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ABSTRACT 

 

For approximately 20% of breast cancer patients, many years pass between 

initial remission and the emergence of distal metastases.  These late recurrences are 

hypothesized to arise from malignant cells shed from the primary tumor that remain 

dormant in secondary tissues until resuming metastatic proliferation.  A central 

question is the extent to which the dormancy interval is determined by the initial state 

of cells in the primary tumor, and whether proliferation resumes as the result of 

changes in the distal microenvironment.  Differential gene expression in primary 

tumors may provide insight into the processes involved in the maintenance of 

metastatic dormancy.  

 

Four clinical studies providing microarray profiles were identified based on 

specific endpoints, and follow-up duration.  Patient groups were assembled based on 

disease status and the time to distant metastases.  Differential gene expression and 

ontology enrichment for these patients was evaluated in an automated workflow.  

 

Despite some weakness in differential expression, noteworthy overlap between 

studies was observed at the level of ontological enrichment.  Several biologically 

relevant terms were detected in enrichments for three or more studies.  These included 

terms such as “platelet degranulation”, “wound healing” and “cell proliferation” all 

processes that may be are involved in the escape from dormancy.  
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Chapter 1 

BREAST CANCER, DORMANCY, AND GENE EXPRESSION SIGNATURES 

Breast Cancer and Estrogen Receptor Status 

Breast cancer is a disease of the breast that involves the formation of a tumor 

from a population of abnormally proliferating cells. At an anatomical level, the 

majority of breast tumors arise from the epithelium lining the milk ducts. The SEER 

program is a major cancer surveillance initiative in the United States. Their data for 

190,458 women shows that between 1987 and 1999 invasive ductal carcinoma was 

observed in the vast majority of cases (72.8 %), followed by invasive lobular 

carcinoma (7.6%) and invasive ductal-lobular carcinoma (4.7%)  [1]. 

 

Breast tumors can also be characterized based on a variety of molecular 

biomarkers. Today, three of the most important markers are the estrogen receptor  

(ER), the progesterone receptor (PR), and human epidermal growth factor receptor 2 

(HER2). It is common for ER and PR status to correlate with one another [2].  The 

estrogen receptor was one of the first clinically useful markers, identified in the early 

1970’s. As early as 1974, it was becoming apparent that patients with estrogen 

receptor (ER) positive tumors responded well to anti-estrogenic therapies while 

patients with ER negative tumors did not [3]. In a later study, results show significant 

differences in the site of first metastasis between patients with ER positive and ER 

negative tumors.  Estrogen receptor status can influence the distribution of organs and 

tissues affected by metastatic disease [4].  
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The later stages of breast cancer progression often involve the emergence of 

secondary tumors known as metastases. Metastases originate from malignant cells that 

dissociate from the primary tumor mass, travel through the body’s circulatory system 

and settle in a distant tissue. Once a tumor cell has arrived at a distal site, it may 

continue to proliferate forming a new tumor [5,6]. This process is often described as a 

“Metastatic Cascade” [5,6]. While inherently inefficient, metastasis is the most 

frequent proximal cause of breast cancer fatality [6]. 

 

As early as 1889, mounting evidence indicated that cancers of the breast were 

predisposed to form metastases in the bone [7].  Since Stephen Paget first proposed his 

hypothesis of “seed and soil” we have learned a great deal about which tissues are 

invaded by metastatic breast cancer.  In a study of breast cancer patients treated at 

University of Maryland hospitals, bones were the most frequent site of metastasis, 

followed by lung, liver and brain [8]. In a larger study, spanning 4399 patients, distal 

metastases were most frequently observed in lymph nodes, bone, liver and lung [9]. 

Studies have shown significant differences in the site of first metastasis between 

patients with ER positive and ER negative tumors. In this study, the site of first 

metastasis for ER positive tumors was predominantly bone vs predominantly visceral 

sites such as the liver, lungs, brain and ovaries, for ER negative tumors [4].   

 

Metastatic Dormancy 

A defining feature of estrogen receptor (ER) positive breast cancer is the 

phenomenon of metastatic dormancy.  Patients with this disease can experience 
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metastatic recurrence at distal sites long after their primary breast tumor has been 

treated [10].  Even for women who had no positive lymph nodes when treated the risk 

of recurrence after 20 years may be as high as 15%, and greater for those with more 

significant node involvement [10].  These late recurrences are hypothesized to arise 

from disseminated tumor cells that reactivate after a long period of dormancy.   

 

The survival, continued proliferation, and eventual formation of metastases by 

Disseminated tumor cells (DTCs) that have taken up residence in a secondary tissue 

may depend heavily on interactions with the surrounding microenvironment.  A 

statistical analysis of the clinical manifestations of metastatic hazard supports a model 

of halted rather than continuous growth post-dissemination [11]. One possible 

explanation, supported by computational simulations, is that cells stop dividing for a 

period of time after lodging in a distal tissue (i.e., they become dormant) [12].  From a 

biological perspective, several mechanisms are proposed to be involved in the 

maintenance of dormancy [13, 14].  One particular example involves the differential 

activation of p38 MAPK and ERK1/2, downstream of various extra-cellular matrix 

(ECM) dependent interactions.  Proliferation is generally considered to be increased 

by a high ERK1/2 to p38 activation ratio while the reverse may support a non-

proliferative state [13, 14].  The activity of these growth regulating kinases is 

controlled in part by interactions between ECM proteins, extracellular regulatory 

factors such as plasmin, and transmembrane integrins which transmit these signals to 

the interior of the cell [13, 14].  These interactions that comprise the uPAR-integrin 

signaling network, which, in turn, can influence the balance of ERK1/2 and p38, 

affecting whether the cell remains quiescent or resumes proliferation [13, 14].  
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Studies suggest that breast cancer (BC) cells have certain attributes that make the bone 

marrow a particularly suitable niche for dissemination.  Normal bone undergoes a 

continual process of renewal mediated by specialized cell types that remove 

(osteoclasts) and replace (osteoblasts) bone material [15].  This remodeling process is 

essential for the maintenance of healthy bone structure and calcium homeostasis 

(Clarke, 2008) [15].  Breast cancer cells that have metastasized to bone can interact 

with stromal cells in a manner that ultimately enhances metastatic growth [14, 16]. 

Typically, these interactions have an osteolytic effect leading to metastatic lesions and 

reduced bone density.  As bony material is broken down factors such as TGFB, VEGF 

and FGF can be released into the surrounding environment, promoting proliferation 

and angiogenesis [14,16,17].  Evidence from mouse xenograft studies illustrates how 

BC cells can express osteomimetic factors that may contribute to their ability to persist 

in the bone microenvironment [17]. Twelve factors were identified in one meta-

analysis that are known to be involved in functions such as proliferation and 

differentiation, cell adhesion, chemokine signaling, and bone resorption and 

remodeling  [17].  In cell based assays, the presence of human bone marrow stem cells 

(hMSECs) or hMSC conditioned media drives the proliferation of ER+ tumor cell 

lines  [18].  The Sasser study also showed that one of two ER- cell lines was 

stimulated albeit to lesser extent.  In triple negative (TN) breast cancer, cancer-

associated fibroblasts (CAFs) may select for primary tumor cells that respond to bone-

derived chemokines and growth factors [19].  In TN breast cancer, expression of the 

‘stem-ness’ associated genes ID1 and ID3 by primary tumor cells has been shown to 

be important for metastatic colonization and re-initiation in the lungs [20].  With these 
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examples in mind, it is evident that when and whether a disseminated tumor cell 

(DTC) resumes proliferation and forms a metastatic lesion is in many ways dependent 

on how it responds signals derived from the surrounding stroma.  This leads to the 

question of whether, and to what extent the internal state of primary tumor cells 

influences their metastatic fate after dissemination.  Evidence in the form of primary 

tumor biomarkers, and gene expression signatures seems to suggest that this is the 

case.  

 

Over the last several decades, the standard of care for patients with ER+ 

tumors has been to administer anti-estrogen drugs such as Tamoxifen and aromatase 

inhibitors such as Letrozole [21, 22].  While these medicines can help prevent 

metastatic relapse, they are not without side effects, some of which may be quite 

serious including elevated risk of bone fracture due to osteoporosis, stroke, and 

endometrial cancer [21, 22].  Clinicians have a strong interest in being able to 

prioritize these therapies for patients who are most likely to benefit, without over-

treating those who are unlikely to relapse [23].  Despite their prognostic value for 

early metastases, clinical parameters such as tumor size and grade are less helpful for 

late metastasis [23].  An alternative that has emerged is the search for signatures and 

biomarkers in expression profiles from primary tumors [23].  

