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PREFACE 

This Memorandum is one in a continuing series of RAND 
9 

publications dealing with theoretical computational ques- 

tions arising from the RAND program of research in biology 

and physiology. The Memorandum contributes to our ability 

to apply computer technology to the analysis of complex 

chemical systems by considering the "chemical equilibrium 

problem," the problem of determining the distribution of 

chemical species that minimizes the free energy of a system 

while conserving the mass of each of the chemical elements. 

Solutions to the chemical equilibrium problem pub- 

lished up to this time [4,53 apply to those problems for 

which an estimate of the solution exists. This Memorandum 

considers a problem €or which no estimated solution exists 

and solves that problem with the maximum precision now 

available. 

The mathematical aspects of this Memorandurn should 

also be of interest in other fields where computational 

analyses of complex chemical systems are under considera- 

tion, e.g., in studies or' rocket propulsion systems, 

planetary atmospheres, re-entry problems, etc. 
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FOREWORD 

In deciding between the languages of mathematics and 

physical chemistry, we have chosen in this Memorandum to 

use that of mathematics. The disadvantage of this choice 

is that the physical chemist may experience some difficulty 

in immediately identifying certain concepts. The advantage 

is that mathematical language divorces the methods from 

the physical assumptions involved in constructing a mathe- 
2% 

matical model of a physical system. The mathematical 

methods are, hence, free to transcend their specific 

chemical applications. 

The methods given here do not solve every problem that 

is specified in the given mathematical form. The solution of 

a problem in which some phase vanishes (a degenerate problem) 

requires further work. Some work has been done on particular 

degenerate systems [133, but the accurate numerical solution 

of a large general system of this type has yet to be accom- 

plished. Until recently, a skilled physical chemist could 

intuitively eliminate the degeneracies of his model and 

P 

-1. n 

The reader is referred to other works for the pro- 
cedure of constructing the mathematical models of bio- 
chemical sys'tms [9-121. 
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obviate the need for solving a degenerate system. 

as problems grow, eliminating degeneracy becomes increasingly 

difficult. Frequently, the point at which the problem be- 

comes too large for the physical chemist to decide whether 

or not to include a phase coincides with the point at which 

the problem becomes numerically unwieldy. Hopefully, the 

future will eliminate these difficulties. 

But, 

Statements about convergence and convergence tests 

exist, unless otherwise indicated, in the context of finite- 

accuracy numerics. 

in the absence of qualification, that no problem exists 

nor that no machine would serve as a counter example. 

Rather they are simply descriptions of what was found to 

occur in actual practice. 

Statements of this kind do not mean, 

No attempt has been made to describe those methods 

which were tried and found wanting. The methods presented 

are those which are best for the largest number of cases. 

Finally, it should be pointed out that although 

computing time was a factor, it was considered secondary 

to accuracy of results. 

. .. 
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1. IhTRODUCTION 

For the purposes of this Memorandum, the chemical 

equilibrium problem is merely a name we use for a par- 

ticular mathematical programing problem, i.e., the prob- 

l Y X Y  lem of minimizing a particular nonlinear function F(x 

. . . ’xn) 
straints or constraints 

defined below, while satisfying the linear re- 

n 

i 1 aij xj = b i=l,2,3, ..., m 
j =I 

with x 2 0 for j=lY2, ... ,n and a b. given constants, j ij’ 1 

Assuming that the equations of (1.1) are linearly inde- 

pendent, then in order to have a non-trivial problem it can 

be assumed that men. 

considered components of a vector (x I, x2, . . . xn9 , 
the chemical equilibrium problem then is the problem of 

The variabies xl,x2$. . . ,x can be n 
Solving 

determining this vector. The variable x. will be referred 

to as the rfjth component!’; also the numerical value of x 

may be referred to as the “component” rather than using 

J 

j 

the perhaps linguistically correct but cumbersome term 

component value. ‘I I f  
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The components are partitioned into p non-empty 

subsets called compartments, Let us denote these compart- 

ments by (l), (2>, . . . , {p). Then if the j th component is 
th in the k compartment, we will say j c  (k), where each 

component is in exactly one compartment. The number of 

the Compartment that the jth component is in is denoted 

by [j]. 

Each compartment has associated with it a sum defined by 

Hence jc(k) implies [j] = k, and conversely. 

- 

X 

The component fraction x A is defined by x h = i- whenever 
[j 1 j j S  

Ljl S 

is 

The objective function to be minimized over (1.1) 

4- log x.) r\ (1.3) J 

where cl,e2,. . . ,c 
constants. 

are gi n 

n 

= 1 x.(c 
J j  

j =1 

en constan-s, called ob-jective 

When an x is zero, log x A is undefkned; but we de- 
j j 

fine 0 log 0 to equal 0 so that we may evaluate F when 
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,- 

some components are zero. A feasible solution to the 

chemical equilibrium problem is defined to be any set of 

non-negative components that satisfies (1.1). The problem 

is said to be feasible if it has feasible solutions. If 

no feasible solution is arbitrarily 'large in any component, 

the feasible problem is said to be bounded feasible; all 

practical problems with which one might have occasion to 

deal are bounded feasible. 

A solution or optimal solution to a bounded feasible 

problem Is any feasible solution in which F(x 1' * YXn) 

attains the minimum value over all feasible solutions. A 

problem which has optimal solutions in which some component 

is zero is called degenerate, and a bounded feasible prob- 

lem in which the components in any optimal solution are 

a11 strictly positive is called a non-degenerate problem. 

It has been shown [l, Theorem 12.13 that a non-degenerate 

problem has exactly one optimal solution. Hence, we may 

speak of _e the solution to the problem. Furthermore, it has 
t 

also been shown for 

minimization of F is 

r1,r2, ..., rm, called 

?i 
Ref. 1, p. 18. 

the non-degenerate problem that the 

equivalent to the existence of numbers 

Lagrange multipliers, which satisfy: 



-4- 

A 3 1 viaij = c + log x. . j=1,2,3,.,.,n (1.4) 
j 3 

In the following sections we derive conditions, 

analogous to (l..4), which are useful in solving the problem. 

In Sec. 2 we are interested in finding a solution to (1.1) 

with all x 0. A set 02 x which satisfies these con- 

ditions is called a positive feasible solution. If (1.1) 
j j 

is satisfied with x 2 0, we have called such a result a 

feasible solution. 
j 
The theory of linear programing gives 

us methods of finding feasible solutions to problems with 

linear restraints. In Sec. 2, we use a linear programming 

technique to find a positive feasible solution. In Sec. 4 

we show how to modify the initial positive feasible solu- 

tion to get the solution to the problem. 
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2. THE INITIAL SOLUTION 

The algorithms presented in the following sections 

require an initial positive feasible solution in order that 

the procedure €or solving the problem can be initiated, 

Frequently, an individual with a problem to solve will be 

able to give a rather accurate estimate of its optimal 

solution. 

another problem which differs from the one being considered 

in relatively minor ways. 

This estimate may be the exact solution of 

THE PROJECTION METHOD 

Let us suppose that such is the case, and let us de- 

note the estimate of the component's by ylJyz,, . . ,yn. 
values, substituting y for x in Eq. (l.l), will not 

generally satisfy (1.11, being somewhat in error. Let us 

denote these errors by gl,g2,...,gm, * that is, let 

These 

j j 

gi = i - 1 aijYj . i=l,Z, ..., rn (2.1) 
j =l 

Then, we wish to find corrections to y such that, denoting 
j 

the corrections by 8 we have 
j' 

3 

n 
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or 

n 

j =1 

The 8. must also be chosen such that y + 8. 0, for all 

j. We cannot guarantee this condition, but we can attempt 
J j J 

to choose small values for 8 . One way to do this is to 

minimize 
j 

n 
2 

J j  
1 w.0 
j -1 

subject to (2.2), where w is the "weight" or relative 

importance of minimizing 8 . This reduces to the problem 

of finding Lagrange multipliers T ~ , V ~ ~ ~ . . , T ~ ,  such that 

with 

j 

j 

n m / n  

we have 

- =  aL 0 . ae 
j 

j=1,2,. . . ,n (2.4) 
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Equation (2.4) becomes 

m 

i=l 
j=1,2,. . . ,n (2.5) 

and substituting (2.5) into (2.2) we have 

The terms 

can be immediately evaluated; let us denote these terms 

by 

Note that q = . Then, (2.6) becomes y,i ‘it 

i=l, 2, . . . ,m. 
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Equation (2.8) is 8 set of m simultaneous equations in 

the m unknowns, V ~ , V ~ , ~ . . , V ~ ~  

solved for nl,n2,. . . ,v 

stituted in (2.5) to get Q1,Q2,...,Q,. 

