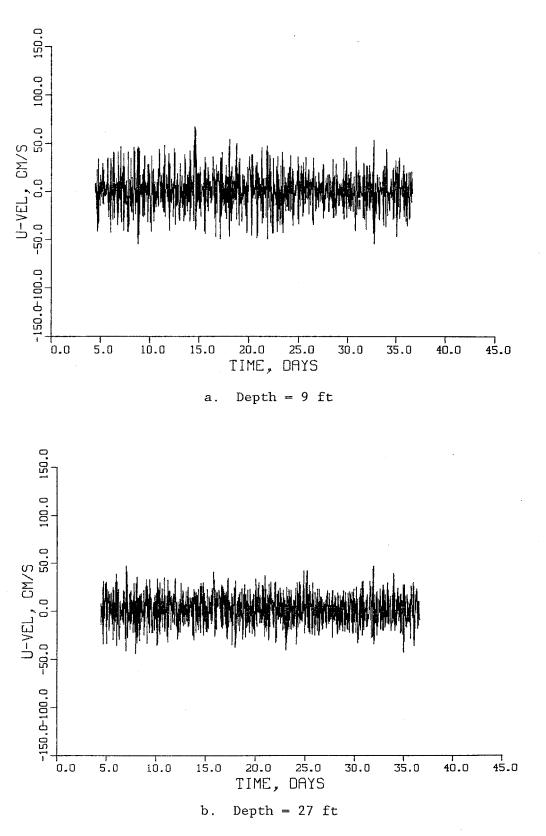



Figure 32. U-velocity at station SP2 from CRIMP data

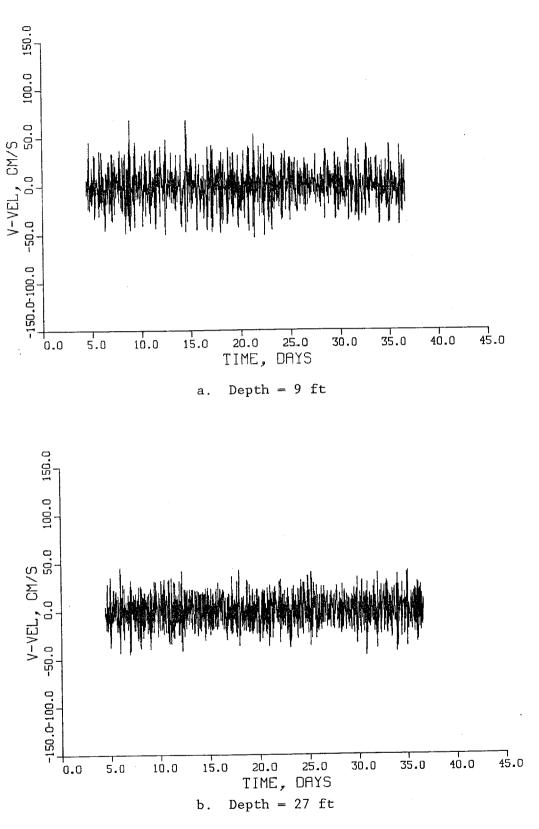



Figure 33. V-velocity at station SP2 from CRIMP data

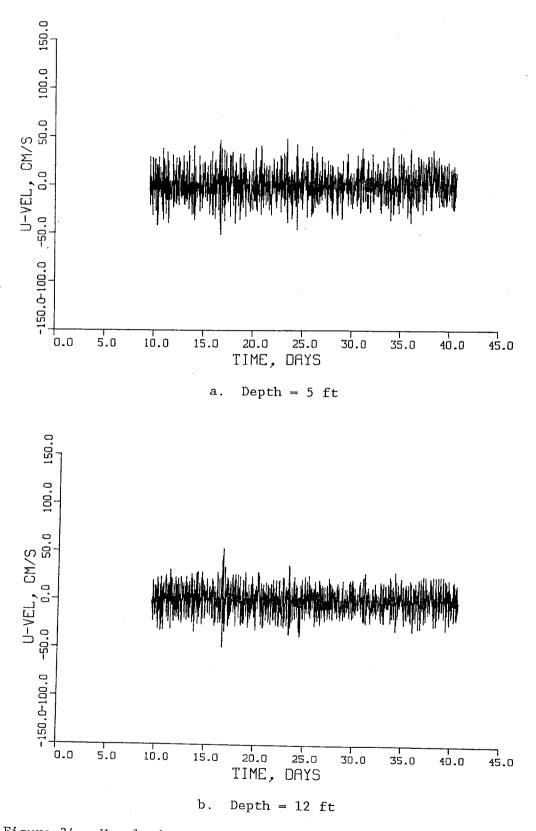
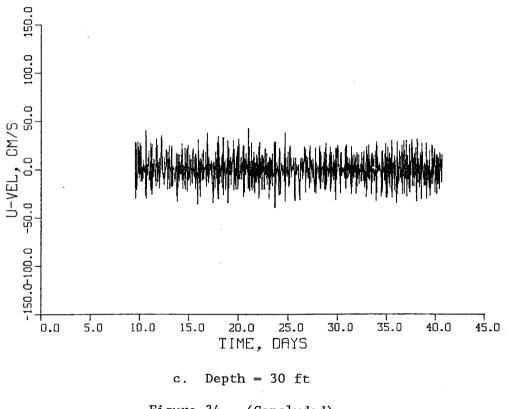
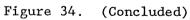





Figure 34. U-velocity at station PX1 from CRIMP data (Continued)





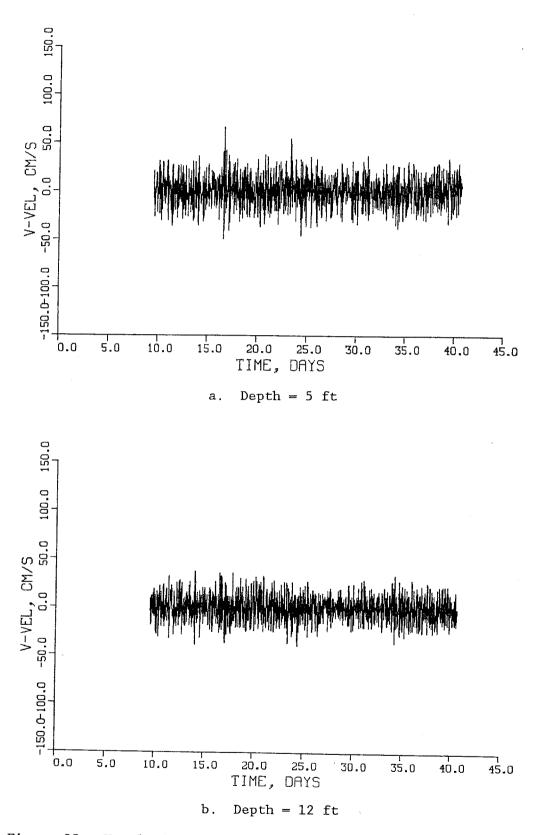
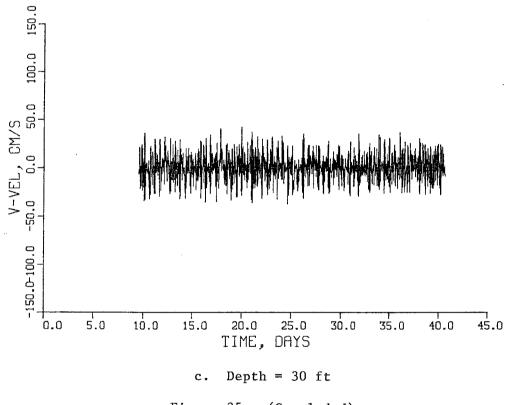
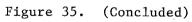





Figure 35. V-velocity at station PX1 from CRIMP data (Continued)





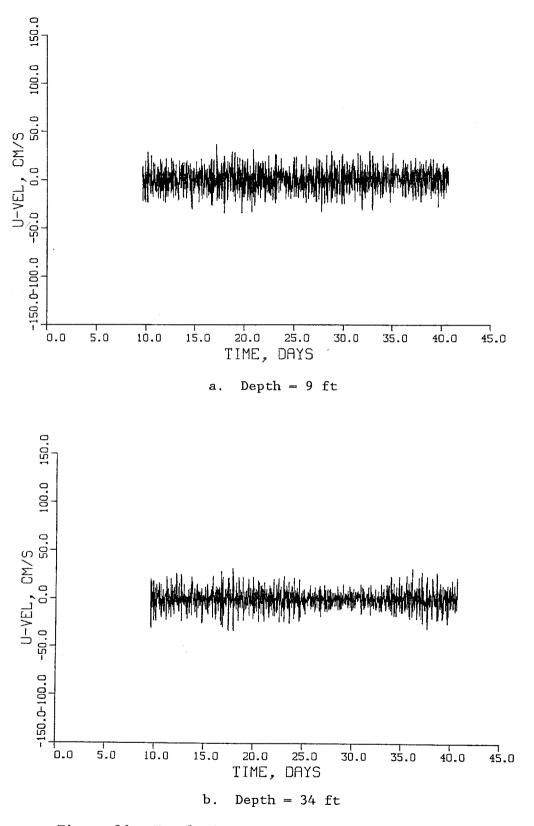



Figure 36. U-velocity at station PX2 from CRIMP data



Figure 37. V-velocity at station PX2 from CRIMP data

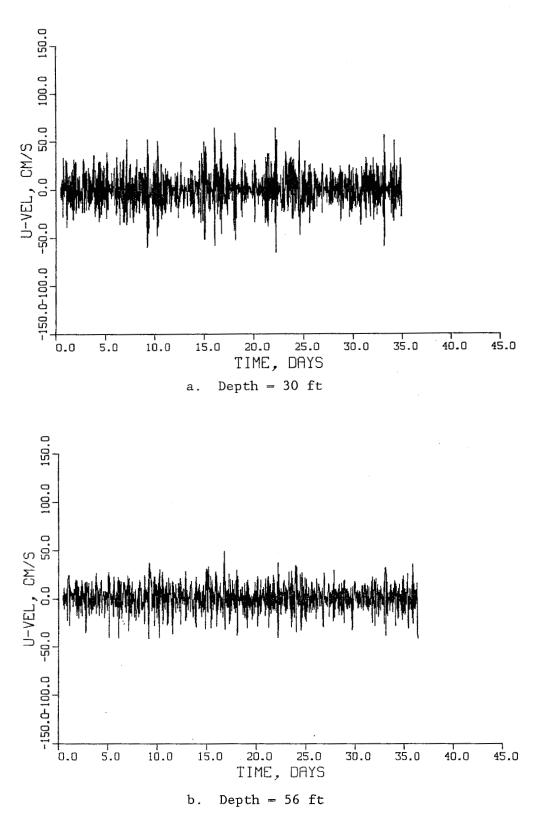
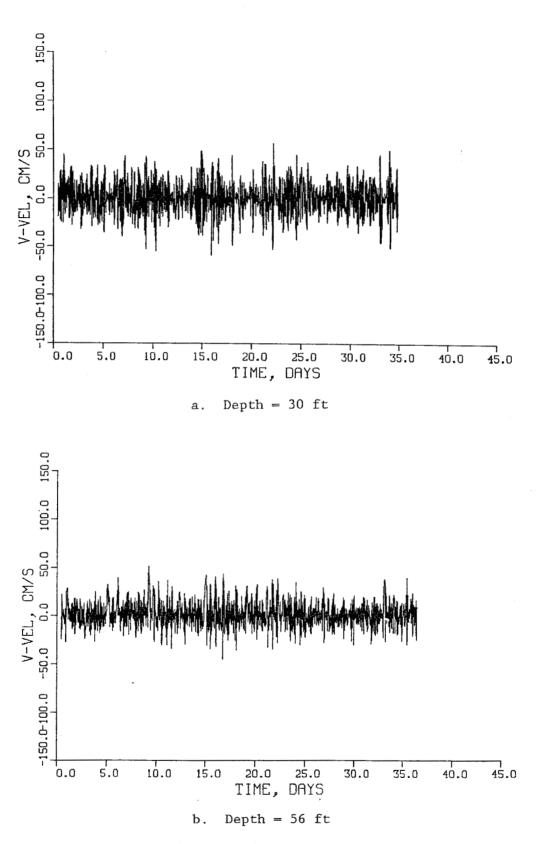
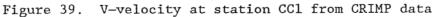
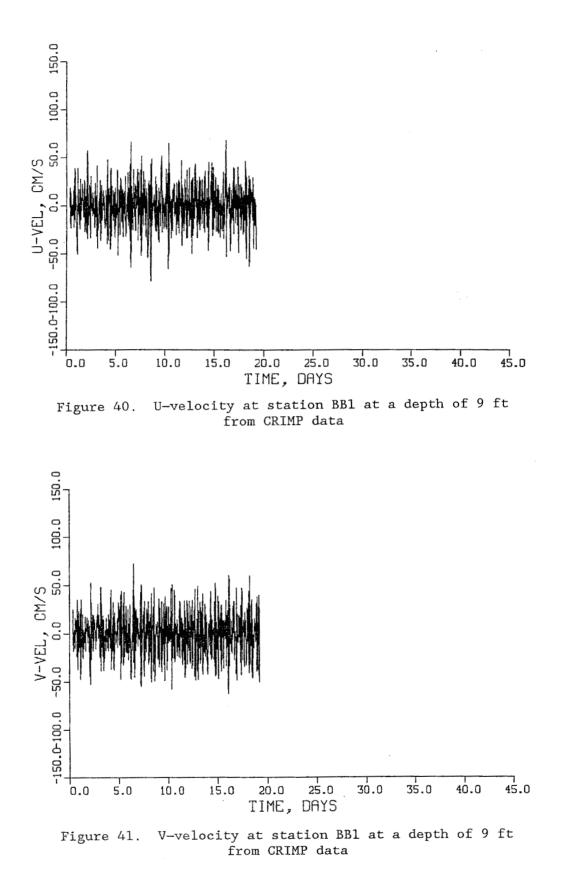






Figure 38. U-velocity at station CC1 from CRIMP data





.



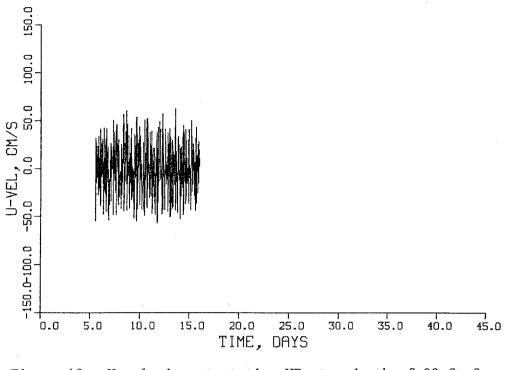



Figure 42. U-velocity at station WP at a depth of 28 ft from CRIMP data

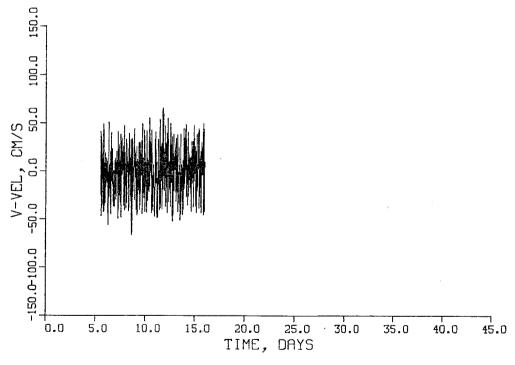



Figure 43. V-velocity at station WP at a depth of 28 ft from CRIMP data

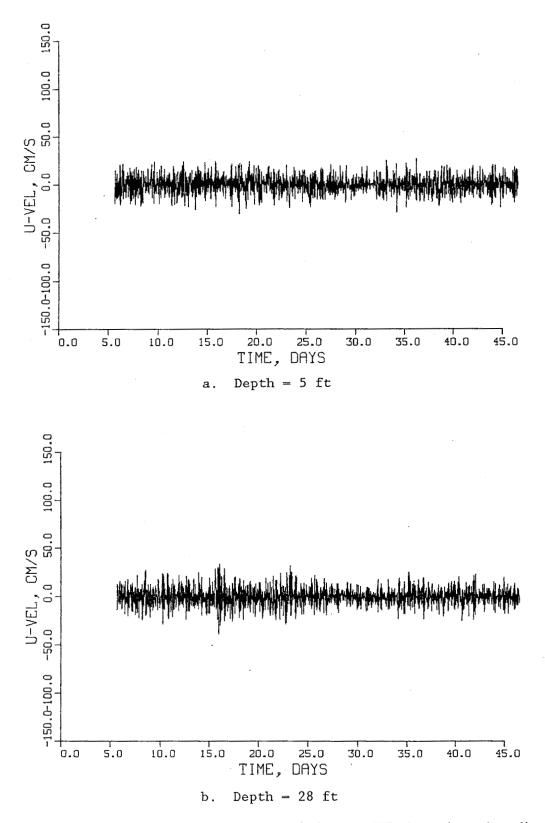
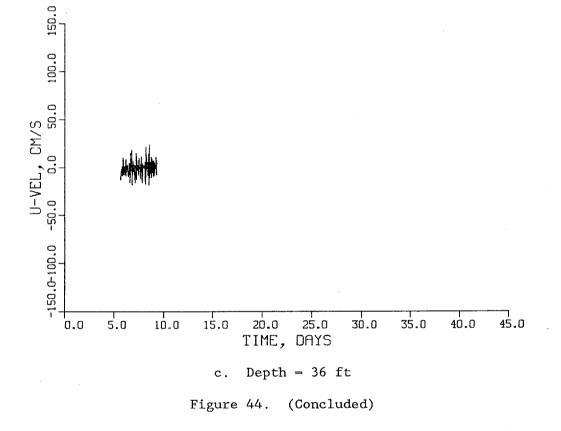




Figure 44. U-velocity at station CH1 from CRIMP data (Continued)



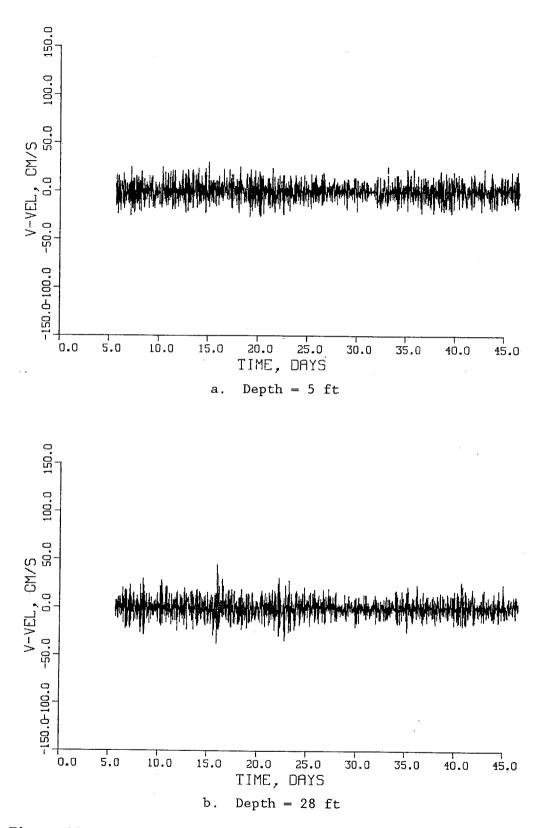
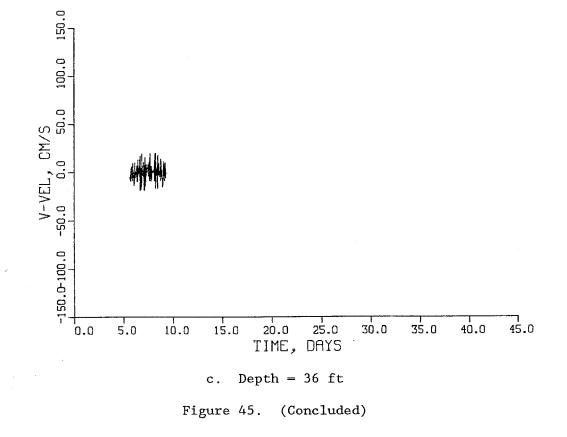




Figure 45. V-velocity at station CH1 from CRIMP data (Continued)



