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Abstract

The dependence of thermodynamic properties of planar interphase boundaries (IPBs) and
antiphase boundaries (APBs) in a binary alloy on an FCC lattice is studied as a function
of their orientation. Using a recently-developed diffuse interface model based on three non-
conserved order parameters and the concentration, and a free energy density that gives a
realistic phase diagram with one disordered phase (A1) and two ordered phases (L1 and L1g)
such as occurs in the Cu-Au system, we are able to find IPBs and APBs between any pair of
phases and domains, and for all orientations. The model includes bulk and gradient terms in a
free energy functional, and assumes that there is no mismatch in the lattice parameters for the
disordered and ordered phases. We catalog the appropriate boundary conditions for all IPBs
and APBs. We then focus on the IPB between the disordered Al phase and the L1 ordered
phase. For this IPB we compute the numerical solution of the boundary value problem to find
its interfacial energy, 7, as a function of orientation, temperature, and chemical potential (or
composition). We determine the equilibrium shape for a precipitate of one phase within the
other using the Cahn-Hoffman ‘¢—vector’ formalism. We find that the profile of the interface
is determined only by one conserved and one non-conserved order parameter, which leads to
a surface energy which, as a function of orientation, is “transversely isotropic” with respect
to the tetragonal axis of the L1y phase. We verify the model’s consistency with the Gibbs
adsorption equation.

*Author to whom correspondence should be addressed; Tel: (302) 831-1869, Fax: (302) 831-4511, email:
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1 Introduction

In this paper we study the interphase boundaries (IPBs) and antiphase boundaries (APBs) that
occur during order-disorder transitions in an fcc-based binary alloy. We employ a free energy
density that provides a mean-field description of the fcc disordered phase (A1, in Strukturbericht
notation) and two ordered phases, both of which have wide ranges of composition away from
stoichiometry: the CugAu phase, typified by the Strukturbericht L1s structure, and the CuAu(I)
phase, typified by the Strukturbericht L1y structure, in the Cu—Au system. The fcc lattice can
be viewed as four interpenetrating simple cubic lattices. In the disordered A1 structure, the four
sublattices have equal probabilities of being occupied by either type of atom. In the L1y phase,
one of the sublattices has a different occupation probability than the other three sublattices; for
the L1 phase, two of the sublattices are occupied differently than the other two.

In previous work by the authors [1, 2, 3], a free energy density was employed which provided
a useful description of A1-L15 IPBs and LL1o APBs. In that model, however, the resulting phase
diagram featured a multicritical point for all three phases [4], rather than the separate congruent
disordering points with first order Al1-L1s and Al1-L1 transitions, as commonly observed in
fce systems such as Cu—Au. There was no co-existence of the Al and L1y phases; the A1-Llg
transition occurred only at the multicritical point and was second order. A more realistic phase
diagram can be obtained with the improved free energy that we employ here; there is A1-L1s
and A1-L1j coexistence and the transitions at the congruent points are both first order [5]. We
are then able to obtain A1-L1y IPBs, and verify the thermodynamic consistency of the resulting
model by examining, for example, the relationship due to Gibbs between changes in « and the
solute adsorption and excess entropy. We also compute the surface energy anisotropy of this
IPB.

Recently, a number of continuum theories of phase change have used combinations of con-
served and non-conserved order parameters with diffuse interfaces to predict or explain various
phenomena in, for example, the solidification of binary alloys [6, 7, 8, 9, 10] and Ostwald ripening
[11]. One method for treating diffuse interfaces is to use a free energy functional for the system
based on continuum parameters that are spatially varying. The functional is written as the in-
tegral of the sum of two kinds of terms: bulk energies that are multiple-well functions of these
parameters and gradient energies that are (generally quadratic) functions of the gradients of the

order parameters. Both terms contribute to the energy in the transition regions that separate



bulk phases; such gradient energy models date back more than a century [12, 13].

When there is a single non-conserved scalar order parameter, the usual form of the resulting
equation is the Cahn-Allen equation [14, 15]. When there is a single conserved parameter,
say composition, the result is the Cahn-Hilliard equation [16, 17] used to describe the spinodal
decomposition of a binary alloy. Phase-field descriptions of the solidification of binary alloys
combine elements of both Cahn-Allen and Cahn-Hilliard models (e.g., [6, 7, 8, 9, 10]).

Modeling that is based on a single composition variable and one order parameter cannot
fully describe the ordering in binary fcc alloys, such as Cu Au, which have three or more differ-
ent crystal structures, and many possible interfaces, such as IPBs between different structures
and APBs between domains or variants of the same ordered structures. The possible crystal
structures include the disordered fcc phase and two ordered phases with the prototype CusAu
and CuAu structures with Strukturbericht notations Al, L1s and L1g, respectively. The first
mean-field calculation of a phase diagram for such a system [4] gave a multiphase critical point
not seen in real phase diagrams and no coexistence between Al and L1g. A more sophisticated
calculation using the cluster variation method (CVM) succeeded in obtaining a realistic phase
diagram [18]. This method was used for calculating APBs in L1y and the Al-L1s IPB, but
it is mathematically cumbersome and was used only for some low-index orientations [19]. By
using three non-conserved order parameters and by adding appropriate higher-order terms to
a mean-field free energy, it became possible to obtain realistic phase diagrams [5] with a free
energy functional simple enough for interface property and profile calculations at all orientations
[1, 2, 3]; models in a similar vein have been developed by others [20, 21, 22, 23] and a more
complete introduction is given in [2].

Single-order-parameter continuum formulations with a second order gradient energy term in
cubic systems lead to isotropy of interfacial free energy -, unless the anisotropy is introduced
artificially with an orientation-dependent gradient coefficient [10, 24, 25, 26]. By anisotropy we
mean how the properties of a planar interface depend on the orientation of its normal relative
to the crystal axes. The multiple-order-parameter formulation leads to a natural anisotropy, i.e.
without introducing ad hoc parameters in the model, in fcc [2] and even transverse to a six-fold
axis in hep [27]. Furthermore, the orientation dependence of interfacial properties (such as the
interfacial energy and mobility [3]) is continuous and easily allows computation of the properties
for all orientations.

In the modeling and computations by Braun et al. [2], the overall concentration was assumed



to be uniform across the interface; the focus was on the role played by three non-conserved order
parameters in determining the anisotropy of IPBs and APBs. The model was successful in giving
the anisotropy of IPBs between the disordered A1l phase and the ordered L1s phase. The wetting
transition of the APB was also described. But for an IPB, a uniform composition is inconsistent
with the differences in the bulk concentrations in each phase at equilibrium as given by the phase
diagram. Moreover, for both APBs and IPBs, the assumption of a uniform composition leads to
no adsorption, so that finding a temperature and composition-dependent interfacial free energy
leads to a violation of the Gibbs adsorption equation.