 

Breast Cancer Signatures 

The emergence and maturation of standardized microarray technology has 

marked an important milestone in the progression of transcriptomic analysis.  This, 

along with more recent advancements in high throughput sequencing of transcriptome 
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derived libraries (RNA-Seq), have made it possible to profile the activity of thousands 

of genes in a sample simultaneously.  In the context of breast cancer, transcriptomic 

profiling has led to the identification of groups of genes or ‘signatures’ for which 

changes in the level at which signature genes are expressed corresponds strongly to a 

particular disease state or phenotype [23-28]. 

 

There are several motivations for breast cancer researchers to develop these 

signatures.  These motivations include: gaining insight into the biological processes 

driving progression, improving approaches to estimating patient prognosis, and 

perhaps most importantly, to helping physicians make better informed treatment 

decisions [23].  Within the past two decades various groups have identified signatures 

that correspond to: tumor molecular subtype (including ER status), histological grade, 

and disease-free survival [23-28].   

 

One approach to identifying a transcriptomic signature is to first assemble as 

large of patient cohort as possible that meets certain clinical and demographic criteria 

such as age, estrogen receptor status, or lymph node metastases [24-27].  Primary 

tumor tissue, harvested during therapy is processed and expression profiles are 

generated that represent an ‘average’ of mRNA transcripts present in the sample [24-

28].  Data set size can range from tens to hundreds, and in some cases thousands of 

patients [24-29].  Having many patients may help to detect changes in gene expression 

that are related to the disease, as opposed to those that are due to factors such as age, 

diet, and environment.   
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Various statistical methods have been used to identify genes where observed 

changes are strongly associated with some aspect of the disease.  These have included 

pairwise statistical tests [25], correlation with clinical markers [28], and various 

combinations of univariate and multivariate survival analyses [24, 27, 29]. For 

example; the Genomic Grade Index (GGI) was developed based on per-gene pairwise 

comparisons between profiles from Elston-Ellis grade 1 and grade 3 tumors [25].  The 

Sensitivity to Estrogen index was developed by selecting genes with expression 

profiles that correlated with expression of the estrogen receptor gene ESR1 [28].   

 

A typical benchmark for signatures is the extent to which the signature can 

stratify patients into risk categories or otherwise divide patients into biologically 

meaningful groups.  For example, the GGI was shown to distinguish between breast 

cancer molecular subtypes especially Luminal A and Luminal B [27].  This signature 

was also shown to distinguish between patients at higher risk of early metastasis [23, 

25, 26].  An interesting observation with the 76-gene signature developed by Wang et 

al. was that patients with a low risk-score had a uniformly low rate of metastasis over 

10 years whether or not they received adjuvant tamoxifen therapy [24, 30].  Patients 

with a high risk-score, on the other hand showed significant benefit from Tamoxifen 

in the first five years post intervention [24, 30].   

 

One thing that several of the signatures developed between 2005 and 2009 

have in common is that they are dominated by genes involved in the cell cycle, or 

somehow related to proliferation [23 – 30].  When Wang et el. developed their 76-

gene signature specifically benchmarked their analyses against a 5-year window for 
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metastasis [24].  The above results seem to indicate collectively, that while patients 

whose primary tumors express high levels of certain proliferative genes are at greater 

risk for early metastatic recurrence, patterns in the expression of these genes is of 

limited predictive value for late metastatic events [23]. 

 

In their 2015 review article, Sestak and Cuzik discuss several gene expression 

based signatures considered to have prognostic value specifically for late distal 

metastases including Prosigna’s PAM50 ROR, the Breast Cancer Index (BCI) 

developed by bioTheranostics, and EndoPredict (EP) and EndoPredict Clinical (EP-

Clin) by Myriad Diagnostics (formerly Sividon) [23].  Of the 50 genes included in the 

PAM50 ROR [31], the 47 recognized by DAVID are enriched with terms related to 

proliferation such as “cell-cycle” and “mitosis”.  In addition, several genes in the 

PAM50 classifier are annotated with terms describing processes that occur in the bone 

microenvironment such as “osteoblast differentiation” and “ossification”.  The BCI 

includes 5 genes described by authors as being associated with the cell cycle, and 2 

associated with Estrogen Receptor sensitivity [32].  The EndoPredict classifier 

consists of 8 genes [33], two of which also are included in the PAM50 ROR.  While 8 

is too few for enrichment analysis, an ontology search in DAVID shows these genes, 

are annotated with proliferation related terms such as “cell cycle checkpoint”, “G2/M 

transition of mitotic cell”, and “positive regulation of exit from mitosis” and also terms 

related to the bone microenvironment such as “ossification”, “positive regulation of 

osteoblast differentiation” and “cellular calcium homeostasis”.  Each of these 

signatures has been shown to add prognostic value to clinical information such as 

tumor size, hormone receptor status and lymph node status in estimating the likelihood 
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of distal recurrence greater than 5 years after initial diagnosis and treatment [23].  An 

implication of these findings is that genes involved in microenvironmental processes, 

and hormone sensitivity may be more informative for predicting late metastatic 

outcomes.  

 

Several studies have pursued lines of transcriptomic inquiry with metastatic 

dormancy as a specific research goal. In one example, Kim et al., used genes 

associated with p38 dependent quiescence, or inhibited angiogenesis to define a 49-

gene, directionally-specific signature consisting of 22 genes where upregulation and 

27 genes where downregulation is attributed to a dormant state [34].  When these lists 

are analyzed in the current version of DAVID Functional Annotation Tool [35, 36], 

the upregulated gene list is enriched for terms relating to ECM interactions such as: 

“cell migration” and “extracellular matrix organization”.  The downregulated gene 

list from Kim et al. [34], is enriched for terms such as “cell proliferation” and 

“regulation of cell cycle”.   Authors benchmarked this signature in survival analyses 

using several publicly available datasets and were able to stratify ER+ patients in 

survival analyses. 

 

Qing Cheng and colleagues assembled a “cohort” of 4767 patients using 

microarray data deposited in the public domain originally generated during the course 

of studies such as those undertaken by Loi et al., Sotiriou et al., and Wang et al. [24 – 

29].  In a 743 patient subset, they identified gene expression clusters that stratified 

patients into groups having a good prognosis, early, or late metastatic disease [29].  

Gene Set Enrichment analyses of patient profiles from the “late metastasis” sub group 
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G4 included ontology terms such as: “regulation of cell differentiation” and “cell 

migration”.  Along with changes in specific genes, these observations indicated the 

possibility that a reversal of the epithelial to mesenchymal transition may play a role 

in the escape from dormancy [29].  They further identified a 51-gene signature in 

tumor epithelium, enriched for the processes “ECM remodeling”, “fibrosis” and “EMT 

Transition” [29].   

 

With the objective of developing a signature specific for late metastatic events, 

Mittempergher and co-workers conducted a retrospective expression profiling analysis 

involving 252 frozen ER+ tumor specimens for which detailed clinical data was 

available [37].  Of particular interest is their division of patients into three groups 

based on whether or not they experienced metastatic disease within 10 years of 

diagnosis (M0: no relapse for at least 10 years follow up) and if so when (M5 <= 5 

years < M5-15) [37]. They applied several algorithms to search for genes with 

prognostic profiles [37].  Using a supervised clustering approach, they extracted a 

241-gene signature from a comparison between the M0 and M5-15 data set [37]. In 

10-fold cross-validations, this signature had a 77% classification accuracy in 

predicting patients likely to experience a late metastatic event [37].  In analyses 

conducted using DAVID, the 241-gene classifier was enriched with terms such as 

“extracellular matrix” and “immune response” [37].   

 

Introduction to the Key Gene Sets in Metastatic Dormancy project 

The purpose of this study was to identify genes and pathways that may play a 

role in either entry into a dormant state, maintenance of such a state, or eventual 
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reactivation.  In this project, the working hypothesis is that the genes expressed in 

primary tumor cells (PTCs) influence the fate of these cells once they have 

disseminated and may determine the likelihood of their reactivation.  The central focus 

of this work was to identify patterns of gene expression that differentiated patients 

who experience late metastases from those who appear to avoid recurrence entirely.   

