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ABSTRACT

The plenoptic function describes a scene in terms of light rays, it is a 7-dimensional

function with spectral, directional, spatial, and temporal variation. Traditional plenoptic

sampling is acquired either by employing a standard plenoptic camera or a camera array, and

the spatial-angular sampling can be potentially used to model 3D surface.

In this dissertation, I present three coded plenoptic sampling schemes, i.e., the ro-

tational cross-slit (R-XSlit) plenoptic sampling, the wavelength coded plenoptic sampling,

and the polarimetric plenoptic sampling. The additional coded sampling information, such

as non-centric sampling, spectral sampling, and polarization sampling, are conducive to 3D

reconstruction. Therefore, I also develop the corresponding 3D reconstruction framework

for each of them.

First, I introduce the R-XSlit plenoptic sampling scheme by exploiting a special non-

centric camera called the crossed-slit or XSlit camera. An XSlit camera acquires rays that

simultaneously pass through two oblique slits. I show that instead of translating the cam-

era as in the pinhole case, we can effectively sample the 4D plenoptic sampling by rotating

individual or both slits while keeping the camera fixed, which makes the plenoptic sam-

pling coded in the spatial-angular domain. The theoretical analysis shows that it provides

denser spatial-angular sampling, which is beneficial for scene reconstruction and rendering.

I develop a volumetric reconstruction scheme for scene reconstruction.

Second, I present two wavelength coded plenoptic sampling schemes in the visible

and infrared spectrum respectively. I firstly design a compact system with lights and cameras

arranged on concentric circles to acquire a concentric wavelength coded plenoptic sampling

in the visible spectrum, the cameras on each ring capture images in a unique spectrum. I

employ the Phong dichromatic model onto its plenoptic function for 3D reconstruction and

spectral reflectance map estimation. Experiments show that our technique can achieve high

xiv



accuracy and robustness in geometry recovery. Moreover, I present an infrared wavelength

coded plenoptic sampling and develop a hybrid sensing framework to efficiently achieve

pose estimation and face reconstruction by exploiting the captured reflected infrared rays

from human eyes.

Finally, I present a polarimetric plenoptic sampling framework for recovering 3D sur-

faces, the polarization of light is included in its plenoptic function. I employ a new analysis

analogous to the optical flow to correlate the polarization radiance function with both surface

normal and depth. The proposed framework effectively resolves the azimuth-zenith ambigu-

ity by forming an over-determined system. Extensive experiments on both synthetic and real

data demonstrate that the technique is capable of recovering extremely challenging glossy

and textureless objects.
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Chapter 1

INTRODUCTION

The plenoptic function, first introduced by Edward Adelson and James Bergen [3],

describes radiance received along any direction arriving at any point in space, at any time and

over any range of wavelength, which is a 7D function, as shown in Fig.1.1.(a). It encodes

the 3D spatial and 2D directional information of a light ray. If we assume that the radiance

remains consistent from point to point along the ray, one dimension of the plenoptic function

will be redundant, thus making it possible to describe the light ray with a 4D function. A

notable example for this is two-plane parameterization or 2PP, where a pair of parallel planes

Πst and Πuv are given as priors in 3D space, and each ray is represented by its intersection

with the planes as (s, t, u, v) [33], as shown in Fig.1.1.(b).

One of the most important tasks in image-based modeling and later computational

photography and imaging is to conduct efficient sampling of the plenoptic function. No-

table examples include capturing the scene using the plenoptic camera or the camera array.

The former combines a lenticular array and a single high-resolution sensor with each lenslet

emulating a pinhole camera, such as Lytro [1] and Raytrix [2]. Compared with the cam-

era array, the plenoptic camera can sample more densely on the st dimension due to small

microlenslet baselines, but at the sacrifice of the uv resolution, whereas the camera array

facilitates a much wider baseline and can sample the angular dimension at a wider Field-

of-View. At each camera location (s, t), it samples a uv slice corresponding to the image

captured by the camera. Yu and McMillan [67] have shown that every sampled image cor-

responds to a 2D planar slice in the 4D plenoptic sampling. The camera array, in essence,

samples the space using a sequence of 2D slices.

Previous application by utilizing the plenoptic sampling focused on refocused ren-

dering and view interpolation. More recent approaches employ plenoptic sampling for 3D

1
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Figure 1.1: (a). The 7D plenoptic function. (b). The 4D light field plenoptic function.

reconstruction. [52, 58, 21]. For example, it is possible to directly use plenoptic cameras

as 3D sensors [72]. However, 3D reconstruction from common plenoptic sampling is still a

challenging problem, especially for specular, textureless and transparent surfaces.

1.1 Dissertation Statement

In this dissertation, I present three coded plenoptic sampling schemes, i.e., the ro-

tational cross-slit (R-XSlit) plenoptic sampling, the wavelength coded plenoptic sampling

and the polarimetric plenoptic sampling. Compared with the general plenoptic sampling

scheme, the coded sampling information from each of them can be efficiently used for better

3D recovery and rendering.

First, I exploit the non-centric crossed-slit or XSlit camera model for acquiring the

R-XSlit plenoptic sampling. In particular, the XSlit camera captures rays simultaneously

passing through two oblique (neither parallel nor intersecting) slits in 3D space [75]. If the

two slits are parallel to the 2PP, captured rays lie on a 2D planar surface in 4D ray space

[64]. In fact, the pinhole camera can be viewed as a special XSlit camera where the two slits

intersect. We adopt the design by Ye et al.[64] that relays two cylindrical lenses with slit

apertures as the XSlit camera. To sample the plenoptic function, we rotate the XSlit camera

along its optical axis, the R-XSlit plenoptic sampling is coded in the spatial-angular domain

2



by two rotational slits. We show the our R-XSlit sampling scheme provides substantial

benefits. On the acquisition front, our new sampling scheme can achieve fixed-location

acquisition. By rotating rather than translating the camera, we eliminate the need of building

the camera array or moving the camera along the grid. On the reconstruction front, I show

that the new sampling pattern enables more effective view synthesis and dynamic refocusing.

Recall that the previous camera array samples uv slices at discrete st locations. Therefore,

a new uv slice at an undersampled st location does not contain any samples and brute-force

interpolation leads to severe ghosting or aliasing [70]. In contrast, I show under the R-XSlit

sampling every perspective view will contain some minimum number of samples. The dense

angular sampling is extremely helpful for 3D reconstruction and rendering.

Second, I present a novel concentric wavelength coded (CWC) plenoptic sampling

method in the visible spectrum. We employ the Phong dichromatic reflectance model and

integrate it into the plenoptic function to characterize the interface (specular) reflectance

and the body (diffuse) reflectance. We design a concentric ring of cameras setup with a

multi-spectral ring light to acquire CWC sampling. This setup imposes useful constraints

on specularity variations that is used to robustly separate diffuse components from specular

ones. Meanwhile, different lighting conditions can be captured under our multi-spectral ring

light, then we can recover 3D surface shape and reflectance map by applying multi-spectral

photometric reconstruction. Moreover, I propose another infrared wavelength coded (IRWC)

plenoptic sampling scheme, and I develop a hybrid sensing camera array consisting of a pair

of near infrared (NIR) cameras and a long-wave infrared (LWIR) camera, to sample infrared

rays so as to facilitate pose estimation and 3D face reconstruction under poor lighting condi-

tions.

Finally, I introduce a polarimetric plenoptic function with the polarization of the light

ray. I synthesize a polarimetric camera array, where each sampling view has a specific polar-

ization angle. Then, I derive a comprehensive theory that correlates the polarization radiance

function with both surface normal and depth in terms of the transmitted radiance sinusoid

and the polarization functions, and I develop a 3D reconstruction framework based on it and

our polarimetric plenoptic sampling.
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1.2 Contributions

This dissertation makes the following contributions.

Coded Plenoptic Sampling Scheme:

• I introduce four coded plenoptic sampling schemes.(R-XSlit plenoptic sampling,

CWC plenoptic sampling, IRWC plenoptic sampling, and polarimetric plenoptic sampling).

Acquisition System Designs:

• I construct a R-XSlit camera system using a single camera with rotational Slits

controlled by a programable motor. We align the two cylindrical lenses orthogonally using

two lens tube. Each tube contains a rotation ring, with which I can control the rotation degree

of each slit precisely.

• I construct a concentric multi-spectral camera array. Specifically, I mount a monochrome

camera on a translation stage to uniformly translate the camera position on a 2D plane (i.e.,

the st plane). Then, I mount a tunable liquid crystal spectral filter in front of the camera

to capture the scene under specified wavelengths. For the multi-spectral illumination part, I

mount twelve LED chips onto a circle dodecagon frame, and then place twelve narrow-band

spectral filters ranging from 450 nm to 670 nm with 20-nm step in front of the LED chips.

• I build an hybrid infrared sensing system consisting of a pair of NIR cameras and

a LWIR camera. I strategically surround each NIR sensor with a ring of LED IR flashes to

capture ”bright-eyes” effect of the target, which can be used to accurately determine the face

pose and geometry. The LWIR camera is used to capture potential targets as reliable sources.

I design a control system to synchronize and control all sensors and the infrared lights.

• I establish a polarimetric sampling acquisition system through a translation rig and

a polarization camera. The polarization camera can sample light rays with its polarizer array

which is comprised of four different angled polarizers.

Algorithm Developments:

• I develop a volumetric reconstruction scheme applied on our R-XSlit plenoptic

sampling for scene reconstruction. I discretize the scene into voxels, and then use the XSlit

back-projection to map the voxels onto each XSlit view. The 3D embedded voxel graph is

optimized by the graph-cut algorithm.
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• I introduce a multi-spectral surface camera (MSS-Cam) by extending the classical

surface camera (S-Cam) [68] with the Phong dichromatic model, i.e., each ray sampled in

the MSS-Cam originated from the same 3D point, but at a different angle and with a specific

spectrum.

• I propose a new appearance consistency metric applied on the MSS-Cam and a

robust confidence metric for separating Lambertian and non-Lambertian points. I develop a

specular removal scheme for non-Lambertian points and a multi-spectral photometric stereo

technique for 3D reconstruction.

• I develop a 3D face reconstruction framework based on the IRWC plenoptic sam-

pling. A modified cascaded CNN is represented for thermal facial landmarks detection in

the framework.

• I derive a comprehensive theory that correlates the polarization radiance function

with both surface normal and depth. Based on this derivation, I extend the shape-from-

motion theory by viewing the plenoptic sampling as a moving camera and then derive a new

formulation under our polarimetric plenoptic sampling for shape reconstruction.

1.3 Blueprint of the Dissertation

This dissertation is organized as follows:

Chapter 2 discusses general plenoptic sampling and reviews some kinds of works in

3D reconstruction which are highly related to this dissertation.

Chapter 3 introduces the R-XSlit plenoptic sampling scheme. It analyzes the sam-

pling pattern and the blur kernel, and explores the epipolar geometry problem. Then, the

rendering technique and 3D reconstruction method are discussed.

Chapter 4 presents two wavelength coded plenoptic sampling schemes. It introduces

the MSS-Cam for the CWC plenoptic sampling and makes an analysis on it for 3D recon-

struction. Then, it introduces the IRWC plenoptic sampling scheme and a 3D face recon-

struction framework.

Chapter 5 introduces the polarimetric plenoptic sampling, a comprehensive theory

that correlates the polarization radiance function with both surface normal and depth, and
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then a new formulation can be derived under the polarimetric plenoptic sampling for 3D

reconstruction.

Chapter 6 concludes this dissertation, discusses future work and lists some unresolved

questions.
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Chapter 2

BACKGROUND AND PREVIOUS WORKS

In this chapter, we review the background of the plenoptic sampling and some previ-

ous works in 3D reconstruction which are closely related to our work.

2.1 Plenoptic Sampling

Edward Adelson and James Bergen [3] first introduced the concept to computer vi-

sion and graphics via the 7D plenoptic function, which later became the foundation for

image-based modeling and rendering. The plenoptic function expresses the image of a scene

from all possible 3D viewing positions and 2D directions, but its high dimensionality pre-

vents it from practical uses. Levoy and Hanranhan [33] introduced a practical light field

representation using two-plane-parametrization or 2PP, where each plane describes a 2D

subset, and the overall plenoptic function is 4D.

By far most commonly used devices for sampling plenoptic function include a mov-

ing hand-held camera or robotically controlled camera [42, 54], an 1D array of cameras

[74](as used in capturing the bullet time effect in the film The Matrix), a dense array of

cameras [54], and most recently hand-held plenoptic cameras [42] based on the lenslet ar-

ray or coded apertures [56]. The MIT construct a camera array employing a grid of 64 1.3

megapixel usb webcams and the Stanford array is a two-dimensional grid composed of 128

1.3 megapixel Firewire cameras. With the help of registration, it is also possible to sample

the plenoptic function by waving a camera in 3D space. Nearly all existing solutions use

(e.g., in a camera array) or emulate (as in a lenslet array) perspective cameras as the main

acquisition apparatus. The perspective camera sampling theory has been well studied in both

spatial and frequency domains [14].
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While the pinhole camera has been the most common device for imaging including

acquiring plenoptic sampling, a tendency towards adopting the non-centric camera has grad-

ually emerged. Classic examples include the pushbroom camera [67] which collects rays

along parallel planes from points along a linear trajectory and the crossed-slit camera which

collects all rays passing through two oblique lines. The General Linear Camera framework

[66] discovers that rays collected by both pushbroom and XSlit cameras, together with classi-

cal perspective and orthographic cameras, correspond to 2D planar slices in the 4D plenoptic

space.

2.2 3D Reconstruction

2.2.1 XSlit Stereo

An XSlit camera captures rays that simultaneously pass through two oblique slits in

3D space. A translational XSlit stereo model was introduced by Feldman et al.[18], which

presents that the valid stereo pairs with purely horizontal parallax can be formed by trans-

lating an XSlit camera along one of the two slits. Seitz [49] and Pajdla [44] independently

classified all possible stereo pairs according to their epipolar geometry. Their results show

that apart from perspective camera pairs whose epipolar geometry is a plane, there exists an-

other two kinds of epipolar geometry: hyperboloids and hyperbolic-paraboloids, both corre-

sponding to double ruled surfaces. Ye et al.[64] developed a rotational XSlit stereo matching

based on hyperboloids and validated Seitz’s theory. Instead of translating the XSlit cameras,

Ye et al.form valid stereo pairs by fixing sensor locations but switching the slits’ directions

and they show a theoretical analysis to characterize their rotational XSlit epipolar geometry.