We report the methods and results detailed in a recent study which examined all these
interfaces in a way that was consistent with the phase equilibria obtained with the improved free
energy [28]. The results are calculations of equilibrium properties, including the interfacial free
energy v, and the determination of the interface profiles which describes how the order parameter
and composition vary along the normal to the interface, for all of the various types of IPBs and
APBs as a function of orientation, temperature and chemical potential (or composition). In this
paper, we report the general methods for studying these interfaces, which includes a catalog of
APBs and IPBs, and then focus on one specific example, the IPB between the disordered fcc
phase (A1) and the ordered L1y phase. We allow the concentration to vary through the interface
in a manner that is consistent with the phase diagram.

In this paper we do not consider elastic energy contributions. Our model implicitly assumes
that there is no mismatch in the lattice parameters for the disordered and ordered phases, so
that elastic effects can be neglected. In reality, there is always a change in the lattice parameters
in an order-disorder transition, though the size of the mismatch can be small; in practice, com-
mercial alloys often have additional chemical components added to produce lattice matching. In
any event, the surface properties of IPBs naturally scale differently with length than the elastic
effects, with surface effects dominating at small volumes. Here we effectively restrict attention
to small length scales, for which the volumetric elastic contributions to the total energy are neg-
ligible compared to the surface energy contributions. The competition between surface energy
and elastic energy has been studied by a number of authors (see, e.g. [29, 30, 31]). For example,
Johnson and Cahn [29] studied a bifurcation in the shape of equilibrium particles that occurs
with increasing particle size. For small particles the equilibrium shape is the Wulff shape entirely
determined by minimization of surface energy. Beyond a critical size, elastic energy becomes a

factor in the energy minimization. To minimize total energy these larger-sized particles resemble



oblate ellipsoids, a compromise between the infinite plates that would minimize the elastic en-
ergy alone, and Wulff shapes that minimize the surface energy. In the present work we compute
equilibrium shapes that resemble prolate (cigar-shaped) ellipsoids entirely from minimizing sur-
face energy for an L1y particle embedded in A1, or vice versa, in the absence of elastic effects.
Muddle, Nie, and Hugo [32] have observed equilibrium A1-L1y microstructures in Au-Cu systems
with plate-like features that differ qualitatively from the equilibrium shapes that we compute.
These larger-scale, plate-like structures have their origin in the theory of energy minimization in
martensite transformations (see, e.g., [33]), which is beyond the scope of the present paper.
The present paper is organized as follows. The formulation is introduced in Section 2. We
briefly explain the order parameters, the bulk free energy density, the bulk equilibrium states,
the gradient energy contribution, and the catalog of all the interface types that can be studied
with our model. The numerical method for the solution of the governing equations is presented
in Section 3. In Section 4 some A1-L1g IPB results are discussed, including the verification of the
Gibbs adsorption equation for an A1-L1y IPB and the transverse isotropy of the surface energy
relative to the c-axis of the tetragonal L1y phase. The resulting anisotropic interface energies,
their profiles, and the associated equilibrium shape for particles of one phase inside another are
also given, based on Cahn-Hoffman & vector formalism. Finally, a summary and discussion is

given in section 5.

2 Formulation

For a binary alloy, conventional continuum theories for equilibria and kinetic processes on lattices
are based on the assumption that the site occupation densities are varying slowly compared to
the atomic spacing. This assumption is not valid when there is ordering; the occupation densities
of adjacent sites will vary greatly if the sites belong to different ordering sublattices. Instead, by
defining an occupation density p; on each of the sublattices we obtain a set of quantities that
are constant in each domain of an equilibrated ordered phase, and are slowly varying through
the interfaces compared to the atomic spacing [34].

To describe the various ordered phases that we wish to consider for an A-B binary system,
we choose four sublattices as shown in Fig. 1, and denote by p; the occupation density on
each sublattice. Each density represents the local average atomic fraction of species A on that
sublattice; their specification is assumed to characterize the local state of the crystal at a given

temperature, T



2.1 The Order Parameters

Since the differences in the p; describe the degree of order, it is convenient to introduce the

parameters W, X, Y, and Z defined by

W= %(Pl +p2 +p3+pa)s (1a)
X = % (p1+p2 —p3 — pa), (1b)
Y = %(Pl —p2+p3—pa), (Lc)
Z = % (p1 —p2 — p3 +pa)- (1d)

This definition is consistent with a local representation
p=W+ Xcos(2rz/a) +Y cos(2my/a) + Z cos(2nz/a), (2)

where z, y, and z range over the sublattices, and a is the lattice parameter. The parameter W
thus represents the overall or mean atomic fraction of the system, and the coeflicients X, Y, and
Z are non-conserved order parameters that can vary between +1/2. In this model, the disordered
A1 phase [35] is represented by p; = p2 = p3 = pgy = W, which implies that X =Y = Z = 0.
The ordered L1 phase is described by pairs of sublattices with equal occupation densities, which
leads to a single non-zero non-conserved order parameter, X,Y, or Z # 0. The ordered L1,
phase is described by three sublattices whose densities are equal, and differ from the remaining
sublattice density, which leads to non-conserved order parameters of equal (non-zero) magnitude,
X=4Y =47 #£0.

Scalar invariants of the order parameters are found from the symmetry of the fcc lattice

[2, 23]. The first four are (X2 +Y2+ Z%), XY Z, (X*+Y*+Z%), and (X?Y2+ Y222 + Z2X?).
2.2 Bulk Free Energy Density

A thermodynamic description of a partially ordered crystal for the case of an isothermal system
can be based on a Landau expansion of a generalized dimensionless scalar free energy density in

terms of the scalar invariants [36],

F(X,Y,Z,W,T) = _vi [eO(W) +eo(W) (X2 4+ Y24+ Z2) 4 e3(W)XYZ +eq (X + Y+ 24
2v2 272 2 r72 RT .

ten(X2Y? + X222 +Y?2%)| + = > 1(pi) (3)
moi—=1



where the entropy term is taken as due to ideal mixing on each sublattice,

I(pi) = piln(pi) + (1 = pi) In(1 = p;). (4)

Here w is the bond energy per mole, R is the universal gas constant, v,, is the molar volume;
a bar denotes a dimensional variable. It is sometimes convenient to expand the entropy change
on ordering in terms of these same invariants to eighth order. The ordering spinodal [37] for
L1y occurs when 0°F/0X? = 0at X =Y = Z = 0. For L1y to form with a first order phase
transition, it is necessary that 0*F /0X 4 < 0; eq; has to be large and negative to overcome the
positive entropy contribution.