 

The goal of this work was to extract a transcriptomic signature associated with 

persistent metastatic dormancy using publicly available primary tumor expression 

profiling data derived from female breast cancer patients. 

The approach taken was to 1) find as many qualifying studies as possible, 2) 

obtain a list of differentially expressed genes for each of them, 3) analyze gene lists 

for enriched ontology terms, and 4) evaluate the extent to which analysis results from 

each study overlapped with one another.  Consensus between several studies revealed 

biological processes that may be involved in the process of stromal-driven 

reactivation. 
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Chapter 2 

STUDY AND PATIENT SELECTION 

Overview and Selection Criteria 

All of the data used in this work was retrieved from NCBI’s Gene Expression 

Omnibus (GEO) between June of 2017 and January of 2018.  The NCBI’s Gene 

Expression Omnibus (GEO) is a database resource that archives microarray and high-

throughput sequencing data [38].  While GEO accepts profiling data generated on a 

variety of platforms, the most common data type is gene expression profiling via 

microarray[38].  In 2012, GEO hosted just under 10000 series where gene expression 

was measured by microarray, and just under 1000 series where gene expression was 

measured by next generation sequencing [38].  The gap has narrowed substantially 

since then with 55,715 gene expression microarray series and 22,113 gene expression 

next generation sequencing series currently available (Appendix A).  The following 

criteria were used to decide whether a dataset was suitable for inclusion: 

• Maximum follow-up interval > 15 years 

• Last metastatic event observed at least 12 years after harvest of 

primary tumor tissue.  

• Samples for at least three ER positive patients in each analysis 

group.  

 

Follow-up interval and time to metastases criteria were implemented with the 

intention of comparing tumor expression profiles from patients experiencing late distal 

metastases to profiles from patients where potentially indefinite dormancy is observed.  

Analysis was restricted to ER+ patients based on observations from previous 
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dormancy work [34, 37].  A minimum of three samples in each analysis group was 

necessary for pairwise statistics.  

 

Four studies meeting the above criteria were identified for analysis.  Each of 

the studies evaluated here is referred to by the last name of the primary author.  Each 

study contributed 14 or more patients to the analysis, with at least 4 patients in each 

category (Table 1). For the Loi study, patients whose samples were analyzed on 

different chips (HG-U133A (Loi A), HG-U133 Plus 2 (Loi P)) were treated separately; 

however, the same cutoff was applied. 

Table 1 Studies Selected for Evaluation  

Microarray data from the Loi study was divided into two processing groups depending 

on the analysis platform (Loi A: HG-U133 A, Loi P: HG-U133 Plus 2) 

Loi (Loi A and Loi P) 

The data sets referred to here as “Loi A” and “Loi P” come from a set of 

patients whose breast tumors were treated at hospitals in Sweden and the United 

Kingdom [26].  Tumor samples collected between 1980 and 1995 were profiled on 

either the HG-U133A/B chip set or the combined HG-U133 Plus2 platform. [26, 27].  

Patients from the Loi data set whose samples were analyzed on different chips (HG-

U133A, HG-U133 Plus 2) were treated separately during differential expression and 

Dataset 

GEO 

Accession 

Late 

Patients 

Never 

Patients 

Cutoff 

(Years) 

Maximum 

Follow Up 

(Years) 

Loi A GSE6532 15 4 13.4 16.9 

Loi P GSE6532 14 23 13.4 16.9 

Zhang GSE12093 7 7 13.5 15.8 

Symmans GSE17705 25 7 14.4 16.3 
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enrichment analyses.  In this work, the “Loi A” data set is the subset of patients 

analyzed on the HG-U133A platform, and the “Loi P” data set is the subset of patients 

analyzed on the HG-U133 Plus2 platform.  All the Loi patients analyzed in this work 

had ER positive tumors (data accessible at NCBI GEO database [26, 27] accession 

GSE6532). 

For the subset of patients from the Loi data set analyzed on the HG-U133A 

platform (Loi A), a total of 19 patients were identified that met analysis criteria.   

There were 15 patients that experienced a metastatic recurrence after 5 years and up to 

12.5 years, and these patients were assigned to the “Late” group.  In the “Late” group 

for Loi A, there were 9 patients that had received adjuvant tamoxifen therapy, and 6 

patients that had not.  There were four patients who were followed from 13.4 up to 

16.9 years with no documented evidence of distal metastasis. These patients were 

assigned to the “Never” group.  None of the “Never” patients received adjuvant 

tamoxifen therapy.  

 

For the subset of patients from the Loi data set analyzed on the “HG-U133 

Plus 2” platform (Loi P), there were 14 patients that experienced a distal metastatic 

event between 5 and 13.4 years and, accordingly, were assigned to the “Late” group. 

There were 23 patients with no observed metastases from 13.4 up to 16.9 years, and 

these patients were assigned to the “Never” group. All of the “Loi P” patients received 

adjuvant Tamoxifen therapy. 

Zhang 

The data set referred to here as “Zhang” comes from a set of 136 patients 

treated at several European institutions and one institution in the United States.  
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Microarray data was generated using frozen tissue specimens that had been collected 

between 1990 and 2000 [30].  All of the patients in this dataset had ER positive tumors 

and received adjuvant tamoxifen therapy.  In this data set, the longest observed 

interval between initial therapy and metastatic recurrence was 13.5 years.  There were 

7 patients that experienced a distal metastatic event between 5 and 13.5 years and were 

assigned to the “Late” group.  There were 7 patients with no observed metastases from 

13.5 to 15.8 years follow-up (“Never” group).  All of the patients in this data set were 

profiled on the HG-U133A platform (data accessible at NCBI GEO database [30], 

accession GSE12093). 

Symmans 

The data set referred to here as “Symmans” comes from a set of 298 patients 

treated in Austria, France and the United Kingdom between 1978 and 2002.  In the 

original paper these patients are described as the “second validation cohort” [28].  All 

patients in this data set had ER positive cancer and received five years of adjuvant 

Tamoxifen therapy.  In this data set, the longest interval between treatment of the 

primary tumor and metastatic was 14.4 years.  There were 25 patients that experienced 

a distal metastatic event between 5 and 14.4 years follow-up.  There were 7 patients 

with no observed metastases from 14.4 years up to 16.3 years follow-up.  All of the 

patients in this data set were profiled on the HG-U133A platform (data accessible at 

NCBI GEO database [28], accession GSE17705). 
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Chapter 3 

ANALYTICAL METHODOLOGY 

Data Partitioning and Environment 

Subjects were grouped based on whether they experienced a distant metastatic 

event within a defined time frame post diagnosis.  For each study, the last recurrence 

(primary or metastatic) was used to define a cutoff dividing patients into two 

categories, “Late” or “Never”.  For each study, patients were assigned to the “Late” 

category if they experienced a metastatic event from 5 years after diagnosis until the 

last observed recurrence on that study.  Patients with no observed recurrence after this 

cutoff were assigned to the “Never” group.  Only data from patients with ER positive 

tumors was used for this analysis.  In all of the studies evaluated, the expression 

profiles were from a sample of the patient’s original primary tumor.  All analyses were 

performed using R (3.2.3) for general purpose data processing, with Bioconductor 

(3.4) packages designed for specific bioinformatic analyses.  All R scripts in the 

pipeline used to implement these analyses have been deposited in the following 

GitHub repository: https://github.com/afaranda/NeverLatePipeline (Appendix B). 