2.2.2 Multi-Spectral Photometric Stereo

In the 1980’s, Woodham [61] introduced the Photometric Stereo (PS), an extension

of shape-from-shading [26] to recover surface normal by placing the object under different

lighting conditions. In the beginning, most PS methods focus on the reconstruction of static

objects. Later, some approaches extend the general PS for the dynamic scene by employing

temporal and spectral multiplexing.
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PS approaches with temporal multiplexing employ rapidly alternating lights. Vlasic

et al.[57] built a large dome with 1200 individually controllable light sources to provide a

series of spherical lighting and used high frame rate camera to capture the normal map. Ma et

al.[35] captured the normal map using time-multiplexed illumination consisting of structured

and polarized lights. These methods need to cope with image misalignment since each frame

is captured under different lighting conditions at different times.

By contrast, the spectral multiplexing methods [24, 62, 5, 23, 30] use different col-

ored lights to capture different lighting conditions in a single snapshot, thus making PS

possible to conduct per-frame photometric reconstruction. In practice, most of them impose

a monochromaticity constraint on the objects since they cannot directly estimate the surface

normal (2 unknowns) and albedo (3 unknowns) for each pixel just from three color channels.

Anderson et al.[5] relaxed the monochromaticity constraint by an assumption of multiple

piecewise constant chromaticities. Furthermore, Fyffe et al.[19] used a beam splitter and two

Dolby dichroic filters to obtain six-channel photographs, relaxing the chromaticity restric-

tion, however, the calibration results in significant bias in the reconstruction since variation

in the spectral reflectance cannot be represented by a 3-dimensional basis.

2.2.3 Shape from Polarization

There has been emerging interest on analyzing the polarization state of reflected light

to infer surface geometry. When unpolarized light is reflected from a dielectric surface, it

becomes partially polarized. Previous works [38, 40, 28, 8, 37] use the phase angle informa-

tion from the transmitted radiance sinusoid function to estimate the azimuth angle of surface

normal, and employ the polarization angle derived from Fresnel reflectance theory to deter-

mine the zenith angle. However, the problems are inherently ill-posed due to azimuth-zenith

ambiguities.

To resolve the azimuth-zenith ambiguities, single view approaches [60, 39] employ

additional constraints such as surface geometry priors and lighting assumptions. And [7]

demonstrated that diffuse polarization from the dielectric surface does not exhibit zenith

ambiguity. Besides, multi-view approaches can also help mitigate ambiguity. Rahmann et
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al.[47] and Atkinson et al.[6] constructed a stereo setup integrating coarse depth estima-

tion with polarization cues. [9, 48] obtained correspondences from different viewpoints and

resorted to simple geometric shape priors to address ambiguity. Cui et al.[16] proposed a po-

larimetric multi-view stereo that combines shape from polarization and epipolar constraints.

Specifically, they utilized the classical structure-from-motion and multi-view stereo to obtain

an initial shape estimation which helps to remove ambiguity.
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Chapter 3

SCENE RECONSTRUCTION FROM ROTATIONAL CROSSED-SLIT
PLENOPTIC SAMPLING

In this chapter, we present a novel plenoptic sampling scheme via rotating XSlit and

its applications in scene reconstruction. Specifically, we exploit the non-centric crossed-slit

or XSlit camera to sample rays. An XSlit camera captures rays that simultaneously pass

through two oblique (neither parallel nor intersecting) slits in 3D space [75]. If the two slits

are parallel to the 2PP, the captured rays lie on a 2D planar surface in the 4D ray space

[64]. In fact, the pinhole camera can be viewed as a special XSlit camera where the two slits

intersect. Although XSlit geometry has been thoroughly studied [75, 67], recently practical

designs [64] have began to use it for computer vision tasks such as scene understanding and

reconstruction [64, 65].

We adopt the design by Ye et al.[64] that relays two cylindrical lenses with slit aper-

tures as the XSlit camera. To sample rays, our approach is to rotate the XSlit camera along

its optical axis, and we show that the resulting Rotational XSlit (or RXSlit) sampling scheme

provides substantial benefits. On the acquisition front, our new sampling scheme can achieve

“fixed-location” plenoptic sampling by rotating rather than translating the camera. On the

reconstruction front, we show that the new sampling pattern enables more effective view

synthesis and dynamic refocusing. Recall that the previous camera array samples uv slices

at discrete st locations. Therefore, a new uv slice at an undersampled s′t′ location does not

contain any samples, and brute-force interpolation leads to severe ghosting or aliasing [70],

as shown in Fig. 3.1(a). In contrast, we show that the rotational XSlit sampling scheme en-

sures that every perspective view contains a minimum number of samples, as presented in

Fig. 3.1(b).
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Figure 3.1: The sampling pattern using a pinhole camera array (a) and using a rotational
XSlit camera (b). A new perspective view (blue line) may not contain any sample in the
pinhole case but is guaranteed to contain samples in the XSlit case.
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Figure 3.2: Illustration of our XSlit camera models. The center ray drifts off the image
center.

We further validate our approach on using the R-XSlit sampling for dynamic scene

refocusing and volumetric reconstruction. For 3D reconstruction, we discretize the scene

into voxels and apply XSlit back-projection to map the voxels onto each XSlit view and

optimize the the 3D embedded voxel graph by the graph-cut algorithm. For scene refocusing,

analogous to refocusing with a camera array, we specify a proxy geometry plane and then

project all XSlit views onto the plane. The refocused results exhibit some unique effects:

defocused blurs become more severe on pixels farther away from the image center. This

leads to a novel refocusing effect that we call “Conic Blur”. Experiments on both synthetic

and real scenes show that our methods are robust and reliable.

3.1 Plenoptic Sampling via Rotating XSlit

In this section, we discuss how to acquire the plenoptic sampling via rotating XSlit.

An XSlit camera collects rays that simultaneously pass through two oblique (neither parallel

nor coplanar) slits in 3D space [43, 75, 67]. We first adopt the two-plane parametrization

[33] for its simplicity. Specifically, we choose two planes Πuv and Πst parallel to both slits

but containing neither slits.
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We will also use position-direction parametrization [u, v, σ, τ ] where σ = s − u and

τ = t − v to simplify the analysis. We choose Πuv as the default image (sensor) plane

so that (u, v) can directly represent the pixel coordinate and (σ, τ, 1) can be viewed as the

direction of the ray. Ye et al.[65] assumed that the origin of the coordinate system is the

intersection point of the two slits’ projected lines on Πuv. We explore a more general case,

i.e., the origin biases that intersection point and two slits rotate along z-axis. We assume that

the two slits, l1 and l2, lie at z = Z1 and z = Z2 with angles θ1 and θ2 w.r.t.the x-axis, and

the distance between their projected lines on Πuv and the origin point are d1 and d2, where

Z1 > Z2 > 0 and θ1 6= θ2, as shown in Fig. 3.2. Each XSlit camera can be represented as

C(Z1, Z2, θ1, θ2, d1, d2). We applied this notation for the sampling by changing θ1 and/or θ2.

Thus, each pixel (u, v) in C maps to a ray with direction (σ, τ, 1), and there must exist some

a1 and a2 so that:


u+ Z1σ +

d1

sin θ1

= a1 cos θ1; v + Z1τ = a1 sin θ1

u+ Z2σ +
d2

sin θ2

= a2 cos θ2; v + Z2τ = a2 sin θ2

(3.1)

Eliminating a1 and a2, we obtain:

 (u+ Z1σ) sin θ1 + d1 = (v + Z1τ) cos θ1

(u+ Z2σ) sin θ2 + d2 = (v + Z2τ) cos θ2

(3.2)

So that we obtain two linear constraints as:
Z1 cos θ1

Z2 cos θ2

=
(u+ Z1σ) sin θ1 + d1 − v cos θ1

(u+ Z2σ) sin θ2 + d2 − v cos θ2

Z1 sin θ1

Z2 sin θ2

=
(v + Z1τ) cos θ1 − u sin θ1 − d1

(v + Z2τ) cos θ2 − u sin θ2 − d2

(3.3)

Then, the [σ, τ ] can be derived as: σ = (Au+Bv + F )/E

τ = (Cu+Dv +G)/E
(3.4)
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where

A = Z2 cos θ2 sin θ1 − Z1 cos θ1 sin θ2,

B = (Z1 − Z2) cos θ1 cos θ2,

C = (Z2 − Z1) sin θ1 sin θ2,

D = Z1 cos θ2 sin θ1 − Z2 cos θ1 sin θ2,

E = Z1Z2 sin(θ2 − θ1),

F = (d1 · Z2) cos θ2 − (d2 · Z1) cos θ1,

G = (d1 · Z2) sin θ2 − (d2 · Z1) sin θ1.

To sample rays via rotating XSlit , we simultaneously rotate both slits while main-

taining their relative angle. To simplify our model, we assume that POX-Slit camera where

the angle between the two slits kept at 90 degrees [65] captured two such images through

rotating the camera by 90 degrees to conduct stereo matching. We characterize ray sam-

pling pattern when exhausting all possible rotation angles and denote the plenoptic sampling

scheme as C(Z1, Z2, θ + 90o, θ, d1, d2) (abbreviated as Cθ for simplicity), for all θ. A major

advantage of this sampling scheme is that we can rotate the XSlit camera or the XSlits lens

set as a unit instead of rotating individual slit. Then the Eqn. 3.4 can be simplified as: σ = (A′u+B′v + F ′)/E ′

τ = (B′u+D′v +G′)/E ′
(3.5)

where

A′ = Z2 cos2 θ + Z1 sin2 θ,

B′ =
(Z2 − Z1)

2
sin(2θ),

D′ = Z1 cos2 θ + Z2 sin2 θ,

E ′ = −Z1Z2,

F ′ = (d1 · Z2) cos θ + (d2 · Z1) sin θ,

G′ = (d1 · Z2) sin θ − (d2 · Z1) cos θ.
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3.1.1 Sampling Pattern

To analyze the plenoptic sampling pattern, we fix pixel p = (u0, v0) on the sensor

plane Πuv and then analyze the sampled rays that pass through p. Specifically, we character-

ize the sampling function with respect to Πst, i.e., the plane recording the angular information

of all rays when rotating the camera. We assume that l1 and l2 have an infinite length, and

then compute (σ, τ) for (u0, v0) in camera Cθ with Eqn. 3.5. Since s = σ + u, t = τ + v, we

prove that the collect rays form a ring on the st plane as: s = (A′u0 +B′v0 + F ′)/E ′ + u0

t = (B′u0 +D′v0 +G′)/E ′ + v0

(3.6)

Then, Eqn. 3.6 becomes:


s = (1− 1

Z1

cos2 θ − 1

Z2

sin2 θ)u0 + (
1

2Z2

− 1

2Z1

) sin(2θ)v0 −
d1

Z1

cos θ − d2

Z2

sin θ

t = (1− 1

Z2

cos2 θ − 1

Z1

sin2 θ)v0 + (
1

2Z2

− 1

2Z1

) sin(2θ)u0 −
d1

Z1

sin θ +
d2

Z2

cos θ

(3.7)

So the [s, t] can be derived as:

s = cs − rαs cos(θ − αs) + rβs cos(2θ − βs)

t = ct − rαs sin(θ − αs) + rβs sin(2θ − βs)
(3.8)

where

cs = u0(1− 1

2Z1

− 1

2Z2

)

ct = v0(1− 1

2Z1

− 1

2Z2

),

rαs =

√
(
d1

Z1

)2 + (
d2

Z2

)2,

rβs =
√
u2

0 + v2
0(

1

2Z2

− 1

2Z1

),

αs = arctan
d2Z1

d1Z2

,

βs = arctan(v0/u0)
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Figure 3.3: The (s,t) locus of (up, vp) when varying θ from 0 to 2π.

17



This reveals that all (s, t) lie on a Limacon of Pascal curve, as shown in Fig. 3.3. It is

important to note that when d1 = d2 = 0 the Limacon of Pascal will degrade to a circle.

Compared with 4D plenoptic sampling scheme (such as light field (LF) ) using a pro-

jective camera array, such rotation-based sampling scheme has a few advantages. Firstly, our

scheme can acquire many more angular samples which correspond to the number of different

rotation angles whereas the angular resolution in the projective camera array corresponds to

the number of cameras. What is more important is that it provides much denser angular sam-

pling. In the camera array case, its density depends on the space between cameras, making it

difficult to keep the baseline small enough to avoid undersampling or aliasing. In contrast, in

the rotational XSlit, we can make the rotation step very small to acquire a highly dense rays

sampling. Although the LF camera can potentially achieve the same results using tailored

optical units, e.g., a microlenslet array, our sampling scheme does not require any special

optical device. Secondly, it is much easier to rotate the slits than to build a camera array or

translation stage to control the camera.

Fig. 3.1 shows the sampling differences between the traditional perspective camera

array and our rotational XSlit camera. For the former, we show a 2D slice su from a 4D

plenoptic sampling captured by conventional camera/lenticular array. Under this sampling,

each image captured by a camera maps to a 2D parallel slice. Since the space between

adjacent slices are “empty”, any new perspective view, corresponding to a slice in between,

will not contain any sampled ray and traditional approaches rely on geometry-guided ray

interpolation [29]. For the latter, the plenoptic sampling with our rotational XSlit camera

setup samples the space in a different way: each XSlit camera maps to a 2D slice [67] but

under the rotational setup and the recorded slices are not axis-aligned in the 4D ray space.

As a result, if we render a new perspective view (2D slice), it is guaranteed to intersect with

the sampled XSlit slices and contain a minimal number of ray samples.