If the internal energy FE is approximated by considering only pairwise bond energies with
neighbors at any distance there will be only quadratic contributions to the energy and e4; = 0.
Multi-atom interactions among at least four neighbors must be considered to yield energy terms
that are products of four or more p, which upon conversion to the X, Y, and Z parameters give
contributions to e4;. The coefficients used for the internal energy contribution to the free energy
density that give the phase diagram in Fig. 2 are given in Table 1. We will use these parameters

for all computations in this paper.
2.3 Bulk States

For the free energy densities given in this section (2.3), we have nondimensionalized with —w /v,
and the temperature has been nondimensionalized with —w/R.

If the entropy is expanded to eighth order in the order parameters it is easy to show by
minimizing F' with respect to the order parameters that the only minima in the free energy occur
at X =Y =7=0, at | X| =1|Y| =|Z| # 0 with the signs chosen to make e3 XY Z < 0, and at
X, Y, or Z # 0 with the other two order parameters equal to zero.

The trivial solution X =Y = Z = 0 represents the disordered or Al phase. For this phase,

we have from (3)
Fai(W,T) = F(0,0,0,W,T) = eo(W)+TI(W). (5)

For the L1y phase, corresponding to only one nonzero order parameter, the free energy is, again

from (3)

Fr1,(Z,W,T) = F(0,0,Z,W,T) = eo(W)+ex(W)Z? +ennZ* +

g (W + 7) + I(W = 7)]. (6)



Possible variants are Z # X =Y =0, X #Y =Z =0or Y # X = Z = 0. This phase
corresponds to alternating layers of uniform occupation densities, which is the CuAu(I) phase in
the Cu-Au system [38]. Finally, for the L1y phase where | X| = |Y| = |Z| # 0, the free energy
(3) becomes (with e3(W)Z3 < 0)

Fr,(ZW,T)=F(Z,Z,Z,W,T) = ey(W)+ 3ea(W)Z? +
e3(W)Z> + 3(eqr + ea2) Z* +

% [L(W +3Z) + 31(W — Z)]. (7)

If W < 1/2 (see Table 1), es is negative and the appropriate sign for the order parameter 7
is positive. When W > 1/2, e3 is positive and Z is negative. These two cases correspond to the
two L1y phases, e.g. CuAus and CusAu.

Equilibrium phases can be found by convexification of the graphs of the three energies (5),
(6), and (7) for fixed temperature. When there is a common tangent between the curves of
two or three phases the points of tangency determine the compositions of the coexisting phases;
the tangency points are found by solving nonlinear algebraic equations. For example, for the

coexistence of A1-L1j at temperature T, we must solve

agglo (ZLlov WLlov T) - 07 (83‘)
8FL1 aFAI

8W0 (Z119, W10, T) = Bl (War,T) = p, (8b)
Fai(Wa1,T) — Fr1y(Z019 W0, T) — pf(Wr1, — War) = 0, (8c)

for the unknowns Zr1,, Wr1,, Wa1 and p where the subscripts denote the values in that phase at
coexistence. Similarly, we may solve the analogous non-linear systems of equations for the Al-
L1y and L1o-L1g coexistences. These algebraic equations were all solved by using the software
package DNSQ [39, 40].

Using the coefficients in Table 1 and plotting the tangent compositions as a function of
temperature results in the equilibrium phase diagram of Fig. 2 (after Braun et al. [5]). We
have chosen the coefficients so that the congruent temperature 7, at W = W, = 1/2 occurs
at T = T, ~ 2.635. The congruent point is found from Equations (8) with Wy = Wiry,;
under these conditions, both phases have identical free energy densities as well. The phase
diagram is an idealized version of the Cu-Au phase diagram [38]. For example, our phase

diagram is symmetrical about W = 1/2 and does not have the orthorhombic CuAu(ll) phase



near W = 1/2; CuAu(Il) does not appear in most other theoretical phase diagrams, such those
from CVM calculations [35, 37, 41, 42].

The temperature of the congruent point for the Al-L1lo transition can be normalized to a
dimensional value of T, = 658K, appropriate for the Au-Cu system, by choosing the temperature
scale —wR /vy, = 248K. This choice approximately fits the Au-Cu phase diagram[38], but we have
made no attempt beyond this to optimize the fit of the phase diagram to other experimentally

measured data. Such a fit could certainly be done.

2.4 The Gradient Energy

The symmetries associated with the Al crystal structure restrict the possible forms of gradient
energy which must be added to the free energy density. By invoking the Fm3m symmetry of
the A1 crystal we find that the gradient energy term can be written in the relatively simple form

(2, 23]

A B C -
5(X5:2 +Y;%+ Z:) + 5(Xz72 + X2+ Y+ 20+ 27 + 5|VW\2, (9)

where A, B and C' are independent, constants. The dimensional system free energy thus has the

form?

) _ A B
F = {F(X,Y,Z,W,T)+§(Xx2+Yy2+Zz2)+§(Xy2+Xz2+Yx2+Yz2+Zx2+Zy2)
JV
g _
2

|VW|2} dv. (10)

2.5 Governing Equations for Interfaces

We wish to find equilibria which connect two coexistence phases or two domains of an equilibrium

along a planar boundary. To do this we minimize the functional

7 - f—ﬂo/_WdV, (11)
1%

with respect to the non-conserved order parameters X, Y, Z and the conserved order parameter

W, with far-field boundary conditions imposed on the equilibrium phases. The second term in

Equation (11) represents a constraint on the amount of solute in the volume, and the Lagrange

!Note the analogy with expressions for elastic energy in cubic crystals. If we let (X,Y, Z) be the analog of
displacement, A is identified with Ci1, B with C44. The Ci2 term is absent because of the fcc symmetry. We
emphasize, however, that the nonconserved order parameters do not constitute the components of a tensor, nor
do the gradient energy coefficients transform as a fourth-rank tensor, as discussed in Appendix B of Ref. [2].



multiplier fig will be seen to be the difference in the chemical potentials of the two species. When
there is phase coexistence pg = . Thus the governing equations are obtained as follows:
0T 0T 6T I
—=——=—=— = 0. 12
6X 0Y o6z oW (12)

Evaluating the functional derivatives (see, e.g., [43]) gives

0 = AXz + BXy; + BXs; — Fx, (13a)
0 = BYy + AYy; + BY:: — Fy, (13b)
0 = BZy+ BZyy+ AZz; — Fz, (13c)
0 = C(Waz+ Wy + Wsz) — Fw + fio. (13d)

