: C&EEA49

MEMORANDUM

RM-4345-PR
JANUARY 1965

THE NUMERICAL SOLUTION OF
THE CHEMICAL EQUILIBRIUM PROBLEM

R. J. Clasen

. ' PREPARED FOR:
UNITED STATES AIR FORCE PROJECT RAND

2te AN D g

SANTA MONICA » CALIFORNIA




MEMORANDUM

RM-4345-PR
JANUARY 1965

THE NUMERICAL SOLUTION OF
THE CHEMICAL EQUILIBRIUM PROBLEM
RH.J Clasen

This rescarch is sponsored by the United States Air Force under Project RAND—Con-
tract No. AF 49(638)-700 monitored by the Directorate of Development Plans. Deputy
Chief of Staff. Research and Development, Hq USAF. Views or conclusions contained
in this Memorandum should not be interpreted as representing the official opinion or
policy of the United States Air Force.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from the Defense Documentation

Center (DDC).

The Q-ﬂ ” Dém;&omtm

1700 MAIN ST + SANTA MONICA « CALIFORNIA = 90406

]
;

o




-iii-

PREFACE

This Memorandum is one in a continuing series of RAND
publications dealing with theoretical computational ques-
tions arising from the RAND prog;am of research in biology
and physiology. The Memorandum contributes to our ability
to apply computer technology to the analysis of complex

chemical systems by considering the ''chemical equilibrium

problem,'" the problem of determining the distribution of

chemical species that minimizes the free energy of a system

while conserving the mass of each of the chemical elements.

Solutions to the chemical equilibrium problem pub-
lished up to this time [4,5] apply to those problems for
which an estimate of the solution exists. This Memorandum
considers a problem for which no estimated solution exists
and solves that problem with the maximum precision now
available,

The mathematical aspects of this Memorandum should
also be of interest in other fields where computational
analyses of complex chemical systems are under considera-
tion, e.g., in studies of rocket propulsion systems,

planetary atmospheres, re-entry problems, etc.
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FOREWORD

In deciding between the languages of mathematics and
physical chemistry, we have chosen in this Memorandum to
use that of mathematics. The disadvantage of this choice
is that the physical chemist may experience some difficulty
in immediately identifying certain concepts. The advantage
is that mathematical language divorces the methods from
the physical assumptions involved in constructing a mathe-
matical modél of a physical system.‘ The mathematical
methods are, hence, free to transcend their specific
chemical applications.

The methods given here do not solve every problem that
is specified in the given mathematical form. The solution of
a problem in which some phase vanishes (a degenerate problem)
requires further work, Some work has been done on particular
degenerate systems [137, but the accurate numerical solution
of a large general system of this type has yet to be accom-
plished. Until recently, a skilled physical chemist could

intuitively eliminate the degeneracies of his model and

Ln

hThe reader is referred to other works for the pro-
cedure of constructing the mathematical models of bio-
chemical systems [9-127.
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obviate the need for solving a degenerate system. But,

as problems grow, eliminating degeneracy becomes increasingly
difficult, Frequently, the point at which the problem be-
comes too large for the physical chemist to decide whether

or not to include a phase coincides with the point at which
the problem becomes numerically unwieldy., Hopefully, the
future will eliminate these difficulties.

Statements about convergence and convergence tests
exist, unless otherwise indicated, in the context of finite-
accuracy numerics, Statements of this kind do not mean,
in the absence of qualification, that no problem exists
nor that no machine would serve as a counter example,

Rather they are simply descriptions of what was found to
occur in actual pfactice.

No attempt has been made to describe those methods
which were tried and found wanting: The methods presented
are those which are best for the largest number of cases.

Finally, it should be pointed out that although
computing time was a factor, it was considered secondary

to accuracy of results.
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1. INTRODUCTION

For the purposes of this Memorandum, the chemical
equilibrium problem is merely a name we use for a par-
ticular mathematical programming problem, i.e., the prob-
lem of minimizing & particular nonlinear function F(XL’XZ’

.,xn), defined below, while satisfying the linear re-

straints or constraints

n
Za.. x, = b, i=1,2,3,...,m (1.1)

with Xj 2 0 for j=1,2,...,n and aij’ bi given constants.
Assuming that the equations of (1.1) are linearly inde-~
pendent, then in order to have a non-trivial problem it can
be assumed that m<n. The variablesvxl,xz,...,xn can be

considered components of a vector (XI’XZ""’Xn)' Solving

the chemical equilibrium problem then is the problem of
determining this vector. The variable x, will be referred
to as the "jth component''; also the numerical value of x,
may be referred to as the ''component'" rather than using

the perhaps linguistically correct but cumbersome term

"component value,"



The components are partitioned into p non-empty

subsets called compartments, Let us denote these compart-

ments by (1),(2),...,{(p>. Then if the jth component 1is
in the kth compartment, we will say je<(k), where each
component is in exactly one compartment., The number of
the compartment that the jth component is in is denoted
by [j]. Hence je<k) implies [j] = k, and conversely.

Each compartment has associated with it a sum defined by

Sk = Z, Xj . (1.2)
je (k> ‘
A A X,
The component fraction x, is defined by x, = gl—— whenever
; (3]
Se.4 > 0.
L3l
The objective function to be minimized over (1.1)
is
n
F(x,,x ) = Y x,(c, + log X,) (1.3)
=y goeeesX E: 3 cj og Xj .
j=1
where Cq>Cgs»++,C  are given constants, called objective
constants,

When an Xj is zero, log Qj is undefined; but we de~

fine 0 log O to equal 0 so that we may evaluate F when



some components are zero. A feasible solution to the

chemical equilibrium problem is defined to be any set of

non-negative components that satisfies (1.1). The problem

is said to be feasible if it has feasible solutions. If
no feasible solution is arbitrarily large in any component,

the feasible problem is said to be bounded feasible; all

practical problems with which one might have occasion to
deal are bounded feasible.

A solution or optimal solution to a bounded feasible

problem is any feasible solution in which F(xl,...,xn)
attains the minimum value over all feasible solutions. A

problem which has optimal solutions in which some component

is zero is called degenerate, and a bounded feasible prob-

lem in which the components in any optimal solution are

all strictly positive is called a non-degenerate problem.

It has been shown [1, Theorem 12.1] that a non-degenerate
problem has exactly one optimal solution. Hence, we may
speak of the solution to the problem, Furthermore, it has
also been shown* for the non-degenerate problem that the
minimization of F is equivalent to the existence of numbers

MoMosenesT s called Lagrange multipliers, which satisfy:

*
Ref. 1, p. 18.



m
z T.a,, = ¢, + log 8. . j=1,2,3,...,n (1.4)

In the following sections we derive conditions,
analogous to (1.4), which are useful in solving the problem.
In Sec. 2 we are interested in finding a solution to (1.1)
with all Xj > 0. A set of Xj which satisfies these con-

ditions is called a positive feasible solution. If (1.1)

is satisfied with Xj 2 0, we have called such a result a
feasible solution, The theory of linear programming gives
us methods of finding feasible solutions to problems with
linear restraints. 1In Sec. 2, we use a linear programming
technique to find a positive feasible solution. 1In Sec. 4
we show how to modify the initial positive feasible solu-

tion to get the solution to the problem.
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2. THE INITIAL SOLUTION

The algorithms presented in the following sections
require an initial positive feasible solution in order that
the procedure for solving the problem can be initiated.
Frequently, an individual with a problem to solve will be
able to give a rather accurate estimate of its optimal
golution. This estimate may be the exact solution of
another problem which differs from the one being considered

in relatively minor ways.

THE PROJECTION METHOD

Let us suppose that such is the case, and let us de-
note the estimate of the components by Y{sYps+++s¥,. These
values, substituting Y5 for xj,in Eq. (1.1), will not
generally satisfy (1.1), being somewhat in error., Let us

denote these errors by 815895583 that is, let

n
g; = bi - Za..y. . i=1,2,...,m (2.1

Then, we wish to find corrections to yj such that, denoting

the corrections by Qj, we have s
n
b, - Zaij(yj +0,) =0 i=1,2,....m

j=1



or

n
g, = zaijej ) i=1,2,...,m (2.2)
=1

The Qj must also be chosen such that yj + Qj > 0, for all
j. We cannot guarantee this condition, but we can attempt
to choose small values for Gj. One way to do this is to
minimize

w.@?

3]
j=1
subject to (2.2), where Wj is the "weight'" or relative

importance of minimizing Qj. This reduces to the problem

of finding Lagrange multipliers TioTgseeesT s such that
with
n m n
1 2
L= > ngj z ™ Z aijGJ - g (2.3)
j=1 i=1 ji=1

we have

oL .

6. -0 - j=1,2,...,n (2.4)




Equation (2.4) becomes

m
w.0, = za. T, i=1,2,...,n . (2.5)

a .a,.
= AJ 1] .
g, z'rr{ Z - .i=1,2,...,m (2.6)
£ == j:l J
The terms
0 a .a, .,
L 1
L e
j=1

by
n
af.ai.
q,; = )~ (2.7)
=1 4

Then, (2.6) becomes

g, = un”f. . i=1,2,...,m (2.8)



Equation (2.8) is a set of m simultaneous equations in
the m unknowns, TyoMgseee oo These equations may be
solved for 7.,7,,...,%_, and then these values may be sub-

1’72 *"m

stituted in (2.5) to get 91,92,...,9n. There remains the
question of choosing values for the weighting factors
wj. In tests of this method, it has been found that

using

=L
3Ty,
3
yields satisfactory results, The choice of the weighting
factors depends, to some extent, on the available com-
puters. Using these weighting factors, we can summarize

the computation of Qj in the following three equations:

ey

n
B i=1,2,...,m o
dpq za&jaijyj 1=1.2.....m (2.9)
j=1
m n
2 q,qm, = by - Z a3 i=1,2,...,m (2.10)
1 =1 j=1
m
0. = vy, .. = i
5=y zaljwl §=1,2,...,n (2.11)
i=1



x, =y, +0, . i=l,2,...,n 2.12

3 =75 j j=1, ( )
The Kj from (2.12) will satisfy (1.1). However, the

Xj need not all be strictly positive. If any xj is zero

or negative, this method of obtaining the initial solution,

which we shall call the projection method, has failed, If

the projection method fails, or if no initial estimate is

provided, then a linear programming method may be used.

THE LINEAR PROGRAMMING METHOD

The terminology used in linear programming is similar
to the terminology used above in describing the chemical
equilibrium problem. The statement of a linear program-
ming problem includes a set of linear restraints

‘ijxj = bi i=1,2,...,m (2.13)

T et I
o

together with a set of constants Cl’CZ’CS"'°’Cn’ called

.

costs, A feasible solution to a linear programming problem

is any set of non-negative Xj such that (2.13) is satisfied.
The costs are used to form the following expression, L,

which -is called the objective function
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L = ZC.X. . | (2.14)

For every set of feasible Xj’ we can evaiuate L. The set
of feasible xj for which L has the minimum value that it
can have with any set of feasible Xj’ is called a solution
of the linear programming problem. A problem which has
sets of feasible Xj is called a feasible problem, and a
problem in which there are no sets of feasible Xj is called

an infeasible problem. An infeasible problem has no solu-

tions, while a feasible problem has at least one solution,
In this discussion, we will not be concerned as to whether
a problem has more than one solution: we will only be
concerned with finding a solution to the problem. Since
the means of finding a solution to a linear programming
problem has been the subject of many papers and books, we
will not give an actual method of solving the linear pro-
gramming problem here. The reader may refer to Dantzig
[2] for a complete diséussion of the problem.

The problem of finding a feasible solution to a
linear programming problem is itself a linear programming

problem-~that is, it involves finding a solution to the
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problem with all Cj equal to zero. With all Cj =0, L in
(2.14) is zero for any set of feasible Xj; hence, L is at
its minimum value for any set of feasible kj. Since L 1is
at its minimum value for any feasible set of Xj’ any
feasible set of Xj is, by the above definition, a solution
to’the linear programming problem.

