
1. Introduction
When sediment enters a river channel, it is unlikely to move continuously downstream to a final sedimentary ba-
sin. Rather, sediment is cycled between transport within the channel and temporary storage in adjacent reservoirs 
such as floodplains. In general, the amount of time a particle spends stored in a reservoir greatly exceeds the time 
spent in transport downstream (Bradley & Tucker, 2013; Martin & Church, 2004; Meade, 2007; Pizzuto, 2020), 
suggesting that sediment delivery timescales are primarily controlled by sediment storage rather than by active 
sediment transport in the channel.

Because storage reservoirs delay the delivery of sediment and adsorbed contaminants to downstream depocenters 
(Coulthard & Macklin, 2003; Lauer & Parker, 2008a), quantifying the duration of storage is key for understand-
ing contaminant fate and transport (Coulthard & Macklin, 2003; Lauer & Parker, 2008a; Macklin et al., 2006; 
Marron, 1992; Smith et al., 1998), for creating effective restoration plans (STAC, 2005), and for understanding 
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the delivery of sediment from source to sink (Armitage et al., 2011; Castelltort & Van Den Driessche, 2003; 
Pizzuto et al., 2017; Straub et al., 2020). Sediment routing models must necessarily account for delays associated 
with sediment storage in systems where sediment budgets demonstrate its significance (Lauer, 2012; Lauer & 
Parker, 2008b; Pizzuto, 2020).

While the magnitude of storage can be estimated by sediment budgets (Dietrich et al., 1982), the duration of 
storage in sediment reservoirs has proven difficult to conceptualize and quantify. According to reservoir theory 
(Bolin & Rodhe, 1973), the term “age” refers to how long a particle has been stored since it was last deposited, 
while “storage duration” refers to the elapsed time between deposition of a particle and its remobilization. At 
any given time, river channels are connected to and exchanging sediment with adjacent sediment reservoirs 
leading to a range of particle ages and storage durations within a single reservoir (Bolin & Rodhe, 1973; Dietrich 
et al., 1982). Because each particle is characterized by a distinct age, the flux of particles leaving a reservoir 
can be ordered by increasing age, creating a distribution that defines the length of time remobilized particles 
have spent in storage. This distribution is termed the “transit time distribution” in reservoir theory, but because 
sediment is not in motion after deposition, the term “storage time distribution” is preferred here. The mean of 
the storage time distribution is the “residence time,” a parameter that can be estimated as the ratio of the mass in 
storage divided by the mass flux into or out of a reservoir (Bolin & Rodhe, 1973; Eriksson, 1971; Pizzuto, 2020).

Storage times have been estimated using a variety of methods. Sediment budgets typically provide estimates of 
the mass of stored sediment and the erosional and depositional fluxes of sediment into and out of storage; these 
data provide estimates of sediment residence times, but they cannot define the full distribution of sediment stor-
age times (Lauer & Parker, 2008b; Repasch et al., 2020). Residence times can also be inferred from travel times 
derived from the spatial distribution of radionuclide concentrations, but these data also do not define the full 
distribution of sediment storage times (Dosseto et al., 2006; Lauer & Willenbring, 2010; Repasch et al., 2020; 
Whiting et al., 2005). Time series of aerial imagery and dendrochronology have provided estimates of storage 
time distributions for floodplain sediments based on areal patterns of age and erosion. These studies are typically 
limited to short timescales of 102 years or less, and often suggest that sediment storage times are exponentially 
distributed with an equal probability of erosion for all ages (Everitt, 1968; Nakamura, 1986; Nakamura & Ki-
kuchi, 1996; Nakamura et al., 1987), with some studies also proposing power-law distributions (Konrad, 2012; 
Miller & Friedman, 2009; Pizzuto et al., 2017).

Physical and numerical modeling studies can potentially evaluate storage over longer timescales; these methods 
often indicate that storage time distributions are heavy-tailed, meaning that the distribution has a non-finite first 
and/or second moment such that younger sediment has a higher probability of being eroded than older sediment. 
Heavy-tailed distributions are common in natural phenomena (Caers et al., 1999a, 1999b), and frequently appear 
in studies of fluvial sediment dynamics. For example, Ganti et al. (2011) observed that in a flume study by Sheets 
et al. (2007), a heavy-tailed distribution of storage times was produced and best fit by the heavy-tailed Pareto 
distribution. Pareto distributions also appear to well-represent the age distribution of sediments reworked by some 
numerical models of river meandering (Torres et al., 2017), though Bradley and Tucker (2013) argue that the 
heavy-tailed Lévy distribution better represents results obtained in their simulation of river meandering based on 
the CHILD landscape evolution model because of the diffusive-like nature of channel position over time. Finally, 
Bradley (2017) directly observed heavy-tailed storage time distributions through a decade-long field tracer ex-
periment. Results from these studies, though compelling, remain untested by field studies over longer timescales 
of 102–104 years.

Determining the mathematical form of storage time distributions is an important step toward interpreting and un-
derstanding how storage influences sediment routing. If storage time distributions are exponential, for example, 
analysis of storage processes is greatly simplified. Exponential distributions are scaled by a single parameter that 
can often be readily estimated, while the heavy-tailed distributions have multiple parameters that are difficult to 
quantify and interpret (Bradley & Tucker, 2013). In steady-state systems characterized by an exponential storage 
time distribution, storage time and age distributions are identical (Bolin & Rodhe, 1973), so defining one distri-
bution immediately determines the other. Exponential storage time distributions can also lead to robust analytical 
methods for sediment routing (Malmon et al., 2002), so the implications of sediment storage on sediment delivery 
can be assessed without complex numerical modeling.

Version of record at: https://doi.org/10.1029/2021JF006313



Journal of Geophysical Research: Earth Surface

HUFFMAN ET AL.

10.1029/2021JF006313

3 of 21

Two approaches are available to define complete storage time distributions from field observations. The first 
approach is exemplified by Moody (2017), who derived a decadal time series of storage time distributions from 
comprehensive field surveys. However, due to the labor involved, such comprehensive data are rare. The second 
approach was used by Lancaster and Casebeer (2007) and Lancaster et al. (2010), who dated mass-wasting and 
other deposits exposed in eroding montane riverbanks, thereby providing a direct assessment of the age distribu-
tion of sediments just prior to erosion. Lancaster and Casebeer (2007) and Lancaster et al. (2010) proposed power 
laws to represent their observations. Similarly, Torres et al. (2020) dated particulate organic carbon in fluvial 
deposits and riverine suspended sediments using 14C and similarly found that younger material is preferentially 
remobilized with a Pareto distribution providing the best fit to their data.

These studies reveal important gaps in our understanding of sediment storage times. Field data available to esti-
mate sediment storage times over geologic timescales are limited. While physical and numerical models suggest 
that sediment storage times are heavy-tailed, with younger deposits being preferentially eroded in relation to 
older deposits, few field observations are available to verify this hypothesis. Furthermore, the mathematical form 
of storage time distributions should also vary systematically with geomorphic setting, with the lateral extent of 
valley sedimentation exerting an important control. For example, Repasch et al. (2020) document relatively short 
storage timescales within the meander belt of the Rio Bermejo in the Amazon foreland of Argentina, and much 
longer timescales associated with alluvial fan deposition outside of the river's meander belt. These observations 
suggest that valley confinement (Fryirs et al., 2016; Lewin & Brindle, 1977) may limit the maximum timescale 
of stored sediments. In confined valleys, the age limit of stored sediment could conceivably be scaled by a simple 
ratio of meander belt width to channel migration rate, while in unconfined fan settings, the age limit of stored 
sediment may be more closed tied to avulsion frequency (Repasch et al., 2020).

