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ABSTRACT 

 

Key words: Outliers Detection, Linear Mixed Models, Simulation and 

Automation. 

It is difficult to detect outliers in linear mixed models. The traditional way of 

identifying outliers is to check whether there are any violations in model assumptions 

by examining the normal QQ plot and the residual plot.  A simulation approach 

proposed by Schützenmeister and Piepho adds the objectivity in interpreting results of 

the QQ and residual plot. Based on this simulation approach, a software tool is 

developed to indentify potential outliers in linear mixed models automatically. In 

addition, the performance of this approach is evaluated. This tool is user-friendly to 

inexperienced analysts and open sourced.
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Chapter 1 

INTRODUCTION 

The statistical methodologies have improved significantly over the last several 

decades. The advances of those methodologies have enabled agricultural and natural 

resources science developed dramatically. Among those methodologies, the 

generalized linear mixed model has made exceptional contributions in facilitating 

researchers to conduct more versatile and informative analyses. The development of 

user-friendly statistical software benefits a wider range of researchers in allowing 

them to utilize generalized linear mixed models in their analysis, the access of which 

was limited in the past (Gbur, et al., 2012).  

When analyzing an agriculture data set with a generalized linear mixed model, 

an important step is the outlier diagnostics. The purpose of this study is to develop an 

open-sourced software tool, which identifies the potential outliers in an automatic 

manner. The tool is developed with R, and is accessible to even smallholder farmers in 

developing countries. It helps them to obtain useful information with their limited 

budget. The tool is automatic and user friendly for even inexperienced users. 

A linear mixed model is written as (Littell et al., 2006): 

, 

, 

, 

, 
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where is the fixed effects vector and the random effects. X is the design 

matrix for the fixed effects, Y is the vector of responses and Z is the design matrix for 

the random effects. The unknown parameters of the model to be estimated are , G 

and R. 

A linear mixed model is an extension of a general linear model, which is in the 

form of: 

 

 

            Not only has the error term  as a random component as that in a general 

linear model, linear mixed models also incorporate the random effect , which brings 

in many advantageous properties. It is capable of making a broader inference to 

different environments and modeling non-independent datasets. As a result, the 

general linear mixed model is widely applicable in various fields, such as plant 

breeding or a longitudinal data analysis (Schutzenmeister and Piepho, 2012). 

In general linear models, the residual is defined as: , which is the 

difference between the observed response variable and the estimated response 

variable. In contrast, there are three types of residuals in linear mixed models (Nobre 

and Singer, 2007):  

(1) the marginal residuals, 

, which is the difference between the observed distribution and 

the estimated marginal distribution . The marginal distribution of 

� 

y  is obtained by 

“integrating the joint distribution of data and random effects over random effects” 

(Littell, 2006) and has a mean

� 

Xβ  and variance .   

(2) the conditional residuals, 
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, which is the difference between the observed distribution 

and the estimated conditional distribution . The conditional distribution of 

 is obtained by giving 

� 

Zu  as a known fixed constant.  has a mean of  

and variance . 

 (3) best linear unbiased predictor (BLUP), , which 

predicts the random effects. 

Different types of residuals serve for different diagnostic purposes. For 

instance, the marginal residuals could diagnose the linearity of effects as well as the 

within subjects covariance matrix, the conditional residual could test for outlying 

observations and homoscedasticity and normality of conditional errors, whereas the 

BLUP can test the presence of outlying subjects, random effects covariance structure 

and normality of the random effects. Residuals, especially studentized residuals are 

essentially important in detecting outliers. A data point with a greater (studentized) 

residual is more likely to be considered as an outlier. 

Outliers, according to Gumedze et al (2010), are “data observations that fall 

outside the normal range of the response data”. Whether or not an observation is an 

outlier may be dependent on the selected variables in the model (Nobre and Singer 

2007). Thus, outlier detection unavoidably involves some uncertainties due to the 

indetermination in the parameter estimation and model selection. Therefore, it is 

inappropriate to connect some certainty-implying terms such as identification and 

detection with outliers.  In fact, it’s more appropriate to refer “outlier identification” as 

“likely outlier identification” (Longford, 2001).  

There is a formal test for outliers in linear models (Kutner et al., 2004), which 

involves residual studentization. Studentization of residual means the division of a 
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residual by an estimate of its standard deviation.  The reason for conducting 

studentization is that the standard deviations of residuals in a sample often vary 

significantly for different data points. Thus the residuals are not comparable without 

studentization. The studentized residual, with the ith element deleted, is calculated as: 

 
where is the ith diagonal element in the hat matrix . The hat matrix is 

defined as: . It is only dependent upon the design matrix  and can 

be regarded as the orthogonal projection onto the column space of . Since  follows 

the t distribution with n-p-1 degrees of freedom, the t test is therefore able to test if an 

observation is an outlier or not.  

After outlying points are detected, sometimes we need to estimate the 

influence of those outlying points. One of the popular measures is Cook’s Distance, 

which evaluates the influence of the ith case on all the fitted values ((Kutner et al., 

2004). It is defined as: 

, 

where p is the number of regression parameters,  is the vector of the fitted 

values when all the cases are included and  is the vector of the fitted values when 

the ith case is omitted in the regression. When relating  to the F(p,n-p) distribution, 

if the corresponding percentile value is near or greater than 50% , it indicates the ith 

case has a big influence. 

