
 
 
 
 
 

DATA AND -OMICS-DRIVEN APPROACHES TO UNDERSTAND THE 
HEAT STRESS RESPONSE: 

THE DEVELOPMENT OF SCALABLE TOOLS AND METHODS TO DRIVE 
HYPOTHESIS GENERATION 

 
 
 
 

by 
 

Allen Henry Hubbard, Jr. 
 
 
 
 
 
 
 
 
 

A dissertation submitted to the Faculty of the University of Delaware in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy in 

Bioinformatics and Systems Biology 
 
 
 

Spring 2018 
 
 
 

© 2018 Allen Henry Hubbard, Jr. 
All Rights Reserved 

  



 
 
 
 
 

DATA AND -OMICS-DRIVEN APPROACHES TO UNDERSTAND THE 
HEAT STRESS RESPONSE: 

THE DEVELOPMENT OF SCALABLE TOOLS AND METHODS TO DRIVE 
HYPOTHESIS GENERATION 

by 
 

Allen Henry Hubbard, Jr. 
 
 

 
 
 
Approved:  __________________________________________________________  
 Limin Kung, Jr., Ph.D. 
 Chair of the Department of Animal and Food Science 
 
 
 
Approved:  __________________________________________________________  
 Mark W. Rieger, Ph.D. 
 Dean of the College of Agriculture and Natural Resources 
 
 
 
Approved:  __________________________________________________________  
 Ann L. Ardis, Ph.D. 
 Senior Vice Provost for Graduate and Professional Education 

  



 I certify that I have read this dissertation and that in my opinion it meets 
the academic and professional standard required by the University as a 
dissertation for the degree of Doctor of Philosophy. 

 
 
Signed:  __________________________________________________________  
 Carl J. Schmidt, Ph.D. 
 Professor in charge of dissertation 
 
 
 
 I certify that I have read this dissertation and that in my opinion it meets 

the academic and professional standard required by the University as a 
dissertation for the degree of Doctor of Philosophy. 

 
 
Signed:  __________________________________________________________  
 Abhyudai Singh, Ph.D. 
 Member of dissertation committee 
 
 
 
 I certify that I have read this dissertation and that in my opinion it meets 

the academic and professional standard required by the University as a 
dissertation for the degree of Doctor of Philosophy. 

 
 
Signed:  __________________________________________________________  
 Eric H. Lyons, Ph.D. 
 Member of dissertation committee 
 
 
 
 I certify that I have read this dissertation and that in my opinion it meets 

the academic and professional standard required by the University as a 
dissertation for the degree of Doctor of Philosophy. 

 
 
Signed:  __________________________________________________________  
 Hagit Shatkay, Ph.D. 
 Member of dissertation committee 
 
 



 I certify that I have read this dissertation and that in my opinion it meets 
the academic and professional standard required by the University as a 
dissertation for the degree of Doctor of Philosophy. 

 
 
Signed:  __________________________________________________________  
 Shawn W. Polson, Ph.D. 
 Member of dissertation committee 
 
 



 
 

v 

I could not have done this work without the support of my lab-mates, friends 

and family. Special thanks to my advisor, Dr. Carl Schmidt, and IT staff member 

Gregory Keane for his technical support.  Also, great thanks to Heidi Van Every for 

her support and editorial skills.      

ACKNOWLEDGMENTS 



 
 

vi 

LIST OF TABLES .................................................................................................... ix 
LIST OF FIGURES .................................................................................................... x 
ABSTRACT .......................................................................................................... xviii 
 
Chapter 

1 INTRODUCTION .......................................................................................... 1 

1.1 Context .................................................................................................. 1 
1.2 RNA-seq ................................................................................................ 3 
1.3 Data Burden to fRNAkenseq Software ................................................... 6 
1.4 Integrating Bioinformatics APIs ........................................................... 11 
1.5 Using API Driven Development and Downstream Analysis ................. 13 
1.6 Tools to Proceed From Datasets to Insight ............................................ 18 
1.7 Conclusion and the Way Forward ......................................................... 24 

2 A POWERED-BY-CYVERSE TOOL FRNAKENSEQ ................................ 26 

2.1 Introduction.......................................................................................... 26 

2.1.1 CyVerse and the Science APIs .................................................. 28 
2.1.2 Agave APIs to Run Sequencing Applications ........................... 29 
2.1.3 API Integration Blueprint and Utility to Biologists ................... 30 
2.1.4 fRNAkenseq Components: MapCount ...................................... 33 
2.1.5 fRNAkenseq Components II: DiffExpress ................................ 39 
2.1.6 Management of Resources Across Systems............................... 43 

2.2 Discussion: Description of an Agave Apps as a Foundational Unit ....... 44 

2.2.1 Comparison with Galaxy and CoGe Integration ........................ 47 

3 BEYOND DIFFERENTIAL EXPRESSION: TISSUE ENRICHMENT ........ 49 

3.1 Introduction.......................................................................................... 49 

3.1.1 Motivation ................................................................................ 50 
3.1.2 Criteria for Enrichment ............................................................. 50 

TABLE OF CONTENTS 



 
 

vii 

3.1.3 GTEx and Other Enrichment Approaches. ................................ 52 
3.1.4 Improvement Over GTEx ......................................................... 53 
3.1.5 Dealing with Non-normality ..................................................... 55 
3.1.6 Models of Read Alignment Associated with Non-normality ...... 59 
3.1.7 Using Chebyshev’s Theorem, as an extension of Markov’s 

Inequality ................................................................................. 61 
3.1.8 Read Concentration and Probability .......................................... 62 

3.2 Results ................................................................................................. 66 

3.2.1 Comparison with GTEx ............................................................ 67 

3.3 Discussion: FAANG and Community Need for Enrichment Strategies . 72 

3.3.1 Breast Muscle Ubiquitin Profile ................................................ 74 
3.3.2 Breast Muscle Transcription Factors ......................................... 76 
3.3.3 Breast Muscle Spliceosome and Metabolic Physiology ............. 78 
3.3.4 Cardiac Enriched Genes - TCA Cycle Metabolism and 

Mitochondrial Genes ................................................................ 80 
3.3.5 Cardiac Transcription Factors ................................................... 84 
3.3.6 Text Mining Comparison and Structural Differences ................ 86 
3.3.7 Selective Enrichment of TCA Cycle Genes ............................... 88 
3.3.8 Relationship Between Metabolism and Organelles .................... 90 
3.3.9 Value of Enrichment Threshold: Comparative Evolution and 

Feature Subsetting .................................................................... 91 

4 FROM ORGAN-ENRICHED MODULES TO MECHANISMS ................... 94 

4.1 Introduction: Context for Metabolic Forks ............................................ 94 

4.1.1 Established Context for Ratios as Extension of Previous 
Studies ...................................................................................... 95 

4.1.2 Interpretation of Metabolite Ratios from a Biochemical 
Standpoint .............................................................................. 100 

4.1.3 Context for Integrating Tissue Enrichment, Statistical Learning 
Techniques and Linear Models ............................................... 103 

4.1.4 Identifying Biomolecules Associated with Heat Stress in the 
Liver ....................................................................................... 103 

4.2 Methods: Combination of Statistical Learning Techniques ................. 105 
4.3 Results ............................................................................................... 110 

4.3.1 Geometric and Biological Consideration of each Statistical 
Learning Step ......................................................................... 115 



 
 

viii 

4.4 Discussion: ......................................................................................... 117 

4.4.1 Heat Stress, Membranes and Lipids ........................................ 118 
4.4.2 Antioxidants and Energy Burden ............................................ 120 
4.4.3 The Metabolic Fork Consistent with Statistical Learning 

Pipeline .................................................................................. 122 

5 TOWARDS CIRCUITRY REGULATING CARBON FLOW UNDER 
HEAT STRESS .......................................................................................... 127 

5.1 Introduction........................................................................................ 127 

5.1.1 Iterative Linear Models ........................................................... 129 

5.2 Results ............................................................................................... 133 
5.3 Discussion .......................................................................................... 142 

5.3.1 Interpretation of Ratios ........................................................... 142 
5.3.2 Regulation of Individual Forks ............................................... 144 
5.3.3 Relationship between Cysteine and Stearoyl Ethanolamide, 

Accounted for by Circuit ........................................................ 149 
5.3.4 Discussion of Mechanistic Regulation .................................... 149 
5.3.5 Future Work and Emphasis on Novelty ................................... 152 

6 CONCLUSION .......................................................................................... 154 

REFERENCES ....................................................................................................... 162 
 
Appendix 

PCA TABLES ............................................................................................ 183 

 



 
 

ix 

Table 1: Genes that have passed or failed test for normality ...................................... 56 

Table 2: Figure 43 Keys ......................................................................................... 111 

Table 3: Figure 44 Keys ......................................................................................... 113 

Table 4: Figure 45 Keys ......................................................................................... 115 

Table A1: Significant correlations for the top 30 biomarkers in cluster 1 with PC1 . 183 

Table A2: Significant correlations for the top 30 biomarkers in cluster 1 with PC2. 184 

Table A3: Significant correlations for the top 30 biomarkers. ................................. 185 

Table A4: Significant correlations for the top 30 biomarkers in cluster 2 with PC1 . 186 

Table A5: Significant correlations for the top 30 biomarkers in cluster 2 with PC2. 187 

Table A6:  Significant correlations for the top 30 biomarkers in cluster 2 with PC3. 187 

Table A7: Significant correlations for the top 30 biomarkers in cluster 3 with PC1. 188 

Table A8: Significant correlations for the top 30 biomarkers in cluster 3 with PC2. 189 

Table A9: Significant correlations for the top 30 biomarkers in cluster 3 with PC3. 189 

 

LIST OF TABLES 



 
 

x 

Figure 1: Schematic of workflow for RNA-seq informatics. ....................................... 4 

Figure 2: CyVerse offerings include the Science APIs. fRNAkenseq exploits the 
science APIs to become a powered-by-CyVerse tool in order to 
communicate with the CyVerse Data Store. fRNAkenseq represents a 
novel extension of CyVerse resources (CyVerse.org). .......................... 14 

Figure 3: Several features involved in evolution of fRNAkenseq from pipelines, to 
an in-house resource to a powered by CyVerse tool. ............................. 17 

Figure 4: The number of archived data in the short read archive in petabases as 
function of year. From (Muir et al., 2016). ........................................... 26 

Figure 5: The full offering of Agave APIs accessible to developers through the 
Software Development Kit (SDK).  These APIs enable users to 
interface with CyVerse infrastructure, though default source and 
endpoint for data resources is customizable. ......................................... 29 

Figure 6: Schema of APIs and their functions for fRNAkenseq.  Agave API’s move 
job specific data across machines, while additional other (CoGE) 
APIs, manage genome files.  CoGe RESTful APIs all fRNAkenseq to 
query CoGe’s database. ........................................................................ 31 

Figure 7: fRNAkneseq backend pipeline components, scripts that manage them, 
and interface......................................................................................... 32 

Figure 8: fRNAkenseq MapCount interface showing the selection of a FastQ file 
and the range of genomes available through CoGe’s database .............. 33 

Figure 9: Mapcount workflow and backend integrated with the Agave Apps ............ 35 

Figure 10: Algorithms of fRNAkenseq MapCount pipeline.  Current generation 
algorithms in the green squares, adjacent to the earlier algorithms they 
have replaced from the Tuxedo pipeline. .............................................. 36 

Figure 11: Application of a downstream analysis in CyVerse Discovery 
Environment executed on a mapped BAM file previously processed 
by fRNAkenseq.................................................................................... 37 

LIST OF FIGURES 



 
 

xi 

Figure 12: Schema depicting the MapCount directory layout for fRNAkenseq.......... 38 

Figure 13: Possible sequence analysis workflow from start to finish with FastQ 
files using fRNAkenseq and other CyVerse apps .................................. 39 

Figure 14: The schema for fRNAkenseq’s DiffExpress pipeline representing the 
different algorithms executed as a single Agave App. ........................... 39 

Figure 15: fRNAkenseq’s DiffExpress user interface showing the set-up of a 
sample analysis using libraries previously analyzed by MapCount. ...... 40 

Figure 16: Similar to MapCount, the DiffExpress pipeline has an Agave App at its 
core. The DiffExpress Agave App, however, has an extra level of 
complexity in that it creates and executes the code that composes the 
R pipeline, based on input submitted to DiffExpress, A subsequent 
Python script identifies genes predicted as enriched by 1-3 different 
programs. ............................................................................................. 41 

Figure 17: This represents the schema of DiffExpress output within a user’s 
CyVerse directory.  Included in this output are the differential 
expression outputs from three R packages, edgeR, BaySeq and 
DeSeq2.  Files in green rectangle contain genes differentiall expressed 
according to one, two, or all three of these algorithms. ......................... 42 

Figure 18: Users have access to data in the Data Store (CyVerse) as well as in 
CoGe (genome files), through CyVerse’s centralized authentication 
system.  Data is moved across different systems according to the task 
being executed and the API call. .......................................................... 43 

Figure 19: An App posted to the Agave service consists of a shell script pipeline 
template with its JSON wrapper description.  The shell script contains 
the individual commands for the pipeline.  The corresponding JSON 
wrapper provides execution and storage system information for the 
app.  It also describes the variables that will be passed to the bash 
template ............................................................................................... 44 



 
 

xii 

Figure 20: Integration with Agave Apps and a third party web tool such as 
fRNAkenseq is described. Once an Agave App is registered it can 
comprise the backend pipeline for a tool.  Subsequently, an arbitrary 
web interface can be developed to compose JSON objects to be 
submitted to the Agave app. These JSON objects will be consistent 
with the JSON wrapper of the App that has been posted to the Agave 
service.  When the pipeline executes, the processed data will be 
returned to the data directory as specified in the App description.  The 
ability to control jobs in this fashion is enabled by the jobs service of 
the Agave API, ..................................................................................... 45 

Figure 21: Venn Diagram illustrating specificity of enriched gene lists at the five 
standard deviation z-score threshold in muscle types. ........................... 54 

Figure 22: A standard normal distribution and the empirical rule demonstrating the 
percent of observations that will fall within a given number of 
standard deviations of the mean. ........................................................... 57 

Figure 23: A simple example of non-normality in read distribution across exons of 
a gene.  A similar, though less exaggerated, effect occurs among 
samples of multiple tissues ................................................................... 58 

Figure 24: Probability distribution function (PDF) corresponding to the histogram 
of read alignments per exon in Figure 25. ............................................. 59 

Figure 25: Distribution of reads across tissue of interest, with concentration of 
many reads in a few samples intuitively creates a violation of a normal 
distribution. .......................................................................................... 60 

Figure 26: Formal statement of Markov’s inequality (Wikipedia). ............................ 62 

Figure 27: Derivation of Chebyshev’s inequality as following from Markov’s 
Inequality (Wikipedia). ........................................................................ 65 

Figure 28: Tissue specificity comparison of GTEx methods (5-Fold higher in tissue 
of interest) in human, indicating inability of GTEx methods to identify 
only tissue unique genes. ...................................................................... 67 

Figure 29: There is considerable overlap between the five standard deviation z-
score method and GTEx standard of enrichment applied to our dataset. 
However, all of the genes identified as enriched according to the five 
standard deviation z score are unique to muscle type. ........................... 68 



 
 

xiii 

Figure 30: Venn Diagram of enriched genes in skeletal muscle according to the five 
standard deviation based z-score (5SD) threshold compared to 
calculations using the GTEx definition of 5 five-fold higher 
expression in tissue of interest. ............................................................. 70 

Figure 31: Venn Diagram of enriched genes in Cardiac Tissue according to the five 
standard deviation based z-score (5SD) threshold compared to 
calculations with the GTEx definition of 5 five-fold higher expression 
in tissue of interest. .............................................................................. 71 

Figure 32: Transcription factors enriched in skeletal muscle according to the 5SD 
based z-score, breast muscle and which have statistically significant 
correlations with other enriched genes in the tissue. Transcription 
factors in red. Node size is reflective of number of interacting 
partners. ............................................................................................... 78 

Figure 33: Enriched transcription factors in cardiac muscle, according to the 5SD-
based z-score, that have statistically significant correlations with other 
enriched genes in the tissue.  Node size reflective of interacting 
partners, and transcription factors indicated by red color. ..................... 83 

Figure 34: Venn diagram of text mining terms associated with the enriched gene 
lists, determined by the 5SD based z-score in breast and skeletal 
muscle tissues. ..................................................................................... 86 

Figure 35: Diagram of TCA cycle and genes related ketone and glycogen 
metabolism, emphasizing genes that are enriched in breast muscle or 
cardiac tissue.  Enzymes encoded by TCA cycle genes generally 
function in mitochondria.  Glycolysis/gluconeogenesis genes are 
cytosolic. .............................................................................................. 89 

Figure 36: An interpretation of the relationship between a compound, A, and the 
ratio of two others BCin the case that all three are metabolites.  A may 
be influenced by the ratio of  BC	when BCrepresent fates of precursors 
for A.  Alternatively, A may influence BC	when the two compounds 
are substrate/product pairs or gene/protein pairs. .................................. 98 

Figure 37: Special case of a metabolic fork, in which compounds are directed to 
one of two divergent metabolic fates (with reaction back to precursor 
from either state negligible). ................................................................. 99 



 
 

xiv 

Figure 38: Illustration of an equilibrium point of a reaction, where net movement 
towards products is countered by backward movement toward 
reactants.  In a biochemical reaction controlled by an enzyme, this 
equilibrium point may be influenced by gene expression. ................... 101 

Figure 39: A change to a biochemical reaction in which the forward reaction has 
become more favorable after regulation of an enzyme, possibly 
through gene expression changes.  The difference between the 
equilibrium points now results in one state being more energetically 
favorable than the other, given the current conditions.  Depending on 
the favorability of the subsequent product, a precursor may be more or 
less likely to be converted into diverging metabolic fates. .................. 102 

Figure 40: Total pipeline, from data analysis to identifying hypothetical 
mechanisms. ...................................................................................... 106 

Figure 41 A and 41B: Example of possible models around specific cluster with 
different k-means selection, illustrating more uniform clustering 
results with k = 3 (41B) compared to k = 2 (41A). .............................. 108 

Figure 42: Elbow plot: with K-means = 2, the clusters are somewhat uneven 
compared to one another.  With K = 3, however, we get relatively 
uniform clusters.  The final choice of k = 3 is based on both biological 
interpretability and statistical properties of each clustering that 
considers bias-variance tradeoffs. ....................................................... 109 

Figure 43: PCA of highly prioritized biomolecules from k-means cluster 1............. 110 

Figure 44: PCA of highly prioritized biomolecules from k-means cluster 2............. 112 

Figure 45: PCA of highly prioritized biomolecules from k-means cluster 3............. 114 

Figure 46: Intersecting pathways captured from a metabolic fork whose linear 
model shows differential behavior under heat stress. .......................... 123 

Figure 47: Pairwise correlations of the compounds in the metabolic fork, 
demonstrating the coupling of glycine with fructose-6-phosphate 
under heat stress. ................................................................................ 124 

Figure 48: Linear model representing behavior of the triple of fructose-6-phosphate 
and G3P/Glycine. ............................................................................... 125 



 
 

xv 

Figure 49: The metabolic fork in context of gene expression data.  The coupling 
between glycine and fructose-6-phosphate is consistent with 
upregulation of FBP2.  Transcriptome upregulation of the gene 
encoding FBP2 provides evidence for directionality towards F6P. ...... 126 

Figure 50: Two triplets, representing distinct potential metabolic forks.  Triplets 
with overlapping elements may be merged, however, to create new 
biological hypotheses. ........................................................................ 130 

Figure 51: Example of how triplets that pass the differential correlation threshold 
(1.2) are merged into a circuit, by searching for overlapping 
components.  This is accomplished with an R script that will combine 
the triplets. ......................................................................................... 131 

Figure 52: A hypothetical circuit of regulation managing carbon backbones from 
catabolism.  This figure demonstrates that the interaction term of 
models involving ratios detects relationships that would be missed 
otherwise............................................................................................ 133 

Figure 53: Network skeleton based on merging of triplets.  This will provide the 
hypotheses driving a more complete circuit.  Importantly, as lipid 
production shifts (the triplet with cysteine and choline), cysteine fuels 
a cycle of antioxidant metabolism represented by the two joined 
triplets, whose relationship is also summarized in Figure 52.  This 
relationship is indicated by the green arrow. ....................................... 135 

Figure 54: Part 1A-F: Metabolic Forks and Related Models – Levels of A 
metabolite as a function of ratio BC	.		Linear models detect differential 
behavior of the metabolic forks that comprise the circuit.  Also shown 
are the linear models for a triplet involving a gene (54 F) and the 
general coupling between cysteine and stearoyl ethanolamide (54 E).  
Figures (58-60) describe each branch-point in detail.  All p-values for 
relevant interaction terms are less than .05. ........................................ 136 

Figure 55: Part 1A-F Metabolic Forks and Related Models in circuit, the ratio BC as 
a function of the A metabolite are also shown.  Linear models detect 
differential behavior of the metabolic forks that comprise the circuit.  
Also shown are the linear models for a triplet involving a gene (54 F) 
and the general coupling between cysteine and stearoyl ethanolamide 
(54 E).  Figures (60-62) describe each branch-point in detail.  All p-
values for relevant interaction terms are less than .05. ........................ 137 



 
 

xvi 

Figure 56: The circuit components as modules summarized by the three categories 
of antioxidant, lipid and methionine metabolism.  SAM: S-Adenosyl-
L-methionine, SAH: S-Adenosyl-L-homocysteine, Glutathione 
GSSG: Glutathione Disulfide, PEMT: Phosphatidylethanolamine N-
methyltransferase, BHMT: Betaine--Homocysteine S-
Methyltransferase, PLD1: Phospholipase D-1, PEMT: 
Phosphatidylethanolamine N-methyltransferase. ................................ 138 

Figure 57: Pairwise correlations for the triplets of metabolites that comprise the 
linear models describing the circuit of regulation.  Each one will be 
discussed in a regulatory context that notes relevant gene expression 
changes. ............................................................................................. 141 

Figure 58: Triplet of cysteinylglycine and (stearoyl ethanolamide / hypotaurine). 
The compartmentalization of the pathway by regions containing the 
compounds in the ratio (stearoyl ethanolamide and hypotaurine) is 
illustrated by the dotted line. For the linear model representing 
differential behavior of this branch point, see figure 54A.  SAM: S-
Adenosyl-L-methionine, SAH: S-Adenosyl-L-homocysteine, 
Glutathione GSSG: Glutathione Disulfide, PEMT: 
Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine--
Homocysteine S-Methyltransferase, PLD1: Phospholipase D-1, 
PEMT: Phosphatidylethanolamine N-methyltransferase. .................... 144 

Figure 59: Triplet of stearoyl ethanolamide and (cysteinylglycine / hypotaurine). 
The compartmentalization of the pathway by regions containing the 
compounds in the ratio (cysteinylglycine and hypotaurine) is 
illustrated by the dotted line.  For the linear model representing 
differential behavior of this branch point, see figure 54B.  SAM: S-
Adenosyl-L-methionine, SAH: S-Adenosyl-L-
homocysteine,Glutathione GSSG: Glutathione Disulfide, PEMT: 
Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine--
Homocysteine S-Methyltransferase, PLD1: Phospholipase D-1, 
PEMT: Phosphatidylethanolamine N-methyltransferase. .................... 146 



 
 

xvii 

Figure 60: Triplet of stearoyl ethanolamide and (cysteinylglycine / gluathatione). 
The compartmentalization of the pathway by regions containing the 
compounds in the ratio (cysteinylglycine and glutathione) is illustrated 
by the dotted line.  For the linear model representing differential 
behavior of this branch point, see figure 54C.  SAM: S-Adenosyl-L-
methionine, SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: 
Glutathione Disulfide, PEMT: Phosphatidylethanolamine N-
methyltransferase, BHMT: Betaine--Homocysteine S-
Methyltransferase, PLD1: Phospholipase D-1, PEMT: 
Phosphatidylethanolamine N-methyltransferase. ................................ 147 

Figure 61: Triplet of stearoyl ethanolamide and (cysteine / choline). The 
compartmentalization of the pathway by regions containing the 
compounds in the ratio (choline and cysteine) is illustrated by the 
dotted line.  For the linear model representing differential behavior of 
this branch point, see figure 54D.  SAM: S-Adenosyl-L-methionine, 
SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione 
Disulfide, PEMT: Phosphatidylethanolamine N-methyltransferase, 
BHMT: Betaine--Homocysteine S-Methyltransferase, PLD1: 
Phospholipase D-1, PEMT: Phosphatidylethanolamine N-
methyltransferase. .............................................................................. 148 

 



 
 

xviii 

This dissertation concerns the broad computational challenges that face labs in 

the -omics era, in the service of addressing a major agricultural goal – adapting the 

broiler chicken to heat stress. Its contributions span creation of scalable tools to 

process raw sequencing reads to statistical methods that integrate multi-omics data and 

produce novel biological insight. I will present the paradigm for an architecture of 

powered-by-CyVerse tools, which is leveraged to power the tool fRNAkenseq. 

CyVerse is a pioneering cyberinfrastructure project to make large scale computing and 

storage resources accessible to domain scientists and provide a way for tools to share 

data with one another.  fRNAkenseq, a platform for comprehensive analysis for RNA-

seq from FastQ to differential expression, relies on CyVerse for cloud-based storage, a 

grid computing approach, and the ability to access the 30,000 reference genomes 

curated by the powered-by-CyVerse tool CoGe.  fRNAkenseq is among the first of its 

kind in third party software to leverage CyVerse in such a fashion. To move from data 

to insight we have developed pipelines and strategies to integrate the complex, tissue 

rich datasets produced from fRNAkenseq with supplementary metabolomics data.  

From this data, we generate biological hypotheses and models that extend 

understanding of the regulation of the heat stress response.  In particular, these 

hypotheses provide context for the co-regulation of sulfur, lipid, and sugar metabolism 

essential to maintaining homeostasis in the face of heat challenge.  

ABSTRACT 
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INTRODUCTION  

1.1 Context 

Within the next few decades, the impacts of climate change are anticipated to 

substantially impact poultry livestock yield, partly due to increased frequency of heat 

waves leading to higher bird mortality and decreased feed efficiency (Rojas-Downing, 

2017).  Broiler chickens, or lines of chicken raised for meat production, are a mainstay 

of the global food supply. As in many livestock species, there is an ongoing tradition 

of intense artificial selection for valuable commercial traits in the modern broiler 

chicken.  These efforts have resulted in a consistent 2-3 percent improvement in the 

efficiency of broiler meat production per year (McKay, 2009).  However, an 

unintended consequence of this regimen of focused breeding for high-muscle, rapidly 

growing phenotypes includes an increase in the incidence of skeletal and 

cardiovascular problems among other serious metabolic issues (Julian, 1998).  Some 

of the negative aspects of the altered physiology resulting from artificial selection are 

hypothesized to relate to disruption of cellular metabolic systems (Tallentire et al., 

2016).  Thus, targeted adaptation of broiler chicken to heat stress conditions associated 

with accelerating trends of climate change will require a stronger understanding of 

genetic regulation of biochemistry than that which currently exists. Computational 

approaches are needed to harness the power of increasingly large-scale omics data that 

will power the rapid breeding for complex traits.  This will be an important 

agricultural objective for genomics and bioinformatics, in the 21st Century. 

Chapter 1 
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We have sought to advance this goal by developing novel computational tools 

and statistical analyses that make it possible for researchers to elucidate regulation of 

the heat stress response, using modern, high throughput and data intensive techniques.  