3.1.2 Blur Kernel

Given our R-XSlit sampling captured by Cθi , i = 1, ..., N , and a 3D point X =

(x0, y0, z0) in the world. For each ray [u, v, σ, τ ] passing through X , there exist some az that
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satisfies:

[u, v, 0] + az[σ, τ, 1] = [x, y, z] (3.9)

By eliminating az, we have:  u = x0 − z0σ

v = y0 − z0τ
(3.10)

Combining above Eqn. 3.10 with Eqn. 3.5, we can derive two linear constraints as follows:
u = x0 − z0((−cos2 θ

Z1

− sin2 θ

Z2

)u+ (
1

2Z2

− 1

2Z1

)sin(2θ)v − d1

Z1

cos θ − d2

Z2

sin θ)

v = y0 − z0((−cos2 θ

Z2

− sin2 θ

Z1

)v + (
1

2Z2

− 1

2Z1

)sin(2θ)u− d1

Z1

sin θ +
d2

Z2

cos θ)

(3.11)

Then, we have:

( 1
2Z2
− 1

2Z1
) sin(2θ)z0

1− ( cos2 θ
Z2

+ sin2 θ
Z1

)z0

=
x0 − u+ ( cos2 θ

Z1
+ sin2 θ

Z2
)uz0 + ( d1

Z1
cos θ + d2

Z2
sin θ)z0

y0 − ( 1
2Z2
− 1

2Z1
) sin(2θ)uz0 + ( d1

Z1
sin θ − d2

Z2
cos θ)z0

1 + ( cos2 θ
Z1

+ sin2 θ
Z2

)z0

( 1
2Z2
− 1

2Z1
) sin(2θ)z0

=
x0 − ( 1

2Z2
− 1

2Z1
) sin(2θ)vz0 + ( d1

Z1
cos θ + d2

Z2
sin θ)z0

y0 − v + ( cos2 θ
Z2

+ sin2 θ
Z1

)vz0 + ( d1
Z1

sin θ − d2
Z2

cos θ)z0

(3.12)

The [u, v] can be solved w.r.t. X as:

u = cu + rαb cos(θ + αb) + rβb cos(2θ − βb)

v = cv + rαb sin(θ + αb) + rβb sin(2θ − βb)
(3.13)

where

cu = −x0

2
(

Z1

z0 − Z1

+
Z2

z0 − Z2

)

cv = −y0

2
(

Z1

z0 − Z1

+
Z2

z0 − Z2

),

rαb = z0

√
(

d1

z0 − Z1

)2 + (
d2

z0 − Z2

)2,

rβb =

√
x2

0 + y2
0

2
(

Z2

z0 − Z2

− Z1

z0 − Z1

),

αb = arctan
d2(z0 − Z1)

d1(z0 − Z2)
,

βb = arctan(y0/x0)
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Refocusing with R-XSlit camera Refocusing with camera array

Figure 3.4: Refocusing rendering comparison between the R-XSlit sampling and regular
sampling.

We set out to analyze the shape and size of blur kernel by finding the pattern of all the

projections of X on a plane Πf at z = f parallel to the sensor plane. We compute the

projection (uf , vf ) as: uf = (1− f/z0)u+ x0f/z0

vf = (1− f/z0)v + y0f/z0

(3.14)

According to Eqn. 3.13 and 3.14, the projection trajectory of X on plane Πf is a

Limacon of Pascal. The kernel size depends on the spatial location of X . Getting Closer to

the center optical axis or further away from the slits will result in a smaller blur kernel size.

This dependency of blur size on depth and spatial center is consistent with our vision habit::

we focus on an important object and make it centered in the view. Previous studies in biology

[17, 45] have shown that human eyes capture a much higher resolution near the center of the

retina than near the boundary. Similarly, in our R-XSlit plenoptic sampling scheme, rays are

much more densely sampled (angularly) near the center. Consequently, when we conduct

the refocusing via ray blending, our uneven ray sampling leads to non-uniform refocusing.

Such a phenomena is very common to the human perception system [41, 13] and [10, 4] have

already explored this ”Conic Blur” property in video extrapolation. Therefore, we believe

that the refocusing rendering from the R-XSlit will naturally conform with our vision system.
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3.1.3 Epipolar Geometry Existency

The image sequence captured by rotating both slits generally does not form valid

epipolar geometry. Ye et al.[65] have shown that the necessary and sufficient condition for

two XSlit cameras to form valid epipolar geometry is when the directions of the two slits

get switched, i.e. between C(Z1, Z2, 0, 90o, 0, 0) and C(Z1, Z2, 90o, 0, 0, 0). In the special

POX-Slit case, where the two slits are perpendicular, every image in the captured sequence

can form epipolar geometry together with the other in the sequence, i.e., the one whose slit

directions are flipped, if we rotate the camera to cover 360 degrees. Finally, it is worth noting

that even for cases without valid epipolar geometry, we can still conduct efficient volumetric

reconstruction.

3.2 Scene Reconstruction

In this section, we demonstrate applications of our rotational XSlit plenoptic sam-

pling scheme.

3.2.1 Volumetric Reconstruction

Recall that the R-XSlit camera does not have epipolar geometry across all views. The

only case where epipolar pairs exist is when d1 = d2 = 0. Such a sampling scheme can be

viewed as multiple stereo pairs despite that no uniform epipolar geometry exists across all

pairs. In this case, we can adopt the volumetric reconstruction scheme for both 3D recovery

and rendering.

The problem of reconstruction can be formulated as a variation of the fundamental

space carving framework by Kutulakos and Seitz [31], which leverages a set of N perspec-

tive input camera views to recover a 3D volumetric representation of the scene. In classical

volumetric reconstruction methods, it first discretize the scene into voxels coherent with the

resolution of the input image. In our case, we first positions a virtual perspective camera

whose Center-of-Projection lies at (0, 0, Z), where Z=(Z1 + Z2)/2 with the size of its view
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frustum matching the extent of both horizontal and vertical slits. To measure the color con-

sistency, we need to first determine the projection of the voxel in each XSlit view. We use

the XSlit projection Eqn. 3.14 to map every voxel to all XSlit cameras.

The voxel depth assignment problem is solved via the graph-cut algorithm [12, 11].

Specifically, we traverse spatial voxels through plane sweeping. For each voxel, we fetch

corresponding pixels from respective XSlit images and compute their color variance as the

data cost. We also adopt color weighted smooth priors for depth estimation. Fig. 3.10 shows

the reconstruction results.

3.2.2 Scene Rendering

After we get the scene geometry, we can synthesize the new refocused images which

are focusing on the objects in the scene. For 4D plenoptic sampling acquired by a pinhole

camera array, the refocusing results are synthesized by interpolation of sampled images.

This can be done by first imposing a geometry proxy, e.g., a 3D plane (as shown in the

lumigraph [20]), then projecting rays from a reference view to intersect with the proxy,

and finally tracing the intersections back to sampled images to fetch recorded radiances.

Alternatively, one can use a disparity value, if epipolar geometry exists, to directly represent

proxy geometry and to query corresponding pixels from the views. As discussed in Section

3.1.3, since there is no homogenous epipolar geometry in the R-XSlit sampling, we adopt

the first scheme to render focus stacks.

XSlit Refocusing. For the R-XSlit sampling {Cθ|θ ∈ Ωθ = {β1, β2...βN}}, we

render the refocusing result J f
β corresponding to the XSlit view Cβ , where superscript f

indicates that the focal depth is zf = f . Specifically, we first specify a geometry proxy

plane and conduct backward tracing for view blending. Alternatively, we implement forward

projection of each XSlit image onto the proxy plane and then combine all images via multi-

texturing using the graphics pipeline. In fact, the forward projection of an XSlit image to an

arbitrary 2D plane corresponds to a collineation that can be efficiently computed. We can

further control the aperture size by changing the number of views involved in the blending.
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… 

(a) Sub-Xslit Images (b) Dynamic Refocusing 
d1=205mm d2=350mm d3=530mm 

Figure 3.5: Dynamic refocusing images rendered from the R-XSlit sampling. (a) Sub-XSlit
images are captured by our prototype R-XSlit camera. (b) Two different rendering effects.
The first row shows the focus stack using a sub-XSlit image as a reference image; the second
row shows refocusing rendering from a perspective view.

Using a small number of views will produce an image with deep depth of field whereas a

large number will produce shallow depth of field.

Perspective Refocusing. With the R-XSlit sampling, we can also render a new per-

spective image focusing at a focal depth zf = f . We sample a grid of voxels on the plane zf

to render a perspective image. For each voxel X = (x, y, zf ), we trace the rays back to all

the XSlit views to fetch recorded radiances. According to the projection Eqn. 3.14, we can

compute the pixel location qθ at Iθ corresponding to X . Thus, the refocusing image J f
P can

be rendered as:

J f
P (p) =

1

N

∑
θ∈Ωθ

Iθ(qθ). (3.15)

The most notable difference between perspective over the R-XSlit sampling is the

defocus blur kernel. Fig. 3.5(b) shows examples of perspective view refocusing. In particu-

lar, refocused images exhibit a “conic blur” effect ,i.e., the blurriness is more severe near the

boundary than near the center as shown in Fig. 3.5(b). In Fig. 3.5, we conduct real refocus-

ing on a double-slit rotational sampling, from which we can see nice blurring due to dense

angular sampling.
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(b) System setup

Figure 3.6: The prototype of our rotational XSlit camera system. (a) The control circuit for
the rotation motor. (b) System setup overview.

3.3 Experiments

We validate our R-XSlit sampling scheme on both synthetic and real scenes. In this

section, we first talk about our acquisition devices and our camera structure. Next, we

address the calibration problem of R-XSlit sampling and evaluate the practicability of our

scheme. We also show rendering and stereo matching results with different sampling densi-

ties.

3.3.1 Camera Construction

Fig. 3.6 illustrates our prototype R-XSlit camera. We mount XSlit lenses on a com-

modity interchangeable lens camera (e.g.Sony NEX-5T), and align the two cylindrical lenses

orthogonally with two lens tubes. Each tube contains a rotation ring which can help us con-

trol the rotation degree of each slit precisely.

In [65], R-XSlit pairs are acquired though rotating the XSlit camera. However, this

method only works when the number of captured data is small. To form a valid plenoptic

sampling, we need to capture large numbers of images as accurate as possible. Nevertheless,

it is difficult to eliminate or even evaluate the slight bias of the rotation axis when rotating

the camera, and the accumulation of small errors can lead to huge inaccuracy. To address

this problem, we mount each slit to lens tube with a rotation ring which can rotate by 360

degrees freely without affecting the tube. Instead of rotating the camera, we rotate the lens

tube. Moreover, to minimize the inaccuracy, we adopt a stepper motor to control the rotation
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procedure. The lens tube and the motor lever are connected by a flat ribbon to make sure that

they rotate in the same speed. To control the rev rate, we employ a Arduino Uno R3 board,

i.e., a board that can control the rotation mode of stepper motor with an uploaded program

from the computer. By applying the stepper motor to the XSlit camera, we are capable of

capturing the R-XSlit plenoptic sampling through a video mode. Thus, we can minimize

manual errors and sample rays without moving the camera.

Another advantage of adopting a stepper motor is that it is easy for us to control the

density of the sampling. In our setup, we set the rotation rate at 12 degrees per second and

the frame rate at 30. Typically, we can capture about 900 images for each plenoptic sampling

when rotating the lens tube by 360 degrees.

To ensure the stability of the rotation, we adopt an additional calibration step before-

hand. We capture 3 sets of R-XSlit images of a checkerboard calibration target, each with a

different rotating speed of the motor. We then extract their corners for verification and find

that the the views align almost perfectly with the theoretical computation. In fact, if they

were not aligned due to the uneven rotation speed, the results could also be used to adjust the

sequence in the following experiments. The wiggle of the axis also seems to have a slight

effect on the results, which we suspect this is due to the rigidity of the camera and stepper

motor which makes the jiggles nearly negligible. Finally, the lens tube sets are sealed to

the camera body, and we have not observed obvious changing stray light patterns during the

acquisition.

In terms of improving light accumulation, we adopt the dual cylindrical lens design

and focus adjustment schemes [63] which have significantly improved the light throughput.

3.3.2 Calibration

Rather than trying to align the optical axis (i.e., the central ray), we set out to calibrate

the camera by finding out the bias d1, d2 of l1 and l2. The two slits’ position w.r.t.the image

sensor are Z1 = 62mm and Z2 = 26mmwith a width of 2mm. For a 3D point X = (x, y, z)

in a scene, we capture it three times by rotating the lens tube by 90 degrees on a rotation ring
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(a) d1=-0.07mm d2=0.258mm (b) d1=-0.17mm d2=0.258mm (c) d1=-0.07mm d2=0.358mm 

Figure 3.7: The refocusing images under different d1, d2. (a)(b) have 0.1 difference in d1,
(a)(c) have 0.1 difference in d2.

to generate 3 XSlit images. According to Eqn. 3.13, the projection locations of X on image

sensor should be:
u0 =

Z1x− d1z

Z1 − z
v0 =

Z2y − d2z

Z2 − z

u90 =
Z2x+ d2z

Z2 − z
v90 =

Z1y − d1z

Z1 − z

u180 =
Z1x+ d1z

Z1 − z
v180 =

Z2y + d2z

Z2 − z

(3.16)

By solving Eqn. 3.16 we can get:

d1 = −(u90 + v0)(u0 − u180)(Z1 − Z2)

2Z2(u90 − u180 + v0 − v90)

d2 =
(u0 + v90)(v0 − v180)(Z1 − Z2)

2Z1(u0 − u90 − v90 + v180)

(3.17)

We therefore choose 30 calibration points on I0 and find their corresponding points

on I90 and I180 respectively. From Eqn. 3.16 and Eqn. 3.17, we derive 30 sets of (d1, d2).

d1 = 0.05mm, d2 = 0.28mm are the average values of the 30 results.

Fig. 3.7 illustrates that a slight bias of l1 and l2 will have a significant impact on the

rendering performance. It is worth mentioning that the average value does not guarantee

the optimal solution. To find out the correct (d1, d2), we first use the average d1 and d2 to

generate a focus stack through Eqn. 3.15. Next, we pick out a slice that focuses on a highly

textured object at the depth of f . Note that the slice might still be a little blurry due to

incorrect d1, d2 values. We then crop 10 8x8 patches from the object, and use the focusness

detection methods in [34] to measure the patches’ focusness degree when varying d1 and d2

respectively. A focus degree for a pair (d1, d2) is calculated by averaging all the pixel values

in the 10 focusness maps, and the (d1, d2) that achieves the highest degree is the optimal
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Figure 3.8: The refocusing effect using different R-XSlit camera settings. The first and
second rows show the results corresponding to C1 and C2 respectively. (See text for details.)

solution. After the optimization procedure, we derive the best solution d1 = −0.07mm,

d2 = 0.26mm.

3.3.3 Results

We conduct 3D reconstruction and refocusing rendering on both synthetic and real

data.

Synthetic Data. We first test our scheme on synthetic data rendered by the POV-Ray

ray tracer. Fig. 3.8 presents the refocusing effects rendered by R-XSlit cameras C1(−2,−6, θ+

90o, θ,−0.2, 0.1) and C2(−2,−6, θ + 90o, θ, 0, 0). We collect 360 views by C1 and C2 with

equal angular interval ∆θ = 1. In C2 case, Iθ = Iθ+180. For refocusing results from C2, the

center portion is always in focus. This is because that when d1 = d2 = 0, the image centers

of all sub-XSlit images correspond to a same ray. In contrast, C1 captures multiple rays for

every pixel. The Conic Blur effect of C2 is more obvious than C1. It is worth noting that

for the same reason, C1 achieves better reconstruction results than C2 for the center portion.

