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ABSTRACT

This thesis is the first step toward the goal of modeling centrifugal breakout

from massive stars while including realistic magnetic reconnection physics. We use a

plasma-physics based approach to analyze the magnetic reconnection which occurs

in a stellar magnetosphere during centrifugal breakout. We modify a magentohy-

drodynamic code and test it by simulating an Alfvén wave and a Rayleigh-Taylor

instabilities. The properties of the wave and the growth rate of the instability are

derived in order to confirm the code’s accuracy in the benchmarking. After this,

a simple model of centrifugal breakout is developed which incorporates centrifugal

force, gravity, and magnetic tension. Local density sources which imitate the ac-

cumulation of mass during centrifugal breakout are found to be a viable cause of

magnetic reconnection.

viii



Chapter 1

INTRODUCTION

In space plasmas, there are many examples of magnetic phenomena, such as

solar flares, coronal mass ejections, and Earth’s aurora. These events are believed

to be powered by the release of magnetic energy through a process called “magnetic

reconnection”. One particular event that could be driven by reconnection is X-ray

flares. In flares on the Sun, regions with very large magnetic fields suddenly emit

very strong X-rays for minutes at a time and plasma can be seen blasting away

from the Sun. There have also been X-ray flares observed in stars such as σ Ori

E [5], which is a very hot star that lacks the convection zone thought to drive the

magnetic activity of cooler stars like the Sun. However, σ Ori E has an observed

dipole magnetic field that is very strong and large. Because of this, it is unclear how

its magnetic field lines can develop the small scales needed to undergo reconnection.

One possible cause of the X-ray flares in σ Ori E or other massive magnetic stars

is centrifugal breakout. A better understanding of magnetic reconnection in the

context of centrifugal breakout would help us better understand the physical pro-

cesses that lead to observed X-ray flares. Previous work in centrifugal breakout has

been done by ud-Doula and Owocki [2], but the code used to model the breakout

was based on an ideal magnetohydrodynamic (MHD) formalism that ignored some

complex behavior of plasmas, including processes that could heat material through

the dissipation of energy. Magnetic reconnection in their code was actually enabled

by a numerical effect caused by the finite spatial grid resolution. The ultimate goal
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of this work is to model centrifugal breakout from massive stars while including

realistic magnetic reconnection physics. In this thesis, we take the first steps toward

that goal, benchmarking a basic MHD code with waves and basic interchange insta-

bilities similar to centrifugal breakout, and finally simulating breakout reconnection

caused by local density sources.

1.1 Basic Magnetohydrodynamics

Ideally, a large-scale simulation with a very small grid scale incorporating the

star, its magnetic field, and the outflow of mass off the stellar surface would be used

to study centrifugal breakout. However, including realistic reconnection physics in

such a code is too expensive in terms of computational power and time. Thus, one

goal in this study is to examine centrifugal breakout in a small, simple system that is

able to capture key elements while still incorporating enough plasma physics to allow

an accurate representation of reconnection. In order to better understand large-scale

plasmas like those found in stars, we use a Magnetohydrodynamic (MHD) model, a

combination of fluid mechanics and electromagnetism.

1.1.1 Key Assumptions of MHD

The MHD model involves a few assumptions and simplifications in order to

make large-scale simulations possible. One of these assumptions is that the plasma

acts as a single fluid. Although the plasma is comprised of individual electrons

and positively-charged ions, they are strongly coupled so that the plasma acts as a

electrically neutral fluid. Additionally, we assume that the model is being applied on

length scales much larger than the collisional mean free path, which is the average

distance a particle travels in the plasma before colliding into another particle. We

also assume the simulation length scales are much larger than other plasma length

scales like the Debye length and the Larmor radius. The Debye length is the scale

over which the charge of an ion within the plasma is canceled out locally by nearby
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electrons, while the Larmor radius is the radius of the circular motion of a charged

particle in the presence of a magnetic field. During conditions found in stellar

atmospheres, these length scales are on the order of a few meters. This is much

smaller than the model length scales defined by stellar radii of millions of kilometers.

We also apply the model on time scales much larger than the mean collision time,

the time it takes for a particle to collide with another particle. These assumptions

of large spatial and time lengths allows us to treat the plasma as a single fluid, since

we do not have to model each specific interaction between the particles. Finally,

in the plasma, the free electrons are able to very effectively carry electric current,

resulting in a very high conductivity. In a particular MHD model known as “ideal

MHD”, the conductivity of the plasma is assumed to be infinite.

1.1.2 Magnetic Induction vs. Diffusion

Since plasmas are comprised of electrons and positively-charged ions, their

behavior is affected by electric and magnetic fields. The set of equations representing

the change of an electric field E and a magnetic field B are known as Maxwell’s

equations:

∇ · E = 4πρc (1.1)

∇× E = −1

c

∂B

∂t
(1.2)

∇ ·B = 0 (1.3)

∇×B =
4π

c
J +

1

c

∂E

∂t
(1.4)

In basic MHD, we assume that there is no net macroscopic charge density, so ρc = 0.

We also assume that the Maxwell displacement current is negligible (∂E
∂t
→ 0), giving

J = c
4π
∇×B, where J is the current density. The electric field is modeled in terms

of a general Ohm’s law:

E =
−v
c
×B +

1

σ
J , (1.5)
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where σ is the conductivity of the plasma and v is the flow velocity of the plasma.

If we apply eq. (1.5) to (1.4) and take the curl of the resultant equation to apply in

(1.2), after using some vector identities, we get the equation

∂B

∂t
= ∇× (v ×B) +

c2

4σ
∇2B (1.6)

The first term of the right hand side represents the effect of magnetic induction

while the second term represents the effect of magnetic diffusion. The ratio between

the two effects can be described with the magnetic Reynolds number:

Rm ≈
4πσLv

c2
, (1.7)

where L represents the characteristic length scale for the gradient in the magnetic

field. In the stellar atmosphere, this length scale is on the order of the stellar

radius. A characteristic value for v in the stellar atmosphere can range from the

sound speed, 20 km/s, to the stellar escape speed, 600 km/s. Partially due to the

high plasma conductivity σ ≈ 1010 s−1, the magnetic Reynolds number is usually

of order Rm ≈ 1010. This means that the effect of diffusion on the magnetic field

can be ignored in these situations. This is especially true in ideal MHD, where the

plasma is assumed to have an effectively infinite conductivity.

1.1.3 Frozen-In Magnetic Field Lines

In ideal MHD, the assumption of infinite conductivity in the plasma leads to

a condition known as “frozen-in” magnetic field lines. If the conductivity is taken

to be infinite, the magnetic Reynolds number (1.7) is also infinite. This means that

the effects of diffusion can be ignored, so (1.6) can be simplified to:

∂B

∂t
= ∇× (v ×B) (1.8)

Using equations (1.3), (1.8), and the divergence and Stokes’ theorems from vector

calculus, we can show that the net magnetic flux through any surface S, Φ =
∫
S B ·
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dA, does not change with time, i.e. dΦ/dt = 0. This is Alfvén’s frozen flux theorem,

which states that the motion of the plasma is fastened to the magnetic field lines

and that the magnetic flux through a surface moving with a perfectly conducting

plasma is conserved [7]. A result of this theorem is that each parcel of plasma is

confined to its local magnetic field line. It cannot ever move to a different field

line. Also, if the energy density of the plasma is greater than the magnetic field, the

flow of the plasma can force the magnetic field lines to move. Alternatively, if the

magnetic field has a greater energy density, the field lines can stay where they are

and channel the plasma flow. One important thing to remember about the frozen

flux theorem is that it only holds for very large values of the magnetic Reynolds

number, that is, it only works when the magnetic diffusion is negligible compared

to the induction.

