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ABSTRACT 

 

This dissertation presents quantum-mechanical calculations of nuclear magnetic 

resonance (NMR) parameters in crystalline solids.  Several themes run through the 

dissertation; they all relate to aspects of the prediction of magnetic-shielding tensors and 

quadrupolar-coupling tensors for various light nuclides such as 13C, 15N, 17O, 19F, 29Si, 

31P, 35Cl, and 43Ca. 

A cluster-based computational protocol for modeling NMR parameters in 

molecular solids, referred to as the symmetry-adapted cluster ansatz, is discussed.  This 

approach uses a shell of molecules to represent the local lattice environment by 

judiciously selecting molecules to maintain the rotational symmetry elements of the 

crystal space group.  Chapter 2 illustrates the utility of the cluster-based approach 

through calculations of the principal components of the 13C magnetic-shielding tensors 

of 155 carbon sites.  In Chapter 3, this analysis is applied to the assignment of the 13C 

chemical-shift tensors of the aromatic compound indigo.  Chapter 4 focuses on 

comparison of 13C, 15N, 19F, and 31P magnetic-shielding tensors calculated using the 

cluster ansatz with results of using the periodic GIPAW approach.  This analysis is 

based on calculation of the magnetic-shielding tensors of 131 NMR-active sites in 72 

materials.  Furthermore, benchmark calculations are provided for a large number of 

density functionals, including GGA, meta-GGA, and hybrid approaches. 

Chapters 5 and 6 expand the focus to the calculation of NMR parameters in 

network solids.  Chapter 5 presents 43Ca magnetic-shielding and quadrupolar-coupling 

tensors in calcium carboxylates, and Chapter 6 presents 29Si and 31P magnetic-shielding 

tensors in covalent network solids.  In both chapters, the cluster-based approach is 
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benchmarked against the GIPAW approach, and various model chemistries are 

assessed.  The calculation of 29Si and 31P magnetic-shielding tensors employs an 

approach in which the outermost atoms of the cluster are replaced with pseudoatoms 

that reduce the overall charge on the cluster to permit SCF convergence. 

In addition to benchmarking cluster-based calculations of solid-state NMR 

parameters, applications in NMR crystallography, based on computed 17O quadrupolar-

coupling tensors, are assessed.  In particular, a method of semi-empirical geometry 

optimization is proposed, in which a dispersion force field is parameterized to produce 

structures that yield accurate predictions of 17O quadrupolar-coupling tensors. 
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Chapter 1 

INTRODUCTION 

 

1.1 Motivation and Outline 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for the 

analysis of chemical structure [1, 2].  NMR parameters, such as magnetic shielding and 

quadrupolar coupling, provide a means of examining the structure and dynamics of 

solids [3].  The utility of NMR spectroscopy for structural analysis results from 

differences in nuclear transition energies due to variations in the local magnetic field 

between sites in varying chemical environments [4, 5].  The principal components of 

the tensors that describe the interaction of nuclei and the environment give insight into 

three-dimensional structure. 

Computer-based numerical techniques to solve quantum-mechanical problems 

are a common tool to unravel the relationship between NMR parameters and structure.  

Modern quantum-mechanical calculations can achieve a degree of accuracy, which 

allows the discovery of the link between chemical environment and observed NMR 

parameters [6].  When dealing with solids, one must consider the local lattice structure, 

and this requirement necessitates significant computational resources to manage the 

calculations efficiently [7].   

This work presents several contributions to the accurate and efficient prediction 

of NMR parameters in solids.  In particular, a large component of this study is devoted 
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to demonstrating the utility of cluster-based calculations of magnetic-shielding and 

quadrupolar-coupling tensors in crystalline materials for a variety of light nuclides, 

including 13C, 15N, 17O, 19F, 29Si, 31P, 35Cl, and 43Ca.  Further emphasis is placed on the 

combination of experimental NMR data with computational approaches to interpret or 

refine structural details in solids. 

Three inter-related themes recur throughout this study, each relating to a 

practical aspect of the prediction and interpretation of NMR spectra.  The first of these 

themes is the intimate relationship between solid-state structure and NMR observables.  

A practical difficulty in using NMR for analysis is assignment of resonance lines and 

bands to specific chemical structures in cases where multiple nuclear sites are present.  

Thus, such predictions must be robust enough to distinguish between closely-related 

chemical sites.  The second theme concerns correct modeling of extended lattice effects 

on computed NMR parameters.  Although it is common to model the crystalline lattice 

using periodic-boundary conditions (PBCs), it is also possible to account for extended 

effects using a cluster of atoms or molecules that represent a local portion of the lattice.  

The cluster ansatz is studied thoroughly in this work, with emphasis on the performance 

of this model relative to calculations employing PBCs.  The third theme relates to 

theoretical considerations associated with the choice of model chemistry in calculations.  

The majority of calculations in this work are performed within the framework of density 

functional theory (DFT).  The computational advantages associated with DFT 

calculations of electronic structure rely on inherent approximations, which can result in 

systematic errors in the prediction of NMR parameters.  It is therefore necessary to study 

systematically the effects of different approximations on computed NMR parameters. 
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This dissertation is organized into four parts.  The present chapter is concerned 

with providing necessary background information regarding the theory and calculation 

of NMR parameters.  Chapters 2 – 6 are concerned with benchmarking the accuracy of 

cluster-based calculations of solid-state NMR parameters.  Chapter 7 focuses on the 

emerging field of NMR crystallography, and illustrates a novel semi-empirical approach 

to refine the coordinates of atoms in crystal structures using experimental NMR 

constraints.  Finally, Chapter 8 presents conclusions and an outlook on future work. 

Chapters 2 – 6 are concerned with validating the use of cluster-based 

calculations for prediction of NMR parameters in solids.  Chapter 2, “The Symmetry-

Adapted Cluster Ansatz: Calculations of 13C Magnetic-Shielding Tensors”, provides a 

series of calculations of 13C magnetic-shielding tensors where lattice structure is 

described using cluster models.  There I discuss criteria for selecting appropriate 

molecules to build adequate clusters, and electronic-structure approximations that make 

such calculations feasible.  Chapter 3, “Carbon-13 Chemical-Shift Tensors in Indigo: A 

Two-Dimensional NMR-ROCSA Study”, provides measurements and assignments of 

the eight unique 13C chemical-shift tensors in the heteroatomic polycyclic aromatic dye 

indigo, aided by computational studies.  Chapter 4, “Critical Analysis of Cluster Models 

and Exchange-Correlation Functionals for Calculating Magnetic Shielding in Molecular 

Solids”, provides a side-by-side comparison of 13C, 15N, 19F, and 31P magnetic-shielding 

tensors computed in a cluster-based framework with those computed in a periodic 

framework.  The chapter also explores the dependence of computed magnetic-shielding 

tensors for these four nuclides on the choice of model chemistry, including the 

combination of DFT functional and basis set.  General conclusions are drawn for several 

important classes of functionals.  Chapter 5, “Calculations of Solid-State 43Ca NMR 
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Parameters: A Comparison of Periodic and Cluster Approaches and an Evaluation of 

DFT Functionals” expands this analysis to the prediction of 43Ca chemical-shift and 

quadrupolar-coupling tensors to extended network solids, with an emphasis on metal 

carboxylates.  A comparison is made between periodic and cluster-based modeling 

techniques, and seventeen standard DFT approximations are assessed.  Chapter 6, 

“Analysis of the  of the Bond-Valence Method for Calculating 29Si and 31P Magnetic 

Shielding in Covalent Network Solids” expands the discussion to covalent network 

solids, such as silicates and phosphates, and shows that these methods are sufficient to 

calculate 29Si and 31P magnetic-shielding tensors in minerals.  Chapter 7 focuses on the 

emerging field of NMR crystallography, specifically the calculation of 17O quadrupolar-

coupling tensors and their relationship to molecular and lattice structure.  In particular, 

a method of performing semi-empirical geometry optimization is proposed, in which 

experimental 17O quadrupolar-coupling tensors are used to parameterize a dispersion 

force field which results in structures that can be used consistently to predict NMR 

parameters in excellent agreement with experiment. 

1.2 Introduction to Nuclear Magnetic Resonance Spectroscopy 

NMR spectroscopy is an important technique in chemical and material analysis, 

with applications ranging from ceramics [8-11] to semiconductors [12-14], polymers 

[15-18], pharmaceuticals [19-21], zeolites [22-27], metal organic frameworks [28-30], 

catalysis [31-34], and biomaterials [35-37].  An excellent survey of applications of 

NMR spectroscopy based on analyses of various nuclides in found in ref. [3]. 

NMR spectroscopy relies on the coupling between nuclear spins and an external 

magnetic field.  For an ensemble of nuclear spins, transition energies between the spin 

states are modulated by interaction with nearby electrons and nuclei.  These 
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perturbations, which are closely linked with chemical and material structure, are 

described by the following Hamiltonian: 

 
𝐇̂𝑘,𝑁𝑀𝑅 = 𝐇̂𝑘,𝑍 + 𝐇̂𝑘,𝑟𝑓 + 𝐇̂𝑘,𝑀𝑆 + 𝐇̂𝑘,𝑄 + 𝐇̂𝑘𝑙,𝐷 + 𝐇̂𝑘𝑙,𝐽

+ 𝐇̂𝑘,𝐾𝑆 + 𝐇̂𝑘,𝑆𝑅⋯ 
(Eq. 1.1) 

In Eq. 1.1, the total NMR Hamiltonian (𝐇̂𝑘,𝑁𝑀𝑅) is decomposed into many 

individual components, which include, but are not limited to, the nuclear Zeeman 

Hamiltonian (𝐇̂𝑘,𝑍), the radio-frequency Hamiltonian (𝐇̂𝑘,𝑟𝑓), the magnetic-shielding 

Hamiltonian (𝐇̂𝑘,𝑀𝑆), the quadrupolar-coupling Hamiltonian (𝐇̂𝑘,𝑄), the direct (𝐇̂𝑘𝑙,𝐷) 

and indirect (𝐇̂𝑘𝑙,𝐽) spin-spin coupling Hamiltonians, the Knight-shift Hamiltonian 

(𝐇̂𝑘,𝐾𝑆), and the spin-rotation Hamiltonian (𝐇̂𝑘,𝑆𝑅).  In the above expression, the 

subscript k denotes one-spin interactions whereas the subscript kl denotes two-spin 

interactions. 

The quintessential Hamiltonian affecting nuclear spins is the Zeeman 

interaction, which describes the coupling between nuclear spins and the external 

magnetic field.  Many of the Hamiltonians in Eq. 1.1 can be described mathematically 

by similar forms, and this Hamiltonian is the paradigm for description of interactions 

affecting nuclear spins. 

In the absence of a magnetic field, nuclear magnetic dipoles are oriented 

randomly.  Under these circumstances, energies of the various spin states are 

degenerate, the populations of spins are equal, and there is no net magnetization.  In the 

presence of a magnetic field, nuclear angular-momentum states become non-degenerate 

and are occupied according to Boltzmann statistics.  The energy differences between 

the subpopulations depend on the strength of the applied magnetic field.  The 

Hamiltonian for the nuclear Zeeman interaction is given by: 
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 𝐇̂𝑘,𝑍 = −𝛾𝑘𝐈𝑘 ∙ 𝐁⃗⃗⃗0 (Eq. 1.2) 

In the above expression, k is the magnetogyric ratio of nucleus k, 𝐈𝑘 is the 

nuclear spin vector, and 𝐁⃗⃗⃗0 is the external magnetic field.  Thus, the energy of a 

particular state is determined by orientation of the spin vector relative to the direction 

of the field in space.  A similar form is seen for the interaction with the oscillating field, 

𝐁⃗⃗⃗1 , that is at the heart of coupling to an imposed radio-frequency source.  Some other 

Hamiltonians have a form similar to the Zeeman Hamiltonian, as if the effect of an 

adjacent spin could be modeled as an “effective magnetic field” to which the spin of 

interest is coupled.  Such a model is convenient, but one must carefully examine the 

assumption in a quantum system.  Throughout the dissertation, as these interactions are 

examined, these forms will be discussed.  This work is devoted largely to the calculation 

and interpretation of the magnetic shielding and quadrupolar coupling interaction.  The 

remaining subsections of this chapter present necessary background information for 

interpreting these results. 

1.3 Magnetic-Shielding Tensors 

Nuclei in atoms and molecules are subject to a secondary screening field due to 

interaction with electronic currents affected by an external field [38, 39].  Interaction 

with electron density in the vicinity of the nuclei modulate the effects of the external 

field, relative to the field experienced by a bare nucleus.  This effect is known as 

magnetic shielding (𝜎𝑘).  Because of the inherent relationship with electronic structure, 

magnetic shielding is a highly sensitive structural probe [39]. 

NMR experiments yield a shift in the resonance frequency for a particular 

chemical species k relative to an arbitrary reference material, rather than the absolute 

shielding relative to the bare nucleus.  Experimentally, one obtains the chemical shift of 
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species k (𝛿𝑘), which is the difference in resonance frequency between species k (𝜔𝑘) 

and the reference frequency (𝜔𝑟𝑒𝑓), expressed as a fraction (in ppm) of the reference 

frequency: 

 
𝛿𝑘 =

𝜔𝑘−𝑟𝑒𝑓

𝑟𝑒𝑓
. 

(Eq. 1.3) 

The relationship between the experimental chemical shift, 𝛿𝑘, and the magnetic 

shielding, 𝜎𝑘, is given by the following relationship: 

 
𝛿𝑘 =

𝜎𝑟𝑒𝑓−𝜎𝑘

1−𝜎𝑟𝑒𝑓
. 

(Eq. 1.4) 

In the above expression, 𝜎𝑟𝑒𝑓 is the magnetic shielding of the reference species.  

Because the denominator in this expression is close to unity, the expression is often 

approximated as: 

 𝛿𝑘 ≈ 𝜎𝑟𝑒𝑓 − 𝜎𝑘. (Eq. 1.5) 

The magnetic shielding constant relates the strength of the external field (𝐁⃗⃗⃗0) to the 

effective field, 𝐁⃗⃗⃗𝑒𝑓𝑓, in the vicinity of the nucleus: 

 𝐁⃗⃗⃗𝑒𝑓𝑓 = (1 − 𝜎𝑘)𝐁⃗⃗⃗0 (Eq. 1.6) 

Substituting this definition into the expression for the Zeeman Hamiltonian, one obtains 

an expression for the magnetic shielding Hamiltonian: 

 𝐇̂𝑘,𝑀𝑆 = −𝛾𝑘 𝐈̂𝑘 ∙ (1 − 𝜎𝑘)𝐁⃗⃗⃗0 (Eq. 1.7) 

The magnetic shielding (sometimes called “chemical shielding” to indicate its 

connection to the chemical shift) refers to the screening field experienced at a nuclear 

site due to interactions with induced electronic currents [40, 41].  Magnetic shielding is 

formally defined as a second-rank tensor of the form: 

 
𝜎𝑘,𝛼𝛽 =

𝜕2𝐸

𝜕𝜇𝛼𝜕𝐵𝛽
|
𝜇𝛼=0,𝐵𝛽=0

  𝛼, 𝛽 = 𝑥, 𝑦, 𝑧 
(Eq. 1.8) 

In Eq. 1.8, 𝜇𝛼 is the component of the nuclear magnetic moment in the  direction, 𝐵𝛽 

is the component of the external field in the  direction, E is the total energy of the 
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system derived from the full Hamiltonian including electronic and nuclear terms [42], 

and the subscripts  and  denote the projections of the two vectors onto different axes 

of a co-ordinate system defining both the structure and the field.  The Cartesian 

representation of the chemical-shift tensor in an arbitrary co-ordinate system is given 

by: 

 𝜎𝑘,𝛼𝛽 = (

𝜎𝑘,𝑥𝑥 𝜎𝑘,𝑥𝑦 𝜎𝑘,𝑥𝑧
𝜎𝑘,𝑦𝑥 𝜎𝑘,𝑦𝑦 𝜎𝑘,𝑦𝑧
𝜎𝑘,𝑧𝑥 𝜎𝑘,𝑧𝑦 𝜎𝑘,𝑧𝑧

) (Eq. 1.9) 

The full tensor has nine unique elements; however, if the tensor is symmetric, 

or the antisymmetric components are negligibly small (as is often considered to be the 

case, but not guaranteed), the number of unique tensor elements is reduced to six (𝜎𝛼𝛽 =

𝜎𝛽𝛼).  Referred to a set of coordinates called the principal-axis system (PAS), the 

magnetic-shielding tensor is diagonal and is characterized by the three non-vanishing 

principal components: 

 𝜎𝑘,𝛼𝛽 = (

𝜎𝑘,11 0 0

0 𝜎𝑘,22 0

0 0 𝜎𝑘,33

) (Eq. 1.10) 

Knowledge of the principal components of the magnetic-shielding tensor 

provides significant insight into the three-dimensional electronic structure.  In 

particular, structural effects on 13C magnetic-shielding tensors have received 

considerable interest, and numerous reviews on this subject are available [43, 44].   

These effects are more often specified by the so-called chemical-shift tensor, 

where they are described relative to those of some reference object having a specific 

value of the shielding.  The chemical-shift tensor has a similar form to the magnetic 

shielding tensor: 
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𝛿𝑘,𝛼𝛽 = (

𝛿𝑘,11 0 0

0 𝛿𝑘,22 0

0 0 𝛿𝑘,33

)                                               

= (

𝜎𝑟𝑒𝑓 − 𝜎𝑘,11 0 0

0 𝜎𝑟𝑒𝑓 − 𝜎𝑘,22 0

0 0 𝜎𝑟𝑒𝑓 − 𝜎𝑘,33

) 

(Eq. 1.11) 

The principal components of these tensors are ranked using the frequency-

ordered convention, such that  𝜎11 ≤ 𝜎22 ≤ 𝜎33, or as 𝛿11 ≥ 𝛿22 ≥ 𝛿33. The three 

remaining determinants of the magnetic-shielding tensor or the chemical-shift tensor are 

the eigenvectors that relate the PAS to the experimental co-ordinate system [45].  In 

principle, the full tensor, including the relative orientations of the principal components 

with respect to the crystal axes, is available from a study of a single-crystal sample.  In 

contrast, only the principal components of the chemical-shift tensor are available from 

the analysis of a randomly oriented ensemble of microcrystallites, unless there is some 

special symmetry requirement that allows one to specify particular principal axes 

relative to known crystal axes.  

In addition to the frequency-ordered convention, conventions proposed by 

Haeberlen [46] and by Mason [47] are commonly used to present chemical-shift tensors.  

Haeberlen’s convention describes the chemical-shift tensor in terms of the isotropic 

chemical shift (iso), the anisotropy (), and the asymmetry () parameter.  The isotropic 

chemical shift is the average of the three principal values.  The anisotropy is 

proportional to the difference between the most shielded principal component of the 

chemical-shift tensor (𝛿33) and the isotropic chemical shift, and the asymmetry is a 

measure of deviation from axial symmetry with values in the range of 0 ≤ CS ≤ 1.  

Definitions of iso, , and CS are given below. 

 𝛿𝑖𝑠𝑜 =
1

3
(𝛿11 + 𝛿22 + 𝛿33) (Eq. 1.12a) 
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 ∆=
3

2
(𝛿33 − 𝛿𝑖𝑠𝑜) (Eq. 1.12b) 

 𝜂𝐶𝑆 =
𝛿22 − 𝛿11
𝛿33 − 𝛿𝑖𝑠𝑜

 (Eq. 1.12c) 

Mason’s convention, reports the chemical-shift tensor in terms of the isotropic 

chemical shift, the span (), and the skew (), as summarized in Figure 1.1.  The span 

is the difference between the least and most shielded principal components of the 

chemical-shift tensor.  The skew is related to the difference between 22 and iso relative 

to the span with values in the range of -1 ≤  ≤ +1.  Definitions of  and  are given 

below. 

 Ω = 𝛿11 − 𝛿33 (Eq. 1.13a) 

 𝜅 = 3
𝛿22 − 𝛿𝑖𝑠𝑜
𝛿11 − 𝛿33

 (Eq. 1.13b) 

1.4 Quadrupolar-Coupling Tensors 

Nuclei with spins greater than ½ possess a quadrupole moment (Q) due to the 

asymmetric distribution of charge within the nucleus [48].  Such nuclei interact with the 

local electric-field gradient (EFG), as described by the following Hamiltonian bilinear 

in the components of the nuclear spin: 

 

 

𝐇̂𝑄 =
𝑒𝑄

2𝐼(2𝐼 − 1)ħ
𝐈𝑘 · 𝐕̂𝑘,𝛼𝛽 · 𝐈𝑘 (Eq. 1.14) 

In the above expression, e is the elementary charge, and  𝐈𝑘 and 𝐕̂𝑘,𝛼𝛽 represent the 

nuclear spin vector and the EFG tensor, respectively.  The EFG tensor represents the 

second spatial derivatives of the electrostatic potential, V, resulting from the 

distribution of electrons and nuclei, as evaluated at the nucleus: 

 𝐕̂𝑘,𝛼𝛽 =
𝜕2𝑉

𝜕𝑟𝛼𝜕𝑟𝛽
  𝛼, 𝛽 = 𝑥, 𝑦, 𝑧 

(Eq. 

1.15) 
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Figure 1.1.  Simulated chemical-shift spectra of spin-½ nuclei in randomly oriented 

powders.  Examples are shown for cases with axially symmetric ( = ± 1.0) and radially 

symmetric ( = 0.0) chemical-shift tensors. 

The EFG tensor can be represented as a 3  3 matrix: 

 𝐕̂𝑘,𝛼𝛽 = (

𝑉𝑘,𝑥𝑥 𝑉𝑘,𝑥𝑦 𝑉𝑘,𝑥𝑧
𝑉𝑘,𝑦𝑥 𝑉𝑘,𝑦𝑦 𝑉𝑘,𝑦𝑧
𝑉𝑘,𝑧𝑥 𝑉𝑘,𝑧𝑦 𝑉𝑘,𝑧𝑧

) (Eq. 1.16) 

As is the case with the magnetic-shielding tensor, the EFG tensor is diagonal in its PAS: 

 𝐕̂𝑘,𝛼𝛽 = (

𝑉𝑘,11 0 0

0 𝑉𝑘,22 0

0 0 𝑉𝑘,33

) (Eq. 1.17) 
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The principal components of this tensor are ranked such that |𝑉𝑘,33| ≥ |𝑉𝑘,22| ≥

|𝑉𝑘,11|.  Furthermore, the EFG tensor obeys Laplace’s equation (∇2𝑉 = 0), and is 

therefore traceless.  Thus, there are only two independent parameters that describe the 

electric-field-gradient tensor. 

The quadrupole interaction, as defined in Eq. 1.14, is therefore also described 

by two parameters, rather than three.  It is typical to report the these interaction 

parameters as the quadrupolar-coupling constant (CQ) and the asymmetry parameter (), 

of which, the latter is a measure of deviation from axial symmetry with values in the 

range of 0 ≤  ≤ 1: 

 𝐶𝑄 =
𝑒𝑄

ℎ
𝑉𝑘,33 (Eq. 1.18) 

 
𝜂 =

𝑉𝑘,11 − 𝑉𝑘,22
𝑉𝑘,33

 
(Eq. 1.19) 

Figure 1.2. illustrates several examples of simulated spectra for spin-1 nuclei in 

a randomly oriented powder, for which there are only two transitions.  For spins with 

higher spin quantum numbers, the number of transitions increases, and therefore the 

appearance of the spectrum becomes considerably more complex.  
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Figure 1.2.  Simulated spectra of spin-1 nuclei in randomly oriented powders.  

Examples are shown for cases with asymmetry parameters of  = 0.0,  = 0.5, and  = 

1.0 

1.5 Overview of Electronic Structure Methods 

With the advent of numerical techniques using computers to solve quantum-

mechanical problems, predictions of NMR properties have become relatively routine 

for molecules containing light nuclei.  In the non-relativistic limit, magnetic-shielding 

tensors and quadrupolar-coupling tensors are calculated as response properties from 

knowledge of the ground-state or excited-state wave functions.  The remaining sections 

of this chapter are devoted to describing the calculation of such parameters. 
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Within the Born-Oppenheimer approximation, and in natural units, the time-

independent Schrödinger equation is given by the following [49]: 

 (−
1

2
∑𝛁⃗⃗⃗𝑖

2 −∑∑
𝑍𝐴

|𝐫⃗𝑖 − 𝐑⃗⃗⃗𝐴|

𝑀

𝐴

𝑁

𝑖

𝑁

𝑖

+∑∑
1

|𝐫⃗𝑖 − 𝐫⃗𝑗|

𝑁

𝑗>1

𝑁

𝑖

)𝜓 = 𝐸𝜓 (Eq. 1.20) 

In this expression, ψ is the electronic wave function and E is the total electronic 

energy.  The three terms in the Hamiltonian correspond to the total electron kinetic 

energy, electron-nucleus potential, and the inter-electronic potential.  The summations 

in these terms are over the N electrons and M nuclei.  Eq. 1.20 is often expressed in the 

shorthand notation as 

 (𝐓̂ + 𝐕̂ + 𝐔̂)𝜓 = 𝐸𝜓 (Eq. 1.21) 

It is worth noting that the set of eigenvalues derived from evaluating this 

equation are the solutions associated with a particular set of nuclear coordinates, i.e.,  

𝐸𝑒𝑙𝑒𝑐 = 𝐸𝑒𝑙𝑒𝑐({𝐑𝐴}).  This fact suggests that computed energies vary according to 

nuclear-imposed geometry, a consideration that will be revisited throughout this work. 

Schrödinger’s equation cannot be solved exactly for a many-electron system due 

to the inter-electronic term, so approximate methods are necessary to obtain the wave 

function, a complex function of the 3N spatial variables and N spin variables.  Some of 

the more popular methods to solve Eq. 1.20 include Hartree-Fock theory [50-53], 

Møller-Plesset perturbation theory [54], and coupled-cluster theory [55, 56].  A 

comprehensive introduction to electronic structure calculation by Hartree-Fock and post 

Hartree-Fock methods is provided by Szabo and Ostlund [57]. 

The majority of calculations in this dissertation are performed within the 

formalism of density-functional theory (DFT), a popular quantum-mechanical 

technique in electronic-structure modeling [58, 59].  DFT allows chemical properties to 
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be calculated in a fashion that typically scales better with the number of electrons in the 

system than do calculations based on Hartree-Fock and post Hartree-Fock methods, and 

is therefore appropriate for modeling properties of materials.  A general overview of 

DFT is available from Koch and Holthausen [59] and a more comprehensive treatment 

is available from Parr and Yang [60]. 