Unfortunately, this outlier diagnostic analysis cannot be simply extended to 

linear mixed models, and there actually is no valid test for identification of outliers in 
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linear mixed models (Andrade-Bejarano and Longford, 2010). Some outliers may be 

resulted from incorrect data transcription or errors of experimental equipments and can 

be easily detected and removed (Freedom et al., 2010). However, more often the 

outliers have undetectable sources and are difficult to deal with, since they cannot be 

simply discarded without convincing reasons. The remedy approaches to outliers with 

unknown origin include data transformation or model modification. Despite of those 

remedies, we still never know whether the detected outliers are true outliers or the 

assumptions of our model are incorrect in the first place.  

A common way to test for outliers in linear mixed models is to generate 

conditional and marginal residual plots and see if the residuals appear to be normal 

and homoscedastic. However, it cannot avoid some level of subjectivity 

(Schutzenmeister and Piepho, 2012). Two other main approaches are case-deletion 

and influence analysis (Gumedze et al. 2010).  The disadvantage of the case-deletion 

method is that the observations considered outliers ended up being discarded even 

when they are not true outliers, as a result, some useful information may have been 

lost. On the other hand, influence analysis is to test “how influential a designed point 

is to a certain model”. An unreasonable influential observation should be avoided by a 

good experimental design and it is out of the scope of our work.  

Due to the difficulty of detecting outliers in linear mixed models, the purpose 

of this work is not to propose a ground-breaking method to determine whether or not 

the potential outliers should be discarded. Instead, an approach that automatically 

detects the likely outliers in mixed models will be illustrated. The approach adopted in 

the work is proposed by Schützenmeister (2012). It is a simulation-based approach 

that allows automatic detection of potential outliers in the model. The basic idea is to 
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assess normality and homoscedasticity of residuals by adding simultaneous tolerance 

bands (STB) and simultaneously tolerance intervals (STI) on the normal QQ plot and 

the residual plot. It enables an inexperienced analyst to make judgments with 

objectivity and does not require deletion of any observations or classify any 

observations as outliers conclusively. The work done in this thesis includes:  

programming the R codes to realize the deletion algorithm of the paper by 

Schützenmeister (2012), conducting simulations to confirm the correctness of the 

method by comparing the R result with the SAS result, evaluating the performance of 

this approach and extending the application of the approach to a more complex model.  
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Chapter 2 

SIMULATION APPROACH DESCRIPTIONS 

The simulation approach proposed by Schützenmeister and Piepho is to 

graphically check the normality and homoscedasticity assumptions. One of their 

assumptions is that there are only a few outliers, which are standing out from the 

remaining residual points. They made use of the normal QQ plot to test the departure 

from normality and the conditional studentized residual plot to identify the outstanding 

data points. By adding the 100(1-

� 

α )% STB and STI, they are able to interpret the 

result objectively. Any data point outside both the STB and STI is regarded as a 

potential outlier.  

One example data set they used in their paper is the Cambridge filter data set.  

The response variable of the data set is detected nicotine content by gas 

chromatography. One of the two explanatory variables is the original nicotine content 

of the Cambridge filter pads sample, which has 10 levels (10 samples). The other is 

the effect by the labs, where the analyses were conducted. The latter has 14 levels (14 

labs). 

The linear mixed model to fit the data set is: 

                                             （1） 

where  (i=1,…,10;j=1,…,14) is the amount of detected nicotine content in 

the ij-th sample, is the fixed effect of the i-the sample, is the random effect of the 

j-th lab, and is the error term for the ij-th measurement.  
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There are two missing values in the data set: the 8-th and 9-th sample in the F 

lab. Thus, there were only 138 measurements.  

To describe the simulation approach in detail, Schützenmeister and Piepho first 

fitted the Cambridge data set with the above linear mixed model, then drew the QQ-

plot of studentized conditional residuals and added 100(1-

� 

α )% simultaneous tolerance 

bands (STB) on the QQ-plot.  Also, the studentized conditional residual vs. predicted 

values plot was drawn, and the 100(1-

� 

α )% simultaneous tolerance intervals (STI) 

were added on it. All the data points outside both the STB and STI were classified as 

outliers.  

Specifically, the STB and STI were obtained following the procedure below: 

1). Fit the data set with the linear mixed model 

2). Use the fitted model to simulate 138 new response variables and refit the 

model with generated new responses 

3). Repeat step 2) N times, which is known as the number of simulations 

4). Save the N*138 studentized conditional residuals into a N-row, 138-column 

matrix, called “m”. 

    Studentized conditional residuals were obtained by applying studentization 

on conditional residuals according to the equation below: 

                                          （2） 

where  is an estimate of , the k-th diagonal element of matrix P.  
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� 

P = Var(ˆ e ) = RQR, where , , and 
. 

5). Sort all the elements in the ‘m’ matrix from minimum to maximum by rows 

and store them in an N*138 matrix, called ‘s’. Each row in the ‘s’ matrix is an order 

statistic and we have , for all j=1,2,…,N. After the s matrix is created, 

apply the following rank based deletion algorithm and delete a*N rows which contain 

the most extreme values (the minimum or the maximum studentized conditional 

residuals), and the remaining (1-

� 

α )*N rows of s matrix will form the STB. 