Microarray Data Processing 

Microarray technology is an established method for profiling gene expression 

in a wide variety of contexts and disciplines.  In arrays used to measure gene 

expression, the array itself consists of a solid substrate onto which oligonucleotide 

probes are attached.  Each probe is designed to correspond to a specific, known 

mRNA transcript.  Messenger (m)RNA extracted from a biological specimen is 

amplified to prepare a cRNA library that can be analyzed on the array.  The process of 

library preparation via in vitro transcription, often referred to as the Eberwine method, 

https://github.com/afaranda/NeverLatePipeline
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was originally developed to overcome fidelity issues that affect PCR based 

amplification techniques [39].  A liquid sample containing a tagged cRNA library [40] 

is applied to the surface of the chip; library fragments hybridize with their 

corresponding probes; and the chip is interrogated with a laser scanner that excites the 

tagged fragments, which then emit a fluorescent signal.  The more abundant a 

particular transcript, the “brighter” the corresponding signal.  Probes are identified by 

their position in the array.  In the Affymetrix HG-U133 series of microarrays, 25 

nucleotide probes are used to measure the abundance of mRNA transcripts that are 

present in the library.  The probes used on this series of microarrays were designed 

based on known mRNA transcripts recognized by build 133 of the UniGene 

transcriptomic database [41, 42].  There are several microarray platforms or “chips” 

that were developed by Affymetrix as part of this series.  The HG-U133 set consists of 

2 microarray chips designated HG-U133A and HG-U133B.  The probes on the “A” 

chip are primarily designed to target fully sequenced mRNA transcripts, where the 

sequence includes the 3’UTR.  The probes on the ‘B’ chip were designed 

predominantly based on ‘expressed sequence tags’ (ESTs), which are less robust.  The 

HG-U133 Plus 2.0 chip was developed shortly after this set [41, 42].  Along with 

some additional probes, the “Plus 2.0” chip combines the “A” and the “B” probes on a 

single platform [41, 42].  In this work, for patients that were profiled using the “Plus 

2.0” chip, only probes designed for the “A” chip were examined for differential 

expression and included in downstream enrichment analyses to enable direct 

comparison to data collected with “A” chips. 
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Figure 1 Microarray Analysis Workflow 

In a typical workflow, mRNA isolated from patient’s primary tumor 

would be processed into fluorescently labeled libraries and hybridized to 

arrays.  Spot intensities are recorded by the array scanner.  

Raw expression data, in the form of Affymetrix ‘CEL’ files, was retrieved 

from the Gene Expression Omnibus (GEO; Accession numbers GSE6532, GSE12093 

and GSE17705).  Each Cel file contains measured probe intensities for 22283 to 

54675 probes.  For each study, the Cel files from patients assigned to specific 

categories were assembled into an “affyBatch” for normalization and subsequent 

analysis of differential expression.  Each batch (one batch per study) was processed 

individually.  The matrix of probe intensities for each batch was normalized using the 

RMA algorithm [43].  For patients measured on the HG-U133 Plus 2 platform, only 

probes that were also detected by the HG-U133A platform were examined for 

differential expression or included in downstream enrichment analyses.  Gene symbols 
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were assigned to Affymetrix probes based on annotation found in DAVID, as 

described below. 

 

Quality Evaluation 

After normalization, the matrix of probe intensities was evaluated for overall 

quality control.  The package ‘arrayQualityMetrics’ was used to prepare figures and 

calculate statistics [44].  Patients that appeared to be outliers were flagged.  The 

implementation used provided outlier detection based primarily on the following three 

metrics: the L1 Distance between arrays, goodness-of-fit against a pooled distribution 

of probe intensities, and Hoeffding’s D to evaluate the quality of individual arrays 

[44]. 

Differential Expression  

The Limma algorithm was used to identify genes that may be differentially 

expressed between the two patient groups [45].  For each study, probes were selected 

for enrichment analysis if the magnitude of the fold change between “Never” and 

“Late” patients was greater than 1.5 and had an associated p-value less than 0.05.  

Overlap between lists of differentially regulated genes was evaluated using R’s built-

in set operation and tabulation functions. 

 

Enrichment Analysis 

Since DAVID is capable of processing Affymetrix probe ID’s, lists of 

differentially expressed probes were submitted directly to DAVID for annotation and 

enrichment analysis [35, 36].  In order to capture as much pathway perturbation as 
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possible, gene lists were not partitioned based on the direction of fold change.  The 

lists submitted to DAVID included probes with positive and negative fold changes.  

The process of querying DAVID was automated using the bioconductor package 

‘RDAVIDWebservice’ [46].  This package can be used to open a connection to the 

DAVID Knowledgebase and perform various analytical tasks such as gene list 

submission and retrieval of enrichment results.  

 

For terms from the Gene Ontology (GO), DAVID provides eight annotation 

categories that the user can select during enrichment analyses.  Five of these were 

designed based on the depth of term in the GO hierarchy, and are assigned a numerical 

designation (Levels 1 - 5) [35, 36].  There are three additional categories designated 

“ALL”, “DIRECT” and “FAT”.  As the name implies, the Category “ALL” includes 

all terms in a particular ontology branch (Biological Process, Molecular Function, or 

Cellular Component) (Appendix C, Personal communication). The “DIRECT” 

category restricts term mappings to those assigned directly to a gene by an annotating 

resource such as Uniprot (Appendix C, Personal communication).  The category 

“FAT” is a subset of the Gene Ontology consisting primarily of higher level terms that 

have been filtered to remove broadly defined terms and focus on more specific ones.  

In the DAVID knowledgebase, the category “GOTERM_BP_FAT” is the FAT 

categorization of the biological process branch.  While data was collected for several 

categories, this was the primary category that was considered for comparisons 

between studies and used for biological evaluation.  Terms from the category 

“GOTERM_BP_FAT” were considered enriched if their Benjamini-Hochberg 
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adjusted EASE score was less than 0.05.  Overlap between lists of ontology terms was 

evaluated using R’s built-in set operation and tabulation functions. 

 

The enrichment summarization tool REVIGO was used to obtain a high-level 

view of process enrichments from each data set individually and for overlapping terms 

[47].  Analysis was completed manually by uploading lists of Terms with their 

corresponding Benjamini-adjusted EASE scores to the REVIGO server accessed via 

http://revigo.irb.hr/.  The default settings were used for all analyses (Table 2). 

Table 2 Default parameters for REVIGO analyses 

Parameter Setting 

Allowed similarity Medium (0.7) 

Numbers associated with GO Terms “p Values” 

Select a database with GO term sizes Whole UniProt (default) 

Select a semantic similarity measure to use SimRel 

Randomized Probe Lists 

A set of 1000 randomly generated probe-lists was generated by sampling 500 

probe id’s at a time, without replacement, from the 22283 unique ID’s for probes that 

are present on the HG-U133A microarray.  Each list was submitted to DAVID via an 

RDAVIDWebservice Query.  The DAVID server limits the number of queries that can 

originate from any one source to 200 per day.  In order to obtain results in a timely 

manner, the set of probe-lists was divided into small batches that could be submitted in 

parallel from multiple devices.  For each of 1000 lists, the set of enriched terms was 

was retrieved for the category GOTERM_BP_FAT.  Once tabulated, these data were 

used to calculate summary statistics and prepare histograms. 

http://revigo.irb.hr/
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Chapter 4 

DIFFERENTIAL GENE EXPRESSION AND PROCESS ENRICHMENT 

Quality analysis using the array quality metrics package 

In the normalized data set for patients from the Loi study analyzed on the HG-

U133A platform (Loi A), one sample from the ‘Late’ group was flagged as an outlier 

based on its L1 distance from the remaining arrays.  In addition to probes that detect 

mRNA transcripts, microarrays produced by Affymetrix also include a number of 

quality control probes.  None of these microarray quality control probes were 

differentially expressed between the two comparison groups; therefore, this sample 

was not considered to have significantly impacted the analysis. All of the samples in 

the original batch were retained (Appendix D).  

 

In the normalized data set for patients from the Loi study analyzed on the HG-

U133 Plus2 platform (Loi P), 3 samples from the ‘Never’ group were flagged as 

outliers by array quality metrics.  One sample was flagged as an outlier based on its 

distribution of probe intensities and its L1 distance from the remaining samples.  The 

two others were flagged based on distance alone. None of the microarray quality 

control probes were differentially expressed between the two comparison groups; 

therefore, these samples were not considered to have significantly impacted the 

analysis.  All of the samples in the original batch were retained (Appendix D). 

 

In the normalized data set for Zhang, one sample was flagged as an outlier 

based on its distribution of probe intensities and its Euclidean distance from the other 

samples.  Two Affymetrix QC probes were detected as differentially expressed (Table 
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3).  Both differentially expressed QC probes detect human 18s ribosomal RNA present 

in the tissue sample.  When this outlier is removed, there are two other samples that 

become classified as outliers.  After five successive rounds of outlier removal and 

normalization, it would have been necessary to drop 6 samples in order to have a 

Zhang data set that was free of outliers(Data not shown). Rather than lose nearly half 

of the samples, all samples meeting “Never / Late” criteria were retained (Appendix 

D).  