Here subscripts denote partial derivatives, with Xzz = 02X/0z%, Fx = 0F/0X, etc. In this
paper, we only consider stationary planar interfaces, and assume that the order parameters vary
only in the direction parallel to the unit normal to the interface. We introduce a nondimensional

spatial variable, distance along the normal, defined as

n-X
C::L_o (14)

where 1 = (ng,ny,n.) denotes the unit normal, x = (7,7, ) is the position vector and Ly =
VAv,, /(—w) is the characteristic length scale. The temperature and the free energy density
are made dimensionless with —w/R and —w/v,,, respectively. This leads to the nondimensional

system of ordinary differential equations

NXee = Fx(X,Y,Z,W.T), (15a)
MY = F(X.Y.Z,W.T), (15b)
NZy = Fz(X,Y,Z,W,T), (15¢)
FWee = Fw(X,Y,Z,W,T)— po. (15d)
The coefficients in Equation (15) are given by
Moo= n?y 62n3 + e2n?, (16a)
2 _ 2.2, .2 22
A, = €ngtn,teng, (16b)
o= énly eQnZ + n2. (16¢)

Here we have introduced the dimensionless parameters €2 = B/A and §2 = C/A.
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The right-hand sides in Equation (15) are nonlinear expressions which include polynomials
up to fourth degree and logarithmic terms. Explicit expressions for the derivatives of F' are given
in Appendix A.

The equations (15) govern the transitions between bulk states for any phase boundaries al-
lowed in the phase diagram; the bulk states provide the appropriate far-field boundary conditions

for the ordinary differential equations (15) and together they constitute our model for IPBs.

2.6 Catalog and symmetries of phase boundaries

Only bulk state solutions representing the A1, L1s, and L1y phases occur in the phase diagram
with W < 1/2. In this section, we show that the symmetry of the fcc lattice and the free energy
functional allows us to reduce the number of cases to three APBs and four IPBs, each for all
orientations of 7. We note that the possibilities for APBs in this system have been enumerated
by Mazauric [44], for example, but we wish to give a comprehensive list for both IPBs and APBs

in the context of our model for convenience.

2.6.1 1IPBs

For the Al-L1s interface the trivial solution X = Y = Z = 0 represents the disordered Al
phase, while X =Y = Z £ 0 represents the LL15 phase. Although there are 4 different variants
of this phase, they are equivalent by a translation by § (110), where a is the lattice parameter.
Therefore only one possible set of boundary conditions needs to be considered for the A1-L1s
interface. The symmetry of the interfacial properties as a function of 7, such as (i) and the
Wulff shape, is m3m.

For the A1 L1 interface, we consider the case where X =Y = 0 in both the bulk regions
with Z = Zr;1, # 0 in the bulk L1p; i.e. making z the four-fold or c-axis of L1y. Since Fr;, and
Zg are even in Z, the resulting interfacial properties are identical for either sign of Zr,. Similar
symmetry arises for the other order parameters being non-zero, but the resulting energies are
related by a rotation about (111). Thus, we need only compute with a single set of boundary
conditions for this case to observe the resulting interfaces and their properties. The symmetry
of the interfacial properties is 4/mmm.

For the L1,—L1j interface, there are two possible boundary conditions for our system of
equations. The order parameters may vary from X =Y = Z = Zr;, > 0 (the L1y bulk state)
to X =Y = 0 and either to Z = Zr;, > 0 or to Z = —Zp,, (the L1y bulk state). All other

11



possibilities are equivalent to one or the other of these cases. Therefore, there are two cases to
be considered for L15-L1 interface. The symmetry of the interfacial properties is 4/mmm for

both.
2.6.2 APBs

Antiphase boundaries separate two variants of the same ordered phase that necessarily share the
same bulk free energy. For the L1o APB there are three possible displacement vectors that relate

two variants: §[011], §[101], and §[110]. The shifts along these vectors change the sign of two of

2
the non-conserved order parameters. Only one four-fold axis is common to both domains because
the shifts move the other two of the four-fold axes of one domain to coincide with 2-fold axes of the
other. The Wulff symmetry is 4/mmm. Because of the symmetry of the free energy functional,
all cases may be reduced to one possible set of boundary conditions; i.e., X =Y =2 =Zr;, >0
and —X = -Y =7 = Zr;, > 0. All other combinations result in interfacial energies that are
simply rotated and/or translated with respect to this case.

The L1y structure is formed by alternating planes of uniform occupation densities. Two
possible sets of boundary conditions may be found by making changes between the two equal
pairs of occupation densities. In the first set, three non-conserved order parameters may vary
from X =Y =0,Z=Zp1,to X =72 =0,Y = Zjp, a 90 degree rotation of the layers. In the
second set, they may vary from X =Y =0, 72 =Zr;,to X =Y =0, Z = —Zr;,. All other sets
can be obtained from these two sets by using appropriate rotations, so only two sets of boundary
conditions need to be considered for L1y APBs.

To summarize, there are a total of seven cases to be considered for IPBs and APBs in this

model of the fce binary alloy.

3 Numerical methods

To compute solutions of the nonlinear system of ordinary differential equations (15) with the
boundary conditions obtained from the phase diagram, we used two numerical methods. First,
we used the boundary value problem solver COLNEW [45]; this package uses a Runge-Kutta basis
on subintervals with variable spacing to provide the solution on an adaptive mesh. The solution
is given as a list of coefficients for polynomials on the subintervals, but the solution may be
accurately evaluated anywhere in the interval of the computation and so one is not limited to a

given mesh.

12



In the second approach, we employed a second-order, centered finite difference approximation
to the spatial derivatives and solved the resulting nonlinear algebraic equations by using DNSQ
[39, 40]. For the A1-L1( IPB, we can reduce the number of differential equations in (15) to two;
this makes the second method reasonably efficient. Although the second method is slower than
the first, the two methods are in good agreement (up to five significant digits) when both are

used.

4 Results for the A1-L1, IPB

In the previous section we saw that the seven cases considered in [28] form a catalog. Although
every case can be treated with the methods developed here, we consider here just one case to
illustrate the methods: the IPBs connecting the disordered A1l phase and the ordered L1 phase
near the upper right hand corner of the phase diagram in Fig. 2, which could not be treated with
the free energy used previously [2]. The remaining cases will be described separately [46].