• For each row in ‘s’, locate the row(s) that contains the minimum 

studentized conditional residual(s) and delete that (these) row(s) 

• Repeat the above step until 

� 

α /2*N rows have been deleted, where a is 

the level of significance 

• Delete the row(s) that contains the maximum studentized conditional 

residual(s) 

• Repeat the above step until 

� 

α /2*N rows have been deleted 

6). After applying the deletion algorithm, follow the steps below to plot the 

STB on a figure with the remaining (1-

� 

α )*N rows in the s matrix 

• Calculate the quantiles of each residual within each row of the s matrix. 

The plot below shows the details of the quantile calculation 

(SAS/STAT®(R) 9.2 User’s Guide, Second Edition). F in the plot is 

the cumulative distribution function of a normal distribution.  
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Figure 2.1 Construction of a Q-Q Plot 

• Calculate the corresponding Z scores of each quantile and store in a 

vector, named “locationx” 

• Plot each row of S against locationx 

7) When the STB is plotted, add the ordered conditional studentized residuals 

on it, then the Q-Q plot is completed. All the conditional studentized residuals outside 

the STB are regarded as potential outliers.  

8) While step 6 and 7 created a Q-Q plot with the STB and provided one of the 

two diagnosis criteria, this step is to create a residual plot with the STI. Plot the 

studentized conditional residuals vs. the predicted values and add the 95% STI 

horizontal lines, which are the minimum value of the 1st column in the s matrix and the 

maximum of the 138th column in the s matrix. Thus, the STI is created.  
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The above procedure is the detailed description on how the STB and STI plots 

were constructed and how to apply them. A series of comparisons and confirmation of 

this approach can be found in Appendix A.  

The STI and STB would vary with different numbers of simulations, especially 

for STI, which only depends on two data points. It is therefore necessary to examine 

the number of simulations required for the STI and STB to reach convergence. Figure 

2.2 describes the distribution of the upper and lower bound of the STI. The function of 

violin shape in the plot is the same as a histogram, and the wider part in a “violin” 

represents higher density. The distribution was obtained from 100 replications under 

each circumstance, from 10 simulations to 20000 simulations.  

Figure 2.3 and 2.4 are distributions of upper and lower bound of the STB, 

respectively. Those distributions are also from 100 replications under each case, 10, 

100, 1000, 10000 and 20000. Due to the limited space, not all the 138 data points’ 

distributions of the STB are shown.  Instead, only distributions of data points 1, 16, 

31, 41, 61, 76, 91, 106, 121 and 138 are presented in figure 2.3 and 2.4. Combining 

distribution of the STI and STB plots, 10000 simulations are required for them to be 

stable.  
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Figure 2.2 Distribution of upper and lower bound of the STI 
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Figure 2.3 Distribution of upper bound of the STB 

10 simulations 5000 simulations 

20000 simulations 1000 simulations 

10000 simulations 100 simulations Upper 
 
Bound 
  
Of 
  
STB 



 14 

 

Figure 2.4 Distribution of lower bound of the STB 
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Chapter 3 

EVALUATING THE PERFORMANCE OF THE SIMULATION APPROACH 

To examine the limitation of this approach and to avoid the misuse of it, the 

performance of this simulation approach has been evaluated. This section includes two 

parts: (1) evaluating the capability of detecting “extreme outliers”, and (2) evaluating 

the capability of detecting “true outliers”.  

“Extreme outliers” are data points that are obviously different from other 

points in the data set in terms of distribution. “True outliers” refer to the data points 

that are  away from the mean. They are not too obvious compared to 

the extreme outliers.  

The evaluating process is actually to insert one or a few obvious outlier(s) in 

the normal data set and see how frequent this approach can detect it (them). The 

simulated Cambridge data set was used for this purpose. It is generated from 

simulation based on the original Cambridge model and the fitted parameters G and R.  

3.1 Evaluating the Performance of Detecting Extreme Outliers 

As shown in chapter 1, the model to fit Cambridge filter data is: 
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or in the linear regression form as: 

 
where X is the design matrix for the fixed effects and Z is the design matrix for 

the random effects.  is a vector of fixed effects and b is a vector of random effects.  e 

is the random error term.  

From both R and SAS analysis results, the fitted  is 0.001686*

� 

I14 , also 

known as G, and the fitted  is 0.000770*

� 

I138 , also known as R. The simulated y can 

be calculated via the following equation: 

� 

ysim = Xβ + Zbsim + esim , 

where ~i.i.d. N (0,G) 

~i.i.d. N (0,R) 

From the simulation, we observe that the new response variables range from 

0.0536 to 1.2971. 

After the new data set simulated y is created, the model is refitted and new G 

and R parameters are generated, which are 0.00261492*

� 

I14  and 0.00079965*

� 

I138  

respectively. The new G and new R are used in the following calculations, which is 

quite similar to the procedures described in Chapter 1.  

(1) Calculate the P matrix, which equals to ,  

where 

� 

Q = V −1(I − H) , , , and 

 

(2) Calculate the predicted y, according to: 

 

where  and  
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(3) Calculate the conditional residuals by subtracting  from . 

(4) Studentize the conditional residuals according to: 

, where  is the k-th diagonal element of matrix P. 