 

In the normalized data set for Symmans, there were four samples that were 

flagged as outliers.  Two of these were flagged based on their L1distance from the 

other samples and their probe intensity distributions.  The other two were flagged 

based on their distance only.  Samples from the Symmans study were analyzed at two 

different laboratories, labeled “JBI” and “MDA” in the data set.  In this case, the four 

outliers were analyzed at JBI; all remaining samples were analyzed at MDA. It is well 

established that technical variation between laboratories can influence microarray 

results; therefore, the JBI samples were removed from consideration (Appendix D).  

Even with the removal of these outliers, there were 8 Affymetrix QC probes with 

differential measurements (Table 3).  
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Table 3 Affymetrix quality control probes with differential mean intensity 

between the two sample groups.  

Target and Origin information was retrieved from the “NetAffx” database provided by 

Affymetrix [48]. 

Study Probe Target Origin 

Log2 Fold 

Change 

p 

Value 

Zhang AFFX-r2-Hs18SrRNA-3_s_at 
Ribosomal 

RNA 

Endogenous 

to sample 
1.52 0.030 

 AFFX-HUMRGE/M10098_3_at 
Ribosomal 

RNA 

Endogenous 

to sample 
1.36 0.032 

      

Symmans AFFX-HSAC07/X00351_5_at Actin, beta 
Endogenous 

to sample 
-1.04 0.003 

 AFFX-HSAC07/X00351_M_at Actin, beta 
Endogenous 

to sample 
-0.75 0.009 

 AFFX-r2-Ec-bioC-3_at 
E. coli biotin 

synthase 

Spike in 

Control 
0.78 0.021 

 AFFX-BioC-3_at 
E. coli biotin 

synthase 

Spike in 

Control 
0.79 0.025 

 

AFFX-r2-Ec-bioC-5_at 
E. coli biotin 

synthase 

Spike in 

Control 
0.79 0.028 

 

AFFX-BioC-5_at 
E. coli biotin 

synthase 

Spike in 

Control 
0.70 0.030 

 

AFFX-r2-Hs18SrRNA-M_x_at 
Ribosomal 

RNA 

Endogenous 

to sample 
-0.76 0.036 

 

AFFX-HUMRGE/M10098_3_at 
Ribosomal 

RNA 

Endogenous 

to sample 
-1.40 0.039 
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Differential Expression 

For the purposes of enrichment analysis, genes were considered differentially 

expressed if the average fold change was greater than 1.5, with a Limma p-value less 

than 0.05.  In “Never vs. Late” pairwise comparisons, samples from “Late” group 

patients were considered to represent the baseline condition.  In “Never” samples, 

genes were considered upregulated when expressed at higher levels, and down 

regulated when expressed at lower levels.   

Table 4 Summary of Differentially Expressed Genes by Study 

(Minimum adjusted p-value: Benjamini-Hochberg adjustment of Limma p-values.) 

Study 

Affymetrix 

Probes 

DAVID 

Genes Upregulated Downregulated 

Min. p 

Value 

Min. Adjusted 

p Value  

Loi A 664 564 213 351 1.86E-05 0.22 

Loi P 518 415 318 97 1.29E-05 0.17 

Zhang 511 411 343 68 1.28E-05 0.23 

Symmans 136 106 46 60 3.96E-05 0.55 

 

For samples from patients in the Loi study profiled on the HG-U133A chip 

(Loi A), 664 probes were differentially expressed, corresponding to 564 genes 

recognized by DAVID.  There were 213 genes upregulated in the “Never vs. Late” 

comparison, and 351 genes downregulated in the “Never vs. Late” comparison (Table 

4).  

 

For samples from patients in the Loi Study profiled on the HG-U133 Plus2 

chip, 518 probes were differentially expressed, corresponding to 415 DAVID genes. 

There were 318 genes upregulated in the “Never vs. Late” comparison samples, and 

97 genes downregulated in the “Never vs. Late” comparison (Table 4). 
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In the Zhang dataset, 511 probes corresponding to 411 DAVID genes were 

differentially expressed.  There 343 genes upregulated in “Never vs. Late” comparison 

and 68 genes downregulated in the “Never vs. Late” comparison (Table 4). 

 

In the Symmans dataset, 136 probes were differentially expressed 

corresponding to 106 DAVID genes.  There were 46 genes “Never” samples and 60 

genes expressed at higher levels on average in “Late” samples (Table 4). 

Overlaps in Differentially expressed genes 

The Jaccard index can be used to evaluate the relative similarity between a pair of lists 

[49].  It is calculated by enumerating the intersection of the two lists and the union of 

the two lists then dividing the number of elements in common by the total number of 

unique elements.  A Jaccard index of 1 indicates that the two lists are identical.  A 

Jaccard index of 0 indicates that there are no elements (genes) in common.  For all 

pairwise comparisons between studies, the Jaccard indices of gene lists fell between 

0.02 and 0.08 (Table 5).  For example, there were 72 genes that were differentially 

expressed in both the Loi A patients and the Zhang patients.  The union of gene lists 

for these two studies consists of 903 genes; therefore, the Jaccard index for these two 

studies is 72 divided by 903, or approximately 0.08.   

 

It was noteworthy that for genes that were differentially expressed in more 

than one data set, there were many cases where the direction of change was 

contradictory between any two data sets.  For example, consider changes in the 

expression of JUN between “Late” and “Never” patients, as they were observed in Loi 

A and Zhang.  In the Loi A patients, JUN is expressed on average at a higher level by 
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“Never” patients than by “Late” patients.  In Zhang patients, the reverse is true; JUN is 

expressed on average at a higher level by Late patients. 

 

We evaluated the scope of these inconsistencies by tabulating cases of 

agreement, where in both studies the gene’s expression changes in the same direction, 

and disagreement, where the direction of change in a given gene is opposite between 

two studies, for all study pairs.  For example, when comparing Loi A patients to Loi P 

patients, we find that there are 65 genes that are differentially expressed in both data 

sets (Figure 2); however, there were only 11 in agreement, and there were 54 genes 

that changed in opposite directions for each study (Table 5).  In comparing Loi A to 

Symmans, there were 10 genes in agreement and four which disagreed (Table 5).  In 

comparing Loi A to Zhang, there were 10 genes in agreement and 62 which disagreed.  

In comparing Loi P to Symmans, there were two genes in agreement and 6 that 

disagreed.  The greatest agreement was observed between Loi P and Zhang, where 23 

of 32 overlapping genes were in agreement.  The least was between Loi A and Zhang, 

where only 10 of 72 genes were in agreement (Table 5).  Of the four data sets 

evaluated Loi P and Zhang showed the greatest similarity to one another with respect 

to differential expression; Loi A and Symmans were also more similar to one another 

than they were to the other two studies. 
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Figure 2 Venn diagram illustrating overlap in sets of differentially expressed 

genes from each of the four studies. 
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Table 5 Overlap and Directional Agreement in Differential Expression between 

four studies.  

For each pair of studies, the following are tabulated: the number of genes in common 

(Total), the number genes that are differentially expressed in the same direction 

(Agree), and the number of genes that are differentially expressed in opposite 

directions (Disagree). 

 

Study Pair Total Jaccard Index Agree Disagree 

Loi A – Loi P 65 0.07 11 54 

Loi A – Symmans 14 0.02 10 4 

Loi A – Zhang 72 0.08 10 62 

Loi P – Zhang 32 0.04 23 9 

Loi P – Symmans 8 0.02 2 6 

Symmans – Zhang 10 0.02 7 3 

Ontology Enrichment 

 

In the set of 564 differentially expressed genes from the “Loi A” samples, 

there were 484 ontology terms from the DAVID category “GOTERM_BP_FAT” that 

were enriched with a Benjamini adjusted EASE score < 0.05.  When ranked by their 

Benjamini adjusted EASE score, the top three terms were 1) response to organic 

substance (9.52x10-17), 2) extracellular structure organization (8.02x10-16), and 3) 

extracellular matrix organization (1.06x10-15). REVIGO Semantic similarity analysis 

reduced this set to 91 distinct terms divided into four major clusters (groups of more 

than 3 terms) (Figure 3).  

 

• The cluster labeled “response to organic substance” consisted of 25 

terms, including terms such as “response to wounding”, “STAT 

cascade”, and “response to oxidative stress”.  

• The cluster labeled “circulatory system development” consisted of 

20 terms, including terms such as “collagen metabolic process”, 

“ossification”, and “tissue migration”. 
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• The cluster labeled “regulation of cellular protein metabolism” 

consisted of 19 terms, including terms such as “protein 

phosphorylation”, “regulation of cell proliferation”, and 

“regulation of ERK1 and ERK2 cascade”.  