As the name implies, the central quantity in DFT is the electron density,  

𝜌(𝐫⃗), which is given by: 

 𝜌(𝐫⃗) = 𝑁∫…∫|Ψ(𝐱⃗⃗1𝐱⃗⃗2… 𝐱⃗⃗𝑁)|
2𝑑𝐬⃗1 𝐱⃗⃗2… 𝐱⃗⃗𝑁 (Eq. 1.22) 

Unlike the wave function, the electron density is a physical observable.  Modern 

DFT derives from two theorems proposed by Hohenberg and Kohn [61].  These 

theorems illustrate that the 3N variational degrees of freedom in Eq. 1.20 can be reduced 

to the 3 spatial coordinates of the density by reformulating the intractable many-body 

problem as a fictitious system composed of non-interacting electrons in an effective 

potential.  The first Hohenberg-Kohn theorem demonstrates that two electrons 

experiencing external potentials 𝜐1(𝐫⃗) and 𝜐2(𝐫⃗) have the same ground-state energy if 

𝜐1(𝐫⃗) − 𝜐2(𝐫⃗) = 𝑐, where c is a constant. The second Hohenberg-Kohn theorem defines 

the energy functional, 𝐸[𝜌(𝐫⃗)], and illustrates that the ground-state electron 

density, 𝜌0(𝐫⃗), minimizes the energy functional.  It is therefore possible to obtain the 

ground-state density variationally.  Furthermore, the ground-state wave function is a 

unique functional of the ground-state density: 

 𝜓0 = 𝜓[𝜌0(𝐫⃗)] (Eq. 1.23) 

Similarly, the expectation values (O) of operations (𝐎̂) on the ground-state wave 

function are also functionals of the ground-state density: 

 𝑂[𝜌0(𝐫⃗)] = ⟨𝜓[𝜌0(𝐫⃗)]| 𝐎̂ |𝜓[𝜌0(𝐫⃗)]⟩ (Eq. 1.24) 
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In the Kohn-Sham formalism of DFT [62], the expression for the total energy is: 

 𝐸[𝜌(𝐫⃗)] = 𝑇[𝜌(𝐫⃗)] + ∫𝑣𝑒𝑥𝑡(𝐫⃗) 𝜌(𝐫⃗)𝑑𝐫⃗ + 𝐽[𝜌(𝐫⃗)] + 𝐸𝑋𝐶[𝜌(𝐫⃗)] (Eq. 1.25) 

This expression presents the kinetic energy, 𝑇[𝜌(𝐫⃗)], the classical inter-electronic 

Coulombic potential, 𝐽[𝜌(𝐫⃗)], and the non-classical exchange-correlation potential, 

𝐸𝑋𝐶[𝜌(𝐫⃗)], as functionals of the electron density.  The integral represents the interaction 

between the nuclei and the electron density.  The final term, 𝐸𝑋𝐶[𝜌(𝐫⃗)], accounts for 

non-classical interactions between electrons.  The form of the exchange-correlation 

energy is unknown and must be approximated.  The kinetic energy is given by: 

 𝑇[𝜌(𝐫⃗)] = −
1

2
∑∫〈𝜙𝑖|𝛁̂𝑖

2|𝜙𝑖〉

𝑁

𝑖

𝑑𝐫⃗ (Eq. 1.26) 

Here, 𝜙𝑖 represents a one-electron Kohn-Sham orbital for the fictitious system wih non-

interacting electrons. 

Implementation of the concepts behind this discussion leads to the integro-

differential Kohn-Sham equation [62] for the one-electron orbitals: 

 (−
1

2
∇𝑖
2 + 𝑣𝑒𝑥𝑡(𝐫⃗) + ∫

𝜌(𝐫⃗′)

|𝐫⃗ − 𝐫⃗′|
𝑑𝐫′⃗⃗⃗ + 𝑣𝑋𝐶(𝐫⃗))𝜙𝑖 = 𝜀𝜙𝑖 (Eq. 1.27) 

The exchange-correlation functional in Eq. 1.27 is given by the following 

derivative: 

 𝑣𝑋𝐶(𝐫⃗) =
𝜕𝐸𝑋𝐶[𝜌(𝐫⃗)]

𝜕𝜌(𝐫⃗)
 (Eq. 1.28) 

Several of the potentials in Eq. 1.27, specifically the inter-electronic Coulomb 

potential and the exchange-correlation potential, depend on the density, and can only be 

solved through self-consistent-field (SCF) procedures.  The first step in the SCF 

procedure is to introduce a basis-set expansion of the one-electron Kohn-Sham orbitals, 

thereby rendering Eq. 1.27 in a matrix form that can be solved computationally. The 

basis set describes the set of vectors which span the space in which the Kohn-Sham 
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equation is solved.  Basis functions (r) are used to construct molecular orbitals 

according to the linear combination of atomic orbitals (LCAO) scheme [63-65]: 

 
𝜙𝜇 =∑𝑐𝜇𝑟𝜒𝑟

𝑟

 
(Eq. 1.29) 

Eq. 1.27 is solved by introducing an initial guess for the expansion coefficients, 𝑐𝑟𝑖, and 

iterating these values until a convergence threshold is reached. 

At this stage, a few comments about DFT in a periodic framework are necessary.  

Electrons in systems containing periodic environments, such as a crystalline solid, are 

subject to periodic potentials, and the electron density is periodic with respect to 

translations along integral multiples of the lattice vectors, 𝐑⃗⃗⃗𝒎: 

 𝜌(𝐫⃗) =  𝜌(𝐫⃗ + 𝐑⃗⃗⃗𝒎) (Eq. 1.30) 

By Bloch’s theorem, the wave function is periodic with respect to translations along the 

lattice vectors: 

 𝜓
𝐤
(𝐫⃗ + 𝐑⃗⃗⃗𝒎) = 𝑒

𝑖𝐤⃗∙𝐑⃗⃗⃗𝒎  𝑢𝐤(𝐫⃗) (Eq. 1.31) 

In Eq. 1.31, 𝑢𝐤(𝐫⃗) = 𝑢𝑘(𝐫⃗ + 𝐑⃗⃗⃗𝒎) is a periodic function of the unit cell’s structural 

parameters.  A plane-wave basis function is described by: 

 
𝜓
𝐤
(𝐫⃗) =  ∑𝑐𝐤(𝐆⃗⃗⃗𝐦)

𝐆𝒎

𝑒𝑖(𝐤⃗+𝐆⃗⃗⃗𝒎)∙𝐫⃗ 
(Eq. 1.32) 

In Eq.1.32, the summation is over the lattice vectors in reciprocal space, Gm.  The 

Coulomb, Hartree, and exchange-correlation (XC) potentials are computed in terms of 

their Fourier transforms by sampling the first Brillouin zone of the crystal’s reciprocal 

lattice over a set of k-points.  The size of the plane-wave basis set is governed by a 

plane-wave cutoff energy such that all plane waves with a kinetic energy under a defined 

threshold are included: 

 
1

2
|𝐤⃗ + 𝐆⃗⃗⃗𝒎|

2
 ≤ 𝐸 (Eq. 1.33) 
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In practice, plane-wave basis sets are often paired with effective core potentials, 

or pseudopotentials, to describe the density of the core electrons.  Common 

pseudopotential schemes include norm-conserving potentials [66] and ultrasoft 

potentials [67]. 

1.6 Exchange-Correlation Functionals 

The Kohn-Sham formalism is, in principle, exact, provided the form of the 

exchange-correlation functional is known.  However, because the form of the exchange-

correlation functional is not known, there is a significant number of approximate models 

in the literature, but none of those models can be applied universally to arbitrary 

chemical systems [68, 69].  Almost all functionals are determined in some manner by 

arbitrary fitting parameters to give agreement either with empirical data or the results of 

earlier post Hartree-Fock calculations.  The types of approximations can be sorted into 

classes of models, as described below. 

1.6.1 The Local-Density Approximation 

The local-density approximation (LDA) to the exchange-correlation energy was 

proposed by Kohn and Sham [62].  In the LDA, 𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌(𝐫⃗)] is approximated by the 

energy of a homogeneous electron gas (HEG).  This approach uses an exchange-

correlation functional that is dependent only on the value of 𝜌(𝐫⃗) at each point in space, 

and is therefore a local functional.  The HEG model is a limit in which the atomic 

nuclear potentials, and therefore the electron density, are distributed uniformly in space.  

This simple model is sometimes used to model delocalized conduction-band electrons 

[70], but is generally insufficient for accurately modeling of systems, such as molecules, 

in which the density varies rapidly from point to point. 
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The general expression for the LDA exchange-correlation energy is: 

 𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌(𝐫⃗)] = ∫𝜌(𝐫⃗)𝜖𝑋𝐶(𝜌(𝐫⃗))𝑑𝐫⃗ (Eq. 1.34) 

where 𝜖𝑋𝐶 is the exchange-correlation energy per electron of a HEG.  𝐸𝑋𝐶
𝐿𝐷𝐴 can be 

linearly decomposed into the sum of exchange and correlation terms: 

 𝐸𝑋𝐶
𝐿𝐷𝐴 = 𝐸𝑋

𝐿𝐷𝐴 + 𝐸𝐶
𝐿𝐷𝐴 (Eq. 1.35) 

This decomposition allows independent solutions to be derived for each term.  The 

exchange energy (𝐸𝑋
𝐿𝐷𝐴) of a HEG has a known analytic solution, as proposed by Dirac 

[71]: 

 𝐸𝑋
𝐿𝐷𝐴[𝜌(𝐫⃗)] = −

3

4
(
3

𝜋
)
1/3

∫𝜌4 3⁄ (𝐫⃗)𝑑𝐫⃗ (Eq. 1.36) 

The correlation energy (𝐸𝐶
𝐿𝐷𝐴) does not have an exact analytic form.  Instead, 

approximate solutions for 𝐸𝐶
𝐿𝐷𝐴 are obtained through quantum Monte Carlo simulations 

[72-79].  Substitution of Eq. 1.34 into 1.28, one obtains the LDA exchange-correlation 

potential: 

 𝑣𝑋𝐶
𝐿𝐷𝐴 = 𝜖𝑋𝐶(𝜌(𝐫⃗)) +

𝜕𝜖𝑋𝐶(𝜌(𝐫⃗))

𝜕𝜌(𝐫⃗)
 (Eq. 1.37) 

1.6.2 The Generalized-Gradient Approximation 

The generalized-gradient approximation (GGA) improves upon the LDA by 

introducing a dependence in 𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌(𝐫⃗)] on the gradient of the density, ∇𝜌(𝐫⃗), at each 

point in space (in addition to the density), as given by: 

 𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌(𝐫⃗)] = ∫𝜌(𝐫⃗)𝜖𝑋𝐶(𝜌(𝐫⃗), ∇𝜌(𝐫⃗))𝑑𝐫⃗ (Eq. 1.38) 

This generalized-gradient-approximation approach often results in improvement 

in the prediction of chemical properties relative to the LDA approach, particularly in 

cases where the density varies rapidly, and is therefore one of the most widely used DFT 

approximations.  Many examples of GGA functionals are in the literature [80-82], 
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including the common functionals proposed by Perdew, Burke, and Ernzerhof (PBE) 

[83], and by Perdew and Wang (PW91) [84].  There also exist many modifications of 

the PBE functional such as the revised PBE (denoted rPBE throughout this dissertation) 

[85], which has been re-parameterized using a more comprehensive training set of 

thermochemical quantities. 

1.6.3 The Meta-Generalized-Gradient Approximation 

Further improvement in the prediction of chemical properties is possible through 

the use of the meta-generalized-gradient approximation, which incorporates a 

dependence in 𝐸𝐶𝑋
𝑀𝐺𝐺𝐴[𝜌(𝐫⃗)] on the Laplacian of the density, ∇2𝜌(𝐫⃗), at each point in 

space (in addition to the density and the gradient of the density), yielding: 

 𝐸𝑋𝐶
𝑀𝐺𝐺𝐴[𝜌(𝐫⃗)] = ∫𝜌(𝐫⃗)𝜖𝑋𝐶(𝜌(𝐫⃗), ∇𝜌(𝐫⃗), ∇

2𝜌(𝐫⃗))𝑑𝐫⃗ (Eq. 1.39) 

In this dissertation, I shall use the meta-GGA functional of Tao, Perdew, Staroverov, 

and Scuseria (TPSS) [86] frequently, although other useful approximations could be 

used [87-89].   

1.6.4 Hybrid Methods 

Hybrid functionals are used evaluate 𝐸𝑋𝐶[𝜌(𝐫⃗)] in some cases.  Hybrid 

functionals generally involve an admixture of non-local exact exchange from Hartree-

Fock theory with DFT exchange-correlation.  This approach, introduced by Becke [90], 

often leads to improvement of the prediction of thermochemical parameters, bond 

lengths, vibrational frequencies, and other measurable parameters, relative to pure DFT 

approaches [91].  For example, the PBE0 functional [92] is given by: 

 𝐸𝑋𝐶
𝑃𝐵𝐸0 =

1

4
𝐸𝑋
𝐻𝐹 +

3

4
𝐸𝑋
𝑃𝐵𝐸 + 𝐸𝐶

𝑃𝐵𝐸  (Eq. 1.40) 
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The parameters in this expression, or the expression for other hybrid functionals, 

are generally obtained using a training set of thermochemical quantities for gas-phase 

systems.  It is therefore necessary to point out that, because of the inclusion of 

experimental data in the construction of these functionals, the application of hybrid 

functionals to systems that are not chemically similar to the training set should be 

systematically benchmarked to understand the accuracy for such systems.  It is possible, 

for example, that the proper admixture of Hartree-Fock exchange necessary to obtain 

agreement with experiment differs significantly from one type of material to another. 

With hybrid functionals, the calculation of 𝐸𝑋𝐶
𝐻𝑦𝑏𝑟𝑖𝑑[𝜌(𝐫⃗)] requires an evaluation 

of the Hartree-Fock exchange energy.  As discussed in section 1.5, evaluation of two-

electron integrals in Hartree-Fock theory is computationally demanding.  Thus, the 

increased accuracy in computed chemical quantities that is sometimes possible with 

hybrid DFT comes with the tradeoff of a significant increase in computational cost. 

1.7 Theory and Calculation of Quadrupolar-Coupling Tensors 

As given in Eq. 1.15, the EFG tensor represents the second spatial derivative of 

the electrostatic potential resulting from the distribution of electrons and nuclei, as 

evaluated at the nucleus.  The electrostatic potential is a scalar quantity that defines the 

electric energy of a unit charge at a point in space.  The total electrostatic potential at 

position 𝐫⃗ results from the superposition of the classical Coulombic potential of the 

nuclei and the quantum-mechanical potential of the electrons [93]: 

 
𝑉(𝐫⃗) =∑

𝑍𝐴

|𝐫⃗ − 𝐑⃗⃗⃗𝐴|𝐴

−∫
𝜌(𝐫⃗′)

|𝐫⃗ − 𝐫⃗′|
𝑑𝐫⃗′ 

(Eq. 1.41) 

The summation in Eq. 1.41 represents the interaction between the nucleus at 

position 𝐫⃗ and additional nuclei at positions 𝐑⃗⃗⃗𝐴, whereas the integral represents the 
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interaction with electron density at position 𝐫⃗′.  The second term in the electrostatic 

potential can be rewritten such that the total electrostatic potential is an expectation 

value [94]: 

 
𝑉(𝐫⃗) =∑

𝑍𝐴

|𝐫⃗ − 𝐑⃗⃗⃗𝐴|𝐴

−∑∑𝑃𝑟𝑠 ⟨𝜒𝑟|
1

|𝐫⃗ − 𝐫⃗′|
|𝜒𝑠⟩

𝑠𝑟

 
(Eq. 1.42) 

Here, the summation is over all pairs of basis functions 𝜒𝑟 and 𝜒𝑠, and 𝑃𝑟𝑠 is an element 

of the density matrix between the basis functions.  Substitution of the above expression 

into Eq. 1.15 results in the following definition of the EFG tensor: 

 

𝐕̂𝑘,𝛼𝛽 =
𝜕2𝑉

𝜕𝑟𝛼𝜕𝑟𝛽

=∑
3(𝑟𝛼 − 𝑅𝐴,𝛼)(𝑟𝛽 − 𝑅𝐴,𝛽) − 𝛿𝛼𝛽

𝐾 (𝐫⃗ − 𝐑⃗⃗⃗𝐴)
2

|𝐫⃗ − 𝐑⃗⃗⃗𝐴|
5

𝐴

+∑∑𝑃𝑟𝑠 ⟨𝜒𝑟|
3(𝑟𝛼 − 𝑟𝛼

′)(𝑟𝛽 − 𝑟𝛽
′) − 𝛿𝛼𝛽

𝐾 (𝐫⃗ − 𝐫⃗′)2

|𝐫⃗ − 𝐫⃗′|5
|𝜒𝑠⟩

𝑠𝑟

 

(Eq. 1.43) 

𝛿𝛼𝛽
𝐾  is the Krönecker delta function.  As Eq. 1.43 demonstrates, the EFG tensor has a 

classical component that depends only on the positions of the nuclei, and a quantum-

mechanical component that depends on the electronic structure, and indirectly on the 

nuclear coordinates. 

1.8 Theory and Calculation of Magnetic-Shielding Tensors 

The formal definition of the magnetic-shielding tensor is given by Eq. 1.8, in 

which the shielding tensor is expressed as a mixed partial derivative of the total energy 

with respect to the magnetic dipole moment component, 𝜇𝛼, and the magnetic field 

component, 𝐵𝛽.  As proposed by Ramsey [39], and as utilized in subsequent 

implementations [95-101], an explicit expression for the shielding tensor is obtained 

from as a sum over states through use of a perturbation expansion.   
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Generic double perturbation theory uses a Taylor series to expand the 

Hamiltonian with the arbitrary expansion parameters κ and λ: 

 𝐻 = 𝐻(0) + 𝜅𝐻(1,0) + λ𝐻(0,1) + 𝜅λ𝐻(1,1) +⋯ (Eq. 1.44) 

The total energy of the perturbed system is given by:  

 𝐸 = 𝐸(0) + 𝜅𝐸(1,0) + 𝜆𝐸(0,1) + 𝜅𝜆𝐸(1,1) +⋯ (Eq. 1.45) 

In non-degenerate time-independent perturbation theory, generic second-order 

expansion coefficients are given by the following expression [102]: 

 
𝐸11 =

𝜕2𝐸

𝜕λ𝜕𝜅
|
λ=0,𝜅=0

 

(Eq. 1.46) 
 
= ⟨Ψ0|𝐇̂

(1,1)|Ψ0⟩ + 2𝑅𝑒 [∑
⟨Ψ0|𝐇̂

(1,0)|Ψ𝑝⟩⟨Ψ𝑝|𝐇̂
(0,1)|Ψ0⟩

𝐸𝑝 − 𝐸0
𝑛≠0

] 

 = ⟨Ψ0|
𝜕2𝐇̂

𝜕𝜇𝛼𝜕𝐵𝛽
|Ψ0⟩ + 2𝑅𝑒

[
 
 
 

∑

⟨Ψ0|
𝜕𝐇̂
𝜕𝜇𝛼

|Ψ𝑝⟩ ⟨Ψ𝑝|
𝜕𝐇̂
𝜕𝐵𝛽

|Ψ0⟩

𝐸𝑝 − 𝐸0
𝑛≠0

]
 
 
 

 

In the above expression, the subscripts 0 and p denote ground-state and excited-state 

wave functions, respectively.   

The generic expression in Eq. 1.46 for second-order properties is related to the 

magnetic-shielding tensor by defining the Hamiltonian in the presence of an external 

magnetic field.  This is done by substituting the angular momentum (𝐩⃗⃗⃗) with the 

following expression [103]: 

 𝐩⃗⃗⃗   
𝑠𝑢𝑏.
→    𝐩⃗⃗⃗ + 𝐀⃗⃗⃗𝑖(𝐫⃗) (Eq. 1.47) 

In the above expression, 𝐀⃗⃗⃗𝑖(𝐫⃗) is the total vector potential at the position of the ith 

electron resulting from the sum of the vector potentials for the external magnetic field 

and the nuclear magnetic dipole field [104], given by: 

 𝐀⃗⃗⃗𝑖(𝐫⃗) =
1

2
𝐁⃗⃗⃗0 × 𝐫⃗𝑖0 +

𝛍⃗⃗⃗𝑛 × 𝐫⃗𝑖𝑛

𝐫⃗𝑖𝑛
3  (Eq. 1.48) 
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The second term in the above expression is irrelevant for the calculation of magnetic 

shielding, but is necessary for calculation of scalar-coupling constants.  The subscripts 

0 and n are used to denote the gauge-origin and nuclear-magnetic-moment position 

vectors, respectively.  The expression for the Hamiltonian in the presence of an external 

magnetic field is [40]: 

 

𝐇̂ = −
1

2
∑[𝛁⃗⃗⃗𝑖 + 𝐀⃗⃗⃗𝑖(𝐫⃗)]

2
−

𝑁

𝑖

∑∑
𝑍𝐴

|𝐫⃗𝑖 − 𝐑⃗⃗⃗𝐴|

𝑀

𝐴

𝑁

𝑖

+∑∑
1

|𝐫⃗𝑖 − 𝐫⃗𝑗|

𝑁

𝑗>1

𝑁

𝑖

 

(Eq. 1.49) 

The expansion of this Hamiltonian around 𝐁⃗⃗⃗0 and 𝛍⃗⃗⃗𝑛 yields the following terms 

relevant to the calculation of magnetic-shielding tensors: 

 𝐇̂(1,1) =
1

2𝑐2
∑
𝐫⃗𝑖𝑜 ∙ 𝐫⃗𝑖𝑛𝛿𝛼𝛽

𝐾 − 𝑟𝑖𝑜,𝛼𝑟𝑖𝑛,𝛽

𝐫⃗𝑖𝑛
3

𝑁

𝑖

 (Eq. 1.50a) 

 𝐇̂(1,0) =
1

𝑐2
∑
𝐋̂𝑖𝑛

𝐫⃗𝑖𝑛
3

𝑁

𝑖

 (Eq. 1.50b) 

 𝐇̂(0,1) =
1

2
∑𝐋̂𝑖0

𝑁

𝑖

 (Eq. 1.50c) 

In the above expressions, 𝐋̂𝑖𝑛 and 𝐋̂𝑖0 are angular-momentum operators with respect to 

the nuclear origin and gauge origin, respectively. 

Insertion of the terms in Eq. 1.50 into Eq. 1.46 gives the following expression 

for the magnetic-shielding tensor: 

 

𝜎𝛼𝛽 =
𝜕2𝐸

𝜕𝜇𝛼𝜕𝐵𝛽

= ⟨Ψ0|𝐇̂
(1,1)|Ψ0⟩

+ 2𝑅𝑒 [∑
⟨Ψ0|𝐇̂

(1,0)|Ψ𝑝⟩⟨Ψ𝑝|𝐇̂
(0,1)|Ψ0⟩

𝐸𝑝 − 𝐸0
𝑝≠0

] 

(Eq. 1.51) 
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This expression for the magnetic-shielding tensor is exact in the non-relativistic 

limit because the perturbation expansion includes all terms relevant to the magnetic 

shielding.  In practice, the accuracy of such calculations depend on the accuracy of the 

computed ground-state and excited state densities. 

As is evident in the previous discussion, there are two contributions to the 

shielding tensor, denoted the diamagnetic and paramagnetic contributions, i.e., 

 𝜎𝛼𝛽 = 𝜎𝛼𝛽
𝑑 + 𝜎𝛼𝛽

𝑝
 (Eq. 1.52) 

The diamagnetic term is calculated as an integral over the ground electronic 

state; as such, it depends on the mixing coefficients that describe the ground state [38].  

The ground-state electronic wave function is a linear combination of products of atomic 

orbitals, and the integral becomes a sum of integrals over these one-electron orbitals.  

The paramagnetic contribution depends on the ground state as well as all excited 

electronic states.  Because the diamagnetic contribution is mostly dependent on core 

electrons, the differences in magnetic shieldings between nuclei of the same type, but 

in different chemical environments, are mostly due to differences in paramagnetic 

contributions.  It should be noted that only the total shielding is a physical observable; 

thus, decomposing the shielding into a sum of terms is done for purely mathematical 

reasons. 

As implied by Eq. 1.48, calculations of magnetic-shielding tensors depend on 

the choice of gauge origin of the vector potential.  The gauge-dependent terms cancel 

perfectly in the limit of a complete basis set; however, this is not the case in practical 

calculations.  The most common solution to the gauge-origin problem in the framework 

of atomic orbital basis functions is referred to as the gauge-including atomic orbital 

(GIAO) method.  The method is derived from the early work of London, who employed 
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this method for the calculation of electronic energies in the presence of an external 

magnetic field [105].  The use of GIAOs in the calculation of magnetic shielding was 

first illustrated in two landmark papers by Pople [40, 41].  The implementation of the 

GIAO method in SCF calculations originated with Ditchfield [96] and in DFT with 

Schreckenbach and Ziegler [100].  In the GIAO formalism, basis functions (Eq. 1.29) 

are augmented with a gauge-dependent phase factor: 

  𝜒𝜇
𝐺𝐼𝐴𝑂(𝐁⃗⃗⃗0) = exp [−

𝑖

2𝑐
(𝐁⃗⃗⃗0 × 𝐑⃗⃗⃗𝜇) ∙ 𝐫⃗] 𝜒𝜇 (Eq. 1.53) 

In this expression, 𝐑⃗⃗⃗𝜇 is the position vector of basis function 𝜒𝜇. 

The gauge-including projector-augmented wave (GIPAW) approach of Pickard 

and Mauri addresses the gauge problem with plane wave DFT [106].  As discussed 

previously (Section 1.5), plane-wave calculations are typically paired with 

pseudopotential approximations of the core electrons.  However, this approximation 

results in an insufficient treatment of the interaction between core and valence electrons.  

Although this consideration is not critical for many properties, a proper description of 

core-valence interactions is essential for the prediction of magnetic shielding.  The 

projector-augmented-wave (PAW) method of van de Walle and Blöchl allows the all-

electron wave function to be reconstructed [107].  In essence, this linear transformation, 

  𝑇𝑃𝐴𝑊 = 1 + ∑ (|𝜙𝑖⟩ − |𝜙̃𝑖⟩)𝑖 ⟨𝑃̃𝑖| (Eq. 1.54) 

allows one to obtain the expectation value of an all-electron operator acting on the all-

electron wave function, |𝜙𝑖⟩, in terms of the expectation value of a pseudopotential 

operator acting on a pseudo-partial wave function, |𝜙̃𝑖⟩.  In the above expression, 𝑃̃𝑖 

refers to the set of projector functions.  Although plane wave do not suffer from gauge 

dependence, the PAW transformation reintroduces this dependence.  GIPAW augments 
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the PAW linear-transformation operators by introducing a phase factor to overcome the 

gauge problem: 

 

𝑇𝐺𝐼𝑃𝐴𝑊 = 1 +∑exp [−
𝑖

2𝑐
(𝐁⃗⃗⃗0 × 𝐑⃗⃗⃗) ∙ 𝐫⃗] (|𝜙𝑖⟩

𝑖

− |𝜙̃𝑖⟩) ⟨𝑃̃𝑖|exp [−
𝑖

2𝑐
(𝐁⃗⃗⃗0 × 𝐑⃗⃗⃗) ∙ 𝐫⃗] 

(Eq. 1.55) 

The discussion in this chapter focused on the background theory necessary to 

understand DFT calculations of NMR parameters.  Chapters 2 - 7 are devoted to the 

implementation of these methods for the prediction of magnetic-shielding and 

quadrupolar-coupling tensors in chemically-interesting solid-state materials. 
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Chapter 2 

THE SYMMETRY-ADAPTED CLUSTER ANSATZ: CALCULATIONS OF 13C 

MAGNETIC-SHIELDING TENSORS 

 

2.1 Introduction 

Chemical-shift tensors are a powerful gauge of local electronic geometry [1-4].  