However, we must not only find a feasible solution to
the linear programming problem, we must also find a positive

feasible solution to the problem. In order to do this, we

let

Xj = yj + yn+l . j=l,2,...,n (2.15)

If we can find non-negative values of YisYgree Yo
which satisfy
n
z aij(yj + yn+1) = bi i=1,2,...,m (2.16)
j=1

then X5 as defined by (2.15), will be a feasible solution.

If we can somehow assure that Yot is positive, then all

xj will be positive, Rewriting (2.16), we have .
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n n
Yayws +tl Yoagy) v =P o FL2Z.om (21D
3=1 j=1

I1f we now specify Cl’CZ""’Cn+l’ we have a linear program-

ming problem in n+l unknowns. In order to guarantee that

A is positive, if it is possible for it to be positive,

we can maximize Y41 It is easy to see that we can maximize

Yl by setting
L==-9..1 (2.18)
which is equivalent to setting C1=CZ=C3=...=Cn=O, Cn+1 = -1,

If the solution to the resulting linear programming problem

is feasible and y > 0, then we have, by (2.15), a positive

n+l
feasible solution to the analogous chemical equilibrium
problem (1.1). If the linear programming problem is feasible

but y 0, then the analogous chemical equilibrium problem

n+l
is degenerate, since there is no strictly positive solution

to the problem. However, this is a rather trivial kind of
degeneracy, and its occurrence usually indicates that a
mistake was made in setting up the problem. Hence, this
linear programming method gives us a way of finding a positive

feasible solution to the chemical equilibrium problem if

the chemical equilibrium problem is non-degenerate.
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The positive feasible solution that we obtain by this
method will generally not resemble the final solution of
the chemical equilibrium problem. The initial positive
feasible solution can be improved by the following tech-

nique, Define bm+ to be some multiple, between zero and

1

one, of the value of vy that was obtained above. Then,

n+1

adjoin to the linear restraints (2.17) one more restraint

of the form Yoe1 = b Next, solve the linear program-

m+l’
ming problem with these restraints and with Clzcl, C2=c2,
., C=c , C =0 (recall that the lower-case c's here
n n n+1

refer to the c¢'s in the chemical equilibrium problem (1.3)).
The solution to this linear programming problem will give a
set of components more nearly resembling the solution to the
chemical equilibrium problem than did the components calcu-
lated from Eqs. (2.17) and (2.18). This new solution, in
turn, may be improved by solving another linear programming
problem (the details of which can be seen in SUBROUTINE LP in
Appendix A) and averaging the new solution with the old solution,
In order to solve an elaborate chemical equilibrium
problem it is not sufficient to simply use a method which
we can prove converges to the correct solution. Proofs
of convergence generally assume infinite computational

accuracy, but since we are usually limited in practice to
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about eight significant digits, the numericél solution will
not always converge., However, it has been observed that
the closer we can get to the solution by the initial solu-
tion methods described above, the greater will be the
probability that the numerical procedure will converge,
Furthermore, not only will the probability of convergence
be greater, but the number of iterations to get to the
solution will be fewer, and hence--when an improved initial
solution is used--the computation time will be shorter.
Unfortunately, the mathematical methods that are available
for analyzing convergence of iterative processes do not,

in the case of the chemical equilibrium problem, enable us
to prove convergence when we are limited to finite mathe-
matical accuracy. Only experience with a particular method
will tell us whether it is a useful numerical procedure

to use,

In the next section we consider a somewhat more general
problem than the chemical equilibrium problem. This prob-
lem is considered first because the numerical results take
on an especially simple form when the additional generality

is admitted.
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3. THE LINFAR-LOGARITHMIC PROGRAMMING PROBLEM,
FIRST-ORDER METHOD

In this section we consider the problem of minimizing

N
F(xl,xz,...;xN) = z xj(cj + dj log xj) (3.1)
j=1

while satisfying the linear restraints

N .
Y a;x = b . 1=1,2,3,... .M (3.2)

The symbols aij’ bi’ Cj’ and dj denote constants, énd
X15Kg, o0, Xy are the unknowns that we seek, We restrict

the problem to the case that dj # 0 for j = 1,2,3,...,N.

We note that if x, < 0, the term in (3.1), x,(c, + d,log gj),
is undefined, whereas if Xj > 0 this term is defined. 1If

Xj = 0 we define Xj(cj + djldg xj) = 0, since this expression
approaches zero as xj > 0 approaches zero. From this dis-
cussion, we see that, in order for a solution of Egs. (3.1)

and (3.2) to be defined, we must assume that Xj = 0 for

3 =1,2,3,...,N.
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We may attempt to solve this problem using Lagrange

ale

multipliers.  In this method we let

and then set

oL
o) 4

for j = 1,2,3,...,N.

tion, we get

M

N
12%gXgaeexg) = ) |y Zaijxj - by

i=1 j=1

Performing the partial differentia-

M
Cj + dJ log X + d Z: . (3.3)

or, when rearranged,

log x, = d,
& J ]

i=1

X
“See Kaplan, Ref.

p. 140,

i=1,2,3,...,N

m.a,, -~ c, - d.]|. 3.4
iij j h (3.4)

i=1,2,3,...,N

3, p. 128, or Dantzig, Ref, 2,
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Exponentiating both sides of (3.4), we get

x; = exp d;l z 7.a,, - d, c, -~ 1]. (3.5)

Note that for (3.5) to be a solution to the problem, we
must have all Xj > 0, We assume, in the remainder of this
section, that the solution does have all Xj > 0. Then,

the problem reduces to thé problem of determining the M To
so that the Xj from (3.5) satisfy (3.2) Equivalently,

the M + N equations (3.2) and (3.5) must be satisfied simul-
taneously by the proper choice of the M + N unknowns,
ﬂl,nz,...,wM, X sXgy e e, Xy We now consider two methods

of approximating the solution.

In the first method, we suppose that we have an esti-
mate of the Xj which may or may not satisfy (3.2). Ve
denote this estimate by yj’ and, in this method, solve
Eqs. (3.2) and (3.4) simultaneously by making a linear
approximation to log Xj. Since we have the estimate that
Xj is near yj, we note that the first-order Taylor ex-

pansion of log Xj about yj is
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X,~y,
log Xj = log yj + ~1§—l + (higher-order terms) . (3.6)
J

Dropping the higher-order terms, and substituting (3.6) into

(3.4) and solving for Xy we have

M
X, =Y. dfl EZW.ai. - d}lcj - log v. | . (3.7)
l:

Now, if we substitute these Xj into (3.2), we get

M , N N
-1 4 £ “ A ‘ -1
d.7a.,.a .y. |% =Db, + a,.y.(lo .+ d.c.
Z i f13%575 ) e i z 1375108 ¥ fsL
=1 \j=1 i j=1
i=1,2,3,...,M
Denoting
N
3 -1 4 7 1=1,2,3,...,M
= )9 #15%237; i=1,2.3,....M (3.8)
j=1
and
N
=b, + Yaly.(1 +dite ) (3.9)
237yt ) apyyyQlos vyt dyey '
j=1

i=1,2,3,...,M
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Zrmw41 =5, . 1=1,2,3,...,M (3.10)

Equation (3.10) is a set of simultaneous equations which
can be solved for ﬂl’"Z""’ﬂM'

With the above results, we can now define the iterative

process for the first method. At each iteration we have a

set of values for R SRRRRE At the beginning of the
iteration these values are called Y1oTgaee sy and at the
end of the iteration the values are Xy 5Xgs ey Xy If
X,-Y.
S
73

is small for each j, then we say we have converged. The

magnitude of '"small" depends on the nature of the problem.

If

is not small for some j, then we have not converged and
the iteration must be repeated. One iteration consists of

the following three steps:
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1) Evaluate terms in Eqs. (3.8) and (3.9), these
terms depending on MR OTEREES St

2) Solve Eq. (3.10) for 7 T3

M’
into (3.7) to get

1:W2:---:
3) Substitute MoToseenaly

L L Y RERFE e

For this problem, in this generality, we can say noth-
ing about whether this iterative process converges. In
the next section we will show that the chemical equilibrium
problem is a special case of thi; problem, and one for which,

with appropriate modification, this method does converge,
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4, THE FIRST-ORDER METHOD FOR SOLVING THE
CHEMICAL EQUILIBRIUM PROBLEM

The chemical equilibrium problem is a special case
of the linear-logarithmic programming problem. In order
to put Egs. (3.1) and (3.2) into the form of Egqs. (1.1)

and (1.3), we first define

p=d

]
jou]
=)

where, as stated previously, p is the number of compartments
in the problem. Then we define aij’ bi’ Xj’ and Cj’ for
i >mand j > n, as follows

b, =0 i=m+l,m+2,...,M. (4.1)

c, =0 j=n+l,n+2,,..,N (4.2)

Xk-&-n = Sk k=]—:23---:p (4'3)
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( 0 if i €£m, j>n
1 if i>m, j £sn, and [j] = i-m
aij =< 0 if i>m, j £ n, and [j] # i-m (4.4)
-1 if 1> m, j > n, and i~m = j-n
\ 0 if 1 >m, j > n, and i-m # j-n .

For all j, we define

+1 1if j =£n
d, = (4.5)
J -1 if j > n .

With these definitions, it has been shown [4] that the two

problems are identical. Next, we let

x,. =y, + 86 4.6
] yJ J ( )
) ism
i
T, =
i
7! + log S, + 1 . i>m
i i=-m

Substituting Eqs. (4.1) through (4.6) into (3.7) through

(3.10) and simplifying, we have
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m .
A
A & L. - e, - 1 N 4.7
QJ yJ Z:aljwl cJ og yJ W[j]+m ( )
o1
3=132’ 5n
n
A A
1gm, is
Ezaija{jyj m, ism
j=1
< i>
Z a{jy:} {=m, 1”m
je (i-m)
i, =9 (4.8)
X a, .y, 2>m, ism
117 ]
je{t-m)
0 1>m, i>m
\
( n v
A .
s AN .+ .- 1 £
bl + E:alJyJ(cJ log yJ ) ism
j=1
i = | (4.9)
E: y.{c, + log ¥.) i>m
J ] ]
jed{i-m)
M
1 o ot y
zri)ﬁﬂi si ' i=1,2,...,M (4:10)
1=1

The directional derivative of F in the direction

(91,92,...,9n) is given by [1, Theorem 8.11] to be



- 2lym

n
A
(e, + 1 ). 4,11
E:GJ(CJ og yJ) ( )
j=1
N g%a.
But, if we compute E:—gfl where by (3.7)
j=1
_ - - = !
ek+n = S [%m+k log.Sk %] Sy T otk (4.12)

k=1,2,...,p

we show, in Appendix B, that

N gzd n
Z—-l—-l z 0. (c + log 97 ) +Z zaijyj (4.13)
321 73 j=1

Thus, if we assume that (yl,yz,...,yn) is feasible, we get
the interesting result that the directional derivative of
F in the direction (Ql,GZ,...,Gn) is

n N 2

E:Q.(c. + log ?.) E:_J_l < 0 . (4.14)
J ] J J
j=1 j=1

However, it is also shown in Appendix B that the
equality on the right side of (4.14) holds if and only if
the values for yj are optimal. We further note that if

(yl,yz,...,yn) is feasible, then
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n
Za..Q = 0
131 ]
j=1
for i = 1,2,...,m. Hence, if (yl,yz,...,yn) is feasible,
then (yl+A91,y2+A92,...,yn+A9n) will be feasible for any

A for which each yj + AOj is positive.
We now state the first-order chemical equilibrium
algorithm:

1) Calculate (91,9 ..,Qn) using Egs. (4.7) through

2>
(4.10).