The purpose of this study is to fill this knowledge gap by documenting the annual to millennial floodplain stor-
age time distribution of a largely undisturbed meandering river system. We achieve this by mapping and dating 
eroding floodplain deposits of the meandering Powder River in southeastern Montana. Our objectives are (a) to 
test the hypothesis that the sediment storage time distribution of meandering rivers is “heavy-tailed,” and (b) to 
assess the role of valley confinement on the age distribution of stored sediment.

2.  Study Area
Powder River is a free-flowing meandering river on the high plains of the western United States. It drains 
34,700 km2 of northeastern Wyoming and eastern Montana, flowing 600 km north-northeast before joining the 
Yellowstone River (Figure 1). This study focuses on an approximate 90 km reach between the U.S. Geological 
Survey (USGS) Moorhead (USGS #06324500) and Broadus (USGS #06324710) stream gaging stations (Fig-
ure  1). Within this study area, we performed detailed geomorphic mapping and other observations centered 
within a shorter, 17 km length of Powder River's valley between Moorhead and Broadus (Figure 1).

Powder River's hydroclimate and geomorphic character are typical of the region. The climate is semi-arid. Pow-
der River is subject to different types of floods: ice-jam floods in early spring, snowmelt flooding in May and 
June, flooding due to convective summer thunderstorms, and occasionally, frontal flooding in September and 
October (Moody, 2019). At the Moorhead gaging stations, the mean-annual flow was 12.5 m3/s between 1930 
and 2010 and the mean annual bankfull discharge was 170 m3/s (Moody, 2019) near the gaging station at Moor-
head. Powder River carries a sediment load consisting of gravel, sand, silt, and clay, with an annual suspended 
load of 2–3 million tons at Moorhead (Moody & Meade, 2008). The low-flow channel width is approximately 
50 m, the slope averages 0.001, and the sinuosity ranges from 1.1-3.6 (Martinson, 1984). Powder River has only 
a few manmade structures (bridges and local pump sites only in use during the irrigation season) allowing for 
essentially unrestricted meandering and channel migration (Gay et al., 1998). Schook et al. (2017) report a 184-
year record of meander migration based on cross-section surveys since 1975, aerial imagery since 1939, and tree 
ring analyses since 1830. Meander migration rates averaged 1.62 m/yr from 1830 to 1939, decreased to 1.52 m/yr 
from 1940 to 1975, and decreased further to 0.81 m/yr from 1975 to 2014, suggesting that a meander migration 
rate of ∼1 m/yr represents a reasonable average migration rate for Powder River during the thousand-year period 
represented by our analysis.

Powder River has stored sediments in its active floodplain and three terraces. The uppermost and oldest terrace, 
the Kaycee Terrace, is typically 10–20 m above the modern riverbed. Leopold and Miller (1954) suggest an age 
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range of 1600–4000 years before present (BP) for the Kaycee Terrace based on 14C dates obtained outside the 
study area in the southern portion of the Powder River Basin within Wyoming. Below the Kaycee lies the Moor-
croft Terrace, whose surface is 3.1–4.2 m above the modern riverbed, and the Lightning Terrace, the lowest and 
youngest of the Powder River terraces, which lies 2.1–3.4 m above the modern riverbed (Moody & Meade, 2008). 
The modern floodplain, the locus of the most active sedimentation along Powder River, is at most 1.76 m above 
the modern riverbed (Moody & Meade, 2008). Alluvial fan deposits are also present throughout the Powder River 
Basin. Alluvial fans typically extend only a short (𝐴𝐴 𝐴 1 km) distance from valley walls, with surfaces generally 
higher in elevation than those of the Kaycee Terrace.

Terraces identified along Powder River are not necessarily isolated from ongoing overbank deposition. At many 
locations along the river, the Lightning and Moorcroft terraces were fully inundated by flood waters in 1923 and 
1978 (Moody & Meade, 2008), and likely also in 1890 (Metzger et al., 2020). During the 1978 flood, sediment 
deposited on the Lightning and Moorcroft terraces between Moorhead and Broadus represented 93% and 16% of 
the total suspended sediment transported during the flood at the Moorcroft stream gage (Moody & Meade, 2008; 
note that the suspended sediment brought into the reach at Moorhead was supplemented by erosion between 
Moorhead and Broadus, so the amount deposited can exceed the amount supplied by suspended sediment trans-
port at Moorhead). No sediment was deposited on the Kaycee Terrace during the 1978 flood. Thus, on centennial 
timescales, overbank deposition remains an active process on the Lightning and Moorcroft terraces.

A wealth of geomorphic studies and supporting data provide an unusually extensive foundation for ongoing geo-
morphic research along Powder River. In 1975, Robert Meade established a series of cross-sections along Powder 
River that were surveyed at annual intervals in many of the ensuing years (Moody & Meade, 1990, 2018, 2020; 
Moody et  al.,  2002). Cross-sections are labeled PR followed by the number of kilometers downstream from 

Figure 1.  Powder River Basin traverses parts of northeastern Wyoming and southeastern Montana. (a) Detailed view of the reach between the Moorhead and Broadus 
USGS gaging stations. Detailed geomorphic maps were made within the region shown in gray. The labels PR followed by a number identify some of the 22 cross-
sections. PR stands for Powder River and the number is the distance in kilometers downstream from the mouth of Crazy Woman Creek in Wyoming. Figure adapted 
from Moody and Meade (2014).
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Crazy Woman Creek near Arvada, Wyoming (Moody & Meade, 1990, 2018; Moody et al., 2002). Eight of these 
cross-sections are located within the present study reach (Figure 1). The cross-sections and related data have sup-
ported studies along Powder River of floodplain development (Metzger et al., 2020; Moody & Troutman, 2000; 
Moody et  al.,  1999; Pizzuto et  al.,  2008), meander cutoffs (Gay et  al.,  1998), sedimentation and erosion by 
varying discharges (Moody, 2019; Moody & Meade, 2008; Pizzuto, 1994; Schook et al., 2017), and point bar 
development (Ghinassi et al., 2018; Moody & Meade, 2014).

This study also benefited from two additional sources of data. First, tree-ring data from 189 cottonwoods along 13 
transects oriented along the axes of migrating meander bends were obtained by Schook et al. (2017). These data 
define the ages of modern floodplain deposits subject to erosion by Powder River. Second, in the Fall of 2016, 
a research-grade Light Detection and Ranging (LiDAR) survey of the study area was completed by the National 
Center for Airborne Laser Mapping (NCALM).

3.  Methods
3.1.  Overview

Given that the storage time distribution is equivalent to the age distribution of sediments leaving a storage res-
ervoir (Bolin & Rodhe, 1973), the storage time distribution can be defined by dating sediments eroded during 
a specified time period, an approach initially proposed by Lancaster and Casebeer (2007) and later utilized by 
Lancaster et al. (2010). This method requires identifying a time period over which erosion is to be measured, 
quantifying the extent of erosion, and obtaining the age distribution of the eroded sediment using appropriate 
age-dating methods.