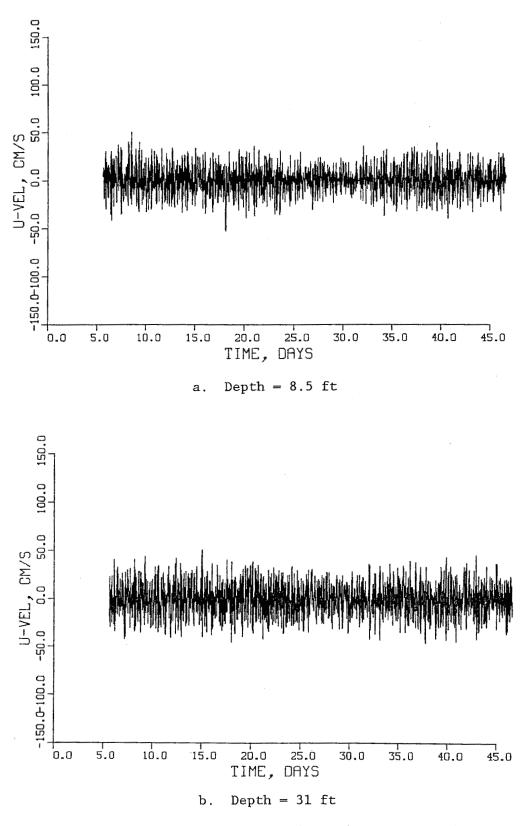



Figure 46. U-velocity at station CH2 from CRIMP data

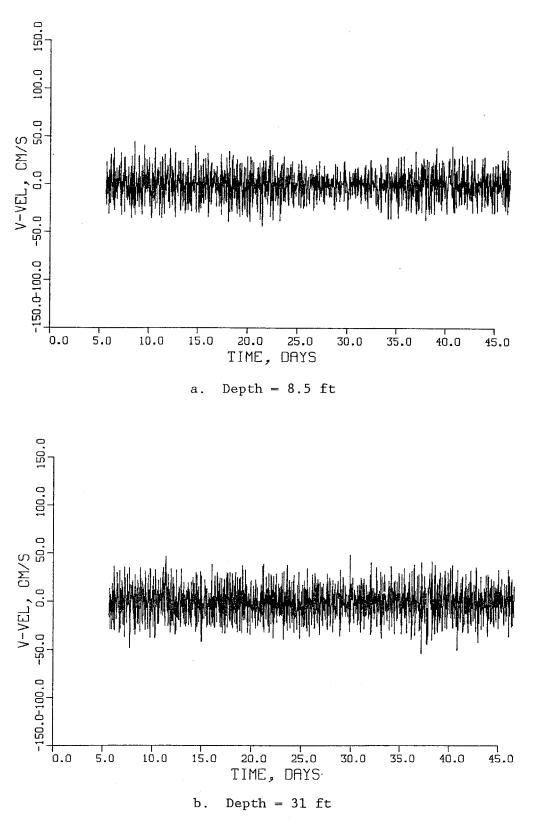



Figure 47. V-velocity at station CH2 from CRIMP data

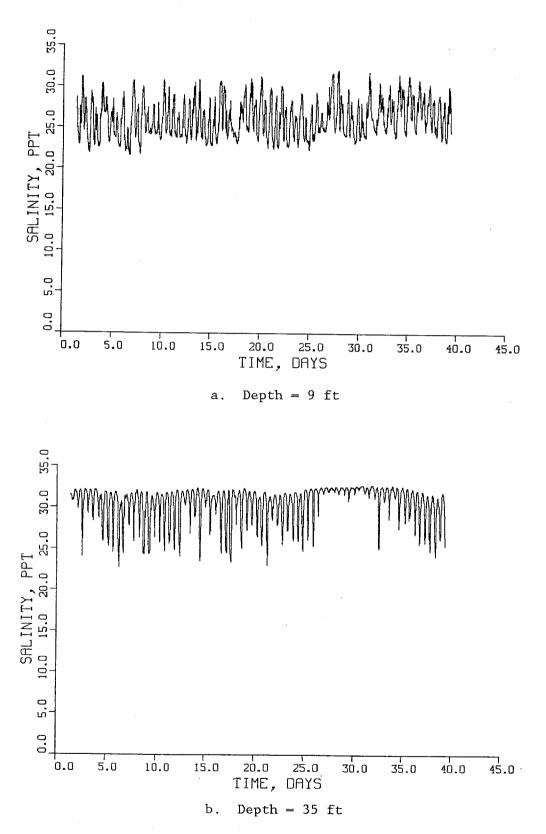
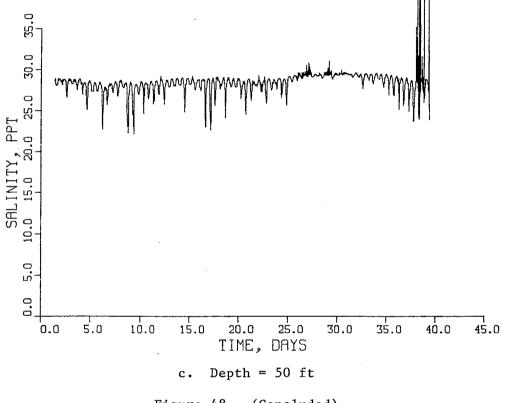





Figure 48. Salinity at station M1 from CRIMP data (Continued)





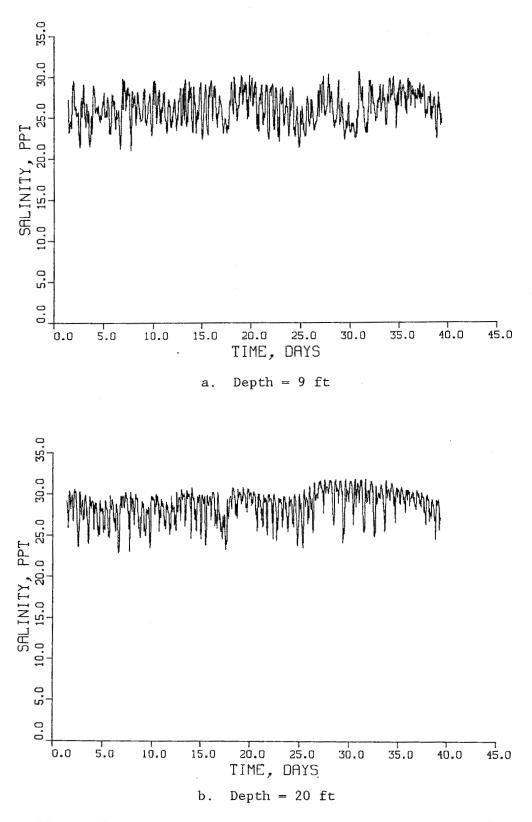
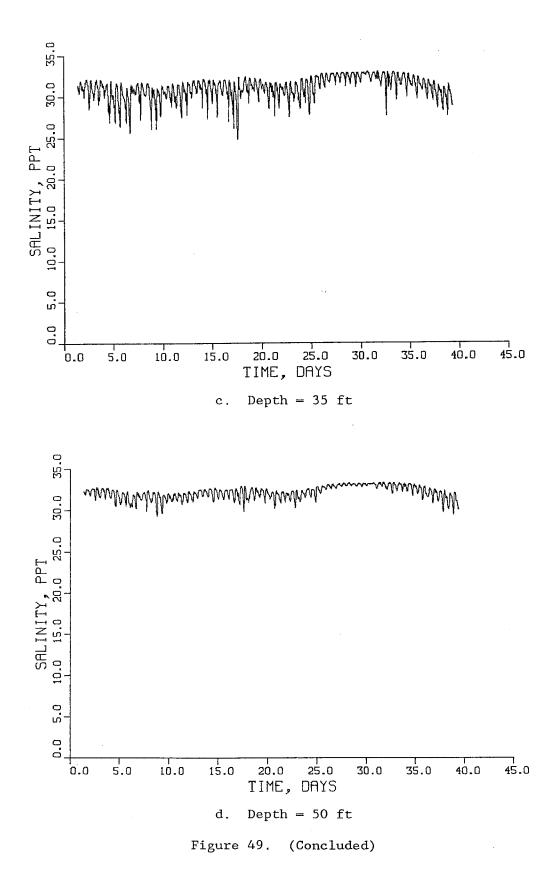
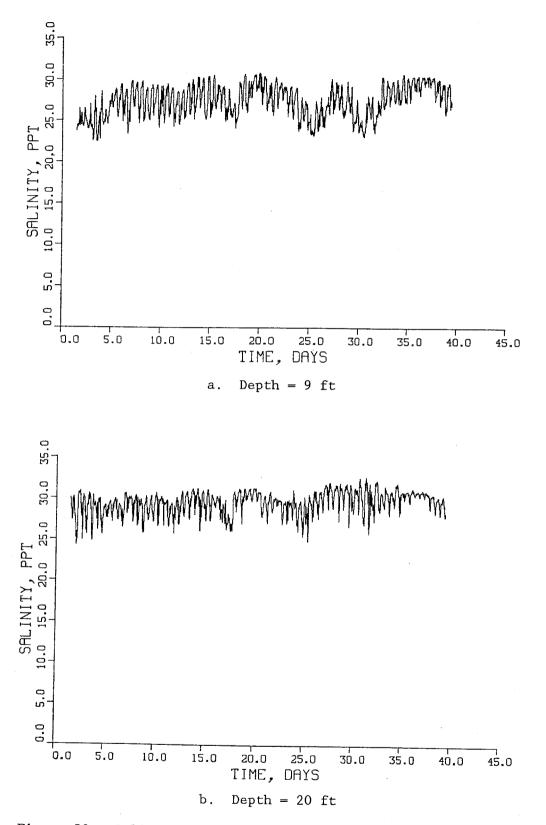
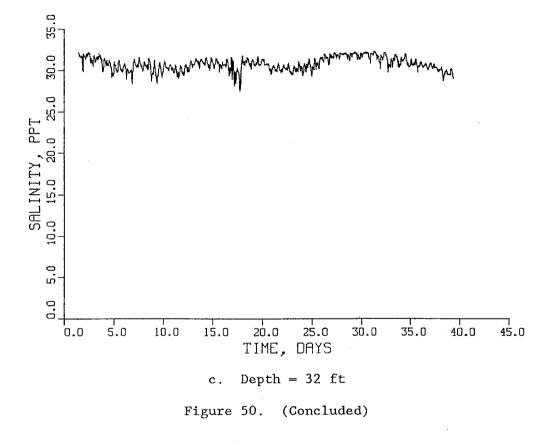






Figure 49. Salinity at station M2 from CRIMP (Continued)





Salinity at station M3 from CRIMP data (Continued) Figure 50.



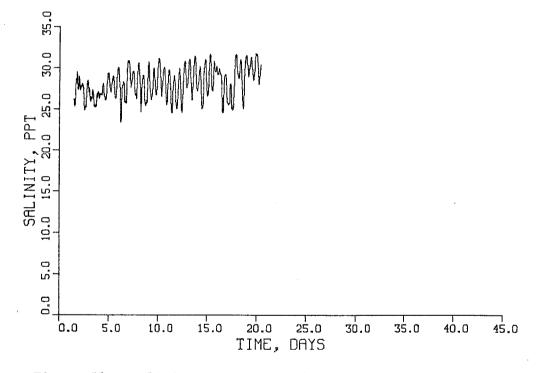



Figure 51. Salinity at station M4 at a depth of 10 ft from CRIMP data % f(x) = 0

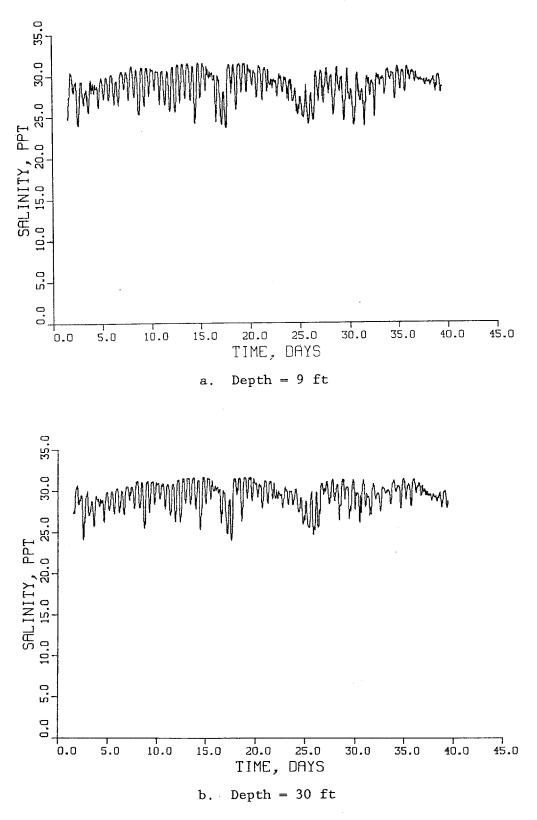
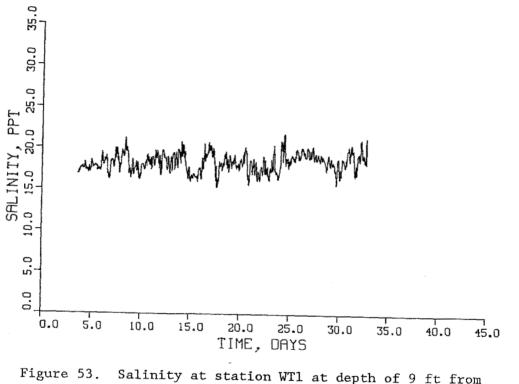




Figure 52. Salinity at station M5 from CRIMP data



Salinity at station WT1 at depth of 9 ft from CRIMP data

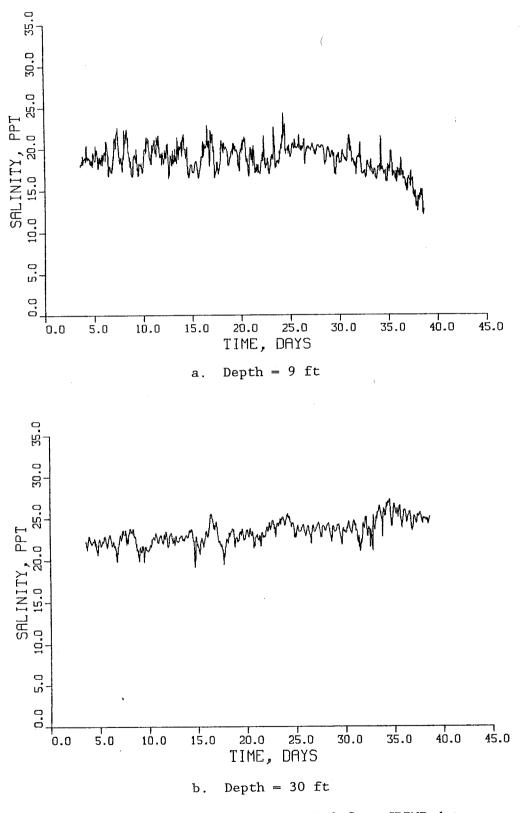



Figure 54. Salinity at station WT2 from CRIMP data

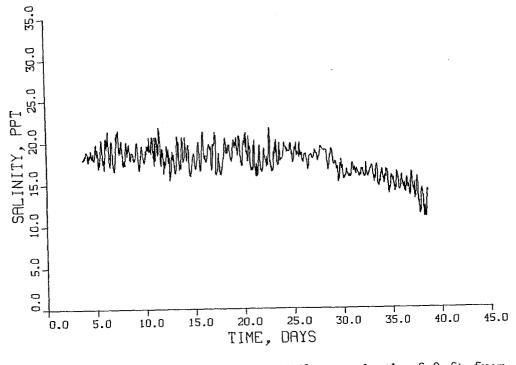



Figure 55. Salinity at station WT3 at a depth of 9 ft from CRIMP data

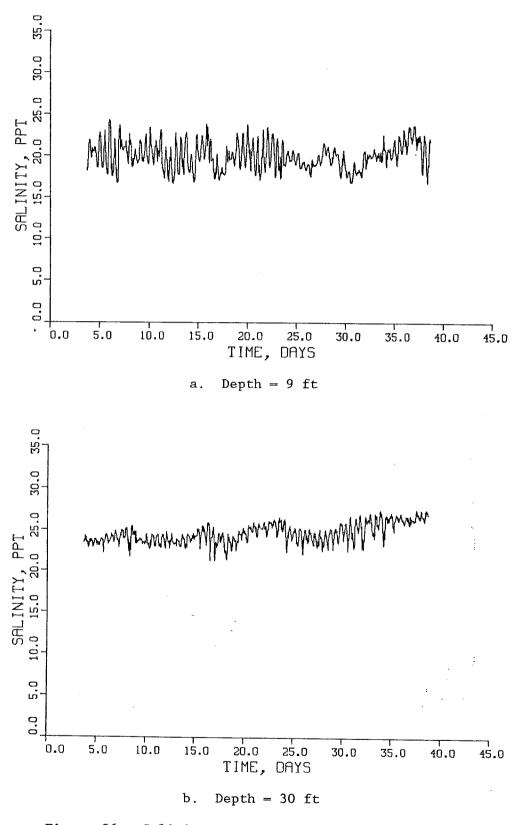
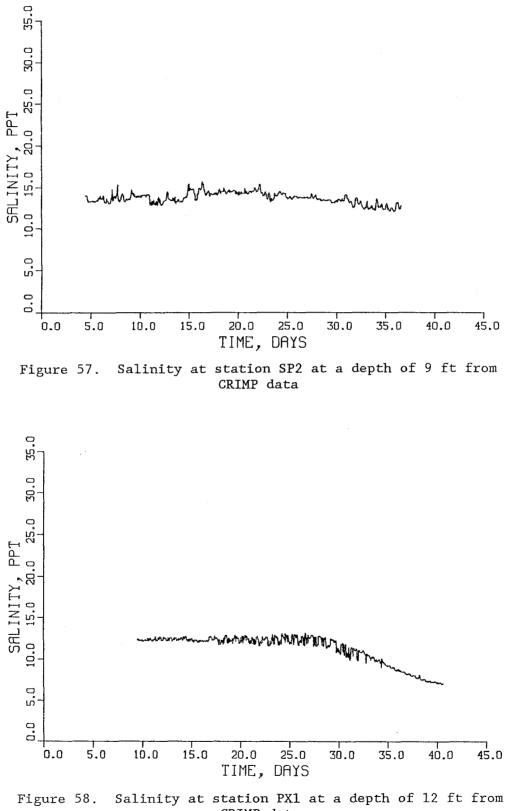




Figure 56. Salinity at station WT4 from CRIMP data



CRIMP data

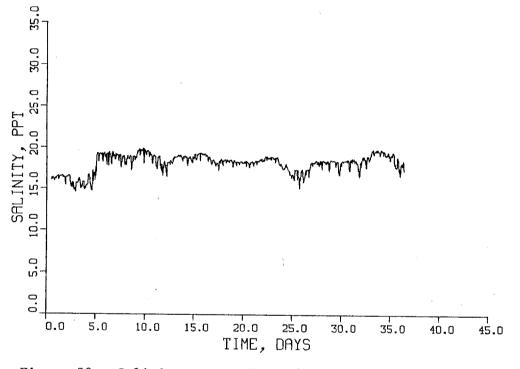



Figure 59. Salinity at station CCl at a depth of 56 ft from CRIMP data

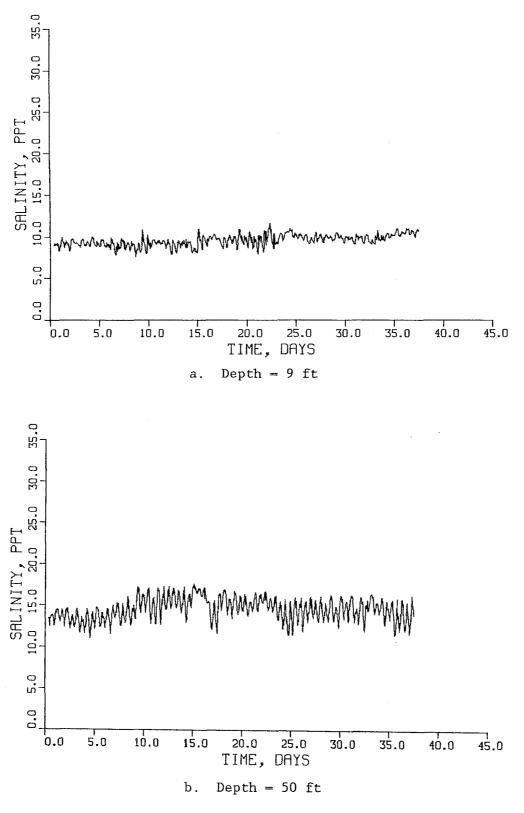



Figure 60. Salinity at station BB1 from CRIMP data

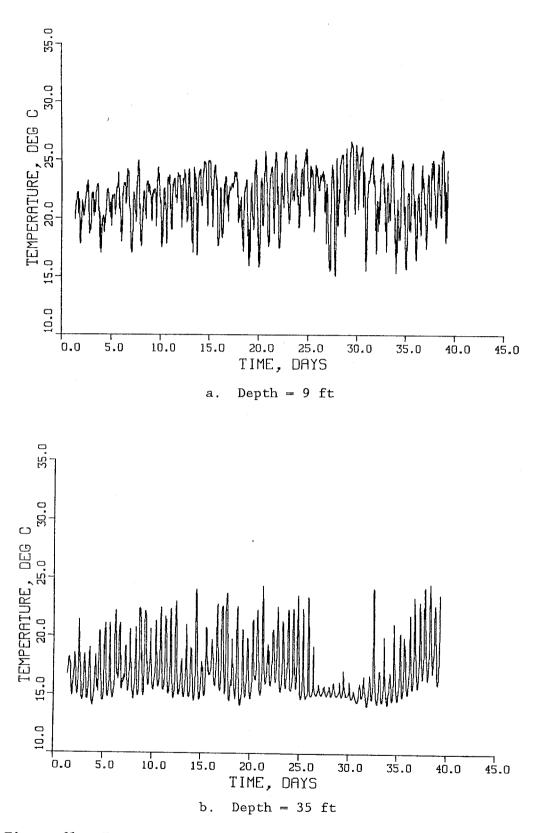
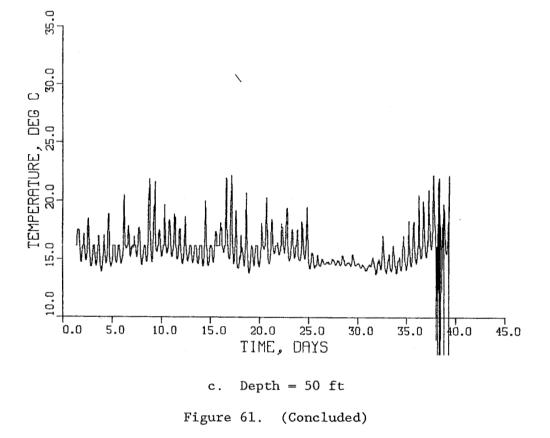




Figure 61. Temperature at station M1 from CRIMP data (Continued)