2) Calculate the directional derivative of F in the

direction (91,9 ...,Gn) as given by Eq. (4.11);

2,

if this quantity is not negative, we are done,

3) Calculate

n 2
1 e,
n V.
j=1\

€ is a number that represents the root-mean-square
error in (yl,yz,;..,yn). If € is less than some

given number (say, 0.00l), we are done.
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4) Calculate the ratio —yj/Oj for every j for which
Qj < 0. Let Al be the minimum of all such ratios
and let A = min (i,BAl), where B is a number less
than 1 but close to 1 (say, 0.99). We now per-
form the following steps until the test at c¢) be-
low is satisfied:

a) Let zj = yj + XOj;
b) Compute the directional derivative of F at
zj in the direction (91,02,...,9n): £E(\) =
Qj(cj + log 2j>;
¢) I1f £()\) = 0, go directly to step 5);
d) Replace X by yx, where 0 <y < 1, e.g., v = %

5) Finally, replace Y5 by yj + 28, for j = 1,2,...,n.

3
Steps 1-5 are repeateq until either the test in step 2 or
the test in step 3 is satisfied.

If this process terminates, the solution will be
optimal within the specified limits of accuracy. It may
happen that the process does not terminate., Since the
objective function F is convex* and assuming infinite

computational accuracy, non-termination can ocecur only be-

cause the values chosen for )\ become smaller on every

*
Ref., 1, Theorem 8.13; Ref, 5.
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iteration, This will occur only if some yj is approaching
zero, and hence (yl,yz,...,yn) is approaching a point at
which, if it were the optimal solution, the problem would
be degenerate. It is possible for this to happen for a
non-degeherate problem for which the initial solution
chosen was too far from the optimal solution. Convergence
can be guaranteed by imposing thé condition that the wvalue
of F at the initial solution be less than the value of F
_at any feasible, degenerate point, However, it is not
practical to impose this condition on the initial solution
since it may be very difficult to find such a point. In
practice, it has been found that round-off errors cause
more difficulty than the possible selection of a poor

initial solution.
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5. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM,
SECOND~ORDER METHOD

In the first-order method, presented in Sec. 3, the
iterative process was initiated with an estimate of the

value of % ,X,,...,X In the second-order method, we

1°72° N’
agssume that the problem is as defined by Eqs. (3.1) and

(3.2), but that we have initial estimates for the values

l,ﬂzb...,wM. Let us denote these estimates by

Al,Az,...,kM. The Xj can then be evaluated by Eq. (3.5),

substituting Ai for LFp These Xj, however, probably will

of =

not satisfy Eq. (3.2). The problem of the second-order

method is to find numbers Akl, 2,...,AAM, such that

T. = XA, + DA, i=1,2,...,M (5.1)

i i i
when substituted into (3.5) will give xj that satisfy (3.2).
In order to accomplish this, we first use the Xj

calculated from Eq. (3.5) to get

N
g. =b, - za. X, i=1,2,...,M (5.2)
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where g; represents the amount that equation i is in error.

Next, we evaluate

og

e
BA{
by
N N
og. fsh:4
— o b, - E:aé.x = - z él/3 —
ax} ax} i i3] ij ax}
- j=1 j=1 “
N M
A d -1 . -1
= - - d A . - d, -1
zal_] ax} exp h| z hah_'] J c_'j
j=1 h=1
N
- fatx,a, = (5.3)
Zaij e :
j=1

where L is given by Eq. (3.8). 1If we make a very small
change, dkl, dkz,..., in Al,Kz,..., the change in 815895+ 4>

is given by dgl,dgz,..., where

M
dg. = + Z—-—i dXx i=1,2,...,M
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or

i

M
dg. = - Zr A . i=1,2,...,M (5.4)

We would want dgi to be equal to -g; as computed by

Eq. (5.2). If we make the approximation that

is constant over the domain considered, we can set

dgi = -85 let dk£ = AA}, and write

M
g, = er.ml i i=1,2,,..,M (5.5)

Equation (5.5) consists of M equations in the M unknowns
A&l,AAz,...,AAM. We may thus solve Eq. (5.5) for
AAI,AAZ,...,AAM and compute TyoMosensTy from (5.1). 1If

the assumption about

og

dA
L

i

being constant over the domain considered was correct, then
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the xj computed from (3.5) with these values for T will
satisfy (3.2). However, in general, they will not satisfy
(3.2), but, if we were close enough to the solution so

that the

Q/
0o
P

o/
>
.

did not vary greatly in the domain considered, then the new
values for Xj shouid come closer to satisfying (3.2) than
did the first set of Xj.

With this assumption, we may now state the iterative
process:

a) Using the values at hand for = N

]_"”29”' M’

evaluate (3.5).

b) Using the values for Xj obtained in step a,
evaluate (5.2). 1If the |g11 are sufficiently
small, we are done.

c) Compute_ri{ using (3.8) and solve (5.5) for AAi.

d) Denoting the L#] in step a by Ai’ we get new L
by (5.1).

Steps a-d are repeated until the Igi\, computed in step

b, are sufficiently small, or until they show no more

improvement,
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There is no proof of cdnvergence for this method.
In fact, the method presented here is unlikely to converge
unless ;he starting values of M13Tgse-.,My, are very good,
and even then there may be no convergehce. This methodAmay
be used on the chemical equilibrium problem after the first-
order method has resulted in a reasonably good solution.
If the T obtained from (3.10) in the final iteration of
the first-order method are used to initiate the second-order
method, the accuracy produced by the second-érder method
will generally be better than that which could be achieved

by use of the first-order method only.
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6. THE SECOND-ORDER CHEMICAL EQUILIBRIUM ALGORITHM

In order that the second-order linear-logarithmic
method be set in the form bf a chemical equilibrium problem,
the same definitions as given in Sec. 4--i.e., Egs. (4.1)
through (4.5)--are used here. Since the second-order method
is best used after the first-order method has been applied,
the initial values of L for the second-order method must
be specified. The first-order method gives a set of ﬂi
which are related to T by Eq. (4.6). The m, computed by
means of (4.6) are appropriate initial values for the second-
order method. Using these initial values for Moo the second-
order chemical equilibrium algorithm is an iterative process

for which each iteration consists of the following steps:

1) Using the current values for (Wl,ﬁz,...,ﬂM),
evaluate R TERRTE by means of (3.5).
2) Calculate 81589558 by means of (5.2) and set

gm+1,gm+2,...,gM equal to zero.

3) Compute T, from (4.8) and solve (5.5) for

Akl,AAZ,...,AA

4) Let

Mo

M
P = max |AX, |
i=1
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If P < 6, where 8§ is a small positive number such
as 10-5, we are done; otherwise, let Q = min <%,l>.
5) Replace T by T +Q AAi for 1 = 1,2,...,M.
Steps 1-5 are repeated until the test at 4) is satisfied,
P should decrease at every iteration; however, when the
values for‘wi get close to their optimal values, P may
not become zero due to round-off error. In order to prevent
an endless repetition of steps 1-5 due to the selection of
too small a 8, we can test P against the value of P at the
previous iteration. 1If this value has increased over the
previous iteration, it can be assumed that this method has
obtained as accurate a solution as possible, and we can
terminate the iteration process. The reason for inserting
the factor Q above is to prevent the Ty from varying too

much on one iteration.
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7. SUMMARY OF THE COMPUTATION PROCEDURE

The best method for starting the solution of the
chemical equilibrium problem depends on whether an estimate
for the solution vector 1s available. The projection method
should be used when the problem being solved is a.slight
variation from a problem previouély solved, and in this
case, the values used for Y5 in (2.9 - 2.12) should be the
solution vector to the previous problem. Even when the
estimate is no better than an intuitive guess, the pro-
jection method may still be used. The linear programming
method, then, may be used as a back-up if the projection
method produces a non-positive component. Of course, if
no estimate is available, the linear programming method
would be used immediately to provide an estimate.

The recommended procedure is, then, to use the first-
order method until either no furﬁher progress can be made
with this method or until the amount of change becomes
small from iteration to iteration, and then to use the
second-order method., It has been found that, for reason-
ably large problems (say m = 30, n = 100), the point at
which progress ceases in the first-order method usually

occurs when the indicated corrections to the components
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of the solution vector average about one per cent of the
components; that is, when (3.5) is accurate to about two
significant digits. A switch to the second-order method

at this point usually yields quite accurate results in two
iterations of the second-order method. The second-order
method usually satisfies (1.1) to an accuracy of about

five significant digits on a machine that carries eight
significant digits., This accuracy is typically about three
orders of magnitude above what is usually obtained in
experimental data.

To summarize, the typical procedure for solving a
chemical equilibrium problem is the following:

1) If an estimate is available, use the projection
method to obtain a feasible estimate,

2) 1If step 1 yields a strictly positive estimate, go
to step 3, but if the projection method yields non-positive
components, or if there was no initial estimate, then use
the linear programming method to get an estimate.

3) Use the first-order method until one of the tests
described in Section 4 is satisfied.

4) Use the second-order method as described in Section
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Appendix A

A FORTRAN-IV PROGRAM FOR SOLVING THE
CHEMICAL EQUILIBRIUM PROBLEM

GENERAL DESCRIPTION

The program described here is a set of FORTRAN-IV
subroutines for solving chemical equilibrium problems,

The calling sequence used is merely the statement:
CALL SOLVE

Communication of data into and out of the subroutines
is accomplished by a block common statement:
COMMON/SLVE/IV(30),TOL(20) ,NR(55,2),B(55) ,KN(120),X(121),C(121),
1 KL(26),NAM(25,2),A(55,121),PIE(65),V1(65),V2(65),V3(65),
2 V4(65),XMF(120),X1(121),X2(121),X3(121) ,XBAR(25) ,R(65,653)
The data that must be input before CALL SOLVE is

executed consist of the following:

COMMON Location Quantity
Iv(l) m
1V(2) M ( = mtp)
IV(3) p
IV{4) n

IV(6) Number of the output unit.
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COMMON Location Quantity
IV(7) Print flag: -1 = minimal amount of

messages; 0 = one message per itera-

tion step; +1 = all messages.

Iv(9) Maximum number of iterations to be
allowed.

B(i) b;, 1=1,2,...,m.

X(3) Yy j=1,2,...,m, where y; is the

initial estimate of the solution.

If no estimate is available, set

X{J) = 0.
c(3) Cj’ i=1,2,...,n.
A(i,]) aij’ i=1,2,...,m; j=1,2,...,n.

In addition, all components in one compartment must

®

have consecutive subscripts. That is, components 1,2,3,...,k

must be in compartment 1l; components k1+l, k1+2, ey k2
must be in compartment 2; .; and components kp_l+l,
kp_l+2, vy kp must be in compartment p. These k's are

communicated to the subroutines by setting

KL(1)

= 1
KL(2) = kl+1
KL(3) = k2+1
KL(p) = kp_1+1

KL(p+1) = k +1
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In other words, KL(k) is the number of the first component
in compartment k, and KL(p+l) is equal to nt+l.

The above are the only numbers that need be set in
order that CALL SOLVE will solve the chemical equilibrium
problem. However, in order that the program can write
messages, in cases of infeasibility, etc., names for the

rows, components, and compartments may be input:

COMMON Location Quantity
NR(I,1), NR(I,2) ~ Two-word row name for row I.
KN(J) One-word component name for

component J.

NAM (K,1), NAM(K,2) Two-word compartment name for

compartment K.

In addition, TOL(1l) through TOL(5) are tolerances used
by the program. If they are zero when thevprogram is
entered, they are set by the subroutines to nominal values.
These values may also be set by the user of the subroutines,
in which case the nominal values will not be set in the sub-

routines. These tolerances are the following:

Nominal
Tolerance Value Meaning
TOL(1) 0.01 € in step 3 of the first-

order method (see Sec. 4).

=
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I S
Nominal 5
Tolerance Value Meaning

TOL(2) 10-5 6 in step 4 of the second-
order method (see Sec. 6).

TOL(3) 10'.12 Minimum value any Xj is
allowed to have.

TOL(4) ].O-.6 Minimum starting value that
any component will have is
the lesser of TOL(4) and
i
5 a1 (see Sec. 2).