For the L1y phase, X =Y = 0 and only Z and W are nonzero. The bulk free energy density
reduces to Fr1,(Zr1, Wri,,1') as given in (6). We must solve Eqn (15) subject to the boundary

conditions

W=Ws,X=Y=27=0, as ( — —oo,

W =W, X=Y=0,2=2p, as ¢ — oo (17)

Numerically these conditions are applied at the ends of the computational domain, z = + L, and
L is made sufficiently large that the results are insensitive to it. The equations for X and Y in
(15) have the solution X (¢) = Y ({) = 0, so we must solve the remaining equations for Z and W.
When we have solutions for Z and W, the interfacial energy v may be computed from either
of the followings integrals:
v = /_o:o {62Z§+52Wg}dc, (18)
or
)= / { 234+ % WC+AF}dC (19)
The first integral of the Euler equations and boundary conditions yield
€2 52
AF = Fr1,(Z,W,T) — Fr1,(0, Wa1,T) — (W — Wa1)Fr1o,w (0, Wa1,T) = _ZC + = WC (20)

Because of this equation the two expressions for v, (18), and (19) are equivalent.

13



The solution to the system of ordinary differential equations for the planar IPB (i.e. with
¢ as the only independent variable) with the given boundary conditions with X =Y = 0 is
conjectured to give the unique minimum energy; if we have a unique minimum the appearance
of additional phases in the interfacial region (“wetting behavior,” see, e.g., [2]) does not occur
for any orientation and temperature. Any proof that this solution to the ODE is a minimum
applies only to the planar boundary and does not preclude the possibility of solutions having a
microstructure with more complicated spatial dependence on z, y, and z (e.g. a zig-zag boundary)
that satisfy the system of partial differential equations (13) rather than the ordinary differential

equations.

4.1 Transverse Isotropy of the Surface Energy

The only dependence on the direction of the interface normal in the ordinary differential equations
for Z and W is contained in A\2. By expressing the components of the unit normal vector in

spherical coordinates,
ng =singcos n, =sin¢gsingd and n, = cos ¢, (21)
where ¢ is the polar angle and 6 is the azimuthal angle, from Equation (16) we find

N =csin?¢p+cos®p=1+ (62 - 1) sin® ¢, (22)

2=

which depends only on the polar angle, ¢. A function of the orientation that is independent of
0, the azimuthal angle is called “transversely isotropic.” We predict that + for the Al- L1y IPB
should be transversely isotropic with respect to the c-axis of the tetragonal L1y phase.
Moreover, this equation relates ¢ and e to a single computational variable, \,. Properties
are not determined by ¢ and ¢, but by the value of A\, according to Eqn. (22). Computing
interface properties for a range of A, can be accomplished in a variety of ways. We have chosen
to present interface profiles at ¢ = 0, i.e., for the [001] orientation with A2 = 1, and at ¢ = 90°,
i.e., for the [100] orientation with A2 = ¢2. Because of the transverse isotropy, we can use [100]
to designate (hk0) results, as well as (R'0l') to designate (hkl) results, with h//l' = VA2 + E2/1.

The orientation dependence of interfacial energy is computed for given values of €.

4.2 The Gibbs Adsorption Equation

We next verify that the appropriate form of the Gibbs adsorption equation holds for our model.

This equation relates the variation, dy/dT, of the surface energy of the IPB along the coexistence
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region of the phase diagram to the adsorption of solute and entropy at the interface (see, e.g.,
[47]). Following the development given by Cahn in Ref. [48], in Appendix B we show that this

equation takes the form

where S = —0F /0T is the entropy density and S4; is its value in the bulk A1l phase, etc. We
have computed the quantity dv/dT along the coexistence region and found that it agrees with
our computed results for v(7T") that were computed directly from the IPB profiles; results are
given in Table 2. The first column is the temperature; column 2 is the result of evaluating (23)
using the composite trapezoidal rule with computed data for the order parameters. Column 3
is a centered finite difference approximation to the numerical data plotted in Figure 9 for [001].
Columns 4 and 5 give analogous results for [100]. Good agreement is seen between the slope of
the v(T) plot from both sources, verifying explicitly that our model and numerical solutions are
consistent with the Gibbs adsorption equation.

The sign of dy/dT changes at orientations between [001] and [100]. Figure 3 shows dv/dT as

a function of the azimuthal angle ¢; the zero of dy/dT occurs at about 65°.
4.3 Interface profile

We next consider the interface profile and surface energy anisotropy at the congruent temperature,
T, =~ 2.635, and composition W = 1/2, for representative orientations with 2 = 0.005. Figures
4 and 5 show the interface profile for the [100] and [001] orientations, respectively, at the critical
temperature. From Equation (22) and the text after it, we can see that the [001] interface profile
is independent of €2. Also, the [100] orientation has a sharper interface than the [001] orientation
for decreasing €2 < 1. The phase diagram shown in Fig. (2) is symmetric about W = 1/2;
therefore W has the same value through the interfacial region and bulk states.

We next consider the case T = 2.5 for [100] and [001] orientations. The interface profiles for
these orientations are in Figs. 6 and 7. Z is wider than W for [001] in Fig. 7. It is again observed

that the thickness of the interface for [100] is smaller than that of the interface for [001].
4.4 Surface energy anisotropy

Since v(¢, ) = v(¢) we can represent v as a two-dimensional polar plot as shown in Fig. 8. As
can be seen in this figure, the minimum energy occurs in the [100] direction and the maximum

energy occurs in the [001] direction.
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In Fig. 9 we compare the surface energies for [001] and [100] orientations as a function of
temperature. The difference between the maximum and minimum energy becomes larger as the
critical temperature T, is approached; i.e., the degree of anisotropy reaches a maximum value
at T.. Strong tetragonal anisotropy is found for the range of temperatures given in Fig. 10 for
€2=0.05. In CVM computation of interfacial properties for bee [49] and fee [19] materials, that
the difference between the interfacial energies increases at lower temperatures and then decreases
at high temperatures. While it is common for materials to have the anisotropy decrease with
increasing (high) temperature, it does not happen to be so for our model as we discuss shortly.

This trend of increasing anisotropy with temperature is amplified as ¢ decreases from unity.
Numerical approximations of the interfacial energies at various orientations, for temperatures
T =T, and T = 2.5 and for €= 0.005, are compared in Table 3. By comparing Fig. 10
and Table 3, we observe that the level of anisotropy is increasing for smaller gradient energy
coefficients (e2= 0.005).