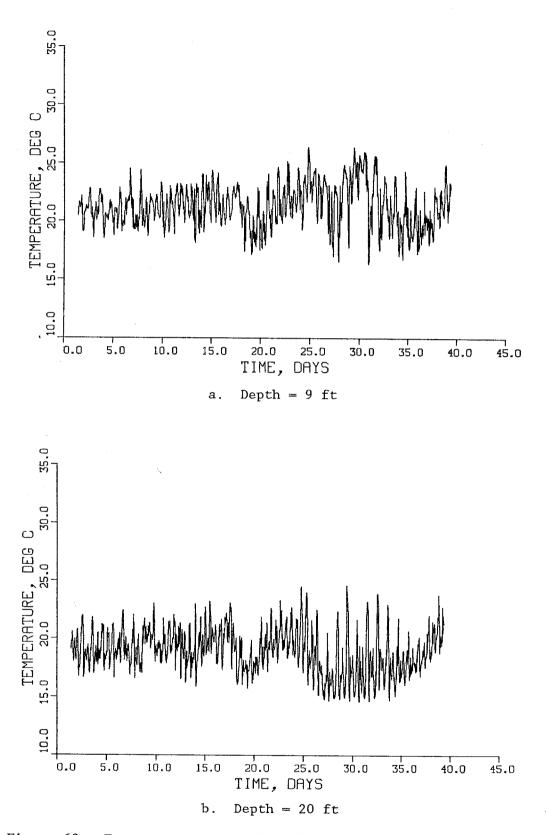
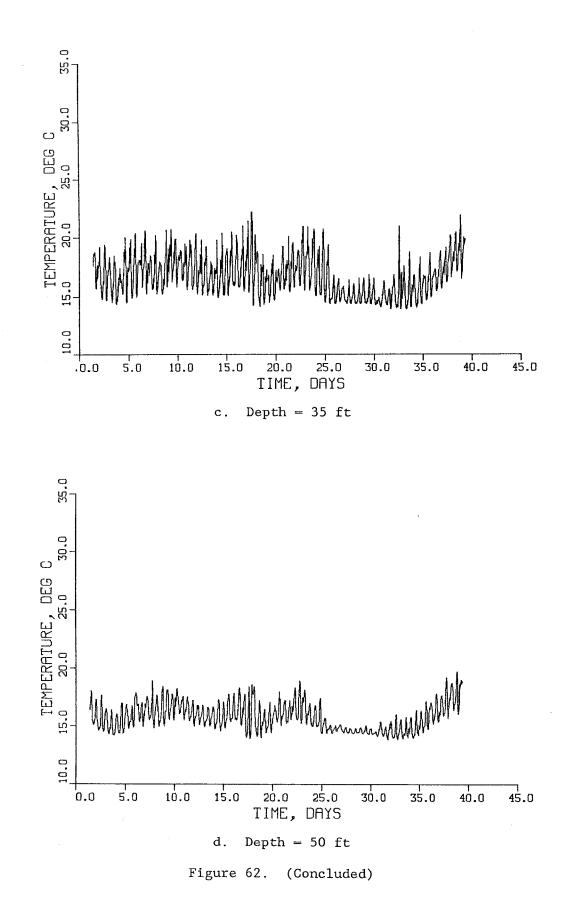




Figure 62. Temperature at station M2 from CRIMP data (Continued)



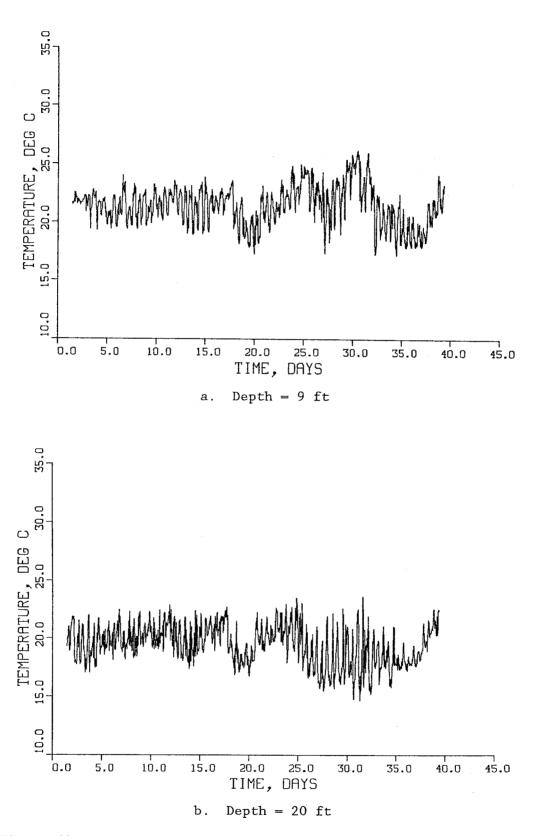
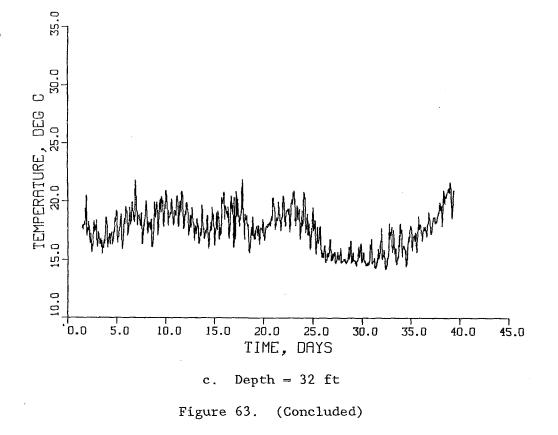




Figure 63. Temperature at station M3 from CRIMP data (Continued)



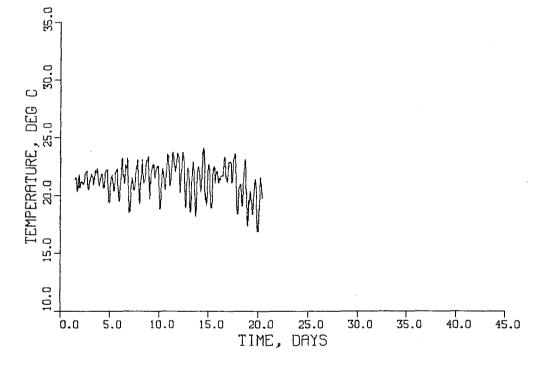



Figure 64. Temperature at station M4 at a depth of 10 ft from CRIMP data

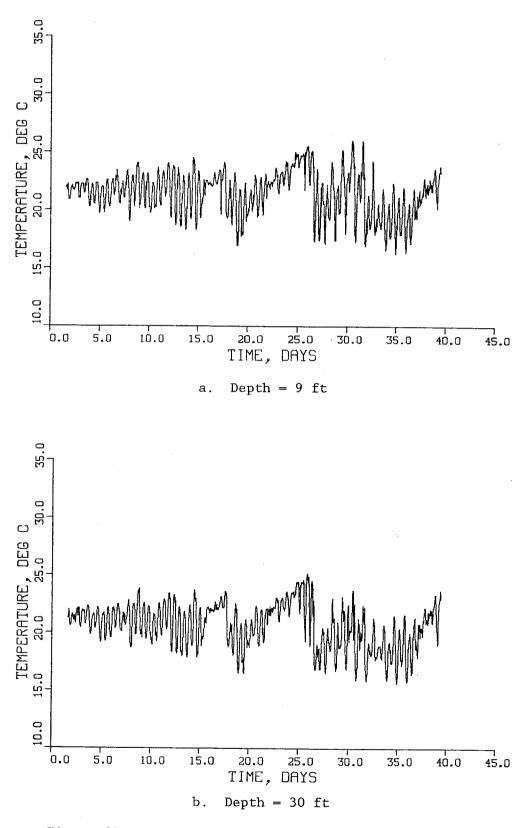



Figure 65. Temperature at station M5 from CRIMP data

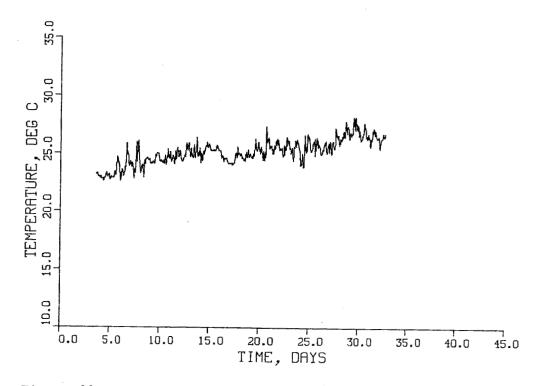



Figure 66. Temperature at station WT1 at a depth of 9 ft from CRIMP data

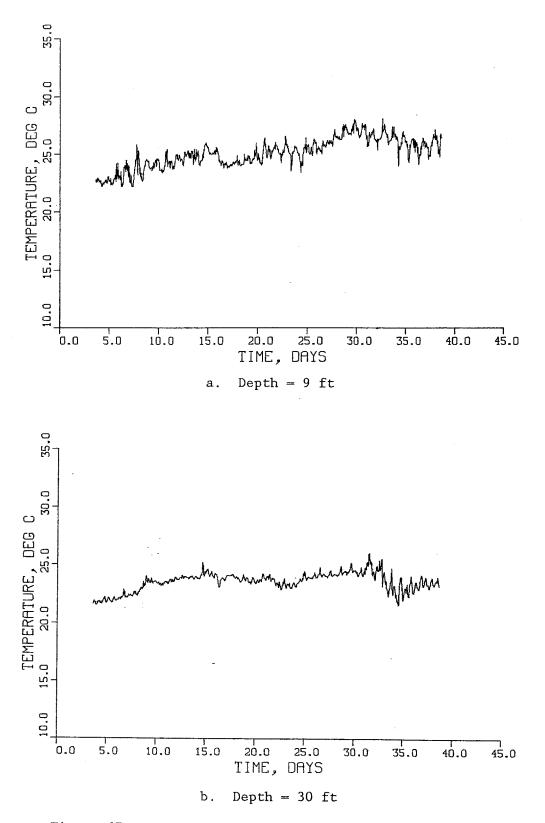
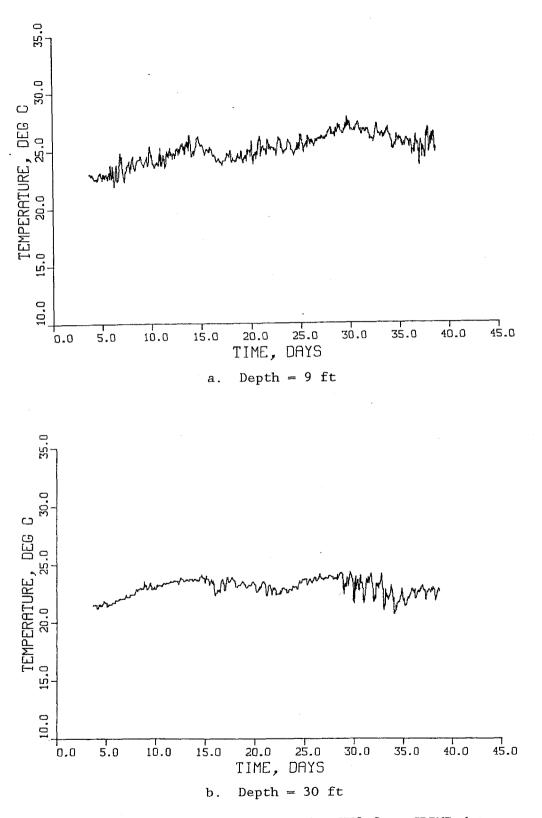
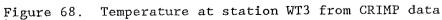





Figure 67. Temperature at station WT2 from CRIMP data





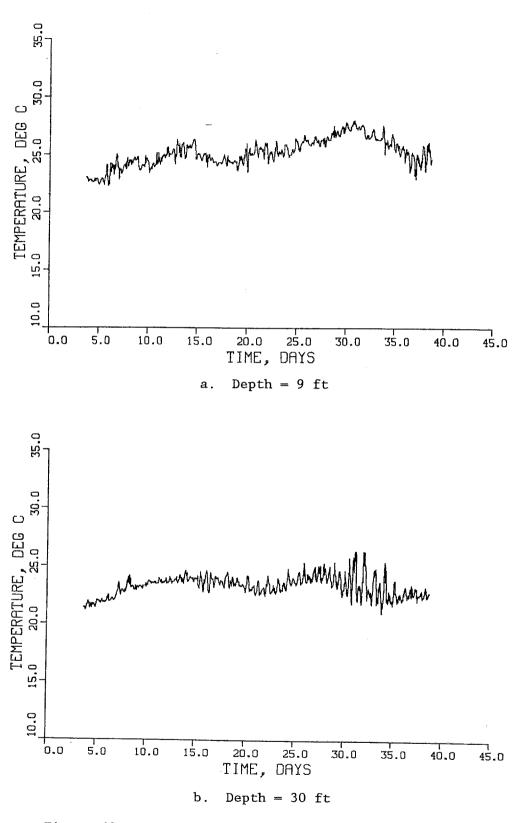
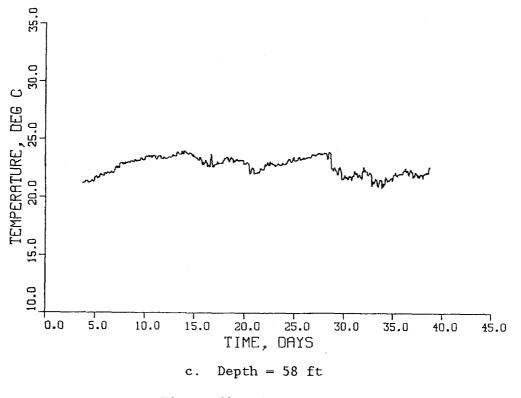
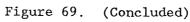
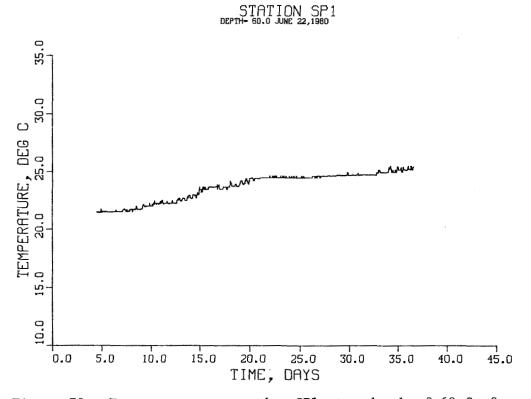






Figure 69. Temperature at station WT4 from CRIMP data (Continued)







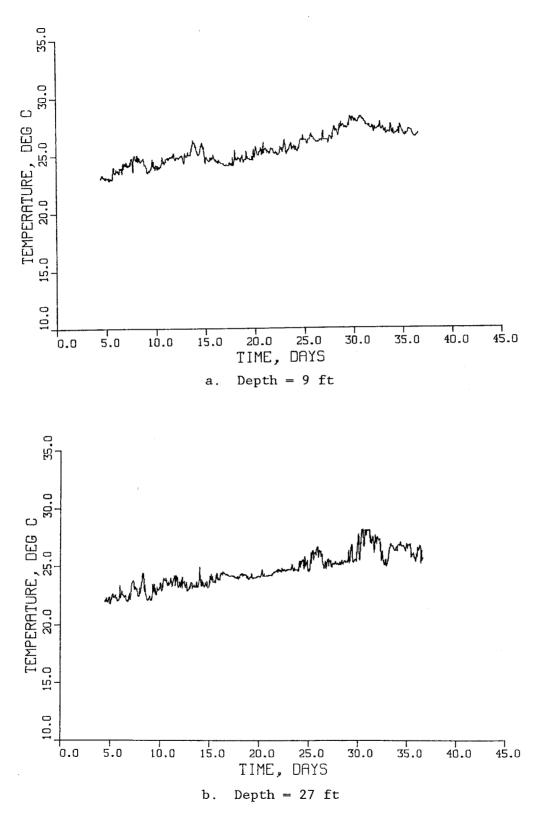



Figure 71. Temperature at station SP2 from CRIMP data

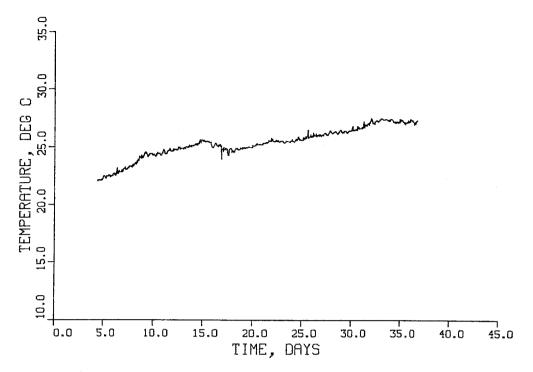



Figure 72. Temperature at station TS1 at a depth of 55 ft from CRIMP data  $\$ 

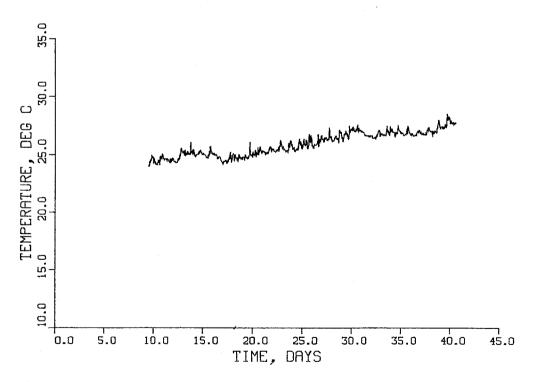



Figure 73. Temperature at station PX1 at a depth of 12 ft from CRIMP data

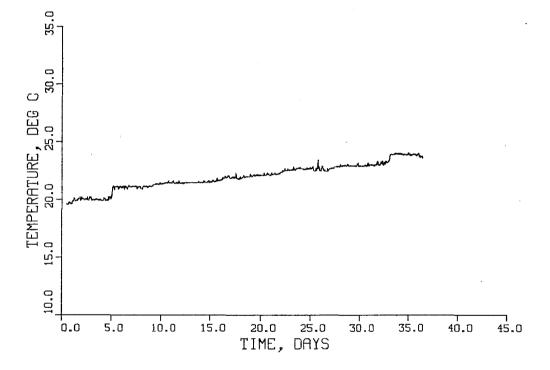



Figure 74. Temperature at station Cl at a depth of 56 ft from CRIMP data  $% f_{\rm crit} = 0.015 \, {\rm Gr}$ 