A variety of one- and two-dimensional methods for obtaining 13C chemical-shift tensors 

from the spectra of solids can be found in the literature [5-8].  It has become routine to 

acquire these data with accuracies as high as ± 1 ppm [9].  Despite the strong dependence 

on structure, it remains difficult to interpret chemical shifts in terms of local structure 

without quantum-chemical modeling [10-12].  Experimental chemical shifts are often 

correlated with calculated magnetic shieldings to gain a deeper insight into a material’s 

local structure.  The ever-increasing number of published solid-state 13C chemical-shift 

measurements has been met with a corresponding demand for highly accurate 

computational models for calculating magnetic shielding in solids [1]. 

In this chapter, I discuss specific challenges associated with calculations of 

magnetic-shielding tensors in molecular crystals.  A survey of modern computational 

methodologies, including their shortcomings, is provided.  In particular, a distinction is 

drawn between periodic calculations based on the GIPAW approach (discussed in the 

previous chapter) and calculations in which a cluster of molecules is employed to 

represent a local portion of the lattice.  A generalized quantum-mechanical model to 

account for intermolecular contributions to the magnetic-shielding tensor using cluster 

models is proposed, and several of the inherent limitations are discussed, in particular, 

the requirements of size and symmetry adaptation. 
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I provide benchmark calculations of a wide variety of 13C magnetic-shielding 

tensors in organic solids, where the crystalline lattice is modeled according to the 

symmetry-adapted cluster method.  Results are provided for 155 carbon sites from 24 

materials. These materials, which include saccharides, aromatic rings, amino acids, 

nucleosides, active pharmaceutical ingredients, etc., were chosen to represent a wide 

variety of local electronic environments.  Altogether, 465 chemical-shift principal 

components have been considered.  Of these, 258 are from nuclei in aliphatic 

environments, 165 are from nuclei in aromatic environments, and 42 are from nuclei in 

carboxylic environments.  Cluster models are shown to be appropriate for modeling 

magnetic-shielding tensors in a wide array of systems with a level of accuracy that 

matches, and sometimes surpasses, the GIPAW method.  It is important to emphasize 

that the systematic use of clusters allows magnetic shielding to be calculated using 

model chemistries that are more advanced than those typically accessible in plane-wave 

codes such as GIPAW.  The cluster-based method illustrated here opens the possibility 

of benchmarking a wide variety of model chemistries that have not been sufficiently 

studied for the prediction of magnetic-shielding tensors. 

2.1.1 Models for Computing Magnetic Shielding in Solids 

Several effects are important when calculating magnetic shielding in a 

crystalline solid, which can largely be ignored in gas-phase systems [13].  Molecules 

maintain long-range spatial relationships with other molecules in the crystal lattice that 

are not averaged out by thermal motion.  Individual molecules in a solid are often 

distorted from their idealized gas-phase structures by dispersion interactions, hydrogen 

bonding, and steric interactions with adjacent molecules.  These effects may be observed 

as changes of bond lengths and angles, as bending in planar compounds, as locking the 
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orientation of a pendant group, or as any number of other differences from gas-phase 

structures.  More than one unique molecule may be present in the asymmetric unit of a 

solid, giving rise to more nuclear sites than otherwise would be predicted on the basis 

of a unique molecule considered in isolation.  Structural polymorphism may exist, in 

which the material has multiple stable crystalline phases that depend on the history of 

the sample, each polymorph having a unique set of magnetic-shielding parameters due 

to differences in local structure. 

For a molecular solid, the shielding experienced at a nuclear site may be assumed 

to be due to internal currents in the molecule or to the effects of currents external to the 

molecule.   Historically, many studies have focused solely on internal currents due to 

the cost of modeling the lattice in calculations of magnetic shielding.  This simple 

approximation is referred to here as the isolated-molecule model.  Studies examining 

intermolecular effects in heavy-nucleus-containing compounds, where the range of 

possible chemical shifts is much larger than that of 13C, illustrate how important 

intermolecular and lattice effects can be [14].  For example, the 199Hg chemical-shift 

tensor in Hg(CN)2 is reported to differ from experiment by 1005 ppm when the lattice 

is modeled with a simple Hg(CN)2 unit, whereas models that account for lattice effects 

decrease this error to only 285 ppm [14].  In cases where intermolecular effects are 

expected to be small, their contributions must still be considered to ensure that the model 

is an accurate representation of the material.  The following subsections discuss several 

historical and contemporary methods that have been employed to model magnetic-

shielding tensors. 

The most direct method for modeling lattice effects of magnetic-shielding 

tensors is to use a cluster of atoms or molecules to represent the local electronic structure 
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around the NMR-active nuclei.  Pioneering work on cluster-based calculations of 

magnetic shielding was performed by Tossell, who was interested in second-nearest 

neighbor effects on 15N chemical shifts in Si3N4, C3N4, P3N5, and hexagonal BN [15, 

16], and on 23Na shielding in silicates and aluminosilicates [17].  Around the same time, 

Valero and co-workers calculated 27Al and 29Si shieldings in zeolites [18, 19]. Another 

early study examined 23Na isotropic shifts in several sodium oxides [20].  Cluster 

methods were employed more recently in a study of 19F magnetic shielding in inorganic 

fluorides [21, 22].  Alkan and Dybowski have examined the use of clusters for 

calculating 119Sn, 199Hg, and 207Pb shifts in a large variety of materials [14, 23-27].  

Burgess et al. have used cluster-based approaches to model 25Mg NMR parameters in 

magnesium carboxylates [28], and Chapman and Bryce have applied similar techniques 

to the prediction of 35Cl NMR parameters in amino acid hydrochlorides [29].  Orendt et 

al. have calculated 13C magnetic shielding of an acetate adduct of cadmium [30]. 

However, the study of structural effects on NMR parameters of molecular 

organic solids has been confined largely to materials of biological importance.  In a 

survey of crystalline amino acids, Zheng et al. calculated the effects of hydrogen 

bonding on magnetic shielding [31].  In their study, the two nearest amino acid 

molecules were replaced by NH3 groups to reduce computational cost.  Substitution of 

ammonia in the place of a larger ligand has been used in numerous studies [32].  The 

calculation of properties of small clusters, sometimes employing molecular fragments, 

also has been applied to determine 15N magnetic shielding [33-35].  In general, the 

effects of nearest neighbors have been explored in cases where neighboring molecules 

are involved in hydrogen-bonding or π-stacking interactions.  Chen and Zhan performed 

calculations which included between six and nine complete molecules to represent the 
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local structure of a solid.  With these models they were able to achieve better agreement 

with experiment than was possible with earlier small-cluster methods [36].  Cluster 

models have associated problems, the most prominent being the size of the cluster and 

the termination scheme.  Furthermore, the computational cost associated with such 

calculations increases exponentially with the size of the cluster. 

A second approach for modeling magnetic shielding in solid-state systems is 

provided by the embedded-ion method (EIM).  A generalized EIM procedure, 

appropriate calculations of magnetic-shielding tensors in materials containing 

molecular ions, was proposed by Grant and co-workers [37].  A review of this method 

has been provided by Steuber [38].  The embedded ion method models extended solid-

state effects by embedding a central molecule in an array of classical point charges 

centered on the crystallographic nuclear origins.  The values of the point charges are 

chosen in an iterative, self-consistent manner based on natural-bond order (NBO) 

analysis.  Such calculations lead to significant improvement in computed magnetic-

shielding tensors relative to values obtained from isolated molecules.  For example, the 

embedded-ion method has been applied successfully to calculations 13C magnetic 

shielding in ionic compounds such as S2CSCH3
- [37], to  13C and 15N magnetic shielding 

in nucleic acid bases [39], and the magnetic shielding in many other materials [40, 41].  

Unfortunately, several problems with this method exist.  Most importantly, non-

Coulombic interactions that contribute to the intermolecular component of the magnetic 

shielding are ignored.  Furthermore, SCF convergence is sometimes difficult due to 

difficulties associated with the interface of the classical and quantum-mechanical 

regions.  To highlight the inherent errors associated with electrostatic embedding 

models, Ferrero compared calculations of 15N magnetic shielding using EIM with 
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calculations in which molecular fragments were used to model neighboring molecules, 

and found that the latter model resulted in superior agreement with experiment. 

However, EIM is inherently complementary with cluster-based approaches.  A 

study by Weber and Schmedt auf der Günne has applied the EIM to the prediction of 

31P magnetic shielding in inorganic phosphates, including Mg2P2O12, -Mg3(PO4)2, -

Mg2P2O7, and MgP4O11 [42].  A notable feature of this work is that the local structure 

around the NMR-active 31P sites were modeled with a small cluster of atoms.  This 

method appears to alleviate, but not remove, some of the difficulties mentioned above.  

Strohmeier et al. applied a similar technique to modeling 13C and 15N magnetic-

shielding tensors, and 14N quadrupolar-coupling tensors in amino acid crystals [43]. 

Another common approach to calculation of magnetic shielding in a solid is to 

use periodic-boundary conditions (PBCs), as is done in the GIPAW method.  A review 

of applications of the GIPAW method has recently been presented [44], and a general 

outline of this computational approach has been discussed in Chapter 1.  One particular 

study by Johnston et al. applied the GIPAW approach to the prediction of the complete 

chemical-shift tensors for the 13C sites in 14 materials [9].  The results concluded that 

GIPAW calculations are demonstrably superior to isolated-molecule models for 

predicting 13C NMR magnetic-shielding tensors.  Isotropic chemical shifts were 

predicted with an accuracy of ± 1 ppm when systematic flaws in the calculations were 

removed through careful modeling of the results [9]. 

Despite the significant advances that have been made from GIPAW calculations 

of magnetic shielding, this approach has inherent limitations.  For example, the majority 

of calculations based on the GIPAW approach have been performed within the 

formalism of the generalized-gradient approximation (GGA).  Modern hybrid 
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functionals, which incorporate a portion of Hartree-Fock exchange, are known to 

improve calculations of atomization energies, ionization energies, and many other 

thermochemical properties [45].  Inclusion of this term also improves the quality of 

computed spectroscopic properties, including NMR parameters, due to the treatment of 

the band-gap problem [46-48].  However, Hartree-Fock exchange is difficult to 

implement in plane-wave calculations due to the appearance of a singularity that slows 

convergence [49].  Furthermore, GIPAW calculations of magnetic shielding are limited 

to lighter nuclei due to the inherent treatment of relativistic effects [27].  Thus, studies 

in the literature employing GIPAW are restricted to a limited range of model 

chemistries.   

A set of computational protocols that allows the implementation of modern 

model chemistries in the prediction of solid-state NMR parameters is, therefore, 

inherently valuable.  As discussed previously, a possible alternative to the GIPAW 

approach for modeling solid-state NMR parameters is to employ a cluster of molecules 

that sufficiently accounts for intermolecular interactions.  Cluster-based calculations 

have the advantage that they are not limited to periodic systems and can be applied to 

amorphous solids, nanostructures, surfaces, biological systems, and gas-phase 

aggregations of molecules [50].  Furthermore, cluster-based calculations can be 

implemented in many standard quantum-mechanical software packages where a wide 

array of model chemistries are available.  All of these considerations make an 

exploration of the advantages and limitations of cluster methodologies of fundamental 

importance. 

Despite the successes of early cluster-based calculations of chemical shifts, the 

selection of nearby molecules (or molecular fragments) that contribute substantially to 
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predicted magnetic shielding long appeared somewhat arbitrary, and depended, to a 

large extent, on chemical intuition for the judicious choice of which molecules to 

include in the cluster.  Clusters should be designed to reflect the lattice structure around 

the NMR-active nucleus.  For a molecular solid, a cluster can be defined by a shell of 

adjacent molecules around one central molecule.   

Calculations of magnetic shielding involves the evaluation of three-centered 

integrals of the general form: 

 ⟨𝜙𝑎|𝐿̂𝑘|𝜙𝑏⟩ ≠ 0 (Eq. 2.1) 

Here, 𝜙𝑎 and 𝜙𝑏 are one-electron orbitals and 𝐿̂𝑘 is an angular-momentum operator with 

respect to either the magnetic field or the nuclear origin [51, 52].  The angular 

momentum operators belong to the same irreducible representations as the rotational 

operators of group theory (𝑅̂𝑘) [53]: 

 Γ(𝐿̂𝑘) = Γ(𝑅̂𝑘) (Eq. 2.2) 

The effect of 𝐿̂𝑘 operating on an orbital can be visualized as the rotation of the orbital 

around a particular axis.  Qualitatively, the point group of a molecule can be used to 

predict the symmetry-allowed mixing of orbitals that contribute to the calculated 

shielding.  When applied to crystalline systems, this fact suggests a strong dependence 

on both localized and extended rotational symmetry operations, which must be 

considered when designing a cluster to represent the solid-state environment.  In a 

crystalline solid, the space group gives the symmetry elements of the simplest repeating 

unit.  In analogy to the symmetry arguments for predicting magnetic shielding in 

isolated molecules, it is proposed that, for a cluster to represent the solid-state 

environment sufficiently well, all rotational symmetry elements of the space group must 
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be present in the cluster.  This approach is hereafter referred to as the symmetry-adapted 

cluster (SAC) ansatz. 

The simplest method to maintain space-group symmetry in a cluster model is to 

preserve all symmetry requirements from the perspective of a single molecule located 

at the center of the cluster.  Thus, a material belonging to a spherical space group would 

be represented by a cluster belonging to a spherical point group, where the central 

molecule is surrounded by a spherical shell of peripheral molecules. 

 

 

Figure 2.1.  (a) Cluster of β-D-fructopyranose in the space group P212121 containing 

fifteen molecules.  (b)  Cluster of methyl β-D-xylopyranoside in the space group P21 

containing thirteen molecules.  (c)  Cluster of γ-glycine in the space group P32 

containing fifteen molecules. 

The simplest cluster that can sufficiently account for all lattice effects must have 

a unique constitution that depends on the space group of the material.  For example, the 

P212121 space group maintains spherical symmetry around the central molecule.  The 

elimination of any of the three C2 rotational axes in the cluster reduces the symmetry to 

oblate or prolate spheroidal symmetry.  All example clusters from the P212121 space 
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group in this study contain between thirteen and fifteen complete molecules that 

maintain the symmetry.  A cluster of β-D-fructopyranose molecules is shown in Figure 

2.1(a) as a representation of this space group.  The P21 space group is a subgroup of 

P212121, which has only one C2 axis and no other rotational symmetry elements.  Shown 

in Figure 2.1(b) is a cluster built from thirteen molecules of methyl β-D-xylopyranoside 

that maintains the symmetry.   The P32 space group contains C3 and C3
2 elements as 

shown in Figure 2.1(c) for α-glycine.  The cluster is built from fifteen complete 

molecules and maintains the proper symmetry.  As a final example, acenaphthene 

belongs to the space group Pmc21, which has a single C2 rotational axis and two mirror 

planes.  Figure 2.2 shows two orientations of a model cluster that contains fifteen 

complete acenaphthene molecules and maintains the symmetry.  A different σv plane is 

apparent in each panel and the C2 axis can be seen in both.  

 

Figure 2.2.  Two orientations of a cluster of acenaphthene in the space group Pmc21 

containing fifteen molecules. 
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2.2 Materials, Computational Details, and Analysis 

In this study, twenty-four organic materials were selected that have both 

accepted single-crystal neutron diffraction structures and measurements of the principal 

components of the 13C chemical-shift tensors with small associated uncertainties.  The 

majority of chemical-shift principal components in this study have been measured to 

within ± 1.0 ppm and the maximum quoted uncertainty of any single value is ± 4.1 ppm.  

The specific materials investigated in this study are methyl α-D-glucopyranoside [54, 

55], methyl α-D-mannopyranoside [54, 55], methyl α-D-galactopyranoside 

monohydrate [54, 56], methyl β-D-galactopyranoside [54, 57], methyl β-D-

xylopyranoside [54, 58], sucrose [59, 60], α-L-rhamnose monohydrate [61, 62], β-D-

fructopyranose [63, 64], α-glycine [65, 66], γ-glycine [67, 68], L-alanine [69, 70], L-

serine monohydrate [71, 72], L-asparagine monohydrate [73, 74], L-threonine [75, 76],  

oxalic acid dihydrate [77, 78], squaric acid [79, 80], naphthalene [81, 82], durene [83, 

84], triphenylene [85, 86], acenaphthene [87, 88], pentaerythritol [89, 90], adenosine 

[39, 91], acetaminophen (form I) [92, 93], and ibuprofen (form I) [94, 95].  Descriptions 

of the model clusters are provided in Table 2.1.   
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Table 2.1.  Crystal structures and cluster compositions for materials examined in this 

study. 

Compound Space Group Cluster Composition 

L-alanine P212121 13C3H7NO2 

L-asparagine monohydrate P212121 15C4H8N2O3·6H2O 

L-serine monohydrate P212121 11C3H7NO3·8H2O 

L-threonine P212121 15C4H9NO3 

Methyl α-D-galactopyranoside monohydrate P212121 15C7H14O6·6H2O 

Methyl α-D-glucopyranoside P212121 15C7H14O6 

Methyl α-D-mannopyranoside P212121 13C7H14O6 

Methyl β-D-galactopyranoside P212121 15C7H14O6 

Triphenylene P212121 15C18H12 

β-D-fructopyranose P212121 15C6H12O6 

Acenaphthene Pcm21 15C12H10 

Adenosine P21 15C10H13N5O4 

Methyl β-D-xylopyranoside P21 13C6H11O5 

Sucrose P21 13C12H22O11 

α-L-rhamnose monohydrate P21 15C6H12O5·6H2O 

Acetaminophen P21/a 15C8H9NO2 

Durene P21/a 15C10H14 

Naphthalene P21/a 13C10H8 

Ibuprofen P21/c 15C13H18O2 

Squaric acid P21/c 17C4H2O4 

Oxalic acid dihydrate P21/n 15C2O4H2·20H2O 

α-glycine P21/n 15C2H5NO2 

γ-glycine P32 15C2H5NO2 

Pentaerythritol I4̅ 13C5H12O4 

 

 

Beginning with neutron-diffraction structures, proton positions were optimized 

on an isolated molecule at the B3LYP level of theory using the 6-31G(d) basis set [96-
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98].  In the partial geometry optimizations, all heavy atoms remained frozen in their 

experimental positions, as did all hydrogen atoms participating in intermolecular 

hydrogen bonding.  This feature of the optimization was especially important for 

saccharides, which are distorted from the ideal staggered conformation. Optimizing 

these sites would have eliminated this important structural feature.  Periodic plane-wave 

geometry optimizations were performed on adenosine, acetaminophen, ibuprofen, and 

-glycine using the energy-minimization method of Broyden, Fletcher, Goldfarb, and 

Shanno, as implemented in the CASTEP module of MATERIALS STUDIO 6.1 by Accelrys 

Software, Inc [99].  Optimizations were performed at the PBE/ultra-fine level of theory 

with a plane-wave cutoff energy of 610 eV and a k-point spacing of 0.07 Å-1 [100].  The 

unit cell dimensions remained fixed during the structural refinements because these 

parameters are well-known from experiment. 

Magnetic-shielding tensors were computed using the GIAO method with the 

B3PW91 functional, Becke’s three-parameter hybrid functional where the non-local 

correlation is provided by the PW91 gradient-corrected functional [101].   Calculations 

were performed using a two-layer approach, in which a more flexible basis set was given 

to the molecule of interest (the central molecule of the cluster) than was given to the 

neighboring molecules in the cluster.  Dunning’s correlation-consistent basis set cc-

pVTZ was used for the central molecule and cc-pVDZ was used for peripheral 

molecules (Figure 2.3) [102].  13C magnetic-shielding calculations were also performed 

on single refined molecules taken in isolation, as a means to examine intermolecular 

effects on the magnetic shielding.  All calculations of 13C magnetic-shielding tensors 

were performed using GAUSSIAN 09 [103]. 
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Figure 2.3.  Cluster of β-D-fructopyranoside illustrating the partitioning of the basis set 

into locally dense (cc-pVTZ) and locally sparse (cc-pVDZ) layers. 

NMR experiments yield a shift in the frequency of the resonance of a particular 

chemical species relative to an arbitrary reference material, rather than the absolute 

shielding relative to the bare nucleus.  For 13C, chemical shifts are typically referenced 

to the resonance position of tetramethylsilane (TMS), whose principal components are 

all the same in solution because of the effective symmetry caused by rapid motional 

averaging.  The correlation between experimental chemical shifts (𝛿𝑖𝑖
𝑒𝑥𝑝

) and calculated 

magnetic shieldings (𝜎𝑖𝑖) is linear with a proportionality constant m, and an intercept 

that is the absolute chemical shielding of TMS: 

 σ𝑖𝑖 = 𝑚𝛿𝑖𝑖
𝑒𝑥𝑝 + σTMS (Eq. 2.3) 

I use as a reference in our calculations the intercept derived from the linear 

regression of a correlation plot.  Ideally, |m| should be 1.00, with deviations reflecting 
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systematic flaws in the method of calculating the shielding tensor [11].  With knowledge 

of the reference shielding and slope, all magnetic-shielding components can be 

expressed as their equivalents on the chemical-shift scale (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐), for comparison to 

experiment: 

 𝛿𝑖𝑖
𝑐𝑎𝑙𝑐 =

𝜎𝑖𝑖 − 𝜎𝑇𝑀𝑆
𝑚

 (Eq. 2.4) 

In addition, to quantify the data scatter of the set of calculations, we use the root-mean-

square deviation (RMSD) of the set: 

 𝑅𝑀𝑆𝐷 = √
1

𝑁 − 2
∑ (𝛿𝑖𝑖

𝑐𝑎𝑙𝑐 − 𝛿𝑖𝑖
𝑒𝑥𝑝)

2𝑁

𝑛=1
 (Eq. 2.5) 

where N is the total number of chemical-shift-tensor components. 

2.3 Results and Discussion 

2.3.1 Size Requirements for Molecular Clusters 

This section explores variations in computed magnetic-shielding parameters 

with cluster size.  To assess this effect, 13C magnetic-shielding tensors of nuclei in 

isolated molecules, and that of molecules in clusters, have been calculated as a function 

of cluster size to demonstrate that the calculated shielding parameters tend to converge 

to a constant set of values.  At this limit, the cluster model can be said to represent the 

lattice structure sufficiently.  It should be noted that the purpose of this discussion is to 

illustrate the convergence of computed NMR parameters with respect to cluster size, 

not to illustrate the size of cluster yields the best agreement with experiment. 
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Table 2.2. 13C Principal magnetic-shielding values for oxalic acid dihydrate as a 

function of cluster size.  The differential quantifies differences in computed principal 

values between different sizes of clusters. 

Cluster Composition 
σ11 σ22 σ33 σiso Differential 

(ppm) (ppm) (ppm) (ppm) (ppm) 

C2O4H2 -80.3 75.9 84.7 26.8 - 

3C2O4H2·6H2O -72.8 56.8 78.4 20.8 12.4 

11C2O4H2·12H2O -70.9 54.7 77.6 20.4 1.7 

15C2O4H2·20H2O -69.4 51.9 77.0 19.8 1.9 

21C2O4H2·26H2O -70.3 52.3 77.9 19.9 0.8 

 

 

Tables 2.2 and 2.3 show the effect of cluster size on the computed principal 

components of 13C magnetic-shielding tensors in oxalic acid dihydrate and squaric acid, 

respectively.  Differences in shielding between each subsequent size of cluster are 

quantified by the differentials displayed in these tables.  Shielding constants tends to 

converge smoothly.  In the case of oxalic acid dihydrate, convergence appears to be 

achieved with the two largest clusters, as the differential for the single carbon site is 

only 0.8 ppm.  For squaric acid, the differentials between the two largest clusters range 

between 1.3 ppm and 0.8 ppm for the four carbon sites.  From these observations, it is 

clear that clusters must be large to account for intermolecular effects properly. 
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Table 2.3.  13C Principal magnetic-shielding values for squaric acid as a function of 

cluster size.  The differential quantifies differences in computed principal values 

between different sizes of clusters. 

 

Cluster Composition Site 
σ11 σ22 σ33 σiso Differential 

(ppm) (ppm) (ppm) (ppm) (ppm) 

C4H2O4 C1 -68.4 -34.8 103 -0.1 - 

 C2 -66.9 -30.7 98.3 0.2 - 

 C3 -97.7 15.9 66.4 -5.1 - 

  C4 -97.2 1.3 69.6 -8.8 - 

9C4H2O4 C1 -74.4 -51.3 100.4 -8.4 10.2 

 C2 -65.8 -44.7 99.6 -3.6 8.1 

 C3 -93.3 -12.2 71.8 -11.2 16.7 

  C4 -97.1 -9.6 72.8 -11.3 6.6 

13C4H2O4 C1 -69.1 -50.8 94.2 -8.6 4.7 

 C2 -64.2 -54.8 96.8 -7.4 6.1 

 C3 -83.6 -29.3 80.4 -10.8 12.4 

  C4 -86.8 -25.1 78.6 -11.1 11.3 

17C4H2O4 C1 -67.0 -51.5 93.7 -8.3 1.3 

 C2 -63.1 -54.1 96.3 -7.0 0.8 

 C3 -84.5 -27.9 79.3 -11.0 1.2 

  C4 -87.6 -24.4 77.6 -11.5 0.8 

 

 

2.3.2 Symmetry Requirements for Molecular Clusters 

Another aspect of solid-state magnetic-shielding calculations is the difficulty of 

ensuring that the cluster reflects all symmetry elements associated with the space group 

of the material.  Artifacts may be introduced into a computational result by designing a 

cluster that does not maintain the symmetry elements of the crystalline space.  To 
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illustrate this point, we present calculated magnetic-shielding principal components for 

the carbon sites of pentaerythritol.  Pentaerythritol belongs to the I4̅ space group, which 

contains C2, S4, and S4
3 symmetry elements.  The magnetic shielding from a model 

having the appropriate symmetry exhibits axial symmetry at the quaternary carbon site.  

When the symmetry is not fully realized, the principal components differ by a sizable 

amount (Table 2.4). 

The two clusters for which the data in Table 2.4 were calculated were designed 

from the diffraction structure (Figure 2.4).  The first cluster contained thirteen molecules 

in a manner that preserved all symmetry elements of the crystalline space group.  The 

second cluster was designed from only nine molecules, with the effect of removing the 

inversion center inherent in the crystalline space group.  This smaller cluster is labeled 

as a quasi-I4̅ cluster, reflecting the difference from the actual crystalline symmetry.  As 

is clearly evident in Table 2.4, calculations on the first (I4̅) cluster predict the axial 

symmetry of the quaternary carbon (site A), whereas calculations on the second cluster 

do not.  In particular, the quasi-I4̅ cluster predicts a skew of whereas the I4̅ 

cluster predicts   The latter value is in agreement with experiment. 
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Table 2.4.  Calculated chemical-shift tensors for pentaerythritol using clusters with 

the experimental crystalline space group (I4̅) and a space group of reduced symmetry 

(quasi-I4̅). 

 
Model 

11 22 33 


  (ppm) (ppm) (ppm) (ppm) 

Site A Exp. - - - 14.6 -1.00 
 Quasi-I4̅ 123.9 141.2 144.1 20.2 -0.71 

 I4̅ 126.0 140.5 140.5 14.5 -1.00 

Site B Exp. - - - 76.9 0.37 
 Quasi-I4̅ 92.5 114.6 172.7 80.5 0.45 

  I4̅ 89.3 116.6 170.0 80.7 0.32 

 

 

Figure 2.4.  Two example clusters of pentaerythritol.  Cluster A is built from thirteen 

complete molecules and maintains all of the symmetry elements of the I4̅ space group.  