TOL(5) ]_O.8 Problem is assumed to be

degenerate if any Sk

becomes less than TOL(5).
With the above as input, the statement CALL SOLVE will
cause an attempt to solve the chemical equilibrium problem.
If, upon completion of this attempt, a solution is obtained

?

the cell
IV(10)

will contain a 1 and the following data will be in storage:

COMMON Location Data
X(i) X i=1,2,...,n (the solution).
XBAR (k) Sis k=1,2,...,p.
PIE(i) M., i=1,2,...,m
XMF (1) L., i=1,2,...,n
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If IV(10) is not 1, the subroutines have failed to solve
the chemical equilibrium problem. The reason for this
failure is written on output unit IV(6). 1In such a case,

X(i) will contain the latest value of these quantities.

SUBROUTINES

There are nine subroutines in the set used for the
solution of the chemical equilibrium problem. A brief
description of these subroutines follows.

1., Subroutine SQLVE

SOLVE is the master subroutine, and is divided into
four functional segments. Each segment calls other sub-
routines which do specific tasks. The four segments
are:

a) The projection and linear programming routines

for obtaining the initial solution (lines 18-42).
b) The first-order method (lines 43-122).
c) The second-order method (lines 123-163).
d) Output messages (lines 164-203).

2. Subroutine BAR

BAR calculates the Sk‘
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3. Subroutine BERROR

BERROR calculates

4, Subroutine DEL

DEL seté

5. Subroutine RCALC

RCALC calculates the r,, array (4.8).

6. Subroutine CLOG

CLOG computes

7. Subroutine LP

LP sets up the linear programming problems.

8, Subroutine SIMPLE

SIMPLE solves the linear programming problems.

Information is communicated to this routine via a
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calling sequence rather than by COMMON as in sub-
routines 1-7. The dimension of A in SIMPLE should
agree with the dimension of A in the first seven
subroutines, but all other dimensions are dummy
statements.

9., Subroutine MATINV

MATINV solves simultaneous equations. As in
SIMPLE, no COMMON is used. The dimension of A in
MATINV should agree with that of R (not A) in SOLVE.
All other dimensions are singly subscripted and are

irrelevant as to magnitude,

Each of the first seven subroutines has a COMMON
statement which should be the same in all seven. The
dimensions of the variables in this COMMON statement may
be set to the values for the largest problem to be solved.
With m, M, p, and n as previously defined, these dimen-

»

sions must be at least:
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Symbol Minimum Dimension
1v 30

TOL 20

NR (m,2)

B m

KN n

X n+1

C n+l

KL p+l
NAM (p,2)

A (m,n+1)
PIE M
vi,v2,V3,V4 M

XMF n
X1,X2,X3 n+1l
XBAR P

R (M,M)

A listing of these subroutines follows. This listing does

not necessarily represent an actual program.

The language

used was that version of FORTRAN described in [6]. The

machine used for the solution of chemical equilibrium

problems was the IBM-7044, which uses a floating-point

number with eight bits for the exponent and 28 bits for

the sign and mantissa.
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LISTING
SULBROUTINE S0LVE 50001
CQ-"-‘:‘-)_U?‘:/SLVE/IV‘30)rTUL(ZO)vNR(SSvZ’-8(55)vKN(}ZU);X(lZl)!C(IZl)v 5CC02
1 KL(Zb)vNAH(ZSv'Z)-A(BS;]ZI),Plt(65)'V1(65)yV2(65)’V3(65!- . S0003
2 VA(B5) XMFELI20)9X1012119X2012119X3(121) yXBARI25) ,R(65565) 50004
INTEGER PF ! v 50005
EQUIVALENCE  {TCLUI3YaXMIN) s (TOLIG 9 XSTART IS {TOL(5) yBARMINI 50006
ECGUTVALENCL CIVI1) oM (IVI2)oMEND) o (IVI31 oNCOMP) 2 { IV I4) sNsNTOT) s 50007
L oCIVES ) eNIT) 0 CIVIO) sNOT ) s (IVITISPF ) s (IVIBI W ITERY s (IVI9) s I TMAX ) s 50008
2 HIVIY.) »TERRORIS(IVIILY sLASTCPY s (IV{12) sKE) $0009
DIMENSION DXU1)sALPHALL) »THI1)s0(1) S0010
ESUIVALENCE (GsV119(DXsX1) s (ALPHASX2) s (THs»X3) . 50011
IF (TOL{1) eLEaQW0) TOL({1) = GaG1 - 50012
IF (TOL(2)eLE«GsQ] TOL(2) = 1&E-5 50013
IF (XMINeLEeULsO) XMIN = 1eE~12 50014
IF {UARMINCLESCe0} BARMIN = 1.E~8 50015
IF {1TMAXeLEew) ITMAX = 40 50016
DO 152 J = 1, NTOT ' 50017
: IF (X{J1eLEeCs) GO TO 5 50018
152 CONTINUE 53019
C IF X IS STRICTLY POSITIVE, BEGIN PROJECTION 50020
CALL BAR{ X»XBAR ) 50021 7
2 CALL SBERRCRIERR) , soo22’
CALL RCALC 50023
CALL MATINVIRIMENDsGr=~13V21V3sVayKE) 50024
IF (KE«NEWLCZ) GO TO 5 ‘ : 50025
CALL DEL (DXs0) _ 56026
DO 3 K = 1.08CUMP’ : . 50027
KTA = KL{(K) 50028
KTB = KL(K+1)=1 , 50029
MK = M + KX 50030
DC & J = KTASKTB : : 50031
X(J)y = X(J) * (1. + DX{J} + GIMK) ) $0032
IF  (X{J)eLEsGe} GO TO 5 ! 50033
4 CONTINUE .~ 50034
3 CONTINUE ’ 50035
GO TO 7 _ , 50036
¢ LINEAR PROGRAMMING ROUTINE 50037
5 CALL LP{KF; ' 50038
IF (KFeNE.O) GO TU 10006 : S0039
7 CALL BAR({XsXBAR) _ 50040
CALL CLOGI(XsXBAR) ' 50G41
FE2 = l.E+2vu 50042
C FIRSYT ORDER METHGOD LOUOP 50043
DO 899 ITER=1,1TMAX , -, 50044
CALL BERROR(ERR) 50045
DC 7110 I1=1sMEND . 50046
PIE(L) = o, : 50047
71iv CONTINUE , 50048
DO 7111 K = 1, NCOMP 50069
KTA = KL{K) S350
KTd = KLIK+1) - ] ‘ SUC51]
MK = M + K’ ; SUUH2
DO 7112 J = KTA» £TB o 50053
AX = ALPHA(J) * X(J) _ SCO54
PIEIMK) = PIE(MK] + AX SUU55
DO 7113 [ = 1M 50056
PIE(L)Y = PLEGL) + AX & A(l»d) ] 50057
7113 CONTINUE ‘ : . 50058
7112 CONTINUE ' , 50059

7111 CONTINUE ‘ ' - ‘ 50060
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T1U5

7103
7104

7120

826
8269

8301

8266

. B264
8265

828

8281

82131
8288

DO 7116 1 = 1M

PIECTIY = GII) + PIEL])
CONTINUE
CALL RcALC

CALL MATINVIRWMENDSPIEs=~1
IFIKESNE«U)Y GO TO 10003
DMAX = let+2C
CALL DELITHWPIE)
GNORM=C
TDA = Do
FE = O
DO 7104 K=1,NCOMP

MK = M + K

KTA KL{K)

KTb KLIK+1) -1

DO 7103 J = KTA, KTB

Hon

TH(J) = TH(J) +PIE
GNORM = GNORM + TH(J)
TH(J) = THIJY * X(J)

sVZ2eV3eVa,KE)

(MK}= ALPHA(J)
*%2

TDA = TDA + TH(J) * ALPHA(D)
IF (X{J)oLTe=DMAX®THIJ)) DMAX = =X{J)/TH(H)
FE m FE + X(J) * ALPHA{J)

CONTINUE
CONTINUE
EPS=  SORT ( GNORM/FLOAT
DFE = FE - FE2
FE2 = FE

(NTOT) )

IF (ITER.EQe.1) GO TO 712y

ITR = ITER - 1

IF{PF.GE«uU) WRITE(NOT+799) ITRs DFESOPTLEPS

OPTL =AMINI ( las «S9%DMAX )
IF(PFeGT.0I)WRITEINCTs8241)

IF (EPS.LE-TOL(1)) GO TO

DMAXsOPTL s TDASERR
8269

IF {(TDAGE.Q«) GO TO 8267

DO 8265 Il =1+54
DO 8321 J = 1N

DX{J} = AMAXL(X(J) + OPTL*TH{J) s XMIN)

CONTINUE

CALL BARI(DXsXBAR)
CALL CLOGI(DX»X3AR)
TDA = Jes

DO 8266 J = 1sNTOT

TDA = TDA + TH{J)*ALPRAC(J)

CUNTINUE

IF{PFeGTwulWRITEINOT, 8262)11+0PTL TDA

IF { TDA+LT«0s) GO TO 828

OPTL = CPTL /le.4142
CONTINUE
CALL BAR(XsXBAR)
GO 1O 8271
DO 8281 J =12NTOT
XtJdy = DX(J)
CONTINUE
FE = Qo
DO 8231 J=1sN
FE = FE + ALPHALJ)*X(J)
CONTINUE
CALL 35SwTCH({S5sLABEL)

; IF {LABELsNL42) GO TO 10004
899 CONTINUE '

50061
50862 -
50063
55564
50065
50066
sLo67
5C068
50069
50070
50071
s5Co72
SSC73
50C74
50075
50076
50077
50078
$0079
ICC80
50081
50062
50083
50084
50085
auC8eé
SUUBT
50088

50C89

S0090
SCU91
50092
50093
SC094
$0C%5
50096
506097

50C98

50099
501006
50101
50102
50103
$0104
50105
50106
50107
50108
50109
50110
50111
50112
50113
S0114
50115
50116
50117
50118
50119
50120
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€ END OF FIRST ORDER METHOD LOOP
GO TG 1ouC2

600V ITER]1 = ITER + 1
PMAX = leE+2u
. PMAX1 = 1.E+21
C SECOND ORDER NMETHOD LOOP
DO &Cu2 ITER = JTER1»ITMAX
CALL DELI(DX,PIE)
DO 6uJu3 K =1+ NCOMP
MTA = KL{K)
MTB = KLIK+1) - 1
DO 6uUle J = MTAMTB
XMF U J} = EXP | DX{J)y =-CtU) )
X(Jy) = XMF (J) ¥XBAR(K)
601V CONTINULE :
lr {X3AR(K)«LE«JARMIN) GO TC 18025
6003 CONTINUE
IF (PMQX.LE.TOL(Z)-GR-(PMAX.GE.PNAXI.AND-PMAX-GE-PMAKZ) )
1 GO TO 1vevul
CALL BERRCR({ERR)
6006 CALL RCALC '
CALL MATINVIRSMENDsGy ~13V2sV3sVa4,sKE)
IF(KE-NE-U) GO TO 1U003
PMAXZ = PMAX]
PMAX]1 = PMAX
PMAX = O
DG 6CU4 1 = 1sMEND
PHMAX =AMAX1 ( PMAXs ABS (GLI)) )
6004 CONTINUE
© IF (PMAXEWs0eC) GO TO 1U001 .
IM =AMIN] { 1e/PMAXs14) ' : ’
DO-6005 1 =1sM ’
PIE(I)Y = PIE(IY + ZM* G(]})
&0U5 CONTINUE
DC 6C11 K = 1,yNCOMP
MK = M+K
XUBAR(K) = XBARIK}* EXP ( ZM * G(MK} )
6ull CONTINUE
IF (PFeGEsu) WRITLINOT »6099) ITERSPMAX,ERR
CALL S5WTICH{S5,LABEL)
IF (LABEL«NEL2) GO TO 10004
63v2 CCNTINUE
C  END OF SECOND ORDER METHOD LOOP
100902 - 1ERROR = 2 . ’
: WRITEANQT»2uidu2)
2002 FORMAT(27H ITERAION LIMIT EXCEEDED )
ITER = JTMAX
GO-TO 106200
10003 [ERROR = 3
NRITEINOT»2V0u3) KE
2G0uv3 FORMATI(21H R MATRIX HAS NULLITYsI3)
GO TO 14009
luuus [ERROR = 4
WRITE(NOT»20yué) .
20004 FORMAT(56H SOLVE ROUTINE TERMINATED GECAUSE SENSE SWITCH 5 IS DOwN
1) :
GO 7O 100uQ
10005 1ERROR = 5§
WRITEINOT#20005) NAMIK 1) s NAM(Ks2)
200U5 FORMAT(13H COMPARTMENT +2A6+10H TOO SMALL )

50121

0122

50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
SC134
50135
50136
50137
50138
50139
530140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158

50159 ..