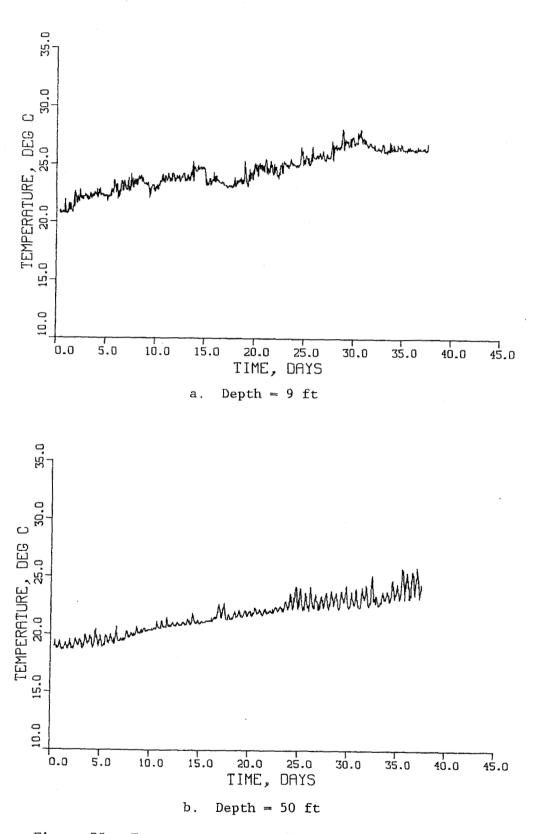



Figure 75. Temperature at station BB1 from CRIMP data

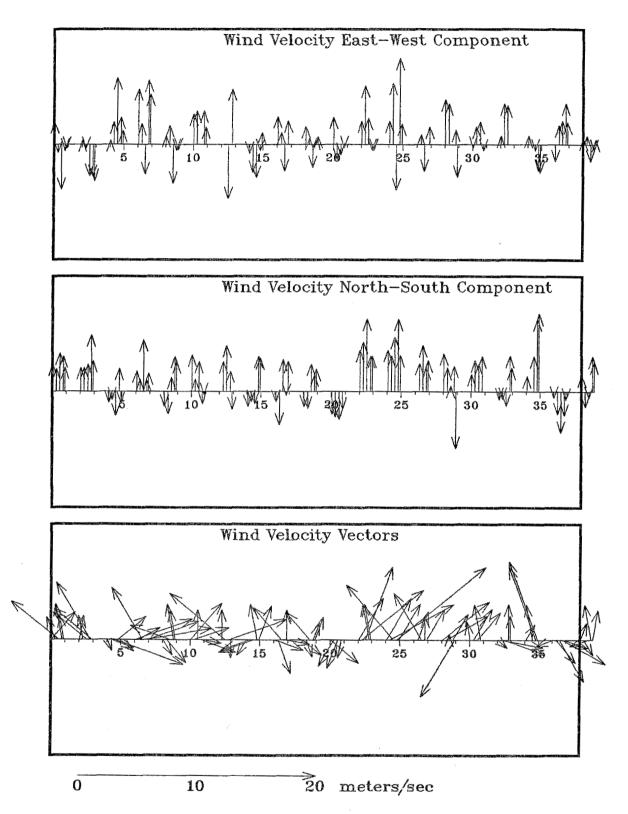



Figure 76. Wind data at the Patuxent Naval Air Station from CRIMP data

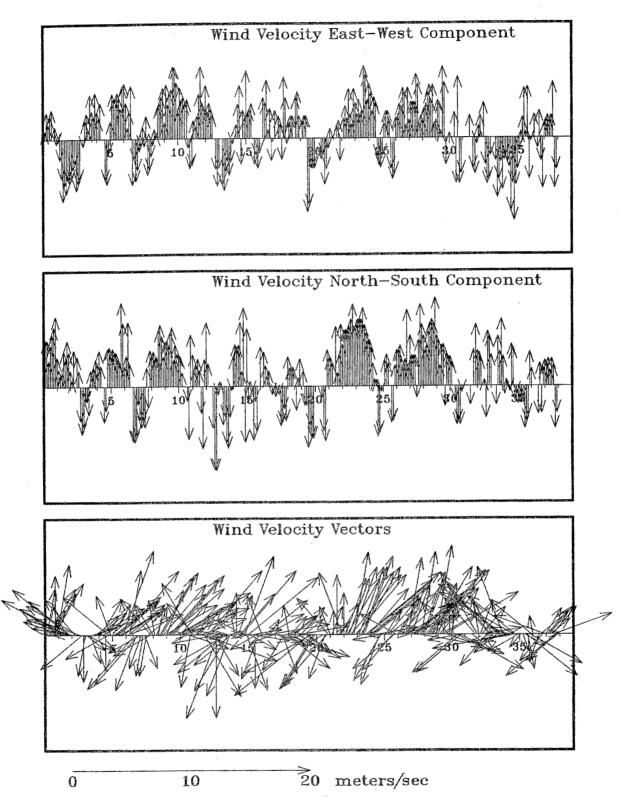



Figure 77. Wind data at Norfolk International Airport from CRIMP data

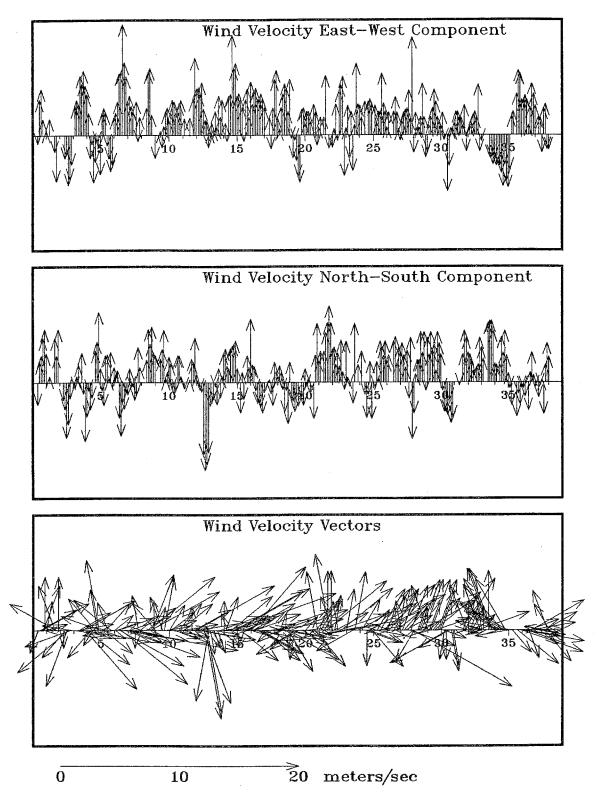
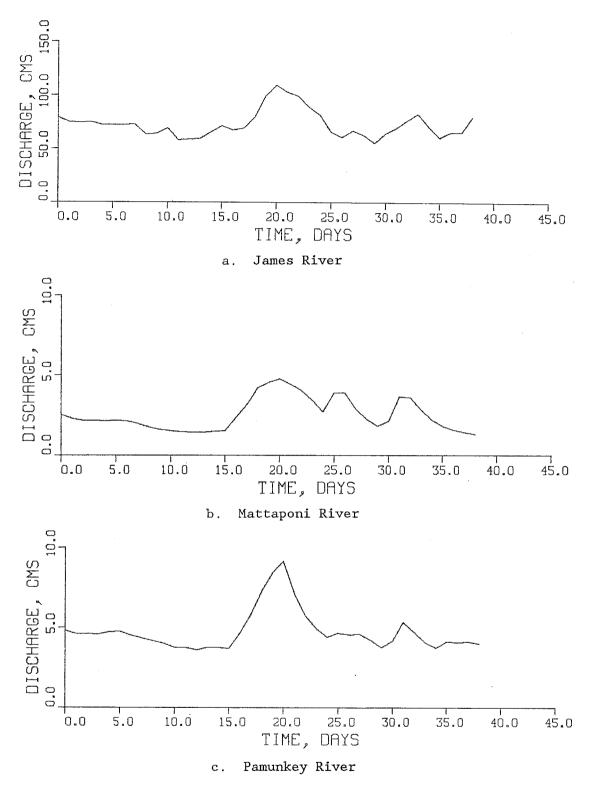
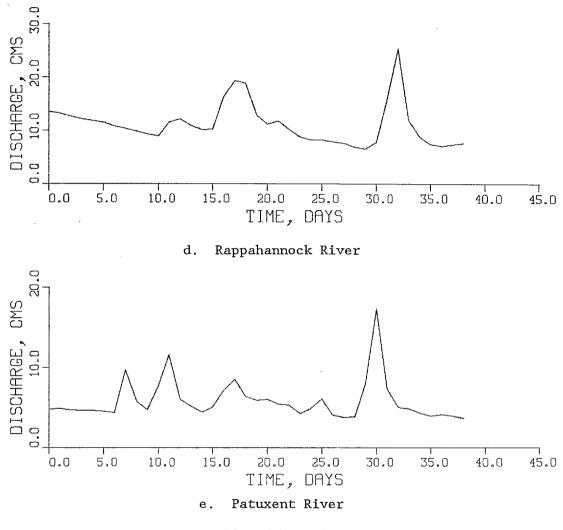
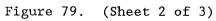
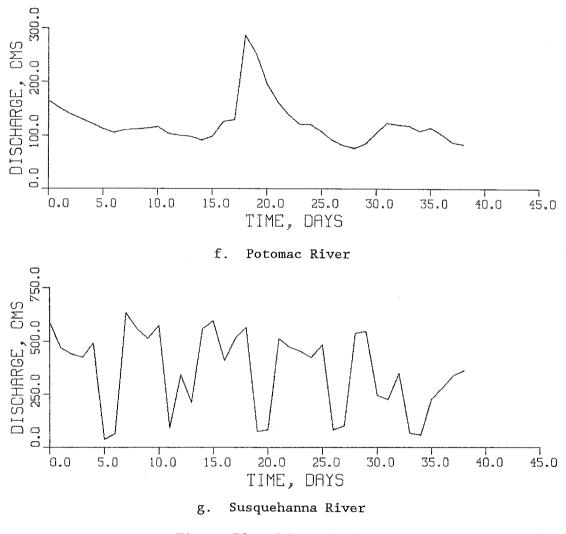
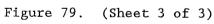



Figure 78. Wind data at Baltimore-Washington International Airport from CRIMP data



Figure 79. Freshwater inflows from CRIMP data (Sheet 1 of 3)





N





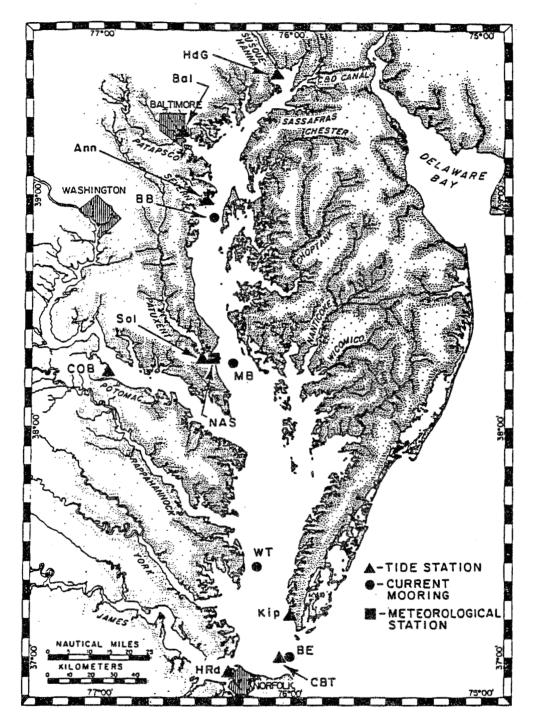



Figure 80. Location of USEPA and National Ocean Service data stations for spring and fall 1983 data sets

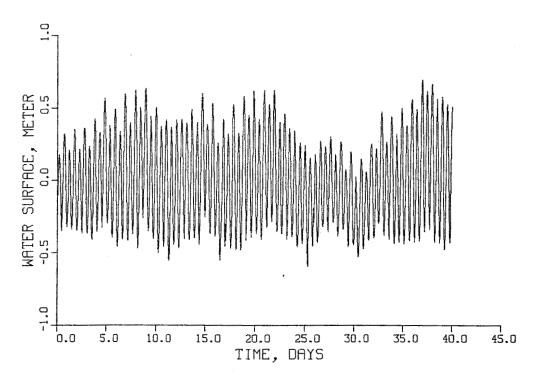



Figure 81. Tide at Bay Tunnel corrected to NGVD from CRIMP data

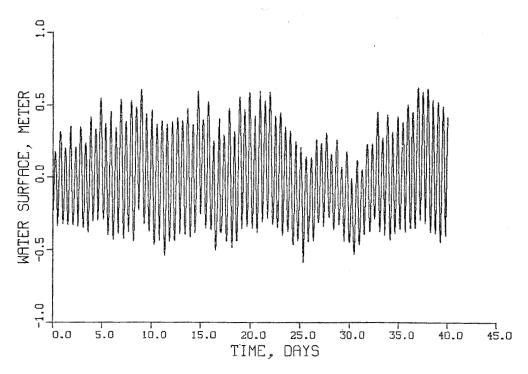



Figure 82. Tide at Hampton Roads, VA, corrected to NGVD from CRIMP data

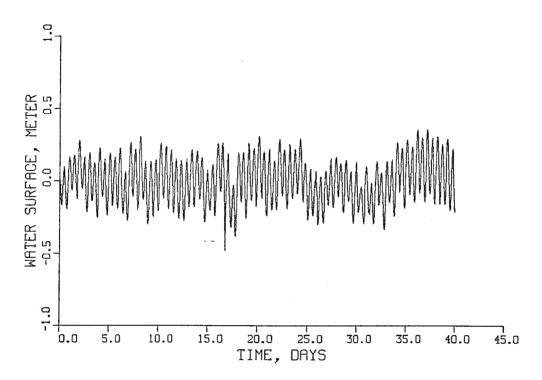
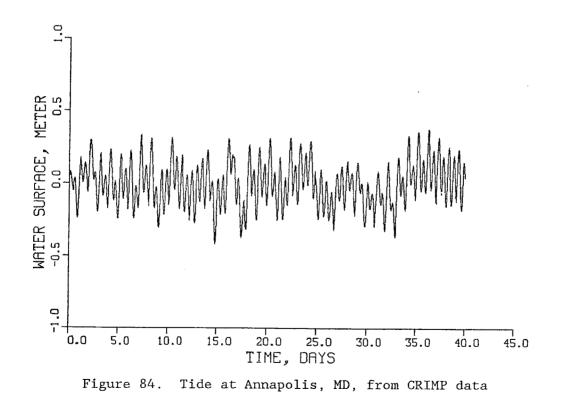




Figure 83. Tide at Solomons, MD, corrected to NGVD from CRIMP data



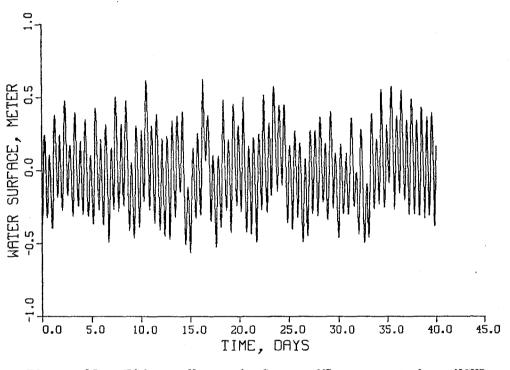



Figure 85. Tide at Havre de Grace, MD, corrected to NGVD from CRIMP data

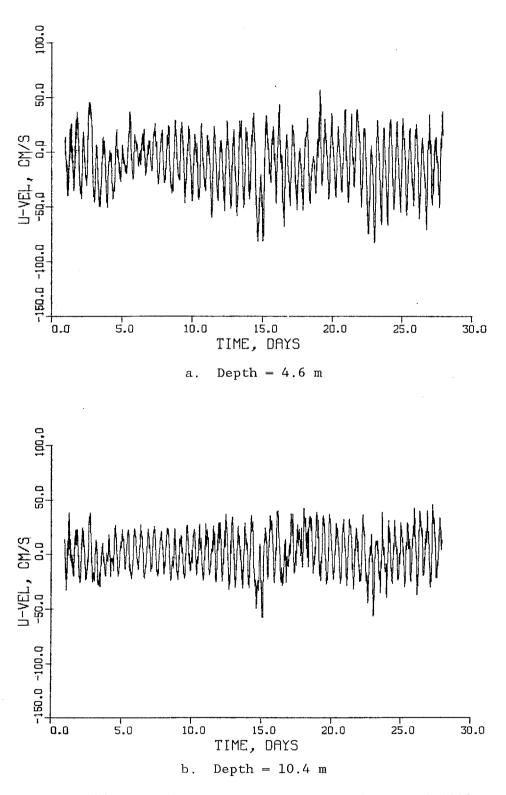



Figure 86. U-velocity at station BE during April 1983

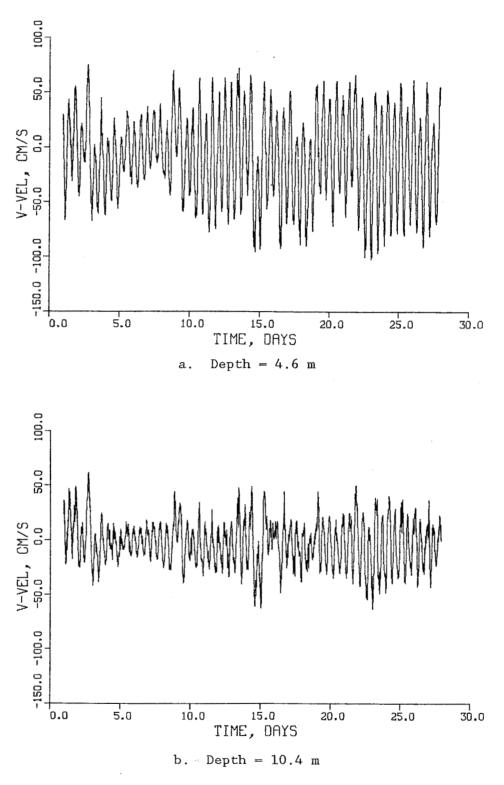



Figure 87. V-velocity at station BE during April 1983

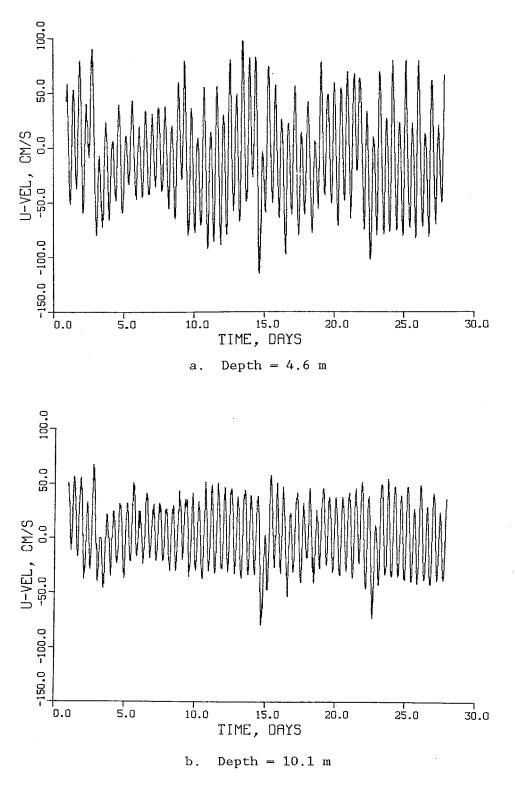
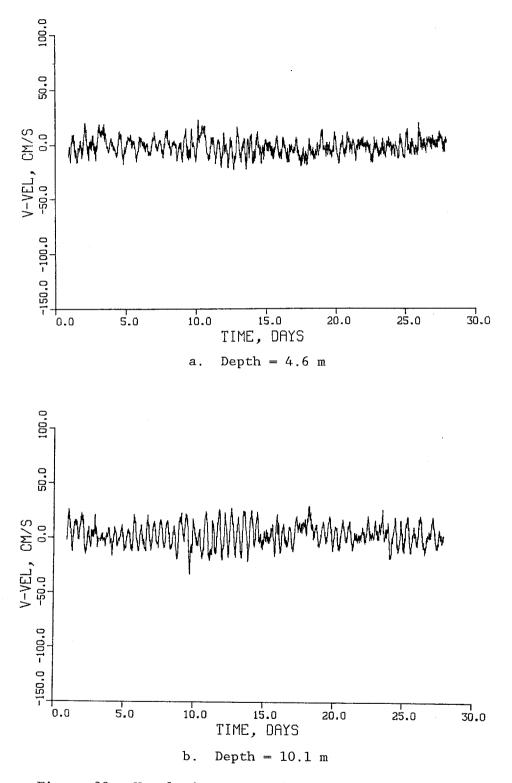
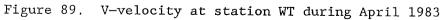





Figure 88. U-velocity at station WT during April 1983





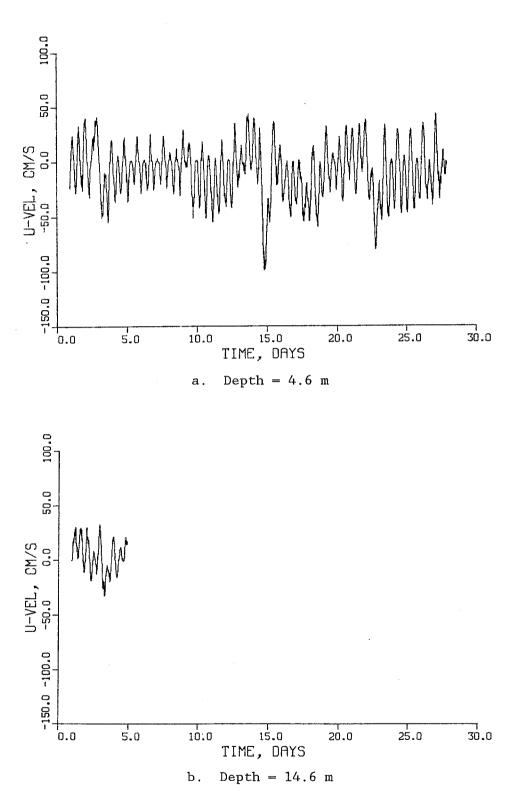



Figure 90. U-velocity at station MB during April 1983

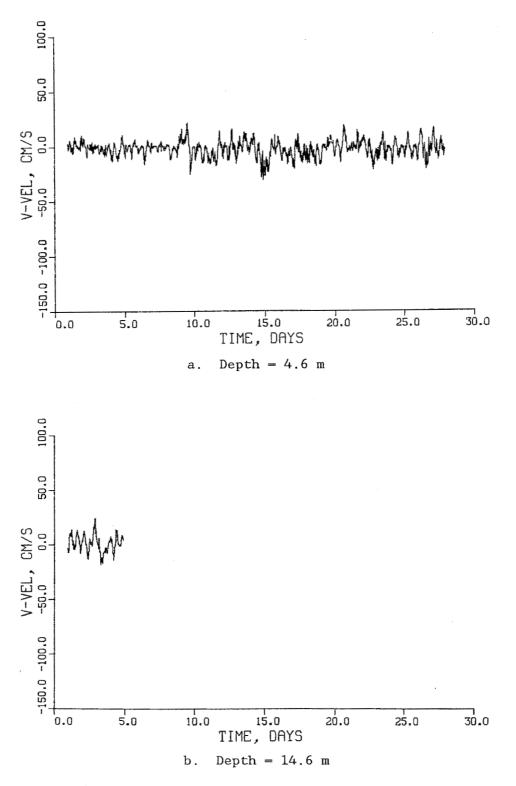



Figure 91. V-velocity at station MB during April 1983

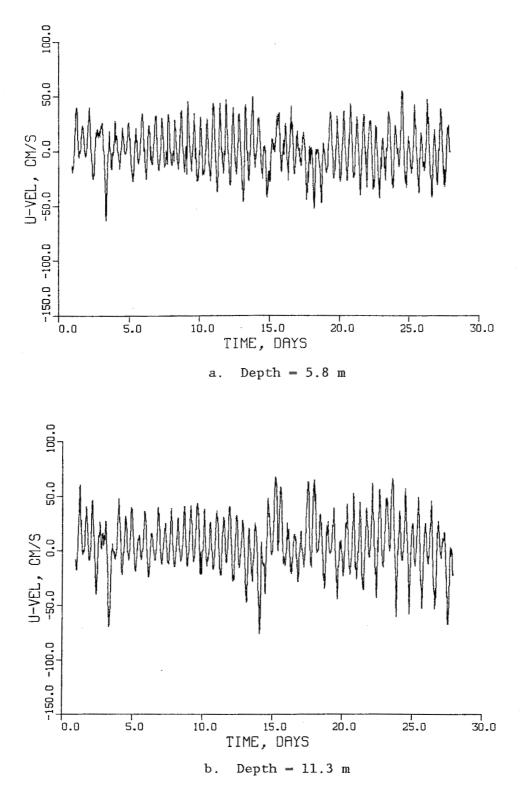
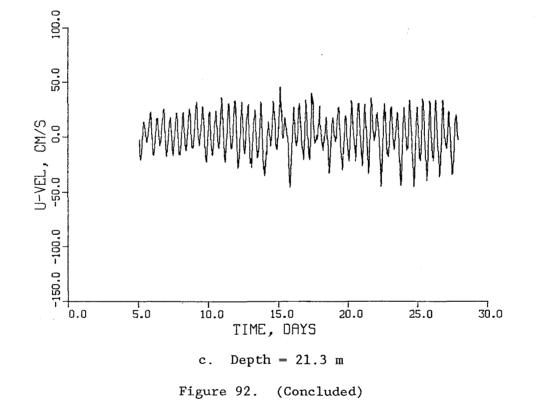




