MEMORANDUM
RM-4345-PR
JANUARY 1965

THE NUMERICAL SOLUTION OF THE CHEMICAL EQUILIBRIUM PROBLEM

R. J. Clasen

PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

MEMORANDUM

RM-4345-PR
JANUARY 1965

THE NUMERICAL SOLUTION OF THE CHEMICAL EQUILIBRIUM PROBLEM

R. J. Clasen

This research is sponsored by the United States Air Force under Project RAND-Contract No. AF 49(638)-700 monitored by the Directorate of Development Plans. Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions contained in this Memorandum should not be interpreted as representing the official opinion or policy of the United States Air Force.

DDC AVAILABILITY NOTICE
Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC).

PREFACE

This Memorandum is one in a continuing series of RAND publications dealing with theoretical computational questions arising from the RAND program of research in biology and physiology. The Memorandum contributes to our ability to apply computer technology to the analysis of complex chemical systems by considering the "chemical equilibrium problem," the problem of determining the distribution of chemical species that minimizes the free energy of a system while conserving the mass of each of the chemical elements.

Solutions to the chemical equilibrium problem published up to this time $[4,5]$ apply to those problems for which an estimate of the solution exists. This Memorandum considers a problem for which no estimated solution exists and solves that problem with the maximum precision now available.

The mathematical aspects of this Memorandum should also be of interest in other fields where computational analyses of complex chemical systems are under consideration, e.g., in studies of rocket propulsion systems, planetary atmospheres, re-entry problems, etc.

FOREWORD

In deciding between the languages of mathematics and physical chemistry, we have chosen in this Memorandum to use that of mathematics. The disadvantage of this choice is that the physical chemist may experience some difficulty in immediately identifying certain concepts. The advantage is that mathematical language divorces the methods from the physical assumptions involved in constructing a mathematical model of a physical system.* The mathematical methods are, hence, free to transcend their specific chemical applications.

The methods given here do not solve every problem that is specified in the given" mathematical form. The solution of a problem in which some phase vanishes (a degenerate problem) requires further work. Some work has been done on particular degenerate systems [13], but the accurate numerical solution of a large general system of this type has yet to be accomplished. Until recently, a skilled physical chemist could intuitively eliminate the degeneracies of his model and

[^0]obviate the need for solving a degenerate system. But, as problems grow, eliminating degeneracy becomes increasingly difficult. Frequently, the point at which the problem becomes too large for the physical chemist to decide whether or not to include a phase coincides with the point at which the problem becomes numerically unwieldy. Hopefully, the future will eliminate these difficulties.

Statements about convergence and convergence tests exist, unless otherwise indicated, in the context of finiteaccuracy numerics. Statements of this kind do not mean, in the absence of qualification, that no problem exists nor that no machine would serve as a counter example. Rather they are simply descriptions of what was found to occur in actual practice.

No attempt has been made to describe those methods which were tried and found wanting. The methods presented are those which are best for the largest number of cases. Finally, it should be pointed out that although computing time was a factor, it was considered secondary to accuracy of results.

ACKNOWLEDGMENTS

The author wishes to thank J. C. DeHaven, E. C. DeLand, F. R. Gilmore, and N. Z. Shapiro for their many constructive comments and suggestions.

CONTENTS

PREFACE iii
SUMMARY v
FOREWORD vii
ACKNOWLEDGMENTS ix
Section

1. INTRODUCTION 1
2. THE INITIAL SOLUTION 5
The Projection Method 5
The Linear Programming Method 9
3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, FIRST-ORDER METHOD 15
4. THE FIRST-ORDER METHOD FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM 21
5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, SECOND-ORDER METHOD 28
6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM 33
7. SUMMARY OF THE COMPUTATION PROCEDURE 35
Appendix
A. A FORTRAN-IV PROGRAM FOR SOLVING THE CHEMICAL EQUILIBRIUM PROBLEM 37
General Description 37
Subroutines 41
Listing 45
Calling Sequence for Simplex Subroutine 56
B. MATRIX NOTATION AND FURTHER PROOFS 67
REFERENCES 79

1. INTRODUCTION

For the purposes of this Memorandum, the chemical equilibrium problem is merely a name we use for a particular mathematical programming problem, i.e., the problem of minimizing a particular nonlinear function $F\left(x_{1}, x_{2}\right.$, ..., x_{n}), defined below, while satisfying the linear restraints or constraints

$$
\sum_{i=1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2,3, \ldots, m
$$

with $x_{j} \geq 0$ for $j=1,2, \ldots, n$ and $a_{i j}, b_{i}$ given constants. Assuming that the equations of (1.1) are linearly independent, then in order to have a non-trivial problem it can be assumed that $m<n$. The variables $x_{1}, x_{2}, \ldots, x_{n}$ can be considered components of a vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Solving the chemical equilibrium problem then is the problem of determining this vector. The variable x_{j} will be referred to as the " ${ }^{\text {th }}$ component"; also the numerical value of x_{j} may be referred to as the "component" rather than using the perhaps linguistically correct but cumbersome term "component value."

The components are partitioned into p non-empty subsets called compartments. Let us denote these compartments by $\langle 1\rangle,\langle 2\rangle, \ldots,\langle\mathrm{p}\rangle$. Then if the $j^{\text {th }}$ component is in the $k^{\text {th }}$ compartment, we will say $j \in\langle k\rangle$, where each component is in exactly one compartment. The number of the compartment that the $j^{\text {th }}$ component is in is denoted by $[j]$. Hence $j \in\langle k\rangle$ implies $[j]=k$, and conversely. Each compartment has associated with it a sum defined by

$$
\begin{equation*}
s_{k}=\sum_{j \in\langle k\rangle} x_{j} . \tag{1.2}
\end{equation*}
$$

The component fraction \hat{x}_{j} is defined by $\hat{X}_{j}=\frac{x_{j}}{S_{[j]}}$ whenever $S_{[j]}>0$.

The objective function to be minimized over (1.1)
is

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{j=1}^{n} x_{j}\left(c_{j}+\log \hat{x}_{j}\right) \tag{1.3}
\end{equation*}
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are given constants, called objective constants.

When an x_{j} is zero, $\log \hat{x}_{j}$ is undefined; but we define $0 \log 0$ to equal 0 so that we may evaluate F when
some components are zero. A feasible solution to the chemical equilibrium problem is defined to be any set of non-negative components that satisfies (1.1). The problem is said to be feasible if it has feasible solutions. If no feasible solution is arbitrarily large in any component, the feasible problem is said to be bounded feasible; all practical problems with which one might have occasion to deal are bounded feasible.

A solution or optimal solution to a bounded feasible problem is any feasible solution in which $F\left(x_{1}, \ldots, x_{n}\right)$ attains the minimum value over all feasible solutions. A problem which has optimal solutions in which some component is zero is called degenerate, and a bounded feasible problem in which the components in any optimal solution are all strictly positive is called a non-degenerate problem. It has been shown [1, Theorem 12.1] that a non-degenerate problem has exactly one optimal solution. Hence, we may speak of the solution to the problem. Furthermore, it has also been shown ${ }^{*}$ for the non-degenerate problem that the minimization of F is equivalent to the existence of numbers $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, called Lagrange multipliers, which satisfy:

[^1]$$
\sum_{i=1}^{m} \pi_{i} a_{i j}=c_{j}+\log \hat{x}_{j} . \quad j=1,2,3, \ldots, n
$$

In the following sections we derive conditions, analogous to (1.4), which are useful in solving the problem. In Sec. 2 we are interested in finding a solution to (1.1) with all $x_{j}>0$. A set of x_{j} which satisfies these conditions is called a positive feasible solution. If (1.1) is satisfied with $x_{j} \geq 0$, we have called such a result a feasible solution. The theory of linear programming gives us methods of finding feasible solutions to problems with linear restraints. In Sec. 2, we use a linear programing technique to find a positive feasible solution. In Sec. 4 we show how to modify the initial positive feasible solution to get the solution to the problem.

2. THE INTTIAL SOLUTION

The algorithms presented in the following sections require an initial positive feasible solution in order that the procedure for solving the problem can be initiated. Frequently, an individual with a problem to solve will be able to give a rather accurate estimate of its optimal solution. This estimate may be the exact solution of another problem which differs from the one being considered in relatively minor ways.

THE PROJECTION METHOD

Let us suppose that such is the case, and let us denote the estimate of the component's by $y_{1}, y_{2}, \ldots, y_{n}$. These values, substituting y_{j} for x_{j} in Eq. (1.1), will not generally satisfy (1.1), being somewhat in error. Let us denote these errors by $g_{1}, g_{2}, \ldots, g_{m}$; that is, let

$$
\begin{equation*}
g_{i}=b_{i}-\sum_{j=1}^{n} a_{i j} y_{j} . \quad i=1,2, \ldots, m \tag{2.1}
\end{equation*}
$$

Then, we wish to find corrections to y_{j} such that, denoting the corrections by θ_{j}, we have

$$
b_{i}-\sum_{j=1}^{n} a_{i j}\left(y_{j}+\theta_{j}\right)=0 \quad i=1,2, \ldots, m
$$

or

$$
\begin{equation*}
g_{i}=\sum_{j=1}^{n} a_{i j} \theta_{j} \cdot \quad i=1,2, \ldots, m \tag{2.2}
\end{equation*}
$$

The θ_{j} must also be chosen such that $y_{j}+\theta_{j}>0$, for all j. We cannot guarantee this condition, but we can attempt to choose small values for θ_{j}. One way to do this is to minimize

$$
\sum_{j=1}^{n} w_{j} \theta_{j}^{2}
$$

subject to (2.2), where ${ }^{w} j$ is the "weight" or relative importance of minimizing θ_{j}. This reduces to the problem of finding Lagrange multipliers $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, such that with

$$
\begin{equation*}
L=\frac{1}{2} \sum_{j=1}^{n} w_{j} \theta_{j}^{2}-\sum_{i=1}^{m} \pi_{i}\left(\sum_{j=1}^{n} a_{i j} \theta_{j}-g_{i}\right) \tag{2.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\partial L}{\partial \theta_{j}}=0 . \quad j=1,2, \ldots, n \tag{2.4}
\end{equation*}
$$

Equation (2.4) becomes

$$
\begin{equation*}
w_{j}^{\theta}{ }_{j}=\sum_{i=1}^{m} a_{i j} \pi_{i} \quad j=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

and substituting (2.5) into (2.2) we have

$$
\begin{equation*}
g_{i}=\sum_{\ell=1}^{m}\left[\pi_{\ell}\left(\sum_{j=1}^{n} \frac{a_{\ell j} a_{i j}}{w_{j}}\right)\right] \cdot i=1,2, \ldots, m \tag{2.6}
\end{equation*}
$$

The terms

$$
\sum_{j=1}^{n} \frac{a_{\ell j} a_{i j}}{w_{j}}
$$

can be immediately evaluated; let us denote these terms by

$$
\begin{equation*}
q_{\ell i}=\sum_{j=1}^{n} \frac{a_{\ell j} a_{i j}}{w_{j}} . \tag{2.7}
\end{equation*}
$$

Note that $q_{\ell, i}=q_{i \ell}$. Then, (2.6) becomes

$$
\begin{equation*}
g_{i}=\sum_{\ell=1}^{m} q_{\ell i} \pi_{\ell} . \quad i=1,2, \ldots, m \tag{2.8}
\end{equation*}
$$

Equation (2.8) is a set of m simultaneous equations in the m unknowns, $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$. These equations may be solved for $\pi_{1}, \pi_{2}, \ldots, \pi_{m}$, and then these values may be substituted in (2.5) to get $\theta_{1}, \theta_{2}, \ldots, \theta_{\mathrm{n}}$. There remains the question of choosing values for the weighting factors w_{j}. In tests of this method, it has been found that using

$$
w_{j}=\frac{1}{y_{j}}
$$

yields satisfactory results. The choice of the weighting factors depends, to some extent, on the available computers. Using these weighting factors, we can summarize the computation of θ_{j} in the following three equations:

$$
q_{\ell i}=\sum_{j=1}^{n} a_{\ell j} a_{i j} y_{j} \quad \begin{align*}
& i=1,2, \ldots, m \tag{2,9}\\
& \ell=1,2, \ldots, m
\end{align*}
$$

$$
\begin{equation*}
\sum_{\ell=1}^{m} q_{\ell i^{\pi}}=b_{i}-\sum_{j=1}^{n} a_{i j} y_{j} \quad i=1,2, \ldots, m \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{j}=y_{j} \sum_{i=1}^{m} a_{i j} \pi_{i} \quad j=1,2, \ldots, n \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{j}=y_{j}+\theta_{j} . \quad j=1,2, \ldots, n \tag{2.12}
\end{equation*}
$$

The x_{j} from (2.12) will satisfy (1.1). However, the x_{j} need not all be strictly positive. If any x_{j} is zero or negative, this method of obtaining the initial solution, which we shall call the projection method, has failed. If the projection method fails, or if no initial estimate is provided, then a linear programming method may be used.