50160
50161
50162
50163
S0164
0165
50166
50167
50168
20169
50170
20171
50172
50173
50174
50175
50176
56177
50178

50179

50180

o~
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102vs IERROR = 6 ’

1CUd]l TERROR = l
1vdue RETURN )
Blal FORMATU]5H LAMODDOA MAX=1PE1264913He OPT LAMBDA=E1C«396Hs TDA=zEL12
1aB5slbdy MAX RTw ERRUR=E1245)
B267 1F PFeGfal) WRITE (NCT8268) ITER
82608 CRMATI1LH ITERATION»I4»30H POSIHIVE 1DAy GO 10 MEIHOD 2 )
GO TO 6CLv
B269 IF (PF.GZaC) WRITL (NOTHB27C) ITER
827U FCORMAT(IOH ITLRATIONsl4sa2rt AV THETA LESS THAN 10LI{11» GO TO METHO
10 29
GO TO 6030
8271 IF (PFeGE«O) wWRITE {(NOT»8272) ITER
8272 FORMAT(1ICH ITERATION»l4s36H STEP SIZE TCO SMALLs GO TO METHOD 2)
GO TO 63030 .
8262 FORMAT(1uXy 4HSTEP]12s 9H LAM3LA=1PE10«3s6Hs TDA=E1548)
169 FORMAT(1UH ITERATIONsIGs24H CHANGE IN FREE ENERGY'IPEIS-B 12H
I1S5TEP SIZE=E1548910H AV THETA=El12.5)
6099 FCRMATI(]10H lTERATlONolhvlS?H MAX CHANGE IN PIlE= IPE15 By 15H" MAX ROW
1ERROR=E]15.8
END




SUBROUTINE BAR(WsW3AR)
COMMON/SLYEZIV(33)»TOLI20) AR
1 KLI{2B6)sNAMI2542)+A(555121)>
2 Vh(bi)vXMF(lZU)sXI‘IZI),X2(121)vX3!121)vXBAR(25)1R(65v65)
EQUIVALENCE (IV(l!»M)’(lV(Z),MENO)n(IV(3)$NCOMP);(lV(Q)»N:N[Ol)v
1 (lV(S)oNIT);(IV(s)oNOTfo(IV(?)’PF)o(lV(B)!IlER}v(IV(9)’XTMAX)o
2 (XV(lD)-IERROR)’(IV(ll)aLASTCP)v(lV(lZlDKE)
DIMENSION wW(1)»WBAR(1)
7 DO 701 K = 1+NCOMP

KTA = KL

(K}

KTB = KL(K+1) = 1

WBAR (K}

= O

DO 702 J = KTAWKTB

WBARIK) = WBARIK) + wWtJ)

702 CONTINUE
701 CONTINUE
END-
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15552198155) 1KNE12U) o X1121)»CL121 1
PIE(65)sV1{651sv2165)9v3L65}s

oy

wN0001
w002
WwuQu3
wGCQo04

" ¥d005

w0006
w0007
w0o08
wWOo009
w0010
w001l
w0012
woQ13
W3I01l4
wOo015
wG0l6
w0017




102

161

111

liv

120

MQSO;

SUBRQUTINE SLRRLORZ/ZAX)

COM™ 1ua\/JLVE/1V(3(.)'TOL(Zu)iNR(5592)7‘(5‘3)vKN(lZU)v}\ilZl))C(lZl”
1 KLI26) s NAMI25921sA(5551211sPIELE51sV1165)sV2065)9V3165)
2 V4lO3) s XMFLI2019X10121)eX210221)5X30121)9XBARI25)sR(65+65)

FQUIVALENCE (IVI1)aMIs{IVI2IaMEND ) EIVI3)sNCOMPYsLIVIA)YsNsNTOT )
1 (IV())'NlT)9(IV(6)'NOT)'(XV(7)’PF)1!lV(B)vllER)!lIV!9);1IMAA)!
2 (IVIICH 2 TERARGR) » LIVILL I sLASICP I LIV I12)5KE)

DIMENSION GI(1)

EGQUIVALINCE (GaV)

DO 101 1 = 1leM

2T = S

DG 102 J = 1N :
TF{ALIsJd) eNLeUe) ZT = 2T -« XUJy * Al]sJ)

CONTINUE

GiIl) = 2T + Bt

CONTINUE

DO 11v K = 1s»NCOMP . '
ZT = Q.
MTA = KLIK)
MTB = KLIK+1) - 1
DO 111 J = MTAMTS P
LT = 2T + X)) ‘ .
CONTINUE :
MK = M + K
GUMK) = XBAR(K) - 2T .

CONTINUE
BMAX = (C, ,

DO 120 I = 1sMEND

IF (ABS(G(]1))eGTs ABSIBMAX) § BMAX = G(I)

CONTINUE
RETURN
END

-

bBO0021
U002
50C03
BOOOGL
BGCO5
BULO6
BUODT
BGCo8
bGGI%
bUO10
BGC11
bBOCL2
BGO13
30C14
BOo01%
BGC16
o017
85018
BOO19
BO02G

80021 #.

803522
BL023
50024
BUC25
Bcoee
Bo027
B0G28
80029

- BOC30

BOO31
60032



SUBROUTINE OEL{wWsd)
COMMONISLVE/IV!BC).TOL(ZJ):NR(Si
KLU26) yNAME259215A1555121)5P1L165
Va(65).xMFr1zu)sx1£121::x2(121),x3c121),xan
CIVEL s Ml (IVI2) s ME
CIVESIANITI s (IVEG) sNOT) sl IVIT)
CIVEL ) » TERROR) s (CIVU L1 ) sLASTCP) » (IV(12) sKE)
DIMENSION WIl),0(1)

22)153155) 2 KiNl120) X 01211sCL121 )
LE5)aVII62)2v2165)sv3165))
RI25)3R(65+65)
NOY» LIVIZ) s NCOIP I st IVIL T sNaANIOT )y
tPFI s {IVIBIIICR)I 2 IVIO) 1

EQUIVALENCE

[A{IsJ)sNESsDo)
CONTINUE

Wh + AllsJ)

20 CONTINUE

DOCOl .7
00502

Duuu3
bocos
00005
DGrC6
Deoo7
[oIeTeleY:]
DOCCS
oGccle
DoC11
Doo12
DOC13
DOO14
D0015’
DO016
poc17



1
2

1

T
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SUBROUTINE RCALC

COMMON/SLVE/IV(3O)vTOL(ZO)-NR(SS’Z)’3(55)9KN(IZU)vX|121)sC(121),
KL(Z&);NAM(25’ZJvA(SS:lZl)’PIE(GS),V1(65)vV2(65)sV3(65)v
V4(65)vXMFl120).X1l121)’X2!121)vX3(121)9XBAR(25I|R(65)65}

EQUIVALENCE (EVI1)sM) s CIVI2)sMEND ) » LIVI3) sNCOMPY s (IVIA)sNsNIOI)

LIVI5)aNITIs LIVI(6)sNOT s CIVITIsPF) s (IVIBIsITER) s LIVIOT s ITMAX])

2 (IVI1C)sIERROR}sCIVIL11sLASTCPI s LIVI12) 9KE)

COMPUTE R

2
1

12
11

10

22
21
20

3l
"CONTINUVE

3u
1Y

T T s 2 ay a, 4i 4

DO 1 1 = 1,MEND
DO 2 J =1s{l)
Ril1sJ) = LW
CONTINUE
CONTINUE , A
DO 10U K =1sNTOT I
' D0 11 I=laM e
IF (A(TsK)ZEGe0s) GO TO 11 |
ALKX = ALI.K) 2 XIK) =
DO 12 J =1sfr——oo I
IF (AlJsK)eNEeOe) R{IsJ) = AlJsK) * AIKX 4 RUIsJ)
CONTINUE A : A ‘ 3

e MERTD

N

MEGD

AN

CONTINUE
CONTINUE
DO 20 K = 1sNCOMP

IH = K + M

MTA =KL I(K)

MTB =KL(K+1l) - 1

DO 21 L =MTAMTE .

Do 22 J =1y M cﬁ_ﬁ__.,._-_._.,_,,,,A:..._w e g
IF (AtJsL)eNE«DW) REIHsJ) = RUIH»J) + ACJsL) * XIL)
CONTINUE ‘ '

CONTINUE <
CONTINUE . a
DO 30 J = 2sMEND : O

JL o= J=-1 . :
DO 31 I = 1lsJL

RilsJ) = RUJID
CONTINUE

RETURN:
END

Mass Aﬁ%tou.

20
i

Ma s anﬂﬁuLL

D
ki

RSCO1
RGO02Z .
RO0C3
KICO04

- RCCO5

ROC06
rRocC7
ROCO8
R2009 .
ROC10
RGO11

- ROO12

RCC13
ROC1le4
ROQ15
ROO16
ROG17
RGO18
k0219

ROC20 .

ROG21
ROC22
ROC23
RO024
RO025
RC026
RO027
ROC28
ROC29
RCO30
RCO31
ROC32
RO033
ROO34
RO035
RO036
RO037
RO038
RO039
ROD4O
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SUBROUTINE CLOGUIWswWBAR) Cocol
COMMON/SLVE/ZIVI33)sTCLI201sNR15592)1s8 (551 sKNI120)sX{121)C(121) coQoe
1 KLIZB)»NAMU 254321 9A1559 121 ) sPIELES) s VIIE5)sV2I65)sV3IIE65]) s C0003
2 VGl65) s XMF L1201 oX10121)sX20121)+X2(121) 1X3ARI25)+sR{65965) C0004
EQUIVALENCE (IV(1)'M)v(IV(g)yMEND)c(lV(B).NCOMP)’(lV(A)vaNTOT): COCO05
i (IV(S)gNXT)o(IV(6)'NOT)’€IV(7)9PF)-(IV(B!;!TER);(lV(9)rITMAX)' C0Co6 ,
2 (IVIIC)I s TERRORY # LIVI11) s LASTCP I »{1IVI112) +KE) C0007 )
DIMENSION Wl1)swoAR{1)sALPHAL(L) C0008
EQUIVALENCE (X2»ALPRHA) CC209
DO 1 K = 19+ NCOMP CCo10
KLA = KLI(K) , _ Cocll
KLB = KL{K+1)})-1 . o012
DO 2 J = KLARKLDY Co013
ALPHALJ)Y = C{.J) CO0014
XXX = WlJ)/WBARIK) ) : £0015
IFIXXXeGTe0ed) ALPHALJ) = CLII+ALCGIXXX) - CCo1le
2 CONTINUE . Cc0017
1 CONTINUE ) : cCols
RETURN R CiC1l9

END : : C0020
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SUBROUTINE LP  (NCN)
COMMUN/SLVE/ZIVI30) s TOLI22) sAR(5592) 530931 9KN(12515X(12115C112100
1 KL1261sNAM(255219A15355121)>PIE(65)sV1I651,V2(651,V3165),
2 VG651 s AMF(120)9X1112119X2(121)5X3(121) s XUAR125)sR(65165)
INTEGER PF v

EQUIVALENCE  (TQLU3 ) XMINY s (TOLCA) s XSTARPT s (TOLLS5) s BARMIN)
EQUIVALENCE (IVI1)eF) s (IVI2) 9 #ERD ) » LIVI3) aNCTHP I s (IVIG4)sNINTOT )
1 CIVES)aNIT)I s CIVI6) sNOTYs LIVIT)sPFY s CIVIBI»ITER) s LIV 2 1TMAXD
2 LIVI1U) 9+ IERROR)» CIVI11)sLASTCP) » LIVI12)9KE) »