This strategy has required us to develop methods and tools to handle the large datasets 

associated with our experiments. To do this, we first had to develop the computational 

infrastructure to handle the transcriptome data associated with large-scale heat stress 

experiments.  This is important, as the resulting volume of data posed a unique 

informatics challenge both in terms of managing data bottlenecks and identifying 

causal mechanisms from resulting high dimensional datasets.  Such types of problems 

are not unique to poultry genomics and will intensify as high throughput datasets 

become increasingly common, for example as advances in genetic engineering 

encourage combinatorial biology experiments (Zhao et al., 2017) and large-scale 

single-cell sequencing becomes more popular.  Anticipating such challenges, this 

thesis develops concrete computational solutions to challenges associated with data-

driven life sciences research, and proposes novel regulatory mechanisms of the heat 

stress response in the broiler chicken to advance the poultry genomics community.   

The accomplishments of this thesis include: 

• Creation of fRNAkenseq, a user-friendly platform and interface for 

analysis of transcriptome data that exploits cross-talk with other tools  

• Deployment of a statistically sound approach for identifying tissue 

specific genes, sensitive enough to clarify biology unique to different 

muscle types (cardiac and skeletal) in fRNAkenseq processed data. 
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• Development of pipelines that integrate multiple statistical approaches 

to merge transcriptome and metabolome data, to drive hypothesis 

generation relating heat stress regulation across the two –omics. 

• Linear modeling to identify relationships between metabolites that 

signify junctions, or forks, between closely related pathways whose 

regulation shifts under heat stress.  Sets of these forks are merged into 

pathways that provide novel biological insight into sulfur, lipid and 

sugar metabolism. 

1.2 RNA-seq 

We have chosen to use transcriptomics to understand the heat stress response 

in chicken, using high throughput RNA-seq.  RNA-seq is a powerful tool for systems 

biology based projects because it is capable of measuring expression for all 

transcribed regions of an organism’s genome (Nagalakshmi et al., 2008).  Thus, it 

provides an excellent lens by which to understand how a treatment or conditions 

influences a biological system.  Because the heat stress response involves many genes 

and pathways, high throughput methods such as RNA-seq are well suited to  
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Figure 1: Schematic of workflow for RNA-seq informatics. 

uncovering novel regulation that underlies adaptations to this stress. Because changes 

in gene expression can reflect protein levels, RNA-seq can provide insight into how 

the regulatory systems of a cell are changing (Maier et al., 2009).  However, RNA-seq 

experiments pose unique informatics challenges that require statistical and 

computational sophistication to effectively process data and gain biological insight 

(Chu and Corey, 2012). 

Typically, the laboratory-based work involved in an RNA-seq experiment and 

the subsequent sequencing results in the production of a FastQ file.  Each FastQ file in 

our dataset of Illumina short reads contains millions of small fragments (25-50 base 

pairs) of nucleotide sequences corresponding to fragments of RNA molecules from the 

transcriptome.  Ultimately, each fragment of RNA, or read, in the FastQ file must be 

mapped to a gene or other genomic feature by aligning the read to its best match in the 

genome. It is only by determining the appropriate feature each read is associated with 
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that it becomes possible to quantify expression across genes and other genomic 

regions. 

A number of algorithms exist (Conesa et al., 2016) to accomplish these tasks, 

with many workflows using a series of algorithms to process a single FastQ file. 

Pipelines typically begin by first using one algorithm to identify the best fit in a 

reference genome for each read in a FastQ file.  This is accomplished during the 

mapping step of the pipeline. Though there a number of alignment algorithms, most 

store the alignment information in a file known as a BAM (binary alignment file).  

The BAM is merely a more efficient, compressed version of a sequence alignment file 

(SAM) file, which is human readable and stores alignment information and important 

metrics in a standardized format.  Subsequent steps in an RNA-seq informatics 

pipeline typically use an additional set of algorithms to process alignment files and 

produce table of either raw read counts for each genomic feature or counts which have 

been normalized for both the length of the gene and the number of reads in a FastQ 

file, i.e. Fragments Per Kilobases per Million Reads Mapped (FPKM).  The output of 

this quantification step is often a tab delimited or similarly formatted flat file.  These 

tables provide quantified expression levels for each feature and are frequently used for 

further statistical analyses. While our research is mostly focused on measuring mRNA 

expression, read alignments can also detect expression of non-coding RNAs and is not 

limited to annotated features (Tripathi et al., 2017). 

After mapping and quantification, downstream statistical analysis attempts to 

link changes in gene expression to the influence of a treatment.  This is often 

accomplished through the detection of differentially expressed genes.  Differentially 

expressed genes are those whose expression levels differ significantly between control 



 6 

and treatment conditions. They may influence the levels of enzymes and other proteins 

critical to controlling tissue-important biology.  There are a number of software 

packages that provide statistical techniques to identify genes whose expression 

patterns change under treatment.  Many of these programs run in the R computing 

environment and accept as input the number of raw counts produced during read 

quantification.  We have incorporated several of these tools into our pipelines and 

software that we will use to analyze the heat stress response: edgeR (Robinson et al., 

2010), DESeq2 (Love et al., 2014) and BaySeq (Hardcastle et al., 2010). 

Each of the packages for differential expression assumes that RNA-seq reads 

follows a negative binomial distribution (Seyednasrollah et al., 2013).  The negative 

binomial distribution is a modification of the Poisson distribution, intended to take 

into account the experimental noise that increases the variance of lowly expressed 

genes, resulting in over-dispersion (Anders and Huber, 2010).  However, each tool 

uses a unique set of assumptions to estimate the parameters of the negative binomial 

distribution. None has been proven to be universally superior, as the landscape of 

variation among an experiment will determine which assumptions are most 

appropriate (Rapaport et al., 2013).  Thus, a robust workflow to detect differentially 

expressed genes should consider the output multiple of multiple prediction tools.  

Developing the infrastructure and pipelines to rapidly process transcriptome data are 

but some of the challenges associated with using RNA-seq on a large scale. 

1.3 Data Burden to fRNAkenseq Software 

In addition to the complexity of developing effective workflows, handling the 

necessary computational tasks for RNA-seq experiments can be daunting due to the 

amount of data leveraged at each step.  This burden grows with the number of FastQ 
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samples analyzed.  Additionally, many standard workflows require management of 

files that contain organism specific genome data, against which reads will be aligned 

(Conesa et al, 2016).  These, also, can be quite large.  For example, the genome 

sequence against which each read from a FastQ file must be aligned can be one to 

several GBs, with annotation flat files being somewhat smaller.   Genomic reference 

sequences used for read alignments are stored as Fast-All (FASTA) files that can be 

procured from large repositories such as the National Center for Biotechnology 

Information (NCBI) or databases associated with Ensembl, a partnership between the 

European Bioinformatics Institute and the Wellcome Trust Sanger Institute.  The 

reference FASTA sequences require indexing prior to incorporation in an RNA-seq 

pipeline, and are often accessed by researchers on as-needed basis using NCBI or 

Ensembl file transfer protocol (ftp) resources.  The data burden of transcriptome 

analysis, however, is intensified and primarily driven by large sample sizes of FastQ 

files, as reference files are typically re-used for multiple informatics analyses. 

During the course of our studies using RNA-seq to characterize the heat stress 

response, we have processed over 1,500 RNA-seq library samples. Fully investigating 

the heat stress response in the chicken, to fulfill the scope of our grant, has required us 

to manage multiple heat stress trials under various conditions.  This experimental 

design typically produces dozens to hundreds of RNA-seq libraries per trial. 

As in many labs, the rate of data production quickly eclipsed our capacity for 

downstream analysis.  For example, a typical ~9 Gigabytes (GB) uncompressed RNA-

seq file often requires up to two hours for mapping of reads to a reference genome, 

merely to generate a binary alignment file (BAM), and an additional 45 to 60 minutes 

time for quantification of reads in order to provide human interpretable gene level 
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expression data. This computation time has been much higher in the past, with older-

generation algorithms. Relying on the latest generation of mappers has helped reduce 

this computational time. Nevertheless, we have found the scope of data associated 

with experiments of this scale can quickly overwhelm in-house resources.  While 

faster algorithms map and quantify reads more rapidly, this often means that issues 

with managing data burdens emerge more quickly.  BAM files from our dataset are up 

to 12-18 Gigabytes (GBs), and their uncompressed versions, sequence alignment 

(SAM) files, can be far greater at nearly 50 GBs.  The need to compile and organize 

data on this scale is thus a serious computational challenge.  However, this is only the 

first stage of many informatics challenges that a lab invested in high throughput 

genomics will face. 

Once sequencing files have been processed from raw reads and to produce 

gene expression tables, researchers must identify genes and the associated biological 

systems that are altered during the course of treatment.  These subsequent challenges, 

often highly statistical in nature, require robust differential expression analysis as well 

as means to identify pathways whose genes demonstrate expression changes change 

under experimental treatments.  With each heat stress trial, we had to address these, 

and other, computational hurdles. They quickly emerged as bottlenecks once we 

streamlined lab protocol and could produce data quicker than we could process it.  Our 

initial strategy of using simple manual commands to process data in the preliminary 

stages of our study was rapidly overwhelmed by the burden of data.  Thus, we 

ultimately had to develop novel computational strategies to make our analyses more 

scalable and effectively manage our datasets. 
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We initially developed pipelines that could automate steps for mapping and 

quantification, first using Tophat2 (Trapnell et al., 2012) and Cufflinks (Trapnell et 

al., 2012) for these steps, respectively.  Tophat and Cufflinks represent the mapping 

and quantification algorithms, respectively, of the popular Tuxedo suite of RNA-seq 

analysis tools (Trapnell et al., 2012).  As technology advanced to more rapidly process 

larger datasets, we would substitute elements of the Tuxedo suite with algorithms from 

the next generation of alignment and quantification tools. Hisat2 (Kim et al., 2015 ) 

replaced TopHat2 as the alignment algorithm in our pipelines, and the quantification 

algorithm Stringtie (Pertea et al., 2015) would replace Cufflinks. 

In order to encourage workflow continuity, RNA-seq mapping algorithms have 

adhered to standards of representing alignment information in the standardized 

SAM/BAM formats.  This convention has encouraged the evolution of our workflows 

from pipelines to software.  While input and output requirements for different 

generations of algorithms may vary in regards to their preference for SAM/BAM files, 

the software Samtools (Heng et al., 2009) can convert between SAM/BAM files as 

well as execute file indexing and other file pre-processing as needed. Thus, there are 

tools such as featureCounts (Li et al., 2014) and HTSeq-count (Anders et al, 2014) 

that can process arbitrary SAM/BAM files into tab-delimited tables containing genes 

and read counts, regardless of the algorithm used upstream to process the FastQ files.  

For the sake of minimizing computation time our pipelines currently use a python 

script that parses StringTie output to produce tables of raw counts for downstream 

differential expression.  However, as alignment algorithms continue to develop, these 

steps can be updated accordingly with suite-specific software, or replaced with an 

aligner-agnostic program such as featureCounts and HTSeq-count. 
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Thus, it possible to use software packages in the R computing environment for 

differential expression analysis pipelines, even as alignment algorithms continue to 

evolve.  Having established workflows for mapping and quantification, we eventually 

developed separate pipelines to execute differential expression in a robust fashion by 

executing multiple differential expression algorithms on the same dataset.  These 

workflows evolved from Perl scripts that automated the writing of R scripts for 

differential expression analyses in DESeq2, edgeR and BaySeq.  In order to provide 

biologists in the lab control over their analysis as we continued to produce volumes of 

data, we developed a web-base graphical user interface (GUI) using PHP:hypertext 

processor (PHP) to manage the pipelines. This made it possible such that certain 

bioinformatics analyses, such as the mapping and quantification of reads in addition to 

differential expression, could be controlled by biologists with no prior computational 

experience. 

The result of this effort was the first version of the RNA-seq analysis platform 

fRNAkenseq.  fRNAkenseq encompasses differentiated workflows that cover all 

major steps, from FastQ file to differential expression, of RNA-seq analysis. 

fRNAkenseq was initially developed to address the informatics needs resulting from 

the high number of heat stress and other treatment experiments being done by multiple 

graduate and undergraduate students.  In addition to aiding the several manuscripts in 

publication, analysis of datasets using fRNAkenseq contributed to the papers: 

“Transcriptomic changes throughout post-hatch development in Gallus gallus 

pituitary” (Pritchett et al, 2016), “RNA-seq:Primary Cells, Cell Lines and Heat Stress. 

Cytogenetic and Genome Research” (Schmidt, 2015), “Chicken Hepatic Response to 

Chronic Heat Stress Using Integrated Transcriptome and Metabolome Analysis”, 
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(Jastrebski et al., 2017).  Several other manuscripts from our large scale RNA-seq 

datasets are in preparation.  

1.4 Integrating Bioinformatics APIs 

Ultimately, fRNAkenseq continued to evolve from early in-house pipelines 

that allowed us to manage initial data bottlenecks, and developed into a complete 

software platform to keep pace with the informatics bandwidth demanded by our 

samples.  In the course of fRNAkenseq’s development, we partnered with 

collaborators who provided access to computing and storage resources, which became 

crucial to expanding fRNAkenseq’s computational abilities.  This was accomplished 

through leveraging a succession of bioinformatics focused application programming 

interfaces (APIs). 

As computational tools for server based bioinformatics have proliferated, 

communities of developers have sought to improve the utility of their tools and avoid 

redundancy of future development, by facilitating data and other resource sharing 

across software platforms.  This is often accomplished by web application 

programming interfaces (APIs) being leveraged as a way to exchange information 

between servers in a standardized fashion.  In a bioinformatics context, web APIs can 

be used to handle requests for sequencing files or other, more complex tasks that are 

necessary for the execution of pipelines. The rapidly evolving class of bioinformatics 

APIs include those that allow users to access genome files from existing tools or 

resources and databases, such as the Ensembl REST API (Yates et al., 2015), as well 

as APIs allowing large batch submission to text mining tools such as The Database for 

Annotation, Visualization and Integrated Discovery (DAVID) and the Gene Ontology 

(GO) database, and many similar tools.  
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However, a number of active software development teams are also producing 

data sharing and foundational APIs that can power future bioinformatics software 

development in a comprehensive fashion.  Some of these efforts include the Breeding 

API  (BrAPI), (http://docs.brapi.apiary.io/) developed to encourage plant genomics 

software to leverage cross-talk between the community of diverse plant sequence 

databases, as well as the job and data-movement management A Grid And 

Visualization Environment (Agave) API suite (Dooley et al., 2012).  The Agave API 

allows developers to turn pipelines and workflows into Agave Apps, as well as 

develop a network of registered storage and execution machines.  Agave Apps 

comprise shell scripts and Javascript Object Notation (JSON) files that register the 

App with the Agave service.  The Agave APIs also include commands to move data 

across storage and execution machines, on the multiple GB scale commonly 

associated with bioinformatics datasets.  Thus, Agave makes it possible to effectively 

develop what is known as a “grid computing” scheme for bioinformatics workflows, 

with different pipelines and data allocated to multiple storage and execution resources. 

This type of architecture enabled by Agave is critical for fRNAkenseq, as it enables 

reliable job and data management across machines. 

Importantly, Agave enables developers to register arbitrary cloud resources as 

storage systems to serve as a repository for data processed by Agave Apps.  This 

feature enhances the utility of Agave for bioinformatics developers, who can use 

external storage resources (cloud, private, or publicly available servers such as the 

Texas Advanced Computing Center (TACC)) to ameliorate the burden of data volume 

produced by next-generation sequencing workflow.  During the course of its 

development, fRNAkenseq expanded from a web interface that managed RNA-seq 
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pipelines in the form of shell scripts, to a tool that fully harnessed APIs developed by 

the Agave team and other software development groups associated with the NSF-

sponsored cyberinfrastructure project CyVerse.  fRNAkenseq is one of the first tools 

to incorporate these resources in this fashion to manage large scale next generation 

sequencing datasets.  Ultimately, fRNAkenseq has evolved to use the Agave APIs to 

fully federate with CyVerse.  Only by completely integrating with Agave and other 

bioinformatics APIs in a novel fashion, could fRNAkenseq enable our lab to keep 

pace with analyzing the volume of sequencing data we regularly produced, without 

overwhelming existing resources.  

1.5 Using API Driven Development and Downstream Analysis 

The first chapter of the thesis will present the paradigm for an architecture of 

powered-by-CyVerse tools demonstrated by the RNA-seq analysis platform 

fRNAkenseq. CyVerse is a pioneering cyberinfrasture project to make large scale 

computing and storage resources accessible to domain scientists and provide a way for 

tools to share data with one another. CyVerse both provides bioinformatics tools, as 

well as resources for the community of developers who wish to exploit CyVerse 

resources to develop their own tools. fRNAkenseq, as a platform for comprehensive 

analysis for RNA-seq from FastQ to differential expression, relies on CyVerse for 

cloud-based storage as well as simple grid computing, using the Agave APIs to move 

data across execution and storage machines.  Though currently managed by a 

development team independent from CyVerse, the Agave APIs make it possible to 

incorporate CyVerse resources into a robust grid computing structure (using TACC 

allocations for execution machines, and the CyVerse Data Store for cloud based 
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storage) as well as gain authentication to shared data with various powered-by-

CyVerse tools.  Taking advantage of CyVerse’s centralized authentication system,  

 

Figure 2: CyVerse offerings include the Science APIs. fRNAkenseq exploits the 
science APIs to become a powered-by-CyVerse tool in order to 
communicate with the CyVerse Data Store. fRNAkenseq represents a 
novel extension of CyVerse resources (CyVerse.org). 

fRNAkenseq also has access to over 30,000 reference genomes curated by another 

powered-by-CyVerse tool, the Comparive Genomics Platform (CoGe). CoGe is an 

engine for comparative genomics, which leverages a large-scale database to store 

genomes for syntenic analysis between different organisms (Lyons et al., 2008).  

CoGe also offers a set of Representational State Transfer  (RESTful) APIs that allow 

users to access genomes stored in its system, and has expanded to offer various 

resources and pipelines that visualize and analyze next generation sequencing data. 
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fRNAkenseq exploits these, making CoGe genomes accessible to fRNAkenseq 

pipelines. 

CoGe also enables users to upload researcher provided genomes, thus making 

it a vehicle for users to bring draft genomes of non-model organisms into CyVerse. 

These personally uploaded genomes, owing to authentication with a CyVerse Oauth2 

token upon logging into fRNAkenseq, can then be accessed by fRNAkenseq. Though 

users can now use CoGe genomes for analysis in fRNAkenseq, the initial permission 

settings of the genome when uploaded to CoGe are maintained.  The ability of users to 

supply their own genome to fRNAkenseq through CoGe is important, as tools for run 

bioinformatics analyses on organisms that currently lack a high quality draft genome 

has been identified as an important need by the burgeoning comparative genomics 

community (Mykles et al, 2016). Using CyVerse to facilitate a data sharing 

relationship with CoGe fulfills a crucial need for the bioinformatics community, by 

demonstrating how third party tools such as fRNAkenseq can simultaneously leverage 

multiple CyVerse resources to meet diverse bioinformatics needs. fRNAkenseq’s 

design has allowed it to fully exploit API resources offered by both CyVerse and 

CoGe to execute important bioinformatics tasks. 

fRNAkenseq has been instrumental in managing the data burden associated 

with our lab’s large-scale transcriptome studies, and represents a valuable contribution 

to the research community.  It is accessible to any CyVerse user at the address 

http://raven.anr.udel.edu.  In terms of novelty, fRNAkenseq is among the first of its 

kind in third party software to leverage CyVerse in such a complete fashion, using the 

APIs of CyVerse and CyVerse associated tools at a foundational level.  Although 

programs such as SciApps (Lu et al., 2016) use Agave APIs to exploit the CyVerse 
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Data Store and develop workflows as Agave Apps, fRNAkenseq achieves novelty by 

also easily exchanging data with the powered-by-CyVerse tool CoGe.  Other powered-

by-CyVerse tools, such as Galaxy, do not use Agave Apps at a foundational level, 

exploiting CyVerse resources mainly for its cloud data storage. fRNAkenseq’s 

differential expression capabilities are also useful to biologists.  The differential 

expression pipeline of fRNAkenseq runs three differential expression prediction tools 

(edgeR, DESeq2, and BaySeq), providing a user with output tables with combined 
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Figure 3: Several features involved in evolution of fRNAkenseq from pipelines, to an 
in-house resource to a powered by CyVerse tool. 

results, separating out enriched genes according to various levels of stringency – 

significant according to none, one, two or all three enrichment algorithms.  The need 

for pipelines that approach differential expression analysis by using multiple 

algorithms has motivated the development other software packages, such as RNA-seq 
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GUI (Russo and Angelini, 2014).  However, this program RNA-seq GUI, which is R 

based, does not encompass mapping and quantification, and must be installed locally. 

fRNAkenseq advanced the utility of both CyVerse and CoGe in a novel 

fashion, allowing CyVerse users the ability to use CoGe genomes on fRNAkenseq 

RNA-seq pipelines.  Owing to the combined features of relying on Agave APIs to 

manage pipelines, incorporating complex workflows for robust differential expression, 

as well as leveraging access to CoGe genomes, fRNAkenseq represents a novel 

bioinformatics tool and demonstrates the potential of powered-by-CyVerse resources.  

Ultimately, fRNAkenseq and its capacity to effectively accomplish rapid RNA-seq 

analysis, made it possible for our lab to advance from the preliminary steps of read 

mapping and quantification to differential expression analysis.  However, 

fRNAkenseq is only a partial solution to the informatics challenges of gaining a 

systems-biology level understanding of the heat stress response from high throughput 

data. The processed data must next be mined an integrated into biologically useful 

models.  It is by proposing statistical approaches to analysis downstream of 

fRNAkenseq data that I have contributed novel biological understanding of the heat 

stress response in broiler chicken. 

1.6 Tools to Proceed From Datasets to Insight 

This next phase, moving from data to insight, involves developing additional 

pipelines and workflows that integrate the complex, tissue rich datasets produced from 

fRNAkenseq with supplementary metabolomics data.  There are critical limitations, 

for example, of relying on only transcriptome data.  Though valuable for the ability to 

provide expression data for all annotated genes (over 20,000 in the chicken), 

transcriptome data cannot provide more than circumstantial evidence into biochemical 
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shifts at the level of metabolites and other compounds. While increasing the 

dimensionality of datasets, integrating multiple –omics data can improve the 

biological insight to be gained from high-throughput studies. This gain in 

dimensionality, resulting from the increase of data points associated with additional 

data types, can be managed by developing analysis pipelines that more effectively 

identify biological regulation. 

As our laboratory continued to process transcriptome data with the expanded 

bandwidth of fRNAkenseq, we sought to enhance the biological insight gained from 

the dataset by supplementing RNA-seq with metabolite data, while also exploiting the 

diversity of tissues in the dataset to explore organ specific biology.  This further 

analysis required the development of additional pipelines, and the application of 

statistical algorithms in a novel workflow. 

These pipelines begin by leveraging a definition of tissue enrichment.  This 

work will be discussed in detail in Chapter 3. Tissue enrichment involves identifying 

genes whose expression in a tissue of interest is increased relative to the background 

samples.  Tissue enrichment can be useful to identify modules of genes that control 

organ-defining physiology.  However, finding a strategy of enrichment that is 

sufficiently stringent as well as sensitive to organ unique biology can be a challenge. 

One of the first large-scale examples of studies leveraging tissue enrichment to 

investigate organ-defining biology is the genotype-express (GTEx) pilot study (The 

GTEx Consortium, 2015). The GTEx protocol identifies enriched genes as those 

having an expression level that is fivefold greater in the organ of interest compared to 

background samples.  However, we demonstrate that this procedure produces modules 

of tissue defining genes that often overlap with one another.  By leveraging a stringent 
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z-score test, in which %(
'''()**+,	)-(,.,*()0	1(23456.7+-8)

9(23456.7+-8)
	must be greater than five, we 

demonstrate the ability to identify tissue-defining genes that are unique to each organ, 

resulting from a large RNA-seq dataset processed by fRNAkenseq.  While using such 

a stringent threshold for tissue-defining genes may eliminate weakly enriched 

transcripts, focusing on the most robustly expressed genes will be useful for 

identifying those associated with critical biology. This approach to tissue enrichment 

is used to explore transcriptome differences between cardiac and skeletal breast 

muscle. 

Understanding the transcriptome aspects of muscle specific types is important 

because mass of breast muscle has been an important target of artificial selection 

during the development of the modern broiler chicken (Tallentire et al., 2016).  In 

addition to elucidating the heat stress response, clarifying the genetic basis of the 

resulting physiological changes in muscle has been a major goal of our lab. This 

research is related to understanding the broiler heat stress response, as we hypothesize 

that metabolic shifts associated with artificial selection have impacted bird tolerance 

for heat stress.  We shed light on several muscle-related transcription factors whose 

enrichment patterns differ between breast muscle and cardiac tissues.  Understanding 

the transcriptome underpinnings of muscle type specific physiology provides insight 

into the developmental biology of the broiler.  This is important, as many of these 

systems critical to muscle development are altered under heat stress. This type of work 

provides context for them in terms of development. 

The large volume of data exploited by fRNAkenseq makes it possible to 

identify tissue specific biology and emphasize tissue enriched genes for downstream 

analyses. For example, the identifying of tissue specific genes, providing a form of 
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feature selection before combining transcriptome and metabolome data into statistical 

learning pipelines that isolate biomolecules strongly associated with the heat stress 

response. The term biomolecules is used to refer to both metabolites and genes. 

Subsequent analysis that will integrate metabolomics and transcriptome data will be 

from the perspective of tissue defining genes identified through our threshold. 

For this step, we leverage an initial step of k-means to separate out compounds 

by expression patterns, followed by random forest to identify among each cluster those 

compounds with the strongest ability to classify control and heat stress samples.   A 

final round of principal component analysis (PCA) among these strong biomarkers 

was able to recapitulate elements of known biological pathways that function under 

heat stress, as well as propose novel hypotheses relating metabolites and genes not 

previously connected to these networks. Each algorithm in our pipeline has unique 

roles in exploiting a different feature of the data. For example, after initial separation 

by k-means the signature of heterogeneity is exploited by prioritizing compounds with 

strong classifying power through random forests, and finally by summarizing 

correlations among compounds by principal components, these pipelines identify 

potential regulators of heat stress and shed light on systemic metabolic changes.  

Importantly, this pipeline effectively reduces our dataset to a few compounds 

representing the key systems involved in the heat stress response: lipid, sugar and 

antioxidants.  The reduction of the set of all possible metabolites and organ specific 

genes is a critical form of dimension reduction that prioritizes compounds relevant to 

the heat stress response. This work is described in Chapter 4. 

Finally, many of the molecules prioritized by the statistical learning techniques 

are organized into possible mechanisms that represent concrete biological hypotheses 
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by building linear models that model metabolite levels in terms of the ratios of other 

metabolites and identify those that are potentially metabolically related. We use 

metabolite data to create linear models, as this class of model best fits the data and 

recapitulates biologically verifiable relationships.  The use of ratios to account for 

behavior of metabolic pathways emerged as a technique to capture the kinetic 

information represented by relative levels of metabolites at steady state.  It has been 

used in maize (Haries et al., 2009) and human studies to produce SNP-metabolite 

associations (Gieger et al., 2008). We extend these methods to identify metabolite-

metabolite models that are influenced by the heat stress response. Though there has 

been progress in using pathway information to integrate SNP and ratio associations 

(Krumsiek et al., 2016), efforts to build complete circuits from metabolomics data 

have been lacking.  It is for this reason that we progress to develop circuits of 

regulation from these models. The procedure to do this is simple, but effective and 

provides a form of analysis complementary to our statistical learning pipelines.  The 

interaction terms of several of many linear models containing heat stress responsive 

metabolites are highly significant, and many have overlapping components.  Potential 

regulatory circuits are built by identifying sets of models of with overlapping 

components that could represent different regions of a pathway. 