1.1.4 Magnetic Tension and Pressure

The force of the magnetic field line on the plasma can be quantified by the

Lorentz force:

FB =
J×B

c
=

(∇×B)×B

4π
=

B · ∇B

4π
−∇(

B2

8π
) , (1.9)

where the second equality comes from equation (1.4) with the MHD assumption that

∂E
∂t
→ 0. The third equality uses vector identities to arrive at two separate force

terms, the first a result of magnetic tension and the other the result of magnetic

pressure. Magnetic tension is a force that acts to straighten curved magnetic field

lines, similar to the force that acts to restore a stretched rubber band to its non-

stretched state. Due to the frozen-in condition, as the plasma moves, the magnetic

field lines move with the plasma. This can result in the bending of the magnetic field

lines; as the curvature of the field lines increases, the magnetic tension increases.

The magnetic pressure is similar to air pressure, except the energy is carried by the

magnetic field rather than the motion of particles. When many magnetic field lines
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Figure 1.1: The process of magnetic reconnection. The magnetic field lines at
the top and bottom of the figure move toward the middle, where they
break and reconnect. The reconnected lines move outwards, to the
left and right.

are close together, they have more magnetic pressure than a smaller amount of field

lines close together. This is analogous to a greater density of air having a higher

pressure than a lower density of air. Another important property of the magnetic

pressure is that it only acts perpendicular to the magnetic field lines. This causes

the magnetic pressure to be anisotropic, in contrast to isotropic pressure in air. In

a plasma that has frozen-in magnetic field lines, the magnetic pressure opposes the

compression of field lines due to plasma motion.

1.2 Magnetic Reconnection

In plasmas, the frozen flux theorem governs the motions of the plasma and

the magnetic field lines. However, in the course of plasma flow, it is possible that

two separate regions of plasmas could flow towards each other. As the separate

flows come together, the magnetic field lines also come together. This compression

of magnetic field lines reduces the length scale for the gradient in the magnetic field,
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L (from eq. (1.7)). When the field lines are compressed enough, L becomes so

small that the magnetic Reynolds number approaches 1. As a result, diffusion is no

longer negligible, and the frozen flux theorem is no longer applicable. This leads

to the breaking of the magnetic field lines, which are then arranged into different

domains. This is a process known as “magnetic reconnection”, illustrated in Figure

1.1. In this simple reconnection, the plasma flows from the top and the bottom

compress the magnetic field lines in the center where they break. They reconnect

into different domains and flow out the sides. One consequence of reconnection is the

mixing of previously distinct regions of plasma. Because the magnetic field lines are

“frozen into” the plasma, their topology prevents plasma in different regions from

mixing. However, during reconnection, plasma from different areas mix together

as the magnetic domains change. Another consequence of reconnection is that the

magnetic energy stored in the tension of the field lines is released when they break.

This influx of energy into the plasma heats it up. As the plasma cools, it gives off

energy, such as X-ray flares, that we can observe.

1.3 Centrifugal Breakout

Reconnection occurs when the frozen-in field lines are compressed to such

small length scales that the effect of magnetic diffusion can no longer be ignored.

However, in stars such as σ Ori E, the magnetic field is so strong that the magnetic

field lines are rigid and highly resistant to compression that would result in recon-

nection. However, we know that reconnection is occurring in σ Ori E, since we have

observed X-ray flares emanating from the star [5]. So what causes the field lines

to reconnect? One theory states that centrifugal breakout is the mechanism which

drives reconnection in these highly magnetic stars, like σ Ori E.
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1.3.1 Magnetic Confinement Parameter

In order to discuss centrifugal breakout, we must first understand some im-

portant concepts. One of these is the wind magnetic confinement parameter, η∗, as

defined by ud-Doula and Owocki [4]. This dimensionless parameter describes the

result of the interaction between the stellar wind and magnetic field tension. The

stellar wind is comprised of particles flowing away from the surface of the star. In

hot stars, like σ Ori E, the radiation pressure of the light is what causes the outflow

of plasma from the star. If the stellar magnetic field has a higher energy density

than the stellar wind, the plasma will be channeled along the magnetic field lines

and be unable to escape into space. On the other hand, if the stellar wind has a

higher energy density, the magnetic field lines will be unable to contain the stellar

wind. To derive this parameter, we start with the ratio between the energy densities

of the stellar magnetic field and the wind outflow:

η ≡ B2/8π

ρv2/2
, (1.10)

where B∗ and R∗ are the surface magnetic field and radius of the star, respectively.

For convenience, we can rewrite the wind energy density in terms of a spherically

symmetric wind-loss rate Ṁ = 4πr2ρv:

η ≈ B2r2

Ṁv
(1.11)

Finally, we wish to characterize the radial variation of outflow velocity in terms

of a velocity law. Using the terminal wind velocity v∞, the velocity is given by

v(r) = v∞(1−R∗/r). Additionally, we wish to model the magnetic field as a dipole.

This results in B(r) = B∗(R∗/r)
q, where q = 3 for a dipole. Putting these terms for

the velocity and magnetic field in 1.11 yields:

η(r) =
B2
∗R

2
∗

Ṁv∞

(r/R∗)
2−2q

1−R∗/r
(1.12)

In looking at (1.12), we notice that the spatial variations are confined to the right

fraction. As a result, the left fraction is a dimensionless parameter that characterizes

8



the relative strength of the magnetic field versus the wind outflow. Thus we have a

wind magnetic confinement parameter

η∗ ≡
B2
∗R

2
∗

Ṁv∞
. (1.13)

From η∗, we see that magnetic confinement of stellar wind depends on both the

magnetic field strength and the mass-loss rate of stars.

1.3.2 Alfvén and Keplerian Radii

Other important parameters to consider are the Alfvén radius and the Kep-

lerian radius. The Alfvén radius, RA is the distance at which the energy densities

of the magnetic field and the stellar wind are equal. Another way to consider the

Alfvén radius is that it represents the maximum radius of a closed magnetic field

line loop emanating from the surface of the star. A loop with r > RA will result in

the stellar wind overwhelming the magnetic field strength. To quantify the Alfvén

radius, we can use the wind magnetic confinement parameter since it is the ratio

of magnetic field energy density to stellar wind energy density. For simplicity, we

ignore the wind velocity variation, taking v(r) = v∞. Setting (1.13) to equal one

and solving for the radius yields the Alfvén radius:

RA = η1/4
∗ R∗. (1.14)

For r < RA, we expect the magnetic field to dominate the stellar wind and prevent

the plasma from flowing into space. The star’s gravity will then pull the plasma back

towards the surface. However, as part of the centrifugal breakout model, we assume

that the plasma is confined in a rigidly rotating magnetosphere (RRM), which will

be discussed in a later section. Essentially, the RRM causes the plasma to rotate at

the same angular speed as the star, so the rotational velocity of the plasma is given

by v = Ωr, where Ω is the angular velocity of the star and r is the plasma’s distance

from the star. This results in a centrifugal force away from the star on the plasma.
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Thus, there are three major forces on the plasma: gravity, centrifugal force, and

the magnetic field tension. For r < RA, the magnetic field tension dominates the

other forces and prevents the plasma from escaping. However, due to the centrifugal

force, not all plasma confined by the magnetic field will fall back to the star. There

is a point a certain distance away from the star before which plasma will fall back

to the star and after which the centrifugal force will push the plasma away from

the star. We can thus define this as the Keplerian radius, the distance at which the

centrifugal force on the plasma balances out the gravitational force from the star.