These equations may be 

and then these values may be sub- m’ 
There remains the 

question of choosing values for the weighting factors 
* 

w . 

using 

In tests of this method, it has been found that 
j 

yields satisfactory results. 

factors depends, to some extent, on the available com- 

The choice of the weighting 

puters. 

the computation of 8 

Using these weighting factors, we can summarize 

in the following three equations: 
j 

1 A 

n 
i=l,Z, ..., rn 
.p,-1,2,. . . ,m 

m 

j=1,2,. . . ,m (2.11) 

where 



x = y . + Q  . 
j 3 j 
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j=1,2,. . . ,n (2.12) 

The x. from (2,12) will satisfy (1.1). However, the 
J 

x need not all be strictly positive. If any x is zero 

or negative, this method of obtaining the initial solution, 

which we shall call the projection method, has failed. If 

the projection method fails, or if no initial estimate is 

provided, then a linear programing method may be used. 

j j 

THE LINEAR PROGRAMMING METHOD 

The terminology used in linear programming is similar 

to the terminology used above in describing the chemical 

equilibrium problem. The statement of a linear program- 

ming problem includes a set of linear restraints 

n 

C aijxj = bi i=l,2, ..., m (2.13) 

j =1 

J 

together with a set of constants C 1’ C 2’ C 3’”.9Cn’ called 

costs. A feasible solution to a linear programming problem 

is any set of non-nerative x such that (2.13) is satisfied. 

The costs are used to form the following expression, 

which ,is called the objective function 

j 

L, 
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n 
L = 1 cjxj . 

j =l 
(2.14) 

For every set of feasible x we can evaluate L. The set 

of feasible x for which L has the minimum value that it 
j’ 

j 
can have with any set of feasible x is called a solution 

j’ 
of the linear programing problem. A problem which has 

sets of feasible x is called a feasible problem, and a 
j 

problem in which there are no sets of feasible x is called 

an infeasible problem. An infeasible problem has no solu- 
j 

tions, while a feasible problem has at least one solution. 

In this discussion, we will not be concerned as to whether 

a problem has more than one solution: we will only be 
_I_ 

concerned with finding a solution to the problem. Since - 
the means of finding a solution to a linear programming 

problem has been the subject of many papers and books, we 

will not give an actual method of solving the linear pro- 

gramming problem here. The reader may refer to Dantzig 

[Z] for a complete discussion of the problem. 

The problem of finding a feasible solution to a 

linear programming problem is itself a linear programing 

problem--that is, it involves finding a solution to the 
,J 

c 
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problem with all C equal to zero. With all C = 0, L in 
j j 

(2.14) is zero for any set of feasible x hence, L is at 

its minimum value €or any set of feasible x . Since L is 

at its minimum value for any feasible set of x any 

feasible set of x is, by the above definition, a solution 

j’ 

j 

j’ 

j 
to the linear programming problem. 

However, we must not only find a feasible solution to 

the linear programming problem, we must also find a positive 

feasible solution to the problem. In order to do this, we 

1 et 

xj = Yj + Yn*l * j=1,2,. . . ,n (2.15) 

If we can find non-negative values of y1,y2,...,yn+1 

which satisfy 

n 

j =1 
i=l,2, ..., m (2.16) 

then x as defined by (2.15), will be a feasible solution. 

If we can somehow assure that y 

x will be posktive. Rewriting (2.16), we have 

j’ 
is positive, then _I_ all n+1 

j 
S 
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n n 
i=1,2,. , . ,m (2.17) 

j =l j-1 

If we now specify C 1' C 2' - * J,+y we have a linear program- 
ming problem in ni-1 unknowns. En order to guarantee that 

is positive, if it is possible for it to be positive, Y,+1 
It is easy to see that we can maximize n+l we can maximize y 

Yn+l by setting 

which is equivalent to setting C1=C2=C3=,..=G =0, Cn+l = -1. n 

If the solution to the resulting linear programming problem 

is feasible and y 

feasible solution to the analogous chemical equilibrium 

problem (1.1). 

n+l but y 

is degenerate, since there is no strictly positive solution 

to the problem. 

degeneracy, and its occurrence usually indicates that a 

mistake was made in setting up the problem. 

linear programming method gives us a way of finding a positive 

feasible solution to the chemical equilibrium problem Ff 

the chemical equilibrium problem Ls non-degenerate, 

9. 0, then we have, by (2.15), a positive n+l 

If the linear programing problem is feasible 

= 0, then the analogous chemical equilibrium problem 

However, this is a rather trivial kind of 

Hence, this 
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The positive feasible solution that we obtain by this 

method will generally not resemble the final solution of 

the chemical equilibrium problem. The initial positive 

feasible solution can be improved by the following tech- 

nique. Define bmt.l to be some multiple, between zero and 

that was obtained above. Then, one, of the value of y 

adjoin to the linear restraints (2.17) one more restraint 

- . Next, solve the linear program- of the form Y,,~ 

ming problem with these restraints and with C =e C =e 1 1’ 2 2’ 
=O (recall that the lower-case c’s here . e .  y cn=cn, ‘n+l 

refer to the c’s in the chemical equilibrium problem (1.3)) 

The solution to this linear programming problem will give a 

set of components more nearly resembling the solution to the 

chemical equilibrium problem than did the components calcu- 

lated from Eqs. (2.17) and (2.18). This new solution, in 

turn, may be improved by solving another linear programming 

problem (the details of which can be seen in SUBROUTINE LP in 

Appendix A) and averaging the new solution with the old solution. 

n+l 

- brn+l 

In order to solve an elaborate chemical equilibrium 

problem it is not sufficient to simply use a method which 

we can prove converges to the correct solution. Proofs 

of c onver genc e gen er a1 1 y as sume infinite c ompu t: a t ional 

accuracy, but since we are usually limited in practice to 
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about eight significant digits, the numerical solution will 

not always converge. However, it has been observed that 

the closer we can get to the solution by the initial solu- 

tion methods described above, the greater will be the 

probability that the numerical procedure will converge. 

Furthermore not only will the probability of convergence 

be greater, but the number of iterations to get to the 

solution will be fewer, and hence--when an improved initial 

solution is used--the computation time will be shorter. 

Unfortunately, the mathematical methods that are available 

for analyzing convergence of iterative processes do not, 

in the case of the chemical equilibrium problem, enable us 

to prove convergence when we m e  limited to finite mathe- 

matical accuracy. Only experience with a particular method 

will tell us whether it is a useful numerical procedure 

to use. 

In the next section we consider a somewhat more general 

problem than the chemical equilibrium problem. This prob- 

lem is considered first because the numerical results take 

on an especially simple form when the additional generality 

is admitted. 
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3. THE LINEAR-LOGARITHMIC PROGRAMMING PROBLEM, 
FIRST-ORDER METHOD 

In this section we consider %he problem of minimizing 

N 

j =1 

while satisfying the linear restraints 

N 1 aijxj = b i . i=1,2,3, ..., M (3.2) 
j =1 

Y 

The symbols aij, bi, c and d denote constants, and 
j’ j 

X 1 , X 2 , . . * , ~  are the unknowns that we seek. We restrict 

the problem to the case that d 0 for j = ly2,3,..,>N. 
j 

We note that if x 0, the term in (3*1), x.(c + d log x.), 
j ~j j J 

is undefined, whereas if x 0 this term is defined. If 

x = 0 we define x.(c + d.log x ) = 0, since this expression 

approaches zero as x 0 approaches zero. From this dis- 

cussion, we see that, in order for a solution of Eqs. (3.1) 

j 

j J j  J 1 

j 

and (3.2) to be defined, we must assume that x 2 0 for 
j 

j = 1,2,3, ..., N. 



We may attempt to solve this problem using Lagrange 
9; 

multipliers. In this method we let 

and then set 

for j = 1,2,3,, ~. ,N. Performing the partial differentia- 

tion, we get 

M 
c $. d. log x + d - 1 riaij = 0 , 
j 3 j j 

i=l 
(3.3) 

j=1,2,3,. . . ,N 

or , when rearranged , 

j=1,2,3,. . ,N 

7k 
See Kaplan, Ref. 3, p. 128, or Dantzig, Ref. 2, 

p *  140. 



-17- 

Exponentiating both sides of (3.4), we get 

M 1 n a d - d. -1 c - ~] . 
i ij J j  

i=l 
j=1,2,3,. . . ,N 

(3.5) 

Note that €or (3.5) to be a solution to the problem, we F 

must have all x 3 0. We assume, in the remainder of this 

section, that the solution does have a11 x 0. Then, 

the problem reduces to the problem of determining the M T 

j 

j 

i 

so that the x from (3.5) satisfy (3.2) Equivalently, 

the M + N equations (3.2) and (3.5) must be satisfied simul- 
j 

taneously by the proper choice of the M + N unknowns, 

971,~2,*..,3qY x p 2 ’  ...,%. 
of approximating the solution. 