Powder River erodes sediment with ages ranging from less than a year to thousands of years, requiring multiple 
dating methods. Fortunately, at the beginning of this study, samples from Powder River's terraces had been dated 
using optically stimulated luminescence (OSL), and samples of the modern floodplain deposits were dated by 
Schook et al.  (2017) using dendrochronology. The sampling strategy for these two dating programs was very 
different, and each requires a different approach for estimating the volume of eroded sediment. The results ob-
tained using these disparate methods are integrated by analyzing geomorphic maps. The approach is summarized 
graphically in Figure 2.

To document locations and volumes of erosion, we selected the period from 1998 to 2013. This period was ad-
vantageous because cross channel topographic surveys were available, and because high-resolution aerial images 
were also available for these dates (additional details are provided in Schook et al. [2017]). The scale of the 1998 
and 2013 aerial imagery is 1:40,000 and the resolution is approximately 1 m (Schook et al., 2017). Furthermore, 
channel positions for these years had already been digitized previously from aerial imagery (Schook et al., 2017), 
and these dates are also close in time to the 2016 aerial LiDAR survey, which provided detailed topographic data 
needed to identify different landforms along the river.

3.2.  Measuring Meander Belt Width and Meander Wavelength

The width of the meadner belt can be related to valley confinement and also to the spatial and temporal scales of 
floodplain reworking. The meander belt is a region tangential to the outsides of meander bends (Chitale, 1970; 
Howett, 2017; Jefferson, 1902); this region was defined by drawing lines tangent to meanders in ArcGIS(v10.4.1). 
Meander belt width was estimated by drawing lines normal to the valley axis at 1 km intervals and averaging 
their lengths.

To assess confinement of Powder River's meanders by its valley margins, we also measured Powder River's me-
ander wavelength (Camporeale et al., 2005). The average meander wavelength was estimated by first measuring 
the length of valley along its axis, and then dividing by two times the number of bends in our study reach (because 
a single meander wavelength includes two bends).

3.3.  Geomorphic Mapping

Geomorphic mapping provides a foundation for integrating the results obtained during this study. Two maps were 
created, one documenting landforms of the valley of Powder River (Step 1 of Figure 2), and the other delimiting 
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sediments deposited by discrete episodes of lateral-accretion, which we term “lateral-accretion elements” (Step 
2 of Figure 2). To identify different landforms, we relied on definitions and descriptions of Leopold and Mill-
er (1954) and especially Moody and Meade (2008), who describe characteristic elevations of the modern flood-
plain and the Lightning, Moorcroft, and Kaycee Terraces. Terraces and alluvial fans were identified and defined 
using a variety of data sources, including USDA soil mapping, vegetation patterns observed on aerial imagery, 
and most importantly, aerial LiDAR (including first-return and ground-return data sets). The same data sources 
were also used to define the lateral accretion elements, which represent portions of the floodplain of approxi-
mately constant ages. The boundaries of lateral accretion elements are defined by topographic features such as 
floodplain scrolls, scarps bounding regions of differing elevations, vegetation patterns, and other discontinuities. 
Similar features have also been mapped by Durkin et al. (2018), who used them to define relative ages of pre-
served floodplain deposits.

Figure 2.  Flowchart outlining the individual steps followed to produce a complete storage time distribution for Powder River. 
Methods for assessing uncertainty are not included here but are discussed in the text.
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3.4.  Mapping Spatial Patterns of Erosion, 1998–2013

The active channel positions of Powder River in 1998 and 2013 were used to map spatial patterns of erosion. 
Schook et al. (2017) visually identified the active channel positions using aerial imagery (Step 3 of Figure 2), and 
these positions were used to determine the area of material eroded (Step 4 of Figure 2). The 1998 channel position 
was superimposed on the 2013 channel in ArcGIS. The portions of the 2013 channel exposed represent the area 
eroded between 1998 and 2013 (Figure 3). The mapped lateral-accretion elements were extended to divide the 
areas of erosion into smaller erosion polygons, each representing eroded sediment of a nearly constant age (Step 
5 of Figure 2; Figure 3).

The thickness of each erosion polygon is the difference between the elevations of its average upper surface and the 
average water surface (Step 6 of Figure 2). The elevation of the upper surface of an erosion polygon is defined as 
the average elevation of the adjacent bank as estimated from the digital elevation model (DEM) created from the 
2016 aerial LiDAR data. Elevations were averaged within a 5-m (1/10 the channel width) wide band the length of 
the lateral-accretion element located five m away from the bank edge (Figure 3). The five-m separation between 
the active channel and the sampling area was chosen to avoid very steep and irregular topography near the bank 
edge. This distance was chosen based on subjective field observations and assessments of the LiDAR data and 
aerial imagery. In the absence of detailed time series of bathymetric data, the lower surface of an erosion polygon 
is estimated by averaging the elevations of the water surface defined by the 2016 DEM in the area of each erosion 
polygon (Figure 3). The volume of sediment eroded between 1998 and 2013 is obtained by multiplying the thick-
ness of each erosion polygon by its surface area (Step 7 of Figure 2).

Each erosion polygon was assigned to either the active floodplain or to one of the three terraces based on the 
geomorphic mapping (Step 8 of Figure 2). The total volume of material eroded from each of these landforms was 
then computed (Step 9 of Figure 2), thus determining the contribution of each landform to the total erosion from 
1998 to 2013.

3.5.  Storage Time Distribution of the Modern Floodplain

The lowest surface within Powder River's valley is the modern floodplain. According to Moody and Meade (2008), 
the surface of the modern floodplain is “1.0–1.7 m above the riverbed, vegetated with cottonwoods (Populus 
deltoides, 0.01–0.1 m diameter) and with willows (Salix exigua, 0.01 m in diameter) interspersed with native 
and non-native grasses. Sedge grass (Carex sp.) forms a distinct vegetation band along the river edge near the 
break in slope between the bed and the bank and gradually disappears as the floodplain merges into a point bar.” 

Figure 3.  (a) Example of a section of the study reach with the boundaries of lateral-accretion elements indicated by solid white lines. (b) Boundaries of lateral-
accretion elements are extended (white dashed line) into areas of erosion between 1998 and 2013 (red) to define erosion polygons of nearly constant age. A 5-m wide 
area (outlined with black stripes), set back 5-m from the active channel, defines the region where elevations from LiDAR were averaged to estimate the elevation of the 
upper surface of the eroded sediment. The lower surface of the eroded sediment is represented by the water surface, whose elevation was averaged from the area of each 
erosion polygon.
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The modern floodplain is composed of material deposited within roughly the 
last 150 years making it suitable for cottonwood dendrochronology (Schook 
et al., 2017).

Plains cottonwood (Populus deltoides ssp. monilifera) trees typically germi-
nate on newly deposited sediment on point bars on the insides of migrating 
meander bends along Powder River. The age of the cottonwood is thus a 
proxy for the age of the sediment on which it germinated (Everitt,  1968). 
As new floodplain sediments are deposited, the river migrates laterally, with 
younger cottonwood trees germinating on the newer sediment. Thus, tree 
ages document the progressive migration of the channel, providing a means 
of dating sediments as a function of distance along the axis of meander mi-
gration. The relation between age and the distance along the axes of Powder 
River's meander bends was determined by Schook et al. (2017). A smoothing 
spline was fit to these data, providing a means of estimating the ages of sed-
iment within the interior of migrating meander bends along Powder River 
(Step 10 of Figure 2; Figure 4a) where dated trees were unavailable.