Quantifying this equlibrium, we have

v2

RK

=
GM∗
R2
K

, (1.15)

where G is the gravitational constant, M∗ is the mass of the star, and v is the

rotational speed of the plamsa. Using the rotational period P , we can write the

velocity at the Keplerian radius as v = 2πRK/P , where the left part of the fraction

represents the distance traveled by the plasma in one rotational period. Substituting

this for v in (1.15) and solving for the Keplerian radius yields:

RK = 3

√√√√GM∗P 2

(2π)2
(1.16)

1.3.3 Rigidly Rotating Magnetosphere Model

Townsend and Owocki (2005) developed a Rigidly Rotating Magnetosphere

(RRM) model to explain hydrogen emission in hot stars with strong magnetic fields

[3]. In these stars, the large magnetic field leads to a large magnetic confinement

(η∗ >> 1). Since the magnetic confinement is so large, the field lines out from

the star are essentially rigid, i.e. they are fixed in place with respect to the stellar

surface. This means that any outflow of plasma from the stellar surface will be

confined by the field lines. Because of this confinement, the orbital speed of the

plasma is directly related to the rotation rate of the star, i.e. vφ = Ωr, where Ω

10



Figure 1.2: A simulated rigidly rotating magnetosphere [8]. The logarithm of the
radial distribution of mass is plotted versus time and radius (in units
of stellar radius). The darker areas indicate a higher concentration of
mass. The Alfvén radius (RA) is indicated by the solid line and the
Keplerian radius (RK) is indicated by the dashed line. Note the high
concentration of mass near the Keplerian radius.

is the rotation rate of the star. Consequently, the centrifugal force is greater at a

larger distance from the star. Any plasma confined along the magnetic field lines

at a distance r < Rk will fall back to the surface due to the gravitational force

overwhelming the centrifugal force. However, any plasma outside the Keplerian

radius will not fall back, since the increased centrifugal force farther away from the

star balances or exceeds the gravitational force pulling the plasma back towards the

star. However, as long as the magnetic confinement remains large, RA > Rk. In the

region Rk < r < RA, the tension in the field lines will balance the net gravitational-

centrifugal force on the plasma. The plasma then stays at equilibrium, but will

continue to accumulate due to the stellar wind. This results in a magnetosphere

rotating rigidly with the star at radius r, where RK < r < RA. An illustration of a

RRM is shown in Figure 1.2. There is a very high concentration of mass near the

Keplerian radius, since that is where the centrifugal and gravitational forces on the

11



Figure 1.3: The progression of centrifugal breakout[2]. The leftmost picture shows
the stretching of the magnetic field line into a thin loop, causing re-
connection (middle). The heating caused by the breakout of stellar
mass occurs on the right.

plasma are at equilibrium. Between RK and RA, the tension in the magnetic field

lines acts to balance out the net gravitational-centrifugal force. This confines the

plasma in a rigidly rotating magnetosphere.

1.3.4 Centrifugal Breakout

The plasma within a star’s RRM is at equilibrium, but plasma will continue to

flow off the surface and accumulate in the magnetosphere over time. Since centrifugal

force is directly proportional to mass, this accumulation of plasma will cause an

increase in the centrifugal force. However, the magnetic field declines as a factor

of 1/r3 (eq. 1.12) and its energy density declines as a factor of 1/r6. This decline

of the magnetic field strength coupled with the increase of centrifugal force allows

the plasma’s energy density to overwhelm the magnetic field energy density. As a

result, the mass of plasma moves away from the star and drags the frozen-in field

lines with them. This results in a stretching of the field lines since the magnetic

tension opposes this outward movement, much like the tension in a rubber band

opposes the force stretching it out. When the plasma moves far enough out, the

field lines are forced close enough together to start the reconnection process. They

break and reconnect, resulting in a breakout of mass. This process is shown in

Figure 1.3. The energy released during reconnection results in the heating of the

12



Figure 1.4: The X-ray light curve of σ Ori E, as measured by Sanz-Forcada et al.
[5] The peak in the graph is an X-ray flare, which is possibly caused
by centrifugal breakout as theorized by ud-Doula and Owocki [2]

plasma. It is theorized that this heating of the plasma results in the emission of

X-ray flares [2], like those seen in the star σ Ori E (Figure 1.4).

We can estimate the characteristic time scale for centrifugal breakout, i.e.

how often breakout occurs. First, we consider the breakout condition in the simple

case of an aligned dipole field. The breakout condition occurs when the magnetic

tension in the field lines is roughly equal to the combined gravitational and centrifu-

gal forces. Expressed quantitatively, the condition is:

ρb(Ω
2r − GM∗

r2
) ≈ B2

4πhm
, (1.17)

where ρb represents a breakout value for the peak density at at radius r within

the equatorial plane and hm is the curvature radius of the tensed magnetic field

lines. The left term in the parentheses represents the centrifugal force while the

right term represents the gravitational force. The right hand side of the equation

is the force arising from magnetic tension. When the density in the RRM reaches

ρb, breakout occurs. Townsend and Owocki [3] defined a characteristic breakout
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Figure 1.5: Plots of the logarithm of the radial distribution of mass versus time
and radius (in units of stellar radius). The darker areas indicate a
higher concentration of mass. W represents the rotational speed of
the star, and η∗ represents the magnetic confinement parameter. For
higher values of eta∗, there are less occurrences of centrifugal breakout,
represented by the white spaces.

time tb = σb/σ̇m, where σb is the characteristic surface density of plasma in the

magnetosphere required for breakout and σ̇m is the surface density accumulation

rate:

σb =
B2
∗ξ

4
∗

4πg∗

√
π

ξ4(ξ3 − 1)
(1.18)

σ̇m = µ∗
η3
∗
η3

Ṁ

2πR2
∗
, (1.19)

where ξ = R/Rk is a scaling of the local radius, ξ∗ = R∗/Rk is a scaling of the

stellar radius, and µ∗ is the molecular weight of the stellar material. Noting that

stellar gravity can be expressed in terms of the surface escape speed and free-fall

time, g∗ = vesc/2tff , we can express the ratio of breakout to free-fall time as:

tb
tff

= η∗
π

µ∗

ξ∗
ξ(ξ3 − 1)

(1.20)

We thus see that breakout time is dependent on the magnetic confinement param-

eter η∗ (eq. 1.13) and the distance from the star (ξ). When the magnetic field

is stronger, breakout occurs less frequently. This principle is illustrated in Figure

1.5. The white areas of the plots represent regions of centrifugal breakout. The

plasma, after breaking out, has vacated these regions, leading to a lower density. As

the magnetic confinement increases, these regions become less frequent, indicating

that the breakout time is higher. For plasma farther away from the star, breakout
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occurs more frequently than for plasma closer to the star. This is illustrated in Fig.

1.2. The breakout regions that begin closer to the star happen less frequently than

the regions that begin farther away from the star, indicating that breakout time is

larger for distances closer to the star. Using values corresponding to σ Ori E for the

parameters in (1.20), we can simplify the breakout time equation as a function of

scale distance from the star ξ:

tb(ξ) ≈ 250 yr
12.5

ξ(ξ3 − 1)
. (1.21)

Using this equation, the breakout time for the plasma a distance of 2RK (ξ = 2) from

the star is estimated to be about 220 years. This indicates that the full breakout

of material is a relatively frequent occurrence over the billions-of-years lifetime of a

star, but rare during a human lifetime. However, for plasma on the outer edge of

the RRM farther away from the star (ξ ≈ 13), the breakout time can be as small

as a few weeks. This indicates that small-scale breakouts are much more common;

these breakouts could be the cause of the X-ray flares we observe on stars like σ Ori

E.
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Chapter 2

THE SIMULATION CODE

The simulation code was based on a program written by Adil Hassam [1] and

modified to incorporate our model.