Those linear models involving biochemically related compounds, which 

demonstrate significant interaction terms, could represent the differential direction of 

metabolic fates in ways that shift between control and heat stress conditions.  We call 

these simple mechanisms “metabolic forks”, in which precursor molecules can be 

selectively routed to different compounds under regulation. These network motifs are 

then integrated into larger circuits that provide insight into pathways operate in 
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coordinated fashion under heat stress, and put in the context of gene expression 

changes from the transcriptome data.  This is critical, because the search time would 

be computationally expensive, and having narrowed down a set of candidate 

molecules enables informed selection to build models, dramatically reducing the 

number of possible relationships that must be evaluated. 

The use of linear models to integrate metabolite data into concrete mechanisms 

is a critical insight, because these ratios capture biochemical information about circuits 

that would not be detectable otherwise. We will show that linear models capture 

differential behavior of pathways that sit at the intersection of lipid and sulfur 

metabolism.  It can be seen that certain network relationships would not be identified 

without the incorporation of metabolites ratios into the models. In particular, the 

relationship between various sulfur containing species and lipids would not be 

recognized, without modeling this relationship as a metabolic fork utilizing ratios.  

The poultry research community has demonstrated active interest in understanding 

how the levels of such metabolites and their interactions shift under heat stress. In 

particular, identifying metabolites that influence anti-oxidant production could provide 

candidates for potentially powerful dietary interventions to improve bird performance 

(Sahin et al., 2013).  Importantly, many of the metabolites identified by our analysis 

are located in pathways adjacent to genes whose expression is significantly changed 

by heat stress.  The putative circuits from these models produce hypotheses that have 

been validated through literature searches, independently run experiments, or plan on 

being explored through future feed supplementation studies. This work, detailed in 

Chapter 4, focuses on samples of liver tissue, as the liver is a metabolic powerhouse 

for the bird and central to managing sugar and fat metabolism, and influencing 
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peripheral tissues (Jastrebski et al., 2017). This comprehensive approach to explore 

the heat stress response effectively recapitulates known biology, and also proposes 

new hypotheses to guide breeding and dietary interventions that could improve bird 

heat stress tolerance. 

1.7 Conclusion and the Way Forward 

The work described in this thesis, by producing tools and pipelines for the 

effective analysis of high throughput sequencing data, has made useful and novel 

contributions to the life and computational sciences.  The powered-by-CyVerse RNA-

seq analysis platform, fRNAkenseq, has furthered the capacity of the 

cyberinfrastructure project CyVerse, by expanding offering of powered-by-CyVerse 

tools.  Additionally, the data sharing capacities across CyVerse resources 

demonstrated by fRNAkenseq’s API driven architecture provides a useful blueprint 

for developing the next generation of informatics tools, which will need to seamlessly 

exchange data in order to keep pace with the increasing volume of high throughput 

datasets.  Our lab has used fRNAkenseq to process RNA-seq files on a large scale.  

These transcriptome files have subsequently been analyzed to produce novel findings 

regarding tissue-defining biology and regulation of the heat stress response.  

Additionally, I have developed statistical pipelines that integrate transcriptome files 

analyzed by fRNAkenseq with supplementary metabolomics data.  By doing so, I 

propose a novel circuit that integrates sulfur, lipid and antioxidant metabolism under 

heat stress.  These mechanisms are corroborated by transcriptome data, and are driving 

the next phase of experimentation in the lab for additional validation.  Thus, my work 

has developed tools and resources to analyze a dataset investigating an important 
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problem in biology, generated models and hypotheses to clarify regulation of the heat 

stress response, and provided candidate mechanisms for future validation. 
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A POWERED-BY-CYVERSE TOOL FRNAKENSEQ 

2.1 Introduction 

RNA-seq is a popular tool to explore biological responses to stimuli.  As 

reagent costs have plummeted, the bottleneck of progressing from experiment to 

insight has shifted from the biological experiment to data analysis.  The challenge to 

move from data to insight includes managing large-scale data burdens, and 

development of statistical techniques to identify compounds that drive biological 

responses. While there has been significant progress in creating web-based tools, these 

offerings are prone to the limitations that result when system architecture does not 

anticipate data federation (aggregating data from connected tools into a centralized  

 

Figure 4: The number of archived data in the short read archive in petabases as 
function of year. From (Muir et al., 2016).  

Chapter 2  
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resource: http://businessintelligence.com/dictionary/data-federation/ , 4/26/2016) or 

platform crosstalk during the early stages of development.   The strain on such tools is 

likely to grow as data burdens continue to increase. The shortcoming of the current 

generation of tools can be addressed as a new generation of software platforms 

evolves that enables shared resources to be exploited through system crosstalk (i.e. the 

ability to query shared resources, such as databases or sequencing files). 

Crosstalk between resources enhances the functionality of individual tools by 

creating collective abilities not found in any individual platform.  For example, a 

single pipeline could pull input and other data from another tool or platform.  Data 

management could then be distributed across tools and resources.  While RNA-seq 

experiments rely on reference files for alignment, including both a FASTA file and an 

annotation, the storage of these files is cumbersome.  Additionally, many different 

types of analyses other than RNA-seq have a similar requirement for input genomes.  

Thus, a system designed around a single database which manages and stores the input 

data for multiple tools would be a significant improvement in efficiency.  This is 

precisely the relationship enabled by fRNAkenseq’s integration with CoGe. 

The advantages of such integration will only increase as it becomes unfeasible 

to have all resources for computational analysis in a single tool.  Earlier generations of 

tools built without consideration of this data-sharing approach suffer from an inability 

to share reference files and other inputs, and assume the entire load of data burdens 

that accumulate with job execution.  Thus, there is a need for a new a paradigm for 

development of future tools to meet such challenges. Such tools will exploit the 

advantages of the Internet to act as a conduit between resources while moving diverse 
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data types at a genome scale (dozens of GBs).  They must also provide the ability to 

flexibly manage computational resources and job execution. 

This pattern of development will provide a useful way to transition from 

pipelines to software packages that are scalable and relatively lightweight, enabling 

development to keep pace with the evolving challenges of the genome era. The 

advantages of job automation and cloud-based data storage enabled by such tools will 

become more pronounced as genomics technology shifts from the lab to more applied 

settings, such as the clinic or the farm. Additionally, the tools will be able to adapt as 

diverse higher throughput technologies, including single cell sequencing and 

automated data collection in agriculture, become more common. 

2.1.1 CyVerse and the Science APIs 

CyVerse is a pioneering cyberinfrastructure project developed to make web 

tools, databases and computing resources accessible to the scientific community 

(Figure 2), (Merchant et al., 2016).  Crucially, CyVerse offers access to cloud-based 

data storage in the form of the CyVerse Data Store. This can serve as an endpoint for 

processed data as well as hosting for input.  CyVerse includes multiple offerings that 

comprise a suite of tools that biologists can use to process their data, often exploiting 

Texas Advanced Computing (TACC) resources. Some of these are third party tools, 

such as fRNAkenseq, that rely on the Data Store for data storage. Others are pipelines 

that reside in the CyVerse Discovery Environment as lightweight applications for data 

analysis. The CyVerse Discovery Environment (DE) boasts a graphical user interface 

(GUI) by which users access a diverse set of applications. It also serves as is a user-

friendly introduction to bioinformatics.  These applications generally consist of 

underlying bash script pipelines, accompanied with a JavaScript Object Notation 
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(JSON) wrapper that allows user input through the GUI in the CyVerse Discovery 

Environment.  Processed data is returned to the Data Store, and inputs can be stored 

here as well. 

 

Figure 5: The full offering of Agave APIs accessible to developers through the 
Software Development Kit (SDK).  These APIs enable users to interface 
with CyVerse infrastructure, though default source and endpoint for data 
resources is customizable. 

2.1.2 Agave APIs to Run Sequencing Applications 

The Applications in the DE are useful, but are limited by being relatively self-

contained.  While there are many Apps in the CyVerse Data Store, many of the 

workflows are not complex enough for the needs of labs with a strong computational 

component.  Additionally, the degree of data sharing between Apps in the DE and 

third-party tools is minimal.  The computing environment of Apps in the DE is also 

restricted to either a private computing system managed as a Condor cluster, or to 

resources on TACC machines, as managed by CyVerse developers. Essentially, any of 

the Apps developed in the DE are confined to running only on the platforms 

previously allocated for the DE.  The lack of control over computing resources is a 

key limitation for users who wish to develop tools in the DE. This also constrains any 
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development outside the CyVerse environment that still makes use of its 

infrastructure. 

Thus, an important resource independent of CyVerse but leveraged by some of 

its tools, such as some Apps found in the Discovery Environment and third party tools, 

is the Agave (A Grid And Visualization Environment) API suite which is accessible to 

developers through a software development kit (SDK) (Figure 5). Agave provides the 

means to control job submission to Apps that do not need to reside in the DE, as well 

as custom management of job execution systems.  These job execution platforms can 

be TACC resources, cloud-based, or private servers.  Once an available computing 

service is registered as an execution system in Agave, Apps can be registered to run on 

it.  App output can be archived to the CyVerse Data Store to avoid costly storage 

burdens on resources dedicated to job execution.  Incorporating Agave Apps into third 

party tools capitalizes on the advantages of the Data Store while improving 

opportunities for data sharing between different platforms. 

2.1.3 API Integration Blueprint and Utility to Biologists 

Through fRNAkenseq’s web interface, users query CoGe’s database for 

genomes available for analysis.  This includes either 30,000 existing public genomes, 

or private genomes that they have been granted permission to access.  Additionally, 

users can choose from several manually curated high quality genomes 

(frnak_approved).  Genomes are pulled from CoGe into the CyVerse Data Store using 

CoGe’s get_gff and get_fasta API calls. The files-list query through the Agave web 

service determines if the genome already exists in the Data Store.  CoGe genomes are 

then processed through indexing, and index files are returned to the user’s CyVerse 

Data Store via another in-app API Agave command: files-upload. This means that 
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there is a one-time cost of indexing for each genome. This saves significant time 

during analysis, as index pre-processing can take between 45 minutes and two hours. 

 

Figure 6: Schema of APIs and their functions for fRNAkenseq.  Agave API’s move 
job specific data across machines, while additional other (CoGE) APIs, 
manage genome files.  CoGe RESTful APIs all fRNAkenseq to query 
CoGe’s database. 

In total, the fRNAkenseq connection schema between CoGe and TACC resources can 

be described below (Figure 6).  The establishment of this paradigm lays the 

groundwork for companion tools which are currently in development, such as 

MInotauR.  MInotauR will represent a powered-by-CyVerse design similar to 

fRNAkenseq, but its pipelines will emphasize analysis of microRNAs. 

The ultimate product of fRNAkenseq’s innovative backend is a tool that brings 

together a diverse set of resources to meet the needs of a biology research group with 
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large scale RNA-seq data. Viewed from the interface, fRNAkenseq provides an 

accessible portal to algorithms and a workflow that spans mapping and quantification 

of FastQ files to differential expression using multiple enrichment algorithms.  This 

workflow is optimized for usability by biologists (Figure 7), providing a natural flow 

from read alignment to differential expression.  This design, which is more accessible 

to a biologist without computational experience, represents an alternative to the 

loosely-organized Galaxy toolshed.  

 

Figure 7: fRNAkneseq backend pipeline components, scripts that manage them, and 
interface. 

Network	Schema	



 33 

2.1.4 fRNAkenseq Components: MapCount 

The two main services offered by fRNAkenseq are MapCount and 

DiffExpress, which span initial mapping/quantification and differential expression 

analysis, respectively. Output from each of these stages is accessible, at any time, in 

the user’s CyVerse account through the DE.  Importantly, DiffExpress leverages three 

R packages for differential expression producing lists of enriched genes with varying 

levels of stringency.  This allows a biologist to employ a Venn diagram approach to 

select enriched genes, focusing on the intersection of sets of genes predicted to be 

differentially expressed by multiple algorithms. 

 

Figure 8: fRNAkenseq MapCount interface showing the selection of a FastQ file and 
the range of genomes available through CoGe’s database 
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The MapCount stage of fRNAkenseq provides the first steps of an RNA-seq 

quantification workflow (Figure 8). MapCount offers informatics capacities for both  

stranded and un-stranded data, as provided in the form of raw read FastQ files. One 

Agave App processes stranded data, while another App processes un-stranded (Figure 

9). Mapping is completed by Hisat-2 (Pertea et al., 2016). Samtools (Li et al., 2009) 

then converts the mapped output into BAM files (Figure 12). This represents a next-

generation iteration of the popular Tuxedo pipeline (Bowtie2/Tophat2, Cufflinks for 

mapping and quantification, respectively). For further analysis, the standardized BAM 

files can then be shuttled to various options available in the CyVerse environment 

(Figure 10). 

 



 35 

 

Figure 9: Mapcount workflow and backend integrated with the Agave Apps 
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Figure 10: Algorithms of fRNAkenseq MapCount pipeline.  Current generation 
algorithms in the green squares, adjacent to the earlier algorithms they 
have replaced from the Tuxedo pipeline. 
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Figure 11: Application of a downstream analysis in CyVerse Discovery Environment 
executed on a mapped BAM file previously processed by fRNAkenseq  

While analyses are run on a separate execution server, all of fRNAkenseq’s 

outputs go directly to the CyVerse data-store for optimal interoperability and crosstalk 

between fRNAkenseq and other resources in the Discovery Environment. The files are 

stored in the user’s CyVerse Data Store home directory, under mapcount_output, in 

accordance with the schema in Figure 14. 

All mapping and quantification data resides within the mapcount_output 

directory in the user’s CyVerse Discovery Environment account.  Relevant files 

depicted in this schema include the sorted sam, the indexed sam and the sorted bam 

files, in addition to raw read counts associated with each gene.  They may be further 

analyzed with other CyVerse apps that similarly use the Discovery Environment 
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Figure 12: Schema depicting the MapCount directory layout for fRNAkenseq. 

cyberinfrastructure. All fRNAkenseq outputs are accessible for further analyses within 

the CyVerse Discovery Environment, providing a valuable degree of freedom for 

researchers who would like to extend downstream analyses with customized 

workflows (i.e. using Apps that process BAM files). Alternatively, a user may 

progress to differential expression analysis using the second component of 

fRNAkenseq, DiffExpress. 
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2.1.5 fRNAkenseq Components II: DiffExpress 

DiffExpress is developed for stringent enrichment analysis, using input from 

the MapCount pipeline (Figure 13). It deploys multiple algorithms in a single run 

(Figure 14), combining outputs into lists of genes of varying selectivity according to  

 

Figure 13: Possible sequence analysis workflow from start to finish with FastQ files 
using fRNAkenseq and other CyVerse apps  

 

Figure 14: The schema for fRNAkenseq’s DiffExpress pipeline representing the 
different algorithms executed as a single Agave App.  
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the number of algorithms that have declared them differentially expressed. While the 

negative binomial null model is incorporated into all featured algorithms, each 

calculates the significant parameters in a different fashion. Despite many approaches 

to differential expression, none is found to be universally superior, and the most 

accurate strategy depends on the profile of the gene and the landscape of the data 

(Rapaport et al., 2013). To this effect, DESeq2 models variance as a linear 

 

Figure 15: fRNAkenseq’s DiffExpress user interface showing the set-up of a sample 
analysis using libraries previously analyzed by MapCount.  

association with the mean of gene expression level (Love, 2014) whereas edgeR uses 

an empirical Bayes’ method to determine most likely variance for a group of genes 

with a similar expression profile (Robinson et al., 2015).  BaySeq relies on a process 

of empirical sampling of the data to determine posterior probabilities of differential 
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expression (Hardcastle et al., 2010) and return a Bayesian FDR estimate 

(Seyednasrollah et al., 2013). fRNAkenseq provides output from all three of these 

differential analysis programs and also applies a Venn-diagram approach to allow 

users to identify genes that are classified as significantly differentially regulated by 

more than one statistical approach.  

 

Figure 16: Similar to MapCount, the DiffExpress pipeline has an Agave App at its 
core. The DiffExpress Agave App, however, has an extra level of 
complexity in that it creates and executes the code that composes the R 
pipeline, based on input submitted to DiffExpress, A subsequent Python 
script identifies genes predicted as enriched by 1-3 different programs. 
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Figure 17: This represents the schema of DiffExpress output within a user’s CyVerse 
directory.  Included in this output are the differential expression outputs 
from three R packages, edgeR, BaySeq and DeSeq2.  Files in green 
rectangle contain genes differentiall expressed according to one, two, or 
all three of these algorithms. 

Each algorithm in DiffExpress (Figure 14) leverages different statistical 

assumptions to accomplish differential expression analysis.  Finally, the output of each 

of these algorithms is combined into tab-delimited files that integrate differentially 

expressed genes with various levels of stringency as determined by the number of 

algorithms that predict them as differentially expressed (Figures 16 + 17).  The 

workflow of the DiffExpress pipeline as an Agave App, though similar to that of 

MapCount, involves the combination of R and Python scripts (Figure 16). 
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Figure 18: Users have access to data in the Data Store (CyVerse) as well as in CoGe 
(genome files), through CyVerse’s centralized authentication system.  
Data is moved across different systems according to the task being 
executed and the API call. 

2.1.6 Management of Resources Across Systems 

When executing differential expression analysis, it is important to make sure 

that a user does not try to run DiffExpress on a set of libraries that were analyzed 

through MapCount using different versions of a species’ genomes or accessing the 

genome of a different species than that used for the MapCount analysis.  

Implementing this type of safeguard requires first storing the MapCount data analysis 

information and then having the fRNAkenseq webpage access that data.  This is 

accomplished by executing the schema above, using the fRNAkenseq webpage to 

execute Agave API calls (Figure 18).  This ability to transfer data directly between the 

webpage and the Data Store through the Agave APIs is also applied during MapCount 
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when updating the file logs that will store the genome information for subsequent 

fRNAkenseq DiffExpress runs. 

2.2 Discussion: Description of an Agave Apps as a Foundational Unit  

By relying on Agave Apps as fundamental units of job execution, fRNAkenseq 

is able to employ a grid computing strategy (Figures 19 and 20).  A grid computing 

paradigm is one in which different computational tasks are relegated to separate nodes 

or units. These may be on the same machine or separate ones.  This design philosophy  

 

Figure 19: An App posted to 
the Agave service consists of a 
shell script pipeline template 
with its JSON wrapper 
description.  The shell script 
contains the individual 
commands for the pipeline.  
The corresponding JSON 
wrapper provides execution 
and storage system 
information for the app.  It 
also describes the variables 
that will be passed to the bash 
template 
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Figure 20: Integration with Agave Apps and a third party web tool such as 
fRNAkenseq is described. Once an Agave App is registered it can 
comprise the backend pipeline for a tool.  Subsequently, an arbitrary web 
interface can be developed to compose JSON objects to be submitted to 
the Agave app. These JSON objects will be consistent with the JSON 
wrapper of the App that has been posted to the Agave service.  When the 
pipeline executes, the processed data will be returned to the data 
directory as specified in the App description.  The ability to control jobs 
in this fashion is enabled by the jobs service of the Agave API, 

is useful for the development of genome analysis tools because it allows a way to 

manage the computational loads of job execution and resulting data burdens.  One 

machine, or a set of machines, can be used for job execution, while another system 

(such as the Data Store) is used for archiving input data and results. 

The Agave APIs create a set of diverse utilities that enable software 

development within the CyVerse computing infrastructure.  The Agave Software 

Development Kit (SDK) makes these offerings available to tool developers in the 

bioinformatics community (Figure 5).  Each service of the Agave API promotes 

different capabilities spanning from authentication to data transfer.  Different subsets 

of these functions are currently employed to various degrees by the powered-by-

CyVerse tools.  Some powered-by-CyVerse tools include BioExtract Server 

(Lusherbourgh et al, 2011), CIPRES (Miller et al., 2010), ClearedLeavesDB (Da et al., 
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2014), CoGe (Lyons et al., 2008), iMicrobe, Integrated Breeding Platform (The IBP 

Breeding Management System Version 3.0.9, 2015) SoyKB (Joshi et al., 2014) and 

Galaxy (Afgan, 2016). Among the community of powered-by-CyVerse tools, 

fRNAkenseq is unique through the combination of utilities it offers to biologists and 

the depth of its reliance on the Agave and other CyVerse APIs as a foundational 

system.  This scheme of integration is complemented by fRNAkenseq’s connection 

with CoGe. 

CoGe is a genome resource developed for synteny analysis. Among its features 

is a database of 30,000 computationally and manually curated genomes from all 

domains of life.  Users may also upload and manage private draft genomes.  The 

ability to customize data in this setting makes the tool an excellent starting point for 

researchers to begin analyses of non-model organisms for which the only reference 

files are draft genomes they have produced.  CoGe has grown to include 

bioinformatics pipelines and browser utilities that exploit the database of genomes. 

Although some of these pipelines, much like fRNAkenseq perform mapping and 

quantification fRNAkenseq additionally completes differential expression. 

CoGe also includes a set of APIs that allows other third party powered-by-

CyVerse tools to utilize CoGe’s underlying database of genomes.  These APIs are 

independent of the Agave APIs, and fRNAkenseq’s use of them is an example of its 

uniqueness, employing connectivity between third party powered-by-CyVerse tools 

not found in the Apps in the Discovery Environment.  Thus, fRNAkenseq is able to 

provide novel pipelines to biologists and facilitate a connection between CoGe and the 

CyVerse DE.  This scheme of integration, which incorporates a grid computing 
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strategy, connection with the data storage, and data sharing with CoGe, separates 

fRNAkenseq from Galaxy, a similar powered-by-CyVerse tool. 

2.2.1 Comparison with Galaxy and CoGe Integration 

Galaxy, a software project started in the mid-2000s, is designed to make 

common bioinformatics tools available to life scientists through web interfaces. 

fRNAkenseq extends the advantages of web-based tools like Galaxy, and also serves 

as an example what the next generation of integrated analysis systems can offer. In 

addition to its immediate utility to biology labs, fRNAkenseq more fully leverages 

advances in cyberinfrastructure to improve connections between resources through its 

API-driven design.  This development philosophy avoids backend redundancy and 

improves flexibility for programmers that wish to selectively exploit the utilities of 

different tools existing on separate platforms. 

Similar to the CyVerse DE, Galaxy offers a degree of flexibility in terms of 

tool development, but also the ability to run different types of instances (i.e. cloud or 

local).  It follows a standard protocol of combining command line tools with wrappers 

to define Galaxy “Apps” – unrelated to Agave Apps.  This paradigm of software 

development has been effective in meeting the informatics needs for many groups. It 

also provides an opportunity for researchers to publish their tools as applications 

within the Galaxy resource.  A public instance of Galaxy runs as a powered-by-

CyVerse tool in the sense that it exploits TACC resources and utilizes the CyVerse 

Data Store.  However, Galaxy is a self-contained workflow for bioinformatics 

analyses and does not rely on CyVerse APIs for functions beyond simple access to 

data.  Thus, unlike fRNAkenseq, it does not exist as a third party tool that appropriates 

the full range of CyVerse and Agave APIs at a truly foundational level. This paradigm 
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of extended integration demonstrated by fRNAkenseq brings enhanced flexibility for 

development and data sharing between resources.  By relying on Agave for a range of 

functions from data movement, authentication to job management, fRNAkenseq is 

able to combine the resources of other powered-by-CyVerse tools in a way that is not 

possible for a tool like Galaxy, whose substantial pre-existing architecture will limit 

the scope of integration with CyVerse resources.  
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BEYOND DIFFERENTIAL EXPRESSION: TISSUE ENRICHMENT 

3.1 Introduction 

Once users have accomplished initial file processing through fRNAkenseq, a 

next step is to relate gene expression data to biological insight.  fRNAkenseq makes 

some early steps in this process (mapping, quantification, and robust differential 

expression) simple.  However, identifying genes that are differentially expressed 

between conditions is often not enough to elucidate pathways or provide other 

biologically useful information for tissues of interest in a way that is treatment 

independent.  For example, other methods must be used to identify tissue-specific 

biology from transcriptome data that has been collected over the course of many large-

scale experiments.  There is a demand for such techniques, as reliable heuristics to 

identify tissue-defining genes can provide important forms of feature reduction, partly 

by reducing organ-specific biology to a relatively small set of genes that are enriched 

in a tissue of interest. This can be a useful form of pre-processing for subsequent 

pipelines. Alternatively, the set of genes enriched in a tissue of interest is often 

biologically informative on its own.  Thus, the proliferation of tissue-diverse datasets 

associated with large-scale experiments represents an opportunity to explore tissue 

enrichment in its own right.  Such data mining produces insights complementary to the 

original studies for which tissue samples were collected.  A subsequent chapter, 

Chapter 4, will show that it can be useful to understand a biological process, such as 

heat stress, in the context of enriched genes.  This chapter, however, will focus on 

Chapter 3 
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using a tissue enrichment threshold to compare genes enriched in breast muscle and 

those enriched in cardiac tissue.  This comparison effectively isolates tissue-specific 

biology to a high degree of resolution.  

3.1.1 Motivation  

As researchers regularly accumulate complex data sets with samples from 

multiple organs, they increasingly want to explore tissue-specific biology.  In these 

types of studies, the analysis shifts from using traditional differential expression 

methods to leveraging enrichment thresholds that isolate tissue-defining regulation.  

We develop a method for identifying tissue enrichment, different from the negative 

binomial model-based differential expression analyses found in DiffExpress (edgeR, 

BaySeq, DESeq2), and which represents an extension of previous tissue enrichment 

strategies.  This approach is then employed to process large-scale datasets that come 

out of fRNAkenseq MapCount pipelines, which have processed FastQ files from a 

diverse set of tissues. This enrichment analysis is useful both independently for 

comparative studies, and also as an initial step of feature selection for bioinformatics 

analyses with more advanced pipelines.  Our standard of enrichment represents an 

elaboration and, in many ways, an improvement on methods originally developed by 

the Genotyping by Expression (GTEx) projects, which were developed to study tissue-

specific biology in human organs.  The performance of our heuristic on our dataset is 

compared to that of GTEx methods, after the motivation for our strategy is discussed. 

3.1.2 Criteria for Enrichment 

Tissue enrichment strategies have diversified to meet the informatics needs of 

an expanding genomics community.  Some of these are characterized in detail through 



 51 

the review “A Benchmark of Gene Expression Tissue Specificity Metrics” 

(Kryuchkova-Mostacci and Robinson-Rechavi, 2017).  Strategies regarding tissue 

enrichment include a tissue specificity index, gini-coefficient, and a z-score, 
%('''()**+,	)-(,.,*()0	1(23456.7+-8)

9(23456.7+-8)
 , approach.  Each of these approaches produces a 

distinct profile of enrichment for different genes across tissues in a tissue-diverse 

dataset (Kryuchkova-Mostacci and Robinson-Rechavi, 2017).  Under the z-score 

approach, genes whose difference in expression in a tissue of interest compared to 

background is greater than three standard deviations from the background mean of 

background tissues are enriched.  This z-score approach is commonly used for other 

types of analyses with continuous values.  However, the z-score threshold often 

requires the assumption of an underlying normal null distribution for data, in which 

case ninety-five percent of the observations will lie within 2 standard deviations of the 

mean.  The generality of this assumption makes z-score-based metrics a widely 

applied threshold to sequencing data. Though it tends to correlate poorly with other 

enrichment strategies, it is the only method that considers the standard deviation of the 

expression data in enrichment studies (Kryuchkova-Mostacci and Robinson-Rechavi, 

2017).  We consider this to be an important feature.  Thus, for our enrichment 

analysis, we leverage a modification of the z-score approach, explaining the 

theoretical motivations for using a cut-off of five standard deviations (5SD) as 

opposed to three used in the methods described in Kryuchkova-Mostacci and 

Robinson-Rechavi.  We illustrate typical situations in a read alignment dataset that 

would violate the assumptions of normality required for more relaxed z-score 

methods, but show how using a cut-off of five standard deviations addresses this 

problem by remaining applicable for arbitrary distributions.  We also demonstrate 
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empirically that the distribution of reads across samples in our tissue diverse dataset is 

non-normal (Table 1).  We compare this to the ad-hoc threshold for tissue enrichment 

that is leveraged in GTEx studies 

3.1.3 GTEx and Other Enrichment Approaches. 

The GTEx project is one of the most well known instances of large-scale tissue 

enrichment analysis on a large set of samples that resembles our dataset. The GTEx 

project is an exploration of gene expression across 53 tissues, ultimately focused on 

understanding the basis for genetic control of tissue specific transcriptomes (The 

GTEx Consortium, 2015).  One step of GTEx computational studies has been to 

identify tissue enriched genes.  The GTEx cutoff for enrichment, which does not 

consider standard deviation, but instead selects enriched genes according to five-fold 

increase in means, is effective but ad-hoc. Our strategy, in contrast, incorporates both 

the mean and standard deviation of expression data, but is distribution independent.  