The axes of all meander bends within the study reach were drawn visually. 
After meander axes were drawn, ages were then estimated from the smooth-
ing spline. By combining age estimates along meander axes with the mapped 
lateral-accretion elements, ages across most of the active floodplain could be 
defined (Steps 11 and 12 of Figure 2). To account for uncertainty in dating 
the active floodplain, data from individual erosion polygons were pooled into 
four age categories, each separated by 41.5 years (Step 13 of Figure 2). The 
size of these age categories (41.5 years) is the age of the oldest erosion pol-
ygon from the modern floodplain divided by four. Methods for quantifying 
uncertainty in ages and erosion volumes associated with each of these four 
age categories are discussed further below. This dating method is only valid if 
the direction of past meander migration can be inferred and where the history 
of migration has been unidirectional through time. In most meander bends, a 
distance is reached (as one progresses farther away from the active channel) 
where the geometry of the lateral-accretion deposits clearly records abrupt 
changes in the direction of meander migration, and at these transitions, the 
age of floodplain sediments is no longer a simple function of the distance 
along the meander axis. Fortunately, dates were obtained successfully for 
nearly all of the erosion polygons.

3.6.  OSL Sample Collection and Dating

Samples were collected from nearly vertical banks over the 4-year period 
2013–2016 at nine cross sections and at some additional sites. These were 

collected for OSL dating following standard sampling tube methods described by Nelson et al. (2015). We ob-
tained OSL ages using standard methods designed for fluvial environments (Rittenour,  2008, and references 
therein). We extracted quartz from the samples following Nelson et al. (2015) and Gray et al. (2015) and adopted 
a Single Aliquot Regeneration protocol following Murray and Wintle  (2000, 2003) with a preheat of 260°C. 
Aliquots were accepted with a rejection criteria of 10% for recycling ratio, 5% for recuperation, and 50% for 
equivalent dose and test dose error respectively. We performed dose recovery experiments and found our pro-
tocol can recover a given dose within 10%. We used these methods due to frequent problems with low quartz 
sensitivity and high recuperation rates that often led to low aliquot acceptance rates. Elemental concentrations 
were measured with in-house High Purity Germanium Gamma (HPGe) Spectrometry and Inductively Coupled 
Plasma Mass Spectrometry if the uncertainty on the HPGe data was larger than 50%. Dose rates were computed 
using the Dose Rate and Age Calculator (Durcan et al., 2015). To calculate ages, we applied the unlogged boot-
strapped Minimum Age Model (Cunningham & Wallinga, 2012; Galbraith & Roberts, 2012) using functions in 

Figure 4.  Tree ages as a function of distance along the axes of meanders 
bends, and associated error estimates in dating eroded sediment. (a) Spline 
fit to cottonwood tree ages of Schook et al. (2017), with five age categories 
of eroded floodplain sediment indicated by color coding. (b) Fraction of 
erosion polygons within each age category. Age categories have a constant 
interval of 41.5 years. Distances associated with age category boundaries 
are obtained from the spline curve. (c) Fraction of trees dated by Schook 
et al. (2017) outside of the age category assigned by the spline curve. This is 
used to represent the error associated with assigning eroded sediment to an age 
category based on the spline curve. (d) Number of erosion polygons in each 
age category.
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the Luminescence package for the programming language R (Kreutzer et al., 2020) and using an assumed value 
of 0.11 for σb based on findings from Arnold and Roberts (2009) and Chamberlain et al. (2018).

3.7.  Storage Time Distribution of Terrace Deposits

Age and erosion volume data for the Lightning and Moorcroft terraces were used to compute a storage time dis-
tribution for each landform. Volumes of erosion of the Lightning and Moorcroft terraces were calculated by deter-
mining the eroded area between cross-sections surveyed in 1998 and 2013. Eight cross-sections (Figure 1a) with 
available OSL ages were included. Areas defined by the differences between surveys were treated as volumes by 
multiplying by a nominal width of 1 m in the downstream direction (Step 14 of Figure 2). The fraction contributed 
by the erosion of each cross-section to the total eroded volume of each terrace was computed, and an OSL age was 
assigned to each fraction (Steps 15 and 16 of Figure 2). If more than one OSL age was available from a particular 
eroding cutbank, then the ages were assigned to eroded sediments based on the elevation of each sample.

Cross-sections along Powder River do not adequately document erosion of the Kaycee terrace, because this 
landform is infrequently exposed along the river. As a result, samples from the Kaycee Terrace for OSL dating 
were not collected at cross-sections (Step 17 of Figure 2). Rather than distributing the ages based on direct ob-
servations of erosion (the procedure followed for all the younger landforms), Kaycee terrace ages were initially 
distributed based on rank (Step 18 of Figure 2) using the Weibull formula m/(n + 1) (Weibull, 1939), where m 
is the rank of a particular age (a rank of one is assigned to the youngest sample) and n is the number of samples. 
This approach assumes that the OSL dates of the Kaycee Terrace provide a complete and representative sample of 
the sediments eroded from this landform, which is unlikely to be true, and therefore we only use the median age 
of the Kaycee Terrace when we create the combined storage time distribution for all sediments eroded by Powder 
River from 1998 to 2013 (described below).

3.8.  Combined Storage Time Distribution of All Eroded Sediments

The analyses described in Section 3.7 result in three separate data sets representing storage time distributions for 
modern floodplain, Lightning terrace, and Moorcroft terrace. As noted above, sediment eroded from the Kaycee 
terrace is represented by the median age of the available data (and its corresponding uncertainty). To create a 
single, combined storage time distribution for Powder River, the separate distributions (each covering a distinct 
and entirely separate age range) were scaled by the percentage each landform contributed to the total erosion from 
1998 to 2013 (Step 19 of Figure 2) based on the areal landform mapping (Step 1 of Figure 2) and the analysis 
of spatial patterns of erosion related to lateral migration of Powder River (Steps 4–8 of Figure 2). The scaling 
process of combining the storage time distributions is illustrated graphically in the Results section.

3.9.  Fitting Storage Time Distribution Functions

Exponential, Weibull, tempered Pareto, and the tempered first passage time distribution functions were each fit to 
the complete storage time distribution data using the curve fitting application within MATLAB (Version 2018a, 
Trust-Region algorithm; Table 1). The exponential distribution is a single parameter function that has been used 
to model well-mixed sediment storage reservoirs; it indicates that sediment within each age category has an equal 
chance of being eroded (Bolin & Rodhe, 1973; Everitt, 1968; Konrad, 2012). The other three distributions are in-
cluded to assess the possibility that storage time distributions are heavy-tailed, with erosion probabilities weight-
ed toward younger deposits in preference to older deposits. The Weibull distribution is a two-parameter function 
initially used to describe grain-size distributions (Rosin & Rammler, 1933) and subsequently applied in analyses 
of survival and failure rates (Lai et al., 2006). Moody (2017) successfully fit Weibull distributions to time-varying 
storage time distributions associated with a sediment pulse derived from hillslope erosion following a wildfire.

The tempered Pareto distribution has been shown to fit storage time distribution data from both modeling studies 
(Torres et al., 2017) and field data (Torres et al., 2020). Bradley and Tucker (2013) discuss the tempered first 
passage time distribution in a numerical modeling study of deposition and erosion by a meandering river system. 
The Pareto and first passage time distributions are “tempered” when some process such as a physical boundary 
or other limit constrains the maximum possible age of stored sediment. For both distributions, “tempering” is 
achieved by adding an exponential term scaled by the maximum possible age (Table 1).
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In addition to the statistics provided directly by the MATLAB curve-fitting application (e.g., adjusted coefficient 
of determination and root mean square error), we also sought an additional means of assessing the goodness-of-
fit of these functions to our data. Remarkably, it turns out that the three heavy-tailed distributions are strongly 
tempered when fit to our data, and are all essentially equivalent to the exponential distribution (note that the ”tem-
pering” maximum age scale is determined by the curve-fitting routines rather than being imposed from the data 
before curve fitting). This interpretation (fully documented below in Section 4) allows us to limit our assessment 
of goodness-of-fit to the exponential distribution.