(5) Create S matrix and conduct deletion algorithm. 

(6) Plot the 95% STI and STB 
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Figure  3.1 The 95% STI (left) and STB (right) for the simulated Cambridge data 
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The above plots show that all the simulated response variables, which are i.i.d. 

normally distributed, are located within the two bands. When one point in simulated y 

is changed to an obvious outlier, the STB plot changes dramatically. 

One example is when the 50th simulated y changes from 1.1356 to 3, the 

corresponding STB and STI look as below: 
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Figure 3.2 The STI (left) and STB (right) when the 50th simulated y changed to 3 

 

 

 

 

 

 
 



 21 

 
 
 
 
 

As is shown in the above two plots, the STI indeed detected the 50th simulated 

y as an outlier. However, there are too many points outside the STB, since the shape of 

the distribution of the data points in the STB plot changes greatly. 

The reason for this to happen is that even one obvious outlier point can 

dramatically change the fitted parameters, resulting in a significant change in the 

model. Thus, all the residuals are changed, and the locations of these points in the STB 

plot are all shifted. Since only one outlier will result in the significant change of the 

shape of the normal QQ plot, we cannot only rely on the STB plot to make judgment. 

Instead, the result of the STI should be combined with the STB result to tell whether a 

data point is an outlier or not. Only when a point is outside both the STB and STI, it 

can be regarded as an outlier. If it is merely outside the STB, the evidence is not 

sufficient to classify it as an outlier. 

Refer to the rule of identifying the residuals, “the points outside of both the 

STB and STI are regarded as residuals”, this method detects the obvious outlier 

successfully at this time.  

However, it does not happen all the time when there is more than one outlier.  

For example, when the 50th simulated y changes to 0.02 and 70th simulated y changes 

from 0.2279 to 0.02, it only detects the former point as shown in figure 3.3.  
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Figure 3.3 The STI (left) and STB (right) when the 50th simulated y changed to 0.02 
and 70th simulated y changed to 0.02 
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Different combinations of changed points have been used to test the 

performance of this approach. A summary table is provided to summarize the testing 

results. 

Table  3.1 Summary table for simulated Cambridge data testing result 

Data range 
(0.0536-
1.2971) 

Change in y The STI 
detected or not 

New G New R 

Y50->5 Yes 2.7485e-12*

� 

I14  0.11012*

� 

I138  
Y50->3 Yes 0.0024183*

� 

I14  0.0255921*

� 

I138  
Y50->2 Yes 0.0025236*

� 

I14  0.0060591*

� 

I138  

G: 
0.00261492 
R: 
0.00079965 Y50->1.5 Yes 0.0025762*

� 

I14  0.0017015*

� 

I138  
 Y50->2 

Y70->1.5 
Yes 0.0028887*

� 

I14  0.0183005*

� 

I138  

 Y50->3 
Y70->1.5 

Yes 0.0026145*

� 

I14  0.0379986*

� 

I138  

 Y50->0.02 
Y70->0.03 

Only Y50 was 
detected 

0.0026274*

� 

I14  0.0102201*

� 

I138  

 Y50->0.02 
Y130->0.02 

Only Y50 was 
detected 

0.002622*

� 

I14  0.010248*

� 

I138  

 Y70->0.02 
Y130->0.02 

Yes 0.0023627*

� 

I14  0.0013798*

� 

I138  

 
 

It can be seen in the above table that when there is only one outlier, G is 

decreasing while R is increasing when a certain point changes to a more extreme 

outlier. For example, when the 50th simulated y changes to 2, G becomes 0.0025*

� 

I14  
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and R becomes 0.006*

� 

I138 . When the same data points changes to 3, G decreases a 

little bit and becomes 0.0024*

� 

I14  and R increases to 0.026*

� 

I138 . When it changes to 5, 

G drops greatly to 2.75e-12*

� 

I14  and R increased to 0.11*

� 

I138 . Another thing worth 

mentioning is that when there is only one extreme value, the successful detection rate 

of this method is very high. 

When there are two outliers, similar pattern of the change in G and R can be 

found. For example, when simulated y70 is changes to 1.5, G is smaller and R is 

bigger when simulated y50 is 3 compared to simulated y50 equals to 2, which is a less 

obvious outlier. However, whether or not this method can detect both of the outliers is 

not easy to determine. It depends on how extreme the new value is and how different 

the new value is from the original value. For example, when y50 changes to 2 and y70 

changes to 1.5, this method detects both outliers successfully. It is also the case when 

y50 changes to 3 and y70 changes to 1.5. However, this method fails when y50 

changes to 0.02 and y70 changes to 0.03 or y130 changes to 0.02. In both cases, it 

only detects y50. This is because y50 changes from 1.136 to 0.02, which is a 

significant change. While for y70 or y130, they change from 0.228 or from 0.200 to 

0.02, which is less significant. When both y70 and y130 change to 0.02, this method 

works again. It is because they change from similar values to the same value, which is 

a more balanced variation. In a word, whether or not this method works depends on a 

lot of factors such as the number of extreme outliers and difference between the new 

outliers and the original values.  

All the above testing results are based on replacing data points with obvious 

outliers. Actually, those extreme outliers can be separated apart from the remaining 
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data set easily by visual inspection. And to detect those obvious outliers, we do not 

even need to depend on a certain approach or algorithm. 