Fig. 3.10 shows the depth reconstruction result of a synthetic example (in the first row) with

C2.
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(a) 50 sub-XSlit images (b) 200 sub-XSlit images (c) 500 sub-XSlit images

Figure 3.9: Refocusing rendering results using different sampling density along the rotation
angle. In this example, we focus on the head of the tiger. The out-of-focus region is smooth
even using a small number of sub-XSlit images.

Real Data. Next, we validate our model on scenes acquired by our R-XSlit proto-

type Cθ(62, 26, θ + 90o, θ,−0.07, 0.26) (Section 3.3.1). The R-XSlit sampling is captured

through video recording. For each sampling capture, we can extract about 900 XSlit images

at resolution 1920 × 1080 when two slits rotate 360o. Fig. 3.9 presents the refocusing using

different numbers of XSlit images and we can see that by incorporating more sub-XSlit im-

ages, some alias such as the black lines caused by insufficient sampling can be eliminated.

However, the out-of-focus region is overall smooth even using a small number of sub-XSlit

images. Fig. 3.10 shows the depth reconstruction results of some real scenes.
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(a) (b) (c) 
Figure 3.10: Depth reconstruction from the R-XSlit sampling on a synthetic example (a) and
real examples (b)(c). The first row presents XSlit images and the second row shows their
corresponding depth maps.
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Chapter 4

3D RECONSTRUCTION FROM WAVELENGTH CODED PLENOPTIC
SAMPLING

In this chapter, we present two wavelength coded plenoptic sampling schemes. We

first exploit a concentric wavelength coded (CWC) plenoptic sampling scheme in visible

spectrum. Our sampling system design employs concentric rings of cameras1, with each

ring capturing a narrowband spectrum, as shown in Fig. 4.1. We also use a single ring of

lights, with each light at a different spectrum. We show this concentric setup imposes useful

constraints on specularity variations that can be used to robustly separate diffuse components

from specular ones.

To model surface reflectance with specularity, we employ the Phong dichromatic

model and integrate it into our concentric wavelength coded plenoptic function, we further

estimate surface normal and spectral reflectance map based on our sampling scheme. Specif-

ically, we introduce a multi-spectral surface camera (MSS-Cam) by extending the classical

surface camera (S-Cam) [68]: each ray sample in the MSS-Cam originates from the same 3D

point but at a different angle and with a different spectrum. We propose a new appearance

consistency metric across the views and a robust confidence metric to separate Lambertian

points vs. non-Lambertian ones. For the Lambertian points, we apply a multi-spectral pho-

tometric stereo technique to recover its normal. For the non-Lambertian points, we remove

the rays that correspond to specularity and use the rest for surface normal estimation. Com-

prehensive experiments show that our technique can achieve high accuracy and robustness

in geometry and spectral reflectance recovery, to the benefit of a wide range of vision and

graphics tasks.

1 In our implementation, we move a single camera to emulate the rings of cameras

30



Translation
Stage (X-Y)

Camera &
Tunable Filter

450 500 550 600 650 700
0

10

20

30

40

50

60

70

80

90

(a)

(b)

(c)

Figure 4.1: (a) Our CWC plenoptic sampling acquisition system; (b) The illumination spec-
tral distribution; (c) Sample images from our sampling (We convert spectral images to RGB
for better visualization).
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Second, we present a infrared wavelength coded (IRWC) plenoptic sampling scheme,

and we further propose a collaborative framework based on our sampling scheme to achieve

pose estimation and face reconstruction under: (1) poor lighting conditions such as in com-

plete darkness; (2) uncooperative conditions in which face images exhibit strong 3D pose

orientations; (3) covert operations. Our reconstruction pipeline consists of 3 components:

(1) 3D eye localization; (2) additional facial landmark detection; (3) 3D pose estimation and

frontal face rendering. Our method is based on exploiting the ”bright-eye” phenomenon that

human eyes can be captured by NIR cameras with an NIR flash in the dark. The sampling

system is consist of a pair of NIR cameras and a thermal camera where the NIR cameras are

used to capture bright eyes and the thermal camera samples the long-wave infrared rays. The

”bright” eyes are used to localize the 3D position of eyes and face. The thermal image pro-

vides additional facial points to address the 1D ambiguity in pose estimation. Consequently,

the 3D pose orientations captured in the thermal face image are compensated in non-frontal

face detection and recognition. Experiments on real face images are provided to demonstrate

the merit of our method.

4.1 Object Reconstruction from CWC Plenoptic Sampling

4.1.1 Multi-Spectral Reflectance Model

To handle inhomogeneous surfaces with both diffuse and specular components, we

adopt the Dichromatic Reflectance Model [50] (DRM) for material modeling. As DRM

separates surface reflectance into body reflectance and interface reflectance and both terms

account for geometry and color. DRM is suitable for modeling inhomogeneous materials.

Given a light source with the spectral distributionE(λ) where λ refers to wavelength,

and a camera with the spectral response function Q(λ), the observed image intensity I under

DRM at pixel p can be formulated as:

I(p) = wd(p)

∫
Λ

R(p, λ)E(p, λ)Q(λ)dλ+ ws(p)

∫
Λ

E(p, λ)Q(λ)dλ (4.1)
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where Λ = [λ1, λN ] is the range of sampled wavelengths; R(p, λ) is the surface reflectance;

wd(p) and ws(p) are geometry-related scale factors. The first term in Eqn. 4.1 represents

body reflectance that models light reflection after interacting with the surface reflectance,

and the second term represents interface reflectance that models light immediately reflected

from the surface and thus causes specularites.

Eqn. 4.1 can be further discretized w.r.t. wavelength and written as:

I = wdREQ + wsJEQ (4.2)

where J is a row vector with all ones,

R = [R(λ1), R(λ1 + λ̃), ..., R(λN)],

E(p) = diag(E(λ1), E(λ1 + λ̃), ..., E(λN)),

Q = [Q(λ1), Q(λ1 + λ̃), ..., Q(λN)]T .

Considering the scene geometry, we adopt the Phong dichromatic model that applies

the classical Phong model on the top of the DRM (similar to [53]). Specifically, we model

body and interface reflectance in terms of surface normal and roughness. Since body re-

flectance encodes the surface albedo while interface reflectance relates to specularity, we

use the diffuse term as wd(p) and specular term as ws(p). With near point lighting (NPL),

light source locations are used for computing lighting directions. Thus we rewrite the image

intensity I as:

I = α
( L̂ ·N
‖L−X‖2

)
REQ + β

( (Lr · V )m

‖L−X‖2

)
JEQ (4.3)

where N is the surface normal at a 3D point X , L is the position of light source, L̂ =

(L − X)/‖L − X‖ is the normalized lighting direction, V is the viewing vector, Lr =

2(L̂ · N)N − L̂ is the reflection direction, m is the shininess parameter that models the

surface roughness, α and β correspond to the diffuse and specular reflectivity of the surface.

4.1.2 CWC Plenoptic Sampling

We then apply the above reflectance model to our CWC plenoptic sampling scheme

and perform a specularity analysis under surface cameras (S-Cams) to distinguish diffuse
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components vs. specular ones.

4.1.2.1 Sampling Scheme

We design a novel computational illumination/imaging system for plenoptic sam-

pling, as shown in Fig. 4.2.

Our design mounts concentric rings of cameras, with each ring capturing a nar-

rowband spectrum. In particular, the cameras lie on m concentric circles with radiuses

rj|j = 1, ...,m. On each circle, there are n cameras arranged with the angle interval φ̃.

We assume that all CoPs of the cameras lie on a common plane (z = 0). In order to cap-

ture the irradiances coming from different spectra, each camera is mounted with a spectral

filter. The cameras on the same ring have the same spectral filter with wavelength λj , where

j is the concentric circle index. The set of viewing directions for cameras on the jth circle

is Vj = [V
(j)

1 , ..., V
(j)
n ]T . We will later show in our specular analysis that such concentric

camera arrangement benefits the separation of diffuse components and specular ones.

We adopt the two-plane parameterization (2PP) [33] where rays are parameterized by

their intersections with two parallel planes. We assume the st plane is at z = 0 and the uv

plane is at z = 1, we fix the uv plane on the image plane of cameras (assume that all cameras

have the same focal length that is normalized to 1). We use (s, t) = (rj cosφi, rj sinφi),

where φi = φ1+(i−1)φ̃, to index camera position in the sampling and employ (u, v) as pixel

index in each captured image. Therefore, our CWC plenoptic function can be formulated as

follow:

I = P (u, v, rj, φi, λj) (4.4)

In addition, we use a single ring of lights, with each light having a different spectrum,

to provide multi-spectral illumination. In particular, we havem point light sources located on

a circle with a radius of rl, and the angular interval is θ̃ with respect to the center of the circle.

Notice that the number of light sources is the same as that of the camera concentric circles.

Further, our lighting spectra have wavelength λj|j = 1, ...,m, which is in the same spectral

space as the camera. So each spectral light corresponds to a ring of sampling cameras.
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Figure 4.2: The CWC plenoptic sampling scheme.
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Next, we derive the lighting directions that are critical to the reflectance model. In the

angular domain, we represent the light source location as θj = θ1 + (j − 1)θ̃ where θ1 is the

angular position of the first light source. Assume that these light sources are also placed at the

plane z = 0, the set of light positions is L = [L1, ..., Lm]T where Lj = [rl cos θj, rl sin θj, 0],

and the normalized lighting direction set is L̂ = [L̂1, ..., L̂m]T .

4.1.2.2 Multi-spectral Surface Camera (MSS-Cam)

Next, we apply the NPL Phong dichromatic reflectance model derived in Sec. 4.1.1

to our CWC plenoptic sampling and perform specular analysis under the S-Cam [68]. The

Surface Camera or S-Cam [69] characterizes the angular sampling characteristics of a LF

from a 3D scene point. Given a point in a 3D scene, its S-Cam can be synthesized by tracing

rays originated from the scene point into the LF to fetch color.

Applying the S-Cam to our plenoptic sampling, we obtain the multi-spectral S-Cam

or MSS-Cam. We now derive intensities captured by the MSS-Cam using our reflectance

model. Given a pixel in the reference center view with the camera position (s, t) = (0, 0),

assume that its corresponding 3D scene point is X = (x, y, z), we can synthesize its MSS-

Cam MX from our plenoptic sampling. As shown in the Fig. 4.3 (Left), each column of MX

is sampled under the same spectrum due to our unique camera/light source arrangement.

The column therefore samples specularity variations from a common circle and exhibits

periodical changes in intensity. To obtain MX , we trace rays from the point X to each

camera in the CWC plenoptic sampling. For a pixel (i, j) in our MSS-Cam, its sampling ray

is from the camera at (si, tj), the projection of X on the image Iij is p = (uij, vij) and the

intensity can be computed by bilinear interpolation. Therefore, with Eqn. 4.3 and Eqn. 5.12

we have the image intensity at MX(i, j) as:

MX(i, j) = P (uij, vij, rj, φi, λj)

= αX

( L̂j ·NX

‖Lj −X‖2

)
cXBjEjQj + βX

((L
(j)
r · Vi,j)mX
‖Lj −X‖2

)
JEjQj

(4.5)
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Figure 4.3: MSS-Cam. Left: the example of our MSS-Cam with a correct depth. Right: the
MSS-Cam for the same point with an incorrect depth.

where NX and mX are surface normal and roughness of the X; the reflectance spectra R

in Eqn. 4.3 can lie in a w-dimensional linear subspace [46, 36], thus the cX = [c1, ..., cw]

denotes the reflectance coefficient vector; Bj is a w× k linear reflectance basis matrix under

spectral range [λj − (k − 1)λ̃/2, λj + (k − 1)λ̃/2]. Ej and Qj are also under this spectral

range with a size of k × k and k × 1 respectively. We combine the sampling rays from all

cameras to form the MX of the MSS-Cam at the scene point X .

4.1.2.3 Diffuse vs. Specular Analysis

We perform a photo-consistency analysis on the MSS-Cam and develop a robust

confidence metric for separating diffuse points and specular ones.

We define a consistency measurement on the MSS-Cam using the standard deviation

of intensities:

C(MX) =
1

m

m∑
j=1

std(MX(1, j), ...,MX(n, j)) (4.6)

where std(·) is a standard deviation function. For Lambertian points, C is close to 0 when

depth is correctly estimated. Therefore, we apply the Peak Ratio analysis [25] and use a

certain threshold t1 to separate the Lambertian points.

The points with a large first consistency measurement may be non-Lambertian, oc-

cluded and shadowed points. We introduce a second consistency measurement to refine the
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Figure 4.4: The periodical property of specularity. (a) Light sources configuration w.r.t. a
scene point; (b) Measured sepcular components from views are on a periodic curve.

depths of non-Lambertian points. Since the cameras sampling for each spectrum are on a

circle, the specular components will change on a periodic curve as shown in Fig.4.4. There-

fore, the curve should be symmetric at its peak or valley. Recall that the specularity variation

under one spectral light source is recorded in a column in our MSS-Cam. We extract the

positions of the first three maximums as order pml, pm and pmr, where pml and pmr are the

left and right positions to the maximum, the second consistency measurement can be defined
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as:

pl =

pml, if |pml − pm| < |pml − pmr|.

pm, otherwise.

pr =

pmr, if |pmr − pm| < |pml − pmr|.

pm, otherwise.

Md(a, j) = MX(pl − a, j)−MX(pr + a, j)

D(j,MX) =

(n/2−1)∑
a=0

(Md(a, j)−Md(a+ 1, j))

(4.7)

Note that the second consistency measurement on each column of the MSS-Cam

should be small for specular points and large for some occluded or shadowed points. Thus,

by simply applying a certain threshold ts, we can filter out the occluded or shadowed points

from specular points. We can robustly obtain the set of diffuse points and specular points by

combining the two consistency measurements.