Cluster B is built from nine molecules and lacks several symmetry elements of the space 

group. 
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2.3.3 Locally-Dense Basis Sets 

The use of locally dense, rather than balanced, basis functions allows 

calculations to be performed on large clusters, which otherwise would be prohibitively 

expensive.  The use of locally dense basis functions in magetic-shielding calculations 

has been surveyed by Chesnut and co-workers [104, 105].  A more comprehensive 

modern survey of the subject has been provided by Reid [106].  These studies 

demonstrate that only small discrepancies appear between locally dense and balanced 

basis sets for 13C, provided a sufficiently large basis set is employed in the dense region. 

Some of the largest clusters in this study contain up to seven thousand Cartesian 

basis functions, although a smaller basis set (cc-pVDZ) is used for peripheral molecules.  

The 13C magnetic shielding of oxalic acid dihydrate, the smallest molecule in this study, 

serves as a basis for comparison because the magnetic shielding of the carbon site can 

be calculated using the large basis set (cc-pVTZ) for all atoms.  Differences in magnetic-

shielding principal components between balanced and locally-dense basis functions are 

given in Table 2.5.  The differences in computed magnetic shielding between the two 

basis-set partitioning schemes are under 1.5 ppm, and the overall residual between the 

two schemes is only 1.1 ppm.  This indicates that the increase in computational 

efficiency outweighs the loss of accuracy associated with the smaller basis set. 
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Table 2.5.  Comparison of locally dense and balanced basis sets for calculating the 
13C chemical shielding of oxalic acid dihydrate using the cluster 15C2O4H2·20H2O. 

 

Method 
σ11 σ22 σ33 σiso 

(ppm) (ppm) (ppm) (ppm) 

Locally Dense -69.4 51.9 77.0 19.8 

Balanced -67.9 50.9 77.8 20.3 

Differencea -1.5 1.0 -0.7 -0.5 
aLocally dense shielding minus balanced shielding. 

 

2.3.4 Relationship between Calculated and Experimental Results 

Figure 2.5 shows correlation plots for the calculated magnetic-shielding 

principal components versus experimental chemical-shift principal components for 155 

unique 13C lattice sites.  Figures 2.5(a) and 2.5(b) show results for the isolated-molecule 

model and the cluster model, respectively.  Figure 2.6 provides the relationship between 

the isotropic magnetic shieldings and isotropic chemical shifts.  A summary of linear-

regression parameters and statistical data associated with the relationship of the 

principal components of magnetic-shielding tensors and the principal components of 

chemical-shift tensors is provided in Table 2.6.  The RMSDs for these two models of 

9.5 ppm (isolated-molecule model) and 3.4 ppm (cluster model) indicate that the cluster 

model is significantly superior to the isolated-molecule model.  The deviation from the 

ideal slope in the cluser model (1.035 ± 0.002) may reflect the choice of exchange-

correlation functional and basis set employed in the calculation.  The RMSD of the 

cluster model (3.4 ppm) represents less than 1% of the possible 13C chemical-shift 

dispersion (approximately 500 ppm), indicating that this method is a powerful, 
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quantitative predictor of chemical-shift values.  Every calculated value obtained by the 

cluster method agrees with experiment to within 5% of the possible chemical-shift 

range.  Figure 2.7. shows the correlation in errors associated with chemical shifts 

calculated with the two methods.  As is evident in the figure, errors in the isolated-

molecules model tend to be more widely distributed. 

It is sometimes assumed that one should correlate various subpopulations of 

carbons separately [107].  The set in this study consists of subpopulations of aliphatic, 

aromatic and carboxylic carbon sites.  In particular, it is assumed that different kinds of 

intermolecular interactions affect the magnetic shielding at these sites differently.  Table 

3.6 presents linear-regression parameters and statistical data for the relationship 

between calculated magnetic-shielding tensor principal values and experimental 

chemical-shift tensor principal values for these three subpopulations.  For aliphatic 

carbons, comparison of the RMSDs of the two models (3.2 ppm and 2.2 ppm, 

respectively) suggests that the cluster model is superior for the prediction of aliphatic 

chemical shifts.  This change of 1.0 ppm is more impressive when one considers that it 

represents an average change of the calculated values in the correct direction for 258 

principal components.  The single largest deviation between the cluster model and 

isolated-molecule models for an aliphatic principal component is 13.6 ppm.   

As with the aliphatic carbons, the comparison of the RMSDs (5.1 ppm and 4.3 

ppm, respectively) for the aromatic carbons shows that a cluster model is slightly better 

than the isolated-molecule model.  As in the previous case, the decrease in the RMSD 

of 0.8 ppm reflects an average change over 165 principal components.  Many individual 

values are relatively unchanged by the inclusion of intermolecular effects, whereas 
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others, such as a σ22 value in the heterocyclic ring of adenosine, are changed up to 18.5 

ppm. 

Finally, the results for carboxylic carbons again demonstrate that the cluster 

model improves the predictive capability over the isolated-molecule model. The 

isolated-molecule model’s RMSD of 25.9 ppm is substantially larger than the RMSD 

of 4.5 ppm for the cluster model.  Additionally, the projected shielding of the reference 

compound of 202 ± 13 ppm predicted by the isolated-molecule model is substantially 

different from the 187 ± 2 ppm predicted by the cluster model.  This latter value is more 

in line with reference shieldings derived from the cluster model for the other two carbon 

subpopulations (186.0 ± 0.3 and 187.3 ± 0.6 predicted for the aliphatic and aromatic 

subpopulations, respectively). 

 The correlations for aliphatic, aromatic, and carboxylic carbons in the 

cluster model are sufficiently close that one may consider, within uncertainty, that they 

all follow a single correlation, with a low RMSD of 3.4 ppm.  Perhaps this is the 

strongest indicator of the importance of incorporating the extended local structure into 

any calculations of the magnetic-shielding tensor of a carbon site in the solid state.  In 

contrast, it has been noted in studies employing GIPAW calculations that distinct carbon 

species belong to separate subpopulations with statistically-different sets of linear-

regression parameters [107].  This trend is notably absent in the results presented here, 

suggesting that symmetry-adapted cluster models, combined with a suitable model 

chemistry, are able to correct systematic errors that sometimes appear in GIPAW 

calculations of magnetic-shielding tensors.  This observation is discussed in further 

detail in Chapter 4. 
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Figure 2.5. Correlation plots for calculated principal components of magnetic-shielding 

tensors versus experimental principal components of chemical-shift tensors.  Aliphatic 

carbons principal components are in blue, aromatic principal components are in red, and 

carboxylic principal components are in green.  Results in (a) are from the isolated-

molecule models and results in (b) are from the cluster models. 
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Figure 2.6. Correlation plots for calculated isotropic magnetic shieldings versus 

experimental isotropic chemical shifts.  Aliphatic carbons shifts are in blue, aromatic 

shifts are in red, and carboxylic shifts are in green.  Results in (a) are from the isolated-

molecule models and results in (b) are from the cluster models. 
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Table 2.6.   Linear-regression parameters for 13C principal magnetic-shielding values 

versus principal chemical-shift values for isolated molecules, clusters, and plane-

wave optimized clusters. 

 

  

Model 

  

N-2 |m| 

σTMS RMSD Max.a 

(ppm) (ppm) (ppm) 

All Carbons 

Isolated 

463 

1.010 ± 0.006 184.5 ± 0.8 9.5 62.6 

Cluster 1.035 ± 0.002 186.1 ± 0.3 3.4 17.2 

Cluster, Opt. 1.039 ± 0.002 186.4 ± 0.3 3.5 18.1 

Aliphatic Carbons 

Isolated 

256 

1.069 ± 0.007 187.2 ± 0.5 3.2 11.2 

Cluster 1.040 ± 0.005 186.0 ± 0.3 2.2 9.3 

Cluster, Opt. 1.052 ± 0.005 186.9 ± 0.4 2.3 9.0 

Aromatic Carbons 

Isolated 

163 

1.020 ± 0.005 185.3 ± 0.7 5.1 17.5 

Cluster 1.042 ± 0.004 187.3 ± 0.6 4.3 17.0 

Cluster, Opt. 1.043 ± 0.007 187.3 ± 0.7 4.6 18.3 

Carboxylic Carbons 

Isolated 

40 

1.06 ± 0.07 202 ± 13 25.9 52.0 

Cluster 1.03 ± 0.01 187 ± 2 4.5 9.2 

Cluster, Opt. 1.03 ± 0.01 186 ± 2 4.3 9.4 
aMaximum error in any principal value. 

 



 62 

 

Figure 2.7.  Correlation of errors in calculated 13C chemical-shift tensor principal values 

between cluster models and isolated-molecule models.  The dotted black line represents 

an ideal one-to-one relationship between errors in the two methods whereas the red line 

represents the best-fit relationship. 

2.3.5 Analysis of Magnetic Shielding Principal Components 

Table 2.7 summarizes RMSDs associated with the prediction of each principal 

component of the aliphatic, aromatic, and carboxylic 13C chemical-shift tensors.  In 

every case, the RMSDs of each principal component of each type of carbon demonstrate 

that the cluster model is closer to the experimental value than the corresponding 

component calculated with the isolated-molecule model, except for the σ11 values of the 

aromatic sites.  A more detailed summary of this analysis is found in Figures 2.8 – 2.10, 

which provides a comparison of calculations of shielding for each of the principal 

components for the three carbon subpopulations, as obtained by the two models. 
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For aliphatic species, deviations fall between 2.0 ppm (σ22) and 2.3 ppm (σ11 and 

σ33) for cluster models.  However, the RMSDs vary for the principal components of the 

aromatic and carboxylic sites.  For aromatic carbons, the principal components are 

generally aligned such that σ11 is along the C-H bonding axis, σ22 is perpendicular to the 

bonding axis and in the plane of the ring, and σ33 is perpendicular to the plane of the 

ring.  Of these values, σ22 seems to be most strongly influenced by intermolecular 

effects.  For each carboxylic principal component, the disagreement between 

experiment and calculation is greatly reduced by the inclusion of intermolecular effects, 

with RMSDs ranging between 4.2 ppm (σ33) and 5.4 ppm (σ22).  The principal axes at 

carboxylic sites generally do not align with the bonding axes, leading to large changes 

for each principal component when intermolecular effects are incorporated.  The most 

shielded element is generally aligned approximately perpendicular to the bonding axis, 

resulting in substantial differences for σ11 and σ22 and relatively small changes for σ33. 

The most significant discrepancies between isolated-molecule models and 

cluster models are seen for σ22 values of carboxylic carbons.  For example, σ22 of L-

alanine differs from experiment by 62.6 ppm in the isolated-molecule model, but only 

by 6.7 ppm in the cluster model.  σ11 and σ33 also differ from experiment for L-alanine 

by 17.0 ppm and 7.1 ppm in the isolated-molecule model, respectively, whereas in the 

cluster model there are deviations of only 3.5 ppm and 1.0 ppm, respectively.  This fact 

further indicates that the isolated-molecule model does not give an accurate 

approximation of magnetic shielding caused by the local structure of a carboxyl group 

in the solid state.   For all cases where intermolecular hydrogen bonding is present, we 

find the same effects as are observed for L-alanine.  Calculations on the amino acids 

employing isolated molecules predict that the 13C magnetic-shielding tensor for the 
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carboxylic sites have nearly axial symmetry, whereas in cluster models, the carboxylic 

sites have nearly radial symmetry.  The observed experimental results suggest that the 

radial symmetry is more appropriate. 

Table 2.7. Root-mean-square deviation (RMSD) between calculated and 

experimental chemical shifts modeled using isolated molecules, clusters, and plane-

wave optimized clusters. 

 

Model 
All σ11 σ22 σ33 σiso 

(ppm) (ppm) (ppm) (ppm) (ppm) 

All Carbons 

Isolated 9.5 7.0 14.2 4.6 3.6 

Cluster 3.4 4.0 3.1 3.1 1.6 

Cluster, Opt. 3.5 3.9 3.2 3.4 1.7 

Aliphatic Carbons 

Isolated 3.2 3.4 2.9 3.3 3.2 

Cluster 2.2 2.3 2.0 2.3 1.4 

Cluster, Opt. 2.3 2.3 2.0 2.3 1.6 

Aromatic Carbons 

Isolated 5.1 5.3 5.6 4.5 1.4 

Cluster 4.3 5.6 3.6 3.8 1.5 

Cluster, Opt. 4.6 5.4 3.8 4.5 1.6 

Carboxylic Carbons 

Isolated 25.9 21.6 38.9 16.1 4.3 

Cluster 4.6 4.8 5.5 3.8 3.0 

Cluster, Opt. 4.5 4.6 4.9 3.8 3.0 
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Figure 2.8.  Relationship between calculated principal components of 13C magnetic-

shielding tensors and experimental 13C chemical-shift tensors of aliphatic carbon sites.  

The panels display values for each of the principal values: (a) 11, (b) 22, and (c) 33.  

Results obtained using cluster models are shown as solid blue points whereas results 

obtained using isolated-molecule models are shown as black crosses. 
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Figure 2.9.  Relationship between calculated principal components of 13C magnetic-

shielding tensors and experimental 13C chemical-shift tensors of aromatic carbon sites.  

The panels display values for each of the principal values: (a) 11, (b) 22, and (c) 33.  

Results obtained using cluster models are shown as solid red points whereas results 

obtained using isolated-molecule models are shown as black crosses. 
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Figure 2.10.  Relationship between calculated principal components of 13C magnetic-

shielding tensors and experimental 13C chemical-shift tensors of carboxylic carbon sites.  

The panels display values for each of the principal values: (a) 11, (b) 22, and (c) 33.  

Results obtained using cluster models are shown as solid red points whereas results 

obtained using isolated-molecule models are shown as black crosses. 
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The mean absolute deviations (MADs) between computed magnetic-shielding 

values for isolated-molecule models and cluster models are given in Table 2.8.  

Deviations are given for each principal component of the magnetic-shielding tensor.  

For aliphatic species, the three principal components deviate between 1.9 ppm and 2.3 

ppm, indicating that no single direction is significantly more influence by neighboring 

molecules than the others, on average.  All calculated principal components agree 

equally well with experimental values.  For the aromatic species, both σ11 and σ33 deviate 

by approximately the same amount (2.0 ppm to 2.8 ppm); however, σ22 deviates by 5.0 

ppm, demonstrating that intermolecular effects tend to affect this particular principal 

component more than the others.  For carboxylic carbons, the deviations are much 

larger, with the largest differences associated with σ22.  For this principal component, 

the principal axis for which lies near the intermolecular hydrogen-bonding axis, the 

MAD is 42.6 ppm.  A much smaller MAD is seen for σ33 (4.4 ppm), the principal axis 

for which lies perpendicular to the bonding plane. 

Table 2.8.   Mean-absolute deviation (MAD) between calculated magnetic shielding 

of cluster models and isolated-molecule models.a 

 
 All σ11 σ22 σ33 σiso 

  (ppm) (ppm) (ppm) (ppm) (ppm) 

All Carbons 4.2 3.1 6.7 2.9 2.2 

Aliphatic Carbons 2.3 2.0 1.9 2.8 1.7 

Aromatic Carbons 3.3 2.0 5.0 2.8 1.4 

Carboxylic Carbons 20.3 12.5 42.6 5.3 9.6 

a𝑀𝐴𝐷 = √(𝜎𝑖𝑖
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − 𝜎𝑖𝑖

𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑)
2
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2.3.6 Effects of Plane-Wave Structural Refinements on Calculated Shielding 

The largest residuals calculated in this study are observed for acetaminophen, 

adenosine, ibuprofen, and α-glycine.  Most anomalous results arise for the principal 

components in the planes of aromatic rings (when present in the structure).  Several 

residuals are greater than 10 ppm.  Because these residuals are much larger than those 

for other materials examined, we hypothesize that they may have arisen from 

rovibrational effects in the structures of molecules obtained through neutron diffraction. 

Crystal-structure refinements have been monitored through agreement between 

calculated and experimental 13C chemical-shift tensors [9, 92].  Studies have shown that 

plane-wave DFT structural refinements can produce modest improvements in predicted 

magnetic shieldings over results obtained from unrefined coordinates determined by 

neutron diffraction, in some cases.  To examine if these effects are significant in the 

present cases, we determined the effects of plane-wave optimizations on computed 13C 

magnetic-shielding principal components of acetaminophen, adenosine, ibuprofen, and 

α-glycine.  The linear-regression results incorporating the optimized structures are 

included in Tables 2.6 and 2.7.  Optimized and un-optimized linear-regression 

parameters are essentially in agreement.   

The RMSDs associated with the structures where all atomic positions were 

refined are slightly higher than that of the structures where only the hydrogen positions 

were refined, except for carboxylic sites, which were modestly improved.  The RMSD 

of σ22 values of carboxylic sites decreases from 5.5 ppm to 4.9 ppm when optimization 

is performed.  The improvement is attributed to a better representation of the hydrogen 

bonds.  We conclude that the positions of hydrogen sites that do not participate in 

hydrogen bonds can be refined using partial optimizations involving isolated molecules 

and that introducing repositionings of the structure around the heavy atoms sometimes 
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degrades the quality of the structural data, except in cases where intermolecular 

hydrogen-bonding is present. 

Some of the largest differences between calculated and experimental chemical-

shift values can be attributed to motional averaging of experimental chemical shifts that 

are not accounted for in static computational models.  Rovibrational effects tend to 

reduce calculated magnetic-shift anisotropies by averaging over many possible 

orientations [108].  In the majority of cases where large residuals were encountered in 

this study, the calculated residuals for σ11 and σ33 had opposite signs.  It is possible to 

address internal rotations by averaging over a series of single-point magnetic-shielding 

calculations for structures derived from either classical or ab initio molecular dynamics 

(MD) simulations.  The former method has been employed to study the effects of 

solvation on the magnetic shielding of ions, whereas the latter has been used to account 

for motion in crystalline systems or proteins [109-114].  In the case of ibuprofen, multi-

point studies have been used to improve the correlation with experiment by introducing 

thermal motion in the form of librations in the phenyl ring and bending modes for the 

C-H bonds [94]. 

The largest discrepancies between experimental principal components and 

calculated principal components using cluster models for carboxylic sites are for the 

components whose principal axes lie nearest to the hydrogen bonding axis.  These large 

deviations can be explained by assuming a dynamic effect involving the hydrogen atoms 

[115]. 

As another example, σ22 for aromatic carbons were not calculated as accurately 

as the other two principal components.  It has previously been suggested that large 

residuals associated with σ22 may result from motion of the C-H bond [116].  In nearly 
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every case, the calculated values of σ22 are slightly smaller than the experimental value.  

Furthermore, the agreement of calculated σ11 values for aromatic carbons with 

experimental chemical shifts is generally worse when one includes intermolecular 

effects, and is only marginally improved following geometry optimizations.  This 

observation suggests that rovibrational effects influence this principal component at 

least as strongly as intermolecular effects, and that the two contributions may partially 

cancel one another in static, isolated-molecule models. 

2.4 Conclusions 

The inclusion of intermolecular effects on calculated 13C magnetic shielding has 

been evaluated using density-functional theory for a representative set of organic 

materials having well-defined atomic coordinates and experimental chemical-shift-

tensor components.  Molecular clusters and isolated molecules were used to model the 

solid materials.  A comparison of the calculations for the two models shows that cluster 

models, when properly chosen to take into account the properties of the material, 

provide systematic improvement over the results of the isolated-molecule model. 

One aspect of the problem which this investigation emphasizes is that, with 

cluster models, one can partition the model structure into regions with locally-dense 

basis sets and regions with sparse basis sets.  This approximation greatly reduces the 

computational cost without a significant effect on the calculated magnetic shielding.  

Such a method allows calculations to be performed on larger clusters, which would 

otherwise be prohibitively expensive.  Magnetic shielding is strongly influenced by 

cluster size, but shielding tends to converge smoothly when the number of molecules in 

the cluster is increased.  Clusters that provide converged, or nearly converged, results 

can be handled with current software capabilities. 
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This analysis demonstrates the importance of size and symmetry considerations 

when defining a molecular cluster.  Clusters should not be defined arbitrarily so that, 

for instance, only molecules participating in direct hydrogen bonds are included, 

because this may exclude other important intermolecular interactions.  Instead, clusters 

should be defined so as to reflect the symmetry of the crystalline space group.  Judicious 

placement of molecules in a cluster to represent the solid state seems to be of 

considerable importance in obtaining quantitative results. 

The results here strongly suggest that modeling the solid state with extended 

molecular clusters is a viable alternative to the use of PBCs.  Cluster models have 

several inherent advantages over the latter, including the ability to compare results to 

isolated-molecule calculations, the possibility of simplification of calculation by using 

lower basis sets in regions removed from the molecule of interest, general applicability 

to non-periodic systems, and the ability to exploit additional model chemistries such as 

hybrid exchange-correlation functionals and ab initio methods. 
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Chapter 3 

CARBON-13 CHEMICAL-SHIFT TENSORS IN INDIGO: A TWO-

DIMENSIONAL NMR-ROCSA AND DFT STUDY 

 

3.1 Introduction 

Indigo, 2,2’-bis(2,3-dihydro-3-oxoindolyliden), is a blue dye with technological, 

industrial, cultural, and biological significance [1].  The molecular structure and atom-

labeling scheme of indigo are given in Figure 3.1.  Traditionally, indigo has been 

obtained as a tryptophan-derived natural product extracted from tropical plants.  The 

synthesis of indigo has been important in the history of industrial chemistry through 

processes such as those developed by Baeyer [2-4], including the Baeyer-Drewson 

reaction [5], and later synthetic routes appropriate to large-scale production by 

Heumann [6] and by Pfleger [7].  Other than its use as a textile dye, indigo and its 

derivatives have been used as components of organic semiconductors [8-10]. 

NMR spectroscopy has been used in combination with computational chemistry 

to study the interaction between indigo molecules and porous clays [11-16].  

Complexation of indigo derivatives with model fibers has been the subject of 

investigation by NMR spectroscopy [17, 18].  Chemical analyses of cultural heritage 

objects with NMR spectroscopy have detected indigo [18, 19].  NMR has been used to 

study the biodegradation of indigo dye and its derivatives [20, 21], as well as  the 

biosynthesis of indigo and indigo precursors in plants [22] and bacteria [23]. 
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Figure 3.1.  Structures of indigo (upper left), hypoxanthine (lower left), and adenosine 

(right).  The labeling schemes for the aromatic carbon sites are shown. 

The ubiquity of indigo makes it an excellent model for the study of indole rings, 

which are found in such places as the amino acid tryptophan and its derivatives.  Carbon-

13 chemical-shift tensors have not been reported for carbons in indole rings in any 

material containing such rings.  Careful measurements of the 13C chemical-shift 

parameters of crystalline indigo are important in understanding the crystalline structure, 

the molecular structure, and the electronic state of the solid.  An analysis of structural 

effects on the 13C chemical shifts of indigo may be of significance in the interpretation 

of NMR data on indole-containing materials like tryptophan. 

The link between chemical shifts and crystal structure is established through 

quantum-chemical calculations.  In this chapter, experimental 13C chemical-shift tensors 

for all sites in indigo are assigned to their respective lattice sites by comparison to 

calculated values.  Calculations are also performed on the purine derivative 

hypoxanthine, and the purine nucleoside adenosine, both of which are structurally 

similar to indigo (Figure 3.1). 
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3.2 Experimental Methods 

Measurements of the 13C chemical-shift tensors in indigo employed the 

recoupling-of-chemical-shift-anisotropy (ROCSA) sequence, a two-dimensional 

magic-angle-spinning (MAS) technique in which rotor-synchronized pulse sequences 

are used to obtain the recoupled powder patterns [24].  The ROCSA sequence is 

amenable to high-frequency MAS because the recoupling field is required to be only 

about four times the MAS frequency.  The technique was originally developed for the 

study of isotopically labeled proteins; however, ROCSA and related sequences have 

been applied in the analysis of organic systems other than peptides [25-28].  High-power 

decoupling of 1H spins used a sequence of 1H 90o pulses of 2.97 μs (SPINAL-64 at 100 

kHz).  The ROCSA sequence was rotor-synchronized with a MAS frequency of 10.0 

kHz.  32 t1 points, with 544 scans each, were collected with a 6.0 s recycle delay.  The 

isotropic chemical shifts were externally referenced to tetramethylsilane (TMS) using 

the amide carbon in α-glycine (176.5 ppm) as a secondary reference [29]. 

Principal components of the 13C chemical-shift tensors were extracted from the 

recoupled chemical-shift powder patterns using a numerical simulation with WSOLIDS 

[30], which identified the principal components of the chemical-shift tensors by 

searching for singularities in the derivative spectra.  The numerical simulations 

introduced an expansion factor of 0.272, as suggested by Chan and Tycko [24]. 

3.3 Computational Methods 

Predicted chemical-shift tensors were derived from DFT calculations on 

molecular clusters representing structures of the three solids.  The models of indigo, 

hypoxanthine, and adenosine were built from thirteen, eleven, and fifteen molecules, 

respectively (see Figure 3.2 for an illustration of the indigo cluster), to represent the 
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local lattice structure around a single molecule, in accordance with the symmetry-

adapted-cluster ansatz discussed in the preceding chapter.  The cluster models were 

based on single-crystal diffraction parameters [31-33].  Geometry optimizations to 

refine the atomic coordinates were performed using the cluster model with the PBE 

functional [34] and the cc-pVDZ basis set [35].  For adenosine, the positions of only the 

hydrogen atoms were refined, as the structure was obtained from neutron diffraction.  

For indigo and hypoxanthine, the optimizations were performed in two steps where the 

first optimization allowed only the positions of hydrogen atoms to relax and the second 

optimization allowed the entire molecule to relax.  The optimization procedure did not 

alter the structure of the molecule significantly, with changes in bond lengths limited to 

ranges found in previous studies [36].   

Magnetic shielding was calculated with the GIAO formalism [37-39] using the 

-dependent hybrid exchange-correlation functional TPSSh [40].  This model chemistry 

was selected to provide a rigorous description of electron correlation in the heteroatomic 

ring.  The basis-set-partitioning scheme discussed in Chapter 2 was employed, with the 

more flexible basis set cc-pVTZ used for the central molecules and cc-pVDZ used for 

peripheral molecules (Figure 3.2).  Calculations were also performed on single refined 

molecules in isolation, as a means to examine intermolecular effects on the magnetic 

shielding.  All calculations in this study were performed using GAUSSIAN 09 [41]. 
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Figure 3.2.  Crystal packing diagram of indigo (polymorph A, P21/c space group) 

showing the partition into two layers.  The central molecule (cc-pVTZ basis set) is 

shown in the ball-and-stick representation and the peripheral molecules (cc-pVDZ 

basis set) are shown in a wireframe representation. 

3.4 Results and Discussion 

3.4.1 NMR Measurements and Peak Assignments 

Indigo belongs to the P21/c space group with an asymmetric unit composed of 

half a molecule.  The experimental MAS NMR spectrum consists of eight unique 

resonances located between 112.5 ppm and 187.8 ppm, in agreement with expectation 

based on the crystal structure.  Three peaks fall between 118.6 ppm and 121.0 ppm but 

are resolvable, as shown in the 2D ROCSA spectrum in Figure 3.3(a).  Subspectra from 

the ROCSA experiment are shown in Figure 3.3(b) and a summary of the 13C chemical-

shift tensors extracted from the powder patterns is given in Table 3.1.  Each site exhibits 
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considerable chemical-shift anisotropy with the narrowest powder pattern having a span 

of 124 ppm and the widest, 200 ppm. 