Although we previously explored relative tissue expression (RTE) analysis, which 

relied on the median of tissue expression (Bailer et al., 2009), this method produced 

significant overlap between tissues.  We will demonstrate the efficacy of our more 

stringent method to tease apart tissue-specific muscle biology, and compare to the 

GTEx approach.  In this chapter, we use our enrichment strategy as a lens through 

which we can understand gene expression differences between cardiac and skeletal 

muscle. In Chapter 4, we will discuss genes determined to be enriched in liver 

according to the same methods used in the comparison of skeletal and cardiac tissue.  

These enriched genes will serve as a foundation for statistical learning pipelines that 

integrate transcriptome and metabolome data.  Tissue enrichment approaches have 

helped us maximize the insight gained from samples processed by fRNAkenseq. 
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3.1.4 Improvement Over GTEx 

To date, the laboratory’s complete dataset comprises over 1500 RNA-seq 

libraries from diverse tissues. At the time of this analysis, somewhat over half of those 

samples (800) had been processed.  These hundreds of samples, across many different 

tissue types, provided an opportunity to explore robust enrichment analysis against a 

large background. To understand fine-tuned variations in regulation underlying 

different muscle types, one small subset of the total data sample is compared against 

the background of other tissues at a time.  We focus on exploring the difference 

between cardiac and skeletal muscle using our enrichment definition because these 

samples represent tissues that possess considerable levels of both unique and 

overlapping biology.  Additionally, increased skeletal muscle growth has been a major 

target of artificial selection in the broiler chicken over the past several decades 

(Tallentire et al., 2016).  Understanding the important and organ specific regulatory 

genes in this tissue will be useful in defining the baseline biology of breast muscle, 

improving our understanding of biological systems that may be altered through intense 

breeding programs.  

One of the foundational examples of work with a large tissue-diverse dataset 

that identifies organ-defining compounds is the GTEx study.  Although this dataset 

emphasized human clinical data, the approach is general enough to be utilized with 

other tissue-diverse datasets.  The GTEx method that was used to identify tissue-

enriched genes from the original dataset applied a definition of genes whose mean was 

fivefold greater in the tissue of interest compared to background tissues.  Although 

this represents an adequate starting heuristic, this approach is bound to over-report 

lowly expressed genes because it does not consider the difference between the means 

in the tissue of interest and background tissue in the context of the variance.  We 
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propose a more rigorous and generally stringent definition by setting the threshold 
such that the z-score, %(

'''()**+,	)-(,.,*()0	1(23456.7+-8)
9(23456.7+-8)

 must be greater than five. Owing 

to Chebyshev’s theorem, this cutoff ensures a gene is in at least the 95th percentile of 

the distribution of expression of the background tissue.  This is under the assumption 

that we have correctly estimated the parameters.  These assumptions are justified by 

the relatively large sample, and by the application of this test as a heuristic to generate 

hypotheses. Importantly, this approach is an improvement over the ad-hoc boundaries 

drawn under the GTEx study, being more rigorous from a theoretical standpoint. 

 

Figure 21: Venn Diagram illustrating specificity of enriched gene lists at the five 
standard deviation z-score threshold in muscle types. 
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Our threshold of five standard deviations derives from biological as well as 

statistical justifications.  Five standard deviations can be demonstrated to be 

sufficiently stringent to isolate tissue specific genes, but not too stringent to exclude 

relevant biology (Figure 21).  The reliance on Chebyshev’s theorem, which is 

common principle discussed in introductory statistic courses, for hypothesis testing 

can be understood as a more general application of hypothesis testing than what is 

usually done under assumptions of normality and the empirical rule. 

3.1.5 Dealing with Non-normality 

Following the assumption of normality, the empirical rule is the heuristic that 

motivates the calculation of z-score tables used with minimal other assumptions, such 

as those regarding sample variance that would instead motivate a t-test or chi-square 

test. Under this approach, it is common to calculate a z-score 
%('''()**+,	)-(,.,*()0	1(23456.7+-8)

9(23456.7+-8)
  for a given value to determine the probability it was 

due to chance, and assume that the null distribution is a normal distribution.  Thus, the 

probability of an observation is determined based off of the distance of that 

observation, in terms of standard deviations from the mean of that data, assumed to 

come from a normal distribution centered at 𝜇.  Generally, under these sets of 

assumptions, if a measurement is more than two standard deviations (Figure 22) it is 

considered significant at a .05 significance level.  We initially explored a threshold of 

two standard deviations from the mean of all tissues to determine if a gene is enriched 

in a given tissue.  This proved an effective first pass at identifying organ-specific 

biology.  However, this threshold resulted in a strong degree of overlap in tissue-

enriched genes.  This definition of enrichment is thus not sufficiently stringent enough 

to determine tissue-unique genes among similar organs.  Additionally, we have strong 
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evidence that our data, which concerns gene expression patterns across samples of 

many different organs, is not normally distributed.  For example, these datasets 

consistently fail the Shapiro-Wilkes test for normality (Table 1). 

 
Tissue  Pass Fail 
Breast Muscle  0 30,161 
Liver  0 30,161 

Table 1: Genes that have passed or failed test for normality   

One of the important motivations for refining the GTEx strategy is the need for 

stringent identification of enriched genes that can tease apart differences in 

developmentally related tissues such as cardiac and skeletal tissue.  We demonstrate 

important overlap with the five standard deviation based z-score of our approach and 

the previous definitions of enrichment given by GTEx, while also illustrating 

advantages of our approach in identifying tissue specific biology. The need for the 

stringency of the five standard deviation threshold also has important statistical 

justification.  Out of 30,161 genes, all distributions among background samples fail 

the Shapiro-Wilk test for normality at the .05 level, causing us to reject the null 

hypothesis of a normal distribution.  Thus, the need to identify enriched genes despite 

a lack of normality requires a rigorous, non-parametric standard of enrichment.  
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Figure 22: A standard normal distribution and the empirical rule demonstrating the 
percent of observations that will fall within a given number of standard 
deviations of the mean. 

Even in cases where data does not necessarily appear to be normally 

distributed, but derives instead from an arbitrary function for the null distribution, it is 

still possible to determine bounds on the probability that an observation is due to 

chance by using a z-score.  These highly non-normal situations are to be expected in 

datasets like ours, where the expression of a single gene is compared across libraries 

of multiple tissue types.  Evidence for the lack of normality is shown by the results of 

the Shapiro-Wilkes test. One situation that could account for this is that gene 

expression is mostly sparse, i.e. the gene is not expressed (or not expressed 

consistently) in most tissue of most samples, or unevenly expressed across tissue 

types.  The inevitability of non-normal data distributions is not unique to expression 

data across multiple tissues; it is a natural consequence of situations involving read 

alignment in which one sample or region is associated with a disproportionate number 
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of reads (Figure 23). Understanding consequences and causes of non-normal 

distributions in RNA-seq data will provide context for different strategies regarding 

hypothesis testing. 

 

Figure 23: A simple example of non-normality in read distribution across exons of a 
gene.  A similar, though less exaggerated, effect occurs among samples 
of multiple tissues 
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Figure 24: Probability distribution function (PDF) corresponding to the histogram of 
read alignments per exon in Figure 25.  

3.1.6 Models of Read Alignment Associated with Non-normality 

Perhaps the simplest example in RNA bioinformatics of a random variable that 

may not be normally distributed would be the number of RNA reads mapped across 

exons of a single gene.  Due to sequencing chemistry, gene structure, and other 

influences, it is possible that the probability of reads aligning to one exon versus 

others is disproportionately high or low.  In this situation, the distribution of reads 

across the various exons would be expected to be non-normal.  In the most extreme 

case, all of the reads could concentrate on a single exon.  This is an example of a 

possible, though extreme type of measurement bias for sequencing data. Examples of 

exon bias may also result from biologically relevant phenomenon, such as alternative 

splicing.  Such regulation would require disproportionate expression of exons highly 

utilized across different isoforms and has been identified as an influence on read 

alignment distributions across exons (Liu et al., 2015).  As in the exon-by-exon 
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consideration for a hypothetical gene, the distribution of reads aligned to a single gene 

across organs will be driven by both sampling and the influence of biologically 

meaningful effects. The resulting mostly sparse, uneven or otherwise normality-

violating distribution in this case results from distinct tissue expression profiles, as 

opposed to factors such as sequencing chemistry, gene structure, and similar variables 

that influence the distribution of reads aligning to distinct exons.  The simple toy 

model of alignment across exons, however, provides an example to illustrate how 

biologically relevant features of a dataset cause highly non-normal distributions, and 

how to reason about such situations when hypothesis testing. This model will capture 

the intuition about how Chebyshev’s theorem, extended from Markov’s inequality, 

makes it possible to hypothesis test without assuming a normal distribution, and why 

such distributions can be important in RNA-seq data. 

 

Figure 25: Distribution of reads across tissue of interest, with concentration of many 
reads in a few samples intuitively creates a violation of a normal 
distribution. 
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3.1.7 Using Chebyshev’s Theorem, as an extension of Markov’s Inequality 

The influence of a strong concentration of aligned reads to only a few exons on 

the probability distribution of reads across all exons has bounds that can be understood 

through Markov’s inequality – and this will lead directly to Chebyshev’s inequality.  

Markov’s inequality provides a rigorous description of how a concentration of 

probability associated with a small region of a function is related to the expectation of 

that random variable.   An example of situation in bioinformatics data in this concept 

is useful is in understanding the probability that an exon receives a given number of 

aligned reads.  During the normalization for read length in FPKM calculations, the 

probability of a read aligning to a region of the genome of any given length is assumed 

to be a constant, determined by the expression level divided by gene length. Figure 23, 

however, shows that a biologically realistic model that can violate this assumption.  

The consequences of this type of violation are shown in terms of probability 

distribution of read alignment across the gene (Figure 24).  By taking an average, by 

definition, one loses considerable information about a distribution and individual 

samples that compose it.  The average number of reads aligned to an exon would 

incorrectly suggest that each exon receives one read.  This is highly inaccurate, 

however, as in fact one exon has five reads and all others have none.  

In the type of situation illustrated in Figure 23, with bias and departure from an 

easily characterized distribution, the gap between the information expressed by the 

mean and the impossibility of repeated measurements close to or equal to the mean 

could skew one’s understanding of the distribution.  When the mean number of reads 

per exon is calculated for the gene above (Figure 23), on average each exon receives 

one read.  This is misleading, because while sampling the exons, all except one exon 

will have no reads aligned. In reality, the probability of a given read aligning to Exon 
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1 is 1, and for all other exons, the probability of alignment to any other exon is 0.  

Markov’s inequality ensures that in the case of the most extreme bias, or concentration 

of probability to a specific region, at most the concentration associated with a 1/nth 

region relative to the mean of the function is n times the mean.  In our example, if the 

average reads across five exons is one, the greatest number of reads that could be 

contained in a length 1/5 of the gene (or a single exon) is five. 

The number of read alignments mapping to the gene may be depicted through a 

probability distribution over each exon, creating a probability distribution function 

(PDF).  Thus, statements that involve exons can be generalized to more abstract 

depictions that rely on more general descriptions of the domain under a probability 

curve.  Markov’s inequality does so and makes a formal statement about the limits of 

the expectation of the domain of a function and relates it to the probability distribution 

that derives from that function. 

 

Figure 26: Formal statement of Markov’s inequality (Wikipedia). 

3.1.8 Read Concentration and Probability 

Formally, Markov’s Inequality (Figure 26) implies that if all sets, or 

measurements, of the random variable in our model - which in Figure 25 is the number 

of aligned reads to exons - are empty except for one, then the highest probability of 
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selecting the non-empty set will be less than or equal to the mean (one read per exon) 

divided by the number of total sets/measurements (five exons in the gene). Thus, the 

expected value of this non-empty set (the one exon with reads) defined as 1/nth the 

total domain of the function (all exons), is five times the expectation, or mean, of the 

random variable itself.   Thus, the number of reads aligned to one or more non-empty 

exons can deviate strongly from the number of reads aligned to other exons. 

Moreover, when picking an exon at random and recording the aligned reads, selecting 

the exon that contains all five reads is a comparatively rare event.  It is only expected 

to happen twenty percent of the time, as four other exons are have no aligned reads. 

As the number of exons in the gene increases, but the number of reads aligned stays 

constant, this would become even more rare.  The bias, of course, would increase as 

well – with a single sample contributing a disproportionately to the dataset. 

A similar effect may occur in the distribution of expression across tissue 

samples for a gene.  In this case, most reads will be concentrated in a few samples in 

which that gene is highly expressed.  This will influence the ability to determine 

enriched genes in a tissue of interest, among a set of background samples.  Many of 

these highly expressing samples may be in the background tissues, which may have 

some transcriptome similarity to a tissue of interest. It will be important, however, to 

set bounds on how read concentration in a few samples will influence our knowledge 

of a null distribution describing gene expression across any type of measurement set. 

In the example with the distribution across exons of a gene (Figure 23), the 

probability of selecting an exon with any reads aligned is a relatively rare event 

(regardless of how many reads are associated with that exon).  With a high number of 

aligned reads concentrated in a single exon, though, this would not be clear from 
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averaging across all exons. For example, if one sampled the only exon with reads 

aligned to it and this exon, for the sake of experiment, was highly over-represented 

with 300 reads, while the other two exons had no reads, one could incorrectly estimate 

that on average each exon has 100 read alignments.  Thus, intuitively, it can be hard to 

gain information about a distribution from averages that are biased by unlikely, but 

highly influential samples.  This can be a challenge to hypothesis testing, which 

depends on determining the probability that a sample belongs to a null distribution, 

based on parameters inferred from sampling (mean and standard deviation). 

Fortunately, the probability of a given sampling that contains these 

disproportionately influential observations can be quantified.  Markov’s inequality can 

be extended further to put bounds on such rare events as producing an unlikely 

sample, in a more general sense when these events are described in terms of the 

standard deviation.  It is important to note that in Markov’s inequality, both a rare 

observation and its probability are described as expectations of a random variable. 

Chebyshev’s inequality, however, is more general, in that a rare event is described by 

distance from the mean in terms of standard deviation. As a general way to reason 

about probability distributions, it does not require normality. 

Calculating the probability of an event through Chebyshev’s inequality 

assumes the most relaxed bounds on the null distribution, since no specific distribution 

is assumed (Figure 27). Doing so results in the most stringent p-value, assuming all 

parameters are known exactly. Calculations using the empirical rule, which often 

motivates calculation of a z-score, are well within the bounds of Chebyshev’s 

theorem.  For example, assuming a standard normal distribution, 95 percent of 

observations will fall within two standard deviations of the mean.  However, 
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Figure 27: Derivation of Chebyshev’s inequality as following from Markov’s 
Inequality (Wikipedia). 

if the underlying null distribution is not normal, the correct p-value may be much 

higher than calculated through the empirical rule.  Although z-scores are often 

assumed to follow a standard normal distribution, by the central limit theorem, we will 

develop a method that is still effective when this may not be the case, owing to the 

complex pattern of gene expression across tissues that will be skewed towards a few 

samples.   Our tissue threshold for enrichment using a five standard deviation z-score 

derives simply from the fact that, regardless of the null distribution, 95 percent of the 

area will be under the curve in accordance with Chebyshev’s theorem, regardless of 

any sampling effects on the z-score distribution.  This is quite similar to the less 

stringent z-score approach mentioned by (Kryuchkova-Mostacci and Robinson-

Rechavi, 2017), although under that heuristic only about 91 percent of the distribution 

is guaranteed to be under the null distribution. Figure 25, for example, depicts a 

realistic but non-normal distribution for expression across samples from different 
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tissues.  This idealized distribution is quite similar to the example showing gene 

expression across exons of a single gene.  Many genes will be sparse or very lowly 

expressed in most samples, while highly expressed in organs that share similar 

biological functions utilizing the gene of interest.  The area under the distribution 

representing expression across tissues will be concentrated over these regions. If the 

difference of the mean expression of the gene in the samples belonging to the organ of 

interest is five times the standard deviation of the background dataset, the gene is 

considered enriched in that tissue. In order to determine enrichment at the .05 level of 

confidence, this threshold does not require assumption of the null distribution of 

expression across the general dataset.  The most important assumption is that we test 

the observed mean of expression in the tissue of interest, assuming that we know it 

exactly (i.e. we do not take into account the variance of expression across samples of 

the tissue of interest).  The justification for this is practical: otherwise, no genes are 

significant.  These are important caveats, but provide a somewhat more rigorous 

approach than the purely ad-hoc methods of the GTEx study. 

3.2 Results 

The lists proposed by our enriched method are highly tissue-specific (Figure 

21) while those identified by the GTEx analysis yield considerable overlap between 

breast muscle and cardiac muscle (Figure 28). Additionally, it can be shown that by 

incorporating the standard deviation of the data into account, we have improved 

resolution to detect genes that may be expressed at a consistently low to medium level 

across all background samples, but demonstrate exceptional levels in the tissue of 

interest.  These genes may be associated with processes necessary to homeostasis in 

all tissues, but extremely important to organ specific biology. 
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Figure 28: Tissue specificity comparison of GTEx methods (5-Fold higher in tissue of 
interest) in human, indicating inability of GTEx methods to identify only 
tissue unique genes. 

3.2.1 Comparison with GTEx 

For comparison, it is helpful to calculate enriched genes using the GTEx 

threshold and our five-standard deviation cutoff.  These comparisons have a high 

degree of consensus between them.  Overall, the five standard deviations approach 
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Figure 29: There is considerable overlap between the five standard deviation z-score 
method and GTEx standard of enrichment applied to our dataset. 
However, all of the genes identified as enriched according to the five 
standard deviation z score are unique to muscle type. 

is more stringent, in terms of the smaller number of genes identified. It is worth noting 

that a number of the genes emerge as tissue-enriched in the five standard deviations 

approach that are not identified by the GTEx threshold.  At least some of these genes 

represent important tissue-specific biology, and are identified by our threshold because 

they have low standard deviation among our background samples, in addition to 

having elevated mean expression in the tissue of interest.  Our strategy can offer 

improved sensitivity for these genes. One example of this selection process is the 

Aconitase 2 (ACO2) gene enriched in cardiac tissue.  The mean expression in cardiac 

tissue is 415 FPKM, while that in the background dataset is 92.37 FPKM.  The 

standard deviation in the background tissue is 57.70 FPKM.  In this case, the gene 

would not be identified as enriched by the GTEx definition.  As a mitochondrial-

specific gene associated with the tricarboxylic acid (TCA) cycle, ACO2 enrichment in 

cardiac tissue is consistent with the physiology of the heart, which has 

characteristically high-energy demands.  By focusing on the standard deviation of 

background tissue, we focus on genes that are lowly, albeit relatively consistently 
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expressed in background tissue.  It is important to mention that, by erring on the side 

of stringency, our tissue definition will lose sensitivity to genes with a background 

standard deviation that is relatively large compared to their mean. There are 179 of 

these such genes which are enriched in breast muscle according to GTEx methods 

leveraged on our chicken dataset, but not our five standard deviation based z-score 

(5SD) threshold (Figure 30) and 188 genes enriched in cardiac muscle according to 

GTEx methods leveraged on our chicken dataset, but not enriched according our z-

score (Figure 31).  However, by effectively penalizing genes with a relatively large 

standard deviation relative to their mean in background tissue, we are biasing against 

lowly expressed and mostly sparse genes.  Instead, genes enriched in a given tissue 

according to our z-score are thus likely to be consistently, but comparatively lowly, 

expressed in background tissues relative to the tissue of interest.  A pattern of 

consistent expression in all background tissues, but elevated expression in a tissue of 

interest implies a function in baseline processes which are intensified in the tissue of 

interest.  
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Figure 30: Venn Diagram of enriched genes in skeletal muscle according to the five 
standard deviation based z-score (5SD) threshold compared to 
calculations using the GTEx definition of 5 five-fold higher expression in 
tissue of interest. 
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Figure 31: Venn Diagram of enriched genes in Cardiac Tissue according to the five 
standard deviation based z-score (5SD) threshold compared to 
calculations with the GTEx definition of 5 five-fold higher expression in 
tissue of interest. 

We leverage these enrichment techniques to compare muscle tissue types in the 

modern broiler chicken because the effect of artificial selection for breast muscle size 

has been poorly understood in terms of consequences on cardiac systems (Tickle et al., 

2014). Elucidating the underpinnings of muscle-type-specific biology is thus 

important to provide context for aspects of regulation that govern tissue-specific 

physiology. Enrichment analysis that provides sufficient resolution to separates 
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muscle-specific genes are required to be effective in understanding metabolic systems 

that differentiate between different muscle and other tissue types.  These tissue-

specific modules of enriched genes can provide the foundation for improved 

understanding of organ physiology. Notably, these are produced by our definition of 

enrichment, but not by the GTEx threshold.  

3.3 Discussion: FAANG and Community Need for Enrichment Strategies 

Tissue enrichment approaches can be used to improve biological understanding 

of individual tissues by isolating genes whose expression may be critically linked to 

tissue-specific function.  This grows increasingly critical as complex datasets 

representing multiple tissues proliferate.  One of the major goals of the post-genome 

era will be to gain a systems biology level understanding of individual tissues. 

As annotations improve and sequencing data accumulates, researchers seek to 

understand model organisms at the functional genomics level. This level of resolution 

extends beyond the identification of genes and explores the complicated roles of 

regulatory elements.  Regulatory elements that are the focus of functional genomics 

include insulators, enhancers, silencers and various types of promoters (Maston et al., 

2006).  A pioneering project that has sought to characterize the functional genomics 

landscape in humans with tissue enrichment and other approaches is the 

ENCyclopedia Of DNA Elements (ENCODE) project (The ENCODE Project 

Consortium, 2012).  Complementary to ENCODE is the GTEx consortium, which 

aims to identify profiles of organ specific biology in health and disease, and whose 

enrichment protocol we have explored.  The success of these initiatives has 

encouraged similar organizations in various research communities, to which our five 

standard deviation standard will be useful.  One such effort in the animal genomics 
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community is the Functional Annotation of Animal Genomes Project (FAANG).  

FAANG is geared towards extending the genomics understanding of livestock species 

with established reference genomes and a community of committed researchers.  

Current species of interest include chicken, pig, cattle, and sheep. although the 

repertoire of species has been expanding (The FAANG Consortium, 2015). FAANG 

thus presents an opportunity to mine tissue-diverse datasets from a number of species. 

Many of the analyzed genes emphasize unexpected levels of organ specificity, 

thus extending our biological understanding of these tissues. For example, many genes 

regulating protein degradation emerge as unique to breast muscle. Another class of 

enzymes encoded by genes that are strongly breast muscle specific are those that 

regulating splicing activities.  The evidence of organ specific degradation and splicing 

machinery suggests new levels of complexity in transcriptome specificity in breast 

muscle, derived from the combinatorial arrangements of splicing and ubiquitination 

machinery. Other pathways, such as the gluconeogenesis/glycolysis cycle, exhibit a 

complex pattern of enrichment in both organs, with certain modules of these pathways 

containing genes enriched in cardiac tissue and others in skeletal muscle.  

One method to identify important genes and possible protein-protein 

interactions in tissue-complex datasets involves implementing enrichment thresholds 

with subsequent network analyses.  This provides important functional genomics 

information, extending approaches of the ENCODE and GTEx studies to the animal 

genomics community through FAANG.  The insights provided by network analysis 

and enrichment complement one another, identifying specific network nodes that drive 

tissue specific biology.  This provides a more nuanced description of transcriptome 

profiles shared between organs as well as those that are tissue specific. 
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3.3.1 Breast Muscle Ubiquitin Profile 

Ubiquitination proteins are enzymes that identify other proteins for 

degradation, by catalyzing isopeptide bonds between a target protein and ubiquitin 

(Pickart and Ebbins, 2004).  Ubiquitination is a highly represented process among the 

breast muscle specific genes. The ubiquitination process is a multi-step pathway, with 

each step controlled by different enzymes.  The first phase is regulated by one of 

several ubiquitin-activating proteins, a family known as E1 proteins.  An E1 protein 

activates ubiquitin by reacting with Adenosine Triphosphate (ATP).  Activated 

ubiquitin is next transferred to an ubiquitin-conjugating enzyme (E2) that will interact 

with ubiquitin ligase (E3) to transfer the ubiquitin to the target protein (Ardley and 

Robinson, 2005). The diversity of ubiquitination reactions comes from the complexity 

of different arrangements of E1, E2 and E3. Specificity is most closely regulated by 

the E3 enzyme, however.  There are nine known E1 enzymes, 26 E2 enzymes, and at 

least 25 E3 enzymes we have identified in chicken.  Crucial biology that regulates 

these processes is still being determined (Lee and Zhou, 2007).  Thus, information 

describing tissue-specific profiles of members of this process is particularly valuable. 

The number of ubiquitination-related enzymes among breast muscle enriched genes 

suggests these compounds may encouraging differentiation and maintain organ 

homeostasis by regulating protein levels through controlled degradation. 

The ubiquitin-related genes enriched in breast muscle encode groups of 

proteins that share interacting partners and motifs.  Many of these are Ankyrin repeat 

and suppressor of cytokine signaling (SOCS)-box containing proteins, for example.  

These include multiple Ankyrin and SOCS-Box containing proteins (ASB) ASB10, 

ASB11, ASB14, ASB15, and ASB2.  Various ASB proteins are known to interact 

with Cullin 5 (CUL5) and the Really Interesting New Gene (RING) protein, RING-
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Box protein 2 (RBx2) to form ubiquitin E3 complexes (Kohroki et al., 2005).  These 

protein complexes play important roles in regulation and development.  Importantly, 

CUL5 is also enriched in breast muscle and is hypothesized to exert an inhibitory 

influence on cell proliferation by interacting with the SOCS/BC-box/ eloBC/cul5/ 

RING E3 complex (Petroshki and Deshaies, 2005).  The consistent pattern of 

enrichment of genes encoding ASB proteins and CUL5 is consistent with a regulatory 

module that controls protein degradation via ubiquitination in a highly specific 

fashion.  Research into hemopoetic stem cells, for example, has revealed that ASB2-

alpha causes filamin breakdown through ubiquitination while sparing its other 

substrates, Janus Kinase Proteins (Lamsoul et al., 2012).  This may be critical for 

regulation of tissue defining proteins by controlling their targeted degradation. 