2.1 Magnetohydrodynamic Equations

The model uses the magnetohydrodynamic (MHD) equations in order to

incorporate the physics of plasmas within it. The equations consist of a density

equation, a force equation, and a magnetic field equation, where n represents the

density, g is the acceleration due to gravity, p is the pressure, Jp is the mass flow

and u is the flow velocity, with Jp = nu. The equations are then normalized so that

all variables become dimensionless. This creates a generalized simulation that can

represent many actual physical situations, including centrifugal breakout. These

equations are:
∂~̄n

∂t̄
+ ~̄∇ · ~̄Jp = 0 (2.1)

∂J̄p
∂t̄

+ ~̄∇ · (~̄u ~̄Jp) = ~̄J × ~̄B − ~̄∇p̄− n̄ḡx̂ (2.2)

∂ ~̄B

∂t̄
= ~̄∇× ~̄u× ~̄B, (2.3)

Throughout the rest of this paper, all equations are normalized, though the variables

appear without a bar. The model is two-dimensional in the x̂ and ẑ directions

with ŷ out of the page. We separate the magnetic field into planar (x̂ and ẑ) and

transverse (ŷ) components. The magnetic field in the plane of the box is represented
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by the equation ŷ × ~∇ψ, where ψ is a scalar field. The transverse magnetic field

is represented by: ~By = By0 ŷ. The equations (2.1), (2.2), and (2.3) are simplified

using the conventions for the magnetic field and then rearranged to obtain the time

derivatives of all variables in terms of their spatial derivatives. In addition, the

pressure is written as p = nT , where T is the temperature. The final equations are:

∂n

∂t
= −∂Jpx

∂x
− ∂Jpz

∂z
(2.4)

∂ψ

∂t
= −(ux

∂ψ

∂x
+ uz

∂ψ

∂z
) (2.5)

∂By

∂t
= (

∂uy
∂x

∂ψ

∂z
− ∂uy

∂z

∂ψ

∂x
)− ∂

∂x
(uxBy)−

∂

∂z
(uzBy) (2.6)

∂Jpz
∂t

= − ∂

∂x
(uxJpz)−

∂

∂z
(uzJpz)−

∂ψ

∂z
(
∂2ψ

∂x2
+
∂2ψ

∂z2
)− ∂

∂z

B2
y

2
− ∂

∂z
(nT )(2.7)

∂Jpy
∂t

= − ∂

∂x
(uxJpy)−

∂

∂z
(uzJpy)− (

∂By

∂z

∂ψ

∂x
− ∂By

∂x

∂ψ

∂z
) (2.8)

∂Jpx
∂t

= − ∂

∂x
(uxJpx)−

∂

∂z
(uzJpx)−

∂ψ

∂x
(
∂2ψ

∂x2
+
∂2ψ

∂z2
)− ∂

∂x

B2
y

2
− ∂

∂x
(nT )−ng (2.9)

Another MHD equation in addition to the ones above is the adiabatic equation of

state for an ideal gas:
∂

∂t
(
p

nγ
) = 0 , (2.10)

where γ = 5/3. In addition to the MHD equations listed above, we also take into

account the diffusion of the plasma. To incorporate the diffusion effect, we use the

ability of Fick’s second law to predict how the diffusion causes the concentration

field to change over time:
∂θ

∂t
= D∇2θ , (2.11)

where θ represents the parameter (n, Jpx, etc.) and D is the diffusion coefficient.

The right side of (2.11) is added to each of the MHD equations to incorporate

diffusion.
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2.2 Alfvén Wave

One of the benchmarks we used to test the code is an Alfvén wave. An Alfvén

wave is a oscillation of the magnetic field lines similar to the vibration of a plucked

guitar string. In an Alfvén wave, the magnetic field (Bz) and the mass flow velocity

(uz) should oscillate sinusoidally, both 180◦ out of phase with respect to each other.

The propagation of the Alfvén wave is shown in Figure 2.1. We can derive the Alfvén

wave perturbation by linearizing equations (2.1), (2.2), and (2.3) using n = n0 + ñ,

u = u0 + ũ, and B = B0 + B̃. To simplify this theoretical derivation, we will ignore

the effects of diffusion. For an Alfvén wave, there is no density perturbation, so

ñ = 0. There is no initial flow velocity (u0 = 0) and the flow perturbation is only in

the ẑ direction, so u = ũz. There is no transverse magnetic field and the magnetic

field perturbation is only in the ẑ direction, so B = Bx0x̂+ B̃z ẑ. Since we use ψ to

represent the planar magnetic field, we define ψ = ψ0 + ψ̃ = Bx0z + ψ̃ so that we

get our desired B from B = ŷ × ∇ψ. Additionally, there is no gravitational force,

so g = 0. Finally, we remember Jp = nu, so that when linearized, Jp = n0ũ. Taking

all these considerations and applying them to (2.2) and (2.3) yields:

n0
∂ũz
∂t

= ∇2ψ̃ ∇ψ0 (2.12)

∂ψ̃

∂t
= ũz

∂

∂z
ψ0 (2.13)

Now, since the perturbations have the form ñ(x)ei(kz−ωt), ũ(x)ei(kz−ωt), and ψ̃(x)ei(kz−ωt)

we can Fourier decompose along ẑ. This has the effect of replacing all ∂
∂z

with ik

and all ∂
∂t

with −iω. Additionally, because we defined ψ0 = Bx0z, we can take

∂
∂z
ψ0 = Bx0. After Fourier decomposing, we get the equations:

iωn0ũz = −k2Bx0ψ̃ (2.14)

−iωψ̃ = ũzBx0 (2.15)
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Figure 2.1: The propagation of the Alfvén wave. The arrow indicates the direction
of propagation.

Solving (2.15) in terms of ψ̃ and substituting in (2.14) allows us to solve for the

dispersion relation, ω:

ω =
kBx0√
n

(2.16)

In order to implement the Alfvén wave in the code, we have to define the variables

according to our methodology above. Based on our definition for ψ above, we get

Bx = Bx0 and Bz = ikBz0e
ikx. The real part of Bz is kBz0 sin(kx). We can use

this definition of Bz in (2.15) to get uz = −ku0 sin(kx). Thus, we use the initial

conditions:

uz = −ku0sin(kx)

Bz = kB0sin(kx)

k = 2π

Bx = 1

n = 1

Since Bx and Bz are obtained from ψ, we define ψ = z+B0cos(kx), which gives us

the desired Bx and Bz values. The boundary conditions of the simulation are set to
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Figure 2.2: The period of the simulated Alfvén wave. The black line is the sim-
ulated Alfvén wave. The horizontal orange line represents the initial
value of uz at t = 0 and the vertical red line represents t = 1. The
point at which the orange and red lines intersect is the predicted value
for uz after one period. Since the black line also intersects at this point,
the computational period of the wave matches the predicted period.

periodic in both the x̂ and ẑ directions. This means that if the wave goes out of one

side of the box, it will come in the opposite side. In order to check the accuracy of

the simulated Alfvén wave, we need to verify that the theoretical ω of the wave is

consistent with the experimental ω. The angular frequency of the wave (eq. 2.16)

is ω = kBx0/
√
n0 = k = 2π, since Bx0 and n0 are both set to 1. The theoretical

frequency of the wave is thus f = ω/2π = 2π/2π = 1. This means that the predicted

period of the wave is 1/f = 1 We can check the frequency of our simulated Alfvén

wave by plotting the value of uz at a point in the box against time. This plot is

shown in Figure 2.2. Since the value of uz at t = 0 matches the value of uz at t = 1,

we see that the theoretical period of the wave matches the computational period of

the wave.

In the above derivation of the dispersion function, we ignored the effects of

diffusion (eq. 2.11). Because our code implements diffusion, this has the effect of

damping the wave over time. As a result, the dispersion relation changes from (2.16)
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Figure 2.3: The damping of the Alfvén wave. The red line represents the function
0.006e−0.05t.

to:

ω = kBx0/
√
n0 + iDk2 , (2.17)

where D is a constant indicating the strength of the diffusion. As a result of the

added diffusion term, there is an additional damping factor e−i(iDk
2)t = e−ωDt, where

ωD = Dk2. As a result, uz and Bz now have the forms:

uz = −ku0sin(kx)e−ωDt

Bz = kB0sin(kx)e−ωDt

Over time, the wave is damped by a factor e−ωDt. In our simulation, D = 1.26×10−3,

so ωD = Dk2 = 1.26 × 10−3(2π)2 ≈ 0.05. As a result, the wave should be damped

by the factor e−0.05t. In order to confirm this, we plot uz over many periods and

fit an exponential function to the peaks of the graph. As shown in Figure 2.3, the

exponential function 0.006e−0.05t = 0.006e−ωDt accurately describes the damping

of the Alfvén wave. We see that the predicted damping of the wave matches the

computational damping of the wave.
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Chapter 3