We now consider two methods 

In the first method, we suppose that we have an esti- 

mate of the x. which may or may not satisfy (3.2). We 
J 

denote this estimate by y and, in this method, solve 

Eqs. (3.2) and (3.4) simultaneously by making a linear 
j y  

approximation to log x . Since we have the estimate that 
x is near y 

pansion of log x about y is 

j 
we note that the first-order Taylor ex- 

j j 9  

j j 



x -Y 
log x = log yj + + (higher-order terms) , (3.63 

yj 

Dropping the higher-order terms, and substituting (3.6) into 

(3.4) and solving for x j’ we have 

M 
4 -1 1 viaij - d. c - log yj 3 j  

i=l 
xj ’j 

(3.7) 

L 

j=1,2,3 ,..., N 

/ 

Now, if we substitute these x j into (3.2), we get 

- -1 j =1 

i=1,2,3, ..., M 

Denoting 

j =1 

and 

(3 8) 
&=1,2,3, ..., M 
i=l,2,3, ..., M 

N 
/3 -1 

s = bi + 1 a y.(log yj + d. c.> i ij J 3 . 3  (3.91 
j =1 

i==1,2,3, ..., M 

J 
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i=1y2,3y...yM (3.10) 

Equation (3.10) is a set of simultaneous equations which 

can be solved for vl,mZ ,..., vN. 

With the above results, we C ~ R  now define the iterative 

process for the first method. At each iteration we have a 

..., x At the beginning of the S X 2 ~  N' set of values for x 

iteration these values are called ylyyZ,...yyNy and at the 

end of the iteration the values are x 1?X2>..'YxN. If 

is small for each j, then we say we have converged. 

magnitude of "small" depends on the nature of the problem. 

If 

The 

is not small for some j, then we have not converged and 

the iteration must be repeated. 

the following three steps: 

One iteration consists of 

, 
.. 
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1) Evaluate terms in Eqs. (3.8) and (3.9), these 

terms depending on yl,y2, ...,yN; 

2) Solve Eq. (3.10) for a1,r2 ,..., aM; 

3) Substitute nl,a2, ..., a into (3.7) to get M 

x p y  Y%* 

For this problem, in this generality, we can say noth- 

ing about whether this iterative process converges. In 

the next section we will show that the chemical equilibrium 

problem is a special case of this problem, and one for which, 

with appropriate modification, this method does converge. 
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4, THE FIRST-ORDER METHOD FOR SOLVING THX 
CHEMICAL EQUILIBRIUM PROBLEM 

The chemical equilibrium problem is a special ease 

of the linear-logarithmic programming problem. 

to put Eqs. (3.1) and (3.2) into the form of Eqs. (1.1) 

and (1.31, we first define 

In order 

N = n4.p 

M = mtp 

where, as stated previously, p is the number of compartments 

in the problem. Then we define a bi, x and c for ij ’ 3’ j’ 
i > rn and j n, as follows 

bi = 0 

c = o  
j 

i=m+l,m+2, . . . ,M (4.1) 

j=n+l,n+2,. . . ,N (4.2) 
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0 if i r m , j > n  

1 if i m, j n, and [j] = i-m 

0 if i m, j n, and [j] # i-m (4.4) 
-1 if i m, j > n, and i-m = j-n 

0 if i 9 m, j n, and i-m # j-n . 

ij 

For all j, we define 

+1 if j s n 

-1 if j > n .  
d j =[ (4.5) 

With these definitions, it has been shown c4] that the two 

problems are identical. Next, we let 

+ 1 . i>m =\'; + log s i-m 

Substituting Eqs. 

(3.10) and simplifying, we have 

(4.1) through (4.6) into (3.7) through 
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(4.7) kj I* 1 m 
A 1 aijri - c - log y. + n' 

j J 
i=l 

j=1,2,. . . ,n 

, 

- r. - 
12. 

s! = 
1 

M 

C atjYj 
j c  (i-m) 

rl z a y  ij j 

0 

I n 
bi -t- 1 aijyj(cj + log yj A - 1) 

j =1 

ism 

(4.9) 

P 

i=l,2, ..., M (4.10) 

The directional derivative of F in the direction 

(0,,Q2, . . ,Qn> is given by el, Theorem 8.113 to be 
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n 1 ej(cj 3- log gj) . 
j =1 

Q2d 

Y: But, if we compute 1 A where by (3.7) 
r 1 

(4.11) 

(4.12) 

k=1,2, ...,p 

we show, in Appendix B, that 

rn n Q?d n IT = - 1 Q.(c f log 9.) -I- 1 ri (bi - 1 aijyj) . (4.13) 
J j  3 

j=1 j=l i=l j =1 

Thus, if we assume that (y,,y, ,..., y ) is feasible, we get 

the interesting result that the directional derivative of 

F in the direction (01,02,...38n) is 

m 

(4 - 14) 

However, it is also shown in Appendix €3 that the 

equality on the right side of (4.14) holds if and only if 

the values for y are optimal. 

(yl,y, ,... ,y ) is feasible, then 

We further note that if 
j 

n 
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n 

1 aijQj = 0 
j=l 

for i = 1,2, ..., m. 

then (yl+XQ y y  +X02y...,y +XQ ) will be feasible for any 

k for which each y + he. is positive. 

Hence, if (y1,y2, ...,y,) is feasible, 

1 2  n n  

j J 
We now state the first-order chemical equilibrium 

algorithm: 

1) Calculate (Q,,Q,, . . . ,en) using Eqs. (4.7) through 
(4.10). 

2) Calculate the directional derivative of F in the 

direction (@l,Q2y.,.y0 ) as given by Eq. 

if this quantity is not negative, we are done. 

(4.11); n 

3) Calculate 

e is a number that represents the root-mean-square 

error in (~~,y~~...,y,). 

given number (say, 0.001) , we are done. 

If F is less than some 
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4) Calculate the ra io -y,/Q. for every j for which 
J J  

0. < 0, Let X be the minimum of all such ratios 

and let X = min (l,pA1)* where j3 is a number less 

than 1 but close to 1 {say, 0.99). We now per- 

J 1 

form the following steps until the test at c) be- 

low is satisfied: 

a) Let z i= y. -t- lej; 

b) Compute the directional derivative of F at 
J J 

z in the direction (Q 8 ..,0 ): f(X) = 

Q.(c + log 2.); 
j 1' 2'' n 

A 

J j  J _I 

c) If f(X) s 0, go directly to step 5); 

d) Replace X by yX, where 0 < y < 1, e,g., y = L fi . 2 
5) Finally, replace y by y. 1- A@ for j = lS2,*..,,n, 

j 3 j 
Steps 1-5 are repeated until either the test in step 2 or 

the test in step 3 is satisfied. 

If this process terminates, the solution will be 

optimal within the specified limits of accuracy, It may 

happen that the process does not terminate. Since the 

objective function F is convex and assuming infinite 
* 

computational accuracy, non-temfnation can occur only be- 

cause the values chosen for A become smaller on every 

* 
Ref. 1, Theorem 8.13; ReE. 5. 



iteration. This will occur only if some y is approaching 

zero, and hence (y ,y ...,y 1 is approaching a point at 

which, if it were the optimal solution, the pro'blem would 

be degenerate. It is possible for this to happen €or a 

non-degenerate problem for which the initial solution 

chosen was too far from the optimal solution. Convergence 

can be guaranteed by imposing the condjtion that the value 

j 

1 2' n 

of F at the inftlal solution be less than the value of F 

at any feasible, degenerate point. However, it is not 

practical to impose this condition on the initial solution 

since it may be very difficult to find such a point. In 

practice, it has been found that round-off errors cause 

more difficulty than the possible selection of a poor 

initial solution, 
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5. THE LINEAR-LOGARITHMIC P R O G W I N G  PROBLEM, 
SECOND-ORDER METHOD 