Most breast muscle enriched genes associated with ubiquitination encode E3 

enzymes. However, an E2 enzyme, ubiquitin conjugating enzyme E2 G1 (UBE2G1), 

is also enriched.  This finding is consistent with the hypothesis that UBE2G1 is 

specific to muscle protein degradation (RefSeq).  Supporting an additional level of 

tissue specificity derived from ubiquitin regulation, ubiquitin specific peptidase 

(USP2), is enriched in breast muscle. De-ubiquitination targets of USP2 include 

mouse double mutant (MDM) genes MDM2, MDM4 and cyclin D1 (RefSeq). This set 

of ubiquitination related genes enriched in breast tissue suggest protein degradation 

plays important roles in breast muscle physiology.  This is important, as understanding 

exaggerated muscle characteristics is an important goal for broiler genetics.  Other 

enriched genes, such as transcription factors, have a more explicit link to tissue 

development and differentiation. 
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3.3.2 Breast Muscle Transcription Factors 

Transcription factors encode a diverse set of proteins that selectively influence 

the expression of other genes.  They are critical to development and differentiation 

(Spitz and Furlong, 2012).  The role of each transcription factor is determined by its 

structure and functional domain.  Due to this complexity, transcription factors are able 

to influence a diverse set of biological pathways. One domain associated with 

development-related transcription factors is the homeobox.  Homeobox containing 

proteins are distinguished by a homeobox domain and include several well 

characterized families such as the homeobox (HOX) and paired box (PAX) families 

(Holland et al., 2007).  There are four groups of HOX genes, the A, B, C, and D 

families.  A number of the HOXA transcripts are enriched in breast muscle, with many 

of them playing a role in developmental regulation.  HOXA7 functions in cell 

proliferation through a number of possible mechanisms that are still being elucidated 

(Li et al., 2014). Other HOX proteins play similar roles, with their functions often 

defined through knockdown experiments.  Knockdowns involving HOXA6 and PBX3 

interrupt cancer-related proliferation and enhance susceptibility to chemotherapy 

(Dickson et al., 2013).  HOXA3, meanwhile, has been shown to be important to 

endothelial cell differentiation, with its levels being decreased during differentiation as 

HOXB3 and HOXA7 increase (Chung et al., 2005). 

Other breast muscle enriched transcription factors include non-HOX genes 

such as the myogenic transcription factors (MYF) MYF5 and MYF6.  Myogenic 

factors are a class of transcription factors regulating muscle growth.  MYF6 mutations 

have been linked to the severe course of Becker muscular dystrophy (Kerst et al., 

2000).  MYF6 is known to encourage muscle regeneration by promoting myoblast 

amplification.  MYF5 mutations are associated with severe deficiencies in myoblast 
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proliferation (Ustanina et al., 2006).  Another myogenic gene, MYOG, is critical to 

skeletal muscle formation, with mutations causing neonatal death (Hasty et al., 1993).  

In addition to explicitly myogenic proteins, nuclear factor of activated proteins 

(NFATC1) regulates immune function and cellular plasticity (Chen et al., 2017). 

Expression of this gene correlates well with the ubiquitin-related CUL5, suggesting a 

possible interaction or shared membership in a small network (Figure 30).  Immune 

system transcription factors such as NFATC1 may influence cell proliferation by 

regulating inflammation and apoptotic pathways.  Another immune system related 

protein that influences transcription is the protein protein kinase C theta (PRKCQ), 

which activates NF-kB and may link T-Cell activation other transcription factors 

(RefSeq).  Inhibition of PRKCQ expression has been shown to counteract muscle 

disease in a mouse model of Duchenne’s Muscular Dystrophy, by preventing 

inflammation that impedes muscle regeneration (Marrocco, 2017).  Paired-box 7 

(PAX7), another transcription factor upregulated in breast muscle, interacts with 

myogenic factors, with PAX7 and MYOD1 coexpression being associated with 

activation of quiescent cells (Zammit et al., 2006). Single minded family bHLH 

transcription factor 2, SIM2, another up-regulated transcription factor is associated 

with neurogenesis (Chrast et al., 1997).  Consistent with their functional significance, 

these transcription factors emerge as hubs in correlation networks (Figure 32). Other 

forms of transcriptional regulation in skeletal tissue, beyond the direct influence on 

expression from transcription factors include alternative splicing.  A number of 

alternative splicing genes are also upregulated in breast muscle, along with other genes 

that may directly influence physiology.  
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Figure 32: Transcription factors enriched in skeletal muscle according to the 5SD 
based z-score, breast muscle and which have statistically significant 
correlations with other enriched genes in the tissue. Transcription factors 
in red. Node size is reflective of number of interacting partners. 

3.3.3 Breast Muscle Spliceosome and Metabolic Physiology 

RNA splicing is an important aspect of gene regulation that ensures production 

of gene isoforms. Several of these are enriched in breast muscle tissue. The breast 

muscle enriched MYOD1 gene, for example, encodes a protein that regulates cell 

differentiation by controlling cell cycle arrest. Myogenic Differentiation 1 (MYOD1) 

expression induces alternative splicing (Ichida et al., 1998) that is essential to 

myogenesis and is one of two spliceosome related genes enriched in breast muscle. 

Another gene controlling splicing activity, Breast Carcinoma Amplified 2 (BCAS2), is 

a major component of the CD5CL/Prp19 complex, which is in turn critical to catalytic 

activation of the spliceosome (Liu et al., 2016).  These may provide regulation at a 



 79 

scale of isoform-level resolution that is likely critical to the transcriptome profile of 

breast muscle. 

Beyond identifying genes driving tissue-specific morphogenesis and 

differentiation, this analysis detects enrichment of genes that may be control the 

transmission of short-term physiological signals.  For example, several components of 

nicotinic acetylcholine receptors, the cholinergic receptor nicotinic (CHRN) genes, are 

enriched: CHRNA1, CHRNA9, CHRND, and CHRNG.  Each of these genes encodes 

a protein that contributes to the assembly of the multi-component acetylcholine 

receptor.  As a well structure, this receptor is essential to relay neural signals that 

initiate muscle movements.  Consistent enrichment for its various components indicate 

the relative importance of the receptor to muscle specific physiology.  This also shows 

the importance of the transcriptome in maintaining a physiological homeostasis that 

allows the bird to quickly respond to stimuli. 

Additional genes regulating physiological or metabolic processes include those 

related to gluconeogenesis and glycolysis. These pathways, which encompass the 

production and breakdown of sugars, respectively, are critical for extracting energy 

from sugars.  Fructose-bisphosphatase 2 (FBP2) a gene critical to gluconeogenesis, is 

enriched in breast muscle.  FBP2, which encodes an enzyme that hydrolyzes fructose 

1,6-bisphosphate (F1,6BP) to fructose-6-phosphate (F6P), is also hypothesized to play 

an important role in glycogen production as well as mitochondrial health (Pirog et al., 

2014).  Lactate Dehydrogenase A (LDHA), a gene with a prominent role in lactic acid 

metabolism is also enriched. This is essential to manage the final products of 

glycolysis under anaerobic conditions.  Several enriched genes play roles in steps of 

glycolysis upstream of LDHA, though LDHA activity is critical enough such that its 
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inhibition interferes with the enhanced glycolytic stress in cancer cells (Le et al., 

2010).  One such enriched gene upstream of LDHA is glyceraldehyde-3-phosphate 

dehydrogenase (G3PD), which functions in glycolysis and also functions as an 

apoptosis-influencing transcription factor (Tarze et al., 2007).  Another glycolysis-

associated gene, phsophoglucomutase (PGM1), regulates an important pathway 

branch point that interconverts Glycerol-1-Phosphate (G1P) and Glycerol-6-Phosphate 

(G6P), with the latter being an intermediate to glycolysis and the former serving as a 

precursor for structural carbohydrates.  PGM1 has been shown to be necessary for cell 

growth under glucose depletion (Bae et al., 2014).  A final gene associated with sugar 

metabolism, Bisphosphoglycerate Mutase (BPGM), has until now been associated 

only with erythrocyte and placental tissues (Pritlove et al., 2006). BPGM is involved 

in the synthesis of 2,3-diphosphoglycerate (2,3-BPG) from the glycolysis intermediate 

1,3 biphosphoglycerate (1,3-BPG). 2,3-BPG shifts the equilibrium of hemoglobin 

towards the deoxygenated state.  The enrichment of BPGM in muscle suggests a role 

for the protein in oxygen transfer in muscle tissue. The diverse set of enriched genes 

regulating the glycogen/glucose pathways recapitulates known biology, while also 

suggesting novel relationships that underpin breast muscle specific physiology.  

Understanding steps of these pathways, which are shared among different muscle 

types, provides a comparative lens to understand how different types of muscle, i.e. 

cardiac tissue and breast muscle, differ from one another. 

3.3.4 Cardiac Enriched Genes - TCA Cycle Metabolism and Mitochondrial 
Genes 

Cardiac tissue, like skeletal muscle, is enriched for several genes that drive 

sugar metabolism.  However, the functions of these genes are distinct from metabolic 
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genes enriched in skeletal tissue.  These genes enriched in cardiac tissue encode 

proteins that regulate the intersection of different types of metabolism.  Many of these 

enzymes form multimeric complexes.  Pyruvate dehydrogenase A1 (PDHA1), for 

example, is a subunit of the pyruvate dehydrogenase complex.  The pyruvate 

dehydrogenase complex serves an important function by linking glycolysis to the 

Tricarboxylic Acid (TCA) cycle through catalyzing the oxidative decarboxylation of 

pyruvate (Holness et al., 2003). The cardiac muscle enriched gene, pyruvate 

dehydrogenate kinase 3 (PDK3), meanwhile, inhibits the activity of the pyruvate 

dehydrogenase complex.  This inhibition occurs by phosphorylating the alpha subunit 

of the pyruvate dehydrogenase complex, which is encoded by PDHA1 (Korotchkina 

and Patel, 2001).  The enzymes encoded by the enriched metabolic genes PDK3 and 

PDHA1 function in the mitochondria. 

Other cardiac enriched genes related to metabolism regulate lipid metabolism.  

3-hydroxybutarate dehydrogenase 1 (BDH1), for example, is allosterically activated 

by phosphatidylcholine (Green et al, 1996) and interconverts the products of fatty acid 

catabolism acetoacetate and (R)-3-hydroxybutyrate.  Glycerol-3-phosphate 

dehydrogenase 1 like (GPD1L), and the homologous glycerol-3-phosphate 

dehydrogenase 1 GPD1, converts Dihydroxyacetone Phosphate (DHAP) to Glycerol-

3-Phosphate (G3P) (Reactome, Ou et al. 2006, Valdivia et al. 2009).  The presence of 

enriched metabolic transcripts related to both sugar and fat metabolism emphasizes the 

flexibility of energy production in cardiac tissue.  This is distinct from metabolic 

genes enriched in breast muscle tissue, which relate primarily to glycolysis and 

glycogen synthesis. 
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At the five standard deviation threshold, cardiac tissue is not enriched for some 

classes of genes enriched in breast muscle, such as those that regulate alternative 

splicing and protein degradation.  However, just as spliceosome-related genes are 

enriched only in breast muscle, one class of genes unique to cardiac tissue are those 

that influence metabolism through controlling mitochondrial metabolism.  These 

genes regulate a number of processes that are localized to the mitochondria, some of 

which regulate the TCA cycle.  The nuclear-encoded gene for the mitochondrial 

protein 3-Oxoacid CoA Transferase 1 (OXCT1), for example, is the rate-limiting step 

in ketolysis (Shafquat et al., 2013). Ketolysis intersects with many metabolic 

pathways including fatty acid oxidation, the TCA cycle and gluconeogenesis (Cotter et 

al., 2013).  Consistent with the importance of these processes to cardiac tissue, the 

gene for the mitochondrial protein ACO2 is enriched.  ACO2 catalyzes the second 

stage of the TCA cycle, the inter-conversion of citrate and isocitrate. Other 

metabolism related genes regulate amino acid breakdown. Acyl-CoA Dehydrogenase, 

short/branched chain (ACADSB) dehydrogenates acyl-coA derivatives and catabolizes 

leucine (Andresen et al., 2000). Another mitochondrial specific gene enriched in heart 

that specializes in leucine metabolism is Isovaleryl-CoA dehydrogenase (IVD).  The 

enzyme encoded by IVD functions in the mitochondria as a highly specific Isovaleryl-

CoA dehydrogenase (Ikeda and Tanaka, 1983) and is important to valine, leucine and 

isoleucine catabolism.  Perhaps to mitigate the stress of many complex metabolic 

systems operating simultaneously, cardiac tissue is also enriched for heat shock 

proteins linked to heart performance.  The heat shock protein, heat shock protein 

family B1 (HSPB1), which is enriched in cardiac tissue, has also been linked to 

mitochondrial characteristics of heart failure (Marunouchi et al., 2013) that may be 
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related to decreased translocation efficiency into the mitochondria (Marunouchi et al., 

2014).  Another heat shock protein, HSPB7, is enriched in cardiac tissue.  Heat shock 

protein family B7 (HSPB7) is thought to be associated with splicing, a role also shared 

with HSPB1 (Vos et al., 2009).  There are no heat shock proteins (HSP) proteins 

enriched in breast muscle, consistent with the hypothesis that these genes represent 

biology unique to the enhanced metabolic demands of cardiac tissue. Enrichment for 

mitochondrial-related genes is unique to cardiac tissue, suggesting that the metabolic 

contribution of the organelle is more important in cardiac tissue compared to skeletal 

muscle.  This profile is consistent with the importance of fatty acid oxidation to 

cardiac function. 

 

Figure 33: Enriched transcription factors in cardiac muscle, according to the 5SD-
based z-score, that have statistically significant correlations with other 
enriched genes in the tissue.  Node size reflective of interacting partners, 
and transcription factors indicated by red color. 
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3.3.5 Cardiac Transcription Factors 

The number of genes related to transcription factors enriched in cardiac tissue, 

as in breast muscle, is considerable. Transcription factors enriched at threshold in 

cardiac tissue include HOXD13, DMRT Like Family B with Proline Rich C-Terminal 

1 (DMRTB1), NK2-Homeobox 5 (NKX2-5), PDZ and Lim Domain 1 (PDLIM1), 

Iroquous Homeobox 4 (IRX4), Iroquous Homeobox 5 (IRX5), Four and a Half LIM 

Domains (FHL2) and T-Box 20 (TBX20).  HOXD13 has been primarily associated 

with limb development and deformity (Davis and Cappechi, 1996).  Other enriched 

transcription factors are also not canonically associated with cardiac tissue. One gene, 

DMRTB1, is poorly characterized in cardiac tissue though the closely related paralog, 

Doublesex and Mab-3-Related Transcription Factor 1 (DMRT1) is critical for sex 

differentiation (Ottolenghi et al., 2002). However, the roles of other enriched 

transcription factors in cardiac tissue are well established, however. NKX2-5, for 

example, is critical to heart development and known to be involved in proper 

differentiation of cardiac tissue (Jay et al., 2004).  The enriched gene PDLIM1 

encodes a protein that possesses two PDZ domains and three LIM domains; this 

structural complexity gives the protein a variety of functions.  One of these is 

inhibition of the transcription factor NF-kB (Ono et al., 2015).  Other activity includes 

interactions with actin types 1 (Kokota et al., 2000) and 2. Though not a transcription 

factor itself, PDLIM1 may play a critical role in cardiac tissue by influencing the 

behavior of the transcription factor NF-kB (Ono et al., 2015), as well as influencing 

actin structure (Vallenius et al., 2000).  The gene for another LIM domain containing 

protein, FHL2 is enriched in cardiac tissue. FHL2 is associated with cell proliferation, 

and implicated in a number of cancers (Wang et al., 2016). FHL2 is also thought to 

influence formation of extracellular membranes (RefSeq, 2017).  A member of the 
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TBX family of transcription factors, TBX15, is additionally enriched in cardiac tissue. 

A member of this family, TBX20, is enriched in breast muscle but not cardiac tissue.  

TBX20, however, is a member of a conserved network of transcription factors that 

plays a role in cardiac development across species.  Mutations in the gene cause a 

number of cardiac deformities (Kirk et al., 2007). At least one transcription factor, the 

Iroquois homeobox conataining gene, IRX5, is implicated in physiology, as this gene 

is essential to controlling the cardiac repolarization gradient (Bruneau et al., 2006).  

Another Iroquois homeobox containing gene, IRX4, is enriched in cardiac tissue.  The 

IRX4 gene influences atrial development, and is associated with cardiac hyperthrophy 

(Bavrak et al., 2008). 

The specificity of the gene lists that represent each tissue includes a number of 

genes associated with lethal mutations.  The representative genes associated with both 

tissues contain members of pathways that regulate muscle structure at a foundational 

level.  This can be further understood by exploring the enriched text mining terms 

associated with the gene lists from each tissue. It is important to note that fewer 

cardiac transcription factors have significant correlations with other tissue enriched 

genes (Figure 33. A similar diagram of breast muscle enriched transcription factors 

that correlate with other genes enriched in that tissue is shown in Figure 32. 
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Figure 34: Venn diagram of text mining terms associated with the enriched gene lists, 
determined by the 5SD based z-score in breast and skeletal muscle 
tissues. 

3.3.6 Text Mining Comparison and Structural Differences 

Despite a lack of overlap in the lists of enriched genes in the two organs, at 

least two broad classes of genes – transcription factors and those that regulate 

metabolism – seem to play similar roles in cardiac tissue and skeletal muscle. 

However, when exploring terms enriched in each gene list with the text-mining tool 

DAVID (Huang et al., 2009), the resulting terms are highly organ specific (Figure 34). 

This emphasizes the distinction between cardiac and skeletal muscle by considering 

information about each gene in the previous literature.  Using this approach, there is 

only one term to which a significant number of genes from both tissues apply: 

sarcolemma.  The sarcolemma is a membrane that sheathes striated muscle fiber cells.  

The cardiac enriched genes relating to this shared term, sarcomere, are Blood Vessel 

Epicardial Substance (BVES), Popeye Domain Containing 2 (POPDC2), 
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Tropomodulin 1 (TMOD1).  The breast muscle genes mapping to this term are: 

Caveolin 3 (Cav3), ryanodine receptor 3 (Ryr3) and Sargoclycn Delta (SGCD).  

BVES (also known as POPDC1) is a cell adhesion protein with a redundant function 

shared with POPDC2 (Brand et al., 2014).  TMOD1 encodes an actin capping protein 

that binds to the N-terminal of tropomyosin in order to control depolymerization, and 

thus length of the fibers and shape of the erythrocyte membrane (RefSeq, 2017).  

Cav3, enriched in breast muscle, is another gene associated with molecular control of 

muscle structure and its disregulation is associated with muscular dystrophy (Deng et 

al., 2017) and myasthenia gravis. SGCD plays an important structural role, encoding a 

member of the sarcoglycan complex, which in turn contributes to the larger 

dystrophin-glycoprotein complex (RefSeq, 2017).  Ryar3 is a ryanodine receptor that 

functions as a calcium channel (Sorrentino et al., 1994).  The different profiles of 

sarcolemma-related genes between cardiac and skeletal muscle may relate to tissue 

specific structural organization of fibers.  Ryanodine receptors, for example, tend to 

cluster around T-tubules (Fleischer et al., 1998).  T-tubules are extensions of the cell 

membrane in cardiac and skeletal tissue that begin at the sarcolemma and pass into the 

interior of the cell and are crucial for the transport of calcium ions necessary for 

contraction (Hong et al., 2017). BVES and Cav3, two genes enriched in cardiac tissue, 

are known to co-localize to T-tubules (Alcalay et al., 2013).  Ryanodine receptors 

cluster around T-tubules and their coupling with other proteins are associated with an 

accelerate EC transmission in skeletal muscle (2ms versus 100 ms), relative to cardiac 

muscle (Al-Qsairi et al., 2011).  Ryr3, which is enriched in breast muscle, controls 

resting Ca2+ in skeletal muscle (Perez et al., 2005).  While the skeletal tissue and 

cardiac tissue samples demonstrate enrichment of different sarcolemma-related genes 
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associated with t-tubules, cellular and physiological mechanisms controlling behavior 

of T-tubules are still being elucidated (Al-Qusairi et al., 2011). 

3.3.7 Selective Enrichment of TCA Cycle Genes 

While similar to previous studies that develop tissue specific gene expression 

profiles, such as those leveraged by the GTEx consortium, we have demonstrated a 

more tissue-specific enrichment threshold.  An advantage of this stringency is that 

resulting gene lists emphasize differences in organelle characteristics between cells of 

each tissue type.  A key insight from this level of resolution is the degree to which 

mitochondrial proteins drive cardiac physiology, as compared cytoplasmic glycolysis 

related genes being enriched in breast muscle. 

The emphasis on different cellular regions among the enriched genes in each 

tissue provides important information about how the transcriptome influences 

physiology. Glucose and glycogen related genes enriched in skeletal muscle tissue, for 

example, are primarily cytosolic. Cardiac tissue, meanwhile, is enriched for many 

nuclear encoded mitochondrial proteins that control the TCA cycle.  This is consistent 

with the need for cardiac tissue to have access to ATP (adenosine triphosphate) to fuel 

the continual muscle contractions associated with heartbeats.  Skeletal muscle tissue, 

meanwhile, depends on a more diverse set of carbohydrate pathways for energy which  



 89 

 

Figure 35: Diagram of TCA cycle and genes related ketone and glycogen metabolism, 
emphasizing genes that are enriched in breast muscle or cardiac tissue.  
Enzymes encoded by TCA cycle genes generally function in 
mitochondria.  Glycolysis/gluconeogenesis genes are cytosolic. 
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must control the careful regulation of glucose and glycogen (Ivy, 1991).  The 

compartmentalization of the metabolic pathways enriched in cardiac tissue and breast 

muscle can be compared (Figure 35) to understand how these pathways relate to one 

another despite intracellular separation. 

3.3.8 Relationship Between Metabolism and Organelles 

This strategy of tissue enrichment provides important insight linking the 

transcriptome to physiology.  However, it also raises many questions about the 

organelle-specific differences between the two muscle types.  The extent to which 

enrichment for mitochondrial genes represent differences in mitochondrial chemistry 

between heart and skeletal tissue as opposed to greater mitochondrial number, 

however, is unclear.  Previous studies have shown that while cardiac tissue contains a 

higher concentration of mitochondria, physiological differences between tissues 

disappear under normalization for mitochondrial density (Park et al., 2014).  Whether 

or not these differences in enriched genes between muscle types result from increased 

mitochondrial concentration, they are consistent with different physiological roles for 

skeletal and cardiac muscle tissue. These functional discrepancies are also emphasized 

by text mining analysis of enriched gene lists. In fact, only one text mining term is 

enriched in the lists of tissue-defining genes for both cardiac and breast muscle-

defining: sarcolemma.  The sarcolemma is a general feature of muscle cells, consistent 

with its importance in both breast and heart tissue.  However, the genes associated 

with the sarcolemma are different between the two tissues, suggesting the regulatory 

environments may influence the structure differently in each of the two tissues. 
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The most significant of these differences involve receptors whose activity 

regulates signals that trigger muscle contractions, such as the ryanodine receptors. One 

such receptor, Ryr3, is enriched in breast muscle though expression of this gene is 

most commonly associated with brain tissue (Zucchi et al., 1997).  However, Ryr3 is 

prominently expressed in immature muscle tissue, with its later replacement by Ryr1 

during maturation (Smith and Lieber, 2013).  Ryanodine receptors control the release 

of calcium from the sarcoplasmic reticulum in order to control muscle movements 

(Santulli and Marks, 2015).  Ryr3, in particularly, is associated with transient calcium 

signaling events (Ward and Rodney, 2008).  No ryanodine receptors are enriched in 

cardiac tissue at our threshold, despite cardiac muscle being the primary tissue for 

expression of Ryr2.  Ryr1 is also enriched in breast muscle. These differences perhaps 

reflect divergent developmental trajectories for cells of each tissue. Several genes 

associated with a separate set of receptors show similar specificity to breast muscle. 

3.3.9 Value of Enrichment Threshold: Comparative Evolution and Feature 
Subsetting 

While tissue enrichment strategies have contributed to better understanding of 

the human transcriptome across organs through the GTEx and other initiatives, a 

similar systems level understanding of gene expression across animal species is 

lacking.  This work provides a method for mining tissue-diverse datasets that are 

increasingly common in animal genomics, and produces novel biological findings.  

The enrichment of BPGM in the breast muscle samples, for example, represents a 

potential coupling of glycolysis and aerobic metabolism.  BPGM processes a 

glycolytic intermediate into a compound 2, 3-diphosphoglycerate that makes the 

deoxygenated state of hemoglobin more favorable.  This is critical for the rapid 
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transfer of oxygen. BPGM is enriched in chicken breast muscle according to both the 

GTEx five-fold difference in means, as well as the five standard-deviation z-score.  

This robust enrichment pattern in chicken, but not human, suggests it may be species 

specific and biologically consequential.  For example, this adaptation may be valuable 

to chicken and other birds, allowing for more effective oxygenation especially to 

skeletal muscle tissue. This could be an important evolutionary feature related to the 

increased energy demands of muscles involved with flight and other energy-

demanding movements. Importantly, the mean expression of BPGM in breast muscle 

among broilers and a line of chicken spared intense contemporary breeding pressure, 

the Illinois line, is not significantly different.  This is consistent with BPGM 

expression being a defining feature of breast muscle across chicken breeds.  Another 

informative, novel finding resulting from applying the 5SD threshold is the 

enrichment of DMRTB1 in cardiac tissue.  DMRTB1, a transcription factor, is 

canonically linked to a family of sex differentiation factors.  The observation that the 

gene is enriched in cardiac tissue suggests that this family of transcription factors may 

be far more versatile than previously thought.  The biological role of DMRTB1 could 

be unique to birds, as well, as it is not enriched in the human GTEx data. DMRTB1 is 

lowly expressed across all background tissues, if it is present in them at all, with a 

mean FPKM of 0.67. 

The fact that these genes, BPGM and DMRTB1, are not identified as enriched 

in the original human GTEx dataset, but that both pass the GTEx threshold for 

enrichment (five-fold increase in means) as well as the 5SD z-score, shows the 

usefulness of using tissue enrichment for comparative biology.  Additionally, our 5SD 

threshold is far more stringent than the GTEx standard, in terms of identifying organ 
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specific enrichment among a tissue diverse data set.  However, we have also shown 

that it recapitulates established tissue associated biology, while also proposing novel 

relationships for many enriched genes.  Thus, we will use this method of tissue 

enrichment as a first step of feature selection in downstream pipelines that explore 

regulation of the heat stress response.  We will use this standard of tissue enrichment, 

for example, to identify liver specific genes before using statistical learning techniques 

to associate liver enriched genes and metabolite data with the heat stress response. By 

reducing the set of genes from over 20,000 to several hundred through this standard of 

tissue enrichment, we have immediately reduced the number of features associated 

with gene expression.  The result is a module of highly tissue-enriched genes. 

Although our heat stress response studies will focus primarily on the liver, we have 

demonstrated the general performance of our enrichment strategy by clarifying the 

transcriptome similarities and differences in two closely related tissues, cardiac and 

skeletal tissue. 
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FROM ORGAN-ENRICHED MODULES TO MECHANISMS 

4.1 Introduction: Context for Metabolic Forks 

The need to identify core regulatory modules among organs is an important 

motivation for multi-step informatics pipelines.  To develop these, a first step is to 

subset by organ-enriched genes, for initial feature selection.  We have demonstrated 

the efficacy of using a z-score enrichment strategy on our dataset in Chapter 3.  

Subsequently, we develop pipelines to analyze metabolomics data in a way that is 

complementary to and extends the work of tissue enrichment analyses.  Modules of 

genes identified by tissue enrichment are incorporated as a form of initial feature 

selection in these pipelines. This approach of applying pipelines in an iterative fashion 

makes it possible to extract the maximum biological meaning from our dataset.  We 

demonstrate this, by producing novel biological findings that enhance understanding 

of the heat stress response.  These chapters will explore the heat stress response from 

the perspective of liver metabolism.  While we have examined muscle-specific 

difference using tissue enrichment to demonstrate the specificity and usefulness of 

those techniques, in subsequent chapters we focus on using computational techniques 

to understand regulation in the liver because it a metabolic powerhouse for the 

chicken, managing sugar, lipid and antioxidant production (Jastrebski et al., 2017)  

While enrichment analyses identify tissue-defining genes and DiffExpress 

detect heat stress responsive genes, those methods only investigate gene expression 

changes, not how they relate to one another. Such methods also suffer from the 

Chapter 4 
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shortcoming that they do not provide direct insight into regulatory changes at the 

biochemical level, in terms of metabolites.  High throughput metabolomics data, 

however, provides a quantitative way to assess levels of biologically active 

compounds (Fuhrer and Zamboni, 2015). Though such techniques bring great promise 

to life science research, there is a need for studies to develop informatics approaches 

to extract biological insight from large-scale datasets that combine multiple –omics 

data types (Johnson et al., 2014). Subsequently, we develop a strategy to detect 

regulatory mechanisms at the metabolite level that can then be explored as possible 

consequences of transcriptome shifts. The transcriptome shifts that underlie changes in 

metabolites can be contextualized in terms of the modules of tissue-specific genes.  