Considering the significant impact of extreme values on the performance of 

this approach, we suggest the obvious outliers are eliminated before analyzing the real 

data set with this approach.  

3.2 Evaluating the Performance of Detecting True Outliers 

Begin with the same simulated Cambridge data set obtained in Section 3.1, 

one, two or three true outliers were inserted into the data set. The true outliers are 

generated from the steps below: 

1. One, two or three data point(s) are randomly selected from the 
simulated Cambridge data set. 

2. Add  to this (these) selected value(s) and update the 
response variable data set, where 

� 

σ b
2 = 0.00261492  and 

� 

σ e
2 = 0.00079965.They are obtained from the model fitting result with 

the simulated Cambridge data set. 

3. Apply simulation approach and record how many times those outliers 
are detected. 

The reason for adding is that since true outliers are referred 

the values that are  away from the mean, and there are some data 

points in the simulated Cambridge data set close to due to the 

nature of simulation, adding to any randomly selected numbers will 

guarantee that the new values would be at least away from the 

mean. From the preliminary testing (results not shown), when adding the number

, where s ranges from 3 to 6, to the randomly selected data points, 
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the successful detection rate increases with increased s and achieves 100% when s 

equals to 6. 

Below is a summary table for the successful detection rate when s is 6. 

Table 3.2 Successful detection rates out of 100 trials 

 

The above table shows that when there are one or two “true outliers”, this 

simulation approach can detect the outliers successfully. When there are three outliers, 

however, the detection fails 6 times out of 100. Each time, two outliers of those 6 

unsuccessful tests are identified, with only one outlier undetected. The possible reason 

for one outliers out of three being unidentified could be that this data point was -3 

standard deviations from the mean while the other two points were 3 standard 

deviations from the mean. After adding 6 standard deviations to the three numbers, 

one point becomes 3 standard deviations from the mean and the other two points are 9 

standard deviations from the mean. Therefore, the importance of the first outlier is 

“masked” by the other two outliers and thus unidentified.  

This table discloses another limitation of this approach - i.e., when the 

distances of the few outliers in the data set from the mean are different to a certain 

extend (e.g. 6 standard deviations), this approach sometimes only identifies the more 

extreme outliers. On solution could be that we apply this approach more than once. 

First, apply this approach to delete the identified outliers. Then, apply it again to check 

if there are more outliers.  
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Chapter 4 

ANALYSIS OF REAL DATA SET 

In the previous chapters, this method was used to analyze relatively simple 

data sets with simple mixed models. In this chapter, a more complex data set will be 

analyzed to evaluate the capability of this approach in dealing with a more 

complicated model. 

4.1 Data Description 

The data set used here is the yield data from a 2011 state trial. The explanatory 

variables in this data set include: environment factor, block, entry, maturity group and 

moisture level in grain. The response variable is the yield. The histogram of this data 

set is shown as below: 
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Figure 4.1 Histogram of the yield data 
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4.2 Model Fitting 

The model to fit the data is: 

� 

yieldijkg = u + maturityi + entry j + environmentk + environmentk *maturityi
+blockg (environmentk *maturityi),  

where i=1,2,3; j=1,2,3,…,23; k=1,2; g=1,2,3,4. 

Among those variables, environment and block are random variables. There 

are 432 observations in total. 

Since this is a more complex model, visualizing the design matrix is more 

difficult. A R package “RLRsim” is used to extract the design matrices for this model. 

The procedure to generate the STB and STI is the same except for the design matrices 

extraction step. The procedure includes: 

(1) Fit the model with R 

(2) Extract the design matrices with RLRsim package 

(3) Calculate conditional procedure and go through studentization 

(4) Apply the deletion algorithm and create the STI and STB 

4.3 Analysis Results 

The following table is a summary of fitting results of the model. The variances 

for block, interaction between environment and maturity and environment factors are 

45.89, 544.70 and 156.53 respectively. Residual variance is 365.43. Among the fixed 

effects, maturity group 2 has the highest estimated effect on the yield, which is 168.50, 

whereas maturity group 3 is with the lowest estimated effect on the yield. The three 

entries with highest estimated effects are entry 6, entry 5 and entry 14. The estimated 
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effect of entry 15 is only 0.629 smaller than that of 14, as a result, entry 15 is ranked 

the 4th highest. The three entries have the lowest estimated effects are: entry 20, entry 

2 and entry 21. 

Table 4.1 Summary table for the yield data analysis result 

Random effects estimates Variance Standard Deviation 
Block(Maturity*Environment) 45.893 6.7745 
Maturity*Environment 544.696 23.3387 
Environment 156.531 12.5112 
Residual 365.427 19.1161 
 