In fact, the level of anisotropy increases dramatically as € — 0 at the congruent point (W, T') =
(1/2,T.) because y100 o € there. This can be seen as follows. At the congruent point, the IPB
profile satisfies W = 1/2 and

N2 Zce = F.(0,0,2,1/2,T.), (24)

where ) is given in Equation (16). The interfacial energy ~(ns, ny, n,) computed from equation

(24) then satisfies

7 (ne, my, n2) 22 1 2 2
Do P T2 — |\ [e(n2 +n2) + n2, 25
LU = e nd +nf) + 2 (25)

[c.f. Equation (6.1) in [2] for the analogous APB result]. The ratio yp01/7v100 = €' therefore
diverges in the limit as € — 0 at the congruent point. When ¢ = 1, the IPBs are isotropic. In the
model we must therefore see an increase in anisotropy as the congruent point is approached for
small €, since the level of anisotropy away from the congruent point remains bounded due to the
contribution from the variation of the concentration W through the interface. We note that the
limit ¢ — 0 corresponds to neglecting the second-nearest-neighbor interactions in the derivation
of the gradient energy terms given in [2]; the remaining contributions from the nearest-neighbor

terms are highly orientation-dependent.
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4.5 Equilibrium Shapes

We next use the Cahn—Hoffman &—vector formalism [50, 51] to determine the equilibrium shapes

given by the anisotropy of the interfacial energy. The &—vector is defined by

E=T+ 996+ 5 20 = VIr1(6,0)] (26)

where the radial unit vector 7(6, ¢) = 7 is normal to the interface. The unit vectors g and qi_; are
tangent to the interface. The £&—vector reduces to the form E = 1 for the isotropic case (constant
7). In the anisotropic case, the £ vector is in the direction of the normal to the 1/v(0,¢) plot
defined by r = 1/v(0, ¢). Its component in the radial direction is 7. To obtain the equilibrium
shape, the “tail” of the £&—vector is translated to the origin for each orientation; the collection
of all the f—vectors is then the g—surface. The fisurface minimizes the surface energy for a fixed
volume if it is a convex shape; in that case it is identical to the Wulff shape [52, 53]. In other
cases, the E-surface is not convex and intersects itself, exhibiting “cars” (see, e.g., [2]). If the ears
are excluded from the éisurface, the remaining surface represents the equilibrium Wulff shape.

In order to compute the E surface for A1 L1y IPBs, v is first obtained in terms of ¢ numeri-
cally on a regularly spaced mesh with A¢ = 1.5°; our solutions are independent of 6. By using
the formulas given in the appendix of [54], we compute fisurface data in Cartesian coordinates.
For those explicit formulas, we employ centered finite difference formulas using the discrete data
in order to approximate .

A cross section of the equilibrium shape for the transversely isotropic A1-Lly IPBs (e #
0) is shown in Fig. 11. The equilibrium shape is a body of revolution about [001]; the cross
section perpendicular to that axis is thus a circle. The long side regions include the low-energy
orientations at and near (hk0); [001] and nearby orientations have high energy and contribute
little to the area of the equilibrium shape. A consequence of the increase in the level of anisotropy
as € — 0 is that the equilibrium shapes are increasingly elongated; they do not appear to develop

missing orientations for any finite value of ¢, however.

5 Summary and Discussion

We present a model for the free energy of a binary alloy which incorporates a model phase diagram
and can be used to compute properties of diffuse-interfaces; the model uses one conserved order
parameter (the composition), and three non-conserved order parameters [5]. The model can

describe a variety of phase diagrams; a series of diagrams topologically similar to the Au-Cu
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system was presented in [5]. It can be used for other ordered crystal structures that occur
in fcc and other systems [27], though more order parameters may be required. This method
allows the computation of interfaces for all orientations at a wide variety of conditions. Other
methods, notably CVM, can approximate quite complicated phase diagrams, but are difficult
to implement except for interfaces with low-index directions. The method is a powerful tool
for computing interfaces and their motion in microstructure evolution with a natural way of
incorporating anisotropy [3], and using using realistic phase diagrams.

For a phase diagram containing the A1 phase and the ordered L1y and L1y phases, similar
to what is seen in the Au-Cu system, we present a catalog of the interfaces. There are IPBs that
can coexist between the disordered A1 phase and the ordered L1y and L1, phases, and between
the two ordered phases. The symmetry of the underlying lattice can be used to deduce that
only one variant of each ordered phase is necessary to compute the anisotropy of the interfacial
energy for the order-disorder IPBs; all other cases are related by simple rotation to these cases.
The order-order IPBs require that the two variants of the L1y phase be used with a single L1g
variant in order to compute the possible interfacial energy anisotropies; all other cases can be
found by simple rotations of these two results. There are also APBs in the single phase regions
of the ordered phases. For the L1y phase, only one case must be computed; for the L1y phase,
two cases must be computed. Our model can compute all seven of these cases using a single
formulation spanning the whole phase diagram.

The free energy density employed in this work and in Ref. [28] allows a generalization of
previous work on Al and L1y in which the composition was held fixed at the stoichiometric
value for the L1y phase throughout the interface [1, 2, 3]. That free energy also prevented the
consideration of the Al-L1y IPB due to the absence of coexistence between the Al and L1
phases [4]. The new free energy allows us to focus on the interface profile and anisotropy for
A1-L1j IPBs; equilibrium shapes are also computed by considering only the interfacial energy
(elastic effects and lattice mismatch are neglected).

Mathematically, the problem for planar A1-L1y IPBs is a nonlinear boundary value problem
which has a solution that connects two different states in the dependent variables (a heteroclinic
connection). ;From our numerically-computed solutions, we observe the profile of the interfaces,
as well as compute interfacial energies. Once the energies are known, we compute equilibrium
shapes using the &-vector.

Although we find that the IPBs energies are transversely isotropic, we also found strong
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anisotropy with variations in the polar angle ¢. The ¢ orientation dependence only served to
widen or narrow the interfaces and no wetting behavior by other phases was observed. The
computed compositions always varied smoothly and monotonically between the value for the Al
phase, low in this half of the phase diagram, to the higher value in the L1y phase. At the A1-L1
congruent point the composition was constant throughout the IPB; this necessarily occurred due
to the symmetry of our chosen free energy and resulting phase diagram; it is not expected in a
real system. Anisotropy of interfaces has also been studied using the CVM (for example [19, 44]);
to our knowledge, the CVM has not been used to study the A1 L1y interface.