In the first-order method, presented in Sec. 3, the 

iterative process was initiated with an estimate of the 

In the second-order method, we N' value of xl,x2, ..., x 

assume that the problem is as defined by Eqs. (3.1) and 

(3.21, but that we have initial estimates for the values 

Let us denote these estimates by M' of 7T1,7T2,**.,a 

xl,xz> - * ?A*' The x. can then be evaluated by Eq. (3.5), 

substituting Xi for vi. These x however, probably will 
J 

j' 
not satisfy Eq. (3.2). The problem of the second-order 

method is to find numbers bAl,Ak2,...,AAM, such that 

7T = A. +Mi i 1 
i=1,2, ..., M 

when substituted into (3.4) will give x that satisfy (3.2). 
j 

In order to accomplish this, we first use the x 
j 

calculated from Eq. (3.5) to get 

N 
gi = bi - 1 aijxj 

j=1 
(5.2) 



where g 

Next, we evaluate 

represents the amount that equation i is in error. i 

= - 1 aij & a  
1, j=1 

- 
N r / M \ 

exp (,djl 1 Ahahj d - d. -1 c - 1,) 
3 . j  

h-l 

N 

(5 3) 

where r is given by Eq. (3.8). If we make a very small 

change, dXly dA2, ..., in X1,Xz,...y the change in g1,g2y.,.y 

is given by dg lydg2,...3 where 

t i  

i=l92, ..., M 
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M 

We would want dg to be equal to -gi as computed by i 

Eq. (5.2). If we make the approximation that 

A 
I 

c ax 

is constant over the domain considered, we can set 

dgi - - -gi9 let dh = M and write 
m_ 1- 

M 

(5.5) 

Equation (5.5) consists of M equations in the M unknowns 

M1,CA2t.. . ,MM. We may thus solve Eq. (5.5) for 

AA1,M2y...,% and compute T ~ ~ T ~ , . . . , ~ T ~  from (5.1). If 

the assumption aboue 

being constant over the domain considered was correct, then 
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the x 

satisfy (3.2). However, in general, they will not satisfy 

computed from (3.5) with these values for nf will 
j 

(3.2), but if we were close enough to the solution so 

that the 

did not vary greatly 

values for x should 

did the first set of 
j 

in the domain considered, 

come closer to satisfying 

j’ 
X 

then the new 

(3.2) than 

With this assumption, we may now state the iterative 

process: 

M’ Using the values at hand for nl,v2y*,.,n 

evaluate (3.5) . 

Using the values for x 

evaluate (5.2). 

small, we are done. 

Compute r 

obtained in step a, 
j 

If the lgil are sufficiently 

using (3.8) and solve (5.5) for LAi. it 
Denoting the n in step a by X we get new 7~ i i’ i 
by (5.1). 

Steps a-d are repeated until the /g. I J  computed in step 
by are sufficiently small, or until they show no more 

improvement. 

1 



-32- 

There is no proof of convergence for this method. 

In €act, the method presented here is unlikely to converge 

unless the starting values of T ~ , T ~ , , . . , T  

and even then there may be no convergence. This method may 

be used on the chemical equilibrium problem after the Eirst- 

order method has resulted in a reasonably good solution. 

If the 7~ obtained from (3.10) in the final iteration of 

the first-order method are used to initiate the second-order 

method, the accuracy produced by the second-order method 

will generally be better than that which could be achieved 

by use of the first-order method only. 

are very good, M 

i 
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6. THE SECOND-ORDER cI;LEMICAL EQUILIBRIUM ALGORITHM 

In order that the second-order linear-logarithmic 

method be set in the form of a chemical equilibrium problem, 

the same definetions as given in Sec. 4--i.e., Eqs. (4.1) 

through (4.5)--are used here. Since the second-order method 

is best used after the first-order method has been applied, 

the initial values of 71 for the second-order method must 

be specified. The first-order method gives a set of 71' 
i 

i 

which are related to a by Eq. (4.6). The 7. computed by 
i 1 

means of (4.6) are appropriate initial values for the second- 

order method. Using these initial values for 71 the second- 

order chemical equilibrium algorithm is an iterative process 
i' 

€or which each iteration consists of the following steps: 

1) Using the current values for (7r19n2,..,, nM) Y 

evaluate x1,x2,.. ..,x by means of (3.5). n 
2) Calculate gl,g2,.,.,g by means of (5.2) and set m 

3) Compute riC from (4.8) and solve (5.5) for 

"1"2'*'''MM. 

4) Let 

M 

i=l 
P = max lahil . 
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If P c 6, where 6 is a small positive number such 

as we are done; otherwise, let Q = min (+)* 
5) Replace 7~ by ri + Q Si for 1 = 1,2,,..,M. i 

Steps 1-5 are repeated until the test at 4) is satisfied. 

P should decrease at every iteration; however, when the 

values for 7~ get close to their optimal values, P may 

not become zero due to round-off error. In order to prevent: 
i 

an endless repetition of steps 1-5 due to the selection of 

too small a 6, we can test P against the value of P at the 

previous iteration. If this value has increased over the 

previous iteration, it can be assumed that this method has 

obtained as accurate a solution as possible, and we can 

terminate the iteration process. The reason for inserting 

the factor Q above is to prevent the T from varying too 

much on one iteration. 

i 
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7. S-Y OF THE COMPUTATICON PROCEDURE 

The best method for starting the solution of the 

chemical equilibrium problem depends on whether an estimate 

for the solution vector is available. The projection method 

should be used when the problembeing solved is a slight 

variation from a problem previously solved, and in this 

case, the values used for y in (2.9 - 2.12) should be the 
solution vector to the previous problem. Even when the 

estimate is no better than an intuitive guess, the pro- 

jection method may still be used. The linear programming 

method, then, may be used as a back-up if the projection 

method produces a non-positive component. Of course, if 

no estimate is available, the linear programming method 

would be used immediately to provide an estimate. 

j 

The recommended procedure Is, then, to use the first- 

order method until either no further progress can be made 

with this method or until the amount of change becomes 

small from iteration to iteration, and then to use the 

second-order method. It has been found that, for reason- 

ably large problems (say m = 30, n = loo), the point at 

which progress ceases in the first-order method usually 

occurs when the indicated corrections to the components 
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of the solution vector average about one per cent of the 

components; that is, when (3.5) is accurate to about two 

significant digits. A switch to the second-order method 

at this point usually yields quite accurate results in two 

iterations of the second-order method, The second-order 

method usually satisfies (1.1) to an accuracy of about 

five significant digits on a machine that carries eight 

significant digits. This accuracy is typically about three 

orders of magnitude above what is usually obtained in 

experimental data. 

To summarize, the typical procedure for solving a 

chemical equilibrium problem is the following: 

1) If an estimate is available, use the projection 

method to obtain a feasible estimate. 

2) If step 1 yields a stxictiy positive estimate, go 

to step 3, but if the projectian method yields non-positive 

components, or if there was no initial estimate, then use 

the linear programming method to get an estimate. 

3) Use the first-order method until one of the tests 

described in Section 4 is satisfied. 

4) Use the second-order method as described in Section 

6. 



-37- 

Appendix A 

A FORTRAN-IV PROGRAM FOR SOLVING THE 
CHEMICAL EQUILIBRIUM PROBLEM 

> 

GENERAL DESCRIPTION 

The program described here is a set of FORTRAN-IV 

subroutines for solving chemical equilibrium problems, 

The calling sequence used is merely the statement: 

CAZL SOLVE 

Communication of data into and out of the subroutines 

is accomplished by a block common statement: 

The data that must be input before CALL SOLVE is 

executed consist of the following: 
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COMMON Location Quantity 

I W )  Print flag: -1 = minimal amount of 
messages; 0 = one message per itera- 
tion step; +l = all messages. 

Maximum number of iterations to be 
allowed. 

bi, i = 1,2 ,..., m. 
yj, j=1,2,...,mY where y is the 

j 
initial estimate of the solution. 
If no estimate is available, set 
X(J) = 0. 

c j=l,Z,.. . ,n. 

a i=1,2, ..., m; j=1,2,...,n. 
j y  C(j1 

W , j )  ij ' 
In addition, all components in one compartment must 

J 

have consecutive subscripts, That is, components 1,2,3,. , , kl 

must be in Compartment 1; components kl+l, k1+2, ..., k2 

must be in compartment 2; ...; and components k +1, 

kp-l+2, ..., k 

communicated to the subroutines by setting 

P-1 
must be in compartment p. These k's are 

P 

KL(2) = kl+l 

KL(3) = k2+1 



In other words, KL(k) is the number of the first component 

in compartment k, and KL(p+l) is equal to n+l. 

The above are the only numbers that need be set in 

order that CALL SOLVE will solve the chemical equilibrium 

problem. However, in order that the program can write 

messages, in cases of infeasibility, etc., names for the 

rows components, and compartments may be input: 

COMMON Location Quantity 

NR(I ,I> Y “1 7 2) Two-word row name for row I. 

KN(J) One-word component name for 

component J. 

compartment K. 

In addition, TOL(1) through TOL(5) are tolerances used 

by the program. If they are zero when the program is 

entered, they are set by the subroutines to nominal values. 

These values may also be set by the user of: the subroutines, 

in which case the nominal values will not be set in the sub- 

routines. These tolerances are the following: 

Nominal 
Tolerance Value Meaning 

0.01 c in step 3 of the first- 
order method (see Sec. 4). 