RAYLEIGH-TAYLOR INSTABLILTY

3.1 Rayleigh-Taylor Equilibrium

A Rayleigh-Taylor equilibrium arises between two fluids with different densi-

ties superimposed on top of each other in a gravitational field. Although the bottom

fluid has a lower density, it has a higher temperature than the top fluid. This pre-

vents the top fluid from breaking through the interface between the two fluids and

causes the system to remain at equilibrium. An illustration of the Rayleigh-Taylor

equilibrium is shown in Figure 3.1. Letting P represent the pressure, n the density,

and g the gravitational acceleration, we quantify the equilibrium as:

∇P = ∇(nT ) = −ng (3.1)

In order to approximate a constant temperature in the two regions as well as the

sharp decrease in temperature across the interface, the functional form of T is set

to be:

T = 0.5(T2 − T1)[tanh(
x− x0

w0

) + 1] + T1 , (3.2)

where x0 represents the location of the interface within the box and w0 represents

the width of the interface. In order to find the density which satisfies the Rayleigh-

Taylor equilibrium, we must solve for density in eq. 3.1, substituing (3.2) for the

temperature. Since gravity acts only in the x̂ direction, all derivatives of the pressure

in the ŷ and ẑ are equal to zero. This results in the equation:

n =
n0e

−gpx
T2T1

p+ q tanh(x−x0

w0
)
[q sinh(

x− x0

w0

) + p cosh(
x− x0

w0

)]
w0gq

T2T1 , (3.3)
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Figure 3.1: 2-D plots of the density and temperature during a Rayleigh-Taylor
equilibrium. Gravity acts in the -x̂ direction, towards the left of the
box. Note that the dark area represents a lower value of the density
or temperature.

where p = 0.5(T2 + T1) and q = 0.5(T2 − T1). Figure 3.2 shows the density and

temperature across the simulation box.

3.2 Normal Rayleigh-Taylor Instability

From the MHD code, a model incorporating the Rayleigh-Taylor instability

was devised. The instability results from a perturbation in the Rayleigh-Taylor

equilibrium causing the upper fluid to break through the interface and cross over

into the lower fluid. An example of this instability in action is shown in Figure

3.3. The model was divided into two separate parts: one incorporating a magnetic

field perpendicular to the instability and one without an external magnetic field. In

order to simplify our theoretical derivation of the growth rate of the instability, we

assume that the density and temperature in both regions is constant and that there

is a discontinuous jump across the interface between the regions.
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Figure 3.2: 1-D cuts of the density and temperature across the simulation box at
t = 0.

3.2.1 Theoretical Derivation of Growth Rate

In evaluating the instability without an external magnetic field, we start with

the equations:
∂n

∂t
+ u · ∇n+ n∇ · u = 0 (3.4)

mn
∂u

∂t
+mnu · u = −∇p−mng (3.5)

∂

∂t
(
p

nγ
) + u · ∇ p

nγ
(3.6)

We then linearize the equations using assuming small perturbations such that n =

n0 + ñ, u = u0 + ũ, etc. Assuming that u0 = 0 and throwing away the second-order

terms (ũñ, etc.) results in the equations:

∂ñ

∂t
+ ũx

∂n0

∂x
+ n0∇ · ũ (3.7)

mn0
∂ũ

∂t
= −∇p̃−mñg (3.8)

∂

∂t
(p̃− γp0

n0

ñ) + p0ũxS
′
0 (3.9)

where S ′0 = ∂
∂x

ln p0
nγ0

and the prime indicates ∂/∂x. We wish to generalize (3.8)

above, so we evaluate the term ŷ · ∇× (3.8), resulting in:

∂

∂t
[n0(

∂ũz
∂x
− ∂ũx

∂z
) +

∂n0

∂x
ũz] = g

∂ñ

∂z
(3.10)
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Figure 3.3: The evolution of a Rayleigh-Taylor instability over time. Note the
movement of the higher density (white) into the low-density area
(black).

We assume that the Rayleigh-Taylor instability occurs on timescales much longer

than those of the sound wave, which then requires p̃ = 0. As a result, we can

simplify (3.9) to:

−γ ∂ñ
∂t

+ noũxS
′
0 = 0 (3.11)

Now, since we say the variables have the form n(x) = n0(x) + ñ(x)ei(kz−ωt), etc., we

can Fourier decompose along ẑ. This has the effect of replacing all ∂
∂z

with ik and

all ∂
∂t

with −iω. Doing so results in the equations:

−iωñ+ ũx
∂n0

∂x
+ n0

∂ũx
∂t

+ ikn0ũz = 0 (3.12)

ω[(ũzn0)
′ − ikn0ũx] = −kgñ (3.13)

We can also use the Fourier decomposition of equation 3.11 to solve for ñ:

ñ =
−n0ũxS

′
0

iωγ
(3.14)

Plugging (3.14) into (3.12) and (3.13) gives us:

n0ũxS
′
0

γ
+ (ũxn0)

′ = −ikn0ũz (3.15)

ik(ũzn0)
′ + k2n0ũx =

k2g

γω2
n0ũxS

′
0 (3.16)
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Substituting (3.15) into (3.16) yields the final eigenvalue equation:

[
n0ũxS

′
0

γ
− (ũxn0)

′]′ + k2n0ũx =
k2g

γω2
n0ũxS

′
0 (3.17)

Now, we wish to find the functional form for ũx. In considering our model,

we note that far away from the interface, S ′0 ≈ 0 and n′0 ≈ 0. Using these approxi-

mations in (3.17) and simplifying results in:

ũx
′′ = k2ũx (3.18)

This implies that ũx ∝ Ce±kx. Now, since we have an equation for ũx, we can

implement this perturbation in the simulation code. However, there also exist per-

turbations of the density (ñ), temperature (T̃ ) and the flow velocity in ẑ (ũz). The

density perturbation is given by (3.14). To solve for the temperature perturbation,

we remember the assumption used in (3.11) that there are no sound waves, namely

that p̃ = 0. Since p = nT , p̃ = ñT0 + n0T̃ after throwing away second order terms.

In order for p̃ to be equal to zero, we have:

T̃ =
−ñT0

n0

(3.19)

To find ũz, we also use the assumption that there are no sound waves. As a result,

there is no compression of the flow velocity, so ∇ · ~u = 0. Fourier decomposition of

this equation and solving for ũz results in:

ũz =
−ũx′

ik
(3.20)

We also know that ũx has to be continuous at the interface. So, we can

integrate (3.17) across the interface, that is, evaluate
∫ +ε
−ε (3.17)dx , where ε is in-

finitesimally small. Because the integral is over a very, very tiny length, all of the

finite integrands will each result in adding zero to the final answer. Before we eval-

uate the integral, we can use an approximation for S ′0 = ∂
∂x

ln p0
nγ0

. Evaluating the

derivative and simplifying yields:

S ′0 =
p′

p
− γn′

n
(3.21)
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If p′/p << n′/n, then we can use the approximation S ′0 ≈ γn′0/n0. Using this

approximation in the integral and evaluating results in:

[−n0ũ′x]
+
− =

−k2g

ω2
ũx[n0]

+
− (3.22)

In order to evaluate this equation, we remember that ũx is proportional to e−kx

when x > 0 and e+kx when x < 0. Additionally, each side of the interface has a

different density. Let n2 designate the density in the region x > 0 which lies on top

of the lower density, n1. Thus, (3.22) can be written as:

−n2(−k)ũx − (−n1)kũx = −k
2g

ω2
ũx(n2 − n1) (3.23)

Solving this equation for ω results in:

ω = ±i
√
kg
n2 − n1

n2 + n1

(3.24)

Since ω is imaginary, we define the imaginary part of ω as:

γ =

√
kg
n2 − n1

n2 + n1

(3.25)

Since the time evolution of the instability is represented by e−iωt, the negative value

of ω results in a decay factor e−γt while the positive value of ω results in a growth

factor eγt. Thus, γ is the growth rate of the Rayleigh-Taylor instability.