We used the Anderson-Darling test (Feigelson & Babu, 2021; Stephens, 1986) implemented in the MATLAB 
function adtest, to assess the goodness-of-fit of the exponential distribution to our observed storage time distribu-
tion. We used the Monte-Carlo procedures in adtest, with a tolerance of 0.01 to compute p-values.

3.10.  Quantifying Uncertainty

The storage time distribution is based on estimates of eroded sediment volumes and their ages. We assessed 
uncertainty in as many of our measurements as possible, and propagated error estimates through all our compu-
tations (Topping, 1972).

3.10.1.  Uncertainty in Locating Boundaries From Aerial Imagery

Polygons of lateral erosion were identified from the 1998 and 2013 mapping of river channel boundaries. These 
polygons are used to assign eroded sediment to different landforms (Step 8 of Figure 2), and also to assign eroded 
sediment to discrete time periods in the history of the active floodplain using the mapping of lateral-accretion 
elements (Step 5 of Figure 2). To evaluate the uncertainty in these estimates the locations of static features along 
the river were mapped on the aerial imagery at different times. For example, surveyed cross-sections demonstrate 
that the left bank (facing downstream) of Powder River at the location of the USGS Moorhead stream gaging sta-
tion has been stable for decades (Moody & Meade, 2018), so this site was repeatedly mapped on aerial imagery. 
Uncertainty in locating this boundary at different times on aerial imagery averaged about ±5 m, so this value was 
assumed to represent uncertainty associated with any estimate of boundary position as mapped throughout the 
study area on the 1998 and 2013 aerial imagery.

3.10.2.  Uncertainty Estimates for the Thickness of Eroded Polygons

The thickness of each erosion polygon is defined as the difference between upper and lower surfaces. The average 
elevations of both surfaces were estimated by averaging data from the DEM constructed from the NCALM Li-
DAR data. To evaluate the uncertainty associated with each estimate of average elevation, the standard deviation 
was computed. Standard deviations for the upper surface of the eroded polygons ranged from 0.03 to 2.01 m, 
while standard deviations for the lower surface ranged from zero to 0.76 m.

3.10.3.  Uncertainty of Binned Modern Floodplain Storage Ages

The age of each erosion polygon within the modern floodplain was determined by the spline function fit to the 
ages of cottonwood trees and their distances along meander axes (Figure 4). The spline function produced a 

Name Equation λ (years) (95% C.I.) k θ
Adjusted 

r2 RMSE

Anderson-
Darling p 

value

Exponential 1−e−x/λ 824.6 (612.2, 1037) NA NA 0.78 0.12 0.003

Weibull 1−𝐴𝐴 e−(𝑥𝑥∕𝜆𝜆)
𝑘𝑘 785.1 (550, 1020) 0.7356 (0.434, 1.037) NA 0.83 0.11 NA

Tempered Pareto 1−[(x + θ)/ 𝐴𝐴 𝐴𝐴]−𝑘𝑘 (e−(x/λ)) 1274 (229.9, 2319) 0.03068 (−0.1534, 0.2147) 0.1118 (−4.104, 4.308) 0.87 0.09 NA

Tempered first passage 1−erfc (θ/2𝐴𝐴

√

𝑥𝑥 ) (e−(x/λ)) 895 (401.3, 1389) NA 104.2 (−506.7, 714.8) 0.76 0.13 NA

Note. Columns for λ and k provide best-fit values from the MATLAB curve-fitting routines, with 95% confidence intervals (C.I.) in parentheses. The column “Number 
within error bounds” presents the number of points for which the best-fit equation passes within the uncertainty envelope of the data. The p-value is obtained from the 
Anderson-Darling test implemented by the MATLAB routine adtest.

Table 1 
Cumulative Distribution Functions Fit to Powder River Storage Time Distribution Data
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standard error of ±18.54 years; this value was used to represent the age un-
certainty of all polygons on the active floodplain. The average age uncertain-
ty for each age bin is a result of summing the age uncertainties in quadrature. 
Age uncertainty associated with the four age bins ranged from 24 to 82 years.

The binning process creates an additional source of uncertainty related to 
the possibility that erosion polygons could be assigned to the wrong age bin. 
Several steps were followed to quantify this uncertainty. First, the distance 
along the x-axis was divided into five segments defined by the intersections 
between the spline function and the boundaries of the age categories (Fig-
ure  4). Within each of the five distance segments, the number of trees in 
each of the four age categories was counted. The uncertainty associated with 
assigning erosion polygons to a given age category (as determined by the 
spline curve) was then defined as the fraction of the number of trees in all the 
other (unassigned) categories combined. For example, the distance increment 
from 112 to 349 m is assigned to the age category 41.5–83 years (Figure 4). 

Within this distance increment, there are 52 trees within this age range and 17 trees with ages outside this age 
range, 10 younger than 41.5 years and 7 older than 83 years. This leads to an uncertainty estimate of 17/69 or 
24.6% for assigning sediment to this age category within this distance increment (Figure 4). Uncertainties range 
from 21% to 44% (Figure 4). These uncertainty estimates were added to the age uncertainty discussed above and 
then propagated through all computations.

3.10.4.  Uncertainty Estimates for Terrace Volumes and Ages

In computing the storage time distribution of the eroded terrace deposits, uncertainty estimates are needed for 
ages and volumes of erosion. Age uncertainties are directly provided by the uncertainties associated with OSL 
age dating (Table 2). Uncertainties associated with mapping erosion volumes of the terraces from aerial imagery 
have already been discussed. These age and volume uncertainties were propagated through all computations.

In Step 14 of Figure 2, the age distribution of erosion volumes from the Lightning and Moorcroft Terraces was as-
sessed from eight surveyed cross-sections (in addition to the assessment of the total volume of erosion from each 
terrace using historical aerial imagery, i.e., Step 9 of Figure 2). The survey data themselves are very precise, with 
elevation uncertainties of 0.01 cm and horizontal uncertainty of 0.1 m (Moody & Meade, 2018), and therefore 
the surveyed erosion volumes appear to have insignificant uncertainty compared to other sources of uncertainty, 
so uncertainty associated with surveying has been neglected.

Additional uncertainty can be associated with the use of a limited number of cross-sections to determine the age 
distribution of terrace sediments eroded between 1998 and 2013. Ideally, age data from each terrace would be 
distributed randomly throughout the eroded sediment. However, a random sampling protocol was impractical giv-
en the resources available to us, and as a result, errors associated with non-random sampling of terrace deposits 
cannot be rigorously assessed.