The transversely isotropic surface energy that we have found highlights an unexpected diffi-
culty in using symmetry arguments to predict the surface energy anisotropy of diffuse interfaces
from the high symmetry of the gradient energy. Orientation dependent surface energies in crys-
talline systems, and the associated Wulff shapes, reflect the symmetries of the crystals, but they
are not tensor properties. Gradient energy coefficients can sometimes be shown to transform like
tensors, and then the orientation dependence of v can be deduced from the symmetry properties
of such tensors. Tensors of rank 2 are transversely isotropic to 3, 4, and 6 fold axes, and thus
isotropic for cubic symmetry [55]. Tensors of rank 4 are transversely isotropic to 3 and 6 fold
axes. Tensors of rank 4 for a cubic system are described by three numbers and are anisotropic,
unless there is a special relationship among these numbers. With an energy that is quadratic in
the gradient of a single dependent variable, the gradient energy coefficient is a tensor of rank 2.
We showed that the coefficients of an energy quadratic in the gradients of the three dependent
variables, X,Y and Z, do not behave as tensors. Nonetheless for the fcc system we found them
to be described by two of the three non-zero elements that appear in a tensor of rank four with
cubic symmetry. This is consistent with what we found for the A1-L15 IPB; the Wulff shape has
a marked anisotropy consistent with the cubic symmetry. But we now have found two surprises:
firstly, transverse isotropy in v and in the Wulff shape for the Al-L1y IPB with only tetrag-
onal symmetry is greater symmetry than expected. Secondly, we found less symmetry in the
hep investigation; there was no isotropy transverse to the 6 fold axis. Here the gradient energy
coefficient bore no resemblance to elements in a tensor of rank 4, which not only confirms that
these coefficients are not tensors, but forms a strong counterexample to any conjecture that the
orientation dependence of v of a diffuse interface might reflect that of a low rank tensor. Both the

fcc and the hep systems each feature three nonconserved order parameters X; and a conserved
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order parameter W and the free energy functional for each model has the general form
F = / {Cijlei,ij,l +co| VW + f(X1, Xo, X3, W, T)} - (27)

The three nonconserved order parameters X; and the gradient energy coefficients ¢;;; do not
transform as tensors under changes of coordinates. For the hcp crystal, the disordered state
where either type of atom is equally likely to occur on any of the four sublattices, the structure is
designated A3 in Strukturbericht notation. When one of the sublattices is occupied (on average)
by a different atom than the other three, the crystal structure is denoted DOqg; this ordered
state is exactly analogous to the L1s structure on an fcc lattice.

If one were to reason by analogy with the elastic case, then, both the transverse isotropy of
the A1-L1g IPB surface energy and the 6-fold anisotropy of the A3-DO19 IPB surface energy
is unexpected. We also note that the Al-L.1g IPB involves a single non-zero non-conserved
order parameter, whereas the A1 Lly and A3 DOjg IPB involve three non-zero non-conserved
order parameters. In addition, wetting by a third phase also occurs for the latter two cases, which
plays a role in the observed transverse anisotropy for these IPBs. If the three non-conserved order
parameters are constrained to remain equal throughout the interfacial region (which precludes
wetting), the resulting system is effectively a single-order-parameter model, and an isotropic
surface energy results.

The A1-L1j equilibrium shapes resulting from £—vector calculations are bodies of revolution,
and no missing orientations occurred for the parameters we studied. The cross section of the
anisotropic equilibrium shape (in the absence of elastic effects) is roughly an ellipse for fixed
azimuthal angle 6 and exactly a circle for fixed polar angle ¢ relative to the c-axis of the tetragonal
L1y ([001] for the case we considered). This is in contrast to the cuboidal, nearly spherical
equilibrium Wulff shapes found in our previous work for A1-L1s IPBs [1, 2| on an fcc lattice;
that v had six equal minima in the cube directions. Another contrast may be found with A3—
DO IPBs in an hep binary alloy [27]; in that situation, there is six-fold anisotropy in the plane
orthogonal to the hexagonal axis. Nearly spherical equilibrium shapes are found as well but with
six minima in « distributed evenly around the equator. A concentration variable must be added
to the hep model of [27] and a phase diagram generated, in order to consider the analogous cases
studied in this paper.

The variable composition added the capability to satisfy the Gibbs adsorption equation. We

have verified that our model now satisfies the Gibbs adsorption equation and provides an instance
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of the diffuse interface generalization of sharp interface results, as discussed in [48]. We have also
verified that the numerical results obtained from the computed IPBs are in agreement with this
identity.

A variation in the width of the interface with orientation is noticeable, but it does not show
a dramatic widening as in cases when wetting of the phase boundary occurs (e.g., as in the
A1-L1y case [2, 28]). However, in the case when the € is very small and one is at the congruent
point, then one must be able to resolve very thin (hk0) interfaces (compared to [001]). In such a
computation with finite difference or finite element discretizations, an adaptive mesh approach
should be effective. For fixed mesh approaches, the mesh (or for a spectral method, the number

of modes) must be able to resolve the thinnest interfaces.
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A APPENDIX A

The non-dimensional form of the Helmholtz free energy is given in the following

F(X,Y,ZW,T) = eq(W)+ex(W)(X?+Y% 4+ Z?) +e3(W)XYZ +

T
em(X44—Y4ﬁ—Zﬁ—+e@(X2Y2%aX2Z2%—YQZ2)+jz
where I(x) is given in Equation 4.

The right sides of the equations (15) are given as follows.

Fz(X,Y,Z,W,T) = 2e3Z+ e3XY +4dey Z° + 2e40Z(X* +Y?) +
T
Z In [Q(Xv Y7 Z7 W)] 3

Fw(X,Y,Z,W,T) = eow +eaw (X2 +Y?+ 7% +eawXYZ+

T
1 In[R(X,Y,Z, W)|.

@ and R are defined as follows:

B WH+X+Y+2)W—-X Y +Z)
QX,Y,Z,W) = I-W-X-Y-2)1-W+X+Y —2) x

1-W-X+4Y+2)(1-W+X-Y +2)
WHX-Y-2)\W-X+Y—-2)

and

W+X+Y+Z) W+X-Y - Z)
XY, Z =

(W-X+Y - 2)W-X-Y+2)
I-W+X - Y+2)(1-WH+X+Y —2)

4
> 1(p
j=1

7); (28)

(31)

(32)

These expressions are used with X =Y = 0 in this paper and with Z = 0 where appropriate.

B APPENDIX B

Here we provide a short derivation of the Gibbs adsorption equation for our model of the A1-L1j

IPB with a non-zero order parameter Z = Z((), overall composition W = W ((), and free energy

density Fri,(Z,W,T); a fuller discussion in the context of general diffuse interface theories is

given in Ref. [47].
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For the free energy functional
F- / { Z<+ Cwr iz WT)}dC (33)
the Euler equations, 0F /W = p and §F/0Z = 0, yield
Friow(Z, W, T) = 6Wee + p, (34)

Frioz(Z,W,T) = € Z, (35)
and admit a first integral given by

€2 52

G2+ GWE = Fuag(ZW.T) = Fray (0. War, T) — (W = War)u = AF. (36)

Here
W — Wa1, Z — 0, as ( — —o0, (37)

and
W—>WL10, Z—>ZL10, as{—>oo, (38)

give the far-field values of W and Z.
Evaluating the Euler equations and first integral in the far fields gives the common tangent

conditions (8) that relate Wa1, Wr1,, Zr11,, and T,

(Fr1o(Z119s Wrigs T) — Fr1y (0, Wa1, T)]

p=Friow(0.Wa1,T) = Frio,w(Zr1y, Wr1,, T) = (Wrte — W)
0

(39)
The common tangent conditions, and the equation Fri, 7(Zr1,, Wr1y,T) = 0, provide three
relations between the four parameters Wai, Wr1,, Z11,, and T, consistent with the single degree
of freedom for coexistence of the bulk phases along the phase diagram. We choose to regard the
temperature as the degree of freedom, and write Wa1 = Wa1(T') and Wiy, = Wr1,(T).