Specular Removal. For non-Lambertian points, we exploit specular variations across

sampling views to remove specularity. Specifically, given the pre-calibrated term JEQ and

an estimated depth z′ for X , we compute the vertical gradients of the MSS-Cam to remove

diffuse components in Eqn. 4.5 as:

GX(i, j) =
(
MX(i+ 1, j)−MX(i, j)

)‖Lj −X‖2

JEjQj

= βX((Ljr · Vi+1,j)
mX − (Ljr · Vi,j)mX )

(4.8)

We use the observation G̃ as the specular constraint to optimize surface normal, specular

reflectivity and surface roughness simultaneously by:

argmin
NX ,mX ,βX

∑
i,j

‖G̃X(i, j)− βX((Ljr · Vi+1,j)
mX − (Ljr · Vi,j)mX )‖ (4.9)

Since this nonlinear optimization is very complex, we try to remove specularities

from our MSS-Cam instead of solving all variables simultaneously. In particular, we first
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Figure 4.5: Our shape and reflectance reconstruction pipeline

remove points that are highly specular, and then solve parameters for specular-free points

with the standard Levenberg-Marquardt method. The solver forces the parameters to fit the

periodical specularity variation curve.

4.1.3 Shape and Reflectance Reconstruction

Finally, we use our specular analysis for surface shape and reflectance reconstruction.

Our reconstruction pipeline is shown in Fig. 4.13.

Given an point X and its pixel p in the reference center view, we first compute our

proposed photo-consistency measure C for every hypothetical depth z of X , and then initial-

ize the depth z of X corresponding to the lowest measurement:

z′ = argmin
z

C(M
(z)
X ) (4.10)
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Then, we classify this pixel as Lambertian or non-Lambertian point via the consis-

tency value. If it is classified into the non-Lambertian points, we apply our periodicity con-

sistency to refine its depth as:

z′ = argmin
z

1

m

m∑
j=1

D(j,M
(z)
X ) (4.11)

For any non-Lambertian point with an estimated depth, we retrieve its MSS-Cam and

remove its specular components through optimizing its specularity variation. We then obtain

specular-removal MSS-Cam, We use a multi-spectral photometric stereo method to recover

surface normal and spectral reflectance coefficients as:

argmin
NX ,cX

((cXS) ◦ (L̂NX)T −M) (4.12)

where

cX = [c1, ..., cw]

NX = [nx, ny, nz]
T

S = [S1
T , ...,Sm

T ]

Sj = BjEjQj , Sj = [sj1, ...sjw]

L̂ = [L̂1, ..., L̂m]T , L̂j = [lj1, lj2, lj3]T

M = [MX(p1, 1), ...,MX(pm,m)]T

pj is the median position of the jth column on the MSS-Cam MX and ◦ is the Hadamard

product or the element-wise multiplication. When 3×w ≤ m, this bilinear optimization can
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be formed into an over-determined linear least-squares optimization as:

A =


s11l11 s11l12 . . . s1wl12 s1wl13

s21l21 s21l22 . . . s2wl22 s2wl23

...

sm1lm1 sm1lm2 . . . smwlm2 smwlm3


b = [c1nx, c1ny, c1nz, c2nx, . . . cwnz]

T

b = A \M

(4.13)

Surface normal and reflectance coefficients can be derived from b.

When w × 3 > m, the linear least squares optimization can be transferred to over-

determined bilinear optimization. Hence, we apply the general Levenberg-Marquardt algo-

rithm to solve it.

To reduce the ambiguity caused by separating albedo and shading variation, i.e., the

ambiguity on separation of the multiplication of two smooth curves, we arrange spectral light

sources in the way in Fig. 4.6(a). Such arrangement can generate a fluctuated shading curve

for the shading variation, shown in Fig. 4.6(b). Therefore, the surface normal can be more

easily converged to the global optimum. We choose the median value of each spectrum on

the MSS-Cam as the observation for optimization, which makes it more robust for image

noise.

After we obtain all recovered surface normals for all pixels in the reference center

view, we update the depths from the estimated surface normals. Finally, we renew all MSS-

Cams with updated depths and use them to refine the surface normal and perform an iterative

optimization until convergence:

Given the recovered estimated reflectance coefficients, we can recover the spectral

reflectance of the object. Since the matrix Sj = BjEjQj is calibrated from the spectral re-

flectance coefficients, and the matrixEjQj is simply regarding a single narrow-band spectral

light source, we can directly use recovered reflectance coefficients c′X to get dense spectral

reflectance response by R = c′XB, where B is the dense spectral sampling reflectance basis.
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Figure 4.6: (a) Spatial relationship between a surface normal and all lighting directions; (b)
The first row shows that values of shading components with the light arrangement are on
a periodic curve. Therefore, we rearrange light positions to generate a fluctuated shading
variation (second row) for robust separation between shading and reflectance.

4.1.4 Experiments

We have validated our approach on both synthetic and real data. All experiments are

conducted on a desktop with an Intel i7 7820 CPU (2.9GHz Quad-core) and 32G memory.

Our algorithm is implemented in Matlab, and all multi-spectral images are illustrated in RGB

for better visualization.

4.1.4.1 Camera System Construction

We construct a multi-spectral camera array to evaluate our algorithm on real-world

data. To build the multi-spectral camera array, we mount a monochrome camera (Point Grey

GS3-U3-51S5M-C) with 50mm lens on a translation stage to uniformly translate the camera

position on a 2D plane i.e., the st plane. We mount a tunable liquid crystal spectral filter
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(KURIOS-WL1) in front of the camera to capture the scene under specified wavelengths.

The camera resolution is 2448 × 2048 with a 13-degree FoV. Our hardware setup is shown

in Fig. 4.1. To build the illumination part, we mount twelve 30Watt LED chips onto a circle

dodecagon frame, and the distance between each LED chip and the center of the dodecagon

is 90cm. We then place twelve narrow-band spectral filters ranging from 450 nm to 670 nm

with 20 nm step in front of the LED chips. The distance between the acquisition system and

the object is about 100 cm.

4.1.4.2 Calibration

We calibrate the position and radiance of each light beforehand, and the reflectance

basis function is pre-computed during the calibration.

Camera Calibration. We first calibrate the camera intrinsic parameters using tradi-

tional camera calibration method. Our translation stage can provide high precision in trans-

lation and fix the orientation of the camera. The absolute value of the translation can be

obtained by pre-captured a scene with a normal checkerboard.

Light Source Calibration. To calibrate the light position, we first move the camera

to the center of the concentric circle. For each individual light, We need to capture a sequence

of images with a chrome ball at the different positions. And in each image, we detect the

specular spot on the chrome ball as the point of the incident. The corresponding incident

ray can be derived from the reflected ray and its normal. Therefore, the position of the point

light source can be localized at the intersection of all incident rays from those images. We

need to repeat this procedure for all the lights. In reality, we capture the image with all lights

on, and separate the light by their wavelength, so we can calibrate all the light positions at

once.

Spectral Calibration. There are two parts for the spectral calibration. In the first

place, we calibrate the S = BEQ for each spectral light source by using a MacBeth

ColorChecker chart. There are 24 diffuse color swatches on the chart with the ground

truth spectral reflectance responses. We apply PCA to extract the w-dimension linear re-

flectance basis and the corresponding reflectance coefficient vectors Ch = [ch1, ..., chw]T
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where h = 1, ..., 24. For each spectral light source, we capture the color checker at different

orientations. With the known spectral light position, checker position and checker surface

normal, we can get rid of the shading term (L̂ · N)/‖L − X‖2 to obtain the intensity I ′.

Therefore, the Sj for the jth spectral light can be attained by:

argmin
Sj

(CSj − I ′j) (4.14)

where C = [C1, ..., C24]T is a 24× w coefficients matrix, I ′j is the vector of the averaged in-

tensities without shading components of all color patches under the jth spectral light source.

We then can obtain the set S = [S1, ..., Sm]. Note that we assume the diffuse reflec-

tivity α of the color chart is 1 in the calibration, any other object’s diffuse reflectivity will be

assembled into the reflectance coefficient vector in the optimization.

In the next step, since we apply numerical integration to approximate the irradiance

integration instead of using a Dirac Delta function, the integration of multiplication of the

illumination spectral distribution and the camera response in the specular term can be at-

tained from the calibration of the EjQj. In our experiments, the Full Width-Half Maximum

(FWHM) of the filter is 10nm, so we choose the step λ̃ = 1 in the interval [λj−5, λj +5] for

integration. Therefore, the EjQj can be obtained with a known 24 × 11 matrix Rj = CBj

as:

argmin
(EjQj)

(Rj(EjQj)− I ′j) (4.15)

The value of JEjQj in the specular term for each spectral light source is known after this

calibration.

4.1.4.3 Synthetic Results

We generate a multi-spectral renderer to render the multi-spectral images from RGB

images based on a 3D reflectance linear basis and use spectral measures of real spectral light

sources as the spectral distributions of our synthetic spectral light sources.

We first test our scheme on a simple sphere with three different reflectances, i.e.,

uniform diffuse, specular and specular with texture. The diffuse coefficients are all set to

0.7, and specular coefficients for each material are set to 0, 0.3, and 0.5 respectively. The
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Figure 4.7: Qualitative synthetic results. The first column shows the input sphere with dif-
ferent reflectances. The second and third columns are our estimated normal maps and cor-
responding error maps. The last column is the estimated reflectance displaying in RGB,
the dense recovered spectral reflectances compared to ground truth curves are presented at
bottom.
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Figure 4.8: Shape and reflectance estimation on two complex synthetic scenes. The nor-
mal error maps and promising re-rendered diffused results demonstrate that our algorithm is
robust against the specularity.

roughness for specular spheres is set to 8. In our experiment, we set the radius of the sphere

to 20 and the distance between the cameras and sphere to 120. The resolution of each camera

is 320 × 320. The radius of our light sources is 80, consisting of 12 spectral light sources.

We capture a 12×12 CWC sampling, with the radius of the sampling circle ranging from 29

to 40 with step 1. Then, we set the synthetic wavelength of the filter between 440 nm and

660 nm with an interval of 20 nm for both cameras and light sources. For depth estimation,

we set the depth range between 108 and 125 with step 0.2, so that the sphere is modeled

after 76 depth layers. We employ our consistency measurement to initialize the depth, which

takes about 5 minutes, and then reconstruct surface normal and reflectance. Fig 4.7 shows

the surface normal error map, we can see that all the degree errors are kept within 2 degrees.

The bottom row in the Fig. 4.7 demonstrates examples of spectral reflectance estimation.

Next, we test on two more complex scenes. Since these two models have more com-

plicate geometric structures, we also render the 12 × 12 CWC sampling with a higher reso-

lution (500 × 500). Specifically, we set the specular coefficient to 0.6 and 0.4 respectively,

and the roughness to 5. The wavelengths of filters are the same as those on the first scene.

The distances between objects and cameras are 41 and 34. The radius of the CWC sampling

ranges from 4 to 2.9 with step 0.1. The depths ranges are from 35 to 42 with step 0.1, and
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from 33 to 35 with step 0.1 respectively. Fig 4.8 shows our reconstruction results. Obviously,

our algorithm can achieve reasonable spectral reflectance and 3D recovered geometries, with

the maximum normal errors kept within 3 degrees. The artifacts around the right eye of the

Buddha head are caused by extra-low spectral reflectance response over all wavelengths.

4.1.4.4 Real Results

We first test our system for a simple plane scene with a color checkerboard, and the

scene setup is shown in Fig 4.9. We extract the ground truth normal of the color checkerboard

from its four corners. After reconstruction, we compute angular errors between ground truth

normal and estimated normal of each color checker. The angular errors are small (less than

8 degrees), as shown on the upper right of Fig. 4.9. The white and black patches have the

highest errors due to saturation and underexposure. To solve this problem, high dynamic

range could help on.

We then test our reconstruction algorithm on four objects with different materials

(ceramic, clay, plastic etc.). The results are shown in the Fig. 4.10 and Fig. 4.11. In the

duck and sheep scenes, our results preserve high-frequency details of the sheep body and

the duck’s wing. Besides, the girl’s face reconstruction from the last experimental result

demonstrates that our algorithm is able to recover clean reflectance and surface normal for

specular regions. We also test our algorithm on more challenging scenario, such as, the pure

red in the strawberry scene and the pure green in the cactus scene, as shown in Fig. 4.11. For

those scenes, our approach can still provide reliable reconstruction results.

For shadowed and occluded regions, since our spectral light sources are located on

a circle, a shadowed 3D point can always be lit up by some parts of the light sources. We

drop some spectral columns with large variations from our MSS-Cams before surface nor-

mal reconstruction and choose w = 5 and m = 12 for real scenes. Thus, we can drop at

most 5 pieces of spectral information. However, for larger shadowed and occluded regions,

we do not have enough spectral information to recover reflectance and surface shape simul-

taneously, such as the boundary around the dress in the last scene in the Fig 4.10 which is

largely shadowed and occluded by the dress.
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Figure 4.9: (a) scene setup. (b) the angular differences between estimated normal and ground
truth normal in each color checker. (c) the estimated reflectance curves (in red) compared
with the ground truth (in blue).
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Normal MapModel Photograph Reconstructed 3D Surface Reflectance map
(in RGB)

Figure 4.10: Shape and reflectance estimation results on real scenes with different materials.
The first column is used to visualize models in RGB. The reconstructed shapes are in the
third column. In order to visualize the recovered reflectance, we transfer the dense spectral
reflectance to RGB relfectance, as shown in the last column. It can be seen that our approach
can achieve favorable results.
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Figure 4.11: Additional shape and reflectance estimation results on real scenes with differ-
ent materials. The reconstructed shape are represented at the third column and the RGB
reflectances are shown in the last column.
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Figure 4.12: The IRWC plenoptic sampling scheme.

4.2 Face Reconstruction from IRWC Plenoptic Sampling

4.2.1 IRWC Plenoptic Sampling

Our IRWC plenoptic sampling scheme can be shown in Fig. 4.12. We design a new

hybrid sensing imaging system that consists of a LWIR (thermal) camera and a stereo pair

of NIR cameras attached to the left and right sides of the LWIR camera. Each NIR sensor in

our system samples the NIR rays and it is surrounded by a ring of LED IR lamps, which is

controlled by a flash control system. With our auxiliary NIR flashes, the reflected rays from

human eyes can be characterized for extremely efficient and accurate 3D eye localization.

The thermal camera is used to capture reliable sources (sampling) for face identification

under low light and especially under complete darkness.

For our IRWC plenoptic sampling function, we also adopt the 2PP [33] where rays are

parameterized by their intersections with two parallel planes. Similar to our CWC plenoptic

sampling, we assume all CoPs of the cameras lie on a common plane, the st plane with

z = 0. For the uv plane with z = 1, we fix it on the image plane of cameras. We use (s, t)
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to index camera position in the sampling and employ (u, v) as pixel index in each captured

image. Thus, our IRWC plenoptic function is formulated as follow:

I = P (ui, vi, si, ti, λi) (4.16)

where i = 1, 2, c are indices for the NIR cameras and the thermal camera.