3.10.5.  Uncertainty Associated With Mapping Terraces

Geomorphic mapping (Step 1 of Figure 2) provides the basis for allocating eroded volumes to each of the four 
alluvial landforms of Powder River (Step 19 of Figure 2). To assess uncertainty created by errors in geomorphic 
mapping, we compared maps created during this study with similar maps of Moody and Meade  (2008, their 
Figure 2) showing the locations of the modern floodplain and the Lightning, Moorcroft, and Kaycee Terraces 
within a subset of our study area. We overlaid the erosion polygons for the area covered by both sets of maps 
and determined the total areas of erosion associated with each landform based on each set of geomorphic maps, 
resulting in two entirely independent estimates of the fraction of the total erosion associated with each landform. 
We computed the absolute value of the differences between estimates of the fractional contribution to the total 
erosion for each landform obtained from the two different geomorphic maps. These differences represent the 
uncertainty associated with geomorphic mapping for estimating the erosion contributed by each landform to the 
total erosion between 1998 and 2013. Uncertainties associated with geomorphic mapping were added to other 
sources of error and propagated through all computations.

Landform
Fraction of area within 

meander belt
Fraction of area within 

3.4 × meander wavelength

Modern floodplain 0.91 0.99

Lightning Terrace 0.75 1.00

Moorcroft Terrace 0.30 0.95

Kaycee Terrace 0.09 0.93

Alluvial fan 0.04 0.81

Table 2 
Fractions of Each Landform's Total Valley Bottom Area That Is Within 
Powder River's Meander Belt and Within the Region 3.4 Times the Meander 
Wavelength as Defined by Camporeale et al. (2005) for Unconfined 
Meanders
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Our method for assessing uncertainty in geomorphic mapping is particularly rigorous because the two maps were 
created using different data covering different time periods. In this study, geomorphic maps were based on high 
resolution aerial imagery, aerial LiDAR, soil maps, and other remotely sensed data available through 2017, while 
the maps created by Moody and Meade  (2008) are based on surveyed cross-sections, field observations, and 
aerial imagery largely representing conditions immediately after 1978 flood. Because of differences in resolution 
and time period, the comparison of our mapping with that of Moody and Meade (2008) could overestimate un-
certainties associated with our landform mapping.

4.  Results
4.1.  Meander Morphology and Geomorphic Mapping

A total of 47 bends were counted in the study reach over a downvalley distance of 17 km. Thus, the meander 
wavelength of Powder River is 720 m. The meander belt of Powder River averages 900 m wide, with a standard 
deviation of 150 m (Figure 5a). Camporeale et al. (2005) found that the ratio of meander belt width to meander 
wavelength can indicate whether a river channel is confined or unconfined, with values 𝐴𝐴 𝐴 3.4 characteristic of 
confined rivers, and values 𝐴𝐴 𝐴 3.4 unconfined. Here the ratio of meander belt width to meander wavelength is 1.25; 
thus, the study reach of Powder River represents confined meandering.

The modern floodplain is generally adjacent to the active channel except where terraces project out from the 
valley margin (Figure 5a). The Lightning, Moorcroft, and Kaycee terraces tend to be progressively farther from 
the active channel, and typically only meet the active channel on the outsides of meander bends (Moody & 
Meade, 2008). The Kaycee terrace and alluvial fan deposits are primarily preserved along the valley margins. The 
modern floodplain and Lightning and Moorcroft terraces are generally contained within Powder River's meander 
belt, while the Kaycee terrace and alluvial fans generally lie outside the meander belt (Table 2). This suggests 
that the modern floodplain, Lightning, and Moorcroft terraces are all deposits that are “frequently” reworked 
by meander migration of Powder River. If the meander belt is extended to 3.4 times the meander wavelength, 
as would be expected for unconfined meandering (Camporeale et al., 2005), then this unconfined meander belt 
would include nearly all mapped landforms (Table 2), encompassing the Kaycee terrace, alluvial fans, as well as 
portions of the valley margins.

The mapped lateral-accretion elements average approximately 40-m wide, are typically lenticular, and match the 
curvature of the channel at the time of deposition (Figure 5b). As the distance from the channel increases the 
shapes become more irregular. Shifting channel migration patterns through time are revealed by cross-cutting 
relations between boundaries of lateral-accretion elements (Figures 3 and 5b).

The majority of erosion from 1998 to 2013 was on the outsides of meander bends. Erosion polygons typically 
form thin slices whose widths are a fraction of the channel width (red areas in Figure 5c).

Between 1998 and 2013, nearly 7.0 × 105 m3 of sediment was eroded from the approximately 17 km study reach. 
The modern floodplain contributed more sediment (39% ± 9%) than any of the terraces individually, but the three 
terraces in total contributed 56% more sediment (61% ± 9%) than the modern floodplain. Contributions from 
individual terraces decreased with increasing age: erosion from the Lightning, Moorcroft, and Kaycee terraces 
represented 28% ± 7%, 20% ± 5%, and 13% ± 3%, respectively. Alluvial fan deposits provided only 1.5% of the 
material eroded over the 15-year period. Due to the minimal input of material eroded from alluvial fans and lack 
of age constraints for these deposits, input from alluvial fans was not included in the assessment of the storage 
time distribution.

4.2.  Storage Time Distribution

The storage time distribution includes dates from four landforms: the modern floodplain and the Lightning, 
Moorcroft, and Kaycee terraces. Ages of erosion polygons for the modern floodplain range from 24 to 144 years 
(Table 3). The 186 erosion polygons contained within the study reach represent a total of 1.47 × 105 m3 of eroded 
sediment or approximately 55% of the sediment eroded from the entire modern floodplain. Age uncertainties 
ranged from ±24 years to ±82 years, while volume uncertainties are between 2% and 12%. Age uncertainties 
are primarily associated with the use of the spline function to place erosion polygons into the appropriate age 
category. The Lightning terrace ages range from 400 to 950 years with 2 sigma uncertainties ranging from ±70 
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to ±190 years (Figure 6a). The Moorcroft terrace ages range from 1130 to 1897 years with 2 sigma uncertainties 
ranging from ±96 to ±156 years. Ages for the Kaycee terrace range from 1610 to 6100 years with 2 sigma uncer-
tainties ranging from ±330 to ±1370 years. The median age of the Kaycee Terrace is 5000 ± 680 years.

When the four distributions of Figure 6a are scaled according to the erosion from each landform and combined, 
a single storage time distribution is obtained for the entire study area that extends from the present to 5,000 years 
ago (Figure 6b). The mean of the storage time distribution (the residence time) is 928 ± 167 years, while the 
median is 774 ± 111 years. About 70% of the eroded sediment is younger than 1000 years. The combined distri-
bution of Figure 6a shows a discontinuity as an abrupt horizontal offset between the modern floodplain and the 
Lightning Terrace ages of approximately 250 years (Table 3; this feature of our data is addressed in Section 5).