The surface energy is given by

Y= / { 72+ W<+AF}dC (40)

Since the solution can be considered to be a function of the prescribed temperature T', with
W =W(¢T) and Z = Z(¢;T), the surface energy of the IPB is a function of 7" as well. We
then have

d o0
i {6 Zeder + 52 WeWer + dc¢, (41)

dy dAF}
AT J_w
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which can be integrated by parts to obtain

dry o dAF
T = _oo{ € ZCCZT — WeeWr + ——- a7 }dC (42)
We have
dAF
T = Fri,w(Z W, TYWrp + Fr10,2(Z, W, T) Zy + Fr10,70(Z,W,T)
dW. dw.
_FLlo,W(()) WA17 T) djj—?l _FLlo,T(07 WA17 T) _FLlo,W(Oa WA17 T)WT+FL10,W(07 WA17 T)d—TAl
(43)
dW g1
- (W - WAI)FLlo,WW(Oa WAla T) dT - (W - WAI)FLIO,WT(O7 WAI, T)
The bulk chemical potential is given by
M(T) = Fng,W(Oa War (T)a T)v (44)
and its temperature derivative is
du dW a1
IT = Frio,ww (0, Wa1,T) 0T + Frio,wr(0, Wai,T). (45)
The entropy is S = —Fr1,7(Z, W, T), with
Sa1=—Fr1,7(0,Wa1, T) and Sp1, = —Fr1,,7(Z110s Wr10, T)- (46)
Using these definitions, the expression for dAF/dT simplifies to give
dAF
—r = (Friow (Z,W,T) — Fri,,w (0, War, T)|Wr + Fr10,2(Z, W, T) Zr
d
IS = Sar = (W = W) o5 (47)

T’

Inserting this expression into Eq. (42) gives

d [ere)
# ") {[Frio,2(Z.W.T) — €Z¢(| Zr + [Fripw(Z, W, T) — Fragw (0, War, T) — W] Wr
du
—[S—=Sa1] - (W — WAl) dc. (48)
The first two terms vanish by virtue of the Euler equations, leadlng to
dvy 0
a —/ (S — Sar] + (W — WAl) dc. (49)
dr —0
Here we note that du/dT is independent of . It is easily seen that
dp
(Wr1y — War) = T = —(Sr1y — Sa1), (50)
which can be used to provide the alternate form
dy o (Sr1o — Sa1) }
bl A S —Sa1)— (W = Wyy) 2 1 dC. o1
ar /—oo{( 1) = Al)(Wmo - Wa) ¢ (51
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Table 1: Coefficients used for the internal energy contribution to the free energy density (after

[5]); here U = W — 1/2.

6U?

€
€2 —44+U?

e3 | 200U (1 —2U?)
e41 -12

€42

[001] [100]

T | Eqn (23) | dvy/dT | Eqn (23) | dvy/dT
2.50 | 0.03174 | 0.03191 | -0.01660 | -0.01605
2.55 | 0.03139 | 0.03139 | -0.01756 | -0.01755
2.60 | 0.03099 | 0.03082 | -0.01870 | -0.01919
2.62 | 0.03064 | 0.03059 | -0.01972 | -0.01989
2.63 | 0.03045 | 0.03047 | -0.02015 | -0.02024

Table 2: Comparison of dy/dT for A1 L1y IPB for several temperatures for €2 = 0.05, % = 1.0.
For columns labeled “Eqn (23),” the composite trapezoidal rule was used to evaluate the integrals
with numerically computed interface profiles. The columns labeled “dy/dT” used a centered finite
difference approximation to the curve in the (7, +) plane. The results agree to within the error

of the numerical methods used.

Table 3: Comparison of interfacial energy for A1-L1y IPB at T = T, and T' = 2.5 for €2 = 0.005,

52 =1.0.

2
orientation | T'=1T, | T = 2.5
[001] 0.09559 | 0.09193
[101] 0.06776 | 0.06563
[111] 0.05546 | 0.05435
[100] 0.00676 | 0.01485
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Figure 1: A schematic diagram of an fcc lattice. There are four equivalent inter-
penetrating simple cubic sublattices. One sublattice corresponds to the corner of
the conventional unit cell, and each of the other three corresponds to the center of
a face intersecting at that corner.

2.7

21 -

9 . . .
0.10 0.20 0.30 0.40 0.50
w

Figure 2: A model phase diagram based on the Cu—Au system, from the parameters
in Table 1; note that it is symmetric about W = 1/2. Here fcc denotes the disordered
A1l phase.
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Figure 3: dvy/dT as a function of the azimuthal angle ¢ at T = 2.63 for
€2 = 0.05 and 6% = 1.0.
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Figure 4: A1-L1g IPB for an (hk0) orientation. Here 62 = 1.0, €2 = )\,2 = 0.005
and T =T..
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Figure 5: A1-Llg IPB for the [001] orientation. Here T = T, §% = 1.0, and € is

arbitrary.
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Figure 6: A1 L1y IPB for the [100] orientation. Here 62 = 1.0, €2 = 0.005

and T' = 2.5.
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Figure 7: A1-L1g IPB for the [001] orientation. Here T= 2.5, §% = 1.0, and
€? is arbitrary.

: : : [001]
180 || 0 —

270

Figure 8: y-plot for A1-L1y IPB for (hk0). Here T = 2.5, 62 = 1.0, ¢ =
0.05. Polar angle values are specified around the perimeter.
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Figure 9: Variation of interfacial energy with temperature for [001] and [100]
orientations for A1-L1y IPB. Here 62 = 1.0, € = 0.05.
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Figure 10: Level of anisotropy for A1-L1g IPB given by ~001/7v100 versus
temperature. Here 62 = 1.0, €2 = 0.05.
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Figure 11: A cross section of the equilibrium shape for A1-L1y IPBs. Here, T' = 2.5,
62 = 1.0 and €? = 0.05.
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