4.2.2 Face Reconstruction

In this section, we provide a detailed face reconstruction framework based on our

IRWC plenoptic sampling scheme. Fig. 4.13 shows the overall pipeline of our system con-

sisting of 3 steps: (1) eye localization; (2) landmarks detection; (3) pose estimation and

frontal face rendering. First, the two NIR cameras in the system capture two pairs of stereo

images, with and without the bright-eye effect, to produce a stronger bright-eye effect which

is used to localize 2D eye positions on NIR images. Then the 3D eye positions can be es-

timated through triangulation. We project them onto the thermal image and generates valid

thermal face bounding box containing eyes. This face bounding box is further tightened by

our trained thermal face detector. Second, our trained landmarks detector detects additional

thermal facial landmarks in this face region. Combining projected thermal eyes’ locations

with the detection results, we obtain a total of 5 landmarks on the thermal image, i.e., 2 from

projecting 3D eye positions and 3 directly detected from LWIR images. Finally, the head

pose can be estimated based on these 5 landmarks by projecting a standard 3D head model

onto the thermal image and minimizing the total projection error of the landmarks. And the

frontal face can be rendered based on the Hassners method [22]. We will elaborate on each

step in the following subsections.

4.2.2.1 Eye Localization

We efficiently and reliably detect the reflected infrared rays from the human eyes on

NIR images based on the bright-eye effect and directly establish correspondences between

ray projections of the image pair. This is different from the traditional depth estimation

method, which suffers from correspondence ambiguities. With the known correspondences,

we can accurately recover 3D eye locations through triangulation.
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Figure 4.13: Pipeline of our face reconstruction.
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Figure 4.14: The principle of the bright-eye effect. When the NIR illuminator is on the
optical axis, called the eye-lit IR light source, bright eyes are captured. When the NIR illu-
minator is off the optical axis, called the face-lit IR light source, no bright eyes are observed
in the image.
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To produce strong bright-eye effects, certain conditions need to be satisfied. The

first condition is that (as discussed in [27]) the bright eyes can only be imaged if the NIR

illuminator is beaming along the optical axis of the NIR camera. In such a setting, most of

the light from the co-axis NIR illuminator can pass into the eye through the pupil, reflect

off the fundus at the back of the eyeball, and come out through the pupil back to the image

sensor. This bright-eye effect is similar to a phenomenon in photography known as the

red-eye effect, except that now only the NIR part of the spectrum is captured. The bright-

eye effect disappears when the NIR illuminator is positioned off the camera’s optical axis,

because the reflected IR light cannot enter the camera. Fig. 4.14 illustrates the underlying

principle of the effects.

The second condition for strong bright-eye effects is that the light should be effec-

tively reflective to the eyes. Behind the retina, there is ample blood in the choroid, which

nourishes the back of the eyes. The blood is completely transparent for long wavelengths

and abruptly starts absorbing at 600 nm [55]. Therefore, we use commodity IR light sources

with wavelengths of around 800 nm, controlled by our flash control system, which employs

flashes to effectively acquire the bright-eye effect with NIR cameras.

While low lighting is usually considered harmful for normal imaging situations, it

actually strengthens the bright-eye effect in our NIR images. This is because pupils are

fully dilated in the dark, and the IR light is minimally absorbed by the ocular pigment. An

exceptional advantage of the bright-eye effect is that it is insensitive to pose variations, as

shown in Fig. 4.15. Even if the subject is not facing to the optical axis of the NIR camera,

the amount of IR light reflected by the retina is sufficient to produce the bright-eye effect.

To faithfully extract positions of bright eyes from each NIR camera, we instantly

capture two sequential frames (within 70 ms) with and without the bright-eye effect. The

first frame is the face-lit only image without bright eyes using off-axis illuminating flashes,

and the second frame is the eye-lit image with bright eyes using on-axis illuminating flashes.

Then, we calculate the difference map for these two frames. With this difference map, simple

global thresholding will reveal the eye locations.

There are some special cases to be addressed, e.g., when the scene has other reflective
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Figure 4.15: Bright-eye effects of different poses. The bright-eye effect is insensitive to pose
variations under low-lighting conditions.
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Figure 4.16: Filtering out false positives in bright-eyes’ detection. (a) False positive spots
have different shapes and sizes compared with the bright-eye spots, which are usually circu-
lar and small. (b) For the same shapes and sizes, eye feature patterns in the face-lit image
are used to filter out false positive spots.

objects on the faces, such as glasses. To filter out false positive spots on the difference map,

we use eye features to distinguish eye and non-eye objects for those potential eye spots.

First, we use the shape of spots to filter out some of the false positive spots. As shown in

Fig. 4.16(a), false positive spots have different shapes and sizes compared with bright-eye

spots, which are usually circular and small. Second, when the spots have similar shapes, as

shown in Fig. 4.16(b), we compare the features extracted from corresponding positions on

the face-lit frame with standard features of true eyes to further filter out false positive spots.

After detection of eyes in the NIR stereo image pair, we recover 3D locations of eyes

through triangulation and project them back to the LWIR image, forming the eye landmarks

on thermal face images.

The triangulation of 3D eye locations can be conducted by solving a linear system.

As illustrated in Fig. 4.17, we assume the first NIR camera coordinate system to be the world

coordinate system. The projection matrix of each NIR camera is denoted as Pi = Ki[Ri|Ti],

where the Ki, Ri, and Ti (i = 1, 2, which denotes the NIR camera index) are intrinsic

rotation, extrinsic rotation, and translation matrices respectively, relative to the first NIR
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camera. Similarly, we define Pc = Kc[Rc|Tc] as the projection matrix of the LWIR camera.

Let an unknown 3D eye coordinate be X = (x, y, z) and the corresponding known

homogeneous coordinates on stereo NIR images be (u1, v1) and (u2, v2), we have the fol-

lowing relations:

si


ui

vi

1

 = Pi


x

y

z

1

 , i = 1, 2 (4.17)

where si is an unknown scalar parameter.

The two projection matrices P1 and P2 for each NIR camera can be obtained through

camera calibration and expressed as

Pi =


pi,11 pi,12 pi,13 pi,14

pi,21 pi,22 pi,23 pi.24

pi,31 pi,32 pi,33 pi,34

 , i = 1, 2 (4.18)

By combining Eqn. 4.17 and Eqn. 4.18, and eliminating the unknowns s1 and s2, we derive

a linear system:

J


x

y

z

 = b, (4.19)

J =


p1,11 − u1p1,31 p1,12 − u1p1,32 p1,13 − u1p1,33

p1,21 − v1p1,31 p1,22 − v1p1,32 p1,23 − v1p1,33

p2,11 − u2p2,31 p2,12 − u2p2,32 p2,13 − u2p2,33

p2,21 − v2p2,31 p2,22 − v2p2,32 p2,23 − v2p2,33



b =


u1p1,34 − p1,14

v1p1,34 − p1,24

u2p2,34 − p2,14

v2p2,34 − p2,24


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By solving Eqn. 4.19, we obtain unknown 3D eye coordinates as follows:
x

y

z

 = (JTJ) \ (JT b) (4.20)

Then, we obtain the position of eyes on the thermal image (uc, vc) by projecting the

recovered 3D eye location onto the thermal image based on calibration parameters. The pixel

coordinates of eyes on the thermal image uc, vc can be expressed as

sc


uc

vc

1

 = Pc


x

y

z

1

 (4.21)

where sc is a scalar and Pc is the projection matrix of the thermal camera, which can also be

obtained through calibration. We denote eye landmarks of the thermal face as (uc,l, vc,l) and

(uc,r, vc,r) for the left eye (LE) and right eye (RE) respectively.

4.2.2.2 Additional Facial Landmarks Detection

In this section, we locate 3 more face landmarks to resolve the 1D ambiguity of

the head pose. Besides two eye landmarks (LE and RE) on the thermal image, we detect

three additional landmarks on the nose tip (N) and left and right corners of the mouth (LM

and RM). We use a deep cascaded CNN to detect these landmarks on thermal face images.

It’s important to note that, we do not detect the additional facial landmarks on NIR images

and project them onto the thermal image because the NIR images cannot provide reliable

information except the bright eyes when the target is far away from the NIR cameras, as

shown in Fig. 4.21.

From the identified eye landmarks identified, our system locates a potential suffi-

ciently large face region that covers the face, where the size of the region is proportional to

the target distance and the distance between the two eyes. We apply a cascade thermal face
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Figure 4.17: Triangulation of 3D eye locations.
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Figure 4.18: The modified cascaded CNN for thermal facial landmarks (N, LM, and RM)
detection based on [51].

detector that is trained on our thermal face data set onto the potential region to tighten the

face bounding box

We designed our own additional thermal face landmark detector based on Suns deep-

cascaded CNN [51]. Fig.4.18 shows an overview of our modified model. Due to the weak

discriminative features of the eyes in the LWIR images, we eliminate the part of the eye

detection in Suns model. We adjusted three input regions in the first level of the model, which

cover the nose (N), the lower face, and the mouth (M), respectively. Each deep structure in

the first level is adjusted correspondingly since the sizes of the three input regions change.

We eliminated the parts of the eye landmark refinement and correspondingly adjusted the size

of the local search regions in the remaining levels to improve the efficiency and accuracy of

our required landmarks detection, which is shown in Section 3-4.2.3.3. Since the precise

face region can be predicted with the aid of the accurate eye locations, the cascade thermal

facial landmarks detector is only used in the face region. Therefore, we achieve accurate

detection of the three additional facial landmarks.

4.2.2.3 Pose Estimation

We perform pose estimation using 5 facial landmarks: LE, RE, N, LM, and RM.

We adopt a standard 3D human head model and extract 5 corresponding standard 3D facial

points. With the calibrated intrinsic and distortion parameters, we can estimate the rela-

tive pose of the head model to the thermal camera by solving a perspective-n-point (PnP)
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problem. We use the method in [32] to solve this problem, where the projection error is

minimized:

res =
∑
i

dist2(Kc[RQ|TQ]

 X i

1

 ,mc,i) (4.22)

where X i,mc,i = (uc,i, vc,i), i = 1, ..., 5 are 3D points in the thermal camera coordinate

system and their corresponding distortion-corrected 2D image projections on the thermal

image; dist(a,d) computes the 2D distance between points a and d; and Kc is the pre-

calibrated thermal camera intrinsic matrix. The rotation and translation matrices of the head

pose RQ, TQ relative to the LWIR camera are estimated by minimizing Eq. 4.22.

The accuracy of pose estimation with a single 3D shape is based on localizing facial

features, as demonstrated in [22]. Failures in facial landmark detection will lead to failures

in most pose estimation and correction algorithms. It is important to note: (1) our solution

can provide high pose estimation and correction accuracies since we have highly accurate

facial feature localizations, especially eye localizations; (2) it can still estimate a rewarding

approximated pose using only two derived 3D eye positions in the case of failures in the

detection of other facial features, although the estimated pose may have error (ambiguity) in

one dimension (the pitch of the head pose), However, the human head does not usually have

a large pitch angle, either looking up or down.

In particular, when we have two recovered 3D eye positions, we use only two pairs of

3D-to-2D points to perform pose estimation in the following. The 3D RE and LE positions

are noted as Xr = (xr, yr, zr) and Xl = (xl, yl, zl) in the world coordinate system, which is

the first NIR camera coordinate system. We first calculate a right vector ~r = Rc(Xl − Xr)

and its normalized vector r̂. We second calculate a up vector ~u = r̂× (0, 1, 0) and a forward

vector ~f = r̂ × û. Finally, we initialize RQ as [r̂T , ûT , f̂T ] and solve TQ through Eq. 4.22.
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4.2.2.4 Frontal Face Rendering

In this section, we perform face frontalization after pose estimation by adopting

Hassner’s method in [22]. First, We positions a virtual perspective thermal camera trans-

formed by the matrix [Rq Tq]
−1 with respect to the original thermal camera orientation.

The virtual thermal camera has plenoptic sampling P ′(u′j, v
′
j, s
′
c, t
′
c, λc) and it could cap-

ture the reference image Ir with the frontal face, shown in Fig. 4.19(c). For each pixel

m′j = [u′j, v
′
j], j = 1, 2, ..., n on the frontal face of the reference image, we store the 3D point

Xj = (xj, yj, zj)
T on the surface of the head model which is projected to m′j .

Second, we assign a thermal intensity value for each pre-stored 3D point Xj from

its projection (mj = [uj, vj]) onto the original thermal image Io (query image, such as the

example shown in Fig. 4.19(a)) as:

mj ∼ Kc[RQ|TQ]Xj (4.23)

P ′(u′j, v
′
j, s
′
c, t
′
c, λc) = P (uj, vj, sc, tc, λc) = Io(mj) (4.24)

The sampled thermal intensities Io(mj), j = 1, 2, ..., n from bi-linear interpolation

assigned to Ir(m′j) produce an initial frontalized result. Fig. 4.19(d) shows the initial frontal-

ized view.

Third, we apply soft-symmetry processing as that in [22] to refine the initial result.

Those pixels corresponding to poorly visible 3D points from the original thermal view are

reassigned with intensities of their symmetric correspondence on the other side of face. We

average the initial and refined output to obtain the final result. Fig. 4.19(e) shows our final

frontalized face image.

4.2.3 Experiments

4.2.3.1 Camera System Prototype

Fig. 4.20 shows our prototype of the hybrid sensing system. In the center of the

system is the Tamarisk 640 thermal camera. We use two FLea2 monochrome cameras

with NIR pass filters as our NIR cameras. Each NIR camera is surrounded by a Logisaf
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(a) (b) (c)

(d) (e)

Figure 4.19: Frontal face rendering overview. (a) Query image. (b) Fused landmarks image.
(c) Reference view with detected landmarks rendered from the 3D head model, each of its
pixels on the face has corresponding 3D point coordinate located on surface of the 3D model.
(d) Back-project query intensities to the reference coordinate system. (e) Frontalized result
with soft-symmetry.
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L002-48-94 IR board (940 nm), which is a component of the Logisaf CCTV camera, to

simulate the on-axis IR light source, i.e., eye-lit IR lights. We also place two extra Logisaf

L002-60-94 IR boards (940 nm) above the two NIR cameras as the off-axis light source, i.e.,

face-lit IR lights.