Accomplishing this task is multi-tiered, and will require pipelines that use statistical 

learning techniques to exploit various biologically informative features of the data.  

This will include modeling ratios of metabolites in terms of other possibly related 

compounds and precursors, as well as prioritizing compounds whose linear models 

have significant interaction terms.  Candidates for the linear models will be identified 

from pathways prioritized by an upstream pipeline that uses several statistical learning 

techniques (k-means, random forest and principal components analysis (PCA)) to 

identify genes and metabolites strongly associated with the heat stress response.  

Incorporating ratios of metabolites into linear models will make it possible to detect 

potential shifts in specific biochemical reactions. 

4.1.1 Established Context for Ratios as Extension of Previous Studies 

The concept of focusing on the association of ratios of compounds as potential 

responders to an experimental treatment originates in earlier works integrating 

metabolomics and genomic data, such as the KORA (Cooperative Research in the 
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Area of Augsburg) study (Gieger et al., 2008).  In the KORA study, which was one of 

the first to integrate high throughput metabolomics with other types of data, the 

authors focused on relating ratios of compounds to single nucleotide polymorphisms 

(SNPs) using standard additive models.  The ability to combine genomic and 

metabolomic data represented an innovative paradigm and has improved the biological 

understanding of SNPs involved in diseases such as diabetes, arthritis and mental 

illness (Gieger et al., 2008). The heuristic of relying on ratios of compounds was 

motivated by the observation that doing so significantly decreased variance and 

improved the predictive power of subsequent modeling (Gieger et al., 2008).  Such an 

approach also improves the biological interpretation of the quantity that is being 

measured through the metabolite data.  

For example, in the case that the pair comprising the ratio is a substrate-

product pair, then one is effectively modeling conversion efficiency between a 

substrate and product as a function of SNP status.  This interpretation is important 

because it provides a perspective from which SNP data is being related to a phenotype 

(conversion efficiency of an enzyme) (Gieger et al, 2008).  While this approach is 

innovative and useful for leveraging genotype data to explain variation in the 

chemistry of enzymes, it does not address the needs of identifying concerted metabolic 

and transcriptome shifts during an experimental treatment (heat stress, in our case).  

Pursuing this strategy, we developed techniques that would detect deliberate shifts in 

metabolic regulation in order to relate them to changes in transcriptome data. 

Like the early genome-metabolome studies, our approach contextualizes these 

changes in a mechanistic perspective. We accomplish by relying on small regulatory 

triplets that relate metabolite levels, instead of a SNP, to the ratio of two other 



 97 

metabolites. A regulatory triplet is thus a set of three metabolites that may interact 

with one another through a precursor-product, or similar relationships, such as 

coupling with the same pathway.  Predicted metabolic relationships can be reinforced 

subsequently by identifying gene expression changes for the enzymes that process 

each metabolite.  Processing metabolic data to produce network skeletons produces 

the framework of a network in which transcriptome changes can be interpreted. Unlike 

the genome-metabolome studies, we are modeling continuous metabolomics data.  

Thus, how these triplets behave under heat stress, as compared to control, can be 

biologically informative in terms of dynamic regulation of pathways.  This is 

particularly true when these groups showing differential behavior span branches of 

regulation, as in the special case of regulatory triplets that represent units that we refer 

to as metabolic forks. 

The metabolic fork is defined as a situation in which biological regulation 

differentially shunts substrates down one path or another.  The relative preference of 

one route is influenced by gene regulation, which must change during heat stress.  The 

ability of our pipelines to detect these situations through metabolome data will be 

compared with changes in the transcriptome identified by differential expression 

analysis.  This comprehensive approach can identify the genes that may control 

metabolite relationships, and propose mechanisms for the regulation of precursor flow 

through a metabolite pathway.  Changes to the behavior of metabolic forks could have 

far reaching effects on overall metabolism.  Thus, the ability to detect them is a 

powerful method to generate hypotheses about novel biology.  
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Figure 36: An interpretation of the relationship between a compound, A, and the ratio 
of two others ;<

=
>in the case that all three are metabolites.  A may be 

influenced by the ratio of  ;<
=
>	when ;<

=
>represent fates of precursors for 

A.  Alternatively, A may influence ;<
=
>	when the two compounds are 

substrate/product pairs or gene/protein pairs. 

In order to detect potential metabolic forks, we calculate the value of 

correlations for triplets of metabolites of the form A, ;<
=
>	 where A, B and C are 

compounds from either the metabolome.  Triplets that show a change in correlation 
greater than 1.2, ?cor CA, ;<

=
>F heat − 	cor CA, ;<

=
>F control? > 1.2, are then used to 

build linear models and determine, through the p-value of the interaction term, if there 

is a statistically significant change in the relationship between A and the ratio ;<
=
>. 

Using a statistical learning pipeline, in addition to prior knowledge, we will prioritize 

compounds into a searchable set (about sixty compounds) from which potential 

metabolic forks can be identified. From these metabolites, we will be able to extract 

novel relationships through linear models with significant interaction terms.  
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Figure 37: Special case of a metabolic fork, in which compounds are directed to one of 
two divergent metabolic fates (with reaction back to precursor from 
either state negligible). 

The function cor CA, ;<
=
>F	may detect changes in a potential biochemical 

relationship that is regulated by a metabolic fork (Figure 37).  For example, if ;<
=
> 

represents a rate of conversion or levels at steady state, and A is associated with 

increases or decreases in this ratio, we will consider if it may be driving the 

production.  When B and C represent divergent pathways towards separate 

compounds, while sharing a common precursor, their ratio may represent the relative 

probability of a precursor molecule taking one fate over another.  The ability to detect 

these types of changes could be very useful in understanding the physiological 

consequences of metabolite shifts across multiple pathways.  We have hypothesized 
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that such changes control the heat stress response, and could explain how the 

metabolic role of nutrients shifts to cause decreases in yield. 

It is well known that broiler chickens accumulate muscle mass more slowly 

under heat stress, thus contributing to lower feed efficiency (Lara and Rostagno, 

2013). Enhanced protein catabolism is thought to be a major factor influencing poorer 

feed efficiency of heat stressed birds (Lara and Rostagno, 2013).  However, the 

metabolic fate of catabolized proteins is uncertain, although it is hypothesized that the 

liberated amino acids are harnessed to produce energy for the heat stressed bird.  

Identifying metabolic forks that relate amino acid and sugar production could provide 

critical evidence clarifying this and other hypotheses. 

4.1.2 Interpretation of Metabolite Ratios from a Biochemical Standpoint 

Important reactions that produce resources to manage stress may be controlled 

through changes in gene expression, in order to meet shifting environmental 

challenges.  By influencing levels of the appropriate enzymes, such changes may shift 

the equilibrium of reactions to favor energy production.  A crucial strength in 

investigating changes in ratios of compounds is that it provides a perspective from 

which to understand how changes in gene expression may influence equilibrium of 

metabolite production. This ability to pinpoint specific metabolic changes extends and 

complements the approach of using statistical learning techniques to identify potential 

biomarkers for heat stress.  We can consider a way in which the ratios model 

equilibrium changes below, and represent changes in favorability that could regulate 

the behavior of pathways.  
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Figure 38: Illustration of an equilibrium point of a reaction, where net movement 
towards products is countered by backward movement toward reactants.  
In a biochemical reaction controlled by an enzyme, this equilibrium point 
may be influenced by gene expression. 

At the equilibrium point, the rate of the forward and the reverse reaction are 

equal.  Viewed from another perspective, at equilibrium, the number of molecules 

switching states between products and reactant is constant.  Thus, the probability of a 

given molecule belonging to either the product state or the reactant state is fixed.  

When the products are more favored by the reaction, there will be many more product 

molecules at equilibrium.  Conversely, when the reactants are more favored by the 

reaction, at equilibrium there will be many more reactant molecules.  Note that at this 

equilibrium point, the ratio of products and reactants should be constant (excluding 

statistical fluctuations) as the same proportion of molecules are in the substrate or 

product state.  One way to control the location of this equilibrium point, in terms of 

the relative concentrations of reactants and product, would be through enzyme levels. 
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Figure 39: A change to a biochemical reaction in which the forward reaction has 
become more favorable after regulation of an enzyme, possibly through 
gene expression changes.  The difference between the equilibrium points 
now results in one state being more energetically favorable than the 
other, given the current conditions.  Depending on the favorability of the 
subsequent product, a precursor may be more or less likely to be 
converted into diverging metabolic fates. 

The location of a biochemical equilibrium contains information about the 

relative energetics of one pathway compared to another. Figure 38 illustrates the 

consequences of a shift in this parameter. The ultimate objective of this statistical 

approach is to describe changes in equilibrium between reactions as functions of other 

compounds.  Collective shifts across such systems may effectively describe alterations 

to homeostasis.  Alternatively, if the back-reaction towards a precursor is negligible, 

the equilibrium of the metabolic fork represents relative propensities for one metabolic 

fate versus another (Figure 39). 
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4.1.3 Context for Integrating Tissue Enrichment, Statistical Learning 
Techniques and Linear Models 

Identifying metabolic forks highlight differential metabolite regulation under 

treatment conditions in a way that is consistent with RNA-seq data, so long as changes 

in levels of relevant enzymes are directly proportionate to transcript levels. Identifying 

metabolic forks will be computationally intensive, however.  Thus, it will be important 

to use statistical learning techniques to identify compounds that are associated with the 

heat stress response, from which potential mechanisms can be identified.  The 

resolution of these statistical learning methods is enhanced by sub-setting 

transcriptome data by tissue-enriched genes. The motivations and insights made 

possible by this technique have been previously discussed in Chapter 3 of this 

dissertation.  While valuable in itself for tissue enrichment studies, our five standard 

deviation threshold definition of tissue enrichment will also proves useful in reducing 

the input set of genes to downstream pipelines.  The statistical learning techniques will 

depend partly on harnessing the signature of heterogeneity of the data at both the 

transcriptome and metabolome levels, which influences the classifying power of each 

compound to identify samples from heat stress treated birds.  

4.1.4 Identifying Biomolecules Associated with Heat Stress in the Liver  

Obtaining biological insight from large-scale transcriptome data is challenging 

due to biological and technical variance.  Careful experimental design can limit 

unwanted noise.  However, when properly harnessed, heterogeneity can be used to 

detect biological signals that elude traditional enrichment analysis.  For example, 

biological variation relating to a treatment response depends on many variables that 

are not easily controlled such as allelic or physiological variants.  This fact can be 

informative because many compounds involved in the same process will have similar 
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patterns of heterogeneity. This can be used to identify relationships between elements 

of the same pathway, even when their scales of expression and variance differ 

considerably, by relying on statistical learning strategies.  This approach allows the 

combination of transcriptome and metabolome data to gain a more comprehensive 

biological understanding of a system.  This is particularly helpful in identifying 

significant features from the large, complex datasets now common in multi-omics 

studies. 

One organ capable of exerting strong influence on both bird growth and 

thermoregulation, and thus making it an excellent target through which to understand 

routing of resources, is the liver.  This organ has recently proved as a subject for avian 

studies that leverage multiomics approaches including transcriptomics and 

metabolomics (Jastrebski et al., 2017).  Such work has begun to shed light on 

differentially regulated genes and metabolites in the tissue under heat stress.  

However, a systems level understanding in which fluxes in metabolites are related to 

gene expression, are lacking.  This is partly because computational approaches 

describing the totality of a biological response including gene expression and 

metabolite production is lacking.  We will combine RNA-seq expression and 

metabolites from the liver to identify genes and compounds that function as 

biomolecules associated with heat stress.  While metabolomics data identifies changes 

in biologically active compounds, RNA-seq data identifies genes regulate metabolic 

changes.  We offer a geometric interpretation for our statistical procedures, describing 

how they recapitulate novel biology (Figure 40).   

This analysis applies statistical learning approaches on metabolite and gene 

expression data restricts transcriptome analysis to a core module of liver enriched 
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genes.  These are determined by a definition we propose that proves more stringent 

than other types of relative expression analysis, as discussed in Chapter 3 of this 

thesis.  Sub-setting in this fashion isolates tissue-enriched genes that reflect unique 

biology specific to the liver in a tissue diverse dataset, and has been used previously to 

explore gene expression difference in muscle tissue.  The approach of selecting tissue-

enriched genes provides a framework to integrate metabolite and transcriptome data 

by providing an initial step of feature selection. This approach of combining data from 

different high-throughput technologies makes it possible to identify important features 

of the high dimensional dataset.  

4.2 Methods: Combination of Statistical Learning Techniques 

The heat stress response is multi-tiered and involves input from multiple 

tissues, though we choose to explore it from the perspective of the liver, a metabolic 

powerhouse.  At the cellular level, the heat stress response unfolds across an intricate 

program of organelle specific changes.  Which changes are causal, and which merely 

correlative with underlying signal or sensing pathways, thus becomes a complex 

question.  However, the variability associated with most basal regulators of the heat 

stress response should be most closely related to the variation in the heat stress 

response.  By the transitive nature of biological communication, the introduction of 

noise into the signal diminishes the capacity of downstream molecules, which 

correlate with, but do not cause the heat stress response, to discriminate between 

treatment and control samples.  From this perspective, the problem of identifying 

causal molecules from expression profile is well posed as a statistical learning 

problem that can be addressed through random forests.  Random forests can rank 

candidates on their ability to correctly identify the class of samples as assigned to 
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Figure 40: Total pipeline, from data analysis to identifying hypothetical mechanisms.  
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control or experimental treatment groups.  Our approach follows sorting compounds 

into clusters based on their expression profile, using k-means clustering, prior to 

application of the random forest algorithm and finally prioritizing these top 

biomolecules with PCA.  Rationale for k-means with k = 3 described in Figures 41A, 

41B, and 42. Subsequently, we identify compounds most strongly associated with heat 

stress among liver enriched genes and metabolites.  These compounds can then 

represent candidates for metabolic forks. 

Biomolecules are identified and prioritized to extract pathways from whose 

elements triplets can be calculated (Figure 40). Triplets showing differential behavior 

are selected, which detect equilibrium shifts and thus indicate behavior of a metabolic 

fork.  
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Figure 41 A and 41B: Example of possible models around specific cluster with 
different k-means selection, illustrating more uniform clustering results 
with k = 3 (41B) compared to k = 2 (41A).  
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Figure 42: Elbow plot: with K-means = 2, the clusters are somewhat uneven compared 
to one another.  With K = 3, however, we get relatively uniform clusters.  
The final choice of k = 3 is based on both biological interpretability and 
statistical properties of each clustering that considers bias-variance 
tradeoffs. 
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4.3 Results 

 

Figure 43: PCA of highly prioritized biomolecules from k-means cluster 1 
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Table 2: Figure 43 Keys 

1. 1_2_dipalmitoyl_GPC__16_0_16_0  16. bilirubin__Z_Z 
2. 1__6soUnique_enyl_stearoyl  17. docosahexaenoate__DHA;_22_6n3 
3. 1_arachidonoyl_GPC__20_4n6  18. linoleate__18_2n6 
4. 1_arachidonoyl_GPE__20_4n6  19. margarate__17_0 
5. 1_palmitoyl_2_linoleoyl_glycerol__16_0_18_2  20. N_acetyltaurine 
6. 1_palmitoyl_2_stearoyl_GPC__16_0_18_0  21. N_palmitoyltaurine 
7. 1_stearoyl_2_arachidonoyl_GPC__18_0_20_4  22. N_stearoyltaurine 
8. 1_stearoyl_2_arachidonoyl_GPE__18_0_20_4  23. Oleoylcarnitine 

9. 1_stearoyl_2 arachidonoyl_GPI_18_0_20_4  
24. 
sphingomyelin_d18_1_24_1_d18_2_24_0_ 

10.  acetylcarnitine   25. sphingomyelin_d18_2_24_1_d18_1_24_2 
11. Adipoylcarnitine  26. stearoyl_ethanolamide 
12. arachidate__20_0  27. tartronate__hydroxymalonate 
13. arachidonate__20_4n  28. taurine 
14. beta_guanidinopropanoate  29. thiamin_diphosphate 
15. betaine_aldehyde  
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Figure 44: PCA of highly prioritized biomolecules from k-means cluster 2. 
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Table 3: Figure 44 Keys 

1. Gene_C6  16. Biopterin 
  2. Gene_CTSO  17. cholesterol  
  3. Gene_FGG  18. Creatinine  
  4. Gene_HPD  19. Dehydroascorbate 
  5.  Gene_ITIH3  20. hypotaurine  
  6. Gene_LIPC   21. linoleoylcarnitine* 

7. Gene_LOC101748084  22. N_formylmethionine 
8. Gene_LOC10174882   23. Picolinate 

  9. Gene_LOC417848   24. Propionylcarnitine 
  

10. Gene_LOC424748  

25. 
sphingomyelin_d18_1_20_0_d16
_1_22_0 

11. Gene_SLC6A13  
26.sphingomyelin__d18_1_21_0_
_d17_1_22_0__d16_1_23_0 

12. 1_stearoyl_GPG__18_0  

27. 
sphingomyelin__d18_1_22_1__d
18_2_22_0__d16_1_24_1 

13. 2_hydroxyphenylacetate   28. stearoylcarnitine 
  14. Argininosuccinate  29. thiamin__Vitamin_B1 

15. behenoyl_sphingomyelin__d18_1_22_0   
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Figure 45: PCA of highly prioritized biomolecules from k-means cluster 3. 
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Table 4: Figure 45 Keys 

1. Gene_NADKD1  16. Cysteinylglycine 
 2. Gene_S100Z  17. fructose_6_phosphate 

3. 1_palmitoleoyl_3_oleoyl_glycerol__16_1_18_1  18. gamma_glutamylcysteine  
4. 1_palmitoyl_2_linoleoyl_GPE__16_0_18_2  19. glucosamine_6_phosphate 
5. 1_palmitoyl_2_linoleoyl_GPS__16_0_18_2  20. glucose_6_phosphate  
6. 1_palmitoyl_2_oleoyl_GPE__16_0_18_1  21. glutathione__reduced__GSH 

7. 1_palmitoyl_2_oleoyl_GPI__16_0_18_1  

22. 
glycerol_3_phosphat
e 

 8. 1_palmitoyl_2_palmitoleoyl_GPC__16_0_16_1  23. Glycerophosphoethanolamine 

9. 1_palmitoyl_GPE__16_0  
24. myristoleate__14_1n5 
 

10. 1_stearoyl_2_linoleoyl_GPE__18_0_18_2  25. N_acetylglucosaminylasparagine 
11. 1_stearoyl_2_linoleoyl_GPI__18_0_18_2  26. N6_succinyladenosine  

12. 3__dephosphocoenzyme_A  
27. 
Phosphopantetheine 

 13. adenosine  28. Pterin 
  

14. adenosine_5__monophosphate__AMP  
29. 
UDP_glucuronate 

 15. coenzyme_A   
    

4.3.1 Geometric and Biological Consideration of each Statistical Learning Step 

A goal of first leveraging k-means analysis is to build more biologically 

interpretable random forests, with compounds initially separated by expression profile.  

This reflects the idea that pathways involving essential biological compounds occur 

across a spectrum of expression profiles.  Compounds with different patterns of 

expression may have distinct biological roles in pathways.  Separating out compounds 

first by this feature prevents compounds from one expression tier crowding out those 

from another tier when they have similar capacities for classifying samples as control 

or heat stress. However, the optimal partitioning should produce clusters that are 

similar in explanatory power.  Selecting k = 3 accomplishes this goal by distributing 



 116 

compounds across clusters that are as similar to one another as possible in terms of 

their explanatory power (Figures 41A and 41B). This is corroborated by the elbow 

plot (Figure 42).   

Random forest is used to prioritize the genes and metabolites from each k-

means cluster that are the strongest classifiers for the heat stress response.  Genes or 

metabolites prioritized by the random forests approach are thus potential biomolecules 

causally associated with the heat stress regulation.   Finally, we organize these strong 

biomolecules into biologically relevant groupings with PCA.  This final step is able to 

recapitulate elements of major biological pathways – for example grouping together 

many of the compounds associated with processes such as gluconeogenesis and 

antioxidant production. This can be seen in figures 43-45.  Particularly, fructose-6-

phosphate (F6P), glucose-6-phosphate (G6P) and glucosamine-6-phosphate are 

positioned close to one another on the biplot (numbers 17,19 and 20, respectively in 

Figure 45) and correlate well with the first principal component, supporting that this 

principal component represents glucose production.  Importantly, this analysis 

suggests novel biology, by identifying strongly classifying biomolecules in a given k-

means cluster that associate with one another through co-linearity.  For example, 

among the PCA biplot of highly prioritized compounds from cluster 1, a number of the 

taurine related endocannabinoids N_acetyltaurine, N_palmitoyltaurine and 

N_stearoyltraurine group together (numbers 20,21 and 22, respectively).  This is 

particularly informative, as the biology of these compounds is relatively 

uncharacterized, but our analysis suggests that they share a similar form of metabolic 

regulation that is implicated in heat stress. Thus, the additional level of resolution with 

PCA is useful because although we have already ensured that many of these 
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biomolecules will be strongly heat stress associated with the prior random forest 

approach, PCA is able to organize them into groupings that represent potential 

pathways.    

4.4 Discussion: 

Our complete pipeline (Figure 40), which combines statistical learning 

techniques with hypothesis-free modeling of metabolite ratios, is able to propose novel 

hypotheses while recapitulating significant known biology from the liver metabolome 

and transcriptome.  Significant biology is detected through the statistical learning 

pipeline alone, prior to calculation of metabolic forks.  Relying on classifying power 

of compounds and PCA effectively identifies changes in compounds with roles across 

organelles that are increasingly thought to have important functions in the heat stress 

response. 

Much interesting biology, for example, relates to changes in the cell 

membrane. There are widespread shifts in levels of constituent lipids, for example.  

The exact mechanisms by which these shifts occur remain unclear, but accumulating 

evidence suggests these changes in the cell membrane exert important downstream 

effects on heat stress responsive genes and metabolites.  At least some of these may be 

driven by dietary changes. One such example is the essential fat linoleic acid, which is 

a precursor to arachidonic acid and emerges as a strong heat stress associated 

biomolecule and whose detected levels are lower under heat stress. The compound 

also correlates with two principal components among the heat stress associated 

biomolecules among its cluster (Appendix, Tables A2 and A3).  Downstream 

arachidonic acid derivatives are similarly decreased, many of which have roles in 

inflammatory response.  
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Other biomolecules prioritized through correlation with the same principal 

component include other lipids, related to signaling and fatty acid oxidation – such as 

adipoylcarnitine and the taurine related endocannabinoids N-oleoyl taurine and N-

Stearoyl taurine (Appendix, Tables A2 and A3).  These compounds represent a 

possible intersection between signaling lipids and sulfur metabolism via coupling with 

taurine.  All of these compounds occur at lower concentrations under heat stress.  

While the mechanisms of such regulation remain unclear, there is much evidence that 

suggests lipid changes influence cell state and, potentially, bird metabolism.  Lipid 

changes, in fact, are increasingly recognized as potential regulators of heat stress at a 

fundamental level (Balogh et al., 2013).  

Recent studies have focused on nuances of the heat stress response by revising 

the model that it is primarily triggered by the presence of unfolded proteins (Hoffman, 

2007).  For example, lipids in the cell membrane may detect membrane disorder and 

other physical consequences of heat stress and trigger signal cascades (Balogh et al., 

2013).  The evolutionary value of using a thermo-sensitive organelle such as the cell 

membrane to refine the heat stress response is the advantage of being able to regulate 

homeostasis through sensitive adjustments that have meaningful influences on cell fate 

(Balogh et al., 2013).  The inflammatory response may be a significant component in 

the transition from heat stress to heat stroke. 

4.4.1 Heat Stress, Membranes and Lipids 

The sophisticated signaling environment created by the cell membrane is 

comprised of a diverse set of lipids and proteins.  Among these is an abundance of 

sphingolipids that form rafts in the membrane and possess important signaling roles 

(Simons and Ikonen, 1997).  The organization of the cell membrane is intricate and 



 119 

becomes dynamic under stress response.  Important structural changes occur through 

interactions with membrane proteins, the gating of which possess thermal sensitivity 

(Torok et al., 2014).  Additionally, heat causes changes in physical attributes such as 

diffusion and dimerization rates.  Measurements suggest these characteristics change 

in a predictable fashion during even mild heat stress events (Torok et al., 2014). Thus, 

the cell membrane is well equipped to sense relative temperature changes. 

Not surprisingly, among the compounds prioritized by our pipeline are many 

lipids. These shifts suggest mixture of changes in compounds with signaling and 

structural roles.  Alterations in lipid content are important in thermal shifts associated 

with both heat stress and extreme cold.  For example, a key adaptation to cold is the 

increase in membrane fluidity mediated by elevating the fraction of cis-unsaturated 

fatty-acyl groups in membrane lipids (Vigh et al., 1998).  Alternatively, during 

episodes of heat stress mechanisms to endure temperature shifts focus generally on 

maintaining the integrity of the cellular processes and such pathways can be causally 

regulated by changes in cell membrane disorder (Vigh et al., 1998).  Regulation of 

heat shock factors can be influenced by addition of saturated and unsaturated fatty 

acids, with the former inducing expression and the latter suppressing it (Carratu et al., 

1996). 

The possibility that the qualities of the cellular membrane make it an ideal 

substrate in which to store ‘memory’ or serve as a ‘control center’ for a physiological 

response in terms of the composition of density and sensors could be extremely 

interesting biologically. This could prove extremely important in terms of identifying 

mechanistic regulators of the general response.  Indeed, changes in membrane fluidity 

induced via alcohols triggers systemic responses paralleling those caused by heat 
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stress, albeit in the absence of any thermal activation.  Such changes include 

hyperpolarization of the mitochondrial membrane (Balogh et al., 2005).  Such 

experimental work confirms the role of lipids from a regulatory perspective and the 

influence of the heat stress response across organelles. 

Among the cell membrane lipids influenced by heat stress, which are 

prioritized among their respective clusters, is a number of sphingomyelin species.  

These are substantially down regulated under heat stress, and emerge as strong 

classifiers in clusters one and two.  This is a potentially significant observation in the 

context that sphingolipids are up-regulated in the early phases of acute heat stress in 

studies of yeast (Jenkins et al., 1997).  Many of these sphingomyelin species correlate 

with principal components among their clusters that include the downregulated 

inflammatory arachidonic acid derivatives (Appendix, Tables A7 and A8). Their 

general attenuation may be an important aspect of physiological adaptation to the 

long-term heat stress experienced by the birds, with the pattern of heterogeneity in 

their levels indicative of bird acclimatization.  

4.4.2 Antioxidants and Energy Burden 

Heat stress entails a number of challenges that endanger cell function and 

which must be addressed in order to preserve homeostasis.  The management and 

deployment of protective systems can be quite independent from the initial sensory 

capacity of the cell membrane. These, for example, can respond to states of cellular 

stress that could be ongoing in a state of heat stress.  Such pathways are essential to 

the heat stress response, as they relate to management of general consequences of 

oxidative damage. Several precursors of anti-oxidants, as well as such compounds 

themselves, are identified as strong classifiers of treatment assignment within each 
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cluster. These compounds manage the effects of toxic intermediates resulting from 

increased energy production, mitigating their ability to damage DNA or organelles. 

Their production may exploit the carbon backbones of amino acids released by 

catabolized protein. 