An assignment of the resonances is accomplished by correlating the 

experimental principal components of the 13C chemical-shift tensors with those obtained 

from DFT calculations (Figure 3.4).  On this plot are shown the results for indigo, as 

well as those for hypoxanthine and adenosine (Tables 3.2 and 3.3).  Large deviations 

between experiment and calculation (up to 13 ppm for an individual principal 

component in indigo) are observed for some sites (Table 3.1).  However, these 

deviations are well within the range of errors typically reported for aromatic systems 

containing heteroatoms, as is supported by the calculations on hypoxanthine and 

adenosine, as well as previous work [36].  This overall assignment yields a root-mean-

square deviation (RMSD) between calculation and experiment of 7.1 ppm. 

3.4.2 Discussion of 13C Chemical-Shift Tensors of Indigo 

Several aromatic 13C chemical-shift tensors of indigo are very different from the 

tensors of other polycyclic ring systems such as naphthalene [42], indicating the 

significant effect of incorporating heteroatoms.  In six-membered rings containing a 

heteroatom, -deficient nitrogens have been found to stabilize positive charge at 

positions ortho and para to the nitrogen [43].  The result of this charge stabilization is 

that  carbons meta to the nitrogen center are more isotropically shielded than carbons 

ortho and para to the nitrogen.  In five-membered heteroatomic rings, carbons one bond 

from the nitrogen center are typically deshielded relative to carbons two bonds from the 

nitrogen center [43].  C8 of indigo, which resides adjacent to the nitrogen, is the most 

strongly deshielded carbon site, with iso = 152.3 ppm.  C6, three bonds from the 

nitrogen, is also isotropically deshielded, with iso = 134.0 ppm, as compared to  C7, 
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Figure 3.3.  (a) 13C NMR-ROCSA spectrum of indigo.  The chemical-shift scale in the 

f1 dimension is referenced to the isotropic chemical shift of each resonance, as is 

customary in ROCSA spectra, whereas the f2 dimension is referenced to TMS.  (b) 

ROCSA chemical-shift subspectra of the eight unique 13C sites in indigo.  The upper 

solid lines are the experimental spectra and the lower traces (dotted lines) are simulated 

spectra from fitting the chemical-shift powder patterns.   
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with iso = 112.5 ppm, which is two bonds from nitrogen.  C5, four bonds from the 

nitrogen has an intermediate shift of iso = 118.6 ppm.   Although C1 is one bond away 

from the nitrogen, iso = 120.7 ppm, which suggests that its involvement in the double 

bond compensates the deshielding effects of the adjacent nitrogen. 

The aromatic carbon sites in indigo can be parsed into classes based on 

similarities between the principal components of the 13C chemical-shift tensors.  The 

first major aromatic class is represented by C8, the carbon site one bond from the 

nitrogen center.  For C8 uniquely, significant deshielding is observed in 22 and 33 (176 

ppm and 58 ppm from TMS, respectively) relative to the other aromatic carbon sites.  

The remaining aromatic sites (C3 – C7) can be parsed into classes according to the 

number of bonds separating them from nitrogen.  C3 and C7, each two bonds from the 

nitrogen center, have similar tensors. C4 and C6, each three bonds from nitrogen, form 

another class.  C5, four bonds from the nitrogen site, is the final class.  The principal 

components of the 13C chemical-shift tensor for C5 fall within the tolerances of 

polyclyclic-aromatic hydrocarbons (PAH) reported by Facelli [44].  However, the 

remaining carbon sites do not fall within the tolerances provided in reference 44, 

indicating the substantial role of the nitrogen heteroatom on the observed chemical-shift 

tensors of carbons in the ring. 

The class comprised of carbons two bonds from nitrogen can be subdivided into 

carbons bonded directly to a hydrogen and those which have no directly bonded 

hydrogen.  This difference appears most strongly in the value of 33.  For example, C3, 

a bridgehead site, is strongly deshielded (33 = 34 ppm) relative to the same principal 

component of C7 (33 = 13 ppm), the latter being bonded to a hydrogen.  The remaining  
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Table 3.1.  Principal components of the 13C chemical-shift tensors of indigo, with the 

average of the principal components, isotropic chemical shift, span, and skew.a 

 

Site 
11 

(ppm)b 

22 

(ppm)b 

33 

(ppm)b 

ave 

(ppm)b 

iso 

(ppm)b 

 

(ppm) 


C1 173 140 49 120.7 121.0 124 0.46  0.06 

 177.1 144.2 48.7 - 123.3 128.4 0.488 

C2 253 211 100 188.0 187.8 153 0.45  0.05 

 255.6 202.9 102.6 - 187.0 153.0 0.312 

C3 184 142 34 120.0 119.9 150 0.44  0.05 

 192.1 153.7 23.6 - 123.2 168.5 0.543 

C4 208 149 16 124.3 124.1 192 0.39  0.04 

 218.0 162.0 4.4 - 128.1 213.6 0.476 

C5 210 131 15 118.7 118.6 194 0.22   0.02 

 214.4 128.4 11.1 - 117.9 203.3 0.155 

C6 224 154 24 134.0 134.1 200 0.30  0.04 

 236.5 143.9 13.4 - 131.3 223.1 0.169 

C7 191 133 13 112.3 112.5 178 0.35  0.04 

 193.4 143.1 14.7 - 117.1 178.7 0.436 

C8 223 176 58 152.3 152.3 165 0.43   0.04 

  222.2 182.8 50.0 - 151.7 172.2 0.542 
aExperimental values are shown in bold; calculated values are shown in italics.  

Calculated magnetic-shielding parameters were converted to chemical shifts using 

least-squares linear-regression parameters ref = 185.4 ppm and m = -1.012.  bThe 

uncertainty in experimental principal components is  2 ppm; uncertainty in ave and 

iso is ± 0.5 ppm and ± 1.2 ppm, respectively; uncertainty in the span is ± 3 ppm. 
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Table 3.2. Principal components of the 13C chemical-shift tensors of hypoxanthine, 

with the average of the principal components, isotropic chemical shift, span, and 

skew.a,b  

 

Site 
11 

(ppm) 

22 

(ppm) 

33 

(ppm) 

ave 

(ppm) 

iso 

(ppm) 

 

(ppm) 


C1 218 150 57 141.7 141.8 161 0.15 

 212.9 151.2 62.6 - 142.2 150.3 0.180 

C3 167 155 45 122.3 122.4 122 0.80 

 165.6 157.7 51.4 - 124.9 114.2 0.862 

C4 239 156 82 159.0 159.2 157 -0.06 

 233.8 156.7 88.8 - 159.7 145.0 -0.062 

C6 231 149 56 145.3 145.3 175 0.06 

 229.7 153.8 60.8 - 148.1 168.9 0.101 

C8 225 163 60 149.3 149.4 165 0.25 

  217.8 167.2 64.6 - 149.9 153.2 0.339 
aExperimental values are taken from Maliňáková et al. [45].  NMR parameters were 

obtained from Herzfeld-Berger analysis of the manifold of spinning side bands.  
bExperimental values are shown in bold; calculated values are shown in italics. 
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Table 3.3. Principal components of the 13C chemical-shift tensors of adenosine, 

with the average of the principal components, isotropic chemical shift, span, and 

skew.a,b,c  

 

Site 
11 

(ppm) 

22 

(ppm) 

33 

(ppm) 

ave 

(ppm) 

iso 

(ppm) 

 

(ppm) 


C1 216 136 61 137.7 137.8 155 -0.03 

 208.7 133.4 63.5 - 135.2 145.2 -0.037 

C3 167 145 47 119.7 119.7 120 0.63  

 154.0 149.6 48.3 - 117.3 105.7 0.917 

C4 222 191 52 155.0 155.2 170 0.63 

 201.6 194.0 56.4 - 150.7 145.2 0.895 

C6 239 158 66 154.3 154.8 173 0.06 

 234.5 162.7 62.5 - 153.2 172.0 0.166 

C8 221 166 58 148.3 148.5 163 0.32 

  213.7 161.2 57.8 - 144.2 155.9 0.327 
aExperimental values are taken from Steuber et al. [46]. NMR parameters were 

measured with the FIREMAT sequence.  bExperimental values are shown in bold; 

calculated values are shown in italics.  cResults are not reported for the ribose carbons. 
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Figure 3.4.  Correlation of calculated principal chemical-shift components and 

experimental principal chemical-shift components for 13C sites in indigo, 

hypoxanthine, and adenosine.  Calculations were performed at the TPSSh/cc-pVTZ 

level.  Results for the ribose carbons of adenosine are not included.  Values obtained 

using cluster models are shown as solid orange circles whereas values obtained using 

isolated-molecule models are shown as black crosses. 

aromatic sites in indigo (C4 – C6) are bonded to hydrogens and have 33 between 15 

ppm and 24 ppm, similar to that of C7. 

Comparison of measured and calculated chemical-shift principal components of 

indigo to those of  hypoxanthine [45] and adenosine [46] gives further insight into the 

effect of heteroatoms on the carbon chemical-shift tensor.  The position of the nitrogen 

atom in the ring is important to the extended lattice structure because it determines the 

geometry of intermolecular hydrogen bonds.  Of particular interest are C3, C6, and C8, 

as these sites are unsubstituted aromatic or bridgehead carbons in all three molecules.  



 96 

The most similar feature of these three molecules is the chemical-shift tensor of C8.  In 

all three molecules, C8 is a bridehead carbon linking a six-membered ring with a five-

membered ring one bond from a nitrogen center.  In all cases, the principal components 

fall in the ranges of 223 ± 2 ppm, 168 ± 7 ppm, and 59 ± 1 ppm for 11, 22, and 33, 

respectively.  C3 in indigo is bound to three neighboring carbon atoms, whereas in the 

purine rings of hypoxanthine and adenosine, C3 is bonded to two carbon sites and a 

nitrogen site.  For all three molecules, 22 and 33 fall in the ranges of 147 ± 8 ppm and  

42 ± 7 ppm, respectively.  For indigo, 11 of C3 is 184 ppm whereas this value is  167 ± 

3 ppm in the purine rings, suggesting that the adjacency to the nitrogen produces 

shielding of this component.  For C6, 11 and 22 fall in the ranges of 231 ± 8 ppm and 

154 ± 5 ppm, respectively, for all three materials.  However, 33 is 24 ppm for indigo, 

but 61 ± 5 ppm in the purine rings.  It appears that an indole derivative can be 

distinguished readily from a derivative of purine through analysis of the principal 

components of the 13C chemical-shift tensors, particularly the 33 component. 

3.4.3 Assessment of Lattice Effects 

The effect of the crystalline lattice on the calculated chemical-shift tensors in 

indigo can be assessed by comparison of calculations including the effects of the lattice 

(as done above) with the results of calculations where lattice effects are ignored, 

specifically calculations on an isolated indigo molecule, as if it were in the gas phase.  

The differences in the computed principal components between the two models are 

given in Table 3.4. 

In indigo, intermolecular interactions result in increased shielding of the 13C 

principal component 33 at each carbon site.  The average increase is 4.7 ppm, with a 

maximum of 9.2 ppm observed for the keto carbon (C2).  The largest effect for any 
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principal component is seen for 22 of C7, which is deshielded by 20.2 ppm relative to 

the isolated molecule.  Significant deshielding is seen in the 22 principal components 

of C1 (10.7 ppm) and C4 (11.8 ppm). 

Table 3.4. Differences in calculated chemical-shift tensors between an a molecule in 

a cluster and a molecule in isolation. 

 

Site 

 Indigo   Hypoxanthine   Adenosine  

11 

(ppm) 

22 

(ppm) 

33 

(ppm) 

11 

(ppm) 

22 

(ppm) 

33 

(ppm) 

11 

(ppm) 

22 

(ppm) 

33 

(ppm) 

C1 5.4 10.7 -7.8 2.2 30.4 -5.0 0.8 13.2 -1.9 

C2 -5.4 9.8 -9.2 - - - - - - 

C3 3.2 7.8 -2.7 -4.2 -3.1 0.5 0.2 -2.1 -0.1 

C4 -1.7 12.1 -3.9 -20.4 37.4 -7.0 -5.5 7.5 0.6 

C5 -2.5 -1.2 -3.2 - - - - - - 

C6 -0.2 -6.0 -1.1 4.1 18.1 -5.6 -1.6 17.3 -4.9 

C7 3.9 20.2 -4.9 - - - - - - 

C8 -5.5 4.0 -5.0 0.5 11.8 -4.6 -2.6 0.2 -2.2 

 

 

A simple explanation for the differences in chemical shifts between the cluster 

models and the isolated-molecule models is the existence of weak intermolecular 

interactions such as N-H···O and C-H···O hydrogen bonding that would not be present 

in an isolated molecule.  Süsse suggests that indigo contains a bifurcated N-H···O 

hydrogen bond where the position of the amine hydrogen is stabilized through 

intramolecular and intermolecular interactions with nearby keto oxygens [31].  The 

importance of this interaction is evidenced by the large change in all three principal 

components of the 13C chemical-shift tensor of C2 (the keto carbon).  The C-H···O 
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interaction is known to be important in the crystal packing of purines [47], and appears 

to be present in indigo as well.  For C7 of indigo, the nearest-neighbor atom in the crystal 

lattice is a keto oxygen site, which resides only 2.39 Å from the hydrogen site of C7, a 

distance less than the sum of the van der Waals radii of the atoms (2.6 Å).  For C4, the 

nearest neighbor is also a keto oxygen at a distance of only 2.41 Å from the bonded 

hydrogen.  The difference in the calculated chemical-shift components is an indication 

of these weak intermolecular C-H···O hydrogen bonds. 

The intermolecular contributions to 13C magnetic shielding in the purine rings is 

very different from that observed in indigo, reflecting the different lattice environments 

arising from hydrogen bonding.  In hypoxanthine, the largest difference is again 

observed for the keto carbon, C4, where 11 of the site in the cluster is strongly shielded 

by 20.4 ppm relative to the isolated molecule and 22 is deshielded by 37.4 ppm.  These 

values are consistent with strong intermolecular N-H···O hydrogen bonding in the 

crystalline material [48].  22 for aromatic carbons C1 and C6 in the cluster are 

deshielded by 30.4 ppm and 18.1 ppm, respectively, relative to the isolated molecule.  

The effect of intermolecular hydrogen bonding on computed 13C NMR parameters in 

hypoxanthine, again, is consistent with previous studies [45].  In adenosine, the largest 

difference in calculated 13C chemical shifts for 22 of C6, which is deshielded by 17.3 

ppm relative to the same site in an isolated molecule.  Earlier computational studies 

have ascribed the large differences in adenosine to the effects of hydrogen bonding [46]. 

The RMSD between values calculated for an isolated molecule and the 

experimental results is 10.6 ppm.  When the model includes intermolecular effects, as 

for the cluster calculations, this RMSD between calculated and experimental values is 

7.1 ppm.  This difference indicates that the inclusion of intermolecular interactions in 
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magnetic-shielding calculations clearly improves the agreement between calculated and 

experimental results. 

3.5 Conclusion 

The 13C NMR chemical-shift tensors of the eight carbons of crystalline indigo 

have been measured with a recoupling-of-chemical-shift-anisotropy (ROCSA) 

experiment.  Theoretical NMR parameters derived from a refined diffraction structure 

were used as an aid to assign the experimental measurements to their respective sites.  

Comparison of the principal components of the chemical-shift tensors was necessary, in 

some cases, to complete the assignments.  The assignment is unambiguous and results 

in an average error of 7.1 ppm, a value consistent with materials containing 

heteroatomic aromatic rings.  The principal components of the chemical-shift tensors of 

the aromatic sites in indigo deviate substantially from those reported for aromatic 

hydrocarbons such as naphthalene, indicating the significant effect of heteroatoms on 

the magnetic shielding at carbon sites. 

A comparison of the principal components of the 13C chemical-shift tensors of 

indigo with those of two purine derivatives confirms that magnetic shielding is very 

sensitive to the position of nitrogen in the ring.  To explain the effects on chemical shifts 

due to the presence of other molecules, we posit that the presence of a heteroatom allows 

indigo to form hydrogen bonds with adjacent molecules in the crystal lattice.  Ignoring 

these intermolecular effects in calculations shows substantial disagreement of the 

calculated chemical-shift principal components with experiment, with deviations 

between the computational models as high as 20.2 ppm for some principal components.   

Inclusion of these effects through a cluster model brings the experimental and calculated 

values of principal components into good agreement. 
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Chapter 4 

CRITICAL ANALYSIS OF CLUSTER MODELS AND EXCHANGE-

CORRELATION FUNCTIONALS FOR CALCULATING MAGNETIC 

SHIELDING IN MOLECULAR SOLIDS 

 

4.1 Introduction 

Chapter 2 demonstrated that calculations of 13C magnetic-shielding tensors, 

where symmetry-adapter clusters (SACs) are employed to represent a local portion of 

the lattice structure, and are combined with modern DFT methods, result in significant 

agreement with experimental 13C chemical-shift tensors.  This chapter has two goals.  

First, this chapter demonstrates that the symmetry-adapted cluster anstatz can be 

employed successfully for the prediction of magnetic-shielding tensors in a variety of 

nuclides, including 13C, 15N, 19F and 31P.  To illustrate this, the results of calculations on 

a wide variety of molecular solids, which contain these nuclides, are presented.  

Furthermore, the magnetic-shielding tensors obtained from the cluster approach are 

compared to the magnetic-shielding tensors from GIPAW calculations.  Second, 

calculations performed using more advanced computational models available with the 

cluster approach are explored.  It is demonstrated that the use of modern DFT 

functionals based on hybrid DFT or on the meta-generalized-gradient approximation 

(meta-GGA) improve agreement between calculation and experiment for the four 

nuclides.   

4.2 Materials and Computational Details 

A large series of model compounds was examined.  To ensure that sample set 

did not unnecessarily introduce uncertainty, only compounds that met the following 
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criteria were included: (1) the structure of the material had to be known from high-

quality single-crystal diffraction studies, (2) high-resolution measurements of the NMR 

chemical-shift tensors had to be available for the compound in the same solid phase, 

and (3) the chemical shifts must have been assigned unambiguously to their respective 

nuclear sites in the crystalline lattice.   

Materials were selected to encompass a large variety of chemical environments 

for 13C, 15N, 19F, and 31P nuclides.  Whenever available, neutron-diffraction structures 

were used to define the structure; otherwise, single-crystal X-ray diffraction provided 

the structural information.  Altogether, this database contains 393 principal components 

of NMR chemical-shift tensors taken from 72 materials.  The subset of 13C NMR 

measurements consists of 177 principal components, of which 96 are sp3-hybridized, 75 

are sp2-hybridized, and 6 are sp-hybridized.  The subsets of 15N, 19F, and 31P NMR 

measurements consist of 99, 60, and 57 principal components, respectively. 

The database of 13C-containing materials (Table 4.1) includes naphthalene [1, 

2], durene [3, 4], hypoxanthine [5, 6], sucrose [7, 8], -oxalic acid [9, 10], oxalic acid 

dihydrate [9, 11], L-threonine [12, 13], squaric acid [14, 15], cyclopropane [16, 17], 

ethylene [18, 19], nitromethane [20, 21], acetylene [22, 23], carbon disulfide [24, 25], 

dimethoxymethane [26, 27], pentaerythritol [28, 29], dimedone [30, 31], norbornadiene 

[32, 33], and [1.1.1]propellane [34, 35].   

The database of 15N-containing materials (Table 4.2) includes adenine trihydrate 

[36, 37], cytosine [36, 38], guanine monohydrate [36, 39], thymine [36, 40], uracil [36, 

41], pyrrole [42, 43], imidazole [42, 44], benzamide [45, 46], benzimidazole [42, 47], 

nitrobenzene [48, 49], (E)-acetophenone oxime [50, 51], pyridine [42, 52], pyridine N-
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oxide [42, 53], acetonitrile [54, 55], 1,4-dicyanobenzene [56, 57], cis-azobenzene [58, 

59], trans-azobenzene [60, 61], and sulfamic acid [62, 63]. 

Table 4.1.  Crystal structures and cluster compositions for materials containing 13C spins. 

Compound Space Group Cluster Composition 

Naphthalene P21/a 13C10H8 

Durene P21/a 15C10H14 

Hypoxanthine P1̅ 11C5H4N4O 

Oxalic acid Pbca 15C2H2O4 

Oxalic acid dihydrate P21/n 15C2H2O4·20H2O 

Sucrose P21 13C12H22O11 

L-threonine P212121 15C4H9NO3 

Squaric acid P21/c 17C4H2O4 

Pentaerythritol I4̅ 13C5H12O4 

Cyclopropane P1 13C3H6 

Norbornadiene P21/c 15C7H8 

[1.1.1]propellane C2 13C5H6 

Ethylene P21/n 13C2H4 

Nitromethane P212121 13CH3NO2 

Dimethoxymethane P21/n 15C3H8O2 

Dimedone P21/n 13C8H10O2 

Acetylene Pa3̅ 13C2H2 

Carbon disulfide P1 15CS2 

 

 

The database of 19F-containing materials (Table 4.3) includes fluorobenzene [64, 

65], 1,2-difluorobenzene [64, 65], 1,3-difluorobenzene [64, 66], 1,4-difluorobenzene 

[64, 65], 1,3,5-trifluorobenzene [64, 65], 1,2,4,5-tetrafluorobenzene [64, 67], 

perfluorobenzene [68, 69], perfluoronaphthalene [70, 71], 2-fluorobenzoic acid [64, 72], 

4-fluorobenzoic acid [64, 73], 4,4’-difluorobiphenyl [74, 75], 3-fluorophenol [64, 76], 

4-fluorophenol [64, 76], 2-fluorotoluene [64, 77], 3-fluorotoluene [64, 77], 4-

fluorotoluene [64, 77], p-fluoranil [64, 78], and trichlorofluoromethane [79, 80].   
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Table 4.2.  Crystal structures and cluster compositions for materials containing 15N 

spins. 

Adenine trihydrate P1̅ 7C5H5N5·12H2O 

Cytosine P212121 15C4H5N3O 

Guanine monohydrate P21/n 12C5H5N5O·10H2O 

Thymine P21/c 15C5H6N2O2 

Uracil P21/a 15C4H4N2O2 

Imidazole P21/c 13C3H4N2 

Benzamide P21/c 15C7H7NO 

cis-azobenzene Pbcn 15C12H10N2 

trans-azobenzenea P21/a 15C12H10N3 

Sulfamic acid Pbca 13SO3NH3 

Pyridine P212121 15C5H5N 

Pyridine N-oxide P41212 13C5H5NO 

Benzimidazole Pna21 15C7H6N2 

Acetanilide Pbca 13C8H9NO 

N-methylacetanilide Pnma 13C9H11NO 

Pyrrole Pnma 13C4H5N 

1,4-dicyanobenzene P1̅ 13C8H4O2 

Nitrobenzene P21/c 15C6H5NO2 
aStructure comprised of two unique molecules.  Separate clusters were built to 

represent the local structure of each unique site. 

 

 

The database of 31P-containing materials (Table 4.4) includes  

trimethylphosphine oxide [81, 82], triphenylphosphine oxide [81, 83], 

trichlorophosphine oxide [84, 85], methyldiphenylphosphine oxide [86, 87], 

trimethylphosphine sulfide [81, 88], tetramethyldiphosphine disulfide [89, 90], 

tetraethyldiphosphine disulfide [91], trimethylphosphine selenide [81, 92], urea 

phosphoric acid [93, 94], methylphosphonic acid [86, 95], 5-phenyl-5H-

dibenzophosphole 5-oxide [96, 97], 2,4-bis(methylthio)-1,3-dithia-2,4-diphosphetane-
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2,4-disulfide [98, 99], 2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-

disulfide [98, 100], cis-(diphenylimido-2,4,6-tri-t-butylphenyl)iminophosphine [101, 

102], chloro-(2,4,6-tri-t-butylphenyl)iminophosphine [101, 103], 

tricyclohexylphosphine [104, 105], 1,2,3-triphenylphosphirene [106, 107], and 1,2,2-

triphenyl-3,3-bis(trimethylsilyl)phosphirane [108, 109].   

Table 4.3.  Crystal structures and cluster compositions for materials containing 19F 

spins. 

Compound 
Space 

Group 
Cluster Composition 

2-fluorobenzoic acid P21/n 15C7H4O2F 

4-fluorobenzoic acid P21/n 15C7H4O2F 

4,4'-difluorobiphenyl P21/a 11C12H8F2 

Fluorobenzene P43212 15C6H5F 

1,2-difluorobenzene P21/n 15C6F2H4 

1,3-difluorobenzene C2/c 15C6F2H4 

1,4-difluorobenzene P21/c 15C6F2H4 

1,3,5-trifluorobenzene I2/a 15C6H3F3 

1,2,4,5-tetrafluorobenzene P21/c 15C6H2F4 

Perfluorobenzene P21/n 15C6F6 

Perfluoronaphthalene P21/c 13C10F8 

3-fluorophenol P21 15C6H5OF 

4-fluorophenol R3̅ 13C6H5OF 

2-fluorotouene P21/n 15C7H7F 

3-fluorotoluene Pbca 15C7H7F 

4-fluorotoluene Pna21 15C7H7F 

p-Fluoranil P21/c 15C6O2F4 

Trichlorofluoromethane Pbca 15CFCl3 

 

Periodic all-atom plane-wave geometry optimizations were performed on each 

of the structures of the 72 crystalline materials.  Optimizations were performed using 

fixed lattice parameters because they are generally well-established from experiment.  
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Refined structures produced by the geometry optimizations were used in all subsequent 

magnetic-shielding calculations.  Geometry optimizations were specifically performed  

Table 4.4.  Crystal structures and cluster compositions for materials containing 31P 

spins. 

Compound 
Space 

Group 
Cluster Composition 

Trimethylphosphine oxide C2/m 13OPMe3 

Triphenylphosphine oxide Pbca 13OPPh3 

Trichlorophosphine oxide Pn21a 15OPCl3 

Methyldiphenylphosphine oxide P21/c 15OPMePh3 

Trimethylphosphine sulfide P21/m 13SPMe3 

Tetramethyldiphosphine disulfide C2/m 13C4H12S2P2 

Tetraethyldiphosphine disulfide P1̅ 15C8H20S2P2 

2,4-bis(methylthio)-1,3-dithia-2,4- 

       diphosphetane-2,4-disulfide 
P21/a 13C2H6S6P2 

2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4- 

diphosphetane-2,4-disulfide 
P21/c 11C12H14O2S4P3 

Trimethylphosphine selenide P21/m 13SePMe3 

Tricyclohexylphosphine P31 15C15H33P 

cis-(diphenylimido-2,4,6-tri-t- 

butylphenyl)iminophosphine 
P21/c 13C30H37N2P 

Chloro-(2,4,6-tri-t- 

butylphenyl)iminophosphine 
P21/n 13C15H29NPCl 

Urea phosphoric acid Pbca 9PO4H2·9CH4N2O 

Methylphosphonic acid P21/c 15MeH2PO4 

5-phenyl-5H-dibenzophosphole 5-oxide P21/c 13C18H12OP 

1,2,3-triphenylphosphirene P1̅ 13C20H15P 

1,2,2-triphenyl-3,3- 

bis(trimethylsilyl)phosphirane 
Pna21 11C24H33Si2P 

 

 

with the CASTEP module of MATERIALS STUDIO 7.0 by Accelrys Software, Inc [110].  