The first challenge in our hybrid system is the synchronization of IR illuminators,

the pair of NIR cameras and the LWIR camera for the image acquisition. We synchronize

the pair of NIR cameras through the camera operation APIs provided by Point Grey. How-

ever, it is more challenging to synchronize the on-axis and off-axis IR light sources with the

camera. For this purpose, we design an IR flash control system (shown on the left of Fig.

4.20) comprising one Phidget Interfacekit board and two relay boards. This system not only

synchronizes our IR light sources with the camera system but also turns these sources into

flashes, which makes our system more covert compared with continued NIR illumination.

The control system is programmed to first turn on off-axis IR lights; simultaneously trigger

NIR cameras to capture the first frame (without bright eyes) and turn off these lights; and

then turn on on-axis IR lights, trigger the cameras for the second frame (with bright eyes),

and turn them off. The working range of this prototype is shown in Fig. 4.21.

4.2.3.2 Calibration

The another challenge is the cross-modality cameras calibration, since the printed

chessboard or other pattern is not visible due to its uniform temperature in the LWIR image.

To efficiently calibrate the LWIR camera, we design a white pattern mold (shown in Fig.

4.22(a)) with circular holes on the board. We keep the mold at a normal temperature and

use a black exothermic board behind the mold to produce a higher temperature than that

of the board. This leads to a clear contrast between the circular holes on the mold and the

mold in the LWIR image (shown in Fig. 4.22(c)). After extracting centers of these circles

in the pattern, we use a calibration code [73] for LWIR camera calibration. Due to the

color contrast between the black board and the white mold, it is easy to detect centers of

the circles on captured images from Flea2 cameras, the example of which is shown in Fig.

4.22(b). Ultimately, we solve the calibration problem with this specially designed mold.
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Figure 4.20: Our camera system prototype.

Table 4.1 shows intrinsic calibration results for the pair of NIR cameras and the ther-

mal camera, K1, K2, and Kc. Parameters (fx, fy) represent camera focal lengths, (cx, cy)

represent optical centers expressed in pixels coordinates, k1, k2, ..., k6 represent radial dis-

tortion coefficients (k4, k5 are fixed to 1 in calibration), and p1 and p2 represent tangential

distortion coefficients. RMS in the last row of Table 4.1 illustrates root-mean-squared dis-

tances in pixels between detected image points and projected ones. Table 4.2 shows extrinsic

calibration results, R2, T2, Rc, and Tc, and the re-projection error for different stereo pairs of

cameras. This error is also calculated by RMS for all points in all the available views from

each stereo pair. The small calibration errors, both in intrinsic and extrinsic calibration result

tables, indicate that our calibration method with the designed tool is accurate and reliable.

4.2.3.3 Face Reconstruction Results

Results of Landmark Detection. In this section, we compare the performance of landmarks

detection by the method in [51] and by our method. We acquire a small data set using our

hybrid sensing system to demonstrate our method. We randomly select 65% of the data
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Figure 4.21: The working range of our prototype.

Parameters NIR Camera 1 NIR Camera 2 Thermal Camera
cx 311.2695 302.0133 322.0687
cy 258.8132 276.4582 246.3135
fx 1046.5966 1055.7334 841.6957
fy 1047.2157 1056.2581 840.2238
k1 -0.1241 -0.2270 -0.3813
k2 -3.4701 1.4192 -0.5758
p1 0.0018 0.0024 -0.0026
p2 -0.0012 0.0004 -0.0009
k3 -998.1297 572.7115 -70.6259
k6 -1046.1720 595.1688 -79.4948
RMS 0.2017 0.1810 0.3015

Table 4.1: Intrinsic calibration result.

set for training, 10% for validation, and the remaining images for testing. The training

input to the learning-based method in [51] requires labeled eye landmarks. However, it is

very difficult to manually label eye landmarks in thermal images due to lack of information

around the eyes. This can be seen in Fig. 4.25(a), where the eye region of the thermal image

is compared with the eye region of the NIR image.

We use projected eye locations in thermal images as eye landmarks together with

three labeled facial landmarks (N, LM, and RM) to train Sun’s structure in [51]. This is
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(a) Calibration mold (b) NIR image and its thresholded image

(c) LWIR image and its thresholded image

Figure 4.22: Cross-modality camera calibration.

Pairs Rotation Vector Translation Vector Re-projection Error
NIR Cam 1 to NIR Cam 2 (-0.01237; 0.00816; -0.01713) (113.34144; 0.42439; 2.83881) 0.19021
NIR Cam 1 to LWIR Cam (-0.00629; -0.00042; -0.00852) (55.06529; -0.79071; -5.88902) 0.28276

Table 4.2: Extrinsic calibration result.

the best scenario of training Sun’s structure for detection of all the five thermal facial land-

marks. For each testing data, these five “labeled” facial landmarks are used as ground truth

to compare with detected landmark results.

We use the same performance measurements in [51] to calculate the average detection

error and the failure rate for each facial point. These measurements indicate the accuracy and

reliability of the algorithm. The detection error is measured as:

err =
√

(ut − ũt)2 + (vt − ṽt)2/l (4.25)

where (ut, vt) and (ũt, ṽt) are the ground-truth position and the detected position, and l is the
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Figure 4.23: Average detection errors and failure rates of the Sun’s structure [51] and ours
on the testing data.

width of the face bounding box returned by the thermal face detector. A failure is counted if

an error is larger than 5%.

Fig. 4.23 summarizes the comparison results of landmarks detection by the learning-

based method in [51] and by our method on the testing data. Our method achieves higher

accuracy for detection of both thermal eyes and other thermal facial landmarks (N, LM, and

RM). More than 9.5%, 18.9% and 11.5% relative accuracy improvements on average errors

for N, LM and RM respectively. Besides, our thermal eyes detection has no failure, training

and testing error. For the learning-based method, lack of discriminative information around

the eyes (low contrast) in thermal images causes inaccurate eye detection and less accurate

detections of the other three facial landmarks.

Compared with the learning-based method [51] that only uses thermal images, our

method has two advantages for achieving more accurate facial landmark detection. First, it

locates eye landmarks in thermal images more accurately from 3D eye positions obtained by

two NIR images in our solution. Second, it predicts the face bounding box more precisely

based on the information of thermal eye positions and the actual distance between eyes in

3D, improving detection of the other three facial landmarks (N, LM, and RM) in the thermal
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images.

Fig. 4.24 shows an example of comparison between our face landmark detection and

sun’s method [51]. Fig. 4.24(a) shows the result of our fused eye landmarks and three more

facial landmark detection. Fig. 4.24(b) shows all the five facial landmark detection results

using [51]. Fig. 4.24(c) shows the eye landmark location comparison.

Detection Results with Eyeglasses. We also test our eye landmark detection method on

images with eyeglasses; examples are shown in the first row of Fig. 4.28. This is another

advantage of our method over the learning-based method for eye detection on a thermal

image. Our system uses extra NIR images, which are more informative in cases such as

targets wearing eyeglasses. From Fig. 4.25(b), we can see that glasses completely block

eyes on thermal images. In contrast, they have little effect on NIR images on which our eye

localization is performed.

Pose Estimation and Frontalization Results. Fig. 4.26, 4.27 and 4.28 present examples of

several scenarios. Fig. 4.26 shows the results of face images with horizontal rotation angles

between 0◦ and 60◦ and vertical rotation angles between −45◦ and 45◦. The first row shows

landmark detection results. The second row shows pose estimation results. The third row

shows pose correction results. Fig. 4.27 shows the results of face images with horizontal

rotation angles between −60◦ and 0◦ and vertical rotation angles between −45◦ and 45◦.

Fig. 4.28 shows the results of face images with glasses. These results demonstrate that our

method is effective and robust in head pose estimation.
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(a) (b) (c)

Figure 4.24: Comparison between CNN eye detection [51] (yellow points) and our method
(cyan points). (a) Our fused result. (b) Full landmarks detect result from [51]. (c) The
comparison.

(a) (b) 

Figure 4.25: Comparison between the NIR image and thermal image. (a) Eyes region com-
parison. (b) Comparison with the effect of eye-glasses.
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Figure 4.26: Experimental results with horizontal rotation angles between 0◦ and 60◦ and
vertical rotation angles between −45◦ and 45◦. The first row shows landmark detection
results, the second row shows pose estimation results, and the third row shows frontal face
rendering results.

Figure 4.27: Experimental results with horizontal rotation angles between −60◦ and 0◦ and
vertical rotation angles between −45◦ and 45◦. The first row shows landmark detection
results, the second row shows pose estimation results, and the third row shows frontal face
rendering results.
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Figure 4.28: Experimental results with eye glasses appearances.

73



Chapter 5

SHAPE RECOVERY FROM POLARIMETRIC PLENOPTIC SAMPLING

Shape from polarization(SfP) employs the Fresnel phenomenon that unpolarized light

is partially polarized after being reflected by surfaces. The polarization images can be ac-

quired by rotating a polarizer in front of a camera, the captured varying radiance can help us

infer surface normal. Such SfP techniques have three advantages. First, unlike the traditional

photometric stereo, SfP does not require controlled lighting conditions, and is applicable to

outdoor scenes. Second, it can handle a large variety of surface reflectances, ranging from

dielectrics to metals and the translucent. Last and perhaps the most important, it bypasses

feature correspondence matching and can robustly handle featureless and transparent objects.

We present a polarimetric plenoptic sampling scheme and explore a novel framework

for surface reconstruction based on our sampling. Theoretically, we derive a comprehensive

theory correlating the polarization radiance function with both surface normal and depth.

Based on this derivation, we extend the shape-from-motion theory by viewing our plenoptic

spatial sampling as a moving camera and get a new formulation under our polarimetric sam-

pling for shape reconstruction. In particular, we prove that the reconstruction framework ef-

fectively resolves the azimuth-zenith ambiguity by forming an over-constrained (non-linear)

system.

5.1 Basics on Polarization and Reflection

We first quickly review the basics on polarization. When unpolarized light is reflected

from the surface, it becomes partially polarized. There are three parameters [60] completely

determine the state of this partial linear polarization: intensity, phase angle, and degree of

polarization (DoP). The measured intensity of the transmission of a linearly polarized light
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wave passing through a polarizer with the polarizing angle α is given by the transmitted

radiance sinusoid (TRS) as:

Ip =
Imax − Imin

2
cos(2 ∗ (α− ϕ)) +

Imax + Imin
2

(5.1)

where Imax and Imin are maximal and minimal magnitudes passing through the po-

larizer, and ϕ is the phase angle. Existing SfP method obtains the phase angle and DoP ρ by

decomposing the TRS function. From the TRS equation, we find the phase angle has π/2

ambiguity. The DoP describes how much the light has been polarized. It is equal to 1 for

perfectly polarized light and 0 for unpolarized light. ρ can be computed as:

ρ =
Imax − Imin
Imax + Imin

(5.2)

Most surfaces exhibit three types of polarized reflection [7, 16]: polarized specular

reflection, polarized diffuse reflection and unpolarized diffuse reflection. When illuminated

using unpolarized lights, the former two can potentially recover surface normals. By apply-

ing Fresnel equations, the DoPs in terms of Fresnel coefficients for diffuse polarization and

specular polarization are:

ρd =
(n− 1

n
)2 sin2(θ)

2 + 2n2 − (n+ 1
n
)2 sin2(θ) + 4 cos(θ)

√
n2 − sin2(θ)

(5.3)

ρs =
2 sin2(θ) cos(θ)

√
n2 − sin2(θ)

n2 − (1 + n2) sin2(θ) + 2 sin4(θ)
(5.4)

where θ is the incident angle, n is the relative refractive index ranging from 1.4 to 1.6 for

dielectrics. In our technique, we assume n = 1.5 and later show that smaller variations on

n will not affect the final estimation since it has a slight effect on the DoP. For diffuse po-

larization, the DoP has a one-to-one mapping of the incident angle. In contrast, for specular

polarization, the θ ambiguity is shown in Fig. 5.1.

Previous studies [7] have shown that diffuse and specular polarized reflections have

a π/2 difference in the phase angle ϕ. Combining Eqn. 5.1 and Eqn. 5.2, we can rewrite the

measured intensity function for diffuse and specular polarizations as:

I(d)
p = Idp ∗ (

ρd
2

cos(2 ∗ (α− ϕ)) +
1

2
) (5.5)
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Figure 5.1: Zenith Angle vs. Degree of Polarization for specular and diffuse polarization,
note that there is an ambiguity on zenith angle for specular polarization.

I(s)
p = Isp ∗ (

ρs
2

cos(2 ∗ (α− ϕ+
π

2
)) +

1

2
) (5.6)

where Isp = (Ispmax + Ispmin) and Idp = (Idpmax + Idpmin) are unpolarized intensities for diffuse

and specular regions respectively.

5.2 Polarimetric Plenoptic Sampling

Our polarimetric plenoptic sampling can be shown in Fig. 5.2. First, We adopt the

two-plane parameterization (2PP) [33] where rays are parameterized by their intersections

with two parallel planes. We assume all CoPs of the sampling cameras lie on a common

plane, the st plane with z = 0. We fix the uv plane with z = 1 on the image plane of cameras.

Therefore, we use P = (s, t) to index camera position in the sampling and employ (u, v) as

pixel index in each captured image. For each camera position (s, t), we attach a polarizer

in front of the lenses at a specific polarizing angle αi. We use Di = [cosαi, sinαi, 0] as a

directional vector parallel to the uv/st plane to specify the polarizing angle. Our polarimetric
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Figure 5.2: Polarimetric plenoptic sampling.

plenoptic function is formulated as follow:

Ip = P (u, v, s, t, α) (5.7)

Then we derive a comprehensive theory that correlates the polarization radiance function

with both surface normal and depth under our polarimetric plenoptic sampling.

5.2.1 Polarization Radiance Function

For our polarimetric plenoptic sampling, we assume that the center view is at Pc =

[0, 0, 0]T and its coordinate system aligns with the world coordinate system. Every other

viewpoint i lies at Pi = Pc + τi where τi = (τ ix, τ
i
y, 0)T . Consider a 3D point X = [x, y, z]T

with its surface normal as N = [nx, ny, nz]
T . The viewing direction towards the point at

camera Pi is Vi = Pi −X .