J 
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e % 
Nominal ‘8. 

To 1 er a m  e Value Meaning 

TOL ( 2) 6 in step 4 of the second- 
order method (see See. 6). 

Minimum value any x is 
3 

TOL(3) 

allowed to have. 

TOL(~) lo-5 Minimum starting value that 
any component will have is 

TOL(5) lo-8 

the lesser of TOL(4) and 
& (see Sec. 2). 2Y,+1 

Problem is assumed to be 
degenerate if any S 
becomes less than TOL(5). 

k 

With the above as input, the statement CALL SOLVE will 

cause an attempt to solve the chemical equilibrium problem. 

If, upon completion of this attempt, a solution is obtained, 

the cell 
IV(10) 

will contain a 1 and the following data will be in storage: 

Data 

x i=1,2,...,n (the solution). 

- COMMON Location 

i’ X(i) 

XBAR(k) Sk, k=f,2, ...,p. 

71 i=1,2,. . . ,m. PIE(i) 

i=1,2,. . . ,n. 
iJ 

1’ x A =mi) 



. - 
'.. 
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If IV(10) is not 1, the subroutines have failed to solve 

the chemical equilibrium problem. The reason for this 

failure is written on output unit IV(6). 

X(i) will contain the latest value of these quantities. 

In such a case, 

SUBROUTINES 

There are nine subroutines in the set used for the 

solution of the chemical equilibrium problem. 

description of these subroutines follows. 

A brief 

1. Subroutine SOLVE 

SOLVE is the master subroutine, and is divided into 

four functional segments. Each segment calls other sub- 

routines which do specific tasks. The four segments 

The projection and linear programming routines 
for obtaining the initial solution (lines 18-42). 

The first-order method (lines 43-122). 

The second-order method (lines 123-163). 

Output messages (lines 164-203). 

2. Subroutine BAtQ 

BAR calculates the Sk. 
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3. Subroutine BERROR 

BERROR calculates 

N 
= b  - 1 aijxj . 

j =1 

i=1,2, ... ,M gi i 

4. Subroutine DEL 

DEL sets 
J 

m 

w = 1 aijqi . j=l,2,. . . ,n j 
i=l 

5. Subroutine RCALC 

RCALC calculates the r. array (4.8). 
1 .E 

6. Subroutine CLOG 

CLOG computes 

A 
Q = c  + l o g x  , 
j j j 

j=1,2,. . . ,n 

7. Subroutine LP 

LP sets up the linear programming problems. 

8. Subroutine SIMPLE 

SIMPLE solves the linear programming problems. 

Information is communicated to this routine via a 

4 
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calling sequence rather than by COMMON as in sub- 

routines 1-7. The dimension of A in SIMPLE should 

agree with the dimension of A in the first seven 

subroutines, but all other dimensions are dummy 

statements. 

9, Subroutine mTINV 

MATINV solves simultaneous equations. As in 

SIMPLE, no COMMON is used. The dimension of A in 

NATINV should agree with that of R (not A) in SOLVE. 

All other dimensions are singly subscripted and are 

irrelevant as to magnitude. 

* * 3; 

Each of the first seven subroutines has a COMMON 

statement which should be the same in all seven. The 

dimensions of the variables in this COMMON statement may 

be set to the values for the largest problem to be solved. 

With m, M, p, and n as previously defined, these dimen- 

sions must be at least: 
, 



IV 
TOL 
MR 
B 
KN 
X 
C 
KL 
NAM 
A 
PIE 

XMJ? 

XBAR 
R 

v1,v2,v3,v4 

x1, x2, x3 

Minimum Dimension 

A listing of these subroutines follows. 

not necessarily represent an actual program. 

used was that version of FORTRAN described in [63. The 

machine used for the solution of chemical equilibrium 

problems was the IBM-7044, which uses a floating-point 

number with eight bits for the exponent and 28 bits for 

the sign and mantissa. 

This listing does 

The language 
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LISTIKC 

. .  

. 

5060 1 
5cc02 
50003 
50004 
5c005 
50006 
5ac37 
50006 
50039 
50010 
50011 

50314 
500 15 
50015 
SO0 17 
50018 
53019 
50c20 
53021 ,& 
52022 
53023 
50024 
5C025 
5G026 
50027 
50023 
50029 
59030 
5C031 
50032 
$0033 
53034 
5 3 6 3 5  
50036 
50037 
50038 
50039 
50040 
a0G41 
50042 
30043 
50044 
50045 
5u046 
55047 
50046 
SbL'49 
5G250 
huc 5 1' 
5uu52 
ag053 
b C 0 5 4  
5u055 
53056 
50057 
50058 
50c59 
50960 



. 

7114 CONTINUE 
CALL RCALC 
CALL M A T I ~ V ( R , K E N ~ * P I E I - I * ~ ~ * V ~ ~ ~ ~ * ~ E )  
iF(KE.NE.0) GO f0 IC003 
DMAX i a c + 2 C  
CALL DEL(TH*PIE) 

7105 GNORMzG;. 
TDA 3. 
F E  = 0. 
DO 71L4 K=lrNCOMP 

MK = M + K 
KTA = KL(KI 
KTb = KLIK+l) -1 
DO 7103 J = KTA, K T E  

TH(J) * TH(J) +PIE(I.'k)- ALPHA(J1 
GFr3RM = GhOR,'I + TH(J) **2 
TH(J1 = TH(J) * X(J) 
TDA = TDA + TH(J) * ALPkiA(J) 

F E  F E  + X ( J )  * ALPHA(J) 
IF (X(J).LT.-3~AX*Tti(J)) DMAX = -XIJ)/lH(JI 

7103 CONT I NUE 
7104 CONTINUE 

EPS- SQRT 4 GN3RY/FLGAT (NTUT) ) 
DFE = F E  - FE2 
F E 2  = F E  

ITR = ITER - 1 
1FtPF.SE-u) wRITE(NOT9799) ITR* D F E I O P T L I E P ~  

IF(PF.GTaO)hRITE(NOT*8241) DYAX,OPTL*TDA*ERR 

IF (ITER.EQ.1) GO TO 712d 

712d OPTL = A M I F < l  ( 1.9 .59*OMAX 1 

IF LEPS.LE.TOL(1)I GO TO 8269 
826 I F  (TDA.GE.Oa) GO T O  8267 

8263 DO 8265 I 1  1 1 9 5 4  
00 6331 J = 1 9 N  

DX(J) = AMAXL(X(J) + @PTL*TH(J) tXYIN) 
8301 CONTINUE 

CALL UAH(DX9XaAR) 
CALL CLOG(DX*XdAH) 
T 3 A  = S. 
DO 8266 J = l*NTOT 

TDA = TDA + THtJ)*ALPkA(J) 
8266 CCjhT I hUE 4- IF(PF.GTOY)WRITE(NOT, 8262)II*OPTL* TDA 

IF ( TDAaLT.0.) GO T O  828 
8264 OPTL = OPTL /le4142 
8265 CONTINUE 

CALL BAR(X*XbARI 
GO TO 8271 

826 DO 8281 J ZlrNTOT 
X(JI DXlJl 

8281 CONTINUE 
F E  = 
00 8231 J S l r N  

F E  = FE + ALPtiAtJ)*X(JI 
8231 CGNTINUE 
8288 CALL SS%TCH(5rLASELI 

If ILAklEL*Nt.Z) 60 TO 10064 
899 CONTINUE 

SOC61 
1ug62 
50063 
53564 
50065 
50066 
ab867 
5c06a 
5C069 
50070 
53C71 
5CG72 
5cc73 
5ac74 
5uO 7 5 
50076 
50077 
50078 
53279 

5zcu1 
5j5b2 
50083 
ScIG84 
20085 
5uC96 
s v v e  7 
50088 
3 2 C d 9  
SO1?90 
5cb91 
23092 
50093 
~1g94 
t3G95 
- C G 9 6  , 
>g097 
50c98 
1a399 
5010c 
50101 
33132 
5G103 
53104 
50105 
50136 
b0137 

so 109 
23110 
5,0111 
so1 12 
50113 
SO1 14 
50115 
50116 
50117 
501 18 
53119 
50120 

Lccaa 

w i o a  



IF (LAi3EL.NE.Z) GO TO 1UOCt4 
63u2 CONTINUE 

00dN 

50121 
SO1 22 
50123 
50124 
50125 
501 24 
50127 
50128 
50129 
501 30 
50131 

5,0133 
5c134 
50135 
50136 
50137 
53138 
5,0139 
56140 
50141 
SO1 42 

5a144 
53145 
501 46 
50147 
50148 
b0i 44, 
501 50 
50151 
501 52 
SO1 5 3  
50154 
SO1 5 5  
SO1 56 
SO1 57 