Fixed effects estimates Estimate  Std. Error t value 
Mat1 160.071 19.332 8.280 
Mat2 168.500 19.319 8.722 
Mat3 148.167 19.319 7.669 
Entry2 -0.875 5.518 -0.159 
Entry3 3.237 5.518 0.587 
Entry4 9.854 5.518 1.786 
Entry5 15.871 5.518 2.876 
Entry6 17.950 5.518 3.253 
Entry7 6.871 5.518 1.245 
Entry8 11.329 5.518 2.053 
Entry9 10.717 5.518 1.942 
Entry10 6.429 5.518 1.165 
Entry11 14.067 5.518 2.549 
Entry12 5.817 5.518 1.054 
Entry13 5.804 5.518 1.052 
Entry14 14.410 6.217 2.318 
Entry15 10.923 6.217 1.757 
Entry16 7.423 6.217 1.194 
Entry17 2.785 6.217 0.448 
Entry18 4.504 6.217 0.724 
Entry19 6.712 7.922 0.847 
Entry20 -2.776 7.922 -0.350 
Entry21 -0.588 7.922 -0.074 
Entry22 5.300 7.922 0.669 
Entry23 10.225 7.922 1.291 
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The STI and STB plots based on 1000 simulations are shown in Figure 4.2 and 

Figure 4.2. And the detected outliers by the STI and STB are points 392, 393, 409 and 

411.  All of them come from Environment 2, Maturity group 2 and block 4. They are 

entry 1, 2, 18 and 20. The range of this data is from 66.9 to 246.5. Point 393 happened 

to be the smallest number: 66.5 and values of the rest of these detected outliers are: 

72.5, 80.7 and 93.6. These detected outliers are the smallest 4 points in the data set. 

Therefore, it is valid to consider them as outliers. 
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Figure 4.2 The STI (left) and STB (right) of the yield data set 
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The STI and STB plots based on 10000 simulations are also created. However, 

because of their large sizes, they are not shown here. When the simulation number 

increased from 1000 to 10000, both the STI plot and STB plot become wider. As a 

result, in the first trial of this approach on the data set, only three data points are 

identified as outliers, which are the point 392, 393 and 409. Then the detected three 

outliers in the first step are deleted and the second trial has applied on the remaining 

data set. In the second trial the data point outstanding both the STI and STB is the 

point 411. Then this point is deleted and the third trial has applied, the result shows no 

outliers this time.  

In a sum, when the number of simulations is 1000 or 10000 the same four 

points are found as outliers. As the number of simulations increases, this approach 

tends to be more conservative in the first trial. However, after more than one trial have 

been applied on the data set, the same result is likely to achieve. 
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DISCUSSION 

A linear mixed model is a natural extension of the linear model. It has many 

advantages over the linear model and is widely used in agriculture science such as 

genomic selection in animal and plant breeding. Outlier detection is an important step 

in data analysis of linear mixed models. Despite the existence of formal outlier tests in 

linear models, there is no easy approach for outlier identification in linear mixed 

models. Analyzing outliers in linear mixed models is usually with the aid of the 

normal QQ plot and the residual plot. However, it inevitably involves a certain level of 

subjectivity. Schutzenmeister and Piepho proposed a simulation approach, that is, to 

add the 100(1-

� 

α )% STB and STI to normal QQ plot and residual plot. All the data 

points outside both the STB and STI are regarded as potential outliers. This method 

objectifies the interpretation of the analysis results.  

Based on Schutzenmeister and Piepho’s approach, an open-sourced statistical 

tool is developed to automatically identify potential outliers. This tool is convenient to 

use and can be made accessible to smallholder farmers in developing countries. It may 

also help inexperienced analysts obtain useful information with their limited time and 

budgets. 

The steps of the procedure of this approach includes: fit the data set to analyze 

with an appropriate model, simulate new response values and refit the model, obtain 

studentized conditional residuals, apply deletion algorithm, create the STI and STB 

and draw conclusions at the end. The correctness of the R code to realize each step is 

confirmed.  
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The distribution of the STI and STB was obtained by repeating the simulation 

steps 100 times. The results indicate that 10000 times of repetition is sufficient for 

simulation.  

Also, the performance of this approach has been evaluated, which discloses 

two disadvantages of the method. Firstly, it sometimes fails to detect extreme outliers, 

since the G and R parameters change dramatically with only one obvious outlier in 

data set. Due to the unstable performance of this approach in detecting obvious 

outliers, we suggest eliminate any extreme data from the data set before proceeding to 

use this method. Another disadvantage is that when there are multiple true outliers in 

the data set, the approach sometimes only detects the more extreme outliers and leaves 

the less obvious outliers unidentified. The solution could be to apply the method once, 

and identify a few outliers first, then discard those points and repeat this approach 

again and check if more outliers can be identified.   

To further apply this approach, one complex model with multiple random 

variables is used. The method successfully detects 4 potential outliers from the real 

data set and the result is satisfactory. 
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Appendix 

COMFIRMATION OF THE CORRECTNESS OF THE SIMULATION 
APPROACH 

In the thesis, a detailed description on how the STB and STI plots are 

constructed and how to apply them are discussed. A series of comparison and 

confirmation of this approach are presented in this appendix. The data set used for the 

purpose of comparison is the Cambridge filter data. Confirmation of model fitting, 

simulation and calculation with R code are achieved by comparing R results and SAS 

results. Confirmation of rank based deletion algorithm is through plotting the STBs on 

the same plot with R code and Schützenmeister and Piepho’s R code. Comparison of 

analysis results is accomplished by inspecting the final STI and STB plots obtained by 

R code and the figures available in Schützenmeister and Piepho’s paper.  

A.1 Confirmation of the R Code with SAS Result 

Before proceeding to rank-based deletion algorithm, there are some data 

processing steps: the model has to be fit, the ‘m’ matrix has to be created through 

simulations and studentization has to be applied on the conditional residuals. This 

section is to confirm whether those three steps in R code are correct or not. 