• The cluster labeled “extracellular matrix organization” consisted of 

17 terms, including terms such as “extracellular structure 

organization”, “cell migration”, and “localization of cell”.  

 

In the set of 415 differentially expressed genes from the “Loi P” samples, there 

were 676 ontology terms from the DAVID category “GOTERM_BP_FAT” that were 

enriched with a Benjamini adjusted EASE score < 0.05. When ranked by their 

Benjamini adjusted EASE score, the top three terms were 1) immune response 

(6.76x10-57), 2) regulation of immune system process (7.97x10-48), and 3) positive 

regulation of immune system process (7.26x10-45). REVIGO Semantic similarity 

analysis reduced this set to 57 distinct terms divided into four major clusters (groups 

of more than 3 terms) (Figure 4).  

 

• The cluster labeled “immune response” consisted of 21 terms, 

including terms such as “inflammatory response”, “cellular 

response to cytokine stimulus”, and “regulation of type 2 immune 

response”.  

• The cluster labeled “cell activation” consisted of 12 terms, 

including terms such as “localization of cell”, “cell migration”, and 

“phagocytosis”.   

• The cluster labeled “protein phosphorylation” consisted of 9 terms, 

including terms such as “ERK1 and ERK2 cascade”, “regulation of 

protein metabolic process”, and “cytokine metabolic process”.  

• The cluster labeled “regulation of cytokine production” consisted of 

7 terms, including terms such as “cytokine production”, “regulation 

of angiogenesis”, and “regulation of leukocyte mediated 

cytotoxicity”.  
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In the set of 411 differentially expressed genes from the “Zhang” samples, 

there were 640 terms from the DAVID category “GOTERM_BP_FAT” that were 

enriched with a Benjamini adjusted EASE score < 0.05.  When ranked by their 

Benjamini adjusted EASE score, the top three terms were 1) regulation of 

multicellular organismal development (7.74x10-13), 2) cardiovascular system 

development (8.26x10-13), and 3) circulatory system development (8.26x10-13).  

REVIGO Semantic similarity analysis reduced this set to 107 distinct terms, divided 

into three major clusters (Figure 5). 

• The cluster labeled “regulation of cell proliferation” consisted of 54 

terms, including terms such as “positive regulation of cell-cycle 

process”, “MAPK cascade”, and “inflammatory response” 

• The cluster labeled “circulatory system development” consisted of 

31 terms, including terms such as “cardiovascular system 

development”, “ossification”, and “cytokine production”.  

• The cluster labeled “cell motility” consisted of 15 terms, including 

terms such as “extracellular structure organization”, “localization 

of cell”, and “cell junction organization”.  

 

In the set of 106 differentially expressed genes from the “Symmans” samples, 

there were 31 ontology terms from the DAVID category “GOTERM_BP_FAT” that 

were enriched with a Benjamini adjusted EASE score < 0.05.  When ranked by their 

Benjamini adjusted EASE score, the top three terms were 1) response to organic 

substance (3.49x10-03), 2) macromolecule localization (6.70x10-03), and 3) cell death 

(1.92x10-02).  REVIGO Semantic similarity analysis reduced this set to 14 distinct 

terms, with one major cluster consisting of 7 terms.  This cluster was labeled “negative 

regulation of protein metabolism” (Figure 6).  
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When intersections between term lists were evaluated, it was found that 180 

terms from the DAVID category GOTERM_BP_FAT were enriched in 3 or more 

studies.  A ranking statistic was used to order these terms for REVIGO analysis.  For 

each term, the median of the Benjamini adjusted EASE scores from each dataset 

where the term was enriched was divided by the number of datasets where the term 

was enriched.  For example, the term “programmed cell death” was enriched in 

expression data from all four studies.  The median of the Benjamini adjusted EASE 

scores across studies (Loi A: 1.42x10-5, Loi P: 1.00x10-5, Symmans: 2.37x10-2, 

Zhang:1.32x10-7, MEDIAN: 3.03x10-6) was divided by four giving a ranking score of 

7.58x10-7.  REVIGO Semantic similarity analysis reduced this set to 51 distinct terms, 

with three major clusters (Figure 7).  

 

• The cluster labeled “Positive regulation of multicellular organismal 

process” consisted of 23 terms, including “regulation of immune 

system process”, “regulation of apoptotic process”, and “cytokine 

production” 

• The cluster labeled “cellular response to organic substance” 

consisted of 14 terms, including “response to endogenous 

stimulus”, “inflammatory response”, and “wound healing”.  

• The cluster labeled “cell motility” consisted of 8 terms, including 

terms such as “localization of cell”, “movement of cell or 

subcellular component”, and “cell activation”.  
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Evaluation of Random Gene lists 

 

The results of pair-wise differential expression analyses showed only weak 

statistical significance.  After adjustment for false discovery, the strongest p-value 

observed for any study was 0.17.  In addition, the frequency of directional 

disagreement observed with genes differentially expressed in more than one study 

diminished, to a degree, the biological significance of these results.  Nevertheless, 

enrichment results were remarkably strong.  For all four studies, a large number of 

gene ontology terms were enriched with Benjamini-adjusted EASE scores well below 

0.05.   

 

This contrast between weaknesses in the differential expression and the 

relative strength of enrichment results raised the question of the likelihood of 

obtaining similar enrichment results from a list of random genes.  The purpose of 

analyzing randomized probe lists was to develop a ‘null’ model against which the 

results from breast cancer patients could be compared toward assessing if such 

significant enrichment results could be observed from a list of random genes.  Two 

major criteria were considered in this comparison: the best (minimum, Benjamini-

adjusted) EASE score for each of the 1000 probe lists submitted to DAVID and the 

number terms enriched with an adjusted EASE score < 0.05 in each list.  
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To facilitate visualization, a negative log 10 transformation was applied to the 

best EASE scores in the category GOTERM_BP_FAT (Table 6, Figure 8).  The 

distribution best EASE scores (minimum, Benjamini adjusted, and negative Log10 

transformed) was a right-skewed bell curve with an average “best adjusted EASE 

score” of 0.083 and a median “best adjusted EASE score” of 0.023.  The overall best 

adjusted EASE score was 1.30x10-7.   

 

Table 6 Best adjusted EASE score with Negative Log10 transformation for each 

breast cancer dataset 

 

 

 

 

 

 

Dataset Min. Adj. EASE (Neg.Log10) 

Loi A 9.52x10-17 (16.0) 

Loi P 7.97x10-48 (47.1) 

Zhang 7.74x10-13 (12.1) 

Symmans 6.7x10-3 (2.2) 
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Figure 8 Distribution of minimum Benjamini adjusted EASE scores (after 

negative log 10 transformation) for terms in the category 

GOTERM_BP_FAT from 1000 random probe lists submitted to DAVID. 

The red line indicates the threshold of statistical significance. 

For all 1000 of the lists of random probes submitted to DAVID, the DAVID 

server recognized at least 90% of the probe ids on the list.  Between 14 and 47 probes 

were not mapped to DAVID genes.  For each random probe list, between 0 and 217 

terms from the category GOTERM_BP_FAT were significantly enriched.  Out of the 

1000 random probe lists (n = 500 probes), 11 were enriched with more than 150 terms, 

and 3 were enriched with more than 200 terms.  For the entire set of lists, 18608 
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redundant terms from the category GOTERM_BP_FAT and were significantly 

enriched (Benjamini adjusted EASE score < 0.05).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Distribution of the number of terms significantly enriched in random 

lists.  Out of 1000 lists, 892 generated 50 or fewer hits. 

Of the 18608 redundant ‘hits’ from the category GOTERM_BP_FAT there 

were 1614 unique ontology terms.  For example, out of 1000 random lists, the term 

“response to organic substance” was enriched in 282 lists; the term “programmed cell 

death” was enriched in 125 lists; and the term “ossification” was enriched in 10 lists.  

Overall, there were 6 terms that were enriched in 200 or more random lists (> 20%) 

and 37 terms that were enriched in 100 or more random lists (> 10%).  There were 



 42 

1076 terms that were enriched in five or fewer lists.  In the set of terms enriched in 3 

or more studies, many of the top ranked terms were enriched in 20 or more random 

gene lists (Table 7).  