The optimizations were carried out at the PW91/ultra-fine level of theory using ultrasoft 

pseudopotentials (USPP) generated on the fly.  At the ultra-fine level, the plane-wave 
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cutoff varied between 390 eV and 610 eV, depending on the types of atoms in the lattice.  

The Brillouin zone was sampled with a k-point spacing of 0.07 Å-1.  The thresholds for 

structural convergence were a maximum change in energy of 5  10-6 eV per atom, a 

maximum displacement of 5  10-4 Å per atom, and a maximum Cartesian force of 0.01 

eV Å-1.  For diffraction structures where the hydrogen positions were not published, or 

where the hydrogen sites were disordered, a preliminary optimization was performed 

using loosened SCF-convergence criteria to obtain an initial guess for the full geometry 

optimization. 

 

Figure 4.1. A symmetry-adapted cluster model of trimethylphosphine oxide consisting 

of fifteen molecules in the C2/m space group.  The central molecule of the cluster 

(ball-and-stick representation) is given the cc-pVXZ basis set (X = D, T, Q, 5).  The 

peripheral molecules of the cluster (wireframe representation) are given the cc-pVDZ 

basis set.  
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Magnetic-shielding constants for the plane-wave-optimized structures were 

generated using the GIPAW procedure, as implemented in the CASTEP module of 

MATERIALS STUDIO 7.0 [110].  Plane-wave cutoff energies of 200 eV, 300 eV, 400 eV, 

500 eV, and 600 eV were examined.  Convergence of computed magnetic-shielding 

constants was verified with respect to plane-wave cutoff energy and k-point spacing.  

The calculations were performed at the PW91 level of theory.  Ultra-fine SCF 

convergence criteria were used in all calculations, independent of the plane-wave cutoff 

energy.  Core orbitals were replaced by USPPs generated on the fly. 

Magnetic-shielding calculations on symmetry-adapted clusters of molecules, 

that replicated a portion of the crystalline lattice, were performed using the GIAO 

method [111-113], as implemented in GAUSSIAN 09 [114].  An example cluster of 

trimethylphosphine oxide is given in Figure 4.1.  The results presented in sections 4.3 

and 4.4 were obtained with the PW91 functional.  Results in section 4.5 were obtained 

using various DFT methodologies.  Our method for calculating magnetic-shielding 

constants partitioned the cluster into two layers, corresponding to the central molecule 

and to all peripheral molecules (Figure 4.1).  The low layer (peripheral molecules) was 

given a less flexible basis set than the high layer (central molecule) to decrease the 

computational cost.  For the central molecule, the basis set cc-pVXZ (X = D, T, Q, 5) 

was used [115, 116].  For the peripheral molecules, cc-pVDZ was used.  The effects of 

this approximation were discussed in Chapter 2.   

Calculations of magnetic-shielding tensors using the cluster model were also 

performed using several other DFT functionals.  We selected the PW91 [117] and PBE 

[118] functionals as representative examples of the GGA class.  The hybrid equivalents 

of these are B3PW91 [119] and PBE0 [120], respectively.  The meta-GGA functional 
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TPSS [121] was used in this analysis with the hybrid analog being labeled TPSSh [121].  

The functionals PBE0, TPSS, and TPSSh are related, in that they are modifications of 

the PBE functional.  The TPSS and TPSSh functionals have not been studied rigorously 

for their ability to predict principal components of magnetic-shielding tensors in solids. 

4.3 Intermolecular Effects on Magnetic Shielding Revisited 

The importance of intermolecular interactions on computed NMR parameters 

can be assessed by examining a set of materials where the structure is simplified by 

considering only a single molecule taken in isolation, as if it were in the gas phase.  Such 

calculations based on isolated-molecule (IM) models ignore all intermolecular 

contributions to the magnetic shielding.  Intermolecular effects on computed NMR 

parameters can be assessed through calculations using the same plane-wave or atomic-

orbital basis set by calculations with and without PBCs, as has been done, for example, 

in calculations of quadrupole coupling in titanocene complexes [122].  Here, the results 

obtained from the IM model are compared with calculations where lattice effects are 

taken into account using (1) the SAC method or (2) the PBC method (Figure 4.2).   

Chapter 2 presented similar calculations for a set of 13C-containing materials and 

provided found results as are shown for the several 15N-containing materials.  All 

calculations herein were performed using the same plane-wave optimized structures.  A 

summary of the linear-regression parameters for the three computational methodologies 

is given in Table 4.5, with computational details provided as a footnote.  Correlation 

plots of calculated principal components of 15N magnetic-shielding tensors versus 

experimental principal components of 15N chemical-shift tensors illustrating these 

results are shown in Figure 4.3.   
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The scatter in these plots is significantly higher for the IM models (RMSD = 

28.5 ppm) than is observed for either the SAC (RMSD = 10.8 ppm) or PBC model 

(RMSD = 11.4 ppm).  Of the 51 magnetic-shielding values included here, all but eight 

values are improved over the isolated-molecule model by the SAC model and all but 

twelve are improved by the PBC model.  Of the sites not improved by incorporation of 

lattice effects, none are significantly worsened.  Furthermore, the slope of -1.15 ± 0.02 

in the IM model deviates from unity much more than for the two models that incorporate 

intermolecular effects (-1.03 ± 0.01 for the SAC model and -1.06 ± 0.02 for the PBC 

model).  There are also significant differences between the extrapolated reference 

shieldings.  Only the IM and SAC models can be compared directly because the PBC 

model uses a different type of basis set.  The reference of the SAC model is predicted 

to be more shielded than the isolated-molecule model by 23 ± 10 ppm.   

The similarity in the scatter of the SAC and PBC models suggests that NMR 

magnetic-shielding values are most sensitive to the immediately-surrounding molecules 

in the crystal lattice and that sufficient agreement with experiment is obtained when 

representing solid-state effects with a finite cluster, provided that the cluster model 

satisfies the symmetry requirements of the crystalline space group. 
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Figure 4.2.  Three computational methodologies used to model the solid-state structure 

of uracil; isolated-molecule (IM) model, symmetry-adapted-cluster (SAC) model, and 

periodic-boundary-condition (PBC) model.  In the PBC model, the colored lines 

represent the axes of the unit cell. 

 

 

 

 

 



 116 

 

Figure 4.3.  Principal components of 15N magnetic-shielding tensors in (a) isolated-

molecule models, (b) symmetry-adapted cluster models, and (c) periodic GIPAW 

models.  Shielding in the IM and SAC models is calculated at the PW91/cc-pVTZ level.  

Shielding in the PBC model is calculated at the PW91/600eV level.  Results are shown 

for adenine trihydrate, guanine monohydrate, cytosine, thymine, and uracil. 
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Table 4.5.  Linear-regression parameters for calculated principal components of 15N 

magnetic-shielding tensors versus  experimental principal components of chemical-

shift tensors using three computational modelsa,b 

Model |m| 
𝜎𝐶𝐻3𝑁𝑂2 RMSD 

(ppm) (ppm) 

IM 1.15 ± 0.04 -178 ± 10 28.5 

SAC 1.03 ± 0.01 -155 ± 3 10.8 

PBC 1.06 ± 0.02 -172 ± 4 11.4 
aGIAO calculations for the IM and SAC models were performed at the PW91/cc-

pVTZ level; GIPAW calculations for the PBC model were performed at the 

PW91/600 eV level.  bMaterials are adenine trihydrate, guanine monohydrate, 

cytosine, thymine, and uracil with a total of 51 principal components. 

4.4 Comparison of GIPAW and Cluster Models 

Direct comparison of methods based on different computational methodologies 

is difficult.  The GIPAW technique expands the wave function in a plane-wave basis 

whereas the GIAO method expands the wave function in atom-centered functions.  

Additionally, each basis is generally truncated, which may lead to errors that affect the 

quality of the method.  The effects of finite basis sets on computed magnetic-shielding 

parameters have been discussed in numerous articles [123-130].  For example, Kupka 

et al. have noted that increasing the number of basis functions tends to decrease 

magnetic-shielding parameters obtained by density-functional calculations [125, 126].  

One method to deal with this problem involves calculating the magnetic shielding of a 

suitable reference compound according to both computational procedures and 

presenting the results as a shift relative to the reference [131, 132].  Another approach 

is to converge both calculations to the basis set limit.  This method has been employed 
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in calculations of, for example, 14N quadrupolar couplings [133].  The latter method has 

been employed here. 

Using a class of basis sets such as cc-pVXZ (X = D, T, Q, 5,  .  .  .) allows the 

basis-set limit to be reached in a systematic manner for the GIAO approach.  GIPAW 

and GIAO/SAC methodologies can be compared meaningfully using NMR parameters 

extrapolated to the basis-set limit.  Calculations were performed by incrementally 

increasing the plane-wave cutoff energy (PBC method) or the number of Cartesian basis 

functions (SAC method), while maintaining the SCF convergence criteria.  For the PBC 

calculations, the basis-set limit seems to be approached for a cutoff energy of 600 eV.  

Calculations on several systems using higher cutoff energies did not substantially alter 

the computed values found using a cutoff energy of 600 eV.  For SACs, the basis-set 

limit is given by an extrapolated value obtained by modeling the change in magnetic-

shielding with basis-set size [125, 126]. 

Linear-regression parameters for the correlation between calculated principal 

components of magnetic-shielding tensors and experimental principal components of 

chemical-shift tensors are presented in Table 4.6 for the PBC method and in Table 4.7 

for the SAC method.  An evaluation of the data presented in these tables reveals several 

important trends that are generally consistent among the nuclei.  For the first-row nuclei 

(13C, 15N, 19F), individual principal components exponentially approach the basis-set 

limit.  For 31P, individual principal components approach the basis-set limit either 

exponentially or in a damped-oscillatory fashion.  Importantly, both the PBC and SAC 

methods approach the same reference shielding within experimental uncertainty at the 

basis-set limit for all nuclei except 19F.  The linear-regression parameters vary in a 
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manner that reflects the changes in the individual principal components.  Each increase 

in the number of basis functions leads to deshielding of the reference compound. 

Plots comparing calculated principal components of magnetic-shielding tensors 

with experimental principal components of chemical-shift tensors are shown in Figures 

4.4 – 4.7.  These correlation plots demonstrate the equivalence of GIPAW and GIAO 

for all nuclides but 19F.  At the basis-set limit, in every case, the slope of the correlation 

line has a magnitude greater than unity, indicating that calculations performed at the 

PW91 level of theory overestimate differences in chemical shifts between nuclear sites 

and overestimate the anisotropies of individual sites.  It is notable that the data set 

yielding a slope closest to -1 is the set of 13C shifts, with the GIPAW method predicting 

a slope of -1.043 ± 0.005 and the GIAO method predicting a slope of -1.056 ± 0.005.  

15N yields a slope of -1.09  0.01 and 31P yields a slope of -1.09 ± 0.02 for both 

computational methodologies.  The slope of the 19F linear-regression line depends on 

the computational methodology, with the GIPAW method having a slope of -1.22 ± 0.02 

and the GIAO method having a slope of -1.17 ± 0.02. 

For calculations of 15N and 31P shieldings, there is no statistical difference in 

linear-regression parameters between the two computational methodologies.  Similarly, 

the differences observed for 13C are small, with a difference in 𝜎𝑇𝑀𝑆 of 1.9 ± 0.8 ppm 

and a difference in slope of 0.013 ± 0.007.  For 19F, the reference shielding for the GIAO 

value is shielded relative to the GIPAW value by 17 ± 4 ppm.  In addition, the slopes of 

the lines differ by 0.05 ± 0.03, with the GIAO method yielding a result closer to unity.   

The T-test was used to determine whether these differences observed in the trend 

lines represent a significant difference between the two computational models.  This 

question is equivalent to asking if the computed results from the cluster method can be 
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modeled using the trend line obtained by analyzing the GIPAW results.  This can be 

evaluated by tabulating the RMSDs according to the two modeling techniques and 

defining a threshold for significance.  These results are shown in Table 4.8.  At the 95% 

level, there is no significant difference between the computed magnetic-shielding 

parameters for 13C, 15N, or 31P.  However, there is a statistical difference between the 

GIPAW and GIAO cluster methods for computed magnetic shielding of 19F sites.   

To explore this deviation further, the 19F magnetic-shielding constants were 

calculated using Jensen’s segmented polarization-consistent basis set, pcSseg-3, which 

is optimized for calculations of magnetic-shielding constants [158].  Similar results 

were obtained using both the correlation-consistent (cc-pVTZ) and polarization-

consistent (pcSseg-3) basis sets, with the equations of the correlations lines given by: 

 𝜎𝑖𝑖
𝑐𝑐−𝑝𝑉𝑇𝑍 = (−1.18 ± 0.02)𝛿𝑖𝑖 + (132 ± 3) ppm, (Eq. 4.1) 

 𝜎𝑖𝑖
𝑝𝑐𝑆𝑠𝑒𝑔−3

= (−1.18 ± 0.02)𝛿𝑖𝑖 + (129 ± 3) ppm. (Eq. 4.1) 

Augmented basis sets such as aug-cc-pVTZ and aug-pcSseg-3 typically altered 19F 

magnetic shielding no more than 1 ppm. 
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Table 4.6.  Linear-regression parameters obtained from correlation plots between 

GIPAW calculated principal magnetic-shielding values and experimental principal 

chemical-shift values. 

 

Nucleus 
Cutoff Energy 

(eV) 
Slope 

Ref (ppm) RMSD (ppm) 

Carbon-13 200 -0.833 ± 0.006 188.3 ± 0.8 8.2 

N = 177 300 -1.009 ± 0.005 175.8 ± 0.6 5.0 

 400 -1.040 ± 0.005 172.5 ± 0.6 4.9 

 500 -1.042 ± 0.005 172.4 ± 0.6 4.9 

  600 -1.043 ± 0.005 172.5 ± 0.6 4.9 

Nitrogen-15 200 -0.61 ± 0.01 41 ± 2 22.8 

N = 99 300 -1.01 ± 0.01 -142 ± 2 17.1 

 400 -1.08 ± 0.01 -175 ± 3 17.3 

 500 -1.09 ± 0.01 -178 ± 3 17.1 

  600 -1.09 ± 0.01 -178 ± 3 17.2 

Fluorine-19 200 -0.71 ± 0.01 301 ± 2 8.1 

N = 60 300 -1.03 ± 0.02 179 ± 2 8.6 

 400 -1.17 ± 0.02 129 ± 3 8.3 

 500 -1.21 ± 0.02 116 ± 3 8.3 

  600 -1.22 ± 0.02 114 ± 3 8.3 

Phosphorus-31 200 -1.05 ± 0.03 284 ± 5 29.9 

N = 57 300 -1.11 ± 0.03 268 ± 5 29.2 

 400 -1.08 ± 0.02 270 ± 4 23.7 

 500 -1.11 ± 0.03 269 ± 5 28.5 

  600 -1.09 ± 0.02 271 ± 4 22.0 
aAll calculations were performed at the PW91 level.  bLinear-regression parameters 

are given for the correlation line 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 = 𝑚𝛿𝑖𝑖

𝑒𝑥𝑝 + 𝜎ref, where (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐) represents the 

calculated principal components of magnetic-shielding tensors, (𝛿𝑖𝑖
𝑒𝑥𝑝

) represents 

experimental principal components of chemical-shift tensors, ref is the shielding of 

the reference compound, and m is the slope of a correlation plot of calculated 

shielding versus experimental shift.  cThe RMSD is defined by 𝑅𝑀𝑆𝐷 =

[(𝑁 − 2)−1∑ (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐 − 𝛿𝑖𝑖

𝑒𝑥𝑝)2𝑁
𝑛=1 ]

1/2
.  Calculated magnetic shielding is converted to 

the chemical-shift scale (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐) using the relationship 𝛿𝑖𝑖

𝑐𝑎𝑙𝑐 = (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 − 𝜎𝑟𝑒𝑓)/𝑚. 
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Table 4.7.  Linear-regression parameters obtained from correlation plots between 

GIAO calculated principal magnetic-shielding values and experimental principal 

chemical-shift values. 

Nucleus Basis Set Slope Ref (ppm) RMSD (ppm) 

Carbon-13 cc-pVDZ -0.948 ± 0.005 186.4 ± 0.7 5.5 

N = 177 cc-pVTZ -1.004 ± 0.005 178.2 ± 0.6 5.0 

 cc-pVQZ -1.031 ± 0.005 175.9 ± 0.6 5.0 

 cc-pV5Z -1.047 ± 0.005 175.0 ± 0.6 5.0 

  CBS -1.056 ± 0.005 174.4 ± 0.6 4.9 

Nitrogen-15 cc-pVDZ -1.01 ± 0.01 -131 ± 2 17.4 

N = 99 cc-pVTZ -1.05 ± 0.01 -158 ± 2 15.5 

 cc-pVQZ -1.07 ± 0.01 -168 ± 2 15.4 

 cc-pV5Z -1.08 ± 0.01 -174 ± 2 15.3 

  CBS -1.09 ± 0.01 -177 ± 2 15.5 

Fluorine-19 cc-pVDZ -1.15 ± 0.02 145 ± 3 10.3 

N = 60 cc-pVTZ -1.18 ± 0.02 132 ± 3 9.6 

 cc-pVQZ -1.17 ± 0.02 133 ± 3 9.1 

 cc-pV5Z -1.17 ± 0.02 130 ± 3 9.6 

  CBS -1.17 ± 0.02 131 ± 3 9.2 

Phosphorus-31 cc-pVDZ -0.96 ± 0.02 377 ± 4 24.1 

N = 57 cc-pVTZ -1.02 ± 0.02 318 ± 3 21.3 

 cc-pVQZ -0.99 ± 0.02 330 ± 3 21.6 

 cc-pV5Z -1.09 ± 0.02 279 ± 3 20.6 

  CBS -1.09 ± 0.02 269 ± 3 21.1 
aAll calculations were performed at the PW91 level.  bLinear-regression parameters 

are given for the correlation line 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 = 𝑚𝛿𝑖𝑖

𝑒𝑥𝑝 + 𝜎ref, where (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐) represents the 

calculated principal components of magnetic-shielding tensors, (𝛿𝑖𝑖
𝑒𝑥𝑝

) represents 

experimental principal components of chemical-shift tensors, ref is the shielding of 

the reference compound, and m is the slope of a correlation plot of calculated 

shielding versus experimental shift.  cThe RMSD is defined by 𝑅𝑀𝑆𝐷 =

[(𝑁 − 2)−1∑ (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐 − 𝛿𝑖𝑖

𝑒𝑥𝑝)2𝑁
𝑛=1 ]

1/2
.  Calculated magnetic shielding is converted to 

the chemical-shift scale (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐) using the relationship 𝛿𝑖𝑖

𝑐𝑎𝑙𝑐 = (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 − 𝜎𝑟𝑒𝑓)/𝑚. 
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Figure 4.4. Calculated principal components of 13C magnetic-shielding tensors 

versus experimental principal components of 13C chemical-shift tensors.  (a) 

GIPAW, (b) Clusters 
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Figure 4.5. Calculated principal components of 15N magnetic-shielding tensors 

versus experimental principal components of 15N chemical-shift tensors.  (a) GIPAW, 

(b) Clusters 
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Figure 4.6. Calculated principal components of 19F magnetic-shielding tensors versus 

experimental principal components of 19F chemical-shift tensors.  (a) GIPAW, (b) 

Clusters 



 126 

 

 

Figure 4.7. Calculated principal components of 31P magnetic-shielding tensors versus 

experimental principal components of 31P chemical-shift tensors.  (a) GIPAW, (b) 

Clusters. 
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Table 4.8.  T-test statistics for assessing differences between the GIPAW and 

GIAO/cluster methodologies for computing magnetic-shielding parameters.a 

Nucleus N 
RMSD RMSD Cutoff 

(ppm) (ppm) 

Carbon-13 177 0.08 0.10 

Nitrogen-15 99 0.03 0.29 

Fluorine-19 60 4.68 2.23 

Phosphorus-31 57 0.04 0.47 
aDifferences between the computational methodologies are significant if RMSD 

is greater than the RMSD cutoff. 

 

 

4.5 Examination of Exchange-Correlation Functionals 

Computed NMR parameters display a strong dependence on the model 

chemistry used in the calculation.  The limitation is often a practical one, in which one 

must trade off accuracy for reasonable computational time.  Most studies that have 

explored level-of-theory effects on NMR parameters have examined the effects on the 

isotropic shielding of nuclei in gas-phase molecules.  Highly accurate benchmark 

magnetic-shielding constants from coupled-cluster calculations have been presented for 

the four nuclei in this study (13C, 15N, 19F, and 31P) [135-137].    NMR parameters 

obtained from various DFT methods have been benchmarked against values computed 

using ab initio methods such as Hartree-Fock or MP2 [112, 138, 139] and against other 

DFT methods [140-146].  Compared to post-Hartree-Fock methods, DFT typically 

underestimates magnetic-shielding constants [112, 139].  This underestimation is often 

rationalized in terms of a systematic failure in calculating differences between the Kohn-

Sham energy levels, leading to overestimations of the paramagnetic contribution to the 
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magnetic shielding.  In particular, the relative performance of various exchange-

correlation functionals in the prediction of magnetic shielding is of considerable 

interest. 

Considering only the isotropic value of the magnetic-shielding tensor ignores 

the significant role that the choice of functional may have on the computed anisotropy 

and asymmetry of the magnetic-shielding tensor.  Analyses involving comparisons of 

the principal components of magnetic-shielding tensors are comparatively rare.  A study 

by Sefzik et al. correlated computed principal components of 13C magnetic-shielding 

tensors obtained from IM models with experimental values obtained in solids [147].  

Several studies have used the GIPAW method to compare various GGA functionals 

[148-152].  None of these studies found a significant difference between the GGA 

functionals. 

Chapter 2 previously explored hybrid DFT functionals for calculating principal 

components of 13C magnetic-shielding tensors [153].  Another recent study has also 

suggested that hybrid functionals improve the agreement with experimental 13C 

chemical shift over GGA functionals [154].  This result has not been generalized to 

other nuclei, although a preliminary analysis has found that hybrid functionals can 

alleviate certain systematic problems associated with calculations of 207Pb magnetic 

shielding [155]. 

This section demonstrates that the SAC model can be employed in a systematic 

investigation of differences in computed principal components of magnetic-shielding 

tensors determined with different classes of DFT functionals.  Linear-regression 

parameters obtained from calculations using six functionals (PW91, B3PW91, PBE, 

PBE0, TPSS, and TPSSh) are summarized in Table 4.9. 
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Table 4.9.  Linear-regression parameters obtained from correlation plots between 

calculated principal components of magnetic-shielding tensors and experimental 

principal components of chemical-shift tensors obtained from the symmetry-adapted 

cluster approach.  Calculated values were obtained using the cc-pVTZ basis set. 

Nucleus Method Slope Ref (ppm) RMSD (ppm) 

Carbon-13 PW91 -1.004 ± 0.005 178.2 ± 0.6 5.0 

N = 177 B3PW91 -1.045 ± 0.005 184.9 ± 0.6 4.6 

 PBE -1.001 ± 0.005 178.9 ± 0.6 5.0 

 PBE0 -1.050 ± 0.005 187.3 ± 0.6 4.7 

 TPSS -0.982 ± 0.005 181.2 ± 0.6 4.9 

  TPSSh -1.004 0.004 184.3 ± 0.6 4.7 

Nitrogen-15 PW91 -1.05 ± 0.01 -158 ± 2 15.5 

N = 99 B3PW91 -1.11 ± 0.01 -168 ± 2 16.2 

 PBE -1.04 ± 0.01 -156 ± 2 15.8 

 PBE0 -1.12 ± 0.01 -170 ± 2 16.7 

 TPSS -0.995 ± 0.007 -140 ± 2 13.5 

  TPSSh -1.026 ± 0.007 -145 ± 2 13.5 

Fluorine-19 PW91 -1.18 ± 0.02 132 ± 3 9.6 

N = 60 B3PW91 -1.11 ± 0.02 158 ± 3 10.2 

 PBE -1.18 ± 0.02 131 ± 3 9.6 

 PBE0 -1.10 ± 0.02 162 ± 3 10.6 

 TPSS -1.13 ± 0.02 145 ± 3 10.5 

  TPSSh -1.11 ± 0.02 156 ± 3 10.5 

Phosphorus-31 PW91 -1.02 ± 0.02 318 ± 3 21.3 

N = 57 B3PW91 -1.03 ± 0.02 331 ± 3 20.4 

 PBE -1.02 ± 0.02 322 ± 3 20.9 

 PBE0 -1.03 ± 0.02 339 ± 3 21.0 

 TPSS -0.99 ± 0.02 335 ± 3 21.7 

  TPSSh -0.99 ± 0.02 339 ± 3 22.2 
aAll calculations were performed at the PW91 level.  bLinear-regression parameters 

are given for the correlation line 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 = 𝑚𝛿𝑖𝑖

𝑒𝑥𝑝 + 𝜎ref, where (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐) represents the 

calculated principal components of magnetic-shielding tensors, (𝛿𝑖𝑖
𝑒𝑥𝑝

) represents 

experimental principal components of chemical-shift tensors, ref is the shielding of 

the reference compound, and m is the slope of a correlation plot of calculated 

shielding versus experimental shift.  cThe RMSD is defined by 𝑅𝑀𝑆𝐷 =

[(𝑁 − 2)−1∑ (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐 − 𝛿𝑖𝑖

𝑒𝑥𝑝)2𝑁
𝑛=1 ]

1/2
.  Calculated magnetic shielding is converted to 

the chemical-shift scale (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐) using the relationship 𝛿𝑖𝑖

𝑐𝑎𝑙𝑐 = (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 − 𝜎𝑟𝑒𝑓)/𝑚. 
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4.5.1 Discussion of 13C Results 

The 13C results in Table 4.9 demonstrate that, for this nucleus, the GGA 

functionals (PW91 and PBE) are outperformed by every other class of functional 

studied, as indicated by the RMSDs of the various data sets.  Using the scatter as the 

sole criterion for goodness-of-fit, the hybrid functionals seem to outperform the others. 

A significant difficulty in the analysis of carbon data arises because different 

carbon species tend to group into distinct subpopulations on the correlation plot.  Several 

studies have found that the correlation line between calculated magnetic shielding and 

experimental chemical shift for distinct carbon species can differ by a substantial 

amount [147, 156].  The differences appear to be more pronounced when the materials 

under consideration are constrained to a well-defined class of compounds such as 

carbohydrates or aromatic hydrocarbons [147].  Our previous work has suggested that 

hybrid functionals remove the systematic differences between carbon subpopulations, 

resulting in a unique trend line which can successfully model all carbon species.  As 

above, statistical analysis was used to determine if the two classes of carbon species (sp3 

and sp2/sp) represent statistically significant subpopulations at the 95% confidence level 

(Table 4.10).  We find that when using pure DFT functionals (PW91, PBE, TPSS), the 

two carbon species represent distinct subpopulations, whereas the hybrid functionals 

(B3PW91, PBE0, TPSSh) do not result in distinct subpopulations. 

The two carbon subpopulations can be visualized in the systematic differences 

between calculated magnetic-shielding parameters using a GGA functional and a hybrid 

functional.  Figure 4.8 shows differences between principal magnetic-shielding values 

obtained from the PBE and PBE0 functionals for carbons in different hybridization.  