THE LINEAR PROGRAMMING METHOD

The terminology used in linear programming is similar to the terminology used above in describing the chemical equilibrium problem. The statement of a linear programming problem includes a set of linear restraints

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i j} x_{j}=b_{i} \quad i=1,2, \ldots, m \tag{2.13}
\end{equation*}
$$

together with a set of constants $C_{1}, C_{2}, C_{3}, \ldots, C_{n}$, called costs. A feasible solution to a linear programming problem is any set of non-negative X_{j} such that (2.13) is satisfied. The costs are used to form the following expression, L, which is called the objective function

$$
\begin{equation*}
L=\sum_{j=1}^{n} C_{j} x_{j} \tag{2.14}
\end{equation*}
$$

For every set of feasible x_{j}, we can evaluate L. The set of feasible x_{j} for which L has the minimum value that it can have with any set of feasible x_{j}, is called a solution of the linear programming problem. A problem which has sets of feasible x_{j} is called a feasible problem, and a problem in which there are no sets of feasible x_{j} is called an infeasible problem. An infeasible problem has no solutions, while a feasible problem has at least one solution. In this discussion, we will not be concerned as to whether a problem has more than one solution: we will only be concerned with finding a solution to the problem. Since the means of finding a solution to a linear programming problem has been the subject of many papers and books, we will not give an actual method of solving the linear programming problem here. The reader may refer to Dantzig [2] for a complete discussion of the problem.

The problem of finding a feasible solution to a linear programing problem is itself a linear programming problem--that is, it involves finding a solution to the
problem with all C_{j} equal to zero. With all $C_{j}=0$, L in (2.14) is zero for any set of feasible x_{j}; hence, L is at its minimum value for any set of feasible x_{j}. Since L is at its minimum value for any feasible set of x_{j}, any feasible set of x_{j} is, by the above definition, a solution to the linear programming problem.

However, we must not only find a feasible solution to the linear programming problem, we must also find a positive feasible solution to the problem. In order to do this, we let

$$
\begin{equation*}
x_{j}=y_{j}+y_{n+1} \cdot \quad j=1,2, \ldots, n \tag{2.15}
\end{equation*}
$$

If we can find non-negative values of $y_{1}, y_{2}, \ldots, y_{n+1}$ which satisfy

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j}\left(y_{j}+y_{n+1}\right)=b_{i} \quad i=1,2, \ldots, m \tag{2.16}
\end{equation*}
$$

then x_{j}, as defined by (2.15), will be a feasible solution. If we can somehow assure that y_{n+1} is positive, then all x_{j} will be positive. Rewriting (2.16), we have

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} y_{j}+\left(\sum_{j=1}^{n} a_{i j}\right) y_{n+1}=b_{i} . \quad i=1,2, \ldots, m \tag{2.17}
\end{equation*}
$$

If we now specify $C_{1}, C_{2}, \ldots, C_{n+1}$, we have a linear programming problem in $n+1$ unknowns. In order to guarantee that y_{n+1} is positive, if it is possible for it to be positive, we can maximize y_{n+1}. It is easy to see that we can maximize y_{n+1} by setting

$$
\begin{equation*}
L=-y_{n+1} \tag{2.18}
\end{equation*}
$$

which is equivalent to setting $C_{1}=C_{2}=C_{3}=\ldots=C_{n}=0, C_{n+1}=-1$. If the solution to the resulting linear programming problem is feasible and $y_{n+1}>0$, then we have, by (2.15), a positive feasible solution to the analogous chemical equilibrium problem (1.1). If the linear programing problem is feasible but $y_{n+1}=0$, then the analogous chemical equilibrium problem is degenerate, since there is no strictly positive solution to the problem. However, this is a rather trivial kind of degeneracy, and its occurrence usually indicates that a mistake was made in setting up the problem. Hence, this linear programming method gives us a way of finding a positive feasible solution to the chemical equilibrium problem if the chemical equilibrium problem is non-degenerate.

The positive feasible solution that we obtain by this method will generally not resemble the final solution of the chemical equilibrium problem. The initial positive feasible solution can be improved by the following technique. Define b_{m+1} to be some multiple, between zero and one, of the value of y_{n+1} that was obtained above. Then, adjoin to the linear restraints (2.17) one more restraint of the form $y_{n+1}=b_{m+1}$. Next, solve the linear programming problem with these restraints and with $C_{1}=c_{1}, C_{2}=c_{2}$, $\ldots, C_{n}=c_{n}, C_{n+1}=0$ (recall that the lower-case c's here refer to the c's in the chemical equilibrium problem (1.3)). The solution to this linear programming problem will give a set of components more nearly resembling the solution to the chemical equilibrium problem than did the components calculated from Eqs. (2.17) and (2.18). This new solution, in turn, may be improved by solving another linear programming problem (the details of which can be seen in SUBROUTINE LP in Appendix A) and averaging the new solution with the old solution.

In order to solve an elaborate chemical equilibrium problem it is not sufficient to simply use a method which we can prove converges to the correct solution. Proofs of convergence generally assume infinite computational accuracy, but since we are usually limited in practice to
about eight significant digits, the numerical solution will not always converge. However, it has been observed that the closer we can get to the solution by the initial solution methods described above, the greater will be the probability that the numerical procedure will converge. Furthermore, not only will the probability of convergence be greater, but the number of iterations to get to the solution will be fewer, and hence--when an improved initial solution is used--the computation time will be shorter. Unfortunately, the mathematical methods that are available for analyzing convergence of iterative processes do not, in the case of the chemical equilibrium problem, enable us to prove convergence when we are limited to finite mathematical accuracy. Only experience with a particular method will tell us whether it is a useful numerical procedure to use.

In the next section we consider a somewhat more general problem than the chemical equilibrium problem. This problem is considered first because the numerical results take on an especially simple form when the additional generality is admitted.

3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, FIRST-ORDER METHOD

In this section we consider the problem of minimizing

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{j=1}^{N} x_{j}\left(c_{j}+d_{j} \log x_{j}\right) \tag{3.1}
\end{equation*}
$$

while satisfying the linear restraints

$$
\sum_{j=1}^{N} a_{i j} x_{j}=b_{i} . \quad i=1,2,3, \ldots, M
$$

The symbols $a_{i j}, b_{i}, c_{j}$, and d_{j} denote constants, and $x_{1}, x_{2}, \ldots, x_{N}$ are the unknowns that we seek. We restrict the problem to the case that $d_{j} \neq 0$ for $j=1,2,3, \ldots, N$. We note that if $x_{j}<0$, the term in (3.1), $x_{j}\left(c_{j}+d_{j} \log x_{j}\right)$, is undefined, whereas if $x_{j}>0$ this term is defined. If $x_{j}=0$ we define $x_{j}\left(c_{j}+d_{j} \log x_{j}\right)=0$, since this expression approaches zero as $x_{j}>0$ approaches zero. From this discussion, we see that, in order for a solution of Eqs. (3.1) and (3.2) to be defined, we must assume that $x_{j} \geq 0$ for $j=1,2,3, \ldots, N$.

We may attempt to solve this problem using Lagrange multipliers.* In this method we let

$$
L=F\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)-\sum_{i=1}^{M}\left[\pi_{i}\left(\sum_{j=1}^{N} a_{i j} x_{j}-b_{i}\right)\right]
$$

and then set

$$
\frac{\partial L}{\partial x_{j}}=0
$$

for $j=1,2,3, \ldots, N$. Performing the partial differentiation, we get

$$
\begin{align*}
& c_{j}+d_{j} \log x_{j}+d_{j}-\sum_{i=1}^{M} \pi_{i} a_{i j}=0, \tag{3.3}\\
& j=1,2,3, \ldots, N
\end{align*}
$$

or, when rearranged,

$$
\begin{equation*}
\log x_{j}=d_{j}^{-1}\left[\sum_{i=1}^{M} \pi_{i} a_{i j}-c_{j}-d_{j}\right] \tag{3.4}
\end{equation*}
$$

[^2]Exponentiating both sides of (3.4), we get

$$
\begin{equation*}
x_{j}=\exp \left[d_{j}^{-1} \sum_{i=1}^{M} \pi_{i} a_{i j}^{\alpha}-d_{j}^{-1} c_{j}-1\right] . \tag{3.5}
\end{equation*}
$$

F Note that for (3.5) to be a solution to the problem, we must have all $x_{j}>0$. We assume, in the remainder of this section, that the solution does have all $\mathrm{x}_{\mathrm{j}}>0$. Then, the problem reduces to the problem of determining the M_{i} so that the x_{j} from (3.5) satisfy (3.2) Equivalently, the $M+N$ equations (3.2) and (3.5) must be satisfied simultaneously by the proper choice of the $M+N$ unknowns, $\pi_{1}, \pi_{2}, \ldots, \pi_{M}, x_{1}, x_{2}, \ldots, x_{N}$. We now consider two methods of approximating the solution.

In the first method, we suppose that we have an estimate of the x_{j} which may or may not satisfy (3.2). We denote this estimate by y_{j}, and, in this method, solve Eqs. (3.2) and (3.4) simultaneously by making a linear approximation to $\log x_{j}$. Since we have the estimate that x_{j} is near y_{j}, we note that the first-order Taylor expansion of $\log x_{j}$ about y_{j} is

$$
\begin{equation*}
\log x_{j}=\log y_{j}+\frac{x_{j}-y_{j}}{y_{j}}+\text { (higher-order terms) } \tag{3.6}
\end{equation*}
$$

Dropping the higher-order terms, and substituting (3.6) into (3.4) and solving for x_{j}, we have

$$
\begin{equation*}
x_{j}=y_{j}\left[d_{j}^{-1} \sum_{i=1}^{M} \pi_{i} a_{i j}^{\alpha}-d_{j}^{-1} c_{j}-\log y_{j}\right] . \tag{3.7}
\end{equation*}
$$

Now, if we substitute these x_{j} into (3.2), we get

$$
\begin{gathered}
\sum_{\ell=1}^{M}\left(\sum_{j=1}^{N} d_{j}^{-1} a_{i j}^{\alpha} a_{\ell j}^{\beta} y_{j}\right) \pi_{\ell}=b_{i}+\sum_{j=1}^{N} a_{i j}^{B} y_{j}\left(\log y_{j}+d_{j}^{-1} c_{j}\right) \\
i=1,2,3, \ldots, M
\end{gathered}
$$

Denoting

$$
r_{i \ell}=\sum_{j=1}^{N} d_{j}^{-1} a_{i j}^{\alpha} a_{\ell j}^{\beta} y_{j} \quad \begin{array}{ll}
\ell=1,2,3, \ldots, M \tag{3.8}\\
i=1,2,3, \ldots, M
\end{array}
$$

and

$$
\begin{equation*}
s_{i}=b_{i}+\sum_{j=1}^{N} a_{i j}^{A} y_{j}\left(\log y_{j}+d_{j}^{-1} c_{j}\right), \tag{3.9}
\end{equation*}
$$

we have

$$
\sum_{i=1}^{M} r_{i \ell} \pi_{\ell}=s_{i} \cdot \quad i=1,2,3, \ldots, M
$$

Equation (3.10) is a set of simultaneous equations which can be solved for $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$.

With the above results, we can now define the iterative process for the first method. At each iteration we have a set of values for $x_{1}, x_{2}, \ldots, x_{N}$. At the beginning of the iteration these values are called $y_{1}, y_{2}, \ldots, y_{N}$, and at the end of the iteration the values are $x_{1}, x_{2}, \ldots, x_{N}$. If

$$
\frac{x_{j}-y_{j}}{y_{j}}
$$

is small for each j, then we say we have converged. The magnitude of "smal1" depends on the nature of the problem. If

$$
\frac{x_{j}-y_{j}}{y_{j}}
$$

is not small for some j, then we have not converged and the iteration must be repeated. One iteration consists of the following three steps:

1) Evaluate terms in Eqs. (3.8) and (3.9), these terms depending on $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{N}}$;
2) Solve Eq. (3.10) for $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$;
3) Substitute $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$ into (3.7) to get $x_{1}, x_{2}, \ldots, x_{N}$.
For this problem, in this generality, we can say nothing about whether this iterative process converges. In the next section we will show that the chemical equilibrium problem is a special case of this problem, and one for which, with appropriate modification, this method does converge.