Now, we must verify our assumption that the Rayleigh-Taylor instability

occurs on timescales much longer than those of the sound wave. We thus define

τRT as the timescale for the instability and τs as the sound wave timescale. Since

τRT represents the length of time it takes for the instability to grow, we can say

that τRT ∝ 1/γ. The time it takes for the sound speed to propagate across the

instability is τs = L/Cs, where L is the length of the instability and Cs is the sound

speed. However, the length is proportional to the wave number, so L ∝ 1/k, giving

us τs ∝ 1/kCs. As a result, the ratio of timescales is:

τs
τRT

=
γ

kCs
=

√
kg n2−n1

n2+n1

kCs
(3.26)
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Figure 3.4: A 2-D plot of ux at t = 2.5 and a 1-D cut of ux across simulation box.
The cut of ux was taken across the black line in the 2-D plot. The
maximum value of the plot was used to help find the growth rate.

Squaring both sides and cancelling out like terms yields:

(
τs
τRT

)2 =
g n2−n1

n2+n1

kC2
s

(3.27)

Now, since (n2 − n1)/(n2 + n1) is always less than 1 and Cs ≈ 1, the upper limit

on the ratio of timescales can be expressed as
√
g/k. In our simulations, g = 0.1

and k = 2π, giving us a ratio τs/τRT ≈ .126 < 1. Because this is an upper limit, we

can conclude that the timescale for the Rayleigh-Taylor instability does occur on

timescales much longer than those of the sound wave. Thus, our assumption that

p̃ ≈ 0 is correct.

3.2.2 Computational Growth Rate in Simulation

The full equation for ux is:

ux = u0e
+kxeikze−iωt , x < x0

= u0e
−kxeikze−iωt , x > x0 , (3.28)

where x0 is half the length of the simulation box. When we plug (3.25) into (3.28),

we get the equation:

ux(t) = ũ0e

√
kg

n2−n1
n2+n1

t
(3.29)
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Figure 3.5: A logarithmic plot of the maximum values of ux at each time interval,
the slope of which is the computational growth rate.

where ũ0 = u0e
±kxeikz. In order to approximate the growth rate from the simula-

tions, we can take the natural log of ux(t) to get the equation

ln(ux) = ln(ũ0) +

√
kg
n2 − n1

n2 + n1

t (3.30)

Note that (3.30) is linear with respect to t. This means that we can take a cut across

the simulation box and get the maximum value of ux at each time interval. Plotting

the natural log of these ux values versus time will result in a graph with a linear slope.

Figures 3.4 and 3.5 illustrate our methodology for finding the computational growth

rate. The value of this slope should be equal to
√
kg n2−n1

n2+n1
, i.e. the growth rate.

However, our implementation of the Rayleigh-Taylor instability in the simulation

code (Figure 3.1) does not exactly match some theoretical assumptions we made

during the derivation of the growth rate. In theory, we assume that the density

and temperature in both regions is constant and that there is a discontinuous jump

across the interface between the regions. In order for the code to run smoothly, we

had to implement a pressure equilibrium using hyperbolic tangent functions and not

a sharp interface between the two regions. Additionally, the density required for an

initial equilibrium (eq. 3.3) is not constant in both regions like we assumed. Finally,
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Figure 3.6: Theoretical versus the computational growth rate for B = 0.

the theoretical form of ux (eq. 3.28) has a discontinuous derivative at the interface.

In the code, we smoothed over this sharp point so that the simulation could run

smoothly. As a result of these differences, we do not expect the calculated theoretical

growth rates to exactly match the computational growth rates. We do expect to

see a roughly linear relationship between the theoretical and observed growth rates.

Any change in the density that causes a change in the theoretical growth rate (eq.

3.25) should also cause a similar, proportional change in the computational growth

rate.

The computational growth rates and the values we used to calculate the

theoretical growth rates are listed in Table 3.1. Figure 3.6 shows the plot of expected

growth rate versus simulated growth rates for various values of n1, n2, T1, and T2.

We see that there is a reasonable agreement between theory and computation.

3.3 Rayleigh-Taylor Instability in Presence of Horizontal Magnetic Field

3.3.1 Theoretical Derivation of Growth Rate

Now, we wish to evaluate the instablilty in the presence of a external magnetic

field in the ẑ direction. Like above, we start with equations 3.4 and 3.6. However,

we also need to add terms for the magnetic field pressure and tension to (3.5) as
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Table 3.1: A list of initial values for the temperatures and densities used to calcu-
late the growth rate in the case B = 0. In the simulation, k = 2π and
g = 0.1.

T1 T2 n1 n2 γtheory γcomp
3 1 1.85 4.3 0.5003 0.4204
3 1 2.5 5.8 0.4998 0.4595
3 2 2.6 3.35 0.2814 0.2476
3 2 2 2.5 0.2642 0.2145
4 2 1.95 3.35 0.4074 0.288
4 2 1.45 2.5 0.4087 0.256
4 3 2 2.45 0.252 0.169
4 3 1.5 1.77 0.2278 0.1385

well as add an equation for the evolution of the magnetic field:

mn
∂u

∂t
+mnu · u = −∇p−mng − ∇B

2

8π
+
B · ∇B

4π
(3.31)

∂B

∂t
= ∇× (u×B) (3.32)

As before, we linearize these equations using n = n0 + ñ, etc., assume u0 = 0, and

throw away second order terms. This will result in equations 3.7, 3.9, and:

mn0
∂ũ

∂t
= −∇p̃−mñgx̂+

B0z

4πm

∂

∂z
(B̃x + B̃z) (3.33)

∂B̃x

∂t
= B0z

∂ũx
∂z

(3.34)

∂B̃z

∂t
= B0z

∂ũz
∂z

(3.35)

Generalizing (3.33) results in:

∂

∂t
[n0(

∂ũz
∂x
− ∂ũx

∂z
)− ∂n0

∂x
ũz] = g

∂ñ

∂z
− B0z

4π
[
∂2

∂z2
B̃x −

∂2

∂z∂x
B̃z] (3.36)

As before, we assume no sound wave behavior, so we can simplify (3.9) to (3.11).

Now, we decompose the equations along ẑ. (3.12) will be the same, but (3.34),

(3.35), and (3.36) will simplify to:

ω[(ũzn0)
′ − ikn0ũx] = −kgñ+

B0z

4πm
(ik2B̃x − kB̃z

′
) (3.37)
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B̃x =
−B0zk

ω
ũx (3.38)

B̃z =
−B0zk

ω
ũz (3.39)

We then plug in the equation for ñ, (3.14), into (3.37) to get:

ik(ũzn0)
′ + k2n0ũx =

k2g

γω2
n0ũxS

′
0 −

B0z

4πmω
(k3B̃x + ik2B̃z

′
) (3.40)

Now, we plug in equations 3.15, 3.38, and 3.39 into (3.40), yielding:

[
n0ũxS

′
0

γ
− (ũxn0)

′]′ + k2n0ũx =
k2g

γω2
n0ũxS

′
0 +

B2
0zk

2

4πmω2
(k2ũx + ikũz

′) (3.41)

In order to get rid of ũz
′, we have to rewrite (3.15) in terms of ũz

′:

[
ũxS

′
0

γ
+

(ũxn0)
′

n0

]′ = −ikũz ′ (3.42)

Plugging in (3.42) into (3.41) gives us the final eigenvalue equation:

[
n0ũxS

′
0

γ
− (ũxn0)

′]′ + k2n0ũx =
k2g

γω2
n0ũxS

′
0 +

B2
0zk

2

4πmω2
(k2ũx + [− ũxS

′
0

γ
− (ũxn0)

′

n0

]′)

(3.43)

As before, we wish to find the functional form of ũx. Using the approximations

S ′0 ≈ 0 and n′0 ≈ 0, we get:

ũx
′′ − k2ũx =

−B2
0zk

2

4πmn0ω2
(k2ũx − ũx′′) (3.44)

Note that the square of the Alfvén speed is C2
A =

B2
0z

4πmn0
, so we can simplify eq. 3.44

to:

ũx
′′(1− C2

Ak
2

ω2
) = ũxk

2(1− C2
Ak

2

ω2
) (3.45)

Canceling out like terms results in eq. 3.18 which was obtained from evaluating the

instability with no external magnetic field. As a result, ũx has the same form as

above, i.e. ũx = u0e
±kxeikze−iωt. Like before, there exist perturbations in the den-

sity, the temperature, and uz, given by equations 3.14, 3.19, and 3.20, respectively.