 

Based on our random sample, the probability of obtaining 200 or more 

significantly enriched processes from the category GOTERM_BP_FAT is estimated to 

be 0.3%.  Importantly and in contrast, for the breast cancer data sets, Loi A, Loi P and 

Zhang, over 400 terms from GOTERM_BP_FAT category were enriched. Likewise, 

for these three data sets, the minimum observed Benjamini adjusted EASE score was 

at least 7 orders of magnitude smaller than 1.30x10-7, the lowest observed by chance.  

The exception to these was the Symmans data set.  In comparison to randomly 

generated enrichments Symmans ranked 239th based on the minimum observed 

Benjamini adjusted EASE score, and 32nd based on the number of significant terms.  
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Table 7 Top 30 Terms enriched in three or more studies.   

Terms ranked by the scoring metric used for submission to REVIGO.  The column 

labeled ‘Hit’ refers to the number of times the term was enriched in a random gene list 

(out of 1000).  The Benjamini adjusted EASE score is reported for each dataset 

(Symmans abbreviated ‘Sym.’).  Values in the Rand* column are the minimum 

Benjamini adjusted EASE scores from random probe lists. 

 
  Benjamini Adjusted EASE Score 

Term Hit Rand* Loi A Loi P Sym. Zhang 

cell migration 54 8.24E-05 1.11E-13 1.20E-15 NA 6.09E-12 

cell motility 50 5.75E-05 1.31E-11 2.56E-13 NA 8.67E-13 

cellular response to organic 

substance 
209 5.55E-06 1.10E-14 4.40E-13 NA 3.21E-09 

localization of cell 50 5.75E-05 1.31E-11 2.56E-13 NA 8.67E-13 

cell proliferation 82 4.71E-05 4.57E-08 1.42E-11 NA 9.29E-13 

locomotion 59 1.34E-04 3.33E-10 4.16E-11 NA 6.55E-12 

biological adhesion 88 1.40E-05 4.76E-10 3.32E-18 2.32E-02 6.61E-11 

cell surface receptor signaling 

pathway 
129 4.64E-05 5.87E-11 2.81E-28 NA 1.47E-06 

positive regulation of multicellular 

organismal process 
95 1.99E-04 4.79E-08 7.93E-11 NA 3.10E-10 

regulation of cell motility 30 5.88E-05 1.38E-08 1.52E-11 NA 2.56E-10 

regulation of cell migration 27 4.90E-05 9.41E-10 3.64E-12 NA 2.45E-10 

regulation of locomotion 29 5.18E-05 2.19E-08 2.12E-11 NA 3.25E-10 

cell adhesion 84 2.39E-05 3.91E-10 2.67E-18 2.40E-02 6.24E-11 

regulation of cellular component 

movement 
36 4.47E-05 3.61E-08 3.46E-10 NA 1.87E-10 

response to organic substance 282 3.95E-07 9.52E-17 6.10E-13 3.49E-03 5.02E-09 

response to endogenous stimulus 141 6.20E-06 5.07E-11 1.09E-02 NA 1.62E-09 

enzyme linked receptor protein 

signaling pathway 
82 3.04E-04 1.34E-09 1.17E-02 NA 6.27E-11 

regulation of multicellular 

organismal development 
84 1.11E-04 1.53E-09 4.12E-05 NA 7.74E-13 

cellular response to chemical 

stimulus 
250 1.10E-06 5.66E-15 3.30E-15 3.84E-02 1.95E-08 

movement of cell or subcellular 

component 
68 1.54E-05 3.64E-09 6.45E-09 NA 3.12E-11 

regulation of immune system process 30 1.16E-03 4.24E-09 7.97E-48 NA 2.04E-02 

regulation of protein metabolic 

process 
128 1.41E-05 8.49E-10 4.40E-08 3.76E-02 1.06E-08 

positive regulation of response to 

stimulus 
130 1.62E-05 2.15E-08 8.08E-35 NA 2.81E-05 

cellular response to endogenous 

stimulus 
85 1.37E-05 1.44E-08 4.26E-02 NA 1.29E-09 

regulation of cellular protein 

metabolic process 
115 7.39E-05 5.81E-10 1.15E-05 3.43E-02 1.14E-08 

cellular response to oxygen-

containing compound 
44 1.93E-04 1.37E-04 7.62E-08 NA 1.03E-08 

positive regulation of locomotion 17 2.79E-04 1.22E-04 6.28E-09 NA 2.12E-07 
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Chapter 5 

EVALUATION AND CONCLUSIONS 

The driving hypothesis behind this project was that some of the genes involved 

in the maintenance of metastatic dormancy are expressed by cells which comprise the 

primary tumor.  Comparing tumor expression profiles from patients with late 

metastatic disease to such profiles from patients who appeared to remain dormant, was 

expected to reveal key genes that might have been associated with resumed 

proliferation of disseminated tumor cells.  The approach taken here was to compare 

expression profiles between two patient classes defined on distal metastasis free 

survival outcomes.  

 

Making direct, pairwise comparisons between two classes of sample, for 

example, “treatment vs control”, is a relatively common approach, having the 

advantage of simple implementation and ease of interpretability.  The GGI, an earlier 

breast cancer gene expression signature shown to be prognostic for early relapse, was 

developed by comparing expression profiles from Elston-Ellis Grade 1 tumors to 

profiles from Elston-Ellis Grade 3 tumors [25].  The GGI authors noted that patients 

with Grade 2 tumors presented a mixture of profiles, ranging from “Grade 1 like” to 

“Grade 3 like” with some intermediate responses [25].  These authors make a note of 

the appearance of a response “continuum” rather than a bi-modal division of patients 

into distinct classes [25].  This example is but one illustration of how wide the 

variation in human mRNA samples can be. 
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Unlike experimental replicates, samples from human patients cannot truly be 

considered identical.  Biological variation in patient’s life histories, exposures and 

genetic background can potentially influence gene expression.  For example, even in 

normal breast tissue, there are age dependent transcriptomic changes that show 

striking similarity to changes that occur in breast tumors (Pirone, 2012) [50].  In the 

Loi A data set analyzed in this project, the median age of patients in the “Late” group 

was 61 vs 55 in the “Never” group.  All four patients from “Loi A” in the “Never” 

group were negative for lymph node metastasis, whereas patients 6 of 15 “Late” group 

patients from “Loi A” were lymph node positive.  Median tumor size in the “Loi A 

Late” Group was 2.4 cm vs 0.6 cm for corresponding “Never” patients.  While none of 

these differences were statistically significant, the heterogeneity is still noteworthy.  

This is especially notable when the “Loi A” patients are compared to the “Loi P” 

patients where: median ages were 63 (“Late”) and 59 (“Never”), node involvement 

affected 10 of 14 “Loi P Late” patients and 20 of 26 “Loi P Never” patients, and 

median tumor sizes were 2.0 (“Late”) and 2.5 (“Never”).  Unfortunately, equivalently 

detailed clinical data was not available for the Zhang data set.  For the Symmans data 

set, nodal status data was available, and no significant differences between groups 

were observed.   

 

Perhaps the most important difference between the “Loi A” data set and the 

other three is the fact that none of the “Never” group patients in “Loi A” received 

Tamoxifen therapy, whereas in other data sets all patients were treated with tamoxifen.  

Tamoxifen is an anti-estrogen drug that reduces the risk of relapse in patients with 

ER+ tumors [51].  The current standard for adjuvant Tamoxifen therapy, originally 
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based on the 1987 “B-14” trial, is 5 years of treatment [52].  In the “ATLAS”, a more 

recent longitudinal study, the five-year standard Tamoxifen therapy was associated 

with a 25.1% risk of relapse and 15% risk of breast cancer related mortality [52].  For 

the data evaluated in this study, the administration of tamoxifen would have 

influenced relapse free survival and thus which patients ended up being assigned to the 

“Never” group vs. the “Late” group.  For example, it may have been the case for some 

patients that, without Tamoxifen, they would have experienced a distal relapse during 

the follow-up interval, and thus the expression profile from their primary tumor 

evaluated as a “Late” profile instead of a “Never”.  In a review from 2006, Tinker et. 

al. specifically note that such imbalances in patient’s therapeutic histories can be a 

confounding factor in attempts to mine gene signatures from microarray data [53].  

They go on to note various confounding factors and potential sources of error such as 

technical variation in sample processing, data overfitting, and of particular importance 

to this project, sample size considerations [53].   