4. THE FIRST-ORDER METHOD FOR SOLVING THE

CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is a special case of the linear-logarithmic programming problem. In order to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1) and (1.3), we first define

$$
\begin{aligned}
& N=n+p \\
& M=m+p
\end{aligned}
$$

where, as stated previously, p is the number of compartments in the problem. Then we define $a_{i j}, b_{i}, x_{j}$, and c_{j}, for $i>m$ and $j>n$, as follows

$$
\begin{array}{ll}
b_{i}=0 & i=m+1, m+2, \ldots, M, \\
c_{j}=0 & j=n+1, n+2, \ldots, N \\
x_{k+n}=S_{k} & k=1,2, \ldots, p
\end{array}
$$

$$
a_{i j}=\left\{\begin{align*}
0 & \text { if } i \leq m, j>n \tag{4.4}\\
1 & \text { if } i>m, j \leq n, \text { and }[j]=i-m \\
0 & \text { if } i>m, j \leq n, \text { and }[j] \neq i-m \\
-1 & \text { if } i>m, j>n, \text { and } i-m=j-n \\
0 & \text { if } i>m, j>n, \text { and } i-m \neq j-n
\end{align*}\right.
$$

For all j, we define

$$
d_{j}=\left\{\begin{array}{l}
+1 \quad \text { if } j \leq n \tag{4.5}\\
-1 \quad \text { if } j>n
\end{array}\right.
$$

With these definitions, it has been shown [4] that the two problems are identical. Next, we let

$$
\begin{align*}
& x_{j}=y_{j}+\theta_{j} \tag{4.6}\\
& \pi_{i}= \begin{cases}\pi_{i}^{\prime} & i \leq m \\
\pi_{i}^{\prime}+\log S_{i-m}+1 . & i>m\end{cases}
\end{align*}
$$

Substituting Eqs. (4.1) through (4.6) into (3.7) through (3.10) and simplifying, we have

$$
\begin{array}{r}
\theta_{j}=y_{j}\left[\sum_{i=1}^{m} a_{i j} \pi_{i}^{\prime}-c_{j}-\log \hat{y}_{j}+\pi_{[j]+m}^{\prime}\right] \tag{4.7}\\
j=1,2, \ldots, n
\end{array}
$$

$\left(\sum_{j=1}^{n} a_{i j}^{\beta} a_{\ell j}^{\alpha}{ }_{j}\right.$
$\ell \leq m, i \leq m$
$r_{i \ell}= \begin{cases}\sum_{j \in\langle i-m\rangle} a_{\ell j} y_{j} & \ell \leq m, i>m \\ \sum_{j \in\langle\ell-m\rangle} a_{i j} y_{j} & \ell>m, i \leq m\end{cases}$
$\mathrm{s}>\mathrm{m}, \quad \mathrm{i}>\mathrm{m}$
$s_{i}^{\prime}=\left\{\begin{array}{l}b_{i}+\sum_{j=1}^{n} a_{i j} y_{j}\left(c_{j}+\log \hat{y}_{j}-1\right) \\ \sum_{j \in\langle i-m\rangle} y_{j}\left(c_{j}+\log \hat{y}_{j}\right) \quad i \leq m\end{array}\right.$
M
$\sum_{\ell=1} r_{i \ell} \pi_{i}^{\prime}=s_{i}^{\prime} . \quad i=1,2, \ldots, M$

The directional derivative of F in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is given by [1, Theorem 8.11] to be

$$
\begin{equation*}
\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) \tag{4.11}
\end{equation*}
$$

But, if we compute $\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}$ where by (3.7)

$$
\begin{equation*}
\theta_{k+n}=S_{k}\left[\pi_{m+k}-\log S_{k}-1\right]=S_{k} \pi_{m+k}^{\prime}{ }_{k=1,2, \ldots, p} \tag{4.12}
\end{equation*}
$$

we show, in Appendix B, that
$\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=-\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)+\sum_{i=1}^{m} \pi_{i}\left(b_{i}-\sum_{j=1}^{n} a_{i j} y_{j}\right)$.

Thus, if we assume that $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible, we get the interesting result that the directional derivative of F in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ is

$$
\begin{equation*}
\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)=-\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \leq 0 \tag{4.14}
\end{equation*}
$$

However, it is also shown in Appendix B that the equality on the right side of (4.14) holds if and only if the values for y_{j} are optimal. We further note that if $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible, then

$$
\sum_{j=1}^{n} a_{i j} \theta_{j}=0
$$

for $i=1,2, \ldots, m$. Hence, if $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible, then $\left(y_{1}+\lambda \theta_{1}, y_{2}+\lambda \theta_{2}, \ldots, y_{n}+\lambda \theta_{n}\right)$ will be feasible for any λ for which each $y_{j}+\lambda \theta_{j}$ is positive.

We now state the first-order chemical equilibrium algorithm:

1) Calculate $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ using Eqs. (4.7) through (4.10).
2) Calculate the directional derivative of F in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$ as given by Eq. (4.11); if this quantity is not negative, we are done.
3) Calculate

$$
\epsilon=\sqrt{\frac{1}{n} \sum_{j=1}^{n}\left(\frac{\theta_{j}}{y_{j}}\right)^{2}} .
$$

ϵ is a number that represents the root-mean-square error in $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. If \in is less than some given number (say, 0.001), we are done.
4) Calculate the ratio $-y_{j} / \theta_{j}$ for every j for which $\theta_{j}<0$. Let λ_{1} be the minimum of all such ratios and let $\lambda=\min \left(1, \beta \lambda_{1}\right)$, where β is a number less than 1 but close to 1 (say, 0.99). We now perform the following steps until the test at c) below is satisfied:
a) Let $z_{j}=y_{j}+\lambda \theta_{j}$;
b) Compute the directional derivative of F at z_{j} in the direction $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): f(\lambda)=$ $\theta_{j}\left(c_{j}+\log \hat{z}_{j}\right) ;$
c) If $f(\lambda) \leq 0$, go directly to step 5);
d) Replace λ by $\gamma \lambda$, where $0<\gamma<1$, e.g., $\gamma=\frac{1}{2} \sqrt{2}$.
5) Finally, replace y_{j} by $y_{j}+\lambda \theta_{j}$ for $j=1,2, \ldots, n$. Steps 1-5 are repeated until either the test in step 2 or the test in step 3 is satisfied.

If this process terminates, the solution will be optimal within the specified limits of accuracy. It may happen that the process does not terminate. Since the objective function F is convex* and assuming infinite computational accuracy, non-termination can occur only because the values chosen for λ become smaller on every

[^3]iteration. This will occur only if some y_{j} is approaching zero, and hence $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is approaching a point at which, if it were the optimal solution, the problem would be degenerate. It is possible for this to happen for a non-degenerate problem for which the initial solution chosen was too far from the optimal solution. Convergence can be guaranteed by imposing the condition that the value of F at the inftial solution be less than the value of F at any feasible, degenerate point. However, it is not practical to impose this condition on the initial solution since it may be very difficult to find such a point. In practice, it has been found that round-off errors cause more difficulty than the possible selection of a poor initial solution.

5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, SECOND-ORDER METHOD

In the first-order method, presented in Sec. 3, the iterative process was initiated with an estimate of the value of $x_{1}, x_{2}, \ldots, x_{N}$. In the second-order method, we assume that the problem is as defined by Eqs. (3.1) and (3.2), but that we have initial estimates for the values of $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$. Let us denote these estimates by $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{M^{\prime}}$ The x_{j} can then be evaluated by Eq. (3.5), substituting λ_{i} for π_{i}. These x_{j}, however, probably will not satisfy Eq. (3.2). The problem of the second-order method is to find numbers $\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$, such that

$$
\begin{equation*}
\pi_{i}=\lambda_{i}+\Delta \lambda_{i} \quad i=1,2, \ldots, M \tag{5,1}
\end{equation*}
$$

when substituted into (3.5) will give x_{j} that satisfy (3.2). In order to accomplish this, we first use the x_{j} calculated from Eq. (3.5) to get

$$
\begin{equation*}
g_{i}=b_{i}-\sum_{j=1}^{N} a_{i j} x_{j} \quad i=1,2, \ldots, M \tag{5.2}
\end{equation*}
$$

where g_{i} represents the amount that equation i is in error. Next, we evaluate

$$
\frac{\partial g_{\mathbf{i}}}{\partial \lambda_{\ell}}
$$

by

$$
\begin{align*}
\frac{\partial g_{i}}{\partial \lambda_{l}} & =\frac{\partial}{\partial \lambda_{l}}\left[b_{i}-\sum_{j=1}^{N} a_{i j}^{\beta} x_{j}\right]=-\sum_{j=1}^{N} a_{i j}^{\beta} \frac{\partial x_{j}}{\partial \lambda_{\ell}} \\
& =-\sum_{j=1}^{N} a_{i j}^{\beta} \frac{\partial}{\partial \lambda_{l}}\left[\exp \left(d_{j}^{-1} \sum_{h=1}^{M} \lambda_{h} a_{h j}^{\alpha}-d_{j}^{-1} c_{j}-1\right)\right] \\
& =-\sum_{j=1}^{N} a_{i j}^{\beta} d_{j}^{-1} x_{j} a_{\ell j}^{\alpha}=-r_{\ell i} \tag{5.3}
\end{align*}
$$

where $r_{\ell i}$ is given by Eq. (3.8). If we make a very small change, $\mathrm{d} \lambda_{1}, \mathrm{~d} \lambda_{2}, \ldots$, in $\lambda_{1}, \lambda_{2}, \ldots$, the change in g_{1}, g_{2}, \ldots, is given by $\mathrm{dg}_{1}, \mathrm{dg}_{2}, \ldots$, where

$$
d g_{i}=+\sum_{l=1}^{M} \frac{\partial g_{i}}{\partial \lambda_{l}} d \lambda_{l} \quad i=1,2, \ldots, M
$$

or

$$
\begin{equation*}
d g_{i}=-\sum_{\ell=1}^{M} r_{\ell i} d \lambda_{\ell} \cdot \quad i=1,2, \ldots, M \tag{5.4}
\end{equation*}
$$

We would want $d g_{i}$ to be equal to $-g_{i}$ as computed by
Eq. (5.2). If we make the approximation that

$$
\frac{\partial g_{i}}{\partial \lambda_{\ell}}
$$

is constant over the domain considered, we can set $d g_{i}=-g_{i}$, let $d \lambda_{\ell}=\Delta \lambda_{\ell}$, and write

$$
\begin{equation*}
g_{i}=\sum_{\ell=1}^{M} r_{\ell i} \Delta \lambda_{1} . \quad i=1,2, \ldots, M \tag{5.5}
\end{equation*}
$$

Equation (5.5) consists of M equations in the M unknowns $\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$. We may thus solve Eq. (5.5) for $\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M}$ and compute $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$ from (5.1). If the assumption about

$$
\frac{\partial g_{i}}{\partial \lambda_{l}}
$$

being constant over the domain considered was correct, then
the x_{j} computed from (3.5) with these values for π_{i} will satisfy (3.2). However, in general, they will not satisfy (3.2), but, if we were close enough to the solution so that the

$$
\frac{\partial g_{\mathbf{i}}}{\partial \lambda_{\ell}}
$$

did not vary greatly in the domain considered, then the new values for x_{j} should come closer to satisfying (3.2) than did the first set of x_{j}.

With this assumption, we may now state the iterative process:
a) Using the values at hand for $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$, evaluate (3.5).
b) Using the values for x_{j} obtained in step a, evaluate (5.2). If the $\left|g_{i}\right|$ are sufficiently small, we are done.
c) Compute $r_{i \ell}$ using (3.8) and solve (5.5) for $\Delta \lambda_{i}$.
d) Denoting the π_{i} in step a by λ_{i}, we get new π_{i} by (5.1).

Steps a-d are repeated until the $\left|g_{i}\right|$, computed in step b, are sufficiently small, or until they show no more improvement.

There is no proof of convergence for this method. In fact, the method presented here is unlikely to converge unless the starting values of $\pi_{1}, \pi_{2}, \ldots, \pi_{M}$ are very good, and even then there may be no convergence. This method may be used on the chemical equilibrium problem after the firstorder method has resulted in a reasonably good solution. If the π_{i} obtained from (3.10) in the final iteration of the first-order method are used to initiate the second-order method, the accuracy produced by the second-order method will generally be better than that which could be achieved by use of the first-order method only.