Figure 92. U-velocity at station BB during April 1983 (Continued)



,

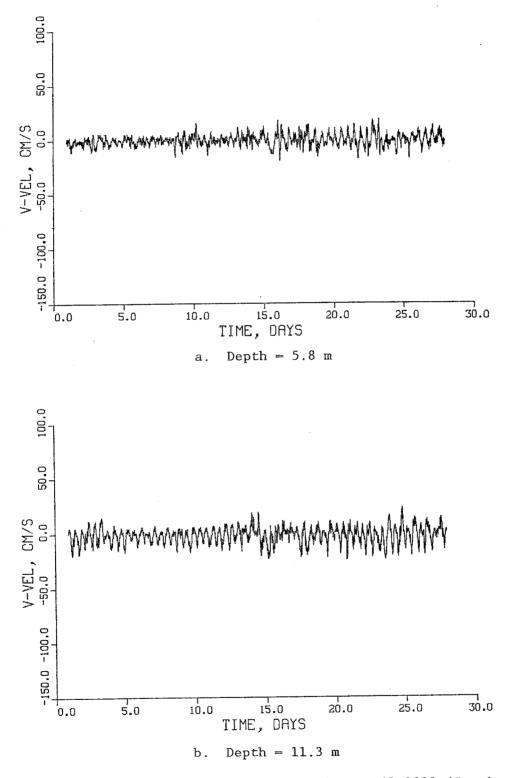
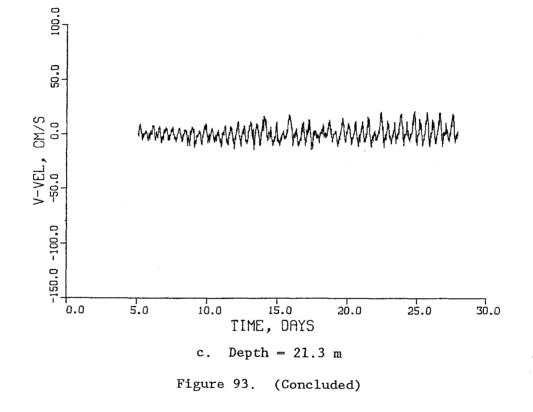
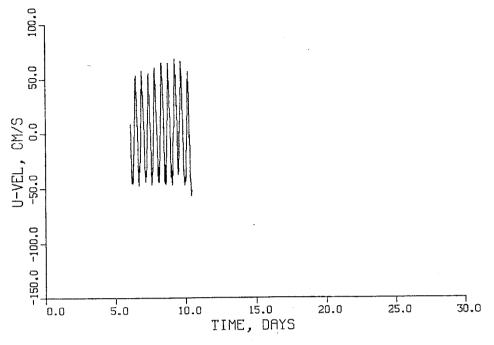
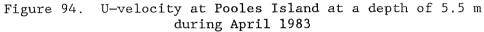






Figure 93. V-velocity at station BB during April 1983 (Continued)







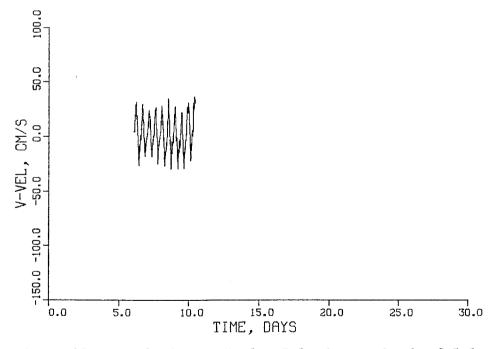



Figure 95. V-velocity at Pooles Island at a depth of 5.5 m during April 1983

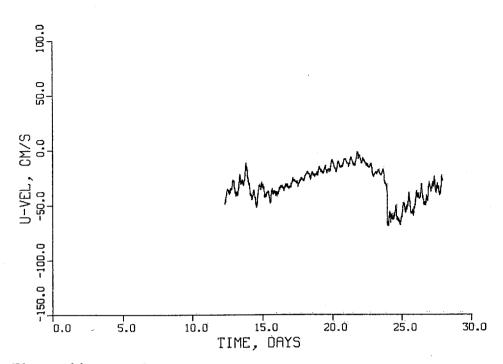



Figure 96. U-Velocity at Havre de Grace at a depth of 3.0 m during April 1983

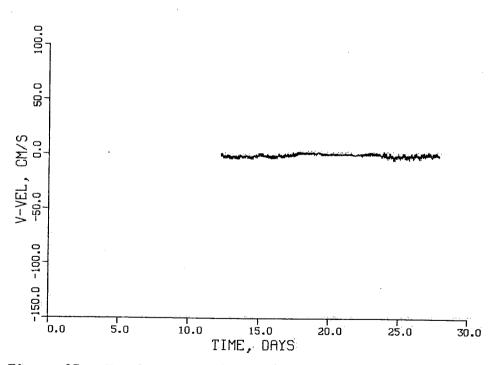



Figure 97. V-velocity at Havre de Grace at a depth of 3.0 m during April 1983

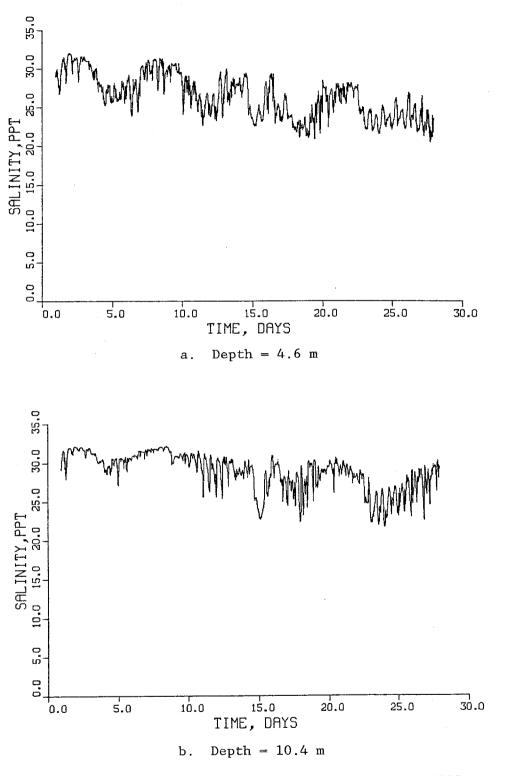



Figure 98. Salinity at station BE during April 1983

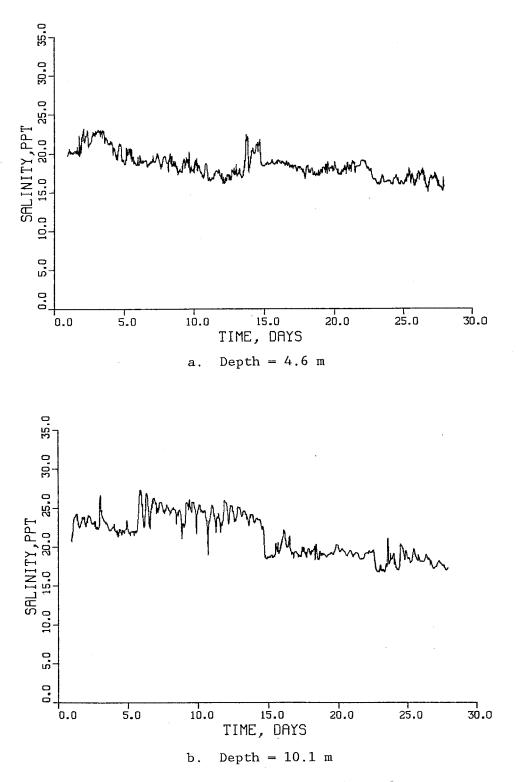



Figure 99. Salinity at station WT during April 1983

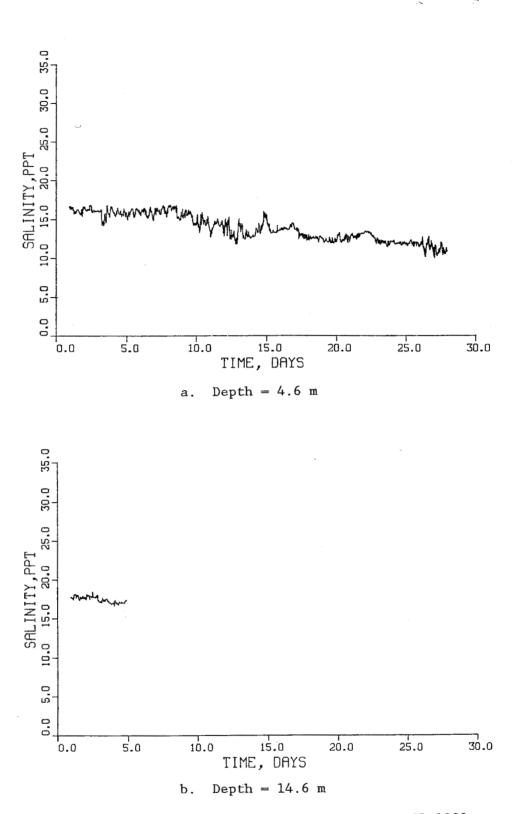



Figure 100. Salinity at station MB during April 1983

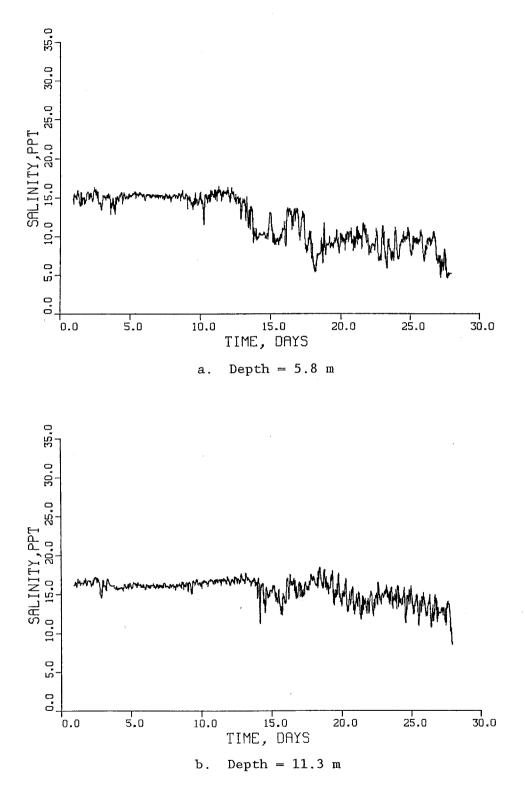
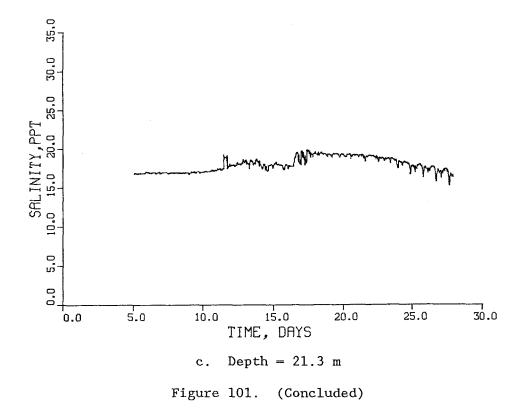




Figure 101. Salinity at station BB during April 1983 (Continued)



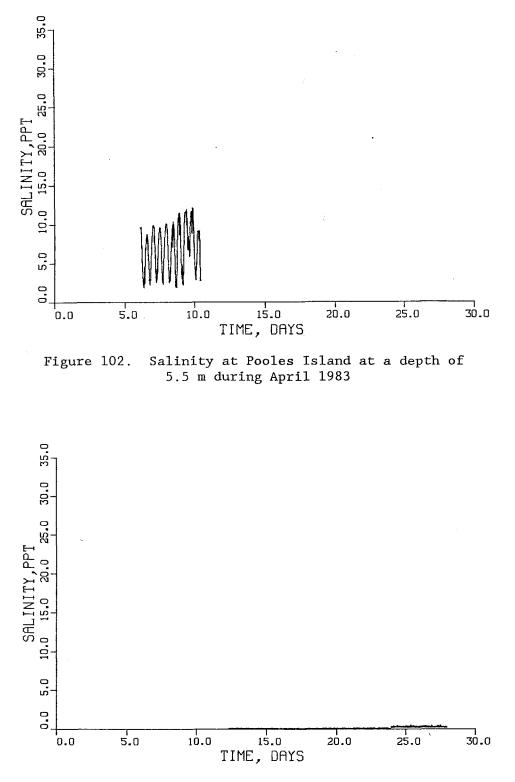
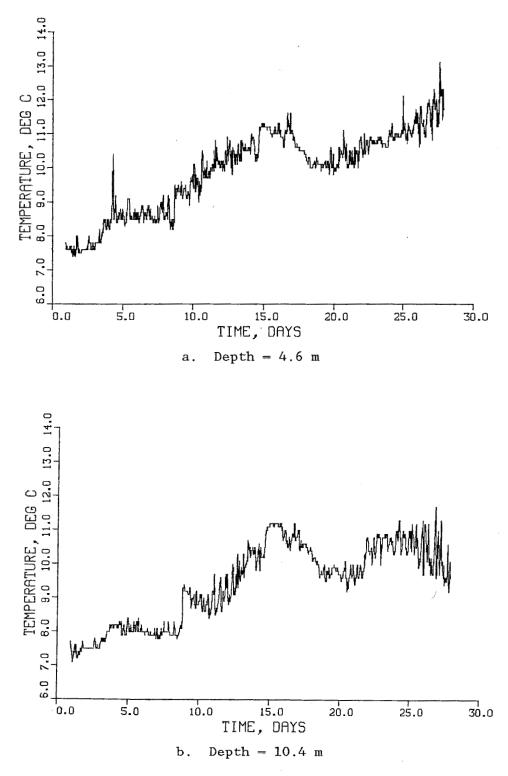
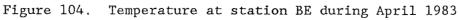





Figure 103. Salinity at a depth of 3.0 m at Havre de Grace during April 1983





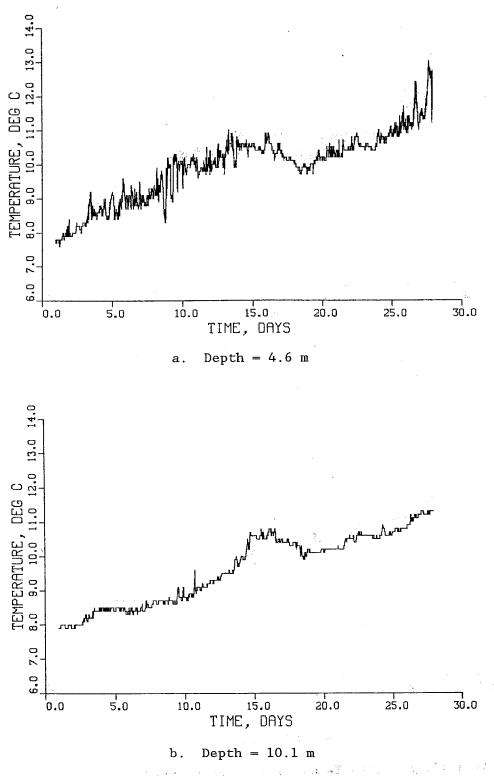



Figure 105. Temperature at station WT during April 1983



Figure 106. Temperature at station MB during April 1983

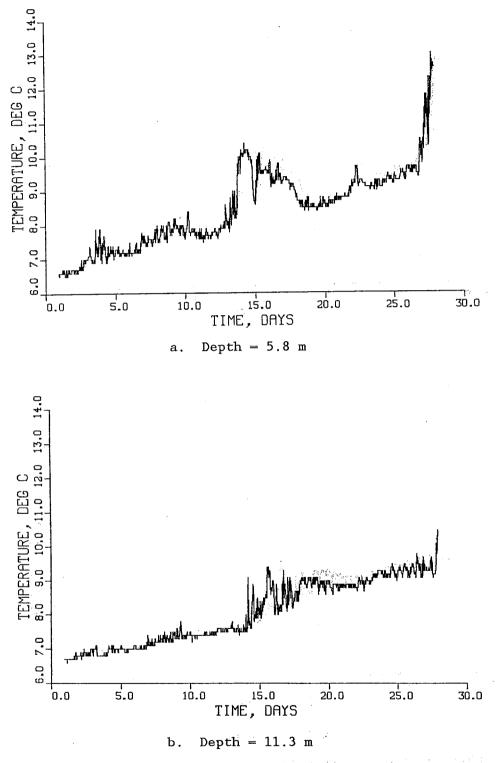
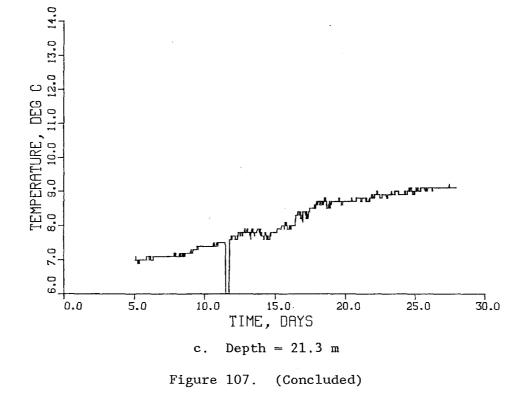




Figure 107. Temperature at station BB during April 1983 (Continued)



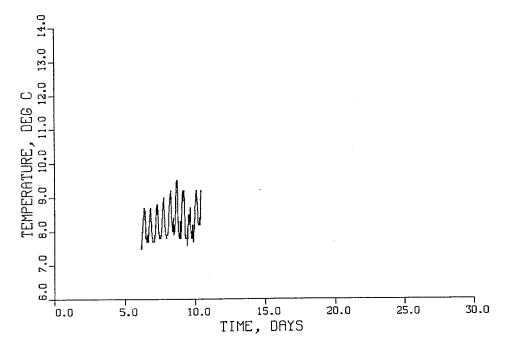



Figure 108. Temperature at Pooles Island at a depth of 5.5 m during April 1983

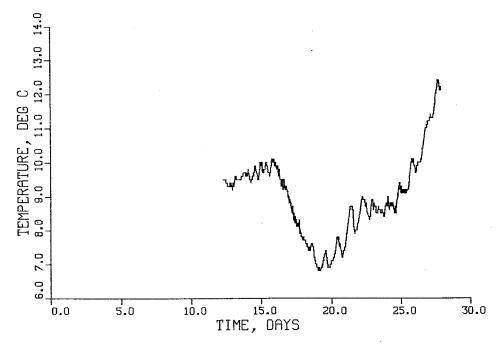



Figure 109. Temperature at Havre de Grace at a depth of 3.0 during April 1983

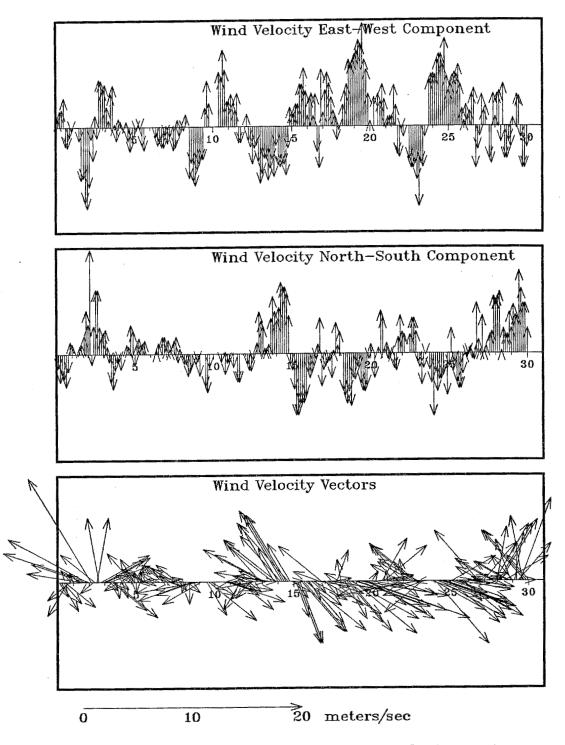



Figure 110. Wind data at Patuxent River Naval Air Station during April 1983

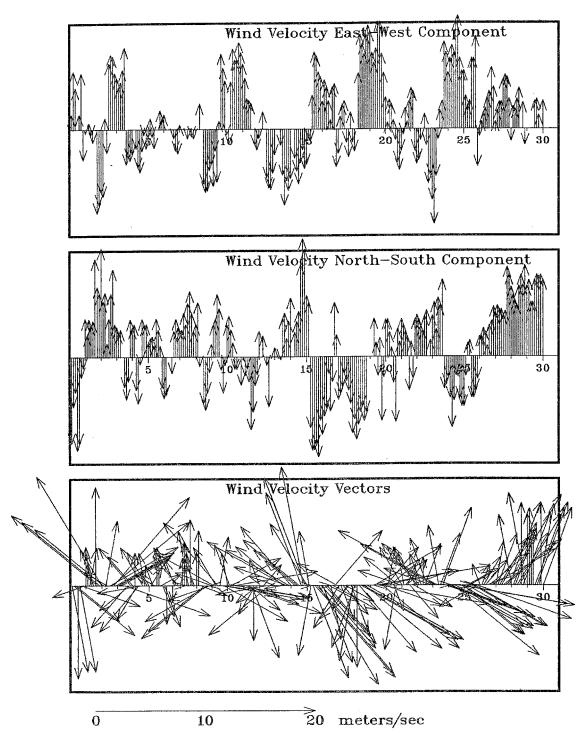



Figure 111. Wind data at Norfolk International Airport during April 1983

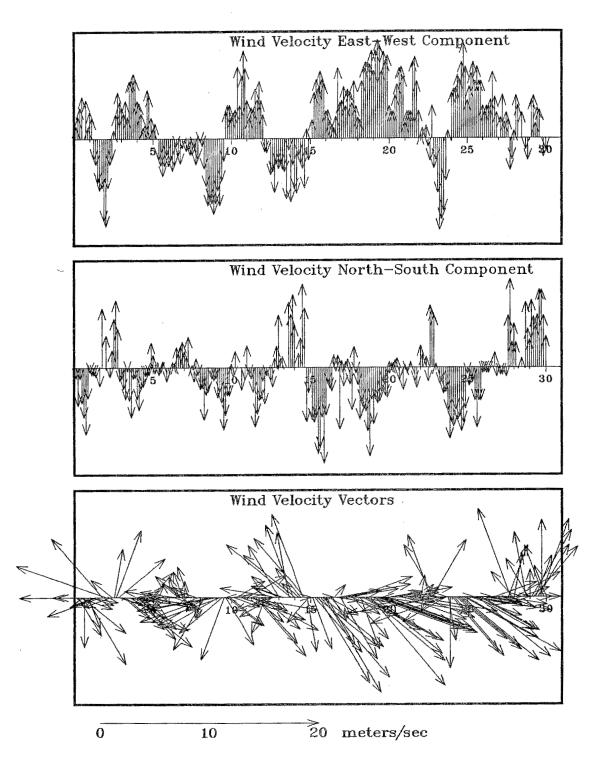



Figure 112. Wind data at Baltimore-Washington International Airport during April 1983