Carbons at sp3 sites behave differently from sp2 and sp sites.  For the sp3-hybridized 

sites, where the electron density is much more homogeneous around the nuclear site, 
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the added flexibility of the hybrid functional has a lesser effect than for the sp2- and sp-

hybridized sites, where the electron density, and therefore the corresponding current 

density, varies substantially with orientation.  In Figure 4.8 one sees that 11 and 22 

components for the sp2- and sp-hybridized sites tend to be more affected by the use of 

the hybrid functionals than the GGA functionals, whereas there is a lesser difference for 

33. 

Differences between the experimental value for the shielding of TMS (184.1 

ppm) [157] and the extrapolated values (as reported in Table 4.8) are shown in Figure 

4.9(a) for the six functionals considered in the present work.  Because the absolute 

shielding for TMS is predicted to be more deshielded when increasing the number of 

basis functions, we have applied a finite basis-set correction to the reference shieldings 

of -3.8 ± 0.8 ppm, based on the difference between the reference values for the cc-pVTZ 

basis set and the basis-set limit.  The results illustrate that the hybrid functionals more 

closely predict the reference shielding than do the pure DFT functionals.  The best 

results were obtained with PBE0.  The meta-GGA functional (TPSS) results in an 

improvement in the reference value, intermediate between the GGA functionals and the 

hybrid functionals. 
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Figure 4.8. Difference between GGA-PBE- and PBE0-calculated 13C principal 

chemical-shielding values for sp3-hybridized (red) and sp2- and sp-hybridized (blue) 

sites.  The trend lines are meant to guide the eye. 
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Figure 4.9 Deviation of the extrapolated magnetic shielding of the reference compound 

obtained with least-squares analyses for various DFT functionals from the accepted 

literature value.  Results are shown for 13C (a), 15N (b), 19F(c), and 31P (d).  The reference 

compounds and literature shielding values are TMS at 184.1 ppm (13C) [176], CH3NO2 

at -135.8 ppm (15N) [177], CFCl3 at 188.7 ppm (19F) [178], and 85% H3PO4 at 328.4 

ppm (31P) [179].  A finite-basis-set corrections was applied to each calculated value by 

subtracting 3.8 ppm (13C), 19 ppm (15N), 1 ppm (19F), and 48 ppm (31P) from calculated 

values of 𝜎𝑟𝑒𝑓.  The error bars represent both the uncertainty in the calculated and 

experimental values and the basis-set correction.  Pure DFT functionals are shown in 

red and hybrid functionals are shown in blue. 
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Table 4.10.  Linear-regression parameters and T-test statistics for assessing 

differences between sp3- and sp2/sp-hybridized carbon subpopulations.a 

 
sp3 carbons sp2/sp carbons 

 

Method |m| 
ref

|m| 
ref RMSD

(ppm) (ppm) (ppm) 

PW91 1.049 180.2 1.005 178.9 0.7 

B3PW91 1.031 184 1.046 184.9 0.1 

PBE 1.048 181 1.001 179.4 0.7 

PBE0 1.025 185.9 1.05 186.9 0.1 

TPSS 1.018 182.6 0.985 182.2 0.6 

TPSSh 1.012 184.3 1.006 184.9 0.1 
aDifferences in the best-fit lines between sp3 and sp2 carbon species are statistically 

significant if the RMSD is greater than 0.2 ppm. 

 

4.5.2 Discussion of 15N Results 

In calculation of 15N shielding, the RMSDs range between 16.8 ppm (PBE0) and 

13.6 ppm (TPSSh), as shown in Table 4.9.  Using the scatter about the best-fit line as 

the criterion for judging the functionals, the best class of functionals appears to be the 

meta-GGAs (TPSS and TPSSh), whereas the worst class of functionals is the hybrid 

GGAs (B3PW91 and PBE0).  The meta-GGA functionals yield slopes closest to unity, 

ranging between -0.995 ± 0.007 (TPSS) and -1.027 ± 0.007 (TPSSh).  These values 

represent an improvement over the predicted slope of -1.04 ± 0.01 for PBE.  The hybrid 

functionals have slopes ranging between -1.11 ± 0.01 (B3PW91) and -1.12 ± 0.01 

(PBE0), as compared to the meta-GGA functionals. 

The use of GGA and hybrid-GGA functionals in 15N calculations differs from 

their use with other nuclei in one significant way: whereas the reference values of the 
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other nuclei (13C, 19F, 31P) are predicted to be more shielded (relative to the pure DFT 

functional) when using hybrid functionals, for 15N the use of hybrid functionals yields 

reference values that are deshielded.  In the most significant case, the reference shielding 

for the PBE functional is -156 ± 2 ppm and the reference for the PBE0 functional is -

170 ± 2 ppm.  Figure 4.9(b) displays differences between the predicted intercept and the 

literature value of -135.8 ppm for the bare nucleus [158].  As in the case of carbon, a 

finite-basis-set correction of 19 ± 3 ppm has been introduced.  Interestingly, meta-GGA 

functionals are the closest to the literature value.  In each case, using a hybrid functional 

increases the deviation from the literature value than does the pure DFT value. 

Figure 4.10(a) shows the differences in magnetic shielding between the PBE 

functional and the PBE0 functional versus the PBE shielding.  This plot illustrates that 

the quantity 𝜎𝑃𝐵𝐸 − 𝜎𝑃𝐵𝐸0 varies significantly across the range of computed magnetic 

shieldings.  Similarly, Figure 4.10(b) shows the differences in magnetic shielding 

between the PBE functional and the TPSS functional versus the PBE shielding.  The 

most significant changes are seen in the calculations of 33 for the 15N nuclei of azide 

groups, located around -900 ppm at the PBE level.  In the PBE0 calculations, the azide 

33 is predicted to be deshielded relative to the PBE calculations by 67 – 84 ppm, 

whereas the TPSS calculation predicts these sites to be shielded relative to the PBE 

calculation by 65 – 77 ppm.  As indicated in Figure 4.3, these points deviate from the 

predicted trend line by a sizeable amount at the GGA level.  This deviation is worsened 

when using hybrid GGA functionals.  When using the TPSS functional, the points fall 

along the same line predicted by the other calculations, suggesting that meta-GGA 

functionals improve calculations of highly correlated systems such as those containing 

nitrogen-nitrogen double bonds. 
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Figure 4.10. (a) Differences in computed shielding between the GGA-PBE functional 

and the hybrid GGA-PBE0 functional.  (b) Differences in computed shielding between 

the GGA-PBE functional and the meta-GGA-TPSS functional. 
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4.5.3 Discussion of 19F Results 

A frequent feature of computed 19F NMR parameters is that they are predicted 

less reliably than are the NMR parameters of other light nuclei, as is indicated by the 

substantial deviation in the slope from unity, signifying that the errors arise from a 

systematic flaw in the calculations.  At the basis set limit, the GIPAW method predicts 

a slope of -1.22 ± 0.02 at the PW91 level.  Comparable systematic errors have been 

reported in calculations performed at similar levels of theory [140, 159],  where it has 

been shown that altering the computed band gap by applying potentials to certain 

molecular orbitals corrects systematic flaws in the calculations.  Such a correction is 

empirical and the size of the potential is dependent on the system. 

Considering the results in Table 4.9, the GGA and meta-GGA functionals 

overestimate the slope substantially.  Hybrid functionals decrease the slope, with the 

best result of -1.11 ± 0.02 obtained from the B3PW91 functional, and reduce the 

magnitude of the discrepancy so that the slope is within the range of values computed 

for the other nuclei.   This finding suggests that large changes in the magnetic shielding 

can be induced by the method for calculating the exchange energy.  There are two lines 

of evidence that suggest that the errors in the calculated values are related to the 

exchange functional.  Moving from the PBE functional (0% HF exchange) to the PBE0 

functional (25% HF exchange), the slope of the correlation line is changed from -1.18 

± 0.02 to -1.10 ± 0.02, suggesting that increasing the proportion of exact exchange to 

around 50% would eliminate deviations in the slope.  Jameson et al. have proposed an 

absolute reference for 19F where the shielding of CFCl3 is 188.7 ppm [160].  Changing 

from the PBE functional to the PBE0 functional changes the extrapolated reference 

shielding from 131 ± 3 ppm at the PBE level to 162 ± 3 at the PBE0 level, consistent 

with an ideal functional that uses approximately 50% HF exchange.  See Figure 4.9(c). 
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4.5.4 Discussion of 31P Results 

The 31P results in Table 4.9 reveal only small deviations between the different 

classes of functionals for calculations of 31P magnetic shielding.  In particular, the slopes 

of the best-fit lines are the same, to within experimental error.  The largest deviations 

between functionals are seen in the reference shieldings.  Jameson et al. suggest a 

reference shielding for H3PO4 of 328.4 ppm [161].  The results, shown in Figure 4.9(d), 

mirror those obtained for 13C and 19F.  As with those nuclei, use of a hybrid functional 

always results in an improvement over the pure DFT functional.  In addition, 

improvement is found for the meta-GGA-TPSS functional over the GGA functionals. 

4.6 Conclusion 

Consideration of intermolecular effects is essential when calculating NMR 

parameters for crystalline materials.  The periodic GIPAW method, for example, 

accounts for intermolecular interactions that are not predicted by calculations on 

isolated molecules (especially in systems containing networks of intermolecular 

hydrogen bonds).  The use of symmetry-adapted-cluster (SAC) models yields similar 

results to those obtained using GIPAW, showing the importance of inclusion of 

intermolecular effects in predicting magnetic shielding in solids. 

The use of the GIPAW and GIAO/SAC methods for calculating the magnetic 

shielding of 13C, 15N, 19F, and 31P nuclides in insulating molecular solids demonstrates 

that one may systematically model a wide variety of solid-state environments with either 

method, if one uses a sufficiently large basis.  This result is demonstrated on a database 

consisting of 72 crystalline materials with a total of 131 unique NMR-active lattice sites.  

Computed magnetic shieldings extrapolated to the basis-set limit show that the two 

methods predict correlation lines that show no statistical difference at the 95% level for 
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all nuclei except 19F.  In the case of 19F, the correlation between experimental chemical 

shifts and calculated magnetic shielding yields a slope closer to unity with the SAC 

method. 

The effects of various model chemistries on computed magnetic shielding have 

been assessed using the SAC model.  Six exchange-correlation functionals have been 

examined, representing the GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA 

classes.  There is essentially no difference in computed magnetic shielding between 

GGA functionals (PW91 and PBE) for any of the nuclides studied here.  Hybrid GGA 

functionals yield results that are often quite different from those determined with pure 

DFT functionals.  For 13C, 19F, and 31P, the additional flexibility of using hybrid 

functionals leads to improvement of the predicted magnetic shielding with values 

determined on established absolute scales.  In particular, for 19F magnetic shielding, the 

use of hybrid functionals substantially decreases the slope of the correlation between 

calculated shielding and experimental shift from -1.18 when using GGAs to -1.11.  For 

19F, we suggest that increasing the proportion of HF exchange beyond the standard 25% 

may further improve agreement with experiment, although this result needs to be 

explored in more detail.  Calculations of 15N magnetic shielding, in contrast to the other 

nuclei, appear to be worsened by the admixture of exact exchange, as indicated by a 

slope that is further from unity and a reference shielding that differs more substantially 

from established scales.  The use of the meta-GGA TPSS functional lead to 

improvement over the GGA functionals for all four nuclei, including 15N. 

It is also noteworthy that 13C magnetic-shielding parameters obtained by pure 

DFT methods can be grouped into distinct subpopulations based on the hybridization of 

the carbon site.  However, use of hybrid DFT functionals does not lead distinct 
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subpopulations, allowing all carbon species to be described with a single set of linear-

regression parameters. 
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Chapter 5 

CALCULATIONS OF SOLID-STATE 43Ca NMR PARAMETERS: A 

COMPARISON OF PERIODIC AND CLUSTER-BASED APPROACHES AND 

AN EVALUATION OF DFT FUNCTIONALS 

 

5.1 Introduction 

Measurements of 43Ca (I = 7/2) solid-state NMR parameters, specifically 

chemical-shift and quadrupolar-coupling tensors, have grown in popularity over the past 

decade [1-22].  The difficulties associated with these measurements have, to some 

extent, been overcome with the advent of ultrahigh-field NMR spectroscopy and the 

development of radio-frequency pulse sequences that enhance weak signals from 

nuclides with low natural abundances and low magnetogyric ratios.  Two recent 

accounts of advances in 43Ca solid-state NMR have been provided by Bryce [5] and by 

Laurencin and Smith [17]. 

43Ca NMR spectroscopy is important in structural characterization and 

elucidation because of the prevalence of calcium in biological systems and materials.  

For example, 43Ca NMR spectroscopy has been used to identify the proper space group 

of the vaterite phase of CaCO3 [7] and to distinguish between the two inequivalent 43Ca 

sites of hydroxyapatite [15].  Calcium dibenzoate trihydrate has been studied as a model 

compound for calcium binding sites in proteins [9].  Methods have been proposed to 

measure distances between 43Ca and 1H nuclear sites [16].  Solid-state 43Ca studies have 

been paired with molecular-dynamics simulations to study the distribution of structural 

features in amorphous CaCO3 [14].  The link between experimental NMR parameters 

and structure is often aided by advanced computational techniques.  Benchmark studies 

on model compounds are inherently useful as they can gauge the accuracy of NMR 
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parameters obtained by a computational approach and give insights into the validity of 

the technique for structural investigations.   

Calculated magnetic-shielding tensors depend substantially on the model 

chemistry used in the analysis, including basis set, pseudopotential, and treatment of the 

exchange and correlation terms in the Hamiltonian [23].  In principle, better agreement 

with experimental values can be obtained when the optimal model chemistry is 

employed.  Survey of a wide array of model chemistries for 43Ca is important because 

several studies have noted difficulties associated with the prediction of NMR parameters 

of 43Ca sites, or of nearby sites in the same material [11, 24] when limited and selected 

model chemistries were used.  For example, the calculations presented in reference [11] 

suggest a systematic overestimation of 43Ca chemical shifts associated with the PBE 

functional and Profeta et al. report inability of the PBE functional to predict 17O 

quadrupolar coupling in CaO [24].  

To the authors’ knowledge, no systematic study has been undertaken to 

investigate model-chemistry effects on computed 43Ca NMR parameters.  This paper 

presents the results of a series of calculations of 43Ca magnetic-shielding and 

quadrupolar-coupling tensors using Hartree-Fock self-consistent field (HF-SCF) theory 

and seventeen density-functional theory (DFT) methods.  The DFT methods are based 

on the local-density approximation (LDA), the generalized-gradient approximation 

(GGA), the meta-generalized-gradient approximation (meta-GGA), and hybrid 

methods.  Cluster-based techniques for modeling magnetic-shielding tensors in 

crystalline solids, which account for extended lattice effects without employing 

periodic-boundary conditions, have expanded the range of computational methods that 

can be applied to structural problems [23, 25-33].  Since Hartree-Fock exchange is 
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difficult to implement in periodic calculations, we also illustrate the use of cluster 

models for calculating 43Ca NMR parameters. 

5.2 Computational Details 

5.2.1 Materials and Computational Protocols 

Benchmark calculations were based on materials that have been characterized 

previously through X-ray or neutron diffraction and through solid-state 43Ca NMR 

spectroscopy.  The principal components of the 43Ca chemical-shift and quadrupolar-

coupling tensors have been reported for each of these materials.  The materials are 

calcium formate, calcium acetate monohydrate (two unique calcium sites), calcium 

tartrate tetrahydrate, calcium dibenzoate trihydrate, the calcite and aragonite phases of 

CaCO3, Ca(NO3)2, CaSO4·2H2O, and CaCl2·2H2O (Table 5.1).  Experimental NMR 

parameters have been reported in references [8, 11].  For Ca(NO3)2, the averages of the 

fractional atomic coordinates and lattice constants of two X-ray structures were used, as 

no modern structural determination was available.  For the hydrates, the positions of the 

hydrogen atoms were refined through a plane-wave geometry optimization at the PBE 

level, while the positions of all heavier atoms remained fixed in their experimentally-

determined positions (see details on plane-wave DFT calculations below). 
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Table 5.1.  Model cluster compositions for the materials used in this study. 

 

Material Cluster Composition Space Group Reference 

Ca formate [Ca4(form)6(OH)12]
10- Pbca [34] 

Ca acetate·H2O (Ca1) [Ca4(acet)6(H2O)4(OH)8]
6- P1̅ [35] 

Ca acetate·H2O (Ca2) [Ca3(acet)4(H2O)2(OH)9]
7-  

 
Ca tartrare·4H2O [Ca(tart)4(H2O)2]

6- P212121 [36] 

Ca dibenzoate·3H2O [Ca3(benz)3(H2O)10(OH)2]
+ P21/c [37] 

CaCO3 (calcite) [Ca7(CO3)8(H2O)18]
2- R3̅c [38] 

CaCO3 (aragonite) [Ca13(CO3)12O6(H2O)33]
10- Pnma [39] 

Ca(NO3)2 [Ca(NO3)6]
4- Pa3̅ [40, 41] 

CaSO4·2H2O [Ca3(SO4)4(H2O)6(OH)6]
8- C2/c [42] 

CaCl2·2H2O [Ca5Cl16(H2O)24]
6- Pbcn [43] 

 

 

Calculations of 43Ca NMR parameters were carried out using both periodic and 

cluster-based approaches.  The former set of calculations used the gauge-including-

projector-augmented-wave (GIPAW) method of Pickard and Mauri [44] as 

implemented in the CASTEP module of Accelrys’ Materials Studio 7.0 [45].  GIPAW 

calculations employed ultrasoft pseudopotentials generated on the fly to replace core 

orbitals [46].  Additional considerations include a plane-wave cutoff energy of 600 eV 

and integration over the Brillouin zone using an ultra-fine k-point spacing.  Convergence 

of the computed NMR parameters was verified by additional calculations with higher 

cutoff energies and finer k-point grids for integration.  GIPAW calculations employed 
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the following functionals: CA-PZ [47, 48], PW91 [49], PBE [50], rPBE [51], PBEsol 

[52], and WC [53]. 

Cluster-based approaches to model lattice effects for the prediction of NMR 

parameters have been discussed previously [23, 25-33, 54-58].  In this work, clusters 

were constructed by expanding to the 3rd co-ordination shell of atoms around the central 

43Ca site.  For the calcium carboxylates, ligands were not truncated, so that atoms 

beyond the 3rd co-ordination shell were included in the clusters for calcium tartrate 

tetrahydrate and calcium dibenzoate trihydrate.  Hydrogen atoms were attached to the 

terminal oxygen sites using a standard Ca-O bond length of 0.96 Å and a standard Ca-

O-H bond angle of 109.5°, to assure SCF convergence.  Coordinates for all atoms in the 

clusters are provided in the supporting information.  A summary of the compositions of 

all model clusters is given in Table 5.1 and illustrations of several example clusters are 

shown in Figure 5.1.   

Long-range electrostatic effects in the cluster calculations were modeled using 

the self-consistent-reaction-field (SCRF) polarizable-continuum model (PCM) [59, 60].  

Specifically, the integral-equation formalism with atomic radii and non-Coulomb terms 

computed by the SMD algorithm of Truhlar and co-workers was used [61].  Water was 

used as the solvent in these calculations.  Dunning’s correlation-consistent basis sets cc-

pVTZ were used for the NMR-active 43Ca site and the 1st co-ordination shell of atoms, 

whereas all other atoms used the less flexible basis set cc-pVDZ [62, 63].  Magnetic 

shielding was calculated within the gauge-including-atomic-orbital (GIAO) formalism 

[64].  Magnetic-shielding and quadrupolar-coupling tensors were computed using 

Hartree-Fock theory and the following DFT methods: SVWN [65-68], PBE [50], PW91 

[49], PKZB [69], TPSS [70], M06-L [71], B3PW91 [72], PBE0 [73], TPSSh [70], BMK 
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[74], M06 [75], M06-2X [75], and M06-HF [76, 77].  All cluster-based calculations 

were performed using GAUSSIAN 09 [78]. 

 

 

Figure 5.1.  Schematic drawings showing clusters of calcium formate (upper left), 

calcium acetate site Ca1 (lower left), CaSO4·2H2O (upper right), and calcite (lower 

right).  The cc-pVTZ region is shown in the ball-and-stick representation and the cc-

pVDZ region is shown in the wireframe representation. 

5.2.2 Conventions for Reporting NMR Parameters 

The magnetic-shielding interaction is characterized by a second-rank tensor with 

principal values 33 ≥ 22 ≥ 11.  An NMR experiment yields a shift in resonance 

frequency relative to a reference material rather than the magnetic shielding relative to 
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the bare nucleus. In this work, calculated 43Ca magnetic shielding was converted to the 

43Ca chemical-shift scale by the following relationship: 

 𝛿𝑐𝑎𝑙𝑐 = 𝜎𝑟𝑒𝑓 − 𝜎𝑐𝑎𝑙𝑐. (Eq. 5.1) 

In the above equation, 𝜎𝑐𝑎𝑙𝑐 is the calculated magnetic shielding, 𝛿𝑐𝑎𝑙𝑐 is the calculated 

chemical shift, and ref is the calculated magnetic shielding of the reference compound 

(typically, a 1.0 M solution of CaCl2 in H2O) [5].  In practical analysis, the correlation 

between calculated 43Ca magnetic shielding and experimental 43Ca chemical shift is 

modeled by the two linear-regression parameters, ref and |m|: 

 𝜎𝑐𝑎𝑙𝑐 = 𝜎𝑟𝑒𝑓 − |𝑚|𝛿𝑒𝑥𝑝. (Eq. 5.2) 

In this equation, exp is the experimental chemical shift, |m| is the slope of the correlation 

line, and ref is treated as a fitting parameter which varies with the model chemistries.  

If the value of |m| is significantly greater than 1, the computational model yields 

chemical shifts, as defined in Eq. 5.1, that are systematically overestimated relative to 

experimental chemical shifts. 

The electric-field gradient (EFG) at a nucleus is described by a traceless, second-

rank tensor with principal values |V33| ≥ |V22| ≥ |V11|.  Because the tensor is traceless, it 

can be described by two parameters, namely the quadrupolar-coupling constant, CQ, and 

the asymmetry parameter, : 

 𝐶𝑄 = 𝑒𝑉33𝑄/ℎ, (Eq. 5.3) 

 𝜂 = (𝑉11 − 𝑉22)/𝑉33. (Eq. 5.4) 

In the above expressions, e is the elementary charge, h is Planck’s constant, and Q is the 

43Ca quadrupole moment (Q = -4.08 fm2).  The sign of CQ cannot be determined 

experimentally, so the absolute value of CQ is reported.  For the purpose of analysis, we 

have assumed that the sign of the experimental value of CQ is the same as the value 
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predicted by the calculations.  Equivalently, the quadrupolar-coupling tensor can be 

specified by two unique principal values.  Residuals between calculated and 

experimental 43Ca NMR parameters are based on differences between the principal 

values of the tensors.   

5.3 Results and Discussion 

5.3.1 Comparison of GIPAW and Cluster-Based Calculations 

The PBE functional was used in all calculations to compare the results of 

GIPAW and cluster-based approaches.   In addition to the elimination of translational 

symmetry elements, expansion of a cluster around the central 43Ca nucleus can also 

result in the loss of local point-group symmetry.  This loss of local symmetry may be 

reflected strongly in computed magnetic-shielding and quadrupolar-coupling tensors.  

First, we demonstrate the convergence of computed 43Ca magnetic-shielding and 

quadrupolar-coupling tensors as a function of cluster size in CaCl2·2H2O and Ca(NO3)2.  

Three clusters of CaCl2·2H2O of increasing size are shown in Figure 5.2.  Table 5.2 

summarizes calculated 43Ca NMR parameters in the clusters of the two solids.  For both 

the 43Ca magnetic-shielding and quadrupolar-coupling tensors, there are large 

differences between computed results for the 1st- and 3rd-co-ordination-shell clusters, 

whereas the 3rd- and 5th-co-ordination-shell clusters yield similar values.  The mean-

absolute errors (MAEs) between experimental values and those obtained from the two 

largest clusters (3rd- and 5th-co-ordination-shell clusters) are substantially smaller than 

the MAEs for the 1st-co-ordination-shell clusters (Table 5.2).  This characteristic 

difference is particularly evident in the chemical-shift span (Ω = δ11 – δ33) of Ca(NO3)2, 

which is reported as 11.4 ppm experimentally [5], but is predicted to be 675 ppm by 
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calculation on the 1st-co-ordination-shell cluster.  The spans obtained with the larger 

clusters agree better with the experimental span, with the 3rd-co-ordination-shell 

calculation yielding  = 10.9 ppm and the 5th-co-ordination-shell calculation yielding 

 = 25.4 ppm.  The span predicted using GIPAW falls between the span of the two large 

cluster calculations, with  = 15.0 ppm.  Based on these observations, and those of 

earlier work [26, 29-31], we used 3rd-co-ordination-shell clusters in all subsequent 

calculations because clusters of this size appear to conserve sufficiently the local point-

group symmetry of the calcium sites. 

 

Figure 5.2.  Illustration of three clusters to represent the local 43Ca environment in 

CaCl2·2H2O.  Upper left: 1st-co-ordination shell cluster with composition 

[CaCl4(H2O)2]
2-.  Lower left: 3rd-co-ordination shell cluster with composition 

[Ca5Cl16(H2O)24]
6-.  Right: 5th-co-ordination shell cluster with composition 

[Ca13Cl36H12(H2O)56]
2+. 
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Table 5.2.  Experimental and calculated 43Ca NMR parameters using the cluster-

based approach, with results obtained from clusters of increasing size, and MAEsa 

from experimental results.  All results were obtained at the PBE level. 

 

Model 

Cluster 
Cluster Composition 

11 22 33  MAE CQ 


MAE 

(ppm) (ppm) (ppm) (ppm) (ppm) (MHz) (MHz) 

CaCl2·2H2O  
      

  

Exp. - 63.9 46.1 43.6 20.3 - 2.62 0.22 - 

First shell [CaCl4(H2O)2]
2- 133.7 86.1 66.8 66.9 48.3 0.94 0.94 0.85 

Third shell [Ca5Cl16(H2O)24]
6- 89.2 68.8 60.8 28.4 22.0 2.66 0.19 0.04 

Fifth shell [Ca13Cl36H12(H2O)56]
2+ 97.1 70.9 60.4 36.7 25.8 2.59 0.26 0.05 

Ca(NO3)2 
 

        
Exp. - -47.1 -47.1 -58.5 11.4 - 1.57 0.00 - 

First shell [CaO12]
22- 50.3 -109.2 -624.5 674.8 333.5 2.30 0.04 0.37 

Third shell [Ca(NO3)6]
4- -79.7 -79.7 -90.6 10.9 32.4 1.69 0.00 0.06 

Fifth shell 
[Ca13(NO3)8O12(H2O)42]

6

- -65.8 -65.8 -91.2 25.4 24.3 1.51 0.00 0.03 

aMean-absolute errors 

 

Figures 5.3a and 5.3b display the relationship between principal components of 

calculated 43Ca magnetic-shielding tensors and principal components of experimental 

43Ca chemical-shift tensors for the ten calcium sites listed in Table 5.1.  Results were 

obtained respectively with the GIPAW approach and the cluster-based approach.  The 

data are modeled according to Eq. 5.2 with least-squares linear regression, yielding the 

following relations: 

 𝜎𝐺𝐼𝑃𝐴𝑊 = (1140 ± 2) ppm− (1.35 ± 0.06)𝛿𝑒𝑥𝑝, (Eq. 5.5) 

 𝜎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = (1147 ± 2) ppm− (1.37 ± 0.07)𝛿𝑒𝑥𝑝. (Eq. 5.6) 

The slopes of the correlation lines are essentially identical, and the difference in the 

reference shielding constants between the two computational methods is consistent with 

a finite-basis-set effect [23].  The two methods yield MAEs between calculated and 

experimental chemical shifts of 14 ppm and 15 ppm, respectively.  The largest residuals 

in both computational methods arise from Ca(NO3)2, an error which has been discussed 
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elsewhere [11].  The slopes (|m| = 1.35 ± 0.06 and |m| = 1.37 ± 0.07 for GIPAW and 

cluster calculations, respectively) relative to the ideal case (unity) suggests a substantial 

overestimation of the paramagnetic contribution to the magnetic-shielding tensor by the 

PBE functional [79].  It has been illustrated for many 1st- and 2nd-period nuclei that such 

systematic errors can be partially eliminated by a judicious selection of a more 

appropriate model chemistry [23, 26].  This consideration is addressed in the following 

subsections. 