6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM

In order that the second-order linear-logarithmic method be set in the form of a chemical equilibrium problem, the same definitions as given in Sec. 4--i.e., Eqs. (4.1) through (4.5)--are used here. Since the second-order method is best used after the first-order method has been applied, the initial values of π_{i} for the second-order method must be specified. The first-order method gives a set of π_{i}^{\prime} which are related to π_{i} by Eq. (4.6). The π_{i} computed by means of (4.6) are appropriate initial values for the secondorder method. Using these initial values for π_{i}, the secondorder chemical equilibrium algorithm is an iterative process for which each iteration consists of the following steps:

1) Using the current values for $\left(\pi_{1}, \pi_{2}, \ldots, \pi_{M}\right)$, evaluate $x_{1}, x_{2}, \ldots, x_{n}$ by means of (3.5).
2) Calculate $g_{1}, g_{2}, \ldots, g_{m}$ by means of (5.2) and set $g_{m+1}, g_{m+2}, \ldots, g_{M}$ equal to zero.
3) Compute $r_{i \ell}$ from (4.8) and solve (5.5) for

$$
\Delta \lambda_{1}, \Delta \lambda_{2}, \ldots, \Delta \lambda_{M} .
$$

4) Let

$$
P=\underset{i=1}{M}\left|\Delta \lambda_{i}\right| .
$$

If $\mathrm{P}<\delta$, where δ is a small positive number such as 10^{-5}, we are done; otherwise, $\operatorname{let} Q=\min \left(\frac{1}{P}, 1\right)$. 5) Replace π_{i} by $\pi_{i}+Q \Delta \lambda_{i}$ for $i=1,2, \ldots, M$. Steps 1-5 are repeated until the test at 4) is satisfied. P should decrease at every iteration; however, when the values for π_{i} get close to their optimal values, P may not become zero due to round-off error. In order to prevent an endless repetition of steps 1-5 due to the selection of too small a δ, we can test P against the value of P at the previous iteration. If this value has increased over the previous iteration, it can be assumed that this method has obtained as accurate a solution as possible, and we can terminate the iteration process. The reason for inserting the factor Q above is to prevent the π_{i} from varying too much on one iteration.

7. SUMMARY OF THE COMPUTATION PROCEDURE

The best method for starting the solution of the chemical equilibrium problem depends on whether an estimate for the solution vector is available. The projection method should be used when the problem being solved is a slight variation from a problem previously solved, and in this case, the values used for y_{j} in (2.9-2.12) should be the solution vector to the previous problem. Even when the estimate is no better than an intuitive guess, the projection method may still be used. The linear programming method, then, may be used as a back-up if the projection method produces a non-positive component. Of course, if no estimate is available, the linear programming method would be used immediately to provide an estimate.

The recommended procedure is, then, to use the firstorder method until either no further progress can be made with this method or until the amount of change becomes small from iteration to iteration, and then to use the second-order method. It has been found that, for reasonably large problems (say $m=30, n=100$), the point at which progress ceases in the first-order method usually occurs when the indicated corrections to the components
of the solution vector average about one per cent of the components; that is, when (3.5) is accurate to about two significant digits. A switch to the second-order method at this point usually yields quite accurate results in two iterations of the second-order method. The second-order method usually satisfies (1.1) to an accuracy of about five significant digits on a machine that carries eight significant digits. This accuracy is typically about three orders of magnitude above what is usually obtained in experimental data.

To summarize, the typical procedure for solving a chemical equilibrium problem is the following:

1) If an estimate is available, use the projection method to obtain a feasible estimate.
2) If step 1 yields a strict $\overline{1} y$ positive estimate, go to step 3, but if the projection method yields non-positive components, or if there was no initial estimate, then use the linear programing method to get an estimate.
3) Use the first-order method until one of the tests described in Section 4 is satisfied.
4) Use the second-order method as described in Section 6.

Appendix A

A FORTRAN-IV PROGRAM FOR SOLVING THE

CHEMICAL EQUILIBRIUM PROBLEM

GENERAL DESCRIPTION

The program described here is a set of FORTRAN-IV subroutines for solving chemical equilibrium problems. The calling sequence used is merely the statement:

CALL SOLVE

Communication of data into and out of the subroutines is accomplished by a block common statement:

```
COMMON/SLVE/IV (30),TOL(20),NR(55,2), B(55),KN(120),X(121),C(121),
1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
2 V4(65), XMF (120),X1(121), X2(121),X3(121), XBAR(25),R(65,65)
```

The data that must be input before CALL SOLVE is executed consist of the following:
COMMON Location Quantity

IV (1) m
$\operatorname{IV}(2) \quad M(=m+p)$
IV (3) p
IV (4) n
IV(6) Number of the output unit.

Quantity

IV (7)

> Print flag: $-1=$ minimal amount of messages; $0=$ one message per iteration step; $+1=$ all messages

IV(9)
Maximum number of iterations to be allowed.
B (i)
$b_{i}, i=1,2, \ldots, m$.
X(j)
$y_{j}, j=1,2, \ldots, m$, where y_{j} is the initial estimate of the solution. If no estimate is available, set $X(J)=0$.

C(j)
$c_{j}, j=1,2, \ldots, n$.
$A(i, j)$

$$
a_{i j}, i=1,2, \ldots, m ; j=1,2, \ldots, n
$$

In addition, all components in one compartment must have consecutive subscripts. That is, components $1,2,3, \ldots, \mathrm{k}_{1}$ must be in compartment 1 ; components $k_{1}+1, k_{1}+2, \ldots, k_{2}$ must be in compartment $2 ; \ldots$; and components $k_{p-1}+1$, $k_{p-1}+2, \ldots, k_{p}$ must be in compartment p. These k 's are communicated to the subroutines by setting

$$
\begin{aligned}
& \mathrm{KL}(1)=1 \\
& \mathrm{KL}(2)=k_{1}+1 \\
& \mathrm{KL}(3)=k_{2}+1 \\
& \vdots \\
& \mathrm{KL}(\mathrm{p})=k_{\mathrm{p}-1}+1 \\
& \mathrm{KL}(\mathrm{p}+1)=\mathrm{k}_{\mathrm{p}}+1 .
\end{aligned}
$$

In other words, $K L(k)$ is the number of the first component in compartment k, and $K L(p+1)$ is equal to $n+1$.

The above are the only numbers that need be set in order that CALL SOLVE will solve the chemical equilibrium problem. However, in order that the program can write messages, in cases of infeasibility, etc., names for the rows, components, and compartments may be input:

COMMON Location
$\operatorname{NR}(I, 1), N R(I, 2)$
KN(J) One-word component name for
$\operatorname{NAM}(K, 1), \operatorname{NAM}(K, 2)$
component J .

Quantity

Two-word row name for row I.

Two-word compartment name for compartment K .

In addition, TOL(1) through $T O L(5)$ are tolerances used by the program. If they are zero when the program is entered, they are set by the subroutines to nominal values. These values may also be set by the user of the subroutines, in which case the nominal values will not be set in the subroutines. These tolerances are the following:

Tolerance TOL(1) Nomina1 Value 0.01

Meaning
ϵ in step 3 of the firstorder method (see Sec. 4).

Tolerance	$\begin{gathered} \text { Nominal } \\ \text { Value } \\ \hline \end{gathered}$	Meaning
TOL (2)	10^{-5}	δ in step 4 of the secondorder method (see Sec. 6).
TOL (3)	10^{-12}	Minimum value any x_{j} is allowed to have.
TOL (4)	10^{-6}	Minimum starting value that any component will have is the lesser of TOL(4) and $\frac{1}{2} y_{n+1}$ (see Sec. 2).
TOL (5)	10^{-8}	Problem is assumed to be degenerate if any S_{k} becomes less than TOL(5).

With the above as input, the statement CALL SOLVE will cause an attempt to solve the chemical equilibrium problem. If, upon completion of this attempt, a solution is obtained, the cell

$$
\operatorname{IV}(10)
$$

will contain a 1 and the following data will be in storage:

COMMON Location

$X(i)$

XBAR(k)
PIE(i)
XMF (i)

Data

$$
x_{i}, \quad i=1,2, \ldots, n \text { (the solution). }
$$

$$
S_{k}, \quad k=1,2, \ldots, p
$$

$$
\pi_{i}, \quad i=1,2, \ldots, m
$$

$$
\hat{x}_{i}, \quad i=1,2, \ldots, n
$$

If IV(10) is not 1 , the subroutines have failed to solve the chemical equilibrium problem. The reason for this failure is written on output unit IV(6). In such a case, X(i) will contain the latest value of these quantities.

SUBROUTINES
There are nine subroutines in the set used for the solution of the chemical equilibrium problem. A brief description of these subroutines follows.

1. Subroutine SOLVE

SOLVE is the master subroutine, and is divided into four functional segments. Each segment calls other subroutines which do specific tasks. The four segments are:
a) The projection and linear programming routines for obtaining the initial solution (lines 18-42).
b) The first-order method (lines 43-122).
c) The second-order method (1ines 123-163).
d) Output messages (lines 164-203).
2. Subroutine BAR

BAR calculates the S_{k}.

3. Subroutine BERROR

BERROR calculates

$$
g_{i}=b_{i}-\sum_{j=1}^{N} a_{i j} x_{j} . \quad i=1,2, \ldots, M
$$

4. Subroutine DEL

DEL sets

$$
w_{j}=\sum_{i=1}^{m} a_{i j} q_{i} \cdot \quad j=1,2, \ldots, n
$$

5. Subroutine RCALC

RCALC calculates the $r_{i \&}$ array (4.8).
6. Subroutine CLOG

CLOG computes

$$
\alpha_{j}=c_{j}+\log \hat{x}_{j} . \quad j=1,2, \ldots, n
$$

7. Subroutine LP

LP sets up the linear programming problems.
8. Subroutine SIMPLE

SIMPLE solves the linear programming problems. Information is communicated to this routine via a
calling sequence rather than by COMMON as in subroutines 1-7. The dimension of A in SIMPLE should agree with the dimension of A in the first seven subroutines, but all other dimensions are dummy statements.
9. Subroutine MATINV

MATINV solves simultaneous equations. As in SIMPLE, no COMMON is used. The dimension of A in MATINV should agree with that of R (not A) in SOLVE.

All other dimensions are singly subscripted and are irrelevant as to magnitude.

```
* * *
```

Each of the first seven subroutines has a COMMON statement which should be the same in all seven. The dimensions of the variables in this COMMON statement may be set to the values for the largest problem to be solved. With m, M, p, and n as previously defined, these dimensions must be at least:

Symbol	Minimum Dimension
IV	30
TOL	20
NR	$(\mathrm{m}, 2)$
B	m
KN	n
X	$\mathrm{n}+1$
C	$n+1$
KL	$\mathrm{p}+1$
NAM	$(\mathrm{p}, 2)$
A	(m, $\mathrm{n}+1$)
PIE	M
V1, V2, V3, V4	M
XMF	n
X1, X2, X3	$\mathrm{n}+1$
XBAR	p
R	(M, M)

A listing of these subroutines follows. This listing does not necessarily represent an actual program. The language used was that version of FORTRAN described in [6]. The machine used for the solution of chemical equilibrium problems was the IBM-7044, which uses a floating-point number with eight bits for the exponent and 28 bits for the sign and mantissa.

LISTING


```
    OO PIEMA,' = G(1M + PIEII)
```

50061 30062

7114

CALL DEL（TH，PIE）
GNORM＝E．
TDA $=0$ ．
$\mathrm{FE}=0$ ．
DO $7104 \quad K=1$ ，NCOMP
$M K=M+K$
$K T A=K L(K)$
$K T B=K L(K+1)-1$
DO $7103 \mathrm{~J}=\mathrm{KTA}, \mathrm{KTB}$
TH（J）$=$ TH（J）＋PIE（MK）－ALPHA（J）
GNORM $=$ GNOR：A + TH（J）＊＊2
$T H(J)=$ TH（J）＊X（J）
TDA $=$ TOA + TH（J）＊ALPHA（J）
IF（X（J）．LT．－DMAX＊TH（J））DMAX＝－X（J）／TH（J）
$F E$ ■ $F E+X(J)$＊ALPHA（J）
CONTINUE
7103
CONTINUE
EPS＝SQRT（GNORM／FLOAT（NTUT））
$D F E=F E-F E 2$
$F E 2=F E$
IF（ITER．EQ．I）GO TO 7120
$I T R=1 T E R-1$
IF（PF．GE．U）WRITE（NOT，799）ITR，DFE，OPTL，EPS
OPTL＝AMIN1（1．，．G9＊OMAX）
IF（PF．GT．O）WRITE（NOT，8241）DMAX，OPTL，TDA，ERR
IF（EPS．LE．TOL（1））GO TO 8269
IF（TDA．GE．O．）GO TO 8267
826
8260
DO 8265 11 $=1,54$
DO 8301 J $=1, N$ DX（J）$=$ AMAXI（X（J）+ OPTL＊TH（J），XMIN）
CONTINUE
CALL BAR（DX，XEAR）
CALL CLOG（DX，XBAR）
TDA $=0$ ．
DO $8266 \mathrm{~J}=1$ ，NTOT
TDA $=$ TDA + TH（J）＊ALPHA（J）
8266
cuntinue
IFIPF．GT．UIWRITE（NOT，8262）II，OPTL，TDA
IF（TDA．LT．O．1 GO TO 828
OPTL＝OPTL／ 1.4142
8264
8265
continue
CALL BAR（X，XEAR）
GO TO 8271
DO $8281 \mathrm{~J}=1$ ，NTOT
X（J）$=0 \times(J)$