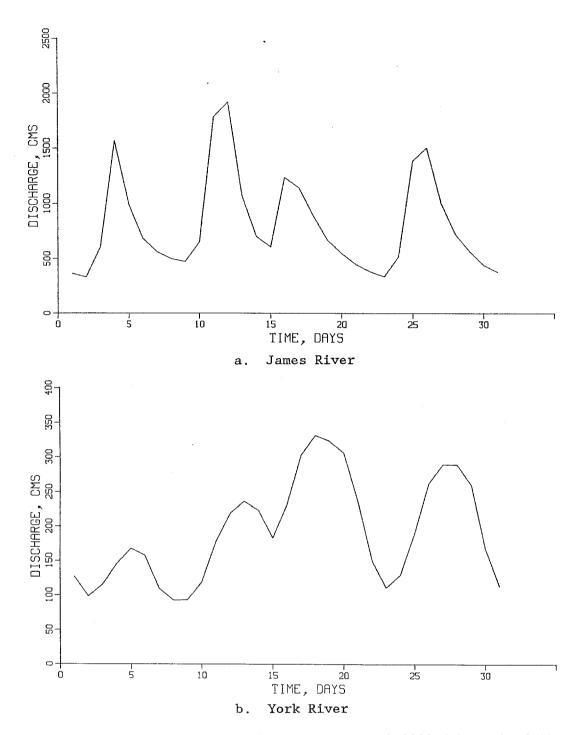



Figure 113. Freshwater inflows during April 1983 (Sheet 1 of 4)

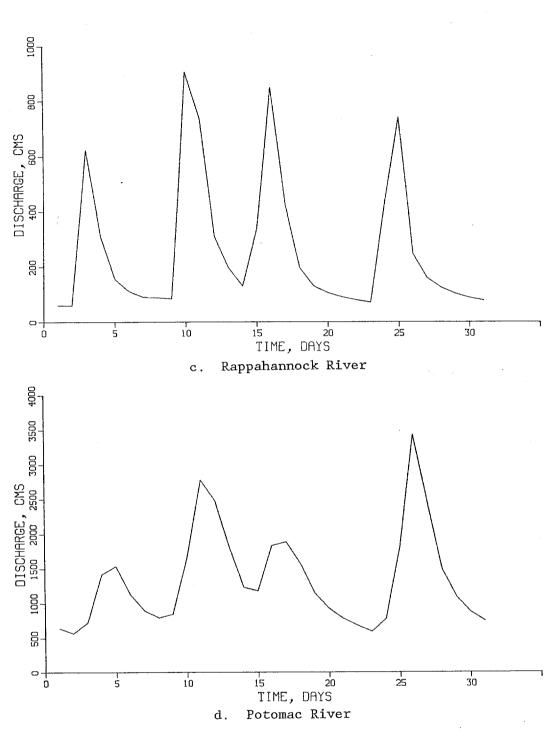



Figure 113. (Sheet 2 of 4)

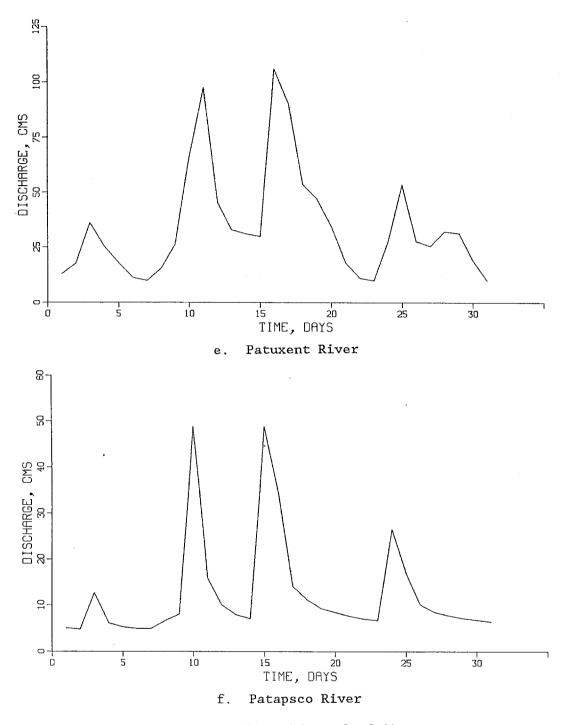



Figure 113. (Sheet 3 of 4)

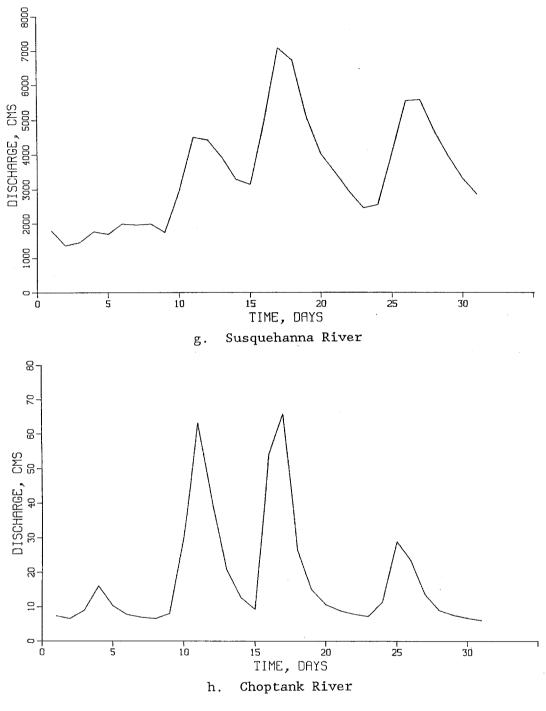



Figure 113. (Sheet 4 of 4)

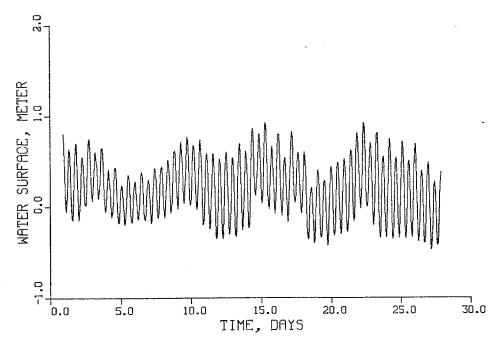



Figure 114. Tide at Chesapeake Bay Tunnel corrected at NGVD during April 1983

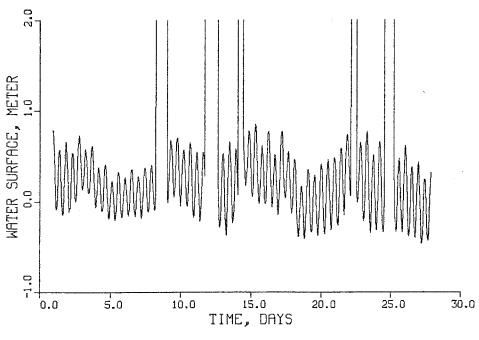



Figure 115. Tide at Hampton Roads, VA, corrected to NGVD during April 1983

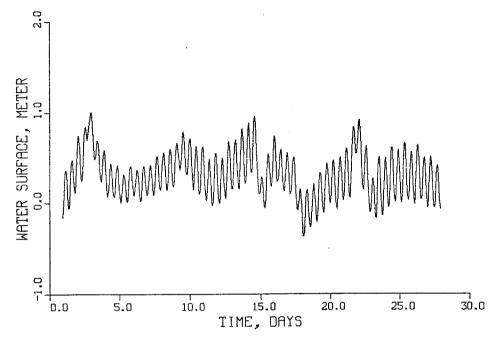
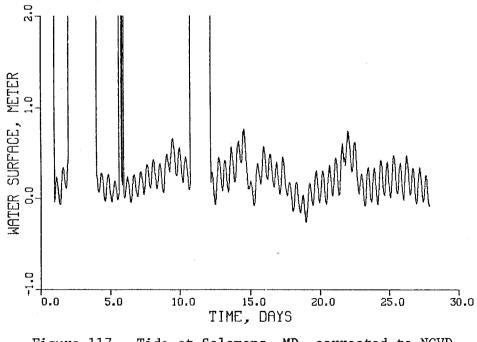
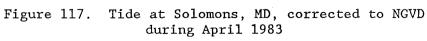





Figure 116. Tide at Colonial Beach, VA, corrected at NGVD during April 1983





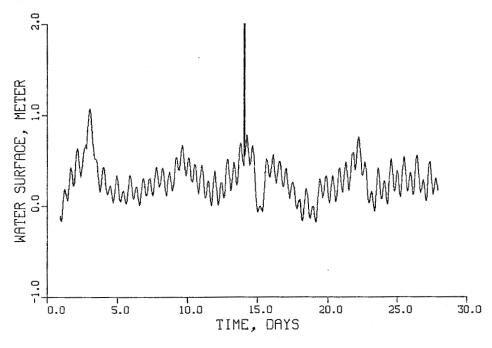
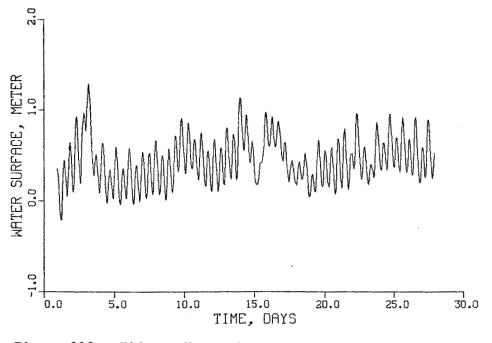
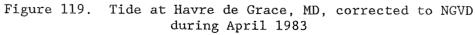





Figure 118. Tide at Annapolis, MD, corrected to NGVD during April 1983





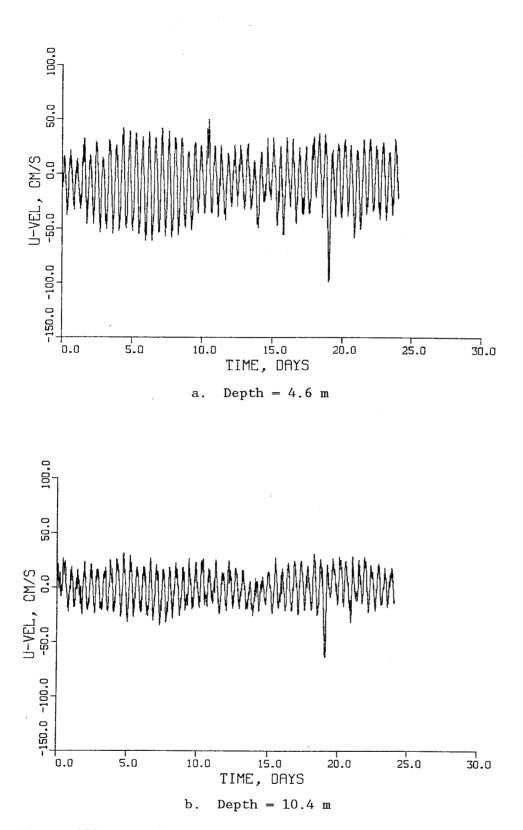
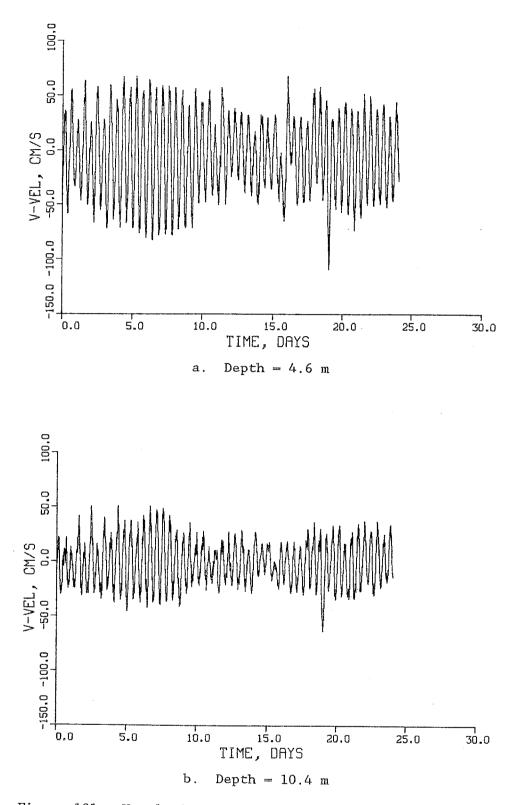





Figure 120. U-velocity at station BE during September 1983





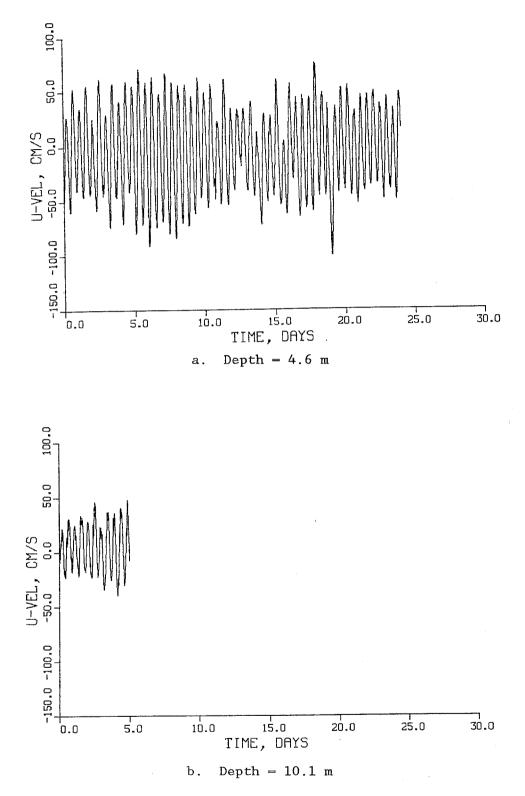
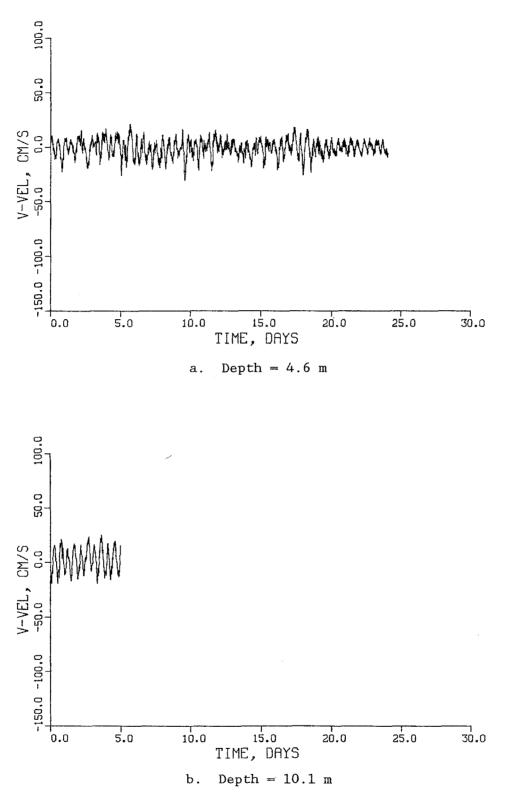
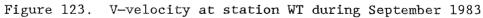
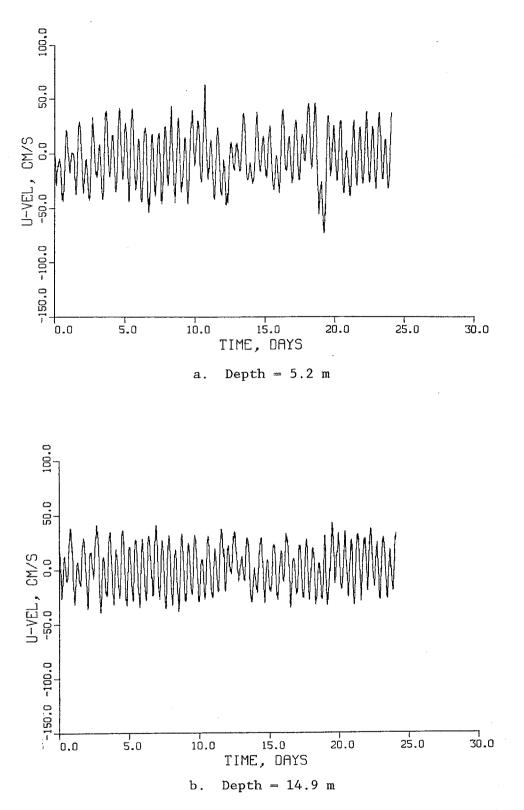
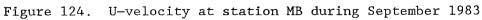







Figure 122. U-velocity at station WT during September 1983









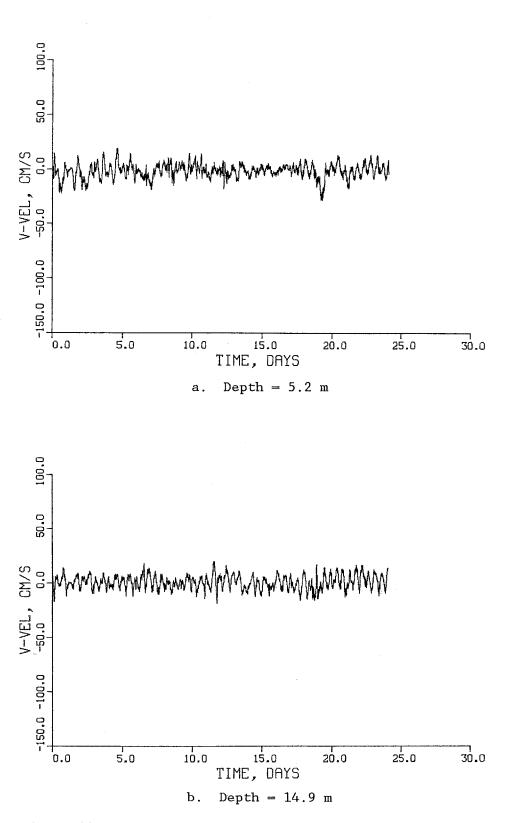



Figure 125. V-velocity at station MB during September 1983

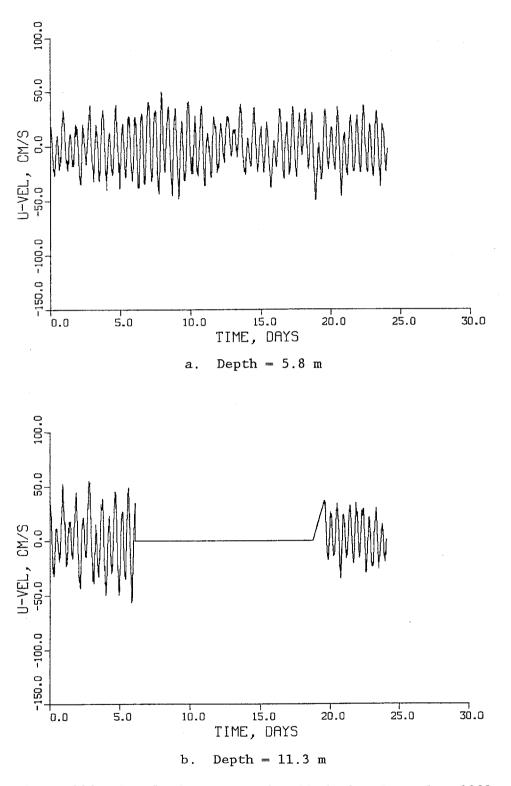
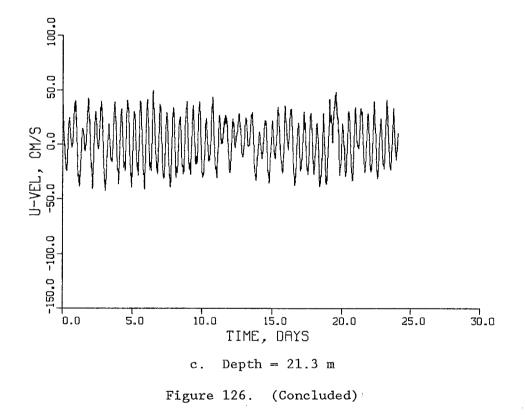




Figure 126. U-velocity at station BB during September 1983 (Continued)



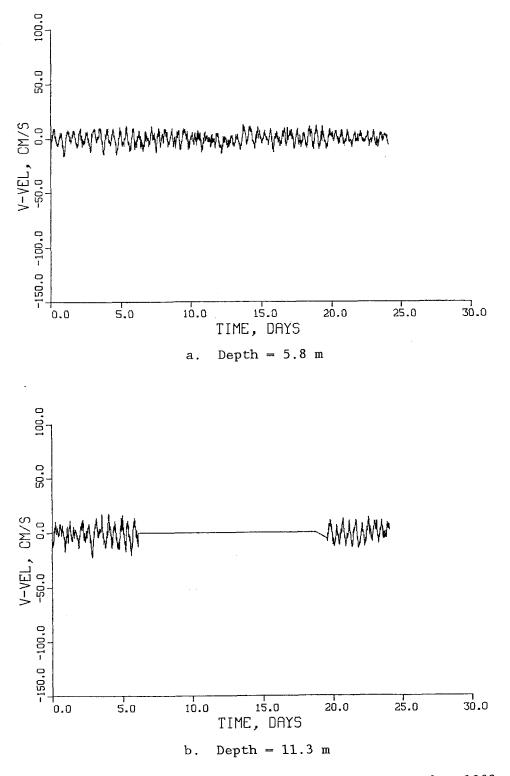
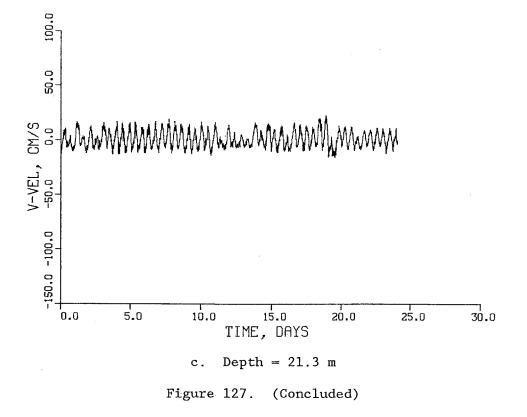




Figure 127. V-velocity at station BB during September 1983 (Continued)

....