However, due to the addition of the magnetic field, there are also perturbations in
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Figure 3.7: Theoretical versus the observed growth rate for T1 = 4, T2 = 2,
n1 = 1.95, n2 = 3.35 and various values of B0 from 0.01 to 0.07.

Bx and Bz. These perturbations are given by (3.38) and (3.39), respectively. How-

ever, since the magnetic field is governed by ψ, we must introduce a perturbation

in ψ that will result in the required B̃x and B̃z:

ψ̃ =
−B0z

ω
ũx (3.46)

Now, since ũx has to be continuous at the interface, we can integrate the eigenvalue

equation (3.43) across the interface. So, like above, we will evaluate
∫ +ε
−ε (3.43)dx ,

with ε being infinitesimally small. Remembering that the finite integrands will not

contribute anything to the integral and that S ′0 ≈ γn′0/n0, the integral evaluates to:

[−n0ũ′x]
+
− =

−k2g

ω2
ũx[n0]

+
− +

B2
0zk

2

4πmω2
[−ũx′]+− (3.47)

As before, we remember that ũx ∝ e−kx for x > 0 and ekx for x < 0. Additionally,

n2 is the density for the region x > 0 and n1 is the density for the region x < 0.

After evaluating (3.47), the result is:

n2kũx + n1kũx = −k
2g

ω2
ũx(n2 − n1) +

B2
0zk

2

4πmω2
(2kũx) (3.48)

Solving for ω results in:

ω = ±i

√√√√kg
n2 − n1

n2 + n1

− B2
0zk

2

2πm(n2 + n1)
(3.49)
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Table 3.2: A list of initial values for the magnetic field strength used to calculate
the growth rate in the case B > 0. In the simulation, n1 = 1.95,
n2 = 3.35, T1 = 4, T2 = 2, k = 2π and g = 0.1.

B0 γtheory γcomp
0.01 0.4056 0.2859
0.02 0.40015 0.2765
0.03 0.3906 0.2603
0.04 0.377 0.2364
0.05 0.3588 0.2025
0.06 0.3352 0.1583
0.07 0.3049 0.1009

Notice that this equation has not been normalized. Normalizing (3.49) results in:

ω = ±i

√√√√kg
n2 − n1

n2 + n1

− 2B2
0zk

2

(n2 + n1)
(3.50)

Similar to above, we define γ as the imaginary part of ω. This results in the growth

rate:

γ =

√√√√kg
n2 − n1

n2 + n1

− 2B2
0zk

2

(n2 + n1)
(3.51)

An interesting result of (3.50) is that for B0 sufficiently large, the term in the radical

becomes negative, and we can factor out a imaginary number. As a result, both

the imaginary numbers cancel out and ω becomes real. The time evolution of the

instability can thus be expressed by eiγt, indicating an oscillation of the instability.

The physical meaning of this is that if the magnetic field is too strong, it will confine

the Rayleigh-Taylor instability. The result of this confinement is the oscillation of

the magnetic field lines, an Alfvén wave.
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3.3.2 Computational Growth Rate in Simulation

In order to measure the growth rate in the simulation, we can use ux(t) =

ũ0e

√
kg

n2−n1
n2+n1

−
2B2

0z
k2

(n2+n1) . Taking the natural log of ux(t) results in the linear equation:

ln(ux) = ln(ũ0) +

√√√√kg
n2 − n1

n2 + n1

− 2B2
0zk

2

(n2 + n1)
t (3.52)

We use the same method as above to calculate the computational growth rate (Fig-

ures 3.4 and 3.5). Table 3.2 lists the values used to calculate the theoretical growth

rate. Much like above, our implementation of the Rayleigh-Taylor instability in the

simulation code does not exactly match some theoretical assumptions we made dur-

ing the derivation of the growth rate. As a result, our calculated theoretical values

for the growth rate do not exactly match our computational values for the growth

rate, though we still expect to see a rough linear relationship between theory and

observation. Figure 3.7 shows the plot of expected growth rate versus simulated

growth rates for values of B0 from 0.01 to 0.08 with T1 = 4, T2 = 2, n1 = 1.95,

and n2 = 3.35. There is a clear linear relationship between theory and observation,

which is what we expect to see.
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Chapter 4

THE CENTRIFUGAL BREAKOUT MODEL

4.1 Modifying the Code

Since the code has passed all of its benchmarks, we can now modify it to

simulate centrifugal breakout. Two major changes to the code are needed: a source

that gradually adds density to the simulation box over time and the introduction of

a centrifugal force acting upon the plasma. In order to add a source for the density,

we simply add a source term, δn, to the density equation (2.4):

∂n

∂t
= −∂Jpx

∂x
− ∂Jpz

∂z
+ δn (4.1)

Since we wish to add density in a particular location within the box, i.e. the center,

and not anywhere else, we give δn the functional form:

δn = s0e
−(x−x0)2/w0e−(z−z0)2/w0 , (4.2)

where s0 controls the amount of density the source is pouring into the simulation

and w0 determines the width of the source. This has the effect of adding density to

a circular location in the center of the simulation box. Figure 4.1 shows a picture

of the difference between the density after one hundred time steps and the initial

density. The source can clearly be seen in the center of the box. One side effect of

this density source is the unintentional addition of a pressure source. The addition

of δn results in a change to the pressure equation:

pi + δp = (ni + δn)T , (4.3)
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Figure 4.1: This figure shows the difference between the density after 100 time
steps (t = 0.4) and the initial density (t = 0), as well as the the
difference between the temperature after 100 time steps (t = 0.4) and
the initial temperature (t = 0). Note that δT is the opposite of δn,
which is to be expected since there is no pressure source/sink (i.e.
δp = 0.

where the subscript i indicates the time step. Since p = nT , (4.3) simplifies to

δp = δn/T . We do not want the addition of a pressure source, i.e. δp has to equal

zero. If we set δp = 0 and introduce a temperature source such that T = Ti + δT in

(4.3), solving for δT results in the equation:

δT =
−δnTi
ni + δn

(4.4)

In order to implement this within the code, we took the adiabatic term from (2.10)

and added a source δ(p/nγ):

p

nγ
+ δ(

p

nγ
) =

pi + δp

(ni + δn)γ
(4.5)

Using δp = 0 and solving for δ(p/nγ) results in:

δ(
p

nγ
) =

pi
(ni + δn)γ

− p

nγ
(4.6)

Adding this source to (2.10) results in a temperature sink that effectively nullifies

the increase in pressure caused by the density source. This sink is seen in Figure
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Figure 4.2: This figure shows the initial pressure of the implemented equilibrium
for centrifugal breakout.

4.1. Another necessary addition to the code is the modification of the gravitational

force found in eq. 2.9 into a combined gravitational-centrifugal force. To do so,

we remember that the rigidly rotating magnetosphere discussed in Section 1.3.3

around the star results in a centrifugal force Fc = mΩ2r. As a result, the total

gravitational-centrifugal acceleration can be represented by:

a = g1
x− x0

Lx
, (4.7)

where g1 represents the strength of the combined forces, Lx represents the length of

the box, and x0 represents the Keplerian radius (eq. 1.16) so that at x = x0, the

centrifugal force cancels out the gravitational force. Substituting this for the normal

gravitational acceleration g in 2.9 results in:

∂Jpx
∂t

= − ∂

∂x
(uxJpx)−

∂

∂z
(uzJpx)−

∂ψ

∂x
(
∂2ψ

∂x2
+
∂2ψ

∂z2
)− ∂

∂x

B2
y

2
− ∂

∂x
(nT )−ng1

x− x0

Lx
(4.8)

4.2 The Model

Since we changed eqs. 2.4, 2.10, and 2.9 to eqs. 4.1, 4.5, and 4.8, we need to

change our equilibrium from (3.1) to:

∇p = ∇(nT ) = −mng1
(x− x0)

Lx
x̂ (4.9)
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Figure 4.3: This figure shows the initial magnetic field lines at t = 0 for Bz = 0.01

However, unlike the Rayleigh-Taylor equilibrium, we take the temperature to be

constant. We do this since the plasma in the rigidly rotating magnetosphere is

roughly at the same temperature throughout. With T as constant, we can solve for

the density:

n = e
g1
T

x−x0
Lx (4.10)

Figure 4.2 shows the initial pressure in this equilibrium. This figure is expected

given the force term (4.7), since the density has a tendency to flow from a high

pressure to a low pressure region. This difference in pressure is countered by the

gravitational-centrifugal force. In order to approximate the magnetic field loops of

the star, we first consider the size of the loops. For a star with moderate magnetic

confinement, η∗ ≈ 500 − 600, and for a star with large magnetic confinement, like

σ Ori E, η∗ ≈ 107 [2]. Using (1.14), we get a value for the Alfvén radius between

5 and 56 times the stellar radius. Since RA, the maximum radius for a magnetic

field loop from the star, is so large, we can say that the magnetic field at the top of

the field loop is approximately perpendicular to the gravitational-centrifugal force.