Given the relationship between oxidation and energy production, some of the 

classifiers suggest changes in mitochondrial activity.  Even slight changes in cell 

resting state can have dramatic changes on the production of reactive oxygen species 

and the behavior of the mitochondria (Akbarian, 2016).  Molecules associated with 

mitochondrial performance are computationally recognized as potential biomarkers of 

the heat stress response. This suggests that mitochondrial conditions are closely 

related to general heat stress, and that the cell adjusts antioxidant levels accordingly. 

At the same time that sugars and other energy-related metabolites show 

upregulation, an important class of lipids involved in the carnitine shuttle system that 

transports fatty acids to the mitochondria shows consistent downregulation.  These 

carnitine species (linoleoylcarnitine, stearoylcarnitine, adipoylcarnitine) are identified 

as strong heat stress associated biomolecules among their clusters and correlate 

strongly with resulting principal components (Appendix, Tables A1, A2, and A3).  

Such patterns suggest sweeping downregulation of fatty acid oxidation pathways, as 

metabolism is increasingly driven by gluconeogenesis.  Transcriptome changes 

support a coordinated shift in lipid and sugar management (Jastrebski et al., 2017). 

Genes that correlate most highly with the principal components that emerge 

from the k-means cluster containing gluconeogenesis biomolecules include NAD 

kinase (NADKD1) and S100 Calcium Binding Protein Z (S100Z), (Appendix, Tables 

A6 and A7). However, the correlations of these transcripts with the first principal 
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component are relatively weak compared to the main metabolites associated with 

gluconeogenesis, i.e. .53 and .41 for S100Z and NADKD1 respectively. Glucosamine-

6-phosphate and glucose-6-phosphate have correlations of .89 and .91, for 

comparison.  NADKD1 is a Nicotinamide Adenine Dinucleotide (NAD) kinase 

responsible for Nicotinamide Adenine Dinucleotide Phosphate (NADP) production, 

while S100Z is a calcium binding protein. Calcium released during oxidative stress 

can trigger cell death (Ermak and Davies, 2002).  Thus, upregulated S100Z may be 

important to mitigating apoptosis.  The magnitude of correlations for these transcripts 

with the second principal component summarizing strong classifiers in cluster 3 

cluster are relatively stronger, -.7417 and -.5521 for S100Z and NADKD1, 

respectively, albeit negative.  This second principal component correlates strongly 

with antioxidant-associated compound such as glutathione that would correspond to 

the increased oxidative stress of gluconeogenesis. NADKD1 may play a role in lipid 

metabolism, by producing NADP that will be reduced to NADH by the pentose 

phosphate pathway and thus providing reducing power for lipid production (Pollak et 

al., 2007).  Thus, NADKD1 production provides a potential link between 

gluconeogenesis and lipid production, at the same time lipid oxidation is decreased. 

The shift away from lipid oxidation is consistent with increases in coenzyme A. 

4.4.3 The Metabolic Fork Consistent with Statistical Learning Pipeline 

This shift towards gluconeogenesis is supported strongly from a mechanistic 

standpoint by the metabolic fork relating fat, lipid and sugar production (Figure 46). 

This triplet, in the context of gene expression data, provides stronger support for  
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Figure 46: Intersecting pathways captured from a metabolic fork whose linear model 
shows differential behavior under heat stress. 

a causal and directional relationship between these compounds. The three members of 

the triplet span gluconeogenesis (fructose-6-phosphate), glyceroneogenesis (glycerol-

3-phosphate) and amino acid catabolism (glycine).  Thus, this metabolic fork provides 

evidence of on route for the large-scale redirection of carbon resources released from 

the catabolized glycine.  This complements the statistical learning pipeline, which 

prioritizes biomolecules without determining whether they are causal or merely 

collinear to biological changes. Pairwise correlations between each node are provided 

on the edge corresponding edge (Figure 47). 

A proposed mechanism for the observed pattern is that catabolized glycine is 

preferentially shunted towards gluconeogenesis under heat stress, thus contributing to 

fructose-6-phosphate (F6P) production.  This is captured in the linear model (Figure 

58).  Increasingly fueled by carbon backbones provided by amino acids from 
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catabolized proteins, gluconeogenesis decouples from glyceroneogenesis under heat 

stress (Fig 47).  

 

Figure 47: Pairwise correlations of the compounds in the metabolic fork, 
demonstrating the coupling of glycine with fructose-6-phosphate under 
heat stress.  
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Figure 48: Linear model representing behavior of the triple of fructose-6-phosphate 
and G3P/Glycine. 

The ratio of glycerol-3-phosphate (G3P) to glycine is interpreted as the 

tendency of catabolized amino acids to become backbones for fats, as opposed to 

sugars.  This is hypothesized to change as a function of increased demand for sugar 

under heat stress, as given by increases in the sugars glucose-6-phosphate (G6P) and 

F6P.  This is supported by increases in the gene Fructose-Bisphosphatase-2 (FBP2) 

encoding the rate-limiting gene for gluconeogenesis. Importantly, this computational 

prediction is independently supported with recent experimental work.  According to 

this mechanism, it would be predicted that glycine supplementation should improve 

heat stress performance.  Recent work has shown that glycine supplementation 

significantly improves the performance of heat stressed birds according to multiple 

metrics such as weight gain and feed intake (Awad et al, 2017). 
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Figure 49: The metabolic fork in context of gene expression data.  The coupling 
between glycine and fructose-6-phosphate is consistent with upregulation 
of FBP2.  Transcriptome upregulation of the gene encoding FBP2 
provides evidence for directionality towards F6P. 

While this proposed mechanism demonstrates clear directionality, this insight 

would not be immediately clear from statistical associations alone.  The transcriptome 

data, however, provides clarification of the regulation between the elements of the 

triplet, by identifying upregulation of the rate-limiting gene for glucoenoegenesis 

(FBP2).  Subsequent work building larger models from metabolic forks will 

emphasize the utility of evaluating potential mechanisms in the context of 

transcriptome data. 
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TOWARDS CIRCUITRY REGULATING CARBON FLOW UNDER HEAT 
STRESS 

5.1 Introduction 

The pipelines in Chapter 4 have produced methods to manage high 

dimensional datasets and prioritize genes by both classifying power (random forests) 

and correlation structure (PCA) in heat stress samples.  In addition to producing 

insight on their own, these statistical learning techniques produce candidates for 

crucial network motifs (the metabolic forks) among prioritized features. The resulting 

analyses suggest many novel hypotheses about regulation of the heat stress response.  

Additionally, the signatures of well-known elements of the heat stress response are 

recapitulated through this analysis.  The final chapters of this thesis seek to extend 

these findings by constructing complete metabolic circuits from many elements 

identified through the previous statistical analyses.  We show that these analyses 

emphasize regulation that would not be otherwise detectable, and provide testable and 

novel hypotheses. 

Metabolic shifts during heat shift involve a number of signaling cascades 

(Verghese et al., 2012).  These include the unfolded protein response and both pro and 

anti-apoptotic pathways (Fulda et al., 2010).  Increasing evidence suggests that 

biologically active lipids play an important function during heat stress, as signaling 

agents and maintaining cell membrane integrity (Balogh et al., 2013). Establishing the 

relationship between lipid metabolism and other well-characterized heat responsive 

Chapter 5 
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pathways would provide better understanding of the flow of resources to different 

types of metabolites.  This could provide a model describing how small carbon 

precursors are selectively routed to various fates necessary to sustain signaling, energy 

production and other processes that must undergo dynamic shifts under heat stress. 

Viewing carbon flow as a circuit with dynamics that are affected by gene 

expression changes produces an effective description and identifies testable biological 

hypotheses.  This perspective describes the mechanisms that manage and create 

resource pools in the form of biochemically valuable carbon backbones, including 

cysteine and other catabolized amino acids that are selectively incorporated into 

various biologically active of molecules.  The model that we construct describes the 

interconnection between production of antioxidants, gluconeogenesis, and production 

of signaling and structural lipids. 

Redirection of carbon backbones occurs at specific points of regulation where 

molecules are processed into one of two or more available metabolic fates.  We have 

previously introduced this type of regulation in the form of metabolic forks, but have 

now extended them to build pathway level models. Importantly, this arrangement 

allows gene expression patterns to implement regulatory logic by selectively directing 

resources. 

When joined, these metabolic forks describe complete circuits of carbon flow.  

Our computational predictions are consistent with previous literature that explores the 

putative functions of heat stress responsive molecules and metabolites through such 

experiments as knockouts.  However, by focusing on small but powerful network 

motifs, we integrate these compounds into a full systems biology circuit model. This 



 129 

type of comprehensive study has been largely inaccessible prior to the availability of 

large scale –omics data. 

5.1.1 Iterative Linear Models 

Extending the previous strategy of using linear models to analyze compounds 

prioritized by a statistical learning pipeline, we will use similar modeling techniques to 

evaluate metabolite relationships between compounds representing sulfur and lipid 

metabolism.  These compounds are involved in major processes influenced by heat 

stress, such as increased antioxidant production and energetically useful lipids.   

Detecting metabolic forks that contain compounds from both lipid and sulfur 

metabolism could improve understanding of how these pathways relate to one another 
under heat stress.   Values for the correlation function of the form cor CA, ;<

=
>F were 

calculated where A, B and C represents the levels of metabolites across lipid and 

sulfur metabolism.  In this context, the most biologically informative triplets of the 

form A, B and C often represent sets of precursors and their resulting metabolic 

products, or products highly collinear with these compounds.  Ratios of compounds 

are used, as this approach is more sensitive to detecting points of potential regulation 

for diverging metabolic routes.  Triplets whose difference in value for the correlation 

function was 1.2 or greater between control and experimental conditions, i.e. 
?cor CA, ;<

=
>Fheat − 	cor CA, ;<

=
>F control? > 1.2,were selected as representing 

possible metabolic forks. Linear models were then used to detect differential behavior 

under heat stress, to identify triplets with significant interaction terms. Per existing 

methods, all data was log transformed before modeling (Illig et al, 2010).  The 

threshold of 1.2 for identifying potentially interesting triplets was a pre-screening 

method, with the linear models being used to determine a p-value for the difference 
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between control and experimental conditions.  To be considered as a pathway element 

and incorporated into a circuit, the interaction term must be significant for both 

models of the form A	~	;<
=
> and ;<

=
>	~	A.  This stringent heuristic is chosen because 

of ambiguity regarding directionality of the relationship between ;<
=
> and A.  Though 

this does enforce an assumption of linearity such an assumption is consistent with the 

use of correlation, which also measures linear relationships, to identify differential 

regulation of triplets.  Such triplets were subsequently merged with one another to 

generate pathways. 

 

Figure 50: Two triplets, representing distinct potential metabolic forks.  Triplets with 
overlapping elements may be merged, however, to create new biological 
hypotheses. 
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Figure 51: Example of how triplets that pass the differential correlation threshold (1.2) 
are merged into a circuit, by searching for overlapping components.  This 
is accomplished with an R script that will combine the triplets. 

Triplets are merged into a pathway by identifying metabolic forks that share 

components in common. We focus on a model involving three triplets involving sulfur 

and lipid regulation, because we hypothesize that the activity associated with these 

triplets best represents the functioning pathway relating antioxidant and structural and 

energetic lipids in a novel fashion, and is supported by transcriptome data. Each triplet 

requires manual inspection, but the network skeletons provide a sound basis for 

hypothesis generation.  Regarding components of some metabolic forks, the 
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relationships derived from associations are not always causal, nor as direct as would 

be the case if they were always substrate-product pairs.  However, many metabolic 

forks, in particularly those incorporated into a circuit are still highly biologically 

informative.  Determining the precise nature of the interaction of compounds in a 

triplet requires manual inspection. 

The transcriptome data can be helpful in this regard.  For example, hypotheses 

about the proposed directionality of relationships can be strengthened by gene 

expression changes.  Even when metabolites are not paired directly with precursors in 

a metabolic fork, one or more compound may be co-linear with a precursor.  This 

precursor may share a carbon source with the compounds in the triplet, linking them 

biochemically.  This type of relationship can be especially informative in a 

hypothetical circuit that contains precursors for multiple metabolites.  Proposed 

circuits of metabolites exploit the ability of metabolic forks to detect shifts in pathway 

favorability. Merged triplets thus connect mechanism of regulation into pathways. 

A shift in regulation changes the energetic favorability towards one route of 

the metabolic fork.  Importantly, this interpretation with equilibrium shifts 

representing preferential routing towards separate metabolic fates can model 

regulatory circuitry.  Additionally, we can build a linear model incorporating a gene 

and two metabolites to describe regulation of this circuit. These triplets that integrate 
metabolome and transcriptome data are of the form CA, ;RSTS	<

=
>F , where A and C are 

metabolites, but do not have the same interpretation as a potential metabolic fork. 

However, it can show that the ratio of a gene to metabolite,  RSTS	<
=

 , correlates 

differently under heat stress with the metabolite A.  This can be informative when 

metabolites A and C represent distinct biological processes, and gene B links their 
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metabolism. In this model, the ratio  RSTS	<
=

 represents the rate of transcription of gene 

B, relative to the levels of a metabolite (C) in a pathway coupled to a pathway that 

produces metabolite B.  Candidate genes to be incorporated into triplets can be 

selected from those identified from a literature search to play a role in circuits created 

from the metabolome data. 

5.2 Results 

 

Figure 52: A hypothetical circuit of regulation managing carbon backbones from 
catabolism.  This figure demonstrates that the interaction term of models 
involving ratios detects relationships that would be missed otherwise.  

By merging together forks it is possible to identify small, functional units that 

we hypothesize represent critical elements of pathways.  Merging of metabolic forks 
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was accomplished by identifying triplets that shared compounds in common (Figure 

51). Integrating these isolated units to form controlled regulatory systems identify 

circuits of carbon and sulfur regulation.  Importantly, linear models relying on the 

ratios of metabolites identify differential behavior not detectable using raw expression 

measurements alone (Figure 52). These models can then be joined to create larger 

circuits of regulation.  A resulting circuit, relating lipid and sulfur metabolism is 

subsequently predicted from the data.  Such predictions are consistent with previous 

research relating hypercysteinemia and hyperlipidemia to one another (Herman and 

Obeid, 2009).  This connection has never been elaborated under heat stress, however. 

The full mechanism relating sulfur, lipid and antioxidant activities to one another is 

constructed by joining triplets into a network skeleton (Figure 53). In this model, 

cysteine levels are increased under heat stress (Jastrebski et al., 2017), driving sulfur 

metabolism coupling lipid and antioxidant production via changes in expression of key 

regulatory genes detailed below. Redirection of resources to cysteine metabolism is 

hypothesized to occur at the expense of choline derived signaling and structural lipids, 

due to changes in gene expression for enzymes related to this process.  Differential 

behavior at each of these forks can be seen in a series of linear models, each of which 

demonstrate significant interaction terms (Figures 54 A-F and 54 A-F).  These branch 

points are then placed in context of known biology to generate a regulatory model that 

incorporates both transcriptome and metabolome measurements. 
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Figure 53: Network skeleton based on merging of triplets.  This will provide the 
hypotheses driving a more complete circuit.  Importantly, as lipid 
production shifts (the triplet with cysteine and choline), cysteine fuels a 
cycle of antioxidant metabolism represented by the two joined triplets, 
whose relationship is also summarized in Figure 52.  This relationship is 
indicated by the green arrow.   
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Figure 54: Part 1A-F: Metabolic Forks and Related Models – Levels of A metabolite 
as a function of ratio ;<

=
>	.		Linear models detect differential behavior of 

the metabolic forks that comprise the circuit.  Also shown are the linear 
models for a triplet involving a gene (54 F) and the general coupling 
between cysteine and stearoyl ethanolamide (54 E).  Figures (58-60) 
describe each branch-point in detail.  All p-values for relevant interaction 
terms are less than .05. 
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Figure 55: Part 1A-F Metabolic Forks and Related Models in circuit, the ratio ;<
=
> as a 

function of the A metabolite are also shown.  Linear models detect 
differential behavior of the metabolic forks that comprise the circuit.  
Also shown are the linear models for a triplet involving a gene (54 F) and 
the general coupling between cysteine and stearoyl ethanolamide (54 E).  
Figures (60-62) describe each branch-point in detail.  All p-values for 
relevant interaction terms are less than .05. 
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Figure 56: The circuit components as modules summarized by the three categories of 
antioxidant, lipid and methionine metabolism.  SAM: S-Adenosyl-L-
methionine, SAH: S-Adenosyl-L-homocysteine, Glutathione GSSG: 
Glutathione Disulfide, PEMT: Phosphatidylethanolamine N-
methyltransferase, BHMT: Betaine--Homocysteine S-Methyltransferase, 
PLD1: Phospholipase D-1, PEMT: Phosphatidylethanolamine N-
methyltransferase. 

The proposed metabolic circuit from the network skeleton relates lipid, 

cysteine and glutathione production to one another (Figure 56). It is derived from the 

network skeleton proposed (Figure 53) as well as known interactions between lipid 

and sulfur metabolism, and a resulting literature search to identify genes that regulate 

these interactions. Though relationships between lipid and sulfur metabolism have 

been identified (Obeid and Hermann, 2009), the interactions between these pathways 

under heat stress remains an open area of research.  The circuit we propose clarifies 

this relationship, in terms of many of the compounds associated with pathways 
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prioritized under the statistical learning pipeline in Chapter 5.  This model contains 

sets of metabolic forks at key regulatory points, operating in concert.  One such fork, 

which is critical to antioxidant production, shifts cysteine metabolism towards 

glutathione at the expense of taurine (Figure 56).  Cysteine, which fuels many sulfur 

processing pathways, is the only amino acid increased under chronic heat stress.  Our 

work describes mechanisms by which pools of cysteine regulate the long-term heat 

stress response. This model contextualizes mechanisms predicted by metabolite data 

with transcriptome data and known biology. 

Changes in expression among genes regulating the methionine cycle are 

critical to the activity of this pathway.  Additionally, S-Adenosyl-L-homocysteine 

(SAH) and Phosphatidylethanolamine N-methyltransferase (PEMT) interactions likely 

influence ethanolamide metabolism.  A similar relationship between methionine 

metabolism and PEMT features in a putative relationship between hyperlipidemia and 

hyperhomocysteinemia (Obeid and Hermann, 2009).  Changes to sulfur metabolism 

under heat stress influence lipids in a number of ways beyond the SAH interaction 

with PEMT. 

In our model, choline, the precursor to many fatty acids, is directed away from 

the production of signaling and structural lipids.  Several shifts in gene expression 

route this resource towards sulfur metabolism.  Choline oxidase, the gene encoding the 

enzyme oxidizing choline to produce betaine, is also up-regulated.  Betaine plays an 

important role in the methionine cycle.  Concurrently, transcription of the first enzyme 

involved in converting choline to phosphatidylcholine, choline kinase, is down-

regulated.  Betaine levels, however, are unchanged, suggesting redirected choline 

rescues betaine levels.  Further supporting a relationship between sulfur and lipid 
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metabolism via choline and betaine, Betaine--Homocysteine S-Methyltransferase 

(BHMT) transcription is down under heat stress.  BHMT converts betaine and 

homocysteine to dimethylglycine and methionine, respectively and mouse knockouts 

of this gene show highly elevated levels of homocysteine (Strakova et al., 2012). 

In our model, to prevent depletion of phosphatidylethanolamine-derived lipids 

such as phosphatidylcholine and stearoyl ethanolamide, phosphoethanolamine kinase 

is up-regulated.  This model predicts that maintaining phosphatidylcholine production, 

despite dramatically directing resources to antioxidant production may be critical to 

homeostasis.  This pathway can be understood by considering each fork in detail. 
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Figure 57: Pairwise correlations for the triplets of metabolites that comprise the linear 
models describing the circuit of regulation.  Each one will be discussed in 
a regulatory context that notes relevant gene expression changes. 
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5.3 Discussion  

5.3.1  Interpretation of Ratios 

Several sets of models describing the proposed lipid, antioxidant, and sulfur 

circuit demonstrate significant interaction terms, even without using the ratios of 

metabolites, and relying instead on simple levels of metabolites.  Ultimately, the ratio 

reflects the selective processing of sulfur derived from cysteine to antioxidants under 

heat stress.  We have previously hypothesized that sulfur metabolism transitions de-

emphasizes taurine synthesis to enhance antioxidant production during heat stress.  

This conclusion is bolstered by the pairwise correlations between the sulfur derived 

amino compounds cysteinylglycine and hypotaurine, representing antioxidant and 

taurine production, respectively (Figures 54 B and 55 B).  Under control conditions, 

the two share a moderate correlation of .55, as opposed to the weak, but negative 

correlation of -.37 under heat stress conditions. 

Importantly, stearoyl ethanolamide has a positive linear relationship with the 

ratio of cysteinylglycine and hypotaurine under heat stress conditions.  Under control 

conditions, however, stearoyl ethanolamde has a negative linear relationship with this 

ratio (Figures 54 and 55 B).  This is an important observation, because it suggests that 

the most biologically relevant feature being modeled through the ratio of 

cysteinyglycine/hypotaurine is the relative amount of cysteine being processed into 

antioxidants (glutathione) versus taurine (hypotaurine). Alternatively, the emphasis on 

antioxidant production as opposed to taurine synthesis may be accomplished through 

additional, yet to be established mechanisms. 

There is no significant change in the expression of the genes regulating the 

conversion of cysteine to hypotaurine (cysteine sulfinic pathway) or expression of for 
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the rate-limiting enzyme in glutathione production, glutamate cysteine ligase (GCL).  

However, levels of important glutathione products (reduced glutathione and 

cysteinylglycine) are found at higher levels in heat stress than control. Thus, the ratio 

of cysteinyglycine/hypotaurine is informative, as transcriptome data does not 

emphasize relative importance of one fate over another for cysteine (glutathione 

synthesis or taurine production).  Gene expression changes are consistent with pooling 

of homocysteine (decreased expression of BHMT), and the ratio of 

cysteinylglcine/hypotaurine captures the emphasis of antixodiant production from 

catabolized amino acids.  The biochemistry of each of these mechanisms can be 

explored in detail (Figures 58 – Figures 61). 
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5.3.2 Regulation of Individual Forks 

 

Figure 58: Triplet of cysteinylglycine and (stearoyl ethanolamide / hypotaurine). The 
compartmentalization of the pathway by regions containing the 
compounds in the ratio (stearoyl ethanolamide and hypotaurine) is 
illustrated by the dotted line. For the linear model representing 
differential behavior of this branch point, see figure 54A.  SAM: S-
Adenosyl-L-methionine, SAH: S-Adenosyl-L-homocysteine, Glutathione 
GSSG: Glutathione Disulfide, PEMT: Phosphatidylethanolamine N-
methyltransferase, BHMT: Betaine--Homocysteine S-Methyltransferase, 
PLD1: Phospholipase D-1, PEMT: Phosphatidylethanolamine N-
methyltransferase. 

Under heat stress, sulfur metabolism favors glutathione at the expense of 

taurine (Figure 58).  (Figuress 54A +55A). This increases the reservoir of anti-

oxidants. The proposed circuit also implies changes in lipids, including coupling 

ethanolamine related compounds, such as phosphatifylethanolamine and stearoyl 

ethanolamide, to glutathione production through cysteine processing pathways.  We 
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hypothesize this is accomplished through changes in the methionine cycle and choline 

metabolism.  Under heat stress, decreased BHMT transcription preserves cysteine 

pools, managing the activity of the methionine to S-Adenosyl-L-methionine (SAM)/S-

Adenosyl-L-homocysteine (SAH) cycle. A major product of this cycle, SAH, is a 

potent inhibitor of PEMT.  Because higher levels of cysteine would ordinarily fuel 

methionine metabolism, the balance between cysteine allocation to antioxidants and 

the methionine cycle may be a critical for lipid production.  This is because re-

rerouting cysteine to antioxidant production, as opposed to the methionine cycle, 

would avoid the inhibitory influence of the methionine cycle on lipid production.  

Models in figures 54F and 55F show that the ratio of PEMT/SAM increases with the 

glutathione product cysteinylglycine under heat stress.  Though not representing a 

metabolic fork, the ratio of PEMT/SAM is informative because it relates expression of 

a gene in lipid metabolism (PEMT) to a member of the methionine cycle.  As 

antioxidant production increases, under heat stress conditions, expression of the 

PEMT lipid-associated gene associated also increases relative to a member of the 

methionine cycle (SAM).  This coupling would further mitigate any interference of the 

methionine cycle on lipid production. 
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Figure 59: Triplet of stearoyl ethanolamide and (cysteinylglycine / hypotaurine). The 
compartmentalization of the pathway by regions containing the 
compounds in the ratio (cysteinylglycine and hypotaurine) is illustrated 
by the dotted line.  For the linear model representing differential behavior 
of this branch point, see figure 54B.  SAM: S-Adenosyl-L-methionine, 
SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione 
Disulfide, PEMT: Phosphatidylethanolamine N-methyltransferase, 
BHMT: Betaine--Homocysteine S-Methyltransferase, PLD1: 
Phospholipase D-1, PEMT: Phosphatidylethanolamine N-
methyltransferase. 

Under heat stress conditions, stearoyl ethanolamide levels correlate well with 

ratios of the reduced glutathione derivative, cysteinylglcyine, and hypotaurine (Figures 

54B and 55B). This latter quantity represents a metabolic fork underlying sulfur 

metabolism, which favors glutathione under heat stress (Figure 59).  Under control 

conditions, activation of the sulfur metabolism would inhibit an important component 

of stearoyl ethanolamide production via SAH-related inhibition of PEMT.  This 

mechanism is countered under heat stress conditions with an increase in the ratio of 
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PEMT/SAM correlating with rising levels of gamma glutamylcysteine (Figures 54F 

and 55F). Stearoyl ethanolamide levels and the ratio of the reduced glutathione 

derivative, cysteinylglycine, and Glutathione GSSG (Glutathione Disulfide) show 

strong patterns of differential correlation between control and heat stress (Figs 54C + 

55C).  This is consistent with concerted regulation of several metabolic forks in the 

underlying circuit of carbon metabolism (Figure 56). 

 

Figure 60: Triplet of stearoyl ethanolamide and (cysteinylglycine / gluathatione). The 
compartmentalization of the pathway by regions containing the 
compounds in the ratio (cysteinylglycine and glutathione) is illustrated by 
the dotted line.  For the linear model representing differential behavior of 
this branch point, see figure 54C.  SAM: S-Adenosyl-L-methionine, 
SAH: S-Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione 
Disulfide, PEMT: Phosphatidylethanolamine N-methyltransferase, 
BHMT: Betaine--Homocysteine S-Methyltransferase, PLD1: 
Phospholipase D-1, PEMT: Phosphatidylethanolamine N-
methyltransferase. 
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Figure 61: Triplet of stearoyl ethanolamide and (cysteine / choline). The 
compartmentalization of the pathway by regions containing the 
compounds in the ratio (choline and cysteine) is illustrated by the dotted 
line.  For the linear model representing differential behavior of this 
branch point, see figure 54D.  SAM: S-Adenosyl-L-methionine, SAH: S-
Adenosyl-L-homocysteine,Glutathione GSSG: Glutathione Disulfide, 
PEMT: Phosphatidylethanolamine N-methyltransferase, BHMT: Betaine-
-Homocysteine S-Methyltransferase, PLD1: Phospholipase D-1, PEMT: 
Phosphatidylethanolamine N-methyltransferase. 

Stearoyl ethanolamide levels and the ratio of cysteine and choline shows strong 

patterns of differential correlation between control and heat stress (Figures 54D and 

55D).  Under the proposed mechanism, as cysteine metabolism is increased during 

heat stress, choline decreases with its remaining levels critical to maintain betaine 

(Figure 61). 
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5.3.3 Relationship between Cysteine and Stearoyl Ethanolamide, Accounted for 
by Circuit 

Stearoyl Ethanolamide and cysteine demonstrate differential relationships 

between control and heat stress conditions (p-value of interaction term < .05).  The 

physiological roles of stearoyl ethanolamide are not fully established, although it has 

been shown to have anti-inflammatory properties (Ezzili et al., 2010). This makes the 

compound similar to many other metabolites involved in the heat stress response.  