8288 CALL SSHTCHI5，LABEL）
IF（LABEL．NE．Z）GO TO 10004

50119
50120

```
    CONTINUE SOL13
    FE = 0. SO114
    DO 8231 J=1.N SO115
    FE = FE + ALPHA(J)*X(J) SO116
*NL.2) GO TO 10004
```

```
C ENO OF FIHST GRDER METHOD LOOP
        go TO luNO
                PIE(I) = PIE(I) + 2M* G(I) SOL52
    6005 CONTINUE 50153
```

50121
50122
6000 ITERI = 1 TER +1
PMAX $=1 . E+2 v$
PMAX1 $=1 . E+21$
50123
50124
50125
C SECOND ORDER NETHOO LOOP
50126
DO GCU2 ITER = ITER1,ITMAX SO127
CALL DELCDX,PIE) SOI28
DO GUU3 K = K , NCOMP $\quad 50129$
MTA $=K L(K)$
$M T B=K L(K+1)-1$
DO 6U1~J = MTA,MTB
XMF (J) $=\operatorname{EXP}(\quad D \times(J)-C(J))$
$X(J)=X M F(J) * X B A R(K)$
50130
50131
50132
SO133
50134
6010 CONTINUE $\quad 50134$
IF (XBAR(K).LE.BARMIN) GO TO 1000550136
6003 CONTINUE SO137
IF (PMAX.LE.TOL(2).OR.(PMAX.GE.PNAXI.AND.PMAX.GE.PNAX2)) SO138
1 GO TO lucul
50139
CALL BERRUR(ERR)
SO140
6006 CALL RGALC
CALL MATINVIR,MEND,G, $-1, V 2, V 3, V 4, K E)$
IF(KE.NE.O) GO TO lvo03
PMAX2 $=$ PITAX1
SO141
50142
PMAX1 = PMAX SO144
S0145
PriAX $=0$.
PMAX =AMAX1 (PMAX, ABS (G(I)),
continue
IF (PMAX.EQ.0.0) GO TO 1UUOL
$Z M=A M I N 1(1 . / P M A X, 1$.
00.6005 I $=1 \mathrm{IM}$

CONTINUE
DC 6C11 K = 1 ,NCOMP
$M K=M+K$
XUAR(K) $=\operatorname{XBAR}(K) * E X P$ ($2 M * G(: M K)$)
6U11 CCNTINUE
IF (PF.GE.U) WRITE(NOT,6U99) ITER,PMAX,ERR CALL SSWTCH(5,LADEL)
IF (LABEL.NE. 21 GO TO 10004
GOU 2 CONTINUE
C ENO OF SECOND ORCER METHOD LOOP
$100 \cup 2$ IERROF $=2$
WRITEMNOT, 2WOU2I
20U~2 FORMAT (27H ITERAION LIMIT EXCEEDED ITER = ITMAX
G0.TO 10000
10003 IEREOR $=3$
WRITEINOT, 2UOU3) KE
2UOU3 FORMAT(21H R MATRIX MAS NULLITY,I3)
go to luoue
IUUU4 IERROR $=4$
WRITEINOT, 2UYU4)
50146
50147
50148
30149
50150
-50151
50152
50153
50154
SO155
50156
50157
50158
50159
50160
50161
50162
50163
50164
S0165
50166
50167
50168
30169
50170
s0171
50172
sol 173
30174
$20 U 04$ FORMAT 156 H SOLVE ROUTINE TERMINATED GECAUSE SENSE SHITCH 5 IS DON SOIT5
1)
go to 10000
50176
Sol 177
su178.
50179
SO180


```
        SUBROUTINE GAR(%,NSAR)
        COMMON/SLVE/IV(30),TOL(20),NR(55,2),B(55),KN(120),X(121),C(121),
    1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2165),V3(65),
    2 V4(65),XMF(120),X1(121),X2(121),X3(121),XBAR(25),R(65,65)
        EQUIVALENCE (IV(1),M),(IV(2),MENO),(IV(3),NCOMP),(IV(4),N,NTOI),
        1 (IV(5),NIT),IIV(6),NOT),(IV(7),PF),(IV(B),IIER):(IV(9),ITMAX),
    2 (IV(10).IERROR),(IV(111,LASTCP),(IV(12),KE)
    OIMENSION W(1);WBAR(I)
DO 7O1 K = I,NCOMP
    KTA = KL(K)
        KTB = KL(K+1)-1
        WBAR(K) = 0.
        DO 702 J = KTA,KTB
            WGAR(K) WBAR(K) +W(J)
702 CONTINUE
701 CONTINUE
    END
```

N0001
wu002 wuous $\because 0004$ 10005 w0006 w0007 W0008 w 2009 v. 0010 W0011 W0012 W0013 $+10014$ W0015 $+i C 016$ n'0017

```
    SUGROUTIME dERROR(dIAAXI
        COMMGM/SLVE/IV(3C),TOL(20),NR(55,2), (5 (5),KN(12U),X11211,C(121),
    1 KL(26),NAM(25,2),A(55,121),P1E(65),V1(65),V2(65),V3(65),
        2.V4(65),XMF(12:),X1(121), X2(121), X3(121),XQAR(25),R(65,65)
    EQUIVALENCE (IV(I),M),(IV(2),MENJ),(IV(3),NCONP),(IV(4),N,NTOT).
    1 (IV(5),NIT), (IV(6),NOT), (IV(7),PF),(IV(B),IIER),(IV(9),I|NA&):
    2 (IV(1U),IERROR),(IVIIII,LASICP),(IVII2),KE)
    DIMENSION G(1)
    EGUIVALENCE (G,V1)
    DO 1Ul 1 = 1.:A
        ZT = \ddot{0}
        DO 102 J = 1,N
            {F(A(1,J).N[.U.) ZT = ZT-X(J) * A(I,J)
102 CONTINUE
        G(I)= ZT + B(I)
101 CONTINUE
    DO 11\cupK=1,NCOMP
        ZT = 0.
        MTA = KL(K)
        MTB =KL(K+1)-1
        DO 111 J = MTA,MTB
                ZT=ZT+X(J)
111 CONTINUE EOO23
        MK}=M+
        G(HK) = XBAR(K) - ZT
11U CONTINUE BCO26
    BMAX = C.
    DO 120 I m IMEND EOC28
    IF (ABS(GII)).GT. ABS(BMAX), EMAX = G(I)
120 CONTINUE
    RETURN
    END
        00001
        0以パ?
    SOCO3
    60004
    80005
    E0006
    B0007
    80008
    60009
    bu010
    BOC11
b0012
BCO13
30C14
B0015
NCOMP (.)
E0016
30018
80019
00020
30021
00022
B0023
50024
B0025
BCO26
50027
80028
80029
BOC30
B0031
    END BOO32
```

```
    SUBROUTINE DEL(N,心)
    COMMON/SLVE/IV(30),TOL(20),NR(55,2),3(55),KiN(120), X(121),(1.121),
    1 KL(26),NAF(25,2),A(55,121),P(C165),V1(6)),V2(65),V3165),
    V V4(65),XMF(12N),X1(121), X2(121), X2(121),X2AR(25),R(65,65)
    EQUIVALENCE IIV(I),M), (IV(2),NEND), (IVI3),NCOIPI,(IVI4),N,N10I),
    I (IV(5),NIT),(IV(6),NOT),IIV(7),PF).(IV(8).IICR),(IV(9),IIt,AX),
    2 (IV(IN),IERROR),(IVIII),LASTCP),(IV(12),KE)
    DINENSION W(1),O(1)
    DO 2C J = 1,N
        wи=\mp@code{*}
        DO 10 1 = 1.M
            IF (AII.J).NE.0.) W'M = WH% + A(I,J)* Q(1) 00011
WH= wh + A(I,J) # Q(l)
        W(J) = WW
20 CONTINUE
    RETURN
    END
```

D0001 D0002 Duvu3 00004 00005 Dore6 D0007 D0008 00005
00010
00011
D0012
DOC13
00014
00015
D0016
D0017

```
            subroutine rcalc
            COMMON/SLVE/IV(30),TOL(20),NR(55,2),3(55),KN(120),x(121),(1121),
                KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
            2 V (65),XMF(120),X1(121),X2(121),X3(121),XGAR(25),R(65,65)
            EQUIVALENCE IIV(I),M),(IVI2),MENO),IIV(3),NCOMP),(IV(4),N,NIOI),
            1 IIV(5),NIT),(IV(6),NOT),(IV(7),PF),(IV(8),ITER),(IV(9),ITMAX),
            2 (IV(IO),IERROR),(IV(II),LASTCP),(IV(12)PKE)
                COMPUTE R
            DO 1 1 = 1,MEND ( MEND
                R(I,J)= U.0
    2 CONTINUE
    1 cONTINUE
    ,DO 1O K =1,NTOT
            DO I1 I=1,N, (A(I,K),EQ.O.1 GO To 11 MEND
            AlKX = A(I,K) N X(K)
            DO 12 J =1.0
                    IF (A(J,K).NE.O.I R(I,J)=A(J,K) * AIKX + RII,J) = a d a
l2 CONTINUE
cONTINUE
10. continue
    DO 20 K=1,NCOMP
        IH=K+M
        MTA =KL(K)
        MTE =KL(K'+1) - 1
        DO 21L =MTA,MTE
            DO 22 J =1.M
                    IF (A(J,L).NE.O.) R(IH,J)=R(IH,J) + A(J,L) * XIL)
22 CONTINUE
21 CONTINUE
2O CONTINUE
    DO 30 J = 2,MEND
            J= J-1
            DO 31 1=1,J
                R(I,J) = R(J,I)
            cONTINUE
        CONTINUE
        RETURN
    END
\[
\begin{aligned}
& " \alpha "=\text { Mass Action } \\
& " \beta^{\prime \prime}=\text { Moss Bulance }
\end{aligned}
\]
```