Figure 5.  Approximately 17 km study reach of Powder River with mapped landforms and erosion polygons displayed over 
the LiDAR hillshade. The channel position in 2016 is shown in light blue. (a) Modern floodplain, fluvial terraces, alluvial 
fans, meander belt, and region that would be occupied by unconfined meandering (3.4 × meander wavelength); (b) Lateral-
accretion elements; (c) Erosion polygons (shown in red) define the extent of erosion between 1998 and 2013. The number of 
meander bends (individual bends are numbered in white) and the length of the valley axis determine the meander wavelength.
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Location Landform
Number of 

measurements
Age 

(years)

Age uncertainty 
(years) (2σ—except 

Kaycee)
Landform 

Cum. Fraction
Volume 

(m3)
Fraction of 

total volume
Cum. Fraction—

All landforms

Cum. Fraction 
uncertainty 

(1σ)

30-km reach Modern floodplain 61 24 24 0.19 51,330 0.074 0.074 0.02

30-km reach Modern floodplain 77 63 34 0.58 105,181 0.153 0.227 0.07

30-km reach Modern floodplain 35 98 58 0.95 99,397 0.144 0.371 0.12

30-km reach Modern floodplain 13 144 82 1.00 12,962 0.019 0.39 0.12

PR147 Lightning 1 400 70 0.03 6,714 0.01 0.400 0.12

PR151 Lightning 1 560 90 0.04 856 0.001 0.401 0.12

PR120 Lightning 2 625 85 0.04 552 0.001 0.402 0.12

PR167 Lightning 2 750 88.5 0.21 32,334 0.047 0.449 0.12

PR141 A Lightning 2 845 82 0.93 140,368 0.204 0.652 0.14

PR136 Lightning 1 950 190 1.00 14,227 0.021 0.673 0.14

PR163 Moorcroft 2 1,130 136 0.37 50,282 0.073 0.746 0.07

PR163 Moorcroft 2 1,230 96 0.75 50,282 0.073 0.819 0.08

PR180 Moorcroft 3 1,897 156 1.00 34,045 0.049 0.868 0.08

Various Kaycee 5 5,000a 680b 1.00 91,000 0.132 1.000 0.06
aMedian of 5 OSL age dates. bError of median Kaycee OSL value.

Table 3 
Summary of Sediment Age Estimates and Erosion Volumes

Figure 6.  Storage time distributions. (a) Cumulative storage time distributions for the modern floodplain and the Lightning, Moorcroft, and Kaycee terraces. Vertical 
error bars reflect uncertainty in mapping erosion polygons only. (b) Cumulative storage time distribution for all landforms combined, created by weighting each 
individual cumulative distribution by the fraction each landform contributes to the total erosion from 1998 to 2013 (indicated as cumulative fractions by the vertical 
bar on the right). Vertical dimensions of boxes surrounding each point include uncertainty in geomorphic mapping. The age of the Kaycee terrace is represented by the 
median age of dated samples from the Kaycee terrace (Table 2).
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4.3.  Storage Time Distribution Functions

The four mathematical functions fit to the observed storage time distribution appear to be almost identical (Fig-
ure 7). Coefficients of determination (r2) are generally high, ranging from 0.76 for the tempered first passage 
time distribution to 0.87 for the tempered Pareto distribution (Table 1). Root-mean-square errors range from 0.09 
(tempered Pareto distribution) to 0.13 (tempered first passage time distribution). The Anderson-Darling good-
ness-of-fit statistic for the exponential distribution of 0.003 is significant (Table 1).

The similarity between all four fitted storage time distributions functions suggest that the data are exponentially 
distributed, and that the heavy-tails of the Weibull, tempered Pareto, and tempered first passage time distribution 
are poorly defined. This can be readily demonstrated by examining fitted parameter ranges for the non-exponential 
terms in these functions. For the Weibull distribution, the 95% confidence interval for the fitted value of the expo-
nent k includes 1; for this value of k, the Weibull distribution reduces precisely to the exponential distribution. For 
the tempered Pareto distribution, the 95% confidence interval for k includes the value of 0, which eliminates the 
power term, and the tempered Pareto distribution also becomes equivalent to an exponential distribution. Results 
for the tempered first passage time are somewhat more complex, but lead to a similar conclusion. For small values 
of x, the argument of the error function in the tempered first passage time distribution is large, leading a value of 
1 for the error function, and the tempered first passage time distribution becomes an exponential distribution. For 
large values of x, the argument of the error function is small, and the error function becomes important, but now 
the exponential term is close to 0, and the resulting value of the function is close to 1, as would be given by the 
exponential distribution. Thus, all the functions are essentially exponential. Furthermore, the exponential scaling 
factor λ values are very similar for all the fitted functions, ranging from 785 to 1274 years. Statistically, then, all 
of these fitted equations are exponential, with similar exponential scaling factors.

5.  Discussion
The approach we have described determines the complete distribution of sediment storage times for Powder 
River. Our method quantifies erosion volumetrically over a given time period, as well as the depositional age of 
the eroded sediment. We believe that we have described the only field method available for estimating a complete 
storage time distribution for alluvial rivers.

Figure 7.  Observed cumulative storage time distribution compared to four mathematical functions.
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The results confirm previous research (Bradley & Tucker, 2013; Meade, 2007; Pizzuto, 2020) suggesting that 
sediments deposited on floodplains may remain in storage for centuries to millennia (Figure 6). Sediments stored 
on the modern floodplain of the contemporary Powder River were stored for less than 166 years and comprise 
39% of the eroded sediment. The remaining 61% of eroded sediments had been stored in terraces for up to 
5,000 years.

5.1.  Confinement of Powder River's Meander Belt by the Kaycee Terrace and Alluvial Fans

The meander belt represents the area of Powder River's valley actively reworked by meander migration. On Pow-
der River, the meander belt width is 1.25 times the meander wavelength, considerably narrower than the value of 
3.4 meander wavelengths cited by Camporeale et al. (2005) as characteristic of unconfined meandering rivers. 
This suggests that meandering of Powder River is laterally confined.

Landforms primarily confined within Powder River's meander belt include the modern floodplain, Lightning, 
and Moorcroft terraces, while the Kaycee terrace and alluvial fans are mostly located outside the meander belt 
(Table  2) and represent confining elements of the meander belt along Powder River's valley margin (Fryirs 
et al., 2016). The river's modern floodplain, Lightning, and Moorcroft terraces all increase their elevation through 
vertical accretion on centennial timescales (Moody & Meade, 2008), while the Kaycee is not subject to episodic 
flooding and aggradation. These observations all suggest that within the timescale of formation of the meander 
belt, the modern floodplain, Lightning, and Moorcroft terraces represent active alluvial sediment reservoirs that 
continue to exchange sediment with Powder River. Whereas, sediments stored in most of the Kaycee Terrace 
segments (Figure 5a) represent alluvium and colluvium stored during an earlier stage in Powder River's evolution.

5.2.  Scaling and Sediment Budget Estimates of Mean Storage Timescales

Results of Figure 7 and the parameters fitted to the four storage time distributions all indicate that the storage 
time distribution is exponential, representing a sediment storage reservoir defined by the river's meander belt that 
is “well-mixed,” such that all deposits are equally likely to be remobilized by Powder River's lateral migration. 
Furthermore, best-fit and 95% confidence intervals for the exponential “timescale” parameter λ, with values of 
785–1274 years and a range of 230–2300 years (Table 1), can be related to the timescale required for Powder 
River to rework its meander belt. This value is approximately 900 years given the meander belt width of 900 m 
divided by Powder River's approximate meander migration rate of 1 m/yr. These results provide a mechanistic 
explanation for the observed storage time distribution by relating the exponential mean timescale to the physical 
process of sediment reworking by lateral migration.

A second independent assessment of Powder River's mean storage timescale can be obtained by analyzing ero-
sion rates and storage volumes, though additional assumptions are required. For a steady-state system in which 
rates of erosion and deposition are equal and constant with time, the residence time (mean storage time) is given 
by the ratio of the stored volume to the annual volumetric erosion (or deposition) rate (Bolin & Rodhe, 1973). 
Here we assess this ratio using areal rather than volumetric estimates, because the vertical extent of erosion is 
more uncertain than areal measurements. The total areal erosion from 1998 to 2013 illustrated in Figure 4 is 
2.9 × 105 m2, while the total area within Powder River's meander belt is the product of the meander belt width 
(900 m) and the valley length of our study reach (17 km), equivalent to 1.5 × 107 m2. Dividing the total area by the 
annual reworking rate (approximately 1.9 × 104 m2/yr) gives a storage timescale of 780 years, a value that agrees 
remarkably well with the range of best-fit values obtained from the storage time distribution of 785–1274 years 
and that is also consistent with the estimate of 900 years obtained above from the ratio of meander belt width to 
lateral migration rate.