 

In one study designed to assess the effects of sample size on signature 

development, muscle biopsies from 69 male and 65 female human subjects were 

profiled for gene expression via microarray.  These muscle biopsy profiles were used 

to develop a classifier to predict a person’s sex [54].  That analysis clearly illustrated 

how increased sample sizes improved both the prediction accuracy of classifiers and 

the number of genes with statistically significant differential expression in pairwise 

comparisons [54].  Notably, for a sample size of 5 per group, they found no genes with 

statistically significant differential expression.  For a sample size of 15 per group, 

Stretch et al. observed fewer than 25 significant differentially expressed genes [54].  In 
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the context of this project, three “Never” and one “Late” group consisted of fewer than 

10 patients.  Muscle biopsies are a likely to be a much more homogenous source than 

primary tumor tissue.  In light of the observed directional disagreements and weakness 

of adjusted p-values, sample size is an important factor to consider when evaluating 

the results of the analysis. On the other hand, there is evidence that even with smaller 

sample sizes, results at the pathway or process level can be reproducible across 

multiple separate trials [55].   

  

 With the four data sets analyzed here, there was remarkable consistency in 

process enrichments despite a lack of consensus at the level of differentially expressed 

genes.  Within the set of 180 overlapping processes there were many, such as “cell 

proliferation”, “cell adhesion”, and “MAPK Cascade”, that are potentially relevant to 

metastasis and dormancy; however, they are also relevant to a great many biological 

phenomena.  One interesting case is the term “platelet degranulation”, which was 

enriched in the gene lists from the “Loi A”, “Loi P” and “Zhang” datasets, as well as 3 

of 1000 random gene lists.  This process, through which platelets release the contents 

of storage granules in response to injury, and is indirectly related to the proposed 

uPAR mediated dormancy reactivation pathway [13, 14].  Recent evidence suggests an 

important role for platelets in the establishment of distal metastases [56]. Among the 

genes annotated with the term “platelet degranulation” is SERPINA1, which was 

observed to be upregulated in “Never” patients from “Loi A”, “Loi P” and “Zhang”.  

What makes this an interesting example, is that high levels of SERPINA1 expression 

are associated with improved survival in ER+ breast cancer [57].   
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Another interesting case is the term “ERK1 and ERK2 cascade”, which was 

enriched in both “Loi” data sets, though not in “Symmans” or “Zhang”.  This process 

has been implicated in the escape from a dormant state [13, 14].  However, for the two 

data sets where this process was enriched, the four genes differentially expressed in 

both are downregulated in “Never” patients from “Loi A” and upregulated in “Never” 

patients from “Loi P”.  Contradictions such as this were observed routinely in this 

analysis and make deeper levels of evaluation difficult. 

 

In evaluating future opportunities, sample size and data availability appear to 

be key considerations. The results from the Symmans data set in Never vs Late 

comparisons were weak in comparison to the other three data sets.  Given the issues 

observed with quality control probes it would be recommended to drop the Symmans 

data set from further analyses.   

 

The variability observed in this analysis may result from small sample sizes, 

differences in the therapy patients received, or in even in the qualities of the primary 

tumor.  It may be possible to increase sample size for the “Never” group by choosing a 

different cut-off between “Late” and “Never” patients, for example 10 or 15 years, 

across all data sets.  There may also be more microarray data available in the public 

domain that was missed during the initial search for studies.   

 

One data set (GEO accession: GSE7390), was excluded because its study-

specific cutoff of 19.7 years would have eliminated all but 1 ER positive patient from 

the “Never” group.  If a fixed 15-year cutoff had been used, there would have been 26 
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“Never” and 10 “Late” patients.  Another way to achieve increased sample size would 

be to combine samples from multiple studies.  This would require more sophisticated 

normalization techniques to eliminate batch effects due to variation between 

laboratories [29].  In addition, at least one RNA-seq based study (GEO accession: 

GSE119937) was available as of September 2018.  As the technology matures, more 

clinical studies with long follow-up intervals may become available.   

 

In addition to contradictory expression profiles, the lack of statistical 

significance when p-values were adjusted for false discovery (Benjamini-Hochberg) 

makes it impossible to identify a key gene set using the data evaluated in this study.  

Nevertheless, for three out of the four studies evaluated, enrichment results were 

highly inconsistent with those obtained by randomly generated lists of genes.  Of 

equal importance is the process level reproducibility between the three data sets.  

Thus, it is reasonable to conclude that some of the observations presented herein are 

the result of underlying biological differences between the “Never” and “Late” patient 

classes.   

 

In conclusion, enriched biological processes associated with proliferation, 

immune surveillance and hematological processes were identified.  These are all 

implicated in the escape from dormancy. However, due to variability between data 

sets it remains challenging to drill down into these processes to identify a signature, or 

individual genes that are fundamentally involved.   
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Appendix A 

SCREENSHOT OF GEO SUMMARY PAGE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Screenshot of the GEO Summary page.  

The url: “https://www.ncbi.nlm.nih.gov/geo/summary/?type=series” was 

accessed on November 11, 2018. 
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Appendix B 

PIPELINE OVERVIEW 

The analysis pipeline used here was divided into several R scripts that performed the 

following functions: 

1. Data Retrieval, identify patient subsets, quality metrics and 

normalization 

i. Individual processing scripts: LoiA_Analysis.r, 

LoiP_Analysis.r, Zhang_Analysis.r, Symmans_Analysis.r 

ii. Parsing Functions: KeyValueExtract.r 

2. Differential expression analysis, and DAVID Query Submission 

i. Limma_DAVID_Analysis.r 

3. Evaluate overlapping ontology 

i. Ontology_Overlap.r 

For Randomized Analyses: 

1. Generate 1000 Random Probe Lists, divided into batches of 100 

i. David_Random_Genelists.r 

2. Submit lists as DAVID queries and retrieve results. 

i. David_Query.r 

3. Tabulate query results and generate histograms.  

i. randomGene_analaysis.r 

All of the pipeline related scripts, and accompanying documentation have been 

deposited in a repository on GitHub URL:  

https://github.com/afaranda/NeverLatePipeline 

 

https://github.com/afaranda/NeverLatePipeline
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Appendix C 

PERSONAL COMMUNICATION WITH NIH STAFF RE: GOTERM_BP_FAT 
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Appendix D 

ARRAY QUALITY METRICS RESULTS 

 

 

 

 

 

 

 

Figure 11 Screen-Shots of AQM results 

from the Loi A data set 

a) Array metadata table b), Array clustering by 

distance, c) Outlier detection by distance (black 

line indicates a threshold of 8.93). d) First 2 

principal components; GSM65377 circled.  

a) 

c) 

b) 
d) 



 59 

 

Figure 12 Screen shot of Array Quality Metrics Metadata Overview from the Loi P 

Dataset 
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Figure 13 Screen shot of Array Quality Metrics Results from the Loi P dataset 

a) Box plots of probe intensities for each array, b) First two principal 

components (outliers circled) c) Density plots illustrating probe intensity 

distributions d) Outlier detection based on boxplots (black line is 

threshold of Ka = 0.0253 Kolmogorv-Smirnov vs. pooled density) 

 

a) 
b) 

c) 

d.) 
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Figure 14 Screen Shot of Array Quality Metrics Results from the Zhang dataset a) 

metadata overview, b) Array clustering by distance, c) Outlier detection 

by distance (black line indicates an outlier threshold of 6.55), d) First two 

principal components (outlier circled) 

a) 

b) c)

) 
 

b) 

d)

) 
 

b) 
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Figure 15 Screen shot of Array Quality Metrics Results from the Zhang dataset 

a) Box plots of probe intensities for each array (asterisk marks outlier) b) 

Outlier detection based on boxplots (black line is threshold of Ka = 

0.0371 Kolmogorv-Smirnov vs. pooled density), c) Density plots 

illustrating probe intensity distributions (asterisk marks outlier). 

 

 

* 

a) b) 

c) 
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Figure 16 Screen shot of Array Quality Metrics Results from the Symmans dataset 

Metadata overview 
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Figure 17 Screen shots of Array Quality 

Metrics Results from the Symmans dataset 

a) Arrays clustered by distance, b) Outlier 

detection by distance (black line indicates a 

detection threshold of 15), c) First two principal 

components (outliers circled), d) Box plots of 

probe intensities for each array (asterisks indicate 

outliers), e) Outlier detection based on boxplots 

(black line is threshold of Ka = 0.0259 

Kolmogorv-Smirnov vs. pooled density) 

 

a) 
b) 

c) 
d) 

e) 