DIMENSION XX(1J9KOQUTLT)»CCH1YPIL])
EQUIVALENCE(CCsXMF s {XXsX2) s (PyV1)
MON= w '

IF (XSTART.LE«0s0) XSTART = 1eE-6
DO 1G 1 = 1M
P(I) = BLI)
A{IsNTOT+11 = D0
DO 15 J = lsNTOT
AULIsNTOT+1) = ALIsNTOT+1) + ACI»J)
15  CONTINUE
10 CONTINUE

DO 1 J = 1wNTOT
CCltJy = G0
1 CONTINUE
CCIN+1) = =1aU

ZERO-TH SIMPLEX IS TC OETERMINE FEASISILITY
CALL 51MPLE(U1M;N+17A9PwCC9KOUT’XXvPlEyV29V39V4'X3'R)
2T = XXI{N+1)
IF(PF+GELCIWRITE (NOT»106)1KCUT(2)sZT+KOUTIL])
1u6 FORMAT(12HCSIMPLEX O914525H ITERATICNSs MAX MIN ELEMENT=1PE1548»
1 12Hy CONDITION »13)
ZLT =AMINL(ZT /72409 XSTART)
DO 104 I = 1M
P(I} = P(I)Y = ZZT®*A{1sN+1)
104 CONTINUE
200 DO 2C1. 4 = 1sNTOT
X(Jy = XxXtJ)
XMF({J) = lewv
2C1 CONTINUE
1F (2T el CelUeeORaKOUTIL)NESG) GO TO 40
SIMPLEX LOOP
FRZ2=1£+20C
Q0 3C1 NN = 1, NCOMP
DO 362 J = 1s NTOT
cCid) = C(J) + XMF(J) = 1.0 ol
352 CONTINUE
FN = FLOATINNY ~ 1.0
CALL SIHPLE(CLsMON s AsPsCCIKOUTIXXoPIEyV2Z9V3sVasX3sR)
I[f (KOQUTI(1)eNEWO) GO TO 50
30U DO 3U3 J = 1sNTOT
XtJdr = Xx0J4)
X{J) = { FN¥XL1(J) + XUJ) ) 7 (FN + 1.0)
X1eJy = X(J)
3v3 CONTINUE
CALL BAR{XsXBAR)
K = 1
FR = (.0
DO 331G J = 1N
IF (JoGE#KLI(K+1)) K = K + 1
1F (J.Eu‘AL(K)nANboxaAR(K).GTcC-C)FR:FR—XSAR(K)*ALOG(XBAR(K)l
IF {(X1J)eGTeDe0) FR = FR + X{J)®(ALOGIX1JY) + CUJ) )}

Luvul
LCI3

L0003
L3004
LONGS
L0006
L.CCco7
LCcoeos
LOCCS
LUC1O
LO01L1
L0012
L0013
LOC14
LOC15
LCC16
LoG17
LCO18
LLo19
1.0C20
Loc21
L0022
LUC23
L0024
L0025
.ooze6
Log27
L0028
L002%
L0030
L0C31
L3032
L0033
L3C34
LOC3S
LCG36
Log37
LCO38
LLG39
LoC40
L3Cs1
L0042
LCo43
LOCu44
LOC4S
LOC46
LC047
L0048
LUOGS
L0050

~ L0051

L3G5Z
LOC53
LCCo4
L0055
LOJ56
L0057
L0058
L0059
LO0&0
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XMF(J) = U
IF { XBAR(K)eNE«Ds) XMF{J) = X{J) / XBAR(K)
310  ZONTINUE
IF (PF.GE+0O) WRITE(NOT»305) NNsKOUT(2),FR .
305  FORMAT(8H SIMPLEXs1351Hss14912H ITERATIONS +8H FR ENG=1PE15.8)
" IF (FR.GE«FR2} GO T0'399
FR2=FR
301 CONTINUE
399 DO 430 J = 1N
X(J) = X(J) + ZZ7 .
400 CONTINUE '
RETURN .
40 IF (KQUTI1)sGTal) GO TO 50
WRITE (NOTs41)
41 FORMAT(72HOTHIS PROBLEM IS INFEASIBLE, THE FOLLOWING LINEAR COMBI
INATION OF ROWSs /1X)
DO 14U 1 =1sM »
IF (PIETI)eNE«Oe) WRITE(NOT»141) PIE(I}sNR(Is1)sNR{Is2)
141  FORMAT(10Xs3H+ (sF1548+5H ) % ,2A6)
140 CONTINUE :
WRITE (NOTs142)
142 FORMAT(468HO LEADS TO THE FULLOWING INFEASIBLE EQUATIONs /1X)
DO 159 K =1sNCOMP

MTA = KL(K)

MTB = KLIK+1) ~ 1

DO 151 J = MTA, MTB
D = 0 v

DO 152 1 =1sM
D = PIE(I)* AtIsJ) + D
152 CONTINUE
‘IF (DeNEsue) WRITE (NOT#143) OsKNIJ)sNAMIK»1) yNAMIK2)
143 FORMAT(10Xs3H+ (+F15e8s5H ) # ,A6+4H IN ,2A6)
151  CONTINUE
150 CONTINUE
D = 0
DO 16U I =1sM
D = PIECI)*B(I1) + D
160 CONTINUE
WRITE (NOTsl44) D
144 FORMAT(1HO»15Xs TH+ 040 =sF1548)
70 MON = 1
RETURN
50 IF (KOUT(1)eNEs2) GO TO 60
JT = KOUTI(T)
DO 51 K = 1sNCOMP ~
IF { JT+GEKL{K)) GO 10 52
51 CONTINUE
52 WRITE (NOT»952) KNUJT)sNAM(K 1) sNAMIK,2)
952 FORMAT(14H THE VARIABLE »A6,4H IN +2A6,33H I5 UNBOUNDED AND MUST B
18 REMOVED)
LO -TO 70
60 WRITE (NOT»960)
960 FORMAT(60H SIMPLEX ROUTINE HAS FAILED DUE TO EXCESSIVE ROUND-OFF E
1RROR)
GO 10 70
END

LCG61
L0062
LOD63

LOOG4

L0065
L0066
L0067
L0068

L0069

LCO70
L0071
L0072
L0073
LOO74
LO075
L0076
LOC77
L0078
L0079
L0080
L3081
L0082
LC083
L0084
LOO8S
LOoC8G
LOGCB7
Loo8s
L0089
LOC90
LOGC91
L0092
LCo93

LOOSH

LCCY5
LOC96
L0097
L0098
L0099
L0100
L0101
L0102
L0103
L0104
L0105
LO106
Lo107
Lo1o8
L0109
L0110
Lol11
Lo112
L0113
L0114
(0115
LO116

Y
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Calling Sequence for Simplex Subroutine

The simplex subroutine, SIMPLE, may be used to solve

a general linear programming problem of the form: Minimize

n

C.x. 1
I ey &
j=1

subject to

n
z a; ;% = by i=1,2,3,...,m (2)
j=1

The aij is stored in a two-dimensional array, A, with
aij in cell A(i,j); Cj is stored in a one-dimensional array,
C, with Cj in cell C(j); and b.l is stored in a one-
dimensional array, B, with bi in cell B(i).

The calling sequence is
CALL SIMPLE(II,M,N,A,B,C,K0,X,P,JH,XX,Y,PE,E)
where

I1

it
<o

M = No. of rows, m;

N = No. of variables, n;
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A, B, C Are as above;

KO-

]

A subscripted variable of
dimension 7;

X = A subscripted variable of dimen-
sion n or more;

P, JH, XX, Y, and PE

i

Subscripted variables of

dimension m or more; and

=
I

A subscripted variable of
. . 2
dimension m or more,

Upon exiting from the subroutine,

X(1),X(2),...,X(n) Contains X15Xpsen s X (the solution);
P(1),P(2),...,P(m) Contains the shadow prices;

KO(1l) Contains an 0 if the problem was
feasible, 1 if the problem was
infeasible, 2 if the problem had
an infinite solution, and 3, 4, or
5 if the algorithm did not terminate;

K0(2) The number of iterations taken;

KO(S) The number of pivots performed since
the last inversion;

KO(4) The number of inversions performed;

KO(5) The number of pivot stepsg performed;
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KO(6) A logical variable that isv"true"
if and only if the problem was
feasible; and

KO(7) Contains, if the problem had an
infinite solution, the number of
the variable that was infinite.

The dimension of A (line X0009) must agree (at least
in the first subscript) with the dimension of A in the
calling program. The other dimensions need not agree with
those of the calling program.

If an initial basis is available, this basis may be

communicated to the subroutine by letting

Il = 1,

‘0.0 if variable i is not in basis,
X(i)

I

| (non-zero) if variable i is in basis,

and the other quantities remain as above.

This subroutine differs from other linear programming
routines in several respects. If the restraints (2) are
linearly dependent, the problem is considered to be in-
feasible. This is the case because the chemical equilibrium
problem cannot be solved if the restraints are dependent.

In addition, this subroutine was written to be as scale-free



as possible; this was accomplished by computing tolerances

internally in the subroutine.
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€ AUTOMATIC SIMPLEX REDUNDANT EQUATIONS CAUSE INFEASIDILITY X0c01
1 SUBROUTINE SIVPLE(INFLAGQMXvNNgAvBoCaKOUTvKB’szH'X'YD’PEtE) . X0502
N DIMENSITON BU11oCUL) sKOUTIT) s JHITIaX{219PL1)sY (1) , X0003
-1 KBU1IsELL)sPELL1)»KOLT) . X0004
- " EQUIVALENCE (KeKOLI) )2 LITERSIKOU21 ) LINVCIKOU3) ) © X0C05
.2  (NUMVR,KO(4) ) s INUMPV KOI5) ) s IFEASIKOLB) ) s {JT4KO( 7)) : ‘ X0006
. EQUIVALENCE (XXsLL) ' X0007
C THE FOLLOWING DIMENSION SHOULD BE THE SAME HERE AS IT 15 IN CALLERo . X0008
DIMENSION Al55,121) X0009
LOGICAL FEASIVERWNEGITRIGIKWIABSC X0010
C : : . X0011
c. MOVE INPUTS s 2ERO OUTPUTS X0012
‘ DO 1341 I = 147 v o X0013
sl < KOtl) = © ' X0014
cver 0 1341 CONTINUE . : X0015
L e M = MX . » ; X0016 -
.ttt N = NN L Lo X0017
e ‘ TEXP = ,5%%1% , : o L xgo1s
NCUT = a#*M + 10 o < o © . X0019
NVER = M/2 + 5 o . xoozo,
M2 = M¥%¥%2 . ‘ . - o Xco21 -
' IF  (INFLAG+NEJO) GO TO 1400 EE xoozz,,
- C 'NEH' START PHASE ONE WITH SINGLETON BASIS o ’ R X0023
MO DO 14v2  J = 1N . I X0024
(A CKBUJY = © R S S %0025 -
KQ = oFALSE. ‘ . o L X0026
DO 1403 1 = 14M : N R ' L x0027
Yoo IF (A(19J)4EQ.D40) GG TO 1403 S e L X0028

KQ = JTRUE. - ‘ ) Cal el o 0 T X0030
1403 CONTINUE : : LTt o .- X0031
KBlJ) = 1 o . ‘ L RO X0032 -

1400 IF (INFLAGGT41 ) 6O TO 1320 - = * . . . : X0034 °

v

€% 1VERY CREATE xnveRsE rnon 'KB"AND"JH'?;V'pg;: T o T xooa3s
132V VER = +TRUE» v s et T XG039

[F (KQWORWAIT4UIILTA040) GO TO 2602 " ° . 700 T xeoz9. bl

16v2 CONTINUE ‘ T I oS+ SRR

"DO 14V1 I =1sM } . SR RNTEEI X0035 - -
' JH (1) = =1 " S U e X0036 L
1401 CONTINUE ! S on Lo R X0037

» 1121 INVC = O ' 'v~~: R S e SRR S X0040 ;fﬁ;'