Though stearoyl ethanolamide levels are lower under heat stress, its correlation with 

cysteine indicates regulatory coupling during heat stress response.  This connection 

would support a metabolic circuit connecting antioxidant and lipid metabolism.  

Transcriptome data also supports increased utilization of pathways for cysteine 

production under heat stress in a way that influences lipid production (Figure 54E).  

5.3.4 Discussion of Mechanistic Regulation 

An important goal of modern genomics is determining the mechanisms that 

control physiology.  Our computational analysis in this chapter provides insight into 

gene expression changes and associated shifts in metabolite levels that may influence 

physiology under heat stress.  This is analysis provides network context for previous 

studies that have identified differential gene expression and metabolite levels. Systems 

biology studies can use multi-omics data to identify elements of regulation, integrating 

them into concrete networks that generate hypotheses about large-scale regulation.  

Collectively, these changes in gene expression and metabolic forks identified by this 

work provide mechanistic context for the differential relationship between stearoyl 

ethanolamide and cysteine during heat stress.  The insights from this study expand the 

role of carbon of and sulfur flux during the long-term heat stress response.  
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This work provides a complete model for isolated observations about lipid and 

sulfur metabolism that have never been integrated into a full circuit.  For example, 

betaine and choline supplementation has variable effects on bird performance with 

recent studies suggesting it has limited influence on improving broiler performance 

and cannot overcome the negative influences of heat stress (Kpodo et al., 2015).  

According our extended circuit, the bird is able to effectively maintain betaine levels 

under heat stress through redirection of choline such that supplementation may be 

ineffective at shifting network dynamics.  We hypothesize gene regulation shunts 

choline to betaine, preventing the accumulation of resource deficits.  Such changes 

include downregulation of BHMT, upregulation of choline oxidase and 

downregulation of choline kinase. 

The impact of these changes could be dramatic. Modification of choline 

accounts for 70 percent of phospohatidylcholine synthesis, with the remaining 30 

percent derived from PEMT driven methylation of phosphotidylethanolamine 

(DeLong et al., 1999).  This latter pathway also has gene expression changes, such as 

up-regulation of choline kinase.  These changes may compensate for altered choline 

dynamics during long-term heat stress.  Thus, the ability of choline to rescue 

performance from stress may be stress and organism specific.  For example, choline 

supplementation has been shown in clinical studies to improve antioxidant efficiency 

in cystic fibrosis patients (Innis et al., 2007) despite its efficacy in influencing 

livestock performance being equivocal (Kpodo et al., 2015).  

The hypotheses generated by this work propose mechanisms that may underlie 

associations from GWAS (genome wide association studies).  This is important, as 

previous work on quantifying broiler performance under heat stress, has relied on QTL 
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(quantitative trait loci) mapping to identify potentially relevant SNP’s controlling 

relevant metrics.  One of these resides in the PEMT gene, implicated in sulfur and 

lipid metabolism, as being associated with body temperature at Day 20 (Van Goor et 

al, 2015).  Our proposed circuit includes PEMT as a critical element in a broader 

network and provides a possible functional role of the previously identified SNP.  

Building circuits from individual network units provides biological context for 

statistical observations in a way that relate components from different, but connected, 

pathways. 

Our approach ultimately creates a network integrating compounds whose role 

in heat stress are well understood and compounds not previously implicated in the heat 

stress response.  This is particularly useful for providing insight into the relatively 

uncharacterized lipid, stearoyl ethanolamide, that is altered by heat stress.  Stearoyl 

ethanaolamide is as an example of an n-acylamide endocannabinoid.  The functions of 

n-acylamides are best understood in the brain, where they play important roles in 

signaling and inflammation response (Raboune et al., 2014).  Thus, changes in ratios 

of these species can be informative as they may represent preferential routing of 

carbon resources to lipids that influence inflammation. 

The shifts in compounds such as stearoyl ethanolamide are also consistent with 

a circuit preferentially directing carbon backbones towards gluconeogenesis and 

triacylglycerol production.  Under this complete model, the bird allocates carbon 

resources to produce signaling molecules as well as to drive antioxidant and energy 

production pathways. Leveraging computational methods to understand the nuances of 

carbon and sulfur flow under heat stress provides a significant improvement in 

understanding the regulation of the response, and generates a number of testable 
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hypotheses.  For example, the role of leveraging glycine released from protein 

catabolism, in the context our circuit as a route to glutathione production is another 

mechanism by which glycine supplementation could improve heat stress performance 

(Awad et al., 2017).  The importance of glycine in glutathione production may be in 

addition to the putative role of glycine in energy production discussed in the first 

metabolic fork in Chapter 4 (Figure 46). These, and other hypotheses, are being 

incorporated to plan studies in which feed composition is altered with resources 

thought to be involved in the major circuits.  Additionally, we have successfully 

captured the logic of the carbon flow under heat stress. The transition from simply 

determining up or down regulation of certain compounds developing a collection of 

well-characterized mechanisms to be integrated into circuits is a powerful 

improvement in using systems biology to integrate large- scale multi-omics data.   

5.3.5 Future Work and Emphasis on Novelty 

Having developed putative circuits regulating the flux of carbon metabolism 

across multiple pathways, this work has generated a number of hypotheses about how 

to influence bird growth and performance under heat stress, while using statistical and 

computational techniques in a novel fashion.  These biological insights are being 

incorporated to plan studies in which feed composition is altered with supplementation 

of resources involved in the major circuits proposed in this research.  Such predictions 

are made possible by having used computational techniques to understand the 

regulation of carbon flow under heat stress. The progression from simply determining 

up or down regulation of certain compounds, which is a common strategy in earlier 

differential expression studies, to developing a collection of well-characterized 
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mechanisms to that can be integrated into circuits is a powerful improvement in using 

systems biology approaches to integrate large- scale multi-omics data. 

 

Figure 62: Illustration of the various computational and statistical components of the 
thesis used to drive biological insight. 
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CONCLUSION 

This thesis, which represents the material of four manuscripts, describes a 

natural progression through tools and techniques, from processing raw transcription 

information into data, through the development of statistical methods that extract 

biological insight from the resulting high dimensional datasets.  Novel aspects of this 

work are many-fold, encompassing contributions to both biology and bioinformatics. 

Furthermore, the relevance of this work extends to aid hypothesis generation that 

provides the foundation for future endeavors in these rapidly-developing fields. 

In Chapter 2, we described how work with CyVerse and the construction of the 

powered-by-CyVerse tool fRNAkenseq demonstrates the value of creating cloud-

integrated genomics platforms through utilization of actively developed APIs. 

fRNAkenseq provides a unique solution to the computation bottleneck of large scale –

omics datasets.  Its MapCount pipeline provides a method to rapidly process raw 

sequencing reads into raw or normalized count data.  Meanwhile, the DiffExpress 

pipeline uses multiple differential expression algorithms to effectively deal with false 

positives when detecting genes whose expression changes under differing conditions.  

Novel statistical methods developed in this thesis are then utilized to integrate the 

transcriptome data processed by fRNAkenseq with metabolomics data. The unique 

infrastructure created by fRNAkenseq facilitates the extraction of maximum biological 

insight from a complex dataset spanning multiple tissue sources, experimental 

conditions, and data types. These cohesive analyses uncover novel biology, providing 

Chapter 6 
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important detail into exact mechanisms that may control the heat stress response, 

which can be further tested experimentally. 

The steps comprising the post-fRNAkenseq workflow have proven useful both 

as part of the analysis or as standalone techniques. This was the focus of Chapter 3, in 

which we proposed using a stringent z-score-based test for tissue enrichment. We 

demonstrated that this heuristic effectively identifies tissue-specific biology in the 

large and diverse datasets processed by fRNAkenseq.  This can be useful in 

understanding fine-tuned transcriptome differences between closely related tissues.  

Many of these insights provided clues into the contribution of gene regulation to tissue 

defining physiology.  This was made possible partly because, due to the stringency of 

our test, the sets of transcription factors and splicing factors that are enriched are 

unique to each tissue.  It was possible to corroborate the predicted biological roles of 

these genes that explore consequences of knockouts or deleterious mutations.  This 

provides confidence in the ability of our threshold to identify important biology, and 

confidence in some of the unexpected predictions that will serve as hypotheses for 

future research.  

We also compared our results with the GTEx method of enrichment, which 

identifies genes in a tissue with a five-fold difference in means relative to background 

expression. Our threshold greatly improved tissue specificity because it incorporates 

standard deviation.  The resulting specificity made it possible to decipher subtle 

biochemical characteristics of each tissue, such as differences in the TCA cycle 

between cardiac and skeletal muscle.  Applying this analysis emphasized that breast 

muscle tissue is enriched for many genes regulating glycogen and glycolysis 

metabolism, while cardiac tissue is enriched for nuclear-encoded mitochondrial genes 
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involved in fatty acid oxidation.  The reliance on separate energetic pathways 

illustrated fundamental biochemical differences between the tissues, which provides 

context for novel types of regulation suggested by the enrichment analysis.  For 

example, the gene BPGM is enriched in breast muscle and encodes an enzyme that 

converts a glycolytic intermediate into a metabolite that improves the favorability of 

de-oxygenated hemoglobin. We have hypothesized that this gene may be an important 

adaptation in avian skeletal muscle by supporting the oxygenation necessary for flight.  

This hypothesis is also supported by the fact that BPGM expression is expressed at a 

similar level in breast muscle between different lines of chicken.  In the future, we will 

further extend this approach to explore gene enrichment patterns in various tissues and 

how they shift across species.  Thus, our enrichment threshold produces a technique 

useful for comparative genomics. 

Notably, our tissue enrichment strategy has also produced candidates for 

further laboratory experiments. This is important when applying laboratory methods 

that are generally expensive and relatively low throughput, such as the fluorescent 

imaging of transcripts. These experiments can be useful to gain spatial information 

about gene expression, and also to understand the regulation of tissue enriched genes.  

However, without a hypothesis-guided approach, the efficiency is limited.  The 

stringency of our enrichment method is thus valuable for identifying tissue-specific 

candidate genes and promoters that can be explored through fluorescent tagging.  

Additionally, the modules of enriched genes provided a context for GWA studies, in 

which SNPs that fall in the region of enriched genes may be prioritized. Finally, 

modules of enriched genes can be integrated into downstream pipelines, by serving as 

an initial form of feature selection that reduces the transcriptome to tissue important 
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genes.  The heat stress response can therefore be understood from the perspective of 

such tissue-enriched modules. From this, a pipeline was developed that leverages 

multiple statistical learning techniques to integrate the expression of liver tissue 

defining genes and metabolite levels, and prioritize those associated with heat stress 

regulation.  We focus on the liver for this analysis, because it is a source of lipid, 

antioxidant and sugar production.  Levels of these compounds have far-reaching 

physiological consequences for the performance of the bird.  Thus, understanding 

those most closely associated with the heat stress response could produce candidates 

for interventions that improve bird performance, such as dietary changes or improved 

genetic selection.   

Chapter 4 describes the culmination of several analytical methods into a 

comprehensive statistical learning pipeline for integrating metabolomic and 

transcriptomic data and generating novel hypotheses. We demonstrate how this 

approach effectively prioritizes heat stress biomolecules by their expression levels (k-

means), classifying power (random-forests), and their correlations with one another 

(PCA), and how these methods recapitulate heat stress responsive pathways. 

Importantly, this pipeline provides a basis for integrating arbitrarily complex sets of 

continuous data to identify compounds strongly associated with the heat stress 

response.  This is a decidedly useful advantage enabled through the ability of each step 

of the pipeline to exploit a different feature of the data.  For example, the k-means step 

first separates out compounds into distinct clusters, random forest then prioritizes 

biomolecules that best classify heat stress samples, and PCA lastly organizes these 

biomolecules into highly correlated groups.  Thus, the most important features 

relevant to understanding a biological response are classifying power of each 
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biomolecule and correlation with potentially related biomolecules.  This makes the 

pipeline amenable to identifying biomolecules across -omics associated with a generic 

treatment regimen, such as a disease state.  In the future, we will use this pipeline to 

integrate complementary proteomics data to provide a more in-depth systems level 

understanding of the heat stress response.   

The total workflow that incorporates identifying genes enriched in liver tissue 

and leveraging these three statistical learning techniques also proposes novel 

hypotheses that can be tested.  These are enhanced by building linear models from the 

prioritized biomolecules that that take as input three metabolites - A, B, and C – to 

link metabolite A to the ratio of B and C, <
=
 , into a regulatory triplet.   Some of these 

models relate precursors and products, which we refer to as metabolic forks.  One of 

the metabolic forks exhibiting differential behavior between control and heat stress 

conditions involves the amino acid glycine, the sugar F6P, and the fat precursor G3P.  

Under heat stress conditions, glycine and F6P are more closely coupled at the expense 

of the correlation between F6P and G3P under control conditions.  Therefore, we 

propose the following hypothesis: 

• Under heat stress conditions, carbon backbones from glycine released from 

catabolism are directed towards sugar production (F6P), with much greater 

preference relative to lipid production (G3P). This change is mediated by 

increased expression of FBP2. 

One way to test this hypothesis proposed by our statistical learning pipeline 

and metabolic fork is to determine if glycine supplementation improves bird 

performance under heat stress.  Recent studies have, in fact, shown this to be the case 

(Awad et al., 2018).  Another method to verify this hypothesis regarding the fate of 
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catabolized glycine would involve radiolabeling feed-supplemented glycine.  We are 

interested in exploring this and other forms of validation regarding glycine and 

glucose production.  Encouraged by the ability of the linear models associated with 

metabolic forks to produce biologically informative hypotheses, we also sought to 

apply this method to some of the other pathways prioritized by the statistical learning 

pipeline, such as a lipid and sulfur metabolism.   Calculating metabolic forks that 

could explain the regulation of these pathways would make it possible to propose 

targeted hypotheses about the relationship between lipid and sulfur metabolism. 

To extend this analysis, we constructed network skeletons out of metabolic 

forks. By identifying relationships in a network context, it became possible to 

construct pathway models over which transcriptome data could be overlaid. The 

proposal of this complete and novel pathway which connects sulfur and lipid 

metabolism under heat stress allows us to relate individual mechanisms to a complete 

system. Moreover, the metabolic forks of this model can be shown to represent 

targeted hypotheses about sulfur and lipid regulation which have been validated 

individually in other contexts, yet never related to the heat stress response.  A list of 

several such hypotheses and their experimental validation as mechanisms is provided 

below:  

• Hypothesis: The methionine cycle influences lipid production under heat 

stress  

Literature Evidence: SAH, a product of the methionine cycle, inhibits methyl 

transferases such as PEMT involved in lipid production (Obeid and Hermann, 

2009).   
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• Hypothesis: Lipid and sulfur metabolism are related via the relationship 

between choline and cysteine. 

Literature Evidence: Choline can improve hyperhomocysteniemia in patients 

with cystic fibrosis (Innis et al., 2007) 

Experimental Evidence: BHMT is down-regulated, choline oxidase is up-

regulated under heat stress, indicating a shift in choline to betaine 

• Hypothesis: Betaine regulation increases cysteine levels for antioxidant 

production 

Literature Evidence: Mouse knockouts of this gene show highly elevated 

levels of homocysteine (Strakova et al., 2012) 

Experimental Evidence: Betaine levels are reduced under heat stress. Further 

supporting a relationship between sulfur and lipid metabolism via choline and 

betaine, Betaine--Homocysteine S-Methyltransferase (BHMT) transcription is 

downregulated under heat stress.  BHMT converts betaine and homocysteine to 

dimethylglycine and methionine, respectively and mouse knockouts of this 

gene show highly elevated levels of homocysteine (Strakova et al., 2012). 

This final chapter of the thesis represents one of its major meaningful 

biological contributions. By applying this method of integrating metabolic forks to 

create networks, a consistent model of regulation is generated that describes how shifts 

in lipids and sulfur metabolism can be coordinated during heat stress. This constructs a 

solid foundation that facilitates hypotheses generation and prioritization. Importantly, 

the network skeleton that results provides a framework in which differentially 

expressed genes can be placed. Ultimately, we are able to couple these genes to 

mechanisms of carbon regulation, via cysteine and choline, in a way that further 
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relates antioxidant and biologically active lipids through the re-routing of precursors 

due to changes in gene expression.  Not only are these insights novel contributions to 

the understanding of heat stress response in avian genomics, they also are highly 

applicable in the clinical context, as the relationship between sulfur and lipids is still 

an active area of research (Obeid and Hermann, 2009). 

This thesis presents a complete approach to analyzing diverse and complicated 

data. It begins by solving computational problems associated with large-scale 

biological experiments exploring the heat stress response, then proposes statistical 

approaches to identify tissue enriched genes, and subsequently integrates these into 

pipelines to identify biomolecules across the transcriptome and metabolome that are 

important to the heat stress response.  Finally, pathways associated with these 

biomolecules are used to develop candidates for metabolic forks and generate 

networks that prioritize hypotheses to drive future experimentation.  This adaptable, 

integrated approach can be applied in many other contexts involving large-scale 

diverse datasets, where deciphering specific biological insight is a persisting 

challenge.  
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PCA TABLES 

Table A1: Significant correlations for the top 30 biomarkers in cluster 1 with PC1 

Compound 
Correlation 
with PC  

 P Value of 
Correlation 

1_stearoyl_2_arachidonoyl_GPE__18_0_20_4_ 0.973411108 8.17E-19 
1_stearoyl_2_arachidonoyl_GPC__18_0_20_4_ 0.949414773 4.18E-15 
1__6soUnique_enyl_stearoyl_ 0.947359337 7.07E-15 
1_stearoyl_2_arachidonoyl_GPI__18_0_20_4_ 0.942057468 2.50E-14 
1_arachidonoyl_GPC__20_4n6_ 0.929897571 3.05E-13 
arachidonate__20_4n6_ 0.899789752 3.16E-11 
sphingomyelin__d18_1_24_1__d18_2_24_0_ 0.891821542 8.45E-11 
1_2_dipalmitoyl_GPC__16_0_16_0_ 0.808014535 1.16E-07 
docosahexaenoate__DHA;_22_6n3_ 0.798469517 2.10E-07 
sphingomyelin__d18_2_24_1__d18_1_24_2_ 0.789957155 3.47E-07 
bilirubin__Z_Z_ 0.725230729 8.56E-06 
taurine 0.705899307 1.89E-05 
tartronate__hydroxymalonate_ 0.61912611 0.000342551 
betaine_aldehyde 0.576008864 0.001075968 
arachidate__20_0_ 0.563029256 0.001473619 
acetylcarnitine 0.380762315 0.041573998 
stearoyl_ethanolamide -0.559317412 0.00160854 
1_palmitoyl_2_linoleoyl_glycerol__16_0_18__ -0.670628916 6.86E-05 
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Table A2: Significant correlations for the top 30 biomarkers in cluster 1 with PC2. 

Compound  
 Correlation 
with PC  

 P Value of 
Correlation 

N_acetyltaurine  0.954472146 1.04E-15 
N_stearoyltaurine  0.901295841 2.60E-11 
N_palmitoyltaurine  0.8608777 2.09E-09 
1_arachidonoyl_GPE__20_4n6_  0.756796066 2.03E-06 
tartronate__hydroxymalonate_  0.692836171 3.11E-05 
linoleate__18_2n6_  0.593372295 0.000691859 
acetylcarnitine  0.541858196 0.002396802 
docosahexaenoate__DHA;_22_6n3_  0.510264184 0.004683614 
taurine  0.407260431 0.028325624 
stearoyl_ethanolamide  -0.368251095 0.04934983 
sphingomyelin_d18_2_24_1_d18_1_242  -0.37425016 0.045489132 
Oleoylcarnitine  -0.42348255 0.022071949 
betaine_aldehyde  -0.510989226 0.00461539 

1_palmitoyl_2_stearoyl_GPC_16_0_18_0 
 
 -0.513650003 0.004372239 

adipoylcarnitine  -0.569611132 0.001258411 
beta_guanidinopropanoate  -0.618823499 0.000345515 
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Table A3: Significant correlations for the top 30 biomarkers. 

 

  

 
Compound  

Correlation 
with PC 

 P Value of 
Correlation 

linoleate__18_2n6_  0.737139185 5.09E-06 
adipoylcarnitine  0.720754209 1.03E-05 
margarate__17_0_  0.715830593 1.27E-05 
stearoyl_ethanolamide  0.667060782 7.75E-05 
1_palmitoyl_2_linoleoyl_glycerol__16_0_18_2_  0.629414484 0.000254203 
beta_guanidinopropanoate  0.618738902 0.000346348 
betaine_aldehyde  0.608525643 0.000460849 
1_palmitoyl_2_stearoyl_GPC__16_0_18_0_  0.592667967 0.000704707 
1_arachidonoyl_GPE__20_4n6_  0.513716944 0.004366265 
acetylcarnitine  0.509219436 0.004783433 
oleoylcarnitine  0.454866424 0.013168719 
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Table A4: Significant correlations for the top 30 biomarkers in cluster 2 with PC1 

Compound  
 Correlation 
with   PC 

P Value of 
Correlation 

sphingomyelin_1*  0.935398433 1.04E-13 
cholesterol  0.932829799 1.74E-13 
linoleoylcarnitine  0.931565767 2.22E-13 
hypotaurine  0.916576738 2.94E-12 
sphingomyelin_2*  0.908244464 1.01E-11 
sphingomyelin_3*  0.896807074 4.61E-11 
Gene_SLC6A13  0.885360942 1.78E-10 
stearoylcarnitine  0.882086144 2.55E-10 
behenoyl_sphingomyelin__d18_1_22_0_  0.881483363 2.72E-10 
N_formylmethionine  0.844331641 8.58E-09 
Gene_LOC424748  0.83462041 1.83E-08 
dehydroascorbate  0.829149409 2.74E-08 
propionylcarnitine  0.803345422 1.55E-07 
Gene_FGG  0.797405686 2.24E-07 
Gene_ITIH3  0.770180345 1.03E-06 
picolinate  0.755204507 2.19E-06 
Gene_CTSO  0.750255405 2.78E-06 
biopterin  0.748358136 3.04E-06 
1_stearoyl_GPG__18_0_  0.724755853 8.74E-06 
creatinine  0.702867662 2.12E-05 
Gene_LOC101748084  0.688118298 3.70E-05 
Gene_LOC417848  0.421609557 0.022730276 
Gene_LOC101748827  -0.426372363 0.021086958 
thiamin__Vitamin_B1_  -0.720611773 1.04E-05 
Gene_LIPC  -0.799094603 2.02E-07 
Gene_C6  -0.80811097 1.15E-07 
argininosuccinate  -0.829406255 2.69E-08 
Gene_HPD  -0.892524003 7.77E-11 
1*: d18_1_21_0__d17_1_22_0_d16_1_23_0_ 
2*: d18_1_20_0__d16_1_22_0_ 
3*: d18_1_22_1__d18_2_22_0__d16_1_24_1_ 
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Table A5: Significant correlations for the top 30 biomarkers in cluster 2 with PC2. 

Compound Correlation with PC  P Value of Correlation 
2_hydroxyphenylacetate 0.858128947 2.67E-09 
1_stearoyl_GPG__18_0_ 0.547061713 0.002132962 
Gene_LIPC 0.511422315 0.004575044 
Gene_C6 0.379715473 0.042184541 
picolinate 0.372804189 0.046396969 
stearoylcarnitine 0.372439684 0.046628074 
Gene_LOC101748084 0.370803858 0.047676496 
Gene_ITIH3 -0.422671653 0.022355021 
Gene_LOC417848 -0.431339147 0.019478493 
Gene_CTSO -0.507217221 0.004979808 
Gene_FGG -0.52952873 0.003136762 

 

Table  A6:  Significant correlations for the top 30 biomarkers in cluster 2 with PC3. 

Compound Correlation with PC   P Value of Correlation 
Gene_LOC101748827 0.764749525 1.36E-06 
Gene_LOC417848 0.697169244 2.64E-05 
creatinine -0.370667834 0.04776451 
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Table A7: Significant correlations for the top 30 biomarkers in cluster 3 with PC1. 

Compound 
Correlation with 
PC 

P Value of 
Correlation 

glucosamine_6_phosphate 0.908333066 9.99E-12 
glucose_6_phosphate 0.896905228 4.55E-11 
1_palmitoyl_2_oleoyl_GPE__16_0_18_1_ 0.88275415 2.37E-10 
1_palmitoyl_2_linoleoyl_GPE__16_0_18_2_ 0.876784526 4.47E-10 
1_palmitoyl_2_palmitoleoyl_GPC__16_0_16_1 0.872140482 7.15E-10 
pterin 0.842162231 1.02E-08 
1_palmitoyl_2_oleoyl_GPI__16_0_18_1_ 0.836085477 1.64E-08 
fructose_6_phosphate 0.819623864 5.37E-08 
N6_succinyladenosine 0.799891815 1.92E-07 
myristoleate__14_1n5_ 0.79219482 3.05E-07 
1_palmitoyl_GPE__16_0_ 0.789460668 3.57E-07 
1_palmitoleoyl_3_oleoyl_glycerol_16_1_18_1_ 0.769924732 1.04E-06 
glycerol_3_phosphate 0.727885235 7.64E-06 
glutathione__reduced__GSH_ 0.693131484 3.07E-05 
1_stearoyl_2_linoleoyl_GPE__18_0_18_2_ 0.655701187 0.000112805 
cysteinylglycine 0.642033649 0.00017373 
1_palmitoyl_2_linoleoyl_GPS__16_0_18_2_ 0.631028195 0.000242351 
Gene_S100Z 0.53484916 0.002796371 
gamma_glutamylcysteine 0.493156219 0.006562248 
1_stearoyl_2_linoleoyl_GPI__18_0_18_2_ 0.48161764 0.008161479 
Gene_NADKD1 0.419911845 0.023340809 
phosphopantetheine -0.45438759 0.013277576 

 

  



 189 

Table A8: Significant correlations for the top 30 biomarkers in cluster 3 with PC2. 

Compound 
Correlation With 
PC 

P Value of 
Correlation 

glycerophosphoethanolamine 0.926562169 5.59E-13 
UDP_glucuronate 0.896634062 4.71E-11 
N_acetylglucosaminylasparagine 0.826979934 3.20E-08 
adenosine 0.797166015 2.27E-07 
gamma_glutamylcysteine 0.723775342 9.11E-06 
cysteinylglycine 0.658985686 0.000101361 
glutathione__reduced__GSH_ 0.557487932 0.001678892 
3__dephosphocoenzyme_A 0.516101315 0.004157998 
adenosine_5__monophosphate__AMP_ 0.448790444 0.014606585 
glycerol_3_phosphate 0.382077553 0.04081694 
phosphopantetheine 0.380002726 0.042016301 
1_palmitoyl_2_linoleoyl_GPS__16_0_18_2_ -0.379979627 0.04202981 
Gene_NADKD1 -0.55217634 0.001898469 
1_stearoyl_2_linoleoyl_GPI__18_0_18_2_ -0.710759687 1.56E-05 
Gene_S100Z -0.741713038 4.14E-06 
 

 

Table A9: Significant correlations for the top 30 biomarkers in cluster 3 with PC3. 

Compound 
Correlation with 
PC  

 P Value of 
Correlation 

coenzyme_A 0.816408535 6.68E-08 
3__dephosphocoenzyme_A 0.758400863 1.87E-06 
phosphopantetheine 0.661404476 9.36E-05 
Gene_NADKD1 0.580619473 0.000959209 
1_stearoyl_2_linoleoyl_GPE_18_0_18_2 0.567883041 0.001312083 
adenosine 0.415577597 0.024960561 
 

 