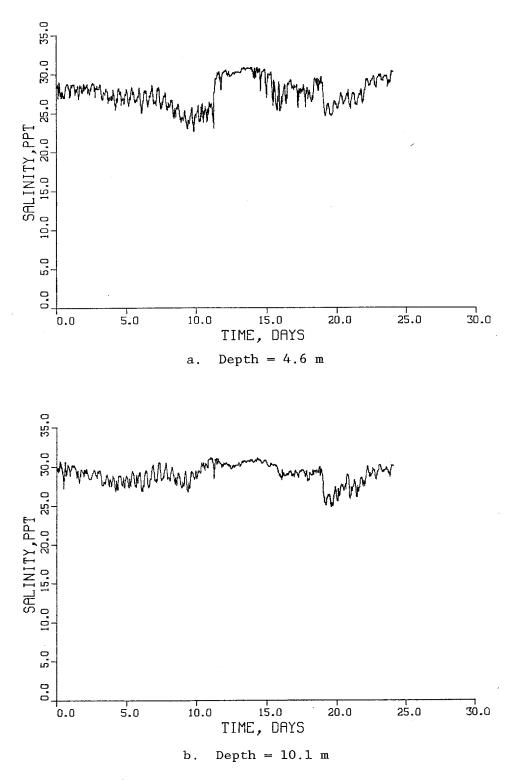
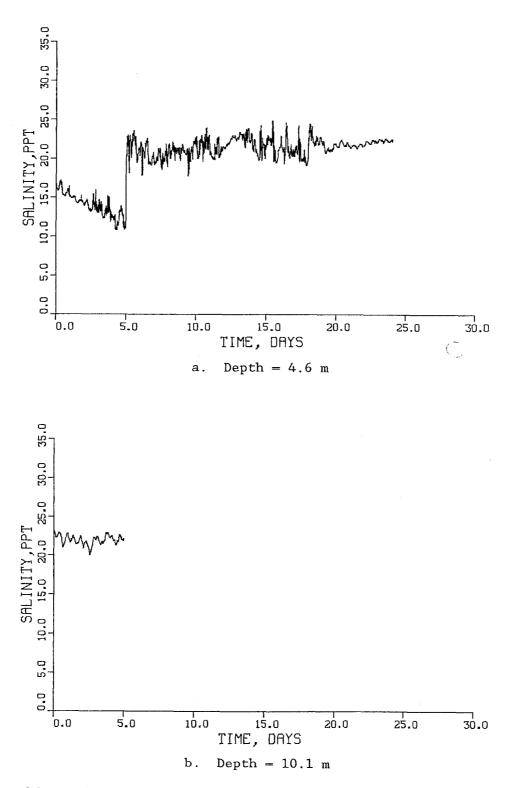
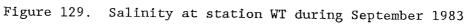
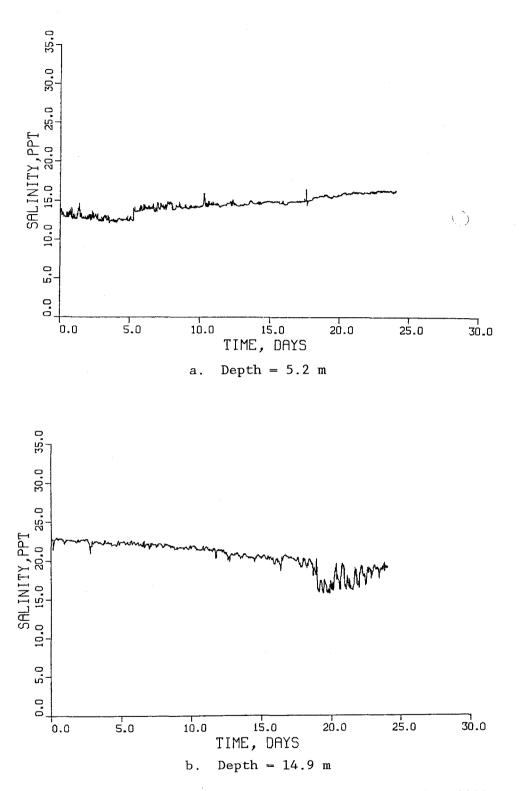
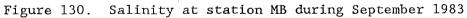







Figure 128. Salinity at station BE during September 1983









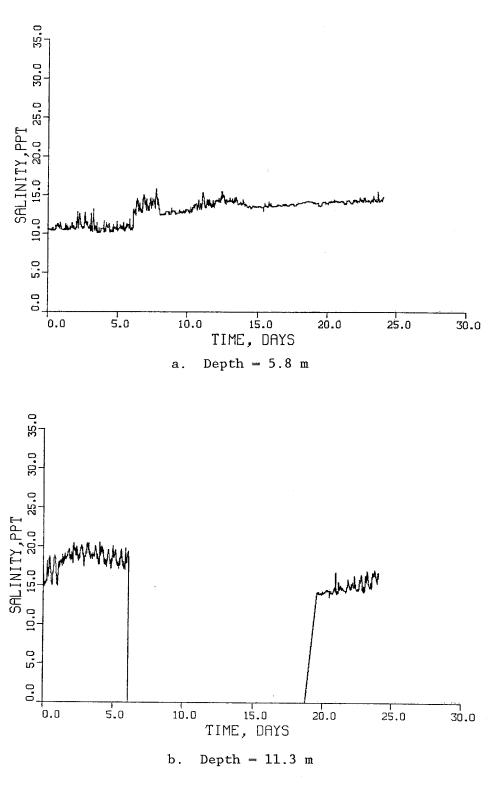
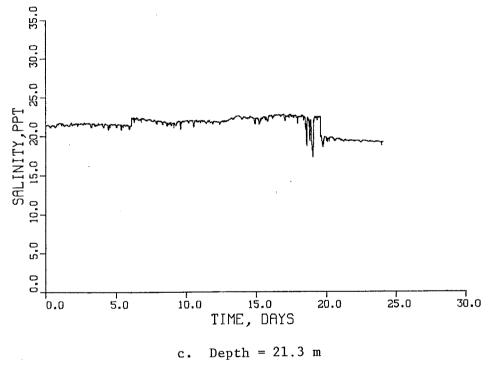
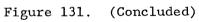





Figure 131. Salinity at station BB during September 1983 (Continued)





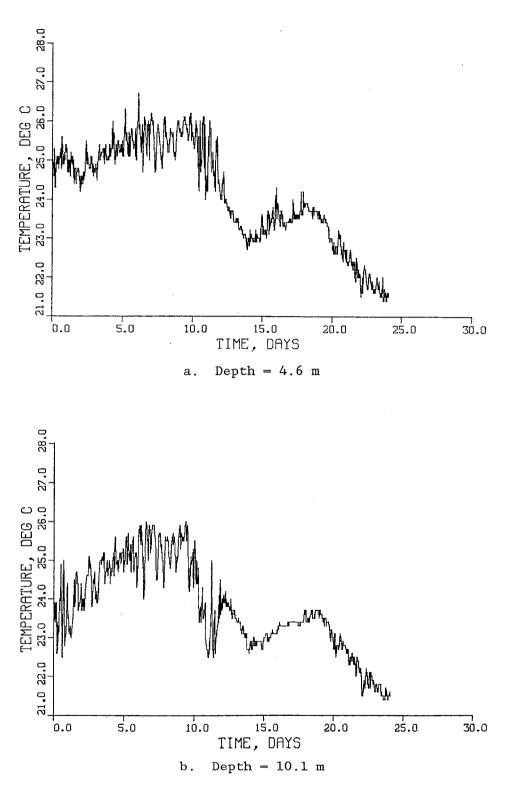



Figure 132. Temperature at station BE during September 1983

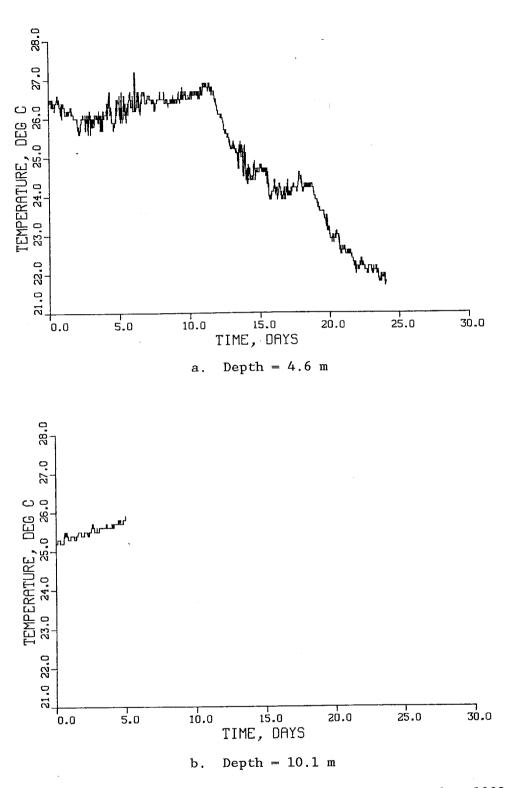



Figure 133. Temperature at station WT during September 1983

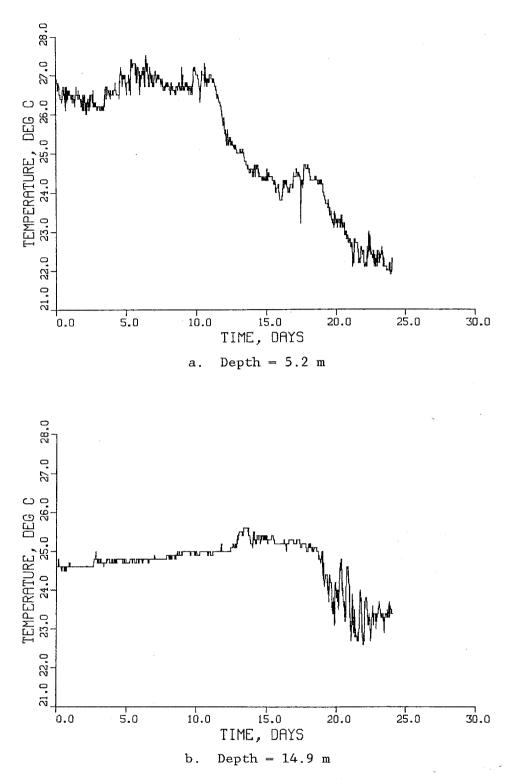



Figure 134. Temperature at station MB during September 1983

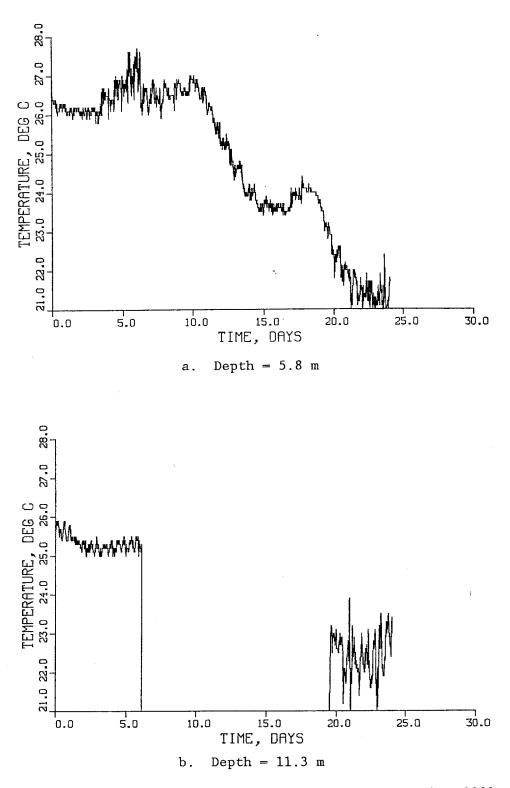
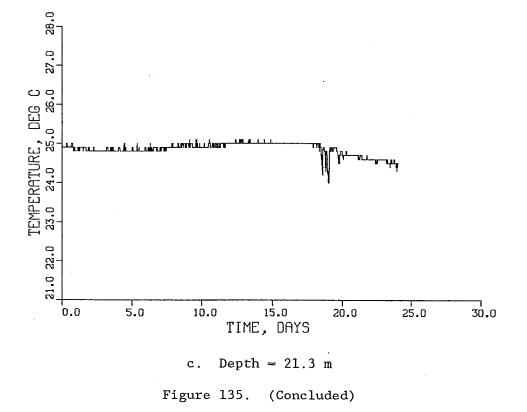




Figure 135. Temperature at station BB during September 1983 (Continued)



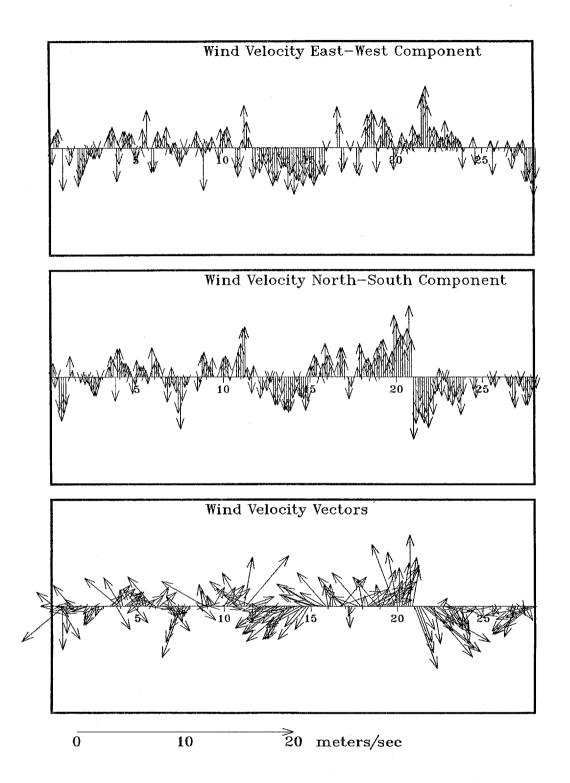



Figure 136. Wind data at Patuxent River Naval Air Station during September 1983

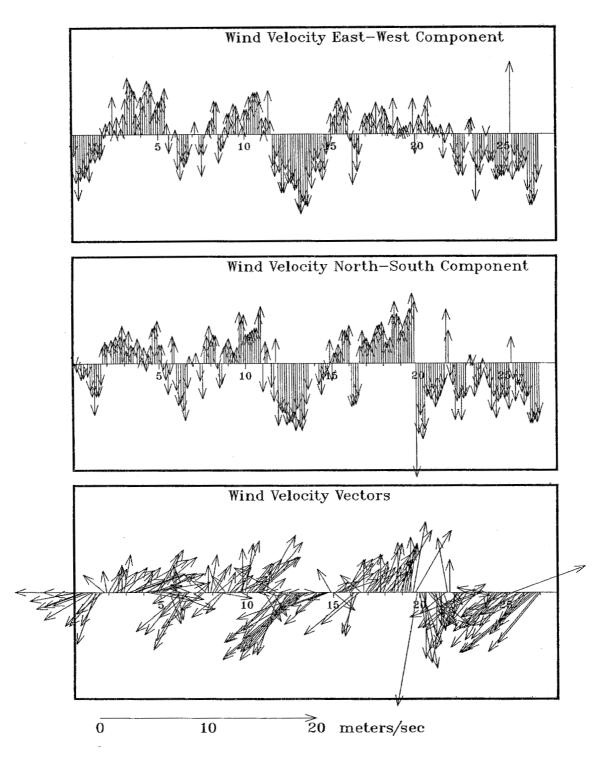



Figure 137. Wind data at Norfolk International Airport during September 1983

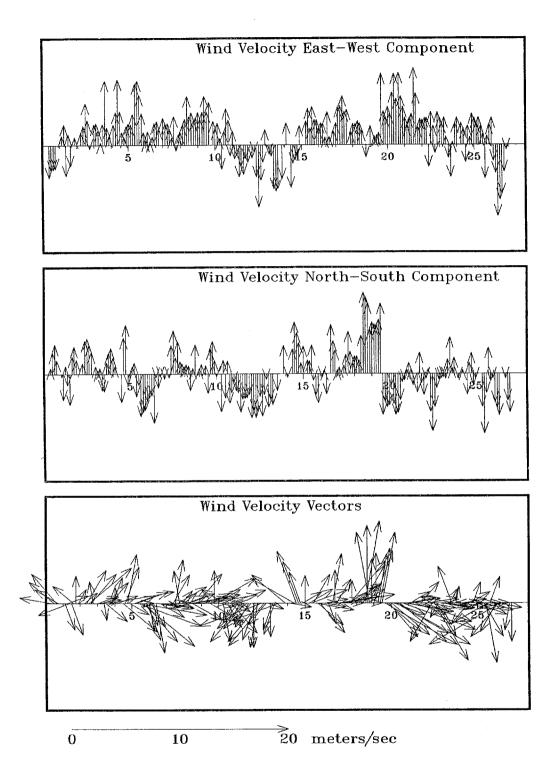



Figure 138. Wind data at Baltimore-Washington International Airport during September 1983

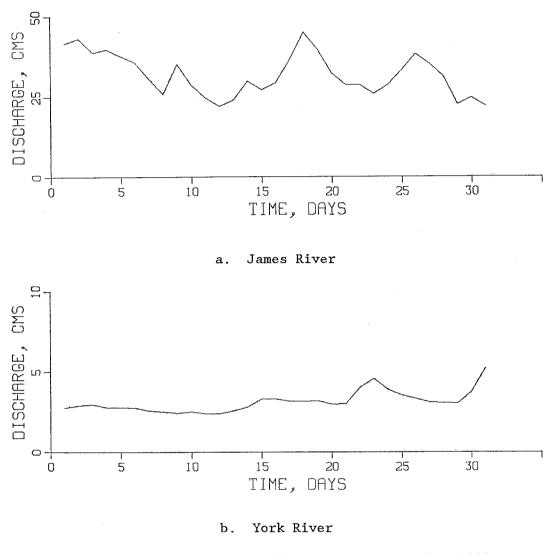
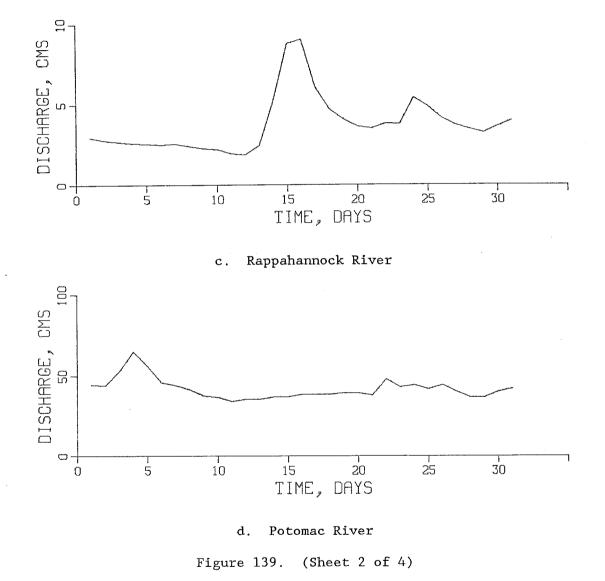
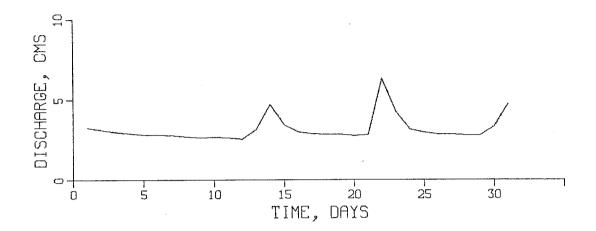
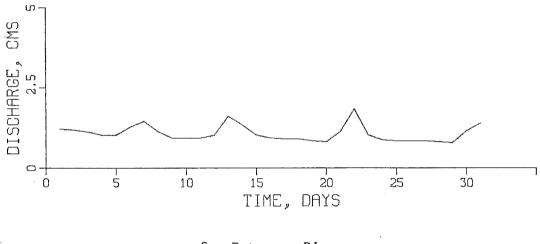
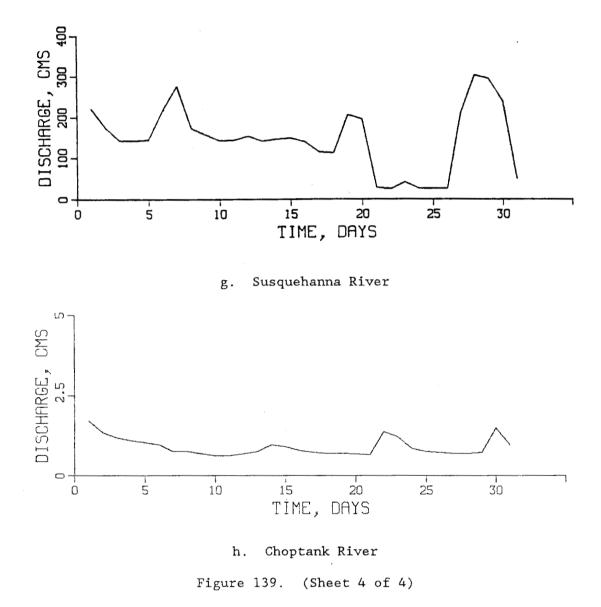