53159 
56160 
5q161 
50162 
53163 
SO 154 
50165 
5g166 
50167 
50168 
52169 
501 70 
a3171 
531 72 
>2173 
50174 
53175 
501 76 
5c177 
5lr178 
SO1 79 
501 80 

$0132 

sol 43 

501 58 
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. 0262 FQRYAT(1dXr 4HSTEP912r 9H LA%3CA=1PE10.3t6Hr TDA=E15.61 
799 FORMAT(1bM I T E R A T I O N I I ~ I ~ ~ H  CHANGE IN FREE ENERGY=lPE15*Brl2H 

lSTEP SIZE=E15.8ilGH A V  THETArEl2.5) 

AERROR*El5.8 
6039 FCRMAT(13H ITERATI3NrI4rlYH M A X  CHANGE IN PKE=lPE15mBrlSH*MAX ROW 

END 

P 

501b1 
50ia2 
b01a3 
5.31 84 
531 d 5  
531 b6 
5c187 
50188 
sGlt19 
50190 
53191 
50192 
10193 
50194 
5g195 
50196 
50197 

50199 
502 30 

50202 
50203 
50204 

soisra 

so201 ~ 

, .  
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P 

. . . . . . .- -. . . .. .- .. .. __ 

60031 
i>UC)22 
b0c03 
b0004 
01c35 
bUC06 
bU0Cl7 
YCJCOB 
b0039 
bu010 
BCC 1 1  
b O C  12 
eg013 
3GC 14 
E30 15 
EGG16 
83317 

ti3019 
b002g 
d0021 4 
d0322 

50024 
80025 
UG026 
60027 
E0620 
b0029 
b0c30 
80031 
800 32 

iiscia 

auo23 , 

.. . ~. . . . ~  .. . . - . . _. ._ 



. ? . .  

I , :  

WI J 1 =-, W k  
ZG CONTINUE 

RETURN 
END 

. 

G 3 0 O S  
DrJr06 
DO207 
DOCS8 
DGCC9 
3CGlC 
0i;Gll 
oc012 
DOC 13 
000 14 
DO0 14 
00016 
DOC17 



r 
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ii2SOl 
Rti0'32 
h3023 
kcg04 
RC235 
h5036 
RUCG7 
r0c38 
R2009 
r0010 
R C O l l  
r0012 
R G C 1 3  
ROO 14 
r0015 
r0016 
iiOGl7 
R G O l d  
R0319 
r0020 
ROO2 1 
ROC22 @ 
r0023 
r0024 
r0025 
r0026 
R0327 
RUG26 
r0c29 
RC.230 
p5031 
r0c32 
r0033 
ROO 34 
r0035 
r0036 
r0037 
R003d 
r0039 
r0040 

. 

0 



coco 1 
c3002 
c0003 
c0004 
c0c05 
c0036 
c0007 
c0005 
C C C 0 9  
cc010 
COCll 
c0012 
c0013 
c0014 
COQ 15 
cc016 
coo1 7 
CC016 
C3G19 
c0020 

I 

.e 



1 12H1 CONDITiON ,131 
ZZT =AMINl(ZT/Z.O~ XSTART) 
DO 104 I = 

P ( 1 )  = P ( I )  - ZZT*A(I,N+l) 
194 CONTINUE 
Z Q O  DO 2C1 J z IrNTOT 

X(J) = XX1J) 
XMF(J) I l e u  

LUVU I 
1cc22 
10g03 
13974 
LOO83 3 
10006 
1gc07 
LCCOE 
10g59 
LOG 10 
LO91 1 
10312 
LO013 , 
LO: 14 
10215 
LGC 16 
10g17 
LCClS 
1c019 
LOZ220 d 
13cz1 
10022 
13c23 
10324 
10025 
10n26 
LO02 7 
10028 
10029 
10330 
19532 
L00 32 
10033 
L3C 34 
10g35 
1c336 
1a037 
1e838 
LC1039 
13040 
15c41 
1a042 
1cc43 
1ac44 
10g45 
LLi046 
1c047 
10040 
10049 
10050 
10051 
LSCSL 
10c53 
1cc54 
10055 
LO3 5 b 
10057 
10058 
10059 
1a060 



X M F ( J )  = d o  
IF f XBARIK).NE.O.) XMF(J) = XtJ) / XBARtK) 

310 CONTINUE 

3U5 FOR:.\AT(BH S I M P L E X ~ I ~ . ~ H * I I ~ ~ Z Z H  ITERATIONS r6H FR ENGxlPE15.8) 

FRZ=FR 
301 CONTINUE 
399 DO 436 J 1rN 

I F  (PFmGE.0) WRITE(NOT*305) N P ~ I < O U T ( ~ ) ~ F R  

IF [fRoGE*FRZ) GO TO'399 

X(J) = XIJ) + ZLT 
4 U U  CONT I NiJE 

RETURN 

WRITE INOTr41) 
4ci IF tKOUT(l)*bT.l) GO TO 50 

41 FORMAT(72HOTHIS PROBLEM IS INFEASIdLE. THE FOLLOWING LINEAR COMB1 
1NATION OF ROa.59 / 1 X J  
DO 14; I = l t M  

I F (PI Et I 1 *NE a 0  1 W R  I TE ( NOT * 14 1 1 P 3 E ( I I r NR ( I s 1 1 r NR ( I 9 2  
141 FOHMAT(lOXs3H+ (rF15a6rSH ) * s2A6J 
140 CONTINUE 

142 FORhAT(4dHO LEADS TO THE FOLLOKING INFEASILJLE EQUATIONr /1X) 
WRITE (NOT91421 

DO 1 5 ~  K =l*kCOIW 
MTA = KL(L) 
MTB = KL(K+l) - 1 
DO 151 J X MTAs MTB 
0 = 0. 
DO 152 I = l r M  

D = PIE(II* AtIrJ) + D 
152 CONT I NUE 

15i) CONTIhUE 
D 00 
DO 160 I ~ 1 v M  

D = PIE(Il*d(Il + D 
160 CONTINUE 

144 FORMATIlHOtlTXI 7H+ 0.0 = 1 F 1 5 ~ 8 )  
WHITE (NOTs1441 D 

70 MON = 1 
RETURN 

JT = KOUT(71 
DO 51 K = 1,NCQMP 

5C: IF ( K O U T I ~ ~ O N E D ~ I  GO TO 60 

8- 
IF ( JT.GE*KL(#)l GO TO 52 

51 CONTIFU'JE 
52 &RITE (NOTs9521 K N ( J T ) t N A ~ ( K r l I , N A t ~ ( K I Z )  

952 FORMAT(l4H THE VARfAbLE sA6r4H IN r2A6r33H IS UNBOUNDED A 
1 E  REMOVED) 
GO .TO 73 

50 WRITE I N 0 T ~ 9 6 0 )  

D MUST 

960 FORMATf60H SIMPLEX ROUTINE HAS FAILED DUE TO EXCESSIVE ROUND-OFF E 
1 R R O R  ) 
GO TO 73 
END 

1cg61 
10042 
10g43 
10064 
10065 
10066 
10067 
10068 
10069 
10370 
10071 
10072 
10073 
10074 
10075 
10076 
10077 
10078 
10079 
10080 

LO082 
1c083 
10084 
10085 
10086 
10g87 
10088 
10089 
10090 
10g91 
10092 
10093 
19094 
1cc95 
10g96 
10097 

10099 
10103 
10101 
10102 
10103 
10104 
10105 
10106 
10107 
10108 
LO 109 
10110 
LOlll 
LO1 12 
10113 
LO1 14 
10115 
LO1 16 

L a o a i  

~ o o 9 a  

. i J  



Calling Sequence for Simplex Subroutine 

The simplex subroutine, SIMPLE, may be used to solve 

a general linear programming problem of the form: 

n 1 c.x 
J j  

j -1 

subject to 

Minimize 

(1) 

n 

1 aijXj = bi . 
j=l 

(2) i=122,3, ... ,m 

The aij is stored in a two-dimensional array, A, with 

in cell A(i,j); C. is stored in a one-dimensional array, a 

C, with C. in cell C(j); and b. is stored in a one- 
ij J 

J 1 

dimensional array, B, with bi in cell B(i). 