401122 NUMVR = NUMVR ’41 : TR P T AR X0041
o 0O 11vl 1 = 14M2° R TR R R A T X0042
' © Etl) = 0.0 P C e . - x0043
ildl CONTINUE S oo T . . ,
: - MM=] - - L L T L X0045 -
DO 1113 [ = 1,M ‘ i el X0046 "
E(MM) = ]eC K Lo e T L e X004

Xt1) = (1 B T TR LR RS . X0049
IF {JHUL) oNE4O) JHULY) @ =1 - . - o0 0 C X0050
MM = MM + M + 1 CORE TR VR S X0051
1113 CONTINUE ' e et ,X0052
R FORM INVERSE oy e X0653
DO 1102 JT = 14N - T S DO X0054

SN GO TO 600 e R ST L X0056

cr € 606G U CALL JMy L T : LT e T e X005 T

"€ o o . CHOOSE PlvOT Cow D T k0058
1114 7Y = 0,0 ', o Lo D e s e %0059

z

oo . N i+

N ¥ - A g i o &
A b o - e
\ 2 R e .
Je - iy v ! { ]

p o X0044 ",

. PEtL) = 0a0 g B B xooqe-Ju,f_

IF (KBIJT)eEQeO) GO TO 1102 . -~ ° oo v X0055 ¢

, 00 1108 1 ®i1yM- o ‘ el e xoc&n'{,?f
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~

IF (JHE11eNEe=1) GO TO 1104 : : L X0061
IF | ABSIYUI})W.LECTY) GO TO 1104 . : : X0062 .
IR = 1 , X0063
TY = ABS(Y(1}) . , X0064
1108 . CONTINUE K _ : X0065
Y KBU1JT) = O : X0066
C TEST PIVOT ’ . X0067

IF (TYJLE«TPIV) GO TO 1102 X0068
PivOT : , X0069-

JHUIR) = JTY X0070
: | KBIJT) = IR Xu071
i GO TO 900 , X0072
C 9uu CALL PlV . X0073
1102 CONTINUE , X0C 74
d RESET ARTIFICIALS : ‘ : X0075
DO 11U I = 1M , - X0076
IF tJH{1)+EQe~1) JH(I) = 0 : ' A CX0077
1109 CONTINUE ‘ B : .. X0078
1200 VER = .FALSE. . - X0079
C PERFORM ONE ITERATION ; o , X0080 . .
C* 1XCK? DETERMINE FEASIBILITY - ~ e s - X3081
FEAS= +TRUE. o , » X0082
NEG = .FALSE. o : D C X0083
DC 1291 1 = 1M L : Lo ‘ , ‘ x0084
v IF (X{11eLTe0e0) GO TO 1250 . EEEER S ‘ . X0085
- . IF {JHU1)+EQe0) FEAS = oFALSEe -~ . S ..U xo086 . o
T, 1201 CONTINUE ' Todoec oo UUT T X0087
. C® IGET GET APPLICASLE PRICES L Cee ST Tl X0088 L
' IF {«NOT.FEAS) GO TO 501 O A RURAURID 31701: 1 S S
.t PREMAL PRICES 0 vh . e T T XD090. e
DO 503 I = 1M - ' R T e LT s T %0091 T
PUI) = PELLY 0 e et X0092 L
CONTINUE . ' a oL Coo T X0093 T
ABSC = <FALSEs ™~ v P ‘ X0094 .-

\GO TO 599 i R CIaT T e X0095
. . COMPOSITE PRICES. ') T Ty e o X0096
FEAS = oFALSE«: " » " . o o T TP S T X0097
NEG = +TRUE. RN P N O Jo X0098 o
DO 504 J = 1y M R U PUE L X0099 © i
Lo PLJy = 0. SO s Tl e T T X000
CONTINUE Co LI e e e X010 e
ABSC = «TRUES ' S B Sl Pt e o X01020 T s
DO 505 1 = 1y - - .. 0 ST CX0L03 7N
M= SRS S X0104
IF (X{1)eGEeQeO) GO TO-507 -~ b " X0105
" T ABSC = 4FALSE. SR IR EE Sl X0106 L
- .7 00 508 J = 1,M ST e x010T oo
MM = MM +M ' T e X009 s
CONTINUE ' LT T e X0110 :
GO TO 5C5 ST TR A LY X0111
IF (UH({1)eNELO) GO TO 505 TR St U PR R AR 4¢3 B ¥
IF (X(I)eNEeOw) ABSC = oFALSEe % . " 0 - 7 0 o 7 x0113 ¢
T . DO 510 J = 1M . - T e X016
IR PLy)y = PlJ) = ELMM) ‘ Tt AT { T B L
BTN MM = MM ¢ M ' e Lo v v Xxolle
o0t 510 'CONTINUE IR C T e e T T Xe1LT
oyl 5U5 CONTINUE S CoaT e e T X018
L0 G OMINY  FIND MINIMUM REDUCED.COST . .- . ' v - . ..0' 50 . X0119
TLis 599 JT a0 L e , o e o : - X0120

.age N v 1 L . § . . ERT . o
s Cos b P . . «

e

T



- BB = 0.0 s X0121
R DO 701 J =1sN , X0122
c SKIP COLUMNS IN BASIS ' X0123
L IF (KBtJ}eNELD) GO To0 701 S X0126
S DT = C.0 s X0125
DO 303 I = 1yM X0126
L IF (ALTI+J)sNE«D40) DT = DT + PULI) # AtlsJ) - X0127
¢ 3063  CONTINUE - X0128
' IF (FEAS) DT e DT + CtJ) : _ X0129
IF tABSC}Y DT = - ABS(DT) : : » X0130
IF (DT.GE+B8) GO TO 701 : X0131
- BB = DT , : o o S X0132
Y JT =y ) S IR © . X0133
+ 701 CONTINUE i , e R o : X0134.
+» € TEST _FOR NO PIVOT COLUMN e . X0135 -

. 4§-€  TEST FOR ITERATION LIMIT EXCEEDED At T X137
K IF LITER.GEsNCUT} GO To 160 ‘ fgjv;',jq,{Ak~-f i X0138
s ITER = ITER *1 fi;’fi.{ LT e T %0139
Ce tUMY! MULTIPLY tNVERSE TIMES Al.-JT) SR 7T X0140
< 600 DO 610 I= 1sM . e T e e X014
D0 YUI) = 040 o vT : ”"I‘; o Lo X0142
. 810 CONTINUE ‘ LTI ST e X0143
SRR & RV Wl e TP i X0ldas
- 1€OST = CtuT) ST oL X0145
;DO 605 I= 1oM L UYL - X0146
LOALJT & ALLIJT) . L L -
1 IF (AlJT.EQeDs) GO TO 602 BN
COST = COST + ALJT # PEll) .
DO 606 J = IgM s
LL = LL + 1
Yitd)y = Y{Jy: + AIJT » E(LL)
CONTINUE '
GO TO 605 - S T e S T LT X0154
LL = LL + M : Lol T T e X055 .
CONTINUE T PO . X0156
COMPUTE PIVOT TOLERANCE e " S X0157
YMAX = 040 Co T T (3 81
DO 62V 1 = 1M S CU ‘ X0159
YMAX = AMAX1( ABSU{Y(I}}sYMAX } TR T © X0160
_CONTINUE . . ‘ N S TS
TPIV =  YMAX # TEXP o s el X062
' RETURN TO INVERSION ROUTINE»s IF INVERTING = . 7 = i, X0le3
IF {(VER) GO 7O 1114 e e st X0164
COST TOLERANCE CONTROL R , Lo _ e X0165
PR IF (TRIG.AND.BB.GE.-TPIV) GO TO 203 =~ Co T X0166
IR TRIG = +FALSE, : I R

i . ... Xxo149
Te © . X0150
Lo © X0151

DU T x0152
Tt T X0153

IF (JT.LE.O) GO TO 203 ' SLLta oo Lo xol36 T

X0147
X0148.

X0167 -

A IF (BBeGE«~TPIV) TRIG = «TRUEs S e © ) xoies L

;;;‘gtglC* *ROWS SELECT PIVOT ROW - - ‘ R SN VL X0169%
o ﬁ: € AMONG EGS. WITH X=0y FIND MAXIMUM Y AMONG ARTIFICIALS, ORs . IF NONEs »  Xx0170
:?{v c GET MAX POSITIVE Y1) AMONG REALS: ., -~ 7 ST e o X01TL
- 1000 IR = ¢ o W A MO C . X0172
e AA = 04D : ey R cor e AT Il i X01T3
'w?fx : KQ = JFALSES ‘ S > u;f;l-rﬁs,;~;f S X0174
R DO 1UB0 [ s1,M ‘ *L Al T X01T5

et . IF cxcl1.NE.0.0.0R.Y¢£!.LE.TPIV) eo To xoso L .0 X0176.
AT L IF (JHIL1EQeQ) GO YO 1044 - VLl L e X0177
A - IF IkQ) GO TO 1080 . .:-¢1g ;*'f
S 1} | IF {YU1)14LEsAR). "GO TO 1050 SRS

SRS GO 10 xo~7 o B

S T T X0LT9
' X0180




1064 1IF (KQ) GD TO 1045 X018}
XG = +TRUE. ' ) xo182 o
1067  AA = YD) : x0183 -
IR = 1 ] : ; X0184
1050 CONTINUE X0185
[F [IR.NE.O) GO TO 109% X0186
1001 AA = 1.0E+2V X0187
FIND MIN., PIVOT AMONG POSITIVE EQUATIONS x0188
DO 1010 1 = 1M . X0189
IF (Y(1)eLEeTPIVeOReX{I)sLE«Os0sOR.Y (I} *AALE«X(1) )} GO TO 1010 X0190
AA = X(I)}/YL]) X0191
IR = | ' . X0192
1010 CONTINUE , X0193
IF (+NOT.NEG}) GO TO 1099 X0194
'€ FIND PI1VOT AMONG NEGATIVE EQUATIONSs IN leCH X/Y 15 LESS THAN THE X0195
?‘c MINIMUM X/Y IN THE POSITIVE EQUATIONSs THAT HAS THE LARGEST ABSFLY) X0196 .
*\ “‘ 1016 BB = - TPIV , . . X0197
S DO 1030 | = 1M . . " x0198 .
L e 1F txtl).GE.o..OR.Y(l).GE.EB-OR.Y(!’*AA-GT.X(t) ) GO TO 1030 = X0199-
RS BB = Y{l) o S xozao L
SR IR = 1 . v S ©.ox0201 7
07 1030 CONTINUE : C L xoz02 M
ivp. v € TEST FOR NO PIVOT ROW o S e T x0203
S0 1099 1F (IR.LESO) GO TO 207 , v . x0204
S Ce YPRVY. . PIVOT ON (IRsJT) : ..o x0208.
Tl LEAVE TRANSFORMED COLUMN IN YUy o i - X0206
AR NUMPV = NUMPY 4.-1 _ e S . %0207
LYl = =Y{IR) S ‘ ,g'g;,;f voo g X0208
CYUIRY = =100l : el T X0209 i
LLL =0 B o S e e x0210 e
L " TRANSFORM INVERSE .. - . :i. . ' . . x0211 "o
200 9ua U o= LML : e e D T T T X022
L o= LL + IR o LT e T oo X0213
" 1IF tE(L)'NE«O+OJ GO TO 908 ' RTINS T 0214 L,
LL = LL + M’ : ' st IR ' e - X0215 -
GO TO 904 " X0216

XY = EtL) 7 Y1

. ' S e ey 7&f xo217 . 0o
PE(J) = PE(J) + COST ®OXY T T s e o

b LT x0218 L

E(L) = 0.0 . T e ; ' Lo X0219
DO 906 [ ® 1sM w0 X0220
tL = LL + 1 e e el L Ee X022
. EfLLY = E(LL) + XY ® Y(I) G T o X022z
9U6  CONTINUE C ‘ ‘ Co T e e X022 L
CONTINUE “ , S - 0226 -
N < TRANSFORM ‘X 4t Xo225
XY = X(IR) / YIi ‘ : K S .. X0226
00 9C8 I = 1, M ' : ‘ S o x0227
XNEW = X{1) 4 XY * Y(]) S x0228
IF {VER. ORtXNEw.GEoO-sORoY(l!-GT TPlV.OR.X(!!aLT Obl G0 TO 901 %0228, S
X(1) = 040 h o S L Je e srsoox0230 0
GO0 TO 908 . o ;«'.“' ;. o SL», AR o X0231
X{I1) = XNEW .~ B C Coer e X0232°
CONTINUE _ S . R SITUET IR X0233
"RESTORE-Y(IR) - B A I {21
Y(IR) ® =YI = . e e e e e T X0235
X{IR) = =XxY D R . X0236
IF (VER) GO TO 1102 ; ';H;J‘;; <0 S St X0237
IA = JHLIR) PR T ' 1 X0238

IF {1A«GT.0) xBllAt s 0 . R LT - . X0239
KBIJT) e IR R s L. X0240




JHTIR) z JT ’
IF (NUMPV.LE.M) GO TO 1200 . ' Nory
¢ TEST FOR INVERSION ON THIS ITERATION ' | ' X043
INVC = INVC 1 . - B xozan
IF {INVC.EQsNVER) GO TO 1320 . " Xasas
I e € | _ j . , : X0245
C% END OF ALGORITHM» SET EXIT VALUES :  Xosar
4 INFINITE SOLUTION - | osas
e . X0268 .