The incident angle θ between the light direction and surface normal is equal to the

angle between the surface normalN and viewing direction Vi, and its trigonometric functions

can also be determined by these two terms N and Vi as cos(θ) = (N ·Vi)/‖Vi‖ and sin(θ) =
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‖N×Vi‖/‖Vi‖. By applying cos(2a) = 2 cos2(a)−1, we can model the terms cos(2(α−ϕ))

and cos(2 ∗ (α− ϕ+ π
2
)) in polarized intensity Ip with N , Vi and Di as:

κd = cos(2 ∗ (α− ϕ)) = 2(D · ((N × Vi)× Vi)xy
‖((N × V )× V )xy‖

)2 − 1 (5.8)

κs = cos(2 ∗ (α− ϕ+
π

2
)) = 2(D · (N × V )xy

‖(N × V )xy‖
)2 − 1 (5.9)

Where (C)xy = [Cx, Cy, 0]T . Combining Eqs. 5.3 5.4, 5.5 and 5.6, we can derive two

new transmitted radiance sinusoid functions in terms of N , V , n and Isp/sd for specular and

diffuse polarizations as:

I(d)
p (N, V,D) =

Idp ∗ (
κd(n− 1

n
)2‖N × V ‖2

(2 + 2n2)‖V ‖2 − (n+ 1
n
)2‖N × V ‖2 + 4(N · V )

√
n2‖V ‖2 − ‖N × V ‖2

+ 1)

(5.10)

I(s)
p (N,V,D) = Isp ∗ (

2κs(N · V )‖N × V ‖2
√
‖V ‖2n2 − ‖N × V ‖2

n2‖V ‖4 − (1 + n2)‖V ‖2‖N × V ‖2 + 2‖N × V ‖4
+ 1) (5.11)

Our derivation shows that polarization image radiance functions are only related to the sur-

face normal, depth and the intensity. Thus, we have:

P (u, v, s, t, α) = Ip(N, V (u, v, s, t), D(α)) (5.12)

5.2.2 Differential Analysis

To analyze how the polarization image changes according to the viewpoint, we make

a differential analysis. From the analysis, we derive a relation that relates camera motion to

surface normal and depth.

For a 3D point X , assume that it is projected to pixel u = (u, v)T for the center

perspective camera:

u =
xfx
z

+ cx, v =
yfy
z

+ cy (5.13)
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Figure 5.3: Optical flow for the surface.

where f = (fx, fy)
T are local lengths of the camera, and c = (cx, cy)

T are principle points.

Let Vc and Dc be viewing directions from X to the center camera and polarizing directional

vector at center, as shown in Fig. 5.3.

For the viewpoint Pi, the projected pixel position of X is u + δui with the intensity

Ip(N, Vi, Di). The camera movement can be viewed as moving the object by δXi = −τi.

We have δui = δXi � f/z = −τi � f/z. Therefore, we derive the relation analogous to the

optical flow:

Ip(N, Vi, Di) ∼= Ii(u) + (5uIi)
T δui (5.14)

where (5uIi)
T = (I iu, I

i
v)
T is spatial derivatives calculated from image Ii. By expanding

derivatives in the Eqn. 5.14, we get:

Ip(N, Vi, Di) + I iu
τ ixfx
z

+ I iv
τ iyfy

z
− Ii(u) = 0 (5.15)

where Vi is determined by depth z. We observe that the equation above only contains N , z,

and Isp (or Idp).
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5.3 Shape Recovery

Next, we show how to use above analysis to recover surface normal and depth. Recall

each view camera obeys the relation of Eqn. 5.15. We therefore can stack all these equations

to form a system of nonlinear equations. Solving this system simultaneously corresponds

to recovering the surface normal and depth. Further, if we have τi = 0 for all equations,

equivalent to all polarized images being captured at the central view, solving surface normal

from the Eqn. 5.15 corresponds to the traditional SfP.

Recall that we aim to solve a highly non-linear system, it is therefore essential to

obtain good initialization for both surface normal and depth. We apply the traditional light-

field depth estimation method [15] on the views with same polarization angles to first obtain

a coarse depth map, and then generate a coarse normal map based on it.

Surface normal initialization also enhances disambiguation for the azimuth angle.

For an unknown unpolarized intensity Isp/dp, we use the initialized depth map to warp two

polarized images with a 90-degree angle difference between the polarizer and the center

view. Next, we initialize its unknown unpolarized intensity by adding up the two polarized

images: Isp/dp = Ip(D(α)) + Ip(D(α + 90)).

We can fuse normal and depth via the following optimization. Our target function

consists of a data term Ed and a smoothness term Es as:

argmin
N,z

∑
S

E2
d + η

∑
S

Es (5.16)

where S is the 4-neighbor patch, η the weight, Ed calculated by the left hand side of Eqn.

5.15, and Es = ‖N − N̄‖2 + ‖z − z̄‖2 where N̄ and z̄ are the averages of surface normal

and depth of neighbors.

Once we get the initialization, we apply the Levenberg-Marquardt method to optimize

the surface normal and depth. In order to make above optimization converging to the global

solution, after the first optimization, we solve the optimization again initializing with the π

differences in the recovered phase angles, which can correct the recovered shape. Note that,

we do not know each measured radiance whether the polarized diffuse reflection dominates
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or the polarized specular reflection dominates, therefore, we set the data term with diffuse

and specular polarization radiance functions respectively and find the optimal results as the

final results.

We observe that viewing direction variations in the sampling further help resolve

the azimuth-zenith ambiguity. This is because the azimuth-zenith ambiguity can produce

at most four surface normal candidates at each viewpoint whereas the ground truth can be

easily derived from multiple viewpoints as the common candidate. Theoretically, 4 cameras

are enough to recover 3D shape, but, in practice we use 5×5 camera array to ensure a robust

performance.

5.4 Experiments

In this section, We first talk about our acquisition system construction. Next, we

validated our reconstruction approach on both synthetic and real data. All experiments are

conducted on a desktop with an Intel i7 7820 CPU (2.9GHz Quad-core) and 32G memory.

Our algorithm is implemented in the Matlab.

5.4.1 Camera System Construction

We construct a polarimetric camera array to evaluate our approach on real data. To

construct the camera array, we mount a polarization camera (Phoenix PHX050S-P/Q) with

8.5mm lens on a translation stage to uniformly translate the camera position on a 2D plane,

as shown in Fig. 5.4. We use the polarization camera instead of rotating a polarizer for

polarimertic sampling. LUCIDs Phoenix camera has the IMX250MZR Polarsens sensor

which incorporates a layer of polarizers, and the polarizer array layer has four different

angled polarizers (90o,45o,135o, and 0o). For each sampling camera position, we extract the

image with respect to one polarization angle from the raw image through the demosaicing

process. With this setup, we can acquire our polarimetric plenoptic sampling. The camera

resolution is 2448× 2048. We put observed objects into a photo studio kit box. The distance

between the objects and the acquisition system is about 70 cm.
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Translation 
Stage (X-Y) Polarization 

Camera

Figure 5.4: Polarimetric plenoptic sampling acquisition system setup.

5.4.2 Synthetic Result

We first generate a polarization renderer to render the polarization images. We evalu-

ate our method on a simple synthetic sphere scene where the radius of the sphere is 5 and the

distance between the camera array and object is 30. The resolution of each view is 400 by

400, and the baseline between neighboring cameras is 0.1. We capture a 5x5 plenoptic sam-

pling. we render two sphere scenes with polarized diffuse reflection and polarized specular

reflection respectively, The first column in the Fig. 5.5 shows the sample images from our

polarimetric plenoptic sampling and the recovered surfaces are shown in the second column,

the last column indicates the surface normal error map, we can see that all the degree errors

are kept within 5 degrees. Moreover, for both diffuse and specular polarization scenes, the

estimated surface normal results do not contain the large errors caused by the azimuth-zenith

ambiguity.
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Figure 5.5: Qualitative synthetic results. The first column shows the input sample images.
The second and third columns are our estimated normal maps and corresponding error maps.
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5.4.3 Real Results

Next, We test our reconstruction algorithm on a real object with ceramic material, and

the reconstruction result is shown in Fig. 5.6. We find that our reconstructed surface normal

results do not contain ambiguous shape recovery in SfP. Since our method involves polariza-

tion information which can estimate the surface normal not only on Lambertian points but

also non-Lambertian points, it provides satisfying reconstruction results for glossy objects.

The bear scene also contains more challenging textureless surface. The results demonstrate

that our technique is robust, effective and capable of handling extremely challenging specular

and textureless objects with unknown refractive index and surface reflectance.
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Model Photography Sample Images

Reconstructed 3D surface

Figure 5.6: Shape recovery,the first row shows the visualization of the model and the sample
images from our polarimetric plenoptic sampling. The shape recovery result is shown in the
second row.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, I have proposed three coded plenoptic sampling schemes. Each

coded sampling information, such as non-centric sampling, spectral sampling and polariza-

tion sampling, can improve the efficiency of 3D reconstruction. On the acquisition front, I

have developed the corresponding acquisition system for each of them. On the reconstruction

front, I have introduced specific computational photography algorithms for 3D reconstruc-

tion via the coded sampling. This chapter first summarizes each plenoptic sampling scheme,

and then introduces our future work.

6.1 Conclusions

6.1.1 R-XSlit Plenoptic Sampling

In Chapter 3, I have presented a new scheme to sample plenoptic function by using

an XSlit camera. Different from previous pinhole based approaches that require translat-

ing cameras in 3D space, I fixed the XSlit camera in 3D space but rotated the slits. I have

demonstrated that this acquisition scheme exhibits a significantly different sampling pattern

of the plenoptic sampling. In particular, under this sampling pattern, any virtual perspective

camera contains a minimal number of acquired samples. The acquired plenoptic sampling

can be further used for effective 3D reconstruction (stereo matching and space carving) and

for image-based rendering (new view synthesis and dynamic refocusing). I have also de-

rived defocus blur kernels for R-XSlit plenoptic sampling and validated our theories through

comprehensive experiments on both synthetic and real data.

On the requirement of mechanically rotating the slit to sample the plenoptic function,

I admit that this is a limitation in this initial study, although our scheme has two major ad-

vantages compared with regular acquisition with pinhole camera. First, if we fix one slit and
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rotate the other, we will acquire a plenoptic sampling which has the same ray sampling pat-

tern as translating a pinhole camera along a line. However, rotating the lens/camera is much

easier than translating the camera along a line. Second, in cases such as endoscopic imag-

ing, it is very difficult to translate a camera. Our rotation scheme successfully overcomes

this limitation.

6.1.2 Wavelength Coded Plenoptic Sampling

In Chapter 4, I have firstly presented the CWC plenoptic sampling scheme to recover

specular surfaces. By using the MSS-Cam, I have proposed new consistency measurements

to separate Lambertian points and non-Lambertian points, and then I have developed a robust

algorithm to reconstruct shape and reflectance for surfaces with specularity that benefits of a

wide range of vision and graphics tasks.

Second, I have developed a collaborative hybrid infrared sensing system based on

our proposed IRWC plenoptic sampling scheme by combining computational imaging and

illumination so as to achieve 3D face reconstruction under low-light and uncooperative con-

ditions. Our method uses the special bright-eye effect of human eyes to facilitate 3D eye

localization, which can be used to accurately determine the face pose and geometry. This

will lead to a new class of face registration algorithms featuring 2D + 3D concepts. And our

active hardware eye localization solution is more accurate, robust and fast. It also allows for

fast face/head movement, common for unconstrained conditions.

6.1.3 Polarimetric Plenoptic Sampling

In Chapter 5, I have presented a novel polarimetric plenoptic sampling scheme and a

framework for recovering specular and textureless objects. Traditional shape-from-polarization

techniques suffer from the azimuth-zenith angle ambiguity. I have proved that our sampling

scheme effectively resolves this ambiguity. I have derived a comprehensive theory to corre-

late the polarization radiance function with both surface normal and depth, and then I have

derived a new differential formulation under our polarimetric plenoptic sampling for shape
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reconstruction. Comprehensive experiments on synthetic and real data demonstrate our pro-

posed technique is robust and effective for specular and textureless object reconstruction.

6.2 Future work

There are several exciting directions that I plan to explore in the future. For the

R-XSlit plenoptic sampling, our immediate future work is to conduct experiments that in-

dividually rotate each slit to acquire the complete 4D plenoptic sampling. There are many

interesting questions regarding the resulting light field including the ray density distribution

when compared with the LF camera based on microlenslet array, its effects on refocusing

quality (aliasing vs. blur kernel), its usefulness in depth inference, etc.

Moreover, the R-XSlit plenoptic sampling also reveals a previously overlooked prop-

erty: a plenoptic sampling acquired by a multi-perspective camera is potentially better for

rendering perspective images. This is illustrated in the ray density analysis in image-based

rendering. On the contrary, the same argument can be made that a plenoptic sampling ac-

quired by a perspective camera (e.g., a camera array) can better render a multi-perspective

virtual view. We can interpret such a phenomenon in terms of ray geometry in 4D space as

an image, perspective or multi-perspective, is a 2D planar cut (the General Linear Camera)

in the ray space where ray samples can be viewed as intersections of the GLC plane with

the sampling camera planes. In the future, I plan to study the corresponding theories and

validate them through experiments using various plenoptic sampling acquisition solutions.

For other plenoptic sampling schemes (CWC plenoptic sampling, IRWC plenoptic

sampling, and polarimetric plenoptic sampling), I acquired them by perspective camera ar-

rays. Their reconstruction approaches can be potentially combined with the small baseline

plenoptic sampling analysis (similar to [59]) to enhance geometric details to retrieve better

initialization at the first glance. In fact, it will be highly desirable to develop a multi-scale so-

lution to handle objects/scenes at different scales, which is also part of our immediate future

work. For the infrared hybrid camera array, I can increase the number of infrared cameras

and extend the near infrared flashing working range to recover high-resolution geometric
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details from near infrared imaging. For the CWC and polarimetric plenoptic sampling ac-

quisitions, instead of using the translation stage, I can build two camera arrays with spectral

filters and polarizers respectively to reconstruct a dynamic scene.

My current approaches fail to use the semantic information. Recent advances on deep

learning [71] exploit rich appearance data for modeling surface and can be integrated into our

framework to pre-partition plenoptic sampling contents according to their material types. On

the other hand, I intend to explore alternative surface reflectance models, including the ones

obtained through deep learning, for more efficient geometry and material approximations.
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in this dissertation and the permission letters from Mr. Yu Ji, Mr. Wei Yang, Mr. Haiting

Lin, Mr. Yang Yang, Mr. Xinqing Guo, Mr. Zhong Li, and Mrs. Nianyi Li for using their

facial images in this dissertation.
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