The calling sequence is 

CALL SIMPLE~I~,M,N,A,B,C,KO,X~P,~H,XX,Y,PE,E) 

where 

II = 0; 

M = No. of rows, rn; 

N = No. of variables, n; 
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A, B y  C Are as above; 

KO = A subscripted variable of 

dimension 7; 

X = A subscripted variable of dimen- 

sion n or more; 

P, JH, XX, Y, and PE = Subscripted variables of 

dimension m or more; and 

E -- A subscripted variable of 

dimension m or more. 2 

Upon exiting from the subroutine, 

x(1),X(2)y...,X(n) Contains xI,x2,..~,x (the solution); n 

P(l),P(Z),...,P(m) Contains the shadow prices; 

KO(1) Contains an 0 if the problem was 

feasible, 1 if the problem was 

infeasible, 2 if the problem had 

an infinite solution, and 3, 4, or 

5 if the algorithm did not terminate; 

The number of iterations taken; 

The number of pivots performed since 

the last inversion; 

KO(2) 

KO(3) 

KO(4) 

KO(5) 

The number of inversions performed; 

The number of pivot step? performed; 
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KO(6) A logical variable that is "true" 

if and only if the problem was 

feasible; and 

KO(7) Contains, if the problem had an 

infinite solution, the number of 

the variable that was infinite. 

The dimension of A (line XOOO9) must agree (at least 

in the first subscript) with the dimension of A in the 

calling program. The other dimensions need not agree with 

those of the calling program. 

I€ an initial basis is available, this basis may be 

communicated to the subroutine by letting 

I1 = 1 ,  

(0.0 if variable i is not in basis, 

( (non-zero) if variable i is in basis, 
X(i> = 

and the other quantities remain as above. 

This subroutine differs from other linear programming 

routines in several respects. If the restraints (2) are 

linearly dependent, the problem is considered to be in- 

feasible. This is the case because the chemical equilibrium 

problem cannot be solved if the restraints are dependent. 

In addition, this subroutine was written to be as scale-free 
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as possible; this was accomplished by computing tolerances 

internally in the subroutine. 



xoco 1 
x0302 
x0003 
X0004 
X3C05 
X0006 
X0007 
x0008 
x0009 
XOOlO 
X O O l l  
x0012 
X0013 
X0014 
X0015 
XOOlb 
x0017 
X O O  18 
XOO 19 

x0021 

X0023 
X0024 

x3020+9, 

x0322 , 

L *  

X0025 ," 

X0026 
X0027 . I . '  

I .  
X0020 

X0330 
XOO 3 1 
X0032 

XU034 
X0035 
X0036 
X0037 , 

X0038 , 

XC039 

X0041 
X0042 
XU043 
X0044 
X0045 - .  
X0046 ' 

X0047 
XU048 
X0049 
XOOSO 
X0051 

x0c53 
X0054 ' 

X0055 ' 

. XOO56 
X0057 
XOOSB - 
X0059 . 
XOCbO 

X0029 ' I .  

X0033 . ': 

X0040 * 

,XOO52 



< 

IF (JH(I1*NEo-1) GO TO 1104 
IF 1 A BSIYlll)rLE*TY) GO TO 1104 
IR I 
T Y  = ABSIYIt)) 

1194 CONTINUE 1 
1 K B I J T I  = 0 

C TEST PIVOT 

C P 1 VOT 
IF ( T Y o L E * T PlV) GO TO 1102 

JHIIR) - JT 
KUIJTt = I R  
GO TO 900 

C 9bu CALL PIV 
1102 CONTlPiUE 

C RESET A R f f F r c l A ~ s  
i DO 1109 I 8 1 t M  

f IF IJH(II*EPo-1) JHtIt 0 
1109 CONTINUE 

' 1203 VE R  = *FALSE* 
' C  PERFORM ON€ fTERAfION 

DETER:.iINE FEASIBILITY 
F E A S -  * T R U E *  
NEG * *FALSE* 

. DO 1241 I e 1,M - IF ( X ( I I * L T * O o O )  GO TO 1250 

1201 'CONTINUE ' I *  
IF fJHfI)*EQ*O) FEAS * .FALSE. , 

f 

GET APPLlCAdLE P R I C E S  
IF I*NOT*FEASI 'GO TO SO1 

,' PRIMAL P R S C E S  I 1  1 

. 1  
DO 503 I IrH , 

2 .  * 

# .- : I .  

P(It = PEtt) 
ABSC * *FALSE* 

' ' 503 CONTINUE 

> \, , d '  

i 
.GO TO 599 

t O M P O 3 1 T E  PRICES 

* -  
I ,  , I '. . 0 ,  

r . J  

I' 

. 'i ' 
, t  ABSC * T R U E *  ! DO 505 I 1 9 M  ~ 

MM = r I 
IF ( X ( l ) r G E * O o d l  GO 10~307 
AbSC *FALSE* 
00 508 J = 1 s M  I 

i * I  
I '  

P(JI = P1Jt + E ( M M )  
M M  = M M  + M t 

i 

, <  
I .  

SO6 CONTINUE I 

. * <  
, r l  

GO TO 5c5 
. *  * 407 IF (JH(I).NC*Ol GO TO SO3 

* *  '< I IF (XIIIoNE*O.) AUSC I, *FALSE* * 

DO 510 J 1rM I 

. L * , <  1 t P ( J) 9 P(Jt - EIMM) 
s .r,l ' HM - M M  + M 7 r * %  * >  

*1 
i .  

I .  

510 'CONTINUE I ) I  

.'MIN' FINO HIlllfWM REDUCE0 COST . 
6 -  4 ~ 5  CONftNUE 

A' . ' *  399JT.0 _ .  , I  

* .  

8 %  
. SI. 8 

. .  

X0061 
X006Z 
X0063 
X0064 
X0065 
X0066 
X0067 
X0068 
XOC69 
X0070 
XU071 
X0072 
X0073 
XOG74 
X0075 
XOC76 
XO077 

X0379 
X0080 ,? 
X3381 
X O O B Z  
X0083 
X0084 
X0085 
X0086 
X0087 
X0088 

X0090 
x309 1 . .  
XG092 

xoo7a 

x w e 9  . 

I "  
X0104 
X0105 , 

XOl06 I 

X0107 

X0109 I 

XO110 
X O l l l  
xo11z 
X0113 
X0114 
X U 1 1 5  
X O I  16 
X0117 
X0118 
X0119 . 
XOl20 

xoioa ' 



--. i 
\ -62- 

1- , LI 

. *  

88 * 0.0 
DO 701 J * l r N  

c SKIP COLUMNS IN BASIS 
1 IF tKUfJ)*NE*OI GO TO 701 

Of = ( i s 0  t 
00 303 I * l v f l  

IF I A I I ~ J ) * N E ~ O I O )  D T  OT + PI11 0 A ~ I B J I  .. 
I 393 CONTINUE 

IF (FEASI DT DT + CtJI 
1F (ABSCI DT * - kBStDf) 
88 0 DT 
IF ( D T * C E * O B I GO TO 701 

696 CONTINUE 
GO T O  605 

602 LL LL + M 
605 CONTINUE 

COMPUTE PIVOT TOLERANCE 
Y M A X  0.0 

, I  

, ) .  

RETURN TO INVERSION ROUTfNEt .if 1NVERTlNO 
IF (VERI GO TO 1114 

COST TOLERANCE CONTROL t 

IF (TRIG.ANO*D8.GE*-TPIV) GO TO 203 

IF tBD*fE*-fPtV) TRtG *TRUE*’ 
+ a  * T R I G  * *FALSE* 

\ I  

’* 
< I  c AMONG EdS. WlTH X I 0 9  FINO MAXIMUM Y AMONG ARTlfICtALS, OR# ‘IF NONE, ’ 

, C* BROW; SELECT PtVOt ROW : ‘  

z ‘ C GET M A X  POSITIVE Y(1i AMONG REALSL , 
a 

I /  ).\ 
5 .  

4 , 1000 IR 0 
0 1  

A A  m 003 
KO * .FALSE* 
00 lU50 f = 1 r M  

# 3 ’  

’ 1  * 

I. 

.” 1 6 

* i  
- 1  

L .  

$ .  tF ~ X ~ f l ~ ~ E o O . O r O R ~ Y ~ f ) * L E ~ f P f V ~ , ~  GO. TO 1U30at 

IF (KO) GO TO 1?)50 
(. 

, 1  
’ 1  

I >  

- , - & “ ,  IF fJHltlrEQe0) GO TO 1044 
, 4  

2 .  