A.1.1 Model Fitting-Fixed and Random Effects by R & SAS 

Model fitting generates fixed-effects parameters and random-effects 

parameters. The table below shows model fitting results from R and SAS. Lme4 

package in R is used in the model fitting process and Mixed Procedure is used in SAS. 
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As shown in Table 1, all the estimated 10 levels of fixed effects by R are the same as 

that by SAS. Also, all of them have the same standard errors and t values. In addition, 

Table 1 shows the consistence between the random effects estimates by R and SAS. 

Parameter G from both methods is 0.001686 and parameter R from both methods is 

0.000770. 

Table A.1 Model fitting comparison 

 Results from R Results from SAS 
Lab 0.00168611 0.001686 Random 

effects 
estimates 

Residual 0.00077025 0.000770 

 Estimate  Std. 
Error 

t value Estimate  Std. 
Error 

t value 

Sample1 0.16250 0.01325 12.27 0.1625 0.01325 12.27 
Sample2 0.18429 0.01325 13.91 0.1843 0.01325 13.91 
Sample3 0.35886 0.01325 27.09 0.3589 0.01325 27.09 
Sample4 0.39907 0.01325 30.13 0.3991 0.01325 30.13 
Sample5 0.64464 0.01325 48.67 0.6446 0.01325 48.67 
Sample6 0.67036 0.01325 50.61 0.6704 0.01325 50.61 
Sample7 0.95150 0.01325 71.83 0.9515 0.01325 71.83 
Sample8 0.91336 0.01325 68.95 0.9134 0.01325 68.95 
Sample9 1.21805 0.01342 90.74 1.2181 0.01342 90.74 

Fixed effects 
estimates 

Sample10 1.16244 0.01342 86.60 1.1624 0.01342 86.60 
 
 

A.1.2 Comparison of Simulation Results 

The ‘m’ matrix is obtained by simulating new responses according to the fitted 

model, followed by refitting the model with the simulated new response. The 

effectiveness of this step in R code can be confirmed by comparing the refitted model 

parameters from R and SAS. Firstly, new responses are simulated with R. Then the 

same set of simulated data is used for refitting the model by R and SAS respectively. 
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According to Table 2, the refitted models by R and SAS have the same estimated fixed 

effects and random effects. Parameter G from both methods is 0.001263 and 

parameter R from both methods is 0.000797. Ten levels of fixed effects also have the 

same estimates, standard errors and t values. 

Table A.2 Comparison of simulation results 

 Results from R Results from SAS 
Lab 0.00126343 0.001263 Random 

effects 
estimates 

Residual 0.00079682 0.000797 

 Estimate  Std. 
Error 

t value Estimate  Std. 
Error 

t value 

Sample1 0.15771 0.01213 13.00 0.1577 0.01213 13.00 
Sample2 0.17665 0.01213 14.56 0.1767 0.01213 14.56 
Sample3 0.34862 0.01213 28.74 0.3486 0.01213 28.74 
Sample4 0.39270 0.01213 32.37 0.3927 0.01213 32.37 
Sample5 0.63849 0.01213 52.64 0.6385 0.01213 52.64 
Sample6 0.65707 0.01213 54.17 0.6571 0.01213 54.17 
Sample7 0.93710 0.01213 77.26 0.9371 0.01213 77.26 
Sample8 0.90736 0.01213 74.81 0.9074 0.01213 74.81 
Sample9 1.21045 0.01233 98.17 1.2104 0.01233 98.17 

Fixed effects 
estimates 

Sample10 1.16923 0.01233 94.83 1.1692 0.01233 94.83 
 

A.1.3 Comparison of Calculations 

Another key step in R code is to calculate predicted response value, conditional 

residuals and studentized conditional residuals, for construction of the STB and STI 

and residual diagnostics are all based on conditional studentized residuals. 

Studentization process is a relatively complex step, for it involves calculating matrix 

“P”, which equals to “RQR”, Hat matrix, Design matrixes and variance of y. Table 3 

indicates there are slight differences between the results from R and SAS. For 
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predicted y values, R and SAS results are the same until their millionths decimal 

places. For conditional residuals, they also begin to differ after their millionths 

decimal places. However, after studentization, they began to differ from ten-

thousandths decimal places. These differences are within an acceptable range, and 

could be resulted from aggregations in error. 

Table A.3 Comparisons of predicted response value, conditional residuals and 
studentized conditional residuals 

Predicted Y Conditional Residuals Studentized Residuals 
From SAS From R From SAS From R From SAS From R 
0.1794206099 0.17942082 -0.01842061 -0.01842082 -0.72493511 -0.724462149 
0.2012063242 0.20120654 -0.009206324 -0.009206539 -0.362310893 -0.362078743 
0.3757777527 0.37577797 -0.002777753 -0.002777968 -0.109317254 -0.109253111 
0.4159920385 0.41599225 0.0010079615 0.001007747 0.0396678892 0.039633095 
0.661563467 0.66156368 0.001436533 0.001436318 0.0565341318 0.056488137 
0.6872777527 0.68727797 0.0047222473 0.004722032 0.1858419919 0.185710127 
0.9684206099 0.96842082 -0.01642061 -0.01642082 -0.646225978 -0.645805286 
0.9302777527 0.93027797 -0.012277753 -0.01227797 -0.483185632 -0.482873212 
1.2349746009 1.23497479 0.0530253991 0.05302521 2.0928326718 2.091440941 