ROC01
Ru002
F2003
ROCO4
RCOO5
R0006
RUCO 7
R0008
R0009
ROO10
ROO11
R0012
ROC13
ROO14
R0015
$R 0016$
ROO 17
R0016
R0019
R0020
ROO21
ROC22
R0023
ROO2 2
$R 0025$
R0026
R0027
$R 0028$
R0029
RC. 030
R0031
ROO32
ROO33
ROO34
ROO 35
R0036
R0037
ROO38
R0039
R0040

```
        SUBROUTINE (LOG('N:WOAR)
        cocol
        COMMON/SLVE/IV(30),TOL(20),NR(55,2),3(55),KN(120),X(121),C(121),
    1 KL(25),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
    2V4(65),XMF(120),X1(121), X2(121),X3(121), XOAR(25),R(65,65)
    EQUIVALENCE (IV (1),M),(IV (2),MEND),(IV(3),NCOMP),(IV(4),N,NTOT):
        1 (IV(5),NIT),IIV(G),NOT),I'IV(7),PF),(IV(8),ITER),(IV(9),ITMAX), (IMOO6
    2 (IV(IE).IEKROR)*(IV(II).LASTCP),(IV(I2):KE)
    OIMENSION W(1).WDAR(1),ALPHA(1)
    EOUIVALENCE (X2,ALPHA) COOOS
    OO 1K K = 1, NCOMP
        KLA =KL(K)
        KLB=KL(K+1)-1
        DO2J=KLA,KLB
            ALPHA(J) = C(J)
            XXX=W(J)/WBAR(K)
            IF(XXX.GT.O.O1 ALPHA(J) = ((J)+ALCG(XXX).
2 CONTINUE
1 CONTINUE
        RETURN
        END
        c0002
        C0003
        C0004
        cocos
        C0007
        C0008
coolo
        coc11
                    co015
                            c0016
cool7
co018
cJC19
c0020
```

```
        subruutINE lp (:CN)
            COMMUN/SLVE/IV(30),TOL(2:),NR(55,2),3(95),KN(12j),x(121),(121),
    1 KL(26),NA,M(25,2),A(j5,121),P1E(65),V1165),V2(65),V3(65),
    2 V4(65),XMF(12v),X1(121), X2(121),X3(121),XUAR(25),R(65,65)
        INTEGER PF
        EQUIVALENCE (TOL(3),XOINI,(TUL(4),XSTAPT),(TOL(5), SARHIN)
```



```
        1 (IV(5),NIT),(IV(6),NOT),(IV(7),PF),(IV(8),ITER),IIV(9),ITMAX),
    2 IIV(IU),IERROR),(IV(11),LASTCP),(IV(I2),KE)
    DIMENSION XX(1),KOUT(7),C(1]),P(1)
    EQUIVALENCEICC,XMF),(XX,X2),(P,V1)
    MON=u
    IF (XSTART.LE.0.0) XSTART = 1.E-6
    DO 10 I = 1,M
        P(I) = B(I)
    A(IONTOT+1) = 0.0
        DO 15 J = 1,NTOT
            A(I,NTOT+1)=A(I.NTOT+1) + A(I,J)
    15 CONTINUE
1u cONTINUE
    DO 1 J = 1,NTOT
        C(IJ)=0.0
    1 CONTINUE
    CC(N+1)= -1.0
C ZERO-TH SIMPLEX IS TO DETERMINE FEASIBILITY
    CALL SIMPLE(U,A,N+1,A,P,CC,KOUT,XX,PIE,V2,V3,V4,X3,R)
    ZT = XX(N+1)
    IF(PF.GE.N)WRITE (NOT,1D6)XCUT(2),ZT,KOUT(1)
1O6 FORNATII2HOSIMPLEX 0,14,25H ITERATICNS. MAX MIN ELEMENT=1PEI5.8,
    1 12H, CONDITION,131
        ZZT =AMIN1(ZT/2.0, XSTART)
        DO 104 I = 1,NM
104 CONTINUE
200 DO 2Cl J = 1,NTOT
            x(J) = xX(J)
                XMF(J)=1.v
2cl continue
    IF(2T.LE.O..OR.KOUT(1).NE.C) GO TO 40
    SIMPLEX LOOP
    FR2=1*E+20
    DO 301 NN =1, NCOMP
        DO 302 J = 1, NTOT
            C(IJ) = C(J) + XMF(J)-1.0 *
3O2 CONTINUE
    FN = FLOAT(NN) - 1.C
    CALL SIHPLEII,M,N ,A,P,CC,KOUT,XX,PIE,V2,V3,V4,X3,R)
        IF (KOUT(1).NE.O) GO TO 50
3UU DO 3O3 J = 1,NTOT
        x(J) = xx(J)
    X(J) = (FN*XI(J) + X(J) ) / (FN + 1.0)
            x|(J)= x(J)
3u3 CONTINUE
        CALL BAR(X,XBAR)
        K=1
    FR=0.0
        DO 310 J = 1,N
            IF (J.GE.KL(K+1)) K=K+1
            IF (J.EG.KL(K).AND.XEAR(K).GT.O.C)FR=FR-XBAR(K)*ALOG(XGAR(K))
                    IF(XIJ).GT.0.0)FR=FR + X(J)*(ALOG(X(J))+(J))
```

Lưul
Lo.032
$L 0003$
10004
LOOOS
L0006
LCCO 7
LC008
LOC09
LOC10
L0011
L0012
L0013
LOO14
Lools
Loci6
LOC, 17
L0018
10019
L0020
L0021
L0.022
LOC23
L0024
L0025
L0026
L0027
L0028
L0029
10030
LOO31
L0032
LOO33
10034
LOO35
L0.336
10037
LC038
L0039
L0040
L0.041
L0042
LOO43
LOO44
LOC45
L0046
LC047
L0048
L0049
10050
10051
Lo052
$L 0053$
LCO54
L0055
L0056
LOO57
L0058
L0059
1.0060

```
            XMF(J)=U.
            IF (XBAR(K).NE.O.) XMF(J)=X(J)/XBAR(K)
LC061
```

310

```
310
            CONTINUE
            CONTINUE
            IF (PF.GE.O) WRITE(NOT.305) NN,KOUT(2),FR
            IF (PF.GE.O) WRITE(NOT.305) NN,KOUT(2),FR
305 FORMATIBH SIMPLEX,I3,1H,I4,12H ITERATIONS BH FR ENG=1PEI5.8) LOOG5
            IF (FR.GE.FRZ) GO TO'399
            FR2=FR
    301 CONTINUE
399 00 400 J = 1,N
                            X(J)=x(J)+ZZT
400 CONTINUE
    RETURN
    4U IF (KOUT(1).UT.1) GO TO 50
    WRITE (NOT,41)
    4 1 ~ F O R M A T ~ ( 7 2 H O T H I S ~ P R O B L E M ~ I S ~ I N F E A S I B L E . ~ T H E ~ F O L L O W I N G ~ L I N E A R ~ C O M B I ~
    INATION OF ROWS, /1XI
    DO 14N I =1.M
        IF (PIE(I).NE.O.) WRITE(NOT,141) PIE(I),NR(I,1),NR(I,2)
141 FORMATIIOX,3H+ (,F15.8,5H) *,2A6)
140 CONTINUE
    WRITE (NOT,142)
142 FORFATT4OHO LEADS TO THE FOLLOWING INFEASIBLE EQUATION, /IXI
    DO 15J K = 1.NCOMP
        MTA =KL(K)
        MTB =KL(K+1)-1
        DO 151 J=MTA, MTB
            D=0.
            DO 152 I =1.M
                D=PIE(I)* A(I,J) + D
152 CONTINUE
            IF {D.NE.W.I WRITE (NOT.143) D,KN(J),NAMIK,1),NAM(K,2)
143 FORMAT(1OX,3H+ (,F15.B.5H), *, A6,4H IN, 2AG)
151 CONTINUE
150 CONTINUE
    D = O.
    DO 160 I =1,M
        D=PlE(I)*E(I) + D
160 CONTINUE
    WRITE (NOT,144)D
144 FORMAT (1H0,15X, 7H+0.0 =,F15.8)
    70 MON = 1
    RETURN
    5U IF (KOUT(1).NE.2) GO TO 60
        JT = KOUT(7)
        DO 51 K = 1,NCOMP
        IF (JT.GE.KL(K)I GO TO }5
    51 CONTINUE
    52 WRITE (NOT.952) KN(JT),NAMIK.1),NAHIK.2)
NOT:952) KN(JT),NAM(K.11,NAHIK,2) LO108
952 FORMATI14H THE VARIAGLE,AG,4H IN , 2AG,33H IS UNBOUNDED AND MUST B. LOIOS
    IE REMOVEOI
        GO TO 70
    60 WRITE (NOT.960)
60 WRITE (NOT.960) SORMAT(GOH SIMPLEX ROUTINE HAS FAILED DUE TO EXCESSIVE ROUND-OFF E LOIIS
    MRRORI
        END
    0063
    L0064
L0065
L0066
L0067
L0068
L0069
L0070
L0071
L0072
L0073
L0074
L0075
L0076
L0077
L0078
L0079
L0080
L0081
L0082
L0083
L0084
L0085
L0086
L0087
L0088
L0089
152 CONTINUE LOO90
L0091
L0092
LOO93
    . LCC95
LCC95
L0096
L0096
L0098
L0099
L0100
    M
L0101
LO103
        ***
L0105
L0105
    L0109
LO110
L0111
L0112
L0113
L0114
LO116
```


Calling Sequence for Simplex Subroutine

The simplex subroutine, SIMPLE, may be used to solve a general linear programing problem of the form: Minimize

$$
\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to

$$
\sum_{i=1}^{n} a_{i j} x_{j}=b_{i} . \quad \quad i=1,2,3, \ldots, m
$$

The $a_{i j}$ is stored in a two-dimensional array, A, with $a_{i j}$ in cell $A(i, j) ; C_{j}$ is stored in a one-dimensional array, C, with C_{j} in cell $C(j)$; and b_{i} is stored in a onedimensional array, B, with b_{i} in cell $B(i)$.

The calling sequence is

CALL SIMPLE(II, M, N, A, B, C,KO,X,P,JH,XX,Y,PE,E)
where

$$
\begin{aligned}
\text { II } & =0 ; \\
M & =\text { No. of rows, } m ; \\
N & =\text { No. of variables, } n ;
\end{aligned}
$$

A, B, C Are as above;

$\mathrm{KO}=\mathrm{A}$ subscripted variable of dimension 7;
$X=A$ subscripted variable of dimension n or more;
P, JH, XX, Y, and $P E=$ Subscripted variables of dimension m or more; and $E=A$ subscripted variable of dimension m^{2} or more.

Upon exiting from the subroutine,
$X(1), X(2), \ldots, X(n) \quad$ Contains $x_{1}, x_{2}, \ldots, x_{n}$ (the solution);
$P(1), P(2), \ldots, P(m)$ Contains the shadow prices;
KO(1) Contains an 0 if the problem was feasible, 1 if the problem was infeasible, 2 if the problem had an infinite solution, and 3, 4, or 5 if the algorithm did not terminate;

K0(2) The number of iterations taken;
KO(3) The number of pivots performed since the last inversion;

Ko(4) The number of inversions performed;
KO(5) The number of pivot steps performed;

> KO(6) A logical variable that is "true" if and only if the problem was feasible; and
> KO(7) Contains, if the problem had an infinite solution, the number of the variable that was infinite.

The dimension of A (line X0009) must agree (at least in the first subscript) with the dimension of A in the calling program. The other dimensions need not agree with those of the calling program.

If an initial basis is available, this basis may be communicated to the subroutine by letting

$$
\begin{aligned}
& \text { II }=1, \\
& X(i)=\left\{\begin{array}{l}
0.0 \text { if variable } i \text { is not in basis, } \\
\end{array} \begin{array}{l}
\text { (non-zero) if variable } i \text { is in basis, }
\end{array}\right.
\end{aligned}
$$