Figure 139. Freshwater inflows during September 1983 (Sheet 1 of 4)






e. Patuxent River



f. Patapsco River

Figure 139. (Sheet 3 of 4)



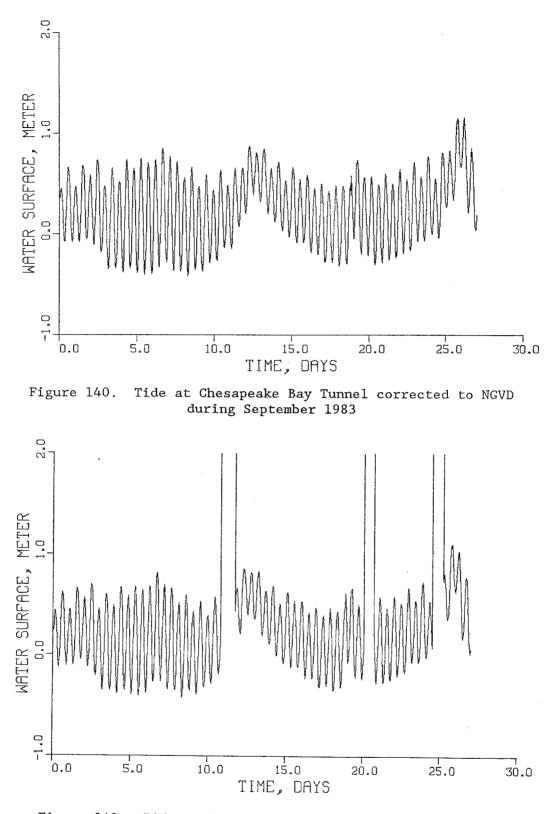



Figure 141. Tide at Hampton Roads, VA, corrected to NGVD during September 1983

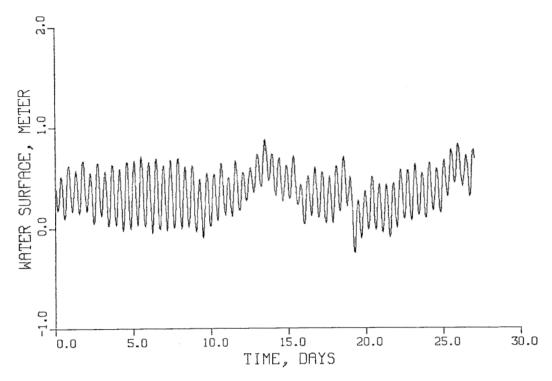



Figure 142. Tide at Colonial Beach, VA, corrected to NGVD during September 1983

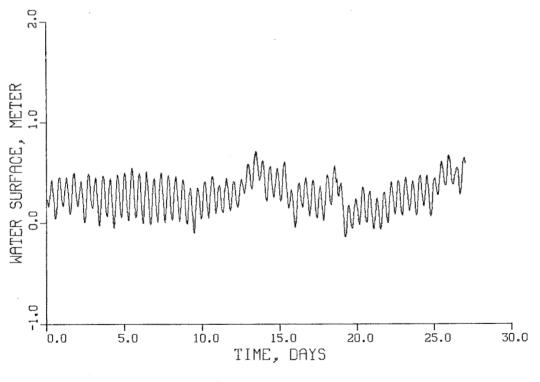



Figure 143. Tide at Solomons, MD, corrected to NGVD during September 1983

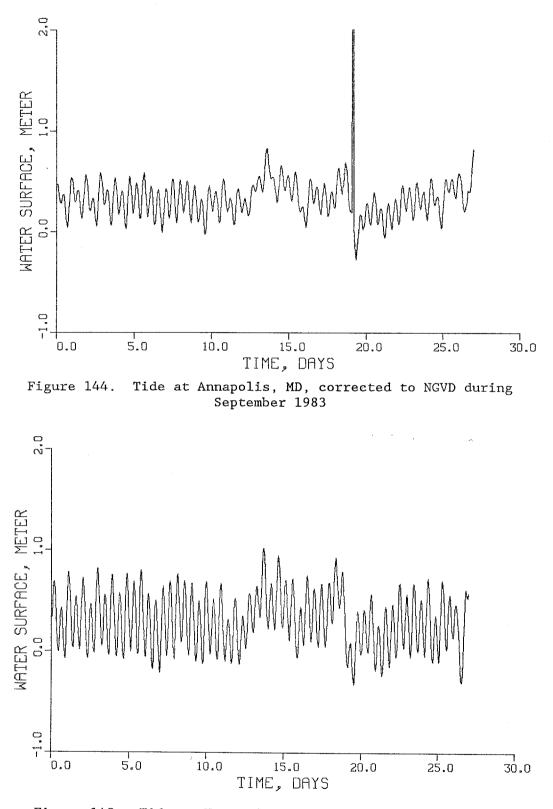



Figure 145. Tide at Havre de Grace, MD, corrected to NGVD during September 1983

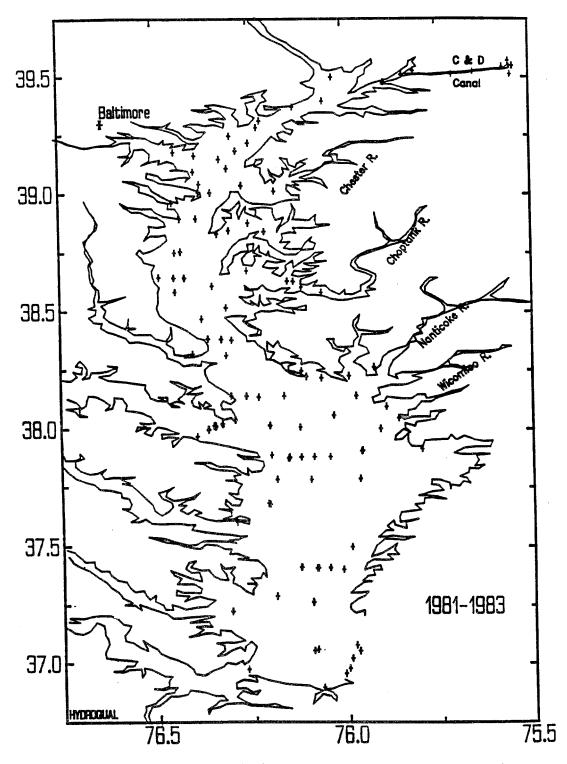



Figure 146. Location of the current meter stations used from the 1981-83 NOS survey

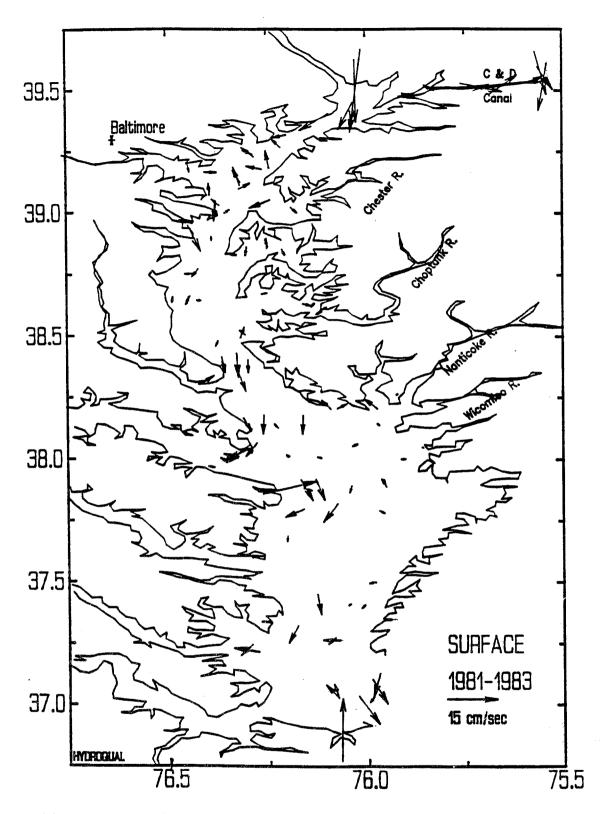



Figure 147. Long-term mean surface circulation in Chesapeake Bay from the 1981-83 NOS data

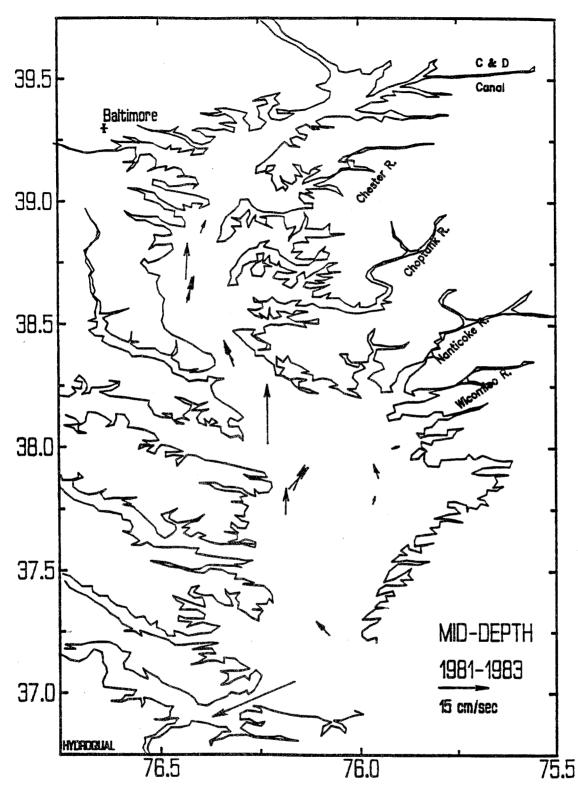



Figure 148. Long-term mean middepth circulation in Chesapeake Bay from the 1981-83 NOS data

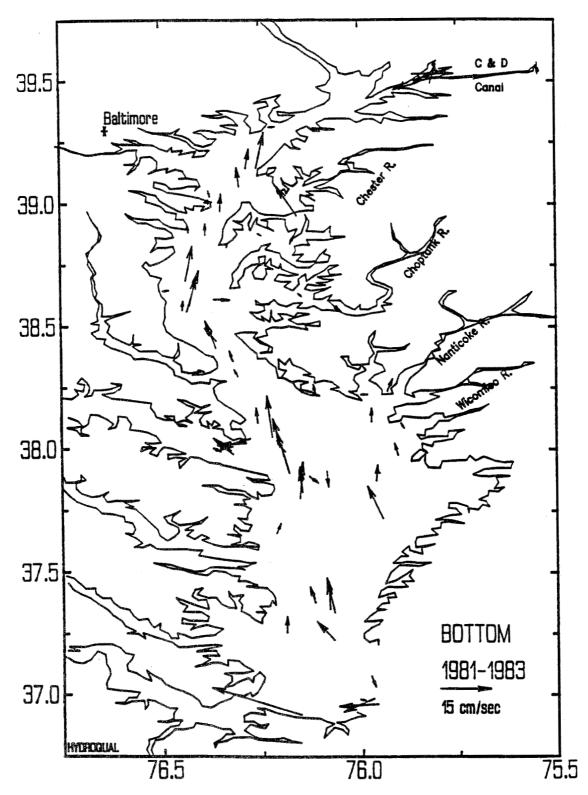



Figure 149. Long-term mean bottom circulation in Chesapeake Bay from the 1981-83 NOS data

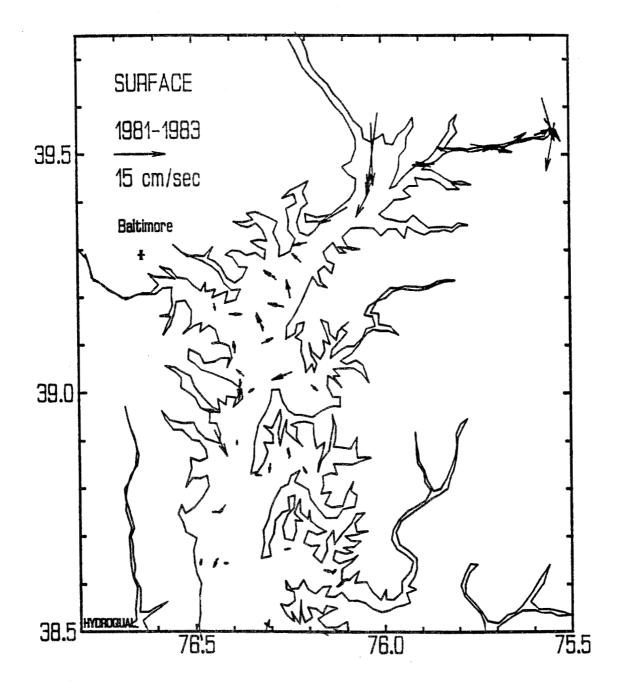



Figure 150. Long-term mean surface circulation in upper Chesapeake Bay from the 1981-83 NOS data

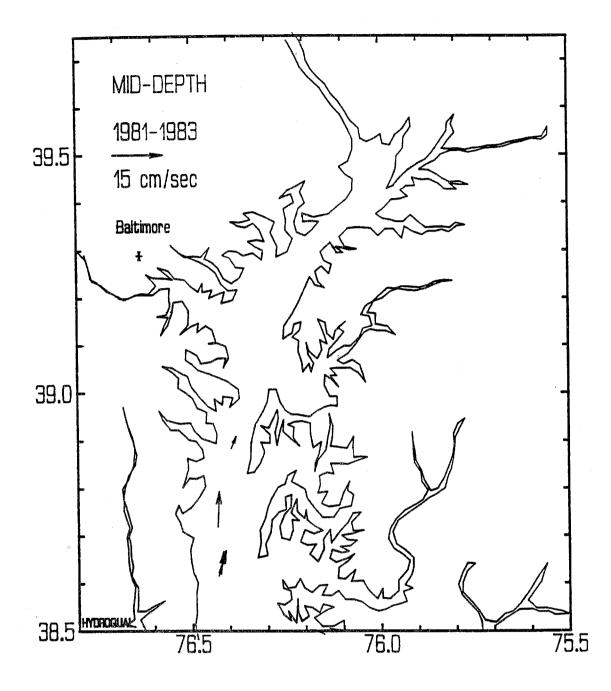
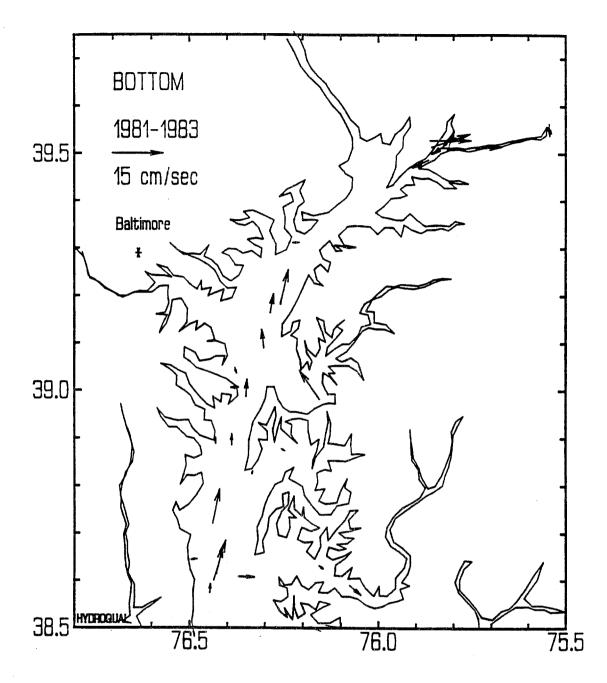
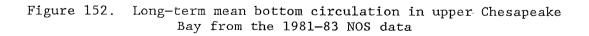





Figure 151. Long-term mean middepth circulation in upper Chesapeake Bay from the 1981-83 NOS data





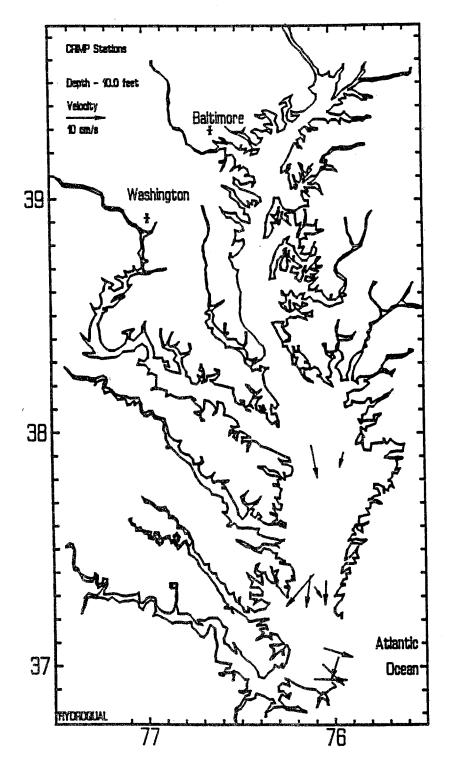



Figure 153. Average currents at 10 ft from CRIMP data

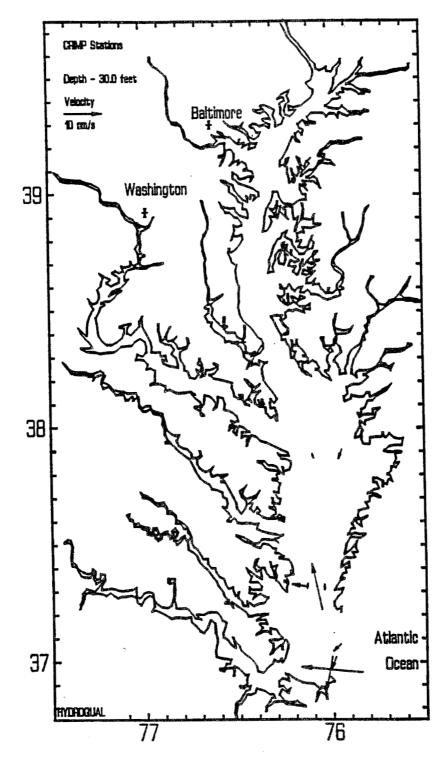



Figure 154. Average currents at 30 ft from CRIMP data

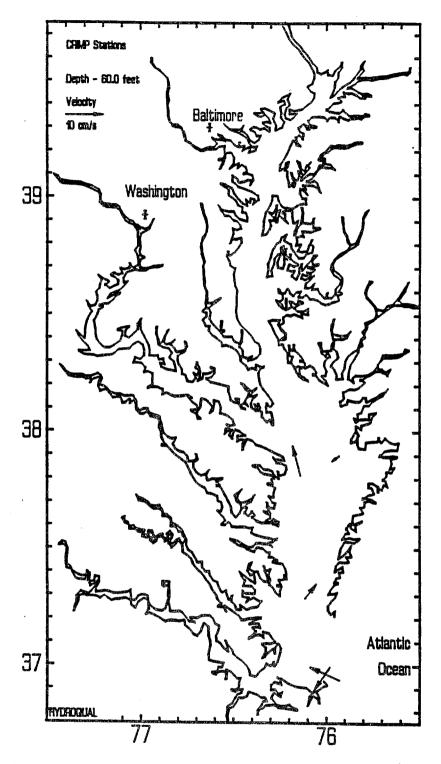



Figure 155. Average currents at 60 ft from CRIMP data

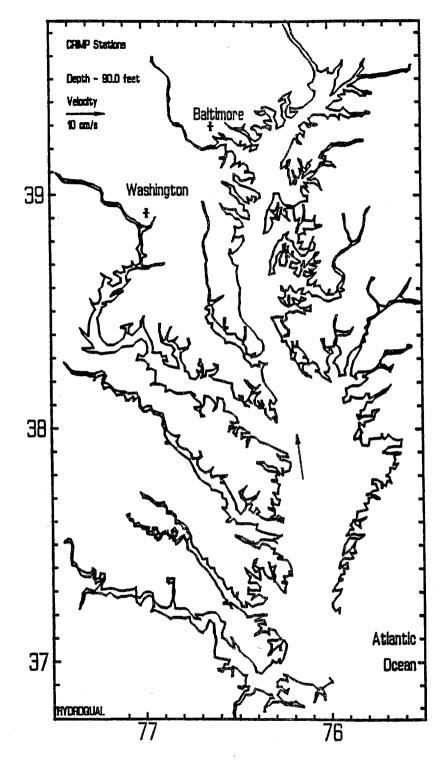



Figure 156. Average currents at 90 ft from CRIMP data