. GO TO 250 o xozs0
RN « PROBLEM IS CYCLING - | <0751
e, PR | . | ‘ X0251
. c GO TO 25C oo SR X025

S FEASIBLE OR IN o '  xozse
S e S 1 FEAS!BLE SOLUTION . | v L . X0254
5 25U IF [,NOT.FEAS) K e K 41 o | | xozse
R DO 1395 J = LeN - . Cdemr

e L399 4 = Lk o | © x0257 ¢ -

: KeJ = KBUJ)Y -~ T T X0259 S
"F ‘KBJ.NE.U, xx - R a . '\}‘, ' . r . . Y . , : oo
~ KkBlJ) = LL S ',X‘KSJ‘ D Lo x0280 o
1399 CONTINUE o Noser. 4
CTUSET tkOUTY v Lo ozesl i
1392 DO 1393 1 = 1s7 T4 xozes -
) i X0266 -
X0265 ..

[ KOUTHL). . xotxtw
BN . X0266
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SUBROUTINE MATINVIAsNIBIMy lhAleBthclSlNG)

DIMENSION B(l).lNA(ll:!NB(l)olPil
LOGICAL 1P
DIMENSION A(65,65)

INITIALIZATICN
DC 20 J = 1N
IPLJ) = FALSE.

"CONTINUE

LOUP ON |
00 5715 | = 1.\
AMAX = Qev
SEARCH FOR PIVOT ELEMENT
DO 105 J = 1N
IF  (iPLJ)Y) GO TG 105
DO 1C0 K. = 14N

)

IF LIP(K) +OR. ABS(AMAX!-GE ABS(A(JOK))

[ROW =
IcoL =K
AMAX = A(J-K!
CONTINUE
CONTINUE
IF (AMAX.EQ.0.0) GO TO 750
IPLICOLY = +TRUE,

IF (IROW.EQ.ICOL) GO TO 260=

DO 200 L = 14N .
SWAP = AUIROWsL)
ALIROWsL) = AthOL.L’

i

ACICOLWL) = SWAP  * . -Q,QI*”;,*

CONTINUE

IF {M.EQ«0) GO TO 260
SWAP = BLIROW)
BIIROW) = BLICOL)
BeIcoLy s SWAP
INALLY = TROW

INBUI) = ICOL

" DIVIDE PIVOT ROW BY PIVOT ELEMENT... -

A{ICOLLICOLY) = 140
- DO 353 UL = 1N

ACLICOLSLY = ACICOLSLY 7 AMAX

CONTINUE
IF (M4NRELU) DBLICOL) = B(ICOL)
COMPLETE THE PIVOT :
DO 550 LL = 1N
IF (LL«EWsICOLY GO TO 550
SHAP = A{LLICOL)
ALLLLICOL) = Ue0
DG 433 L w 1,N .
AlLLsby = A(LLoLt - AthOL:

CUNTINUE
IF (MeNCev}) BILLT si B(LL!
CCNTINUE S
CONTINUE CoE R -
1P (MeLTe0) RETURN "% 7 o .
INTERCHANGE CULUMNS;;ﬁLA““' oA

DO THG I = LN

'

1 ANAX

Ly = SnAP

avsy;coutfs SWAP .

, MATREX INVERSION WITH ACCOMPANYING SOLUTION OF LlNEAR EGUATIONS

60 TO 100

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL o

MO0O1

M0002 .-

“GCO3
MOCO4
0005
MOCO6
M0007

M0008 -

MCOCO9
10310
MCO11
MOC12

tMool13 - -

MOOL14 -
MCO15

MOO16 .

MO0 17
M0OO018
MOO19
MO0 20
M0021 ¢
M0022
40023
M0024- -
M0025
M0026

MO027 .,

Moo28

M0029 -

M0030
M0O031
M0032
MO033
MO0 34

M0Q35 . .

MQO36
MO037

MO038 |

M0039:
MO0 40
MOO41

© MO042
7 M0063

MOO44

L MO0LS

HMOC 46
Moo u? ;
MOQ4g -

MQ049 -

MIGHC
MOQS1
MO052
M0053
MOO054
MO055
140056
MOCS57

© Moos58 .
M0C59



10060
MOO61

N + 1
CINACL)YEQeINBI(LY))

L

Go fO 1710

IF

MO062

= INALL}
INBEILY

IROW
1CoL

H0C63

4,96118010.17u3
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i’j
Appendix B
2, MATRIX NOTATION AND FURTHER PROOFS
e The derivations in the preceding sections would be

o
" facilitated by the use of matrix notation rather than sub-~

scripted variables. We introduce the following symbols to

correspond to the subscripted variables used in Sec. 3.

Subscripted Variable Matrix Size of Matrix

a,. A MxN
1]

b. B Mx1
i
. Y Nx1

yJ

d. D Nx1
J

c. G Nxl
]

T, T Mx1
i

T, R MxM
iz _

X, X Nx1
]

The single-column matrices may also be thought of as vectors.
We use here the convention that an operator applied to a

matrix means that the operator operates on each element of
the matrix. For example, log Y is the Nx1 matrix consist-

ing of
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/ 3\
log yl

log y2

log yN

The superscript T indicates the transposition of a matrix,
We assume that the elementary results of matrix theory are
‘known. For example, it is known that the inverse of an
invertable symmetric matrix is symmetric. The square
diagonal matrix whose diagonal is one of the vectors pre-
viously defined will be denoted by the‘previously defined
vector in elongated type; that is,

D = diag (D)
and

Y = diag (Y)

Equations (3.2) and (3.7) in matrix notation are

AX = B (B.1)

b
]

Y(D—IAZW 0t - log Y) . (B.2)
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To see the ease of matrix notation, we may substitute (B.2)

into (B.1) to get

AYD AT = B o+ AY(D—lC‘+ log Y) . (B.3)
By letting

R = AYD™A" (B.4)
and

s =8+ AV ¢ + log V) , (B.5)

we See that
Rr =8 (B.6)

corresponds to (3.10).

In Sec. 4, we evaluated

Z_..l_..l . (B.7)
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but we did not give the details of the computation. The
algebra of this evaluation is very difficult unless matrix
algebra is used., In matrix notation, (B.7) is GTDY_lg,
where 8 = X-Y¥. TFrom (B.2) we have

8 = Y(D‘lA:n -D'lc - log Y) - Y . | (B.8)
Hence,

™0V Yo = (n"ADt - D7 - 10g YOYDY e - ¥TDY e

T '-1 ""1 T - - -
= "ATHYDY he - @D+ Tog YHDYY TR - YTYTHDe

= 7728 - €"D7" + 1og ¥HDO - D6 . (B.9)

Since é% = B, é@ = %g—%; = B-AY. Also, in the chemical

equilibrium formulation,

n N p
r
Do = Elej - 2:93 = E:‘ Z 0, = Oy = O
3=1 jentl k=1"je (k)
and
A But wr haw, Ays £ B-AgY L prokatdy  web true that disec ¥iound,

der i e buoe Ao fe i vedd
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€™t + 10g Y0
n N
= . )8, + 1 . (=9,
Z (cJ + log yj)@J 2: og yJ( J)
j=1 j=n+1

i
t~1©

+ .) - 1 S
Zgj(cj log yJ) Qk og S,

k=1 \je (k)
p
= .{c, + . - S
z Z QJ (cJ log ;s log k)
k=1 \je (k)
n
= E:@.(c. + log 9.)
J 1] J
j=1
Hence,
N de m n n
....j_..j. = - - 9 + 1 8
z - E:Wi bi E:aijyj E: j(cj og yj) (B.10)
j=1 J {= ;

1 ji=1 j=1

in the context of the chemical equilibrium problem used in
Sec. 4.

Next we wish to show that
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N 624,

}:—é}dl z 0
j=1 7

as stated in (4.14). First, we prove
Lemma 1: Let Y1sYgseees¥, be positive numbers and let

91,92,...,9r be any real numbers. Let

r 2
r 92 ( b Qj) .
G=z_.1_._i.=__.___
y r
=1 Ty,
j=1
Then,
i) ¢ =0

ii) G =0 1if and only if

y1 y2 I

Proof: Let oy = Qj/yj, j=1,2,...,r. Then,
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i
—

i \
' 2 2
1 \j=1 ~

i
e
I~
H
v
LAY

Hl
o~1
w

s

2
Eyiyj (ij - O[i) z 0 ’
j=1 j<t

which is result i). The proof is completed by noting that
G = 0 if and only if o = ozj for all 1 and j; this proves
ii).

Now we can prove

Theorem 1l: In the chemical equilibrium problem

N g2,
b 5o
j=1
N g2g.
ii) —LJ - 0 if and only if there exist
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numbers al,az,...,ap such that

a) 0, =

. Op . . B3
j (3173 J

b) 6. =« S, . i>n

J j-n j-n

Proof: The proof follows by noting that for i > n

Then,

Q2 D A2
—d z:_kia
73

[

-y E: ,; (ge<k>32

1 \sedo T jeo /o

by lemma 1. Furthermore, by lemma 1, if the equality holds,
then for each k there is a number 0 such that Qj = akyj if

j € k. This, noting that b) follows from the fact that
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0, = Z Qj for i>n ,

je{i-n)

completes the proof of the theorem,
OQur final result is

Theorem 2: 1In the chemical equilibrium problem, with

(yl,yz,...,yn) feasible and 91’92""’9n calculated as in
(4.7)
n
A
i 8.{(c. + 1o .) =0
) ZJ(J g ;)
j=1
n
ii) E:G.(c. + log 9.) = 0 1if and only if
el J ] J
J:

(yl,yz,...,yn) is optimal.
Proof: i) follows from Theorem 1, (B.10), and the fact
that (yl,yz,...,yn) is feasible.

To prove 1ii), we assume that

n
A
B.{(c. + 10 L) =0 .
Z J( ; g yJ)
j=1

Then,
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N g?d.
Z._é_l = 0
|

2

j=1

and Qj is as in ii) of Theorem 1. Combining b) of Theorem

1 and (4.12) we have

o = 5

ktn S

' =
ik T %Kk

or
= !
“k T "mk
Next, we combine a) of Theorem 1 with (4.7) to get
m
= 1 - - !
QJ yJ z 'nlalj c log y. + 'nr[ ]+m]
i=1
— ) !
Y3%031 T 73" m
or
m
1 - - =
Z ﬂiaij CJ log vy 0
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This last result is the optimality condition for
(yl,yz,...,yn) as given by (1.4), and this demonstrates
the forward implication of 1i). The converse follows from

the fact that optimality implies that the objective function

cannot be decreased,
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