and the other quantities remain as above.
This subroutine differs from other linear programming routines in several respects. If the restraints (2) are linearly dependent, the problem is considered to be infeasible. This is the case because the chemical equilibrium problem cannot be solved if the restraints are dependent. In addition, this subroutine was written to be as scale-free
as possible; this was accomplished by computing tolerances internally in the subroutine.

```
    C AUTONATIC SIMPLEX REDUNOANT EQUATIONS CAUSE INFEASIBILITY XOOOI
        SUBROUTINE SINPLEIINFLAG,MX,NN,A,B,C,KOUT,KB,P,JH,X,Y:PE,E,
        OIMENSION BII),C(1):KOUT(7),JHI1),XI11,P(1),Y(11,
        1 KB(1),E(1):PE(1):KO(7)
        EQUIVALENCE (K.KO/1)\,1ITER,KO(2)1,IINVC,KO(31),
        2 (NUMVR,KO(4)1.(NUMPV,KO(5)),(FEAS:KO(6)1,(JT,KO(7))
    EgUIVALENCE (xx,LLI
    C THE FOLLONING dIMENSION SHOULD BE THE SAME HERE AS IT IS IN CALLER.
        DIMENSION A(55,121)
        LOGICAL FEASIVER,NEGITRIGOKUAABSC
C
                MOVE INPUTS *. ZERO OUTPUTS
        DO 1341 1:1.7
        KO1II=0
    1341 CONTINUE
    M = MX
    N=NN
    TEXP * .5**16
    NCUT = 4#M+10
    NVER =M/2 + 5
    M2 = M**2
    IF IINFLAG.NE.O) 6O.TO 1400
C* INEW* START PHASE ONE WITH SINGLETON BASIS
    DO 14~2 J = 1,N
        KE(J)=0
        KO = .FALSE.
        DO 14U3 I = 1,M
                        IF (A(I,J).EQ.0.01 GC TO 1403
                    IF IKQ.OR.AII,JIILT.0.OI GO TO 1402
                    KU =.TRUE.
    1403 CONTINUE
        KE(J)=1
    14U2 CONTINUE
    1400 IF IINFLAG.GT.1 ) GO TO 1320
            DO 1401 1 =1.M
                JH (1)=-1
    1401 CONTINUE
C* 'VER' CREATE INVERSE FROM IKB' AND JHI
    132U VER = .TRUE.
    1121 INVC = 0
    1122 NUNIVR = NUMVR +1
        DO 11U1 1:1.M2
        Elll=0.0
    1101 CONTINUE
        MM=1
        DO 1113 1=1,M
        E(MM) = 1.C
                PE(I) = 0.0
                X(1)= B(1)
                IF (JHII) .NE.O) JH(I) -1
                MM = MM +N+1
    1113 CONTINUE
    C
                FORM INVERSE
            DO 11U2 JT INN
                IF IKBIJTI.EQ.OI GO tO 1102
                GO TO 600
C600 CALL JMY CHOOSE PIVOT
```



```
        x0002
        \times0003
        x0004
        \times0005
        x0006
        x0007
        X0008
        X0009
        \times0010
            x0011
            x0012
            x0013
            x0014
        X0015
        < }001
        x0017
        x0017
        X0019
        x0020
        x0021
        x0022
        X0023
        X0024
        X0025
        X0026
        X
        x0028
        x0029
        x0030
        X0031
        X0032
        X0033
        X0034
        X0035
        x0036
        X0037
        x0038
        x0039
        x0040
        x0041
        X0042
        x0043
        X0044
        X0045
        x0046
        X0047
        x0048
        x0049
        x0050
        x0051
        ,X0052
                            x0053
X0054
X0055
X0056
X0057
1114 TY % 0.0
X0058
x0060
```

```
            IF (JHII|.NE:1) GOTO 1104 % TO 1104 X0061
            IF (ABSIY(II).LE.TYI GO TO 1104
                    IR=1
                    TY=ABSIY(I)\
    1104 : CONTINUE
            \KB\JT)=0
    C P KB(JT)=0 TEST PIVOT
    C IF ITY.LE.TPIV) GOTO 1102
            JH(|R) * Jt
            KU(JT)=IR
            GO TO 900
            C 9UU CALL PIV
    1102 CONTINUE
C
                RESET ARTIFICIALS
            DO 11UQ I = 1.M
            IF (JH{1).EQ.-1) JH(1):0
    1109 CONTINUE
    120J VER = FALSE.
C
C* IXCK' DETER:IINE FEASIBILITY
            FEAS= .TRUE.
            NEG = FALSE.
            DO 12~1 I = 1,M
                    IF (XIII.LT.O.OI GO TO 1250
            IF (JHI\I.EQ.OI FEAS.* FALSE.
    1201 CONTINUE
CE 'GET' GET APPLICADLE PRICES
            IF (.NOT.FEASI :GO TO 501
            OO PRIMAL PRICES
            OO 503 1 1.M
            P(1) : PE(I)
    503 CONTINUE
        ABSC.FALSE.
        .GO TO 599
            COMPOSITE PRICES
    1250 FEAS = .FALSE.
        NEG = TRUE.
    301.00 504 J=1.M
            P(J)=0.
    Su4 CONTINUE
        ABSC = TRUE.
        DO 505 1 = 1,M
            MM=1
            IF (XII).GE.O.01 GO TO.507
            ABSC = FALSE.
            DO 508 J = 1.M
                P(J)=P(J) +E(MM)
                MM =MM + M
            508 CONTINUE
            508 CONTINUE
    507 IF (JHI\I.NC.OI GO TO 505
            IF (XII).NE.O.I.ABSC I,FFALSE.
            DO 510 J=1:M
                P(J):P(J)-E(MM)
                MM -MM +M N , %, %
    510 'CONTINUE
    SuS CONTINUE
C..MINI FINO MINIMUK' REDUCED COST
X01118
x0119
    599 JT % O
\(\times 0061\)
\(\times 0062\)
\(\times 0063\)
\(\times 0064\)
\(\times 0065\)
\(\times 0066\)
\(\times 0067\)
\(\times 0068\)
\(\times 0069\)
\(\times 0070\)
\(\times 0071\)
\(\times 0072\)
\(\times 0073\)
\(\times 0074\)
\(\times 0075\)
\(\times 0076\)
\(\times 0077\)
\(\times 0078\)
\(\times 0079\)
\(\times 0080\)
\(\times 0081\)
\(\times 0082\)
\(\times 0083\)
\(\times 0084\)
\(\times 0085\)
\(\times 0086\)
\(\times 0087\)
\(\times 0088\)
\(\times 0089\)
\(\times 0090\)
\(\times 0091\)
\(\times 0092\)
\(\times 0093\)
\(\times 0094\)
\(\times 0095\)
\(x 0096\)
\(\times 0097\)
\(\times 0098\)
\(\times 0099\)
\(\times 0100\)
\(\times 0101\)
\(\times 0102\)
\(\times 0103\)
\(\times 0104\)
\(\times 0105\)
\(\times 0106\)
\(\times 0106\)
\(\times 0107\)
\(\times 0108\)
\(\times 0109\)
\(\times 0110\)
\(\times 0111\)
\(\times 0112\)
\(\times 0113\)
\(\times 0114\)
\(\times 0115\)
\(x 0116\)
\(\times 0117\)
\(\times 0118\)
\(\times 0119\)
\(\times 0120\)
```

```
        \(B 8=0.0\)
        DO 701 J \(=1, N\)
\(\times 0121\)
\(\times 0122\)
\(\times 0123\)
\(\times 0124\)
\(\times 0125\)
\(\times 0126\)
\(\times 0127\)
\(\times 0128\)
\(\times 0129\)
\(\times 0130\)
\(\times 0131\)
\(\times 0132\)
\(\times 0133\)
\(\times 0134\)
\(\times 0135\)
\(\times 0136\)
\(\times 0137\)
\(\times 0138\)
\(\times 0139\)
```



```
Y(I) \(=0.0\)
610 CONTINUE
LL = U
COST \(=\) CIJT
\(00605 \quad i=1, M\)
```



```
602 LL \(=L L+M\)
605 CONTINUE
COMPUTE PIVOT TOLERANCE
YMAX \(=0.0\)
\(0062^{\circ} 1=1, M\)
YMAX = AMAXI( AES(YII)I.YMAX)
620. CONTINUE
TPIV = YMAX * TEXP
RETURN TO INVERSION ROUTINE, If INVERTING
IF (VER) GO TO 1114
COST TOLERANCE CONTROL
IF (TRIG.AND.BB.GE.-TPIV) GO TO 203
TRIG = .FALSE.
IF (BB.GE.-TPIVI TRIG =.TRUE.
C* IROW: SELECT PIVOT ROW
C AMONG EOS. WITH X=O, FIND MAXIMUM Y AMONG ARTIFICIALS, OR, IF NONE,
C GET MAX POSITIVE YIII AMONG REALS*
1000 IR \(=0\)
\(A A=0.0\)
KO .FALSE.
DO 1050 1 \(1 . \mathrm{M}\)
IF (XIII,NE,O.O.OR.YIII.LE,TPIVI GOTO 1030
1F. (JHIt).EQ.O) GO TO 1044
IF (KO) GO 101030
0.101050
IF IVIIIILEAAI 60 TO 1030 GO TO 1047
```

$\times 0142$
$\times 0155$
$\times 0142$
$\times 0143$
$\times 0144$
$\times 0145$
$\times 0146$
$\times 0147$
$\times 0148$
$\times 0149$
$\times 0151$
$\times 0152$
$\times 0153$
$\times 0156$
$\times 0157$
$\times 0158$
$\times 0159$
$\times 0160$
$\times 0161$
$\times 0162$
$\times 0163$
$\times 0164$
$\times 0165$
$\times 0166$
$\times 0167$
$x 0168$
$\times 0169$
$\times 0170$ $\times 0171$
$\times 0172$ $\times 0173$
$\times 0174$
$x 0175$
$\times 0176$
$\times 0177$
$\times 0178$
$\times 0179$
$\times 0180$

```
    1044 IF (KO) GO TO 1045 X0181
            AA=Y(I)
            IR = I
    1050 CONTINUE
    IF IIR.NE.O) GO TO 1096
c
    DO 1010 I = 1.M
        IF (YII).LE.TPIV.OR.XII).LE.O.O.OR.Y(II#AA.LE.X(I) ) GO TO 1010
            AA = XIII/Y(I)
            IR=1
    1010 CONTINUE
            IF I.NOT.NEGI GO TO 1099
        C FINO PIVOT AMONG NEGATIVE EQUATIONS, IN WHICH X/Y IS LESS THAN THE
        C mINIMUM X/Y IN THE POSITIVE EQUATIONS, THAT HAS THE LARGEST ABSFIYI
        1016 BB = - TPIV
            DO 1030 1 = 1.M
            IF IXIII.GE.O..OR.YIII.GE.GB.OR.YIII#AA.GT.XIIII GOTO 1030
            BB = Y(I)
            IR=1
    1030 CONTINUE
C TEST FOR NO PIVOT ROW
    1099.IF IIR.LE.OI GO TO 207
    C* IPIVI. PIVOT ON IIR,JTI
                                    LEAVE TRANSFORMED COLUMN IN YII)
    900 NUMPV = NUMPV + 1
            YI = -Y(IR)
            Y(IR)=-1.0
            LL=0
                TRANSFORM INVERSE
            DO 9U4 J = 1,M
            F=IE(L'INNEO.O) GOTO 90S
            LL =LL'+M.
    905 XY = EILI / Y.!
            PE(J) = PE(J) + COST XY
            E(L)=0.0
            00906 1. 1,M
                LL(LL)=LL_+LI}:+XY\bulletY(I
            CONTINUE
    904 CONTINUE
    C
    C
        XY = X(IR) / YI
                                TRANSFORM'X
            OO 9C8 I = 1.M
            XNEN = XIII + XY Y YII)
            IF IVER.OR&XNEW.GE.O.&OR&YIII.GT.TPIV.OR&XIII.LT.O.I GO TO 907
            XIl)=0.0
            GO TO 908
        9U7 XIII = XNEW
```



```
C
    Y(IR)=-YI M- MESTOREY(IR)
        XIIRI= -XY TO 1102 (VER) GO TO 
    22IA= JHIIRI NO238
```



```
    C MATHIX INVEKSION WITH ACCOMPANYING SOLUTION OF LINEAR EQUATIONS
        SUUROUTINE MATINV(A,N,B,M,INA,INB,IP,ISING)
        OIMENSION EIII,INAIII,INOIII,IP(I)
        LOGICAL IP
        DIMENSION A(65,65)
C
    INITIALIZATION
    DO 20 J = 1.N
        IP(J)=.FALSE.
        2U CONTINUE
C HIG LOUP UNI
        00 575 I = 1,N
        AMAX = O.v
C SEARCH FOR PIVOT ELEMENT
        DO 105 J = 1,N
            IF IIP(J)) GO TO 105
            DO 100 K=1,N
                IF (IP(K).OR. ABS(AMAX).GE.ABS(A(J,K)), GOTO 100
                1RON * J
                ICOL = K
                AMAX = A(J,K)
                contINuE
        contINUE
        IF (AMAX.EQ.O.0) GO TO 750
        IP(ICOL) =.TRUE.
    INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON OIAGONAL
        IF IIROW.EQ.ICOLI GO TO 260
        OO 200 L I,N
                    SWAP = AlIROWILI
                A(IROWOL) = AIICOLDLI,
                A(ICOLDLI = SWAP , M0, M, M
        CONTINUE NO, MOM, M
```



```
        SWAP = BIIRONI NOMN
        B(IROW) BIICOLI NOM, M0036
        BIICOLS = SWAP O, %
```



```
        INBIII=ICOL
    DIVIDE PIVOT ROW BY PIVOT, ELEMENT
        AIICOL,ICOLI=1.0
```



```
            A(ICOL,L) = AIICOL,L) / AMAX M0043
    350 CONYINUE
        IF (in.NE.U) D(ICOLI. B(ICOL)/ AMAX
    cOMplete the pivot
        DO 5SO LL = INN
            IF (LL.E゙u.ICOL) GO TO 530
            SNAP = AILLIICOLI
            AILL,ICOLI : U.O
                O心4%JL
                    A(LL,L) = A(LL&L) - A(ICOL,L) * 5NAP
                CCNTINUE SNA
```



```
    350 CCNTINUE 
    575 CONTINUE (HA.LT.DI RETURN
M0056
    INTERCHANGE CULUMNS,S%
    00716, I I.N MOM, M, %
```

$L=N+1-1$
IF INAILIEE.INBILI) GO TO 710
|ROW = |NAILI
ICOL = |NBILI
$00705 \mathrm{~K}=1, \mathrm{~N}$
SNAP = A(K,IROW)
$A(K, I R O W)=A(K, I C O L)$
A(KIICOL) - SWAP
$\begin{aligned} & 750 \text { ISING } 1+N+1 \\ & \text { GO TO } 600 \\ & \text { END }\end{aligned}$

7US CONTINUE
710 CONTINUE
740 RETURN
C SIngularity flag
110060

家
\square

Appendix B

MATRIX NOTATION AND FURTHER PROOFS

The derivations in the preceding sections would be facilitated by the use of matrix notation rather than subscripted variables. We introduce the following symbols to correspond to the subscripted variables used in Sec. 3.

Subscripted Variable Matrix Size of Matrix

$a_{i j}$	A	$M \times N$
b_{i}	B	$M \times 1$
y_{j}	Y	$\mathrm{N} \times 1$
d_{j}	D	$N \times 1$
c_{j}	C	$N \times 1$
π_{i}	π	$M \times 1$
$r_{i \ell}$	R	$M \times M$
x_{j}	X	$N \times 1$

The single-column matrices may also be thought of as vectors.
We use here the convention that an operator applied to a
matrix means that the operator operates on each element of the matrix. For example, $\log Y$ is the $N \times 1$ matrix consisting of
$\left(\begin{array}{cc}\log & y_{1} \\ \log & y_{2} \\ \cdot & \\ \cdot & \\ \log & y_{N}\end{array}\right)$.