 

Through the above 3 steps of confirmation,  we are confident that the 

‘m’matrix has been correctly built 
 
 

A.2 Confirmation of the Correctness of Rank-based Deletion Algorithm 

After ‘m’ matrix is created, all the values in each row of m will be ordered 

from smallest to largest and each ordered statistics would become a row in s matrix.  A 

rank based deletion algorithm is then to apply on ‘s’. It is also an essential step in that 

the remaining rows in the ‘s’ matrix after deletion would form the STB and STI. The 
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R code segment of this deletion algorithm is obtained from Schützenmeister and 

Piepho. Beginning with the same s matrix, deletion algorithms of the R code in this 

work and Schützenmeister and Piepho’s R code are applied respectively. The STB is 

obtained by the R code in this work and Schützenmeister and Piepho’s R code are 

plotted in the figure (Figure 1) below. The former STB is in light grey color while the 

latter is in red. This figure shows the red points are in a good match with the 

boundaries of the light-grey bands. It verifies the deletion approach in the R code is 

consistent with Schützenmeister and Piepho’s algorithm. 

 

Figure A.1 Confirmation of deletion algorithm: red points are obtained by 
Schützenmeister and Piepho’s R code, light grey bands are obtained by R code, black 
squares are conditional studentized residuals. 
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A.3 Comparison of Analysis Results 

Following deletion algorithm is the analysis result. The outlier diagnosis is 

composed of two parts: locate all the potential outliers by the STB and find out all the 

potential outliers by the STI. If the data points are outside both the STB and STI, they 

will then be regarded as outliers. Since the same data set is used, and the confirmed R 

code is adopted, it’s reasonable to assume that the diagnosis results should  match that 

available in Schützenmeister and Piepho’s paper. The following sections compare the 

STB results and the STI results respectively.  

A.3.1 Comparison of Analysis Results from the STB 

As shown in Figure 2, these two QQ-plots of studentized conditional residuals 

of Cambridge data sets look quite similar, with the same shape and trend. Table 4 is a 

summary of all the outlying points in figure 2 (a). It shows that points 129, 130, 118 

and 31 are outside the STB in (a), which is in consistence with the result in Figure 2 

(b). Also, as is shown in Figure 2 (b), points 137, 138 and 117 are within the bands, 

and these points are not outlying points in figure 2 (a). Both Figure 2 and Table 4 

provide evidence that STB analysis is consistent with that of Schützenmeister and 

Piepho’s result. 
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Figure A.2 QQ-plot of studentized conditional residuals of Cambridge filter data: (a) 
Left is generated by the R code and (b) the right is from Schützenmeister and Piepho’s 
paper 
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Table A.4 Detected outlying points by the R code 

 
 

A.3.2 Comparison of Analysis Results from the STI 

In Figure 3 (a), the upper bound of the STI is 3.989 and the lower bound is -

4.350. There is no data point outside this interval. Since only if a point is outside both 

the STB and STI, it is regarded as an outlier, the R code fails to detect any outliers. 

However, Schützenmeister and Piepho’s interval is narrower (Figure 3 (a)), with a 

value between 3 and 4 as the upper bound and a value between -3 and -4 as the lower 

bound. Points 31, 117, 118 and 138 are outside this interval. Referring to Figure 2 (b), 

the only data points outside both the STB and STI is point 118 and it is classified as 

outliers by Schützenmeister and Piepho. 
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Figure A.3 Residual-plot of studentized conditional residuals of Cambridge filter data: 
(a) Left is generated by the R code and (b) the right is from Schützenmeister and 
Piepho’s paper 
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Actually, there are some details not valid in Schützenmeister and Piepho’ 

figure, unless they make some adjustment of their STI, which is not mentioned in their 

paper. Recalling that the STB is formed by all the ordered statistics in S matrix after 

the deletion algorithm, if we draw all the number as light-grey points in a QQ plot by 

rows in ‘s’, all the points that have the same x-axis position are from the same column 

of S. Therefore, it is obvious to identify from the STB plot which is the minimum 

number in the first column of S-the lowest light grey points at the very left of the STB. 

Also, the maximum number in the last column of S should be the highest light grey 

points at the right margin of the STB. Those two points happen to be the lower and 

upper bound of the STI, respectively. Therefore, there should be a match in the STB 

and STI, as shown in Figure 4. The STB plot indicates the minimum value of the first 

column of s matrix should be a value smaller than -4, however, the lower bound of the 

STI is between -4 and -3. In addition, the maximum value of the last column of s 

matrix should be a value greater than 4 according to the STB plot. But the STI’s upper 

bound is obviously smaller than 4. That is the reason why it is so narrow and can 

successfully detect some outliers. The contradiction in these two plots reveals possible 

mistakes in Schützenmeister and Piepho’s paper. An approach to fix them should 

exist. Otherwise, no outliers will be detected according to their method. 
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Figure A.4 Contradiction in the STB and STI in Schützenmeister and Piepho’s figure 

 

 

 

 

 

 

 

 

 

 

 