These results illustrate how complete storage time distributions for confined meandering systems can be obtained 
solely from simple measurements from aerial imagery. However, these methods are strictly valid when fluvial 
systems have maintained constant and approximately equal rates of erosion and deposition through the period 
represented by the stored sediment (so that recent erosion rates can be extrapolated throughout the entire time 
required to rework the meander belt).
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5.3.  Implications of an Exponential Storage Time Distribution

An exponential storage time distribution for deposits of confined meandering rivers has important implications 
for routing of sediments, associated contaminants, and particulate organic carbon. If storage time distributions 
are exponential, the mean storage time (residence time) provides a useful metric for assessing storage timescales, 
whereas if storage time distributions are heavy tailed, the mean may not exist, and a small percentage of stored 
sediment may persist for exceptionally long timescales.

An exponential storage time distribution also allows for simple computations of sediment travel times through a 
reach. This arises when the sediment budget is known and can be treated as approximately constant through time 
and throughout the reach of interest. When these conditions are met, the complete travel time distribution for sed-
iment and associated conservative contaminants through the reach can be computed analytically, without requir-
ing a complex numerical model. The approach is summarized by Pizzuto et al. (2022) and Torres et al. (2017), but 
cannot be implemented for Powder River because an accurate sediment budget is not yet available. Nonetheless, 
the existence of an analytical method for computing sediment travel times provides an important means of readily 
assessing the influence of storage on sediment delivery.

5.4.  Additional Sources of Uncertainty

Significant uncertainties remain in our estimates of deposit ages and fractional volumes. These uncertainties 
often approach ±10% (Figure 6, Table 3). As a result, our methods may fail to accurately detect small amounts 
of older sediments eroded from the Kaycee Terrace, and these deposits, if accurately sampled and dated, could 
conceivably support the interpretation of a heavy-tailed storage time distribution for Powder River. However, 
given the precision of available dating methods and the uncertainties associated with geomorphic mapping and 
sampling, it may not be possible to identify long-tails in the storage time distribution that arise from erosion of 
a few older sediments.

It is also possible that some of our results have been biased by our sampling methods. A longer study reach might 
have allowed for sampling a greater number of exposures of the Kaycee Terrace, which could potentially have 
resulted in larger volume of sediment that could have defined a heavy-tailed storage time distribution. The use of 
the water surface instead of the streambed as the lower boundary for erosion could also be considered a limitation 
of our study, as our approach cannot account for sediment eroded from areas submerged by the river. However, 
while our approach likely underestimates the total erosion, the distribution of ages of the eroded sediment, the key 
variable for our interpretation, is probably unaffected by our use of the water surface as a datum. Furthermore, 
detailed time series of bathymetric data for Powder River that could be used to define the full vertical extent of 
erosion do not exist.

The timescale associated with the exponential storage time distribution appears to be well-correlated with Powder 
River's meander belt width and the current meander migration rate of approximately 1 m/yr. However, meander 
migration rates have varied systematically since 1830, decreasing significantly over the last 40 years, changes 
that have also been accompanied by an increase in Powder River's sinuosity and a decrease in its width (Schook 
et al., 2017). By interpreting the storage timescale in terms of meander migration rates, we have extrapolated the 
average migration rate for 1830–present to cover the entire timescale of our age dating, encompassing at least 
5,000 years. Meander migration rates have likely varied systematically over this time period due to changes in 
climate and other drivers. These effects cannot be evaluated rigorously at present, but could represent a source 
of error.

It is also interesting to speculate on how storage distributions might vary for different grain size fractions trans-
ported by Powder River. Stored sediment in meandering rivers is typically divided into two categories, sand- and 
gravel-sized point bar deposits, mostly deposited from bedload, and finer overbank sediments deposited from 
suspension (Ghinassi et al., 2018). While no field studies are available to assess differences in storage time dis-
tributions associated with these different grain size fractions, a modeling study by Ackerman and Pizzuto (2016) 
suggests that the storage time distributions of overbank and point bar deposits are similar. This interpretation 
likely applies to Powder River because coeval deposits represented by the lateral accretion elements mapped in 
Figure 4 include both point bar and overbank deposits, and these sediments would also both be remobilized at the 
same time when Powder River's channel migrates laterally and removes them. This hypothesis, of course, should 
be tested by additional studies.
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6.  Conclusion
Powder River's meander belt is considerably narrower than the 3.4 meander wavelengths associated with un-
confined meandering, suggesting that Powder River's meanders erode and deposit sediment within a laterally 
confined valley. The modern floodplain, Lightning terrace, and Moorcroft terrace are all primarily located within 
Powder River's meander belt, and thus these landforms represent the active storage reservoirs exchanging sed-
iment with Powder River. Landforms confining active meander migration include alluvial fans and the Kaycee 
terrace.

Ages of sediment eroded between 1998 and 2013 from a 17 km length of Powder River's valley are exponentially 
distributed, with a best-fit mean age of 824 years (95% C.I. 610–1030 years). We also obtained two independent 
estimates of the mean age of stored sediment to support our analysis of the age distribution of eroded sediment. 
The ratio of meander belt width (900 m) to time-averaged meander migration rate (∼1 m/yr) is 900 years, while 
the ratio of meander belt area to the annual areal erosion is 780 years. Both of these independent estimates of the 
mean storage time agree remarkably well with the mean value of the exponential distribution extracted from our 
data.

Our finding that Powder River's storage time distribution is exponential does not support our initial hypothesis 
that floodplain storage time distributions are heavy-tailed. We speculate that heavy-tailed distributions are more 
likely to be found where meandering is unconfined.

If the results of this paper can be generalized, analyses of meander belt storage reservoirs will be greatly facilitat-
ed. The scaling parameter of the exponential distribution describing both the storage time and age distributions 
can be readily estimated from either of two ratios: the meander belt width divided by the meander migration rate, 
or alternatively, the meander belt area divided by the annual areal erosion rate. These ratios can be estimated from 
aerial imagery without the extensive field sampling, sediment dating, and landform classification methods used 
here. Defining the storage time distribution can be helpful to better understand sediment travel times through a 
reach, and if a sediment budget is available, relatively straightforward analytical methods are available to compute 
the complete travel time distribution, results that are invaluable for estimating the downstream migration of sed-
iment-associated contaminants, the fate of particulate organic carbon, the timescale required to realize benefits 
from sediment-related restoration strategies, and the delivery of climate and tectonic driven sedimentary signals 
to sedimentary basins.

Data Availability Statement
Data on OSL dating is available through Mahan et al. (2021). Powder River cross-section survey data is avail-
able through Moody and Meade (2020). LiDAR data were obtained through a grant from the National Center 
for Airborne Laser Mapping (“Validating Simulations of Floodplain Topographic Evolution Using Field Data,” 
awarded to Tobias Ackerman, who is now known as Tobias Hasse) via https://doi.org/10.5069/G93F4MJG 
distributed by OpenTopography (Ackerman, 2016). Mapped Powder River channel positions, terraces, lateral 
accretion elements, and dendrochronology data are available through figshare via https://doi.org/10.6084/m9.
figshare.14807667.v3 with CC by 4.0 (Huffman, 2021).
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