The superscript ${ }^{\tau}$ indicates the transposition of a matrix. We assume that the elementary results of matrix theory are known. For example, it is known that the inverse of an invertable symmetric matrix is symmetric. The square diagonal matrix whose diagonal is one of the vectors previously defined will be denoted by the previously defined vector in elongated type; that is,

$$
0=\operatorname{diag}(D)
$$

and

$$
Y=\operatorname{diag}(Y)
$$

Equations (3.2) and (3.7) in matrix notation are

$$
\begin{align*}
& A X=B \tag{B.1}\\
& X=Y\left(D^{-1} A_{\alpha}^{\tau} \pi-0^{-1} C-\log Y\right) . \tag{B.2}
\end{align*}
$$

To see the ease of matrix notation, we may substitute into (B.1) to get

$$
\begin{equation*}
A^{\prime} D^{-1} A^{\tau} \pi=B+A^{Y}\left(D^{-1} C+\log Y\right) . \tag{B.3}
\end{equation*}
$$

By letting

$$
\begin{equation*}
R=A Y D^{-1} A^{\tau} \tag{B.4}
\end{equation*}
$$

and

$$
\begin{equation*}
S=B+A Y\left(0^{-1} C+\log Y\right) \tag{B.5}
\end{equation*}
$$

we see that

$$
\begin{equation*}
\mathrm{R}_{\mathrm{R}} \pi=\mathrm{S} \tag{B.6}
\end{equation*}
$$

corresponds to (3.10).
In Sec. 4, we evaluated

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{\theta_{j}^{2} \mathrm{a}_{j}}{\mathrm{y}_{j}} \tag{B.7}
\end{equation*}
$$

but we did not give the details of the computation. The algebra of this evaluation is very difficult unless matrix algebra is used. In matrix notation, (B.7) is $\theta^{\tau} D Y^{-1} \theta$, where $\theta=\mathrm{X}-\mathrm{Y} . \quad$ From (B.2) we have

$$
\begin{equation*}
\theta=Y\left(D^{-1} A_{\alpha}^{\tau} \pi-D^{-1} C-\log Y\right)-Y . \tag{B.8}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& \theta^{\tau} D Y^{-1} \theta=\left(\pi^{\tau} A_{\alpha} D^{-1}-C^{\tau} D^{-1}-\log Y^{\tau}\right) Y D Y^{-1} \theta-Y^{\tau} D Y^{-1} \theta \\
& =\pi^{\tau} A_{\alpha}\left(D^{-1} Y D Y^{-1}\right) \theta-\left(C^{\tau} D^{-1}+\log Y^{\tau}\right) D Y Y^{-1} \theta-Y^{\tau} Y^{-1} D \theta \\
& =\pi^{\tau} A_{\alpha}-\left(C^{\tau} D^{-1}+\log Y^{\tau}\right) D \theta-D^{\tau} \theta \tag{B.9}
\end{align*}
$$

Since $A_{\beta}=B, A \theta=A X-A Y=B-A Y$. Also, in the chemical equilibrium formulation,

$$
D^{\tau} \theta=\sum_{j=1}^{n} \theta_{j}-\sum_{j=n+1}^{N} \theta_{j}=\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \theta_{j}-\theta_{k+m}\right)=0
$$

and

A But we have $A_{\alpha} \theta \neq B-A_{\beta} y \quad \therefore$ probable, not true that diectwand derwatuie stuff it valid

$$
\begin{aligned}
&\left(C^{\tau_{D}} D^{-1}+\log Y^{\tau}\right) D \theta \\
&= \sum_{j=1}^{n}\left(c_{j}+\log y_{j}\right) \theta_{j}+\sum_{j=n+1}^{N} \log y_{j}\left(-\theta_{j}\right) \\
&= \sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \theta_{j}\left(c_{j}+\log y_{j}\right)-\theta_{k} \log S_{k}\right) \\
&=\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \theta_{j}\left(c_{j}+\log y_{j}-\log S_{k}\right)\right) \\
&=\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=\sum_{i=1}^{m} \pi_{i}\left(b_{i}-\sum_{j=1}^{n} a_{i j} y_{j}\right)-\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) \tag{B.10}
\end{equation*}
$$

in the context of the chemical equilibrium problem used in Sec. 4.

Next we wish to show that

$$
\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \geq 0
$$

as stated in (4.14). First, we prove
Lemma 1: Let $y_{1}, y_{2}, \ldots, y_{r}$ be positive numbers and let $\theta_{1}, \theta_{2}, \ldots, \theta_{r}$ be any real numbers. Let

$$
G=\sum_{j=1}^{r} \frac{\theta_{j}^{2}}{y_{j}}-\frac{\left(\sum_{j=1}^{r} \theta_{j}\right)^{2}}{\sum_{j=1}^{r} y_{j}}
$$

Then,
i) $G \geq 0$
ii) $G=0$ if and only if

$$
\frac{\theta_{1}}{y_{1}}=\frac{\theta_{2}}{y_{2}}=. .=\frac{\theta_{I}}{y_{r}}
$$

Proof: Let $\alpha_{j}=\theta_{j} / y_{j}, j=1,2, \ldots, r$. Then,

$$
G=\sum_{j=1}^{r} \alpha_{j}^{2} y_{j}-\frac{\left(\sum_{j=1}^{r} \alpha_{j} y_{j}\right)^{2}}{\sum_{j=1}^{r} y_{j}}
$$

$$
\begin{aligned}
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left[\left(\sum_{j=1}^{r} y_{j}\right)\left(\sum_{j=1}^{r} \alpha_{j}^{2} y_{j}\right)-\left(\sum_{j=1}^{r} \alpha_{j} y_{j}\right)^{2}\right] \\
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left[\sum_{i=1}^{r}\left(\sum_{j=1}^{r}\left(\alpha_{j}^{2} y_{i} y_{j}-\alpha_{i} \alpha_{j} y_{i} y_{j}\right)\right)\right] \\
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left[\sum_{i=1}^{r}\left(\sum_{j=1}^{i}\left(\alpha_{j}^{2} y_{i} y_{j}-2 \alpha_{i} \alpha_{j} y_{i} y_{j}+\alpha_{i}^{2} y_{i} y_{j}\right)\right)\right] \\
& =\left(\sum_{j=1}^{r} y_{j}\right)^{-1}\left(\sum_{j<i} y_{i} y_{j}\left(\alpha_{j}-\alpha_{i}\right)^{2}\right) \geq 0,
\end{aligned}
$$

which is result i). The proof is completed by noting that $G=0$ if and only if $\alpha_{i}=\alpha_{j}$ for all i and j; this proves ii).

Now we can prove
Theorem 1: In the chemical equilibrium problem
i) $\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}} \geq 0$
ii) $\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=0$ if and only if there exist
numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ such that
a) $\theta_{j}=\alpha_{[j]}{ }_{j}$
$j \leqslant n$
b) $\quad \theta_{j}=\alpha_{j-n}{ }^{j}-n$.
$j>n$

Proof: The proof follows by noting that for $i>n$

$$
\theta_{i}=\sum_{j \in\langle i-n\rangle} \theta_{j}
$$

Then,

$$
\begin{aligned}
& \sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=\sum_{j=1}^{n} \frac{\theta_{j}^{2}}{y_{j}}-\sum_{k=1}^{p} \frac{\theta_{k+n}^{2}}{S_{k}} \\
& =\sum_{k=1}^{p}\left(\sum_{j \in\langle k\rangle} \frac{\theta_{j}^{2}}{y_{j}}-\frac{\left(\sum_{j \epsilon\langle k\rangle} \sum_{j \in\langle k\rangle}^{y_{j}}\right)^{2}}{j}\right) \geq 0
\end{aligned}
$$

by lemma 1. Furthermore, by lemma 1, if the equality holds, then for each k there is a number α_{k} such that $\theta_{j}=\alpha_{k} y_{j}$ if $j \in k$. This, noting that b) follows from the fact that

$$
\left.\theta_{i}=\sum_{j \epsilon\langle i-n\rangle} \theta_{j} \text { for } i\right\rangle_{n},
$$

completes the proof of the theorem.
Our final result is
Theorem 2: In the chemical equilibrium problem, with $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ feasible and $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ calculated as in (4.7)
i) $\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right) \leq 0$
ii) $\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)=0$ if and only if
$\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is optimal.
Proof: i) follows from Theorem 1, (B.10), and the fact that $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ is feasible.

To prove ii), we assume that

$$
\sum_{j=1}^{n} \theta_{j}\left(c_{j}+\log \hat{y}_{j}\right)=0
$$

Then,

$$
\sum_{j=1}^{N} \frac{\theta_{j}^{2} d_{j}}{y_{j}}=0
$$

and θ_{j} is as in ii) of Theorem 1. Combining b) of Theorem 1 and (4.12) we have

$$
\theta_{k+n}=S_{k} \pi_{m+k}^{\prime}=\alpha_{k} S_{k}
$$

or

$$
\alpha_{k}=\pi_{m+k}^{\prime}
$$

Next, we combine a) of Theorem 1 with (4.7) to get

$$
\begin{aligned}
\theta_{j} & =y_{j}\left[\sum_{i=1}^{m} \pi_{i}^{\prime} a_{i j}-c_{j}-\log \hat{y}_{j}+\pi_{[j]+m}^{\prime}\right] \\
& =y_{j} \alpha_{[j]}=y_{j} \pi^{\prime}[j]+m
\end{aligned}
$$

or

$$
\sum_{i=1}^{m} \pi_{i}^{\prime} a_{i j}-c_{j}-\log \hat{y}_{j}=0
$$

This last result is the optimality condition for $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ as given by (1.4), and this demonstrates the forward implication of ii). The converse follows from the fact that optimality implies that the objective function cannot be decreased.

REFERENCES

1. Shapiro, N. Z., and L. S. Shapley, Mass Action Laws and the Gibbs Free Energy Function, The RAND Corporation, RM-3935-1-PR, September 1964.
2. Dantzig, G. B., Linear Programming and Extensions, The RAND Corporation, $\mathrm{R}-366-\mathrm{PR}$, August 1963. Also published by Princeton University Press, Princeton, New Jersey, 1963.
3. Kaplan, Wilfred, Advanced Calculus, Addison-Wesley Press, Inc., Cambridge, Massachusetts, 1952.
4. Clasen, R. J., The Linear-Logarithmic Programming Problem, The RAND Corporation, RM-3707-PR, June 1963.
5. White, W. B., S. M. Johnson, and G. B. Dantzig, Chemical Equilibrium in Complex Mixtures, The RAND Corporation, $\mathrm{P}-1059$, October 8, 1957. A1so pub1ished in J. Chem. Phys., 28 (1958) 751-755.
6. International Business Machines Corporation, "IBM 7040/7044 Operating System, FORTRAN IV Language," IBM Systems Reference Library, Form C28-6329, Poughkeepsie, New York, 1963.
7. Dantzig, G. B., and J. C. DeHaven, "On the Reduction of Certain Multiplicative Chemical Equilibrium Systems to Mathematically Equivalent Additive Systems," J. Chem. Phys., 36 (1962) 2620-2627.
8. Shapiro, N. Z., A Generalized Technique for Eliminating Species in Complex Chemical Equilibrium Calculations, The RAND Corporation, RM-4205-PR, August 1964.
9. Dantzig, G. B., J. C. DeHaven, I. Cooper, S. M. Johnson, E. C. DeLand, H. E. Kanter, and C. F. Sams, "A Mathematical Model of the Human External Respiratory System," Perspectives in Bio1. \&i Med., 4 (1961) 324-376.
10. Maloney, J. V., Jr., M.D., J. C. DeHaven, E. C. DeLand, and G. B. Bradham, M.D., Analysis of Chemical Constituents of Blood by Digital Computer, The RAND Corporation, RM-3541-PR, April 1963.
and Steady States in the Human Respiratory System: An Investigation Using Mathematical Models and an Electronie Computer, The RAND Corporation, RM-3212-PR, December 1962.
11. Dehaven, J. C., E. C. DeLand, N. S. Assali, and W. Manson, Physiochemical Characteristics of Placental Transfer, The RAND Corporation, P-2565, March 1962.
12. Warga, J., "A Convergent Procedure for Solving the Thermo-Chemical Equilibrim Problem," J. Soc. Indust. App1. Math., 11 (1963) 594-606.

[^0]: *The reader is referred to other works for the procedure of constructing the mathematical models of biochemical systems [9-12].

[^1]: *Ref. 1, p. 18.

[^2]: *See Kaplan, Ref. 3, p. 128, or Dantzig, Ref. 2, p. 140 .

[^3]: Ref. 1, Theorem 8.13; Ref. 5.