Because of this, our simulation incorporates a magnetic field perpendicular to the

force, i.e. in the ẑ direction, as seen in Figure 4.3.
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Figure 4.4: This figure shows the progression of reconnection between t = 69.2
and t = 71.2. Note the configuration of the magnetic field lines in
an X in the upper right hand figure, at t = 70. This is a result of
reconnection. The initial magnetic field was Bz = 0.01.

4.3 Simulations of Magnetic Reconnection from Centrifugal Breakout

After setting the initial conditions, the simulation is run for many, many

time steps. Eventually, the buildup of mass in the center of the box causes a large

increase in the gravitational-centrifugal force, pushing the mass out towards the

edges of the box. The mass drags the field lines along with it, forcing reconnection.

Figure 4.4 shows the progression of the magnetic field lines toward reconnection.

Remembering that in simple reconnection (Figure 1.1), the plasma flows towards

the X-line from the top and bottom and away from the X-line on the left and the

right, we can see in Fig. 4.4 the movement of the magnetic field lines towards the X-

line prior to reconnection and then moving away from the X-line afterwards. This

confirms that there is reconnection occurring in the simulation, though it is of a

more complex form than depicted in Fig. 1.1. Note that due to the nature of the

combined gravitational-centrifugal force implemented in the simulation, there are

actually two regions in which the magnetic field is being stretched, one to the left of

x0, and one to the right. Interestingly, the onset of reconnection occurs much faster

in the region x > x0 than for x < x0.

Another point of interest for these centrifugal breakout simulations is the

characteristic breakout time, tb ∝ η∗ (eq. 1.20). For higher levels of magnetic
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Figure 4.5: This figure shows the magnetic field lines at t = 57.2 and b0 = 0.01.
Note that the magnetic field lines are undergoing reconnection as ev-
idenced by the X-line present in the figure.

confinement, the breakout time should be longer. This was tested by running simu-

lations for different values of b0 and comparing the magnetic field lines at a particular

time, t = 57.2. This time was chosen since this was the first occurrence of recon-

nection for the b0 = 0.01 case. Figures 4.5, 4.6, and 4.7 show the magnetic field

lines for b0 = 0.01, b0 = 0.02, and b0 = 0.05, respectively. From these pictures, we

see that the b0 = 0.01 case is undergoing reconnection while the b0 = 0.02 case will

experience reconnection in the near future. For b0 = 0.05, the magnetic confinement

is so strong that the density source has barely made a dent in the field lines. We can

thus conclude that there is a positive correlation between b0 and the characteristic

breakout time.

4.4 Future Work

The work presented in this chapter is a very solid base with which to investi-

gate reconnection occurring as a result of centrifugal breakout. However, there are

still some issues. One issue is a problem with the boundary conditions. Ideally, the

boundary condition for Jpx would be extrapolating, meaning that if the mass was on

its way out of the simulation box, it would continue to flow out of the box. Likewise,

if the mass on the edge of the box was flowing towards the center, then mass on the
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Figure 4.6: This figure shows the magnetic field lines at t = 57.2 and b0 = 0.02.
Note that the magnetic field lines have not yet undergone reconnection
as in the b0 = 0.01 case.

“outside” would flow into the box. However, there is some issue with the boundary

conditions, which has the effect of causing the entire contents of the box to float off

to the right and out of the simulation. This effect is seen in Figure 4.8. In order to

remedy this problem, we set the boundary conditions for Jpx to be asymmetric and

made the box longer. Since the box is longer, the field lines undergoing reconnection

are not pressed up against the sides of the simulation. In comparing Figures 4.5

and 4.3, we see that there is no change in the magnetic field near the edges of the

simulation box, so the reconnection occurring within the simulation is unaffected

by the boundary conditions. However, for future simulations, it would be ideal to

have an extrapolating boundary condition for Jpx so that the box could be made

smaller and the time needed to run the code would be cut in half. Another issue for

future work is the nature of the magnetic field used in the simulation. Currently, the

magnetic field lines are initialized perpendicular to the centrifugal force. However,

in ud-Doula and Owocki’s 2006 centrifugal breakout paper [2], the magnetic field

used was a dipole, as seen in Figure 1.3. The different configuration of magnetic

field lines could have an effect on the rate of centrifugally-induced reconnection.

The straight field lines employed in our simulation may require more plasma for the

centrifugal force to bend and stretch them out. The curvature of the field lines in the
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Figure 4.7: This figure shows the magnetic field lines at t = 57.2 and b0 = 0.05.
Note that the magnetic field lines have not yet undergone reconnection
like in the b0 = 0.01 case, nor have bent as much as in the b0 = 0.02
case.

Figure 4.8: This figure shows the gradual drifting of the simulation out of the
box. Note that if no drifting were present, the reconnection would be
occurring near nx = 300.

dipole field may make it easier for the plasma to stretch out the magnetic field and

cause reconnection. Further study is needed to determine if there is any difference

in the characteristic breakout time between a straight magnetic field and a dipole

magnetic field. Additionally, with a dipole field, a breakout ultimately leads to a

blob of reconnected plasma and magnetic field escaping from the star’s magnetic

field. However, in our simulations, the 1D nature of our equilibrium leads to com-

pression of the magnetic field lines, stopping the breakout. In a future study, we

plan to implement a dipole-like curved field line equilibrium in which magnetic field
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line tension is balanced out by centrifugal force. We hope that such an equilibrium

would lead to a stronger breakout of material.

44



REFERENCES

[1] R.A. Scheper and A.B. Hassam. Line-tying and the reduced equations of mag-
netohydrodynamics. The Astrophysical Journal, 511: 976-980, February 1999.

[2] A. ud-Doula, R.H.D. Townsend, and S.P. Owocki. Centrifugal breakout of mag-
netically confined line-driven stellar winds. The Astrophysical Journal, 640:
L191-194, April 2006.

[3] R.H.D. Townsend and S.P. Owocki. A rigidly rotating magnetosphere model
for circumstellar emission from magnetic OB stars. Monthly Notes of the Royal
Astronomical Society, 357:251-264, 2005.

[4] A. ud-Doula and S.P. Owocki. Dynamical simulations of magnetically channeled
line-driven stellar winds in isothermal, nonrotating, radially driven flow. The
Astrophysical Journal, 576:413-428, September 2002.

[5] J. Sanz-Forcada, E. Franciosini, and R. Pallavicini. XMM-Newton observations
of the σ Ori cluster. Astronomy and Astrophysics, 421:715-727, July 2004.

[6] S. P. Owocki. Stellar Magnetospheres. Personal notes, 2008.

[7] H. Alfvén. On the existence of electromagnetic-hydrodynamic waves. Ark. Mat.,
Astron. o. Fys. 29B: 1-7, 1942.

[8] A. ud-Doula, S.P. Owocki, R.H.D. Townsend. Dynamical simulations of
magnetically-channelled line-drived stellar winds - II. The effects of field-aligned
rotation. Monthly Notes of the Royal Astronomical Society, 385:97-108, 2008.

45