1 

0 
b 

x0121 
x0122 
X0123 
X O  124 
x0125 
X0126 
XOlZ? 
X0128 
X0129 
X0130 
X0131 
X0132 
X0133 
X0134 
X0135 
X0136 * I  

x0137 
X0138 
X0139 
X0140 ,f 

X0141 
X O  142 
X0143 
X0144 
X0145 . ‘ 

X0146 
X9147 - ,  

X0148 
XC149 ’ 

X0150, 
xo151 , 
xo152 ’ . 
X0153 
X0154 
X0155 
X0156 
X0157 
X0158 
X0159 
XOlbO 
X O l b l  
X0162 - . 
X0163 
X0164 
x0165 
XOl66 . 
XOlb’f 
x016b 
X0169 
X0170 
X0171 
X O  172 
X0173 
X0174 
x0175 
X0176 
X0177 
xoi7a I 

x0179 
X0180 



I 

' 1044 IF ( K Q I  GO TO 1045 XO181 
K Q  * * T R U E *  XOl02 

lob7 A A  Y t l )  x51 B 3 
i f f  = I X0104 

105U CONTINUE X0185 
IF IIR.NE.6) GO TO 1Odb X0186 

1001 A A  * 1.OE+2u X O  187 
C F I N O  MIN. PIVOT AMONG POSITIVE EQUATIONS X0188 

00 1010 I 1tM X0189 
IF ~ Y ~ I ~ o L E ~ T P I V ~ O R ~ X t f ~ . L E . O . O . O R . Y o + A A ~ ~ E ~ X ~ I l  1 GO TO 1010 X0190 
A A  = X ( f I / Y I l t  X0191 
IR a I X O  192 

1010 CONTINUE X0193 
IF  (eNOTaNEG) GO T O  1099 X0194 

. C F I N D  PIVOT AMONG NEGATIVE EQUATIONS, fN WHICH X/Y IS LESS THAN THE X0195 
X0196 +" C MINIMUM X/Y IN THE POSlTlVE E O U A T I O N S I  THAT HAS THE LARGEST ABSFlY) 

'! 1016 BE3 * - TPIV X0197 
DO 1030 I 8 1,M X0198 

'. 
IF ~ X ~ I ) ~ G E ~ O ~ ~ O R O Y ( ~ ~ ~ C E I B B . O R , V ( ~ ~ . A A . G ~ ~ X ~ ~ )  t GO TO 1030 X0199. 

x0200 I .  

x0202 ' 

X0204 ' 

X0205. 
* X0206 

X0207 

X0209 . ,  

XO20l ," BB = Y(Il 
IR = I 

I 1030 CONTINUE 
, . XO203 

TRANSFORMED COLUMN IN Y(1) 

Yf -Y(IRI 
YIIR) * -1.0 z .  

TRANSFORM f)IVERSE , -  

* 
;DO 9 ~ 4  J 1 r M  ' 

r01Ol GO TO 909 ,* 

LC * LL + M '  

PEIJ) = PE(J) + COST XY ' 5 2  X02lB ' 

j xo220 
E(L1 0.0 4 - 1  , 

CL - L L  + 1 < I  , I *  . ,  x0221 
x0222. 

t a 1,' xo217 ' ', 

,.*.I. 
' x0219 

t, ' * 

DO 906 I I t M  I,. . ,' ?' 

l i -  X0223 
E(Ll.1 9 E(LLJ * +  XY Y(1) 

906 CONTINUE 
904 CONTINUE * X0224 

X0226 XY X 1 I R )  / Yf 
00 9C6 I 1; 1 1  M ' X0227 

C TRANSFORM' X 8 ,  ' XOZ25 . 

X N E M  = Xlfl 4 XY * Yf!) , XOZZB 
iF ~ V E R . O R ~ X N E W ~ C E O O ~ ~ O R , Y ~ ~ G T . ~ P ~ V . ~ R . X ~ ~ J O ~ T O O ~  x0229 
X I I )  0.0 X0230 ,~ 

GO TO 908 * ' .  X0231 
X02 32 

- D  i *  X U 2  33 
" XO234 

1 I, , X0235 
X0236 

,' X0237 
'1 X Q 2 3 8  

X0239 
, X0240 

9u7 X ( I )  8 XNEW : 
'k I 

3 ,908 CONTINUE 
, *  'j * '; c RESTORE Y f f I? J 

I .  YtIRI -YI 
XIlRl -XY 
IF IVERl GO Tb 1102 I 

tF f1AoCT.O) '&SI1 
i 

. I  

T .  
& , * > 3  . 

, 221 IA 8 JHlLR) 
d 213 KBIJfl , ,a fR , 

I , .I 

.. '*. * > C  . 
r i  t 

I ,  

6 

-I-4& i _ _  -- - - -- - _. 
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Appendix B 

MATRIX NOTATION AND FURTHER PROOFS ,' 

The derivations in the preceding sections would be 
J 
facilitated by the use of matrix notation rather than sub- 

i scripted variables. We introduce the following symbols to 
/ / 

1 r -  ) 

correspond to the subscripted variables used in Sec. 3. 

Subscripted Variable 

a ij 

i b 

d 
j 

C 
j 

7T i 

r im, 

X 
j 

The single-column matrices 

We use here the convention 

Matrix 

A 

B 

Y 

D 

57 

R 

X 

may also be 

Size of MatrPx - 
M xN 

Mxl 

Nxl 

Nxl 

N xl 

Mxl 

M xM 

Nxl 

thought of as vectors. 

that an operator applied to a 

matrix means that the operator operates on each element of 

the matrix. For example, log Y is the Nxl matrix consist- 

ing of 



,.,- I The superscript indicates the transposition of a matrix. 

We assume that the elementary results of matrix theory are 

known. For example, it is known that the inverse of an 

invertable symmetric matrix is symmetric. The square 

diagonal matrix whose diagonal is one of the vectors pre- 

viously defined will be denoted by the previously defined 

vector in elongated type; that is, 

D = diag (D) . 

and 
y = diag (Y) . 

EquatLons (3.2) and (3.7) in matrix notation are 

y = B  

X = Y (D- 1 7  Ad" -D-'C - log Y) . 



-69- 

To see the ease of matrix notation, we may substitute (B.2) 

into (B.l) to get 

By letting 

1 7  R = AYD' A 

and 

we see that 

Rn = S 

corresponds to (3, LO). 

In Sec. 4, we evaluated 

j =1 

r 

.~ . -- - - 

03-71 



-- . 
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but we did not give the details of the computation. 

algebra of thts evaluation is very difficult unless matrix 

algebra is used. 

where 0 = x-Y. From (B.2) we have 

The 

In matrix notation, (8.7) is Q'DY-lg, 

Hence, 

Since 

equ il ibr ium Eormu la t i on, 

= B, $Q = y-$Y = B-kjY. Also, in the chemical 

n N 
DTQ = 1 ej - 1 ej - 

j =I j =n+l 

and 
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Hence, 

n N 

j=1 j =n+l 

n 
Q.(c. + log y.) A . = C . J  j =1 J J 

i=l \ j =I J 

in the context of the chemical equilibrium problem used in 

Sec. 4. 

Next we wish to show that 



as stated in (4.14). First, we prove 

L e m a  1: Let yl>yz,..,yy be positive numbers and let r 

QL,Q2 ,..., 8 be any real numbers. Let r 

fJ Yj 
r 

j =1 Y yj j=1 

Then 

i) G 2 0  

if> G = 0 if and only if 

Proof: Let CY = Q./y j=1,2,. . . ,r. Then, J 3' j - 

j =1 Yj 
j =1 
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which is result i). 

G = 0 if and only if oi = Q for all i and j; this proves 

ii) . 

The proof is completed by noting that 

j 

Now we can prove 

Theorem 1: In the chemical equilibrium problem 

" Q'?d 
ii> 11-i = 0 if and only if there exist 

j =I yj 



numbers Q! l,~2,...,a such that P 

S j-n j-n ' b) 0j = LY j>n 

Proof: The proof follows by noting that for i n 

j E (i-n } 

Then, 

by lemma 2. 

then for each k there is a number ok such that 0 = akyj if 
j E k. 

Furthermore, by lemma 1, if the equality holds, 

j 
This, noting that b) follows from the fact that 
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completes the proof of the theorem. 

Our final result is 

Theorem 2: In the chemical equilibrium problem, with 

(y1,y2 ,..., yn) feasible and 01,02,, .30, calculated as in 

j =l 

n 

ti) 1 ej(cj + log $,) = 0 if and only if 

j=l 

(y,,y,, . . . ,y n ) is optimal. 

c_c Proof: 

that {yl,y2,. . . ,y n ) is feasible. 
i) follows from Theorem 1, (B.lO), and the fact 

To prove ii), we assume that 

n 

j =l 

Then, 



and 8 is as in ii} of Theorem 1. Combining b) of Theorem 
j 

1 and (4.12) we have 

i 

= s 7r' = QkSk 'k+n k m+k 

CYk = 71' m+k 

Next, we combine a) of Theorem 1 with (4.7) to get 

c 

m 



, 

This last result is the optiunallty condition for 

(yI9y2’ ...,y ) as given by (1.4), and this demonstrates 

the forward implication of ii). The converse follows from 

n 

the fact that optimality implies that the objective function 

cannot be decreased. 
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