Figures 5.3c and 5.3d display the relationship between the calculated and 

experimental principal components of 43Ca quadrupolar-coupling tensors for the 

GIPAW and the cluster-based approaches, respectively.  As was the case with the 

computed magnetic-shielding tensors, both computational approaches yield similar 

agreement with experiment, with MAEs of 0.14 MHz and 0.16 MHz for the GIPAW 

and cluster-based methodologies, respectively.  One advantage of periodic calculations 

of quadrupolar-coupling tensors is the ability to model accurately long-range electronic 

interactions that can potentially contribute to the EFG near the nucleus.  The present 

results indicate that the loss of accuracy in computed quadrupolar-coupling tensors, 

when modeling the lattice with an appropriately designed cluster and with approximate 

treatment of long-range interactions (via the polarization continuum model), is 

marginal. 
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Figure 5.3.  Plots illustrating the relationship between principal components of 

calculated 43Ca magnetic-shielding tensors and experimental chemical-shift tensors 

obtained using (a) the periodic GIPAW approach and (b) the cluster approach.  Plots 

illustrating the relationship between principal components of calculated and 

experimental 43Ca quadrupolar-coupling tensors obtained using (c) the periodic GIPAW 

approach and (d) the cluster approach.  Results were computed at the PBE level of 

theory with a plane-wave cutoff energy of 600 eV (GIPAW) or with the cc-pVTZ basis 

set (clusters).  Best-fit lines (a,b) and ideal (c,d) relationships are shown as dotted black 

lines. 
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5.3.2 Discussion of GIPAW Calculations 

GIPAW calculations of magnetic shielding are generally restricted to LDA and 

GGA functionals.  Table 5.3 summarizes the results obtained from the LDA functional 

CA-PZ and the GGA functionals PBE, PW91, rPBE, PBEsol, and WC.  MAEs for the 

computed 43Ca chemical-shift tensors range between 13 ppm (rPBE) and 20 ppm (CA-

PZ).  MAEs for quadrupolar-coupling tensors range between 0.10 MHz (rPBE) and 0.15 

MHz (CA-PZ).  All functionals lead to a substantial overestimation of chemical shifts, 

as reflected by the value of |m|.  The best results for 43Ca chemical shifts were obtained 

by rPBE (|m| = 1.30 ± 0.06) and the worst results were obtained by CA-PZ (|m| = 1.50 

± 0.07).  The order of decreasing chemical-shift tensor MAEs is CA-PZ > PBEsol > 

WC > PW91 > PBE > rPBE.  The same ranking of these six functionals has been 

reported for 29Si and 31P chemical-shift tensors, except the order of PBEsol and WC is 

reversed [26]. 

Table 5.3.  Linear-regression parameters (ref and |m|) and statistical data (MAE,a 

Max.b) associated with the correlations of principal values of calculated 43Ca 

magnetic-shielding tensors and experimental 43Ca chemical-shift tensors and of 

calculated and experimental 43Ca quadrupolar-coupling tensors obtained from six 

plane-wave DFT methods. 

 

 Magnetic Shielding Quadrupolar Coupling 

Method 
ref MAE Max. 

|m| 
MAE Max. 

(ppm) (ppm) (ppm) (MHz) (MHz) 

CA-PZ 1111 ± 2 20 43 1.50 ± 0.07 0.15 0.34 

PBEsol 1129 ± 2 16 35 1.41 ± 0.06 0.13 0.26 

WC 1130 ± 2 16 35 1.41 ± 0.07 0.12 0.26 

PW91 1140 ± 2 15 32 1.36 ± 0.06 0.13 0.26 

PBE 1140 ± 2 14 32 1.35 ± 0.06 0.14 0.25 

rPBE 1153 ± 2 13 27 1.30 ± 0.06 0.10 0.19 
aMean absolute error.  bMaximum error. 
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5.3.3 Discussion of Cluster-Based Calculations 

Cluster-based predictions of 43Ca NMR parameters have been carried out using 

a variety of DFT functionals, as summarized in Table 5.4.  MAEs of computed chemical 

shifts range between 13 ppm (TPSSh) and 51 ppm (M06-HF), whereas MAEs for the 

computed quadrupolar coupling range between 0.16 MHz (PBE, PW91, and TPSS) and 

0.29 MHz (BMK).  As is the case for the GIPAW calculations, all methods 

systematically overestimate chemical shifts.  However, there are cases in which 

individual chemical shifts have very large errors (up to 141 ppm for the M06-HF 

functional, for example), as reflected in the large uncertainties in |m|.  For the functionals 

with poor agreement with experimental 43Ca chemical-shift tensors (particularly M06-

HF), the largest errors are associated with the two polymorphs of CaCO3. 

We note three significant trends in the results.  First, for the series of closely-

related pure DFT functionals SVWN, PBE, and TPSS, which represent the LDA, GGA, 

and meta-GGA classes of functionals, respectively, there is systematic improvement of 

agreement of predicted 43Ca NMR parameters with experiment in the order SVWN < 

PBE < TPSS.  The extrapolated shielding of the reference compound also changes in 

this series, with the three functionals yielding values for ref of 1124 ± 2 ppm, 1147 ± 2 

ppm, and 1159 ± 2 ppm, respectively.  Second, the hybrid functionals seem to 

outperform their pure DFT analogs for the prediction of 43Ca chemical shifts, as is 

indicated by the functional pairs PBE and PBE0, PW91 and B3PW91, and TPSS and 

TPSSh.  However, this trend is notably absent in the Minnesota functionals, where the 

best agreement with experiment is obtained with M06-L and the worst agreement with 

M06-HF.  Finally, there is a weak positive correlation between MAEs in the computed 

chemical shifts and MAEs in the computed quadrupolar couplings.  For example, the 
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functionals M06-HF, M06-2X, and BMK are poor performers for predicting both of 

these parameters. 

Table 5.4.  Linear-regression parameters (ref and |m|) and statistical data (MAE,a 

Max.b) associated with the correlations of principal values of calculated 43Ca 

magnetic-shielding tensors and experimental 43Ca chemical-shift tensors and of 

calculated and experimental 43Ca quadrupolar-coupling tensors obtained from 

thirteen DFT methods in cluster-based calculations. 

 

 Magnetic Shielding Quadrupolar Coupling 

Method 
ref MAE Max. 

|m| 
MAE Max. 

(ppm) (ppm) (ppm) (MHz) (MHz) 

M06-HF 1191 ± 9 51 141 1.05 ± 0.31 0.25 0.66 

BMK 1201 ± 6 30 69 1.12 ± 0.19 0.29 0.65 

M06-2X 1182 ± 5 25 67 1.19 ± 0.16 0.26 0.73 

PKZB 1184 ± 3 22 58 1.48 ± 0.11 0.17 0.33 

SVWN 1124 ± 2 18 41 1.51 ± 0.06 0.21 0.63 

M06 1180 ± 2 17 39 1.45 ± 0.07 0.23 0.45 

M06-L 1176 ± 3 17 50 1.31 ± 0.09 0.21 0.47 

PW91 1145 ± 2 16 34 1.35 ± 0.07 0.16 0.31 

PBE 1147 ± 2 15 33 1.37 ± 0.07 0.16 0.31 

B3PW91 1178 ± 2 14 32 1.32 ± 0.06 0.17 0.30 

PBE0 1184 ± 2 13 30 1.32 ± 0.06 0.20 0.54 

TPSS 1159 ± 2 13 27 1.30 ± 0.06 0.16 0.29 

TPSSh 1173 ± 2 13 28 1.28 ± 0.06 0.21 0.61 

aMean absolute error.  bMaximum error. 

 

 

Inspired by the fact that hybrid functionals outperform their pure DFT analogs 

for the prediction of 43Ca chemical shifts, the same calculations were carried out at the 

Hartree-Fock level (Table 5.6).  It is apparent that the Hartree-Fock results outperform 

the DFT methods (Tables 5.3 and 5.4) for the prediction of 43Ca chemical-shift tensors.  

A summary of the twenty model chemistries (six plane-wave DFT methods, thirteen 
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cluster-based DFT methods, and Hartree-Fock theory) for the prediction of 43Ca 

chemical shifts is illustrated in Figure 5.4.   

Figure 5.5 displays the relationship between principal components of calculated 

43Ca magnetic-shielding tensors and principal components of experimental 43Ca 

chemical-shift tensors, with computed results obtained at the PBE and Hartree-Fock 

levels.  Hartree-Fock calculations result in chemical-shift tensors that are more in 

agreement with experimental values than those obtained at the PBE level.  In the former 

case, the MAE is 9 ppm; in the latter case, the MAE is 14 ppm.  In addition, the slopes 

of the two lines are significantly different, as indicated by the following relations: 

 𝜎𝑃𝐵𝐸 = (1147 ± 2) ppm − (1.37 ± 0.07)𝛿𝑒𝑥𝑝, (Eq. 5.7) 

 𝜎𝐻𝐹 = (1244 ± 1) ppm − (1.19 ± 0.05)𝛿𝑒𝑥𝑝. (Eq. 5.8) 

The agreement between calculated and experimental quadrupolar-coupling tensors is 

similar in the two computation levels, with Hartree-Fock yielding a MAE of 0.20 MHz 

and the calculation with the PBE functional yielding a MAE of 0.16 MHz. 

Calculations performed at the Hartree-Fock level predict magnetic-shielding 

constants that are systematically shielded relative to DFT values.  To explore this 

relationship further, we provide calculations for the 43Ca magnetic-shielding tensors in 

Ca2+ and the linear ions CaF+, CaOH+, and CaF+ at the HF and PBE levels (Table 5.5).  

Both computational methods yield the same shielding constant (to within 0.2 ppm) for 

Ca2+.  For linear ions, there is no expected paramagnetic contribution to the principal 

component of the shielding tensor lying along the bonding axis.  For the three ions, this 

principal component differs by no more than 0.8 ppm between the HF and PBE methods, 

whereas the values predicted for the principal components oriented perpendicular to the 

bonding axis differ tremendously.  This fact suggests that the difference in shielding 
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constants predicted by the two model chemistries reflect systematic differences in the 

paramagnetic contributions to the shielding tensors. 

 

Table 5.5.  HF and PBE calculations of magnetic-shielding tensors in Ca2+, CaF+, 

CaOH+, and CaH+.a 

 

Ion 
Hartree-Fock PBE 

11,22 (ppm) 33 (ppm)  (ppm) 11,22 (ppm) 33 (ppm)  (ppm) 

Ca2+ 1413.0 1413.0 0.0 1412.8 1412.8 0.0 

CaF+ 1281.0 1419.6 138.6 1135.1 1420.4 285.3 

CaOH+ 1277.8 1420.8 143.0 1112.0 1421.6 309.6 

CaH+ 1126.8 1417.2 290.4 938.8 1417.4 478.6 
aGeometries were obtained at the HF/cc-pVTZ level. 

 

 

Profeta et al. have suggested that Ca 3d0 orbitals are able to hybridize with 

occupied O 2p orbitals [24].  In their study of 17O quadrupolar-coupling tensors, large 

errors were seen for O sites in close proximity to a Ca site.  The authors demonstrated 

that the energy gap between these two orbitals can be varied by GGA+U calculations, 

and that this energy gap has a strong effect on computed NMR parameters.  Similar 

results have been illustrated for materials containing metal-fluorine bonds [80].  

Destabilization of the Ca 3d0 orbital leads to a reduction of the covalent nature of the 

metal-oxygen or metal-fluorine bond.  A simple explanation of the variation in the 

accuracy in computed 43Ca magnetic-shielding tensors among model chemistries, as 

noted in the present study, is that these values are linked to the covalent character of the 

bond.  In support of this idea, we note that functionals with an admixture of Hartree-
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Fock exchange (PBE0, B3PW91, and TPSSh), which are well known to improve 

predictions of band gaps, tend to yield superior results relative to pure DFT functionals 

(PBE, PW91, and TPSS), as illustrated in Table 5.4. 

Finite-basis-set effects are necessary considerations for establishing the 

accuracy of model chemistries.  Calculations are presented for the 43Ca solid-state NMR 

parameters using the class of correlation-consistent basis sets cc-pVXZ (X = D, T, Q) 

at the Hartree-Fock level (Table 5.6).  The effects of a finite basis set on computed 

magnetic-shielding parameters for 43Ca mirror results for other nuclei [23].  MAEs in 

computed principal values of 43Ca magnetic-shielding tensors and quadrupolar-coupling 

tensors do not differ significantly between the cc-pVDZ and cc-pVQZ basis sets. 

  

Figure 5.4.  Mean absolute errors between calculated and experimental 43Ca chemical-

shift tensors.  Results obtained using GIPAW are shown in red, DFT results obtained 

using clusters are shown in blue, and Hartree-Fock results are shown in green. 

 

 



 173 

 

Figure 5.5.  Relationship between calculated principal values of 43Ca magnetic-

shieling tensors and experimental principal values of 43Ca chemical-shift tensors 

obtained at the PBE (blue squares) and Hartree-Fock (red circles) levels. 

Table 5.6.  Linear-regression parameters (ref and |m|) and statistical data (MAE,a 

Max.b) associated with the correlations of principal values of calculated 43Ca 

magnetic-shielding tensors and experimental 43Ca chemical-shift tensors and of 

calculated and experimental 43Ca quadrupolar-coupling tensors obtained from 

Hartree-Fock theory. 

 

 Magnetic Shielding Quadrupolar Coupling 

Basis set 
ref MAE Max. 

|m| 
MAE Max. 

(ppm) (ppm) (ppm) (MHz) (MHz) 

cc-pVDZ 1250 ± 2 9 19 1.00 ± 0.06 0.17 0.31 

cc-pVTZ 1244 ± 1 9 21 1.19 ± 0.05 0.20 0.42 

cc-pVQZ 1246 ± 2 10 19 1.11 ± 0.06 0.20 0.59 
aMean absolute error.  bMaximum error. 
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5.4 Conclusions 

43Ca magnetic-shielding tensors and quadrupolar-coupling tensors have been 

calculated for ten calcium sites of calcium-containing materials using periodic and 

cluster-based computational protocols.  Both GIPAW and cluster-based calculations of 

43Ca NMR parameters lead to comparable agreement with experiment when the same 

functional is employed, demonstrating the cluster approach is applicable to 43Ca NMR 

parameter calculations.  In addition, since the cluster-based approach allows a wider 

array of model chemistries to be assessed, a total of twenty-two model chemistries have 

been studied, including seventeen DFT methods and Hartree-Fock theory.  The effects 

of finite basis sets were also evaluated. 

We find that all DFT methods result in either substantial systematic 

overestimation of chemical shifts for all 43Ca sites in the database (as characterized by 

the linear-regression parameter |m|) or in large deviations for individual sites (most often 

calcite and aragonite).  There is also a correlation between errors in computed chemical 

shifts and computed quadrupolar coupling.  For example, the functionals M06-HF, 

M06-2X, and BMK perform poorly for the prediction of both quantities.  In contrast, 

calculations performed with cluster approach at the Hartree-Fock level yield result in 

excellent agreement with experiment. 
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Chapter 6 

ANALYSIS OF THE BOND-VALENCE METHOD FOR CALCULATING 29SI 

AND 31P MAGNETIC SHIELDING IN COVALENT NETWORK SOLIDS 

 

6.1 Introduction 

This chapter examines several methods for calculating 29Si and 31P magnetic-

shielding tensors in covalent network solids such as silicates, phosphates, and related 

minerals.  Numerous examples of density-functional calculations of 29Si and 31P 

magnetic shielding are found in the literature [1-6].  As discussed previously, one 

popular approach for calculating magnetic shieldings in crystalline solids is to expand 

the wave function in a plane-wave basis, as is done with the gauge-including-projector-

augmented-wave (GIPAW) method [7].  This method takes advantage of the periodic 

nature of the crystalline lattice and is a robust computational technique [8]. 

On the other hand, there are reasons to model a crystalline lattice without 

periodic-boundary conditions (PBCs).  For example, both PBC and cluster-based 

calculations scale according to the number of electrons in the model, but the PBC 

method requires the full unit cell to satisfy translational-symmetry requirements.  For 

systems with large unit cells, an adequately-sized cluster may contain fewer electrons.  

Another consideration is the model chemistry with which NMR parameters can be 

computed.  Calculations using PBCs are typically restricted to pure DFT exchange-

correlation functionals based on the local-density approximation (LDA) or the 

generalized-gradient approximation (GGA), which excludes higher-level model 

chemistries.  Recent work has illustrated that significant improvement in computed 

magnetic-shielding tensors is obtainable with more rigorous DFT methods in many 

types of chemical systems [9].   
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Sufficient agreement with experiment can be obtained by employing a 

moderately-sized cluster to represent a local portion of a solid [10-12].  The cluster 

approximation works well for molecular solids but difficulties arise when modeling 

network solids such as silicates, phosphates, and other minerals.  The major difficulty 

associated with modeling a local portion of a solid using a cluster-based approach arises 

from terminating the outermost atoms, as doing so results in dangling bonds and 

uncompensated charge which increases significantly with increasing cluster size.  For 

charged clusters, SCF convergence is often difficult to achieve due a small HOMO-

LUMO gap [11].  When the SCF cycle does converge, the resulting magnetic-shielding 

tensors may not agree with experimental values. 

One approach to deal with excess charge on a cluster is to saturate the dangling 

bonds with hydrogen atoms [10, 11, 13-18].  There are problems with the hydrogen-

addition method, including variation in computed magnetic-shielding tensors depending 

on the number and placement of hydrogen atoms.  There are frequently convergence 

difficulties, also an indicator of failure to model the electronic structure properly. 

A second approach to deal with the charge problem employs the embedded-ion 

method (EIM) or related formalisms [19-25] to compensate for excess charge by 

embedding the cluster in an array of classical point charges centered on the 

crystallographic nuclear origins.  This method has been applied to calculations on 

several magnesium phosphates with success [19].  However, the EIM method has 

difficulties outlined by Weber [19], typically associated with the quantum-mechanical 

and electrostatic interface and with charge on the quantum region of the cluster. 

A recent approach introduced by Alkan and Dybowski employs pseudoatoms 

with non-integer nuclear charges for the terminal atoms [11, 12].  Charges are 
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parameterized using the bond-valence theory of Brown and co-workers [26-30].  This 

computational approach, referred to as valence modification of terminal atoms using 

bond-valence theory, or VMTA/BV, has been exploited in calculations of 207Pb 

magnetic shielding in network solids [11, 12].  An advantage of the VMTA/BV method 

is that calculations can be performed on all types of nuclides with model chemistries not 

available when using the plane-wave approach (hybrid DFT, HF, MP2, etc.). 

This chapter presents a series of calculations of 29Si and 31P magnetic-shielding 

tensors in solids.  These nuclides were selected because of the wealth of high-quality 

solid-state NMR measurements of such tensors.  Computed magnetic-shielding tensors 

by the GIPAW procedure and by a cluster-based approach that incorporates bond-

valence theory are compared for twenty-seven materials and eight model chemistries. 

6.2 Computational Details and Theory 

The solids selected for inclusion in this study were chosen by the following 

criteria: (1) the structure of the material had to be known through high-quality 

diffraction studies; (2) the principal components of the chemical-shift tensors had to 

have been measured to a high degree of accuracy; and (3) the NMR spectra of materials 

with more than one unique NMR-active lattice site had to have been assigned 

unambiguously.  For 29Si calculations, the materials are SiO2 [31, 32], Li2Si2O5 [33, 34], 

Na2SiO3 [35, 36], Na2Si2O5 [33, 37], Mg2SiO4 [38, 39], MgSiO3 [33, 40], CaSiO3 [35, 

41], Ca3Si2O7 [35, 42], and CaMgSiO5 [33, 43].  For 31P calculations, the materials are 

Mg3(PO4)2 [19, 44], Mg2P4O12 [19, 45], Mg2P2O7 [19, 46], MgP4O11 [19, 47], Ca4P2O9 

[48], Li6O6P18·3H2O [49, 50], and SnHPO4 [51, 52].  Altogether, this database consists 

of thirteen unique 29Si sites and fourteen unique 31P sites. 
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Refinements of the positions of hydrogen atoms in diffraction structures often 

result in appreciable changes in calculated magnetic shielding, even in cases where the 

hydrogen atom is located several bonds from the NMR-active nucleus.  For hydrates, 

the lattice positions of hydrogens were optimized while leaving heavy atoms fixed.  

Optimizations were performed using the GGA functional of Perdew, Burke, and 

Ernzerhof (PBE) [53] with a plane-wave cutoff energy of 600 eV.  Core orbitals were 

replaced with ultrasoft pseudopotentials (USPPs) generated on the fly (OTF) [54]. 

GIPAW calculations of magnetic shielding were performed using the LDA 

functional CA-PZ [55, 56], and the GGA functionals PW91 [57], PBE [53], rPBE [58], 

PBEsol [59], and WC [60] with a plane-wave cutoff energy of 600 eV and ultra-fine 

SCF convergence criteria, unless indicated otherwise.  Core orbitals were replaced by 

OTF-USPPs [54]. 

In the cluster-based calculations, which were based on the gauge-including 

atomic orbital (GIAO) formalism [61, 62], two all-electron (AE) basis sets were 

employed for different regions of the cluster.  The central region of the cluster, which 

consisted of the central Si or P site and the four directly-adjacent oxygen sites, was given 

the larger AE TZ2P basis set.  The atomic sites located further from the center were 

given the smaller AE TZP basis set.  Charge compensation on the outermost atomic 

shells was accomplished through the VMTA/BV method [11, 12].  Two example 

clusters are shown in Figure 6.1.  Calculations on clusters were performed using the 

PBE functional and the hybrid functional PBE0 [63].  The PBE0 functional results from 

the admixture of 25% Hartree-Fock (HF) exchange with the PBE functional.   

Geometry optimizations and magnetic-shielding calculations employing the 

GIPAW approach were performed using the CASTEP module of MATERIALS STUDIO 7.0 
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[64].  Magnetic-shielding calculations in the cluster-based approach were performed 

with the Amsterdam Density Functional (ADF2014) suite of programs [65]. 

The VMTA/BV model has been discussed previously [11, 12].  Briefly, in the 

VMTA/BV model, the bond strength of a terminal atom is given by: 

 𝑺 =∑𝑒𝑥𝑝 (
𝑹𝑖0 − 𝑹𝑖
𝒃𝑖

)

𝑖

 (Eq. 6.1) 

In Eq. 6.1, S is the bond strength of the terminal atom, Ri is the bond length, and Ri0 and 

bi are parameters given in a recent review by Brown [26].  The value of Ri0 was adjusted 

for each system so that the bond strength of a fully-co-ordinated atom was equal to the 

oxidation state of the atom.  The nuclear charges, Znuc, on the terminal atoms were 

modified to counteract the missing co-ordination.  The added charge is proportional to 

the sum of the bond strengths of that atom, 

 𝒁𝑚𝑜𝑑  =  𝒁𝑛𝑢𝑐  +  ∆𝑺, (Eq. 6.2) 

where Znuc is the unaltered nuclear charge, Zmod is the modified nuclear charge, and S 

is the difference between the valence of the terminal atom in a periodic solid and the 

valence of the same atom in a cluster. Using the VMTA/BV method, SCF convergence 

was achieved for all twenty-seven cluster models without using SCF-convergence aids. 
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Figure 6.1.  Illustration of third-co-ordination-shell clusters for Mg2SiO4 and 

Mg3(PO4)2.  The TZ2P region is shown in ball-and-stick model and the TZP region is 

shown as a wireframe model. 

6.3 Results and Discussion 

6.3.1 Cluster Size 

An important step in calculations employing clusters is to verify that the cluster 

sufficiently models a local portion of the solid-state structure.  To maximize 

computational efficiency, it is desirable to employ the smallest possible cluster capable 

of accurately representing the environment around the NMR-active nucleus.  A series 

of magnetic-shielding calculations using model clusters of various sizes is summarized 

in Table 6.1 for SiO2, Na2SiO3, Mg2P4O12 (P1), and Mg3(PO4)2.  The clusters are 

expanded around the NMR-active nucleus (29Si or 31P) up to the first, third, and fifth co-

ordination shells (Figure 6.2). 

Experimental chemical shifts (relative to a reference compound) have been 

converted to the magnetic-shielding scale (relative to the bare nucleus) using a proposed 
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empirical conversion [66, 67].  The experimental magnetic shielding (𝜎𝑒𝑥𝑝) is related 

to the experimental chemical shift (𝛿𝑒𝑥𝑝) by the relation: 

 𝜎𝑒𝑥𝑝 = 𝜎𝑟𝑒𝑓 − 𝛿𝑒𝑥𝑝 (Eq. 6.3) 

The reference shielding constants (𝜎𝑟𝑒𝑓) are 368.5 ppm (TMS) and 328.4 ppm 

(85% H3PO4) for 29Si and 31P, respectively.  As is displayed in Table 6.1, the computed 

residuals between calculated and experimental magnetic shielding for the third and fifth 

co-ordination shells differ from each other in the range of 1 – 2 ppm.  However, 

differences in computed residuals between first- and third-co-ordination-shell clusters 

are significantly larger, with the highest deviation being around 50 ppm.  The similarity 

in residuals for the third and fifth co-ordination shells suggests that third-co-ordination-

shell clusters are sufficiently large to model the magnetic shielding. 

 

Figure 6.2.  Clusters of SiO2 expanded around the NMR-active 29Si site to the first (left), 

third (center) and fifth (right) co-ordination shells.  The TZ2P layer is shown in the ball-

and-stick representation and the TZP region is shown in the wireframe representation. 
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Table 6.1.  Principal components of experimental and computed magnetic-shielding 

tensors, isotropic magnetic shielding, and span for first, third, and fifth co-ordination-

shell clusters of SiO2, Na2SiO3, Mg2P4O12 (P1), and Mg3(PO4)2
a determined with 

VMTA/BV theory. 

 

Model Cluster 
11  

(ppm) 

22  

(ppm) 

33  

(ppm) 

iso
b  

(ppm) 

b  

(ppm) 

Rc  

(ppm) 

SiO2 

Experimental 471.1 475.5 477.6 474.7 6.5 --- 

First shell 440.7 441.5 442.5 441.6 1.8 33.2 

Third shell 447.0 450.3 456.4 451.2 9.4 23.6 

Fifth shell 447.5 449.9 459.2 452.2 11.7 22.7 

Na2SiO3 

Experimental 388.2 429.4 519.1 445.6 130.9 --- 

First shell 401.4 432.8 483.8 439.3 82.4 21.8 

Third shell 357.9 395.9 499.0 417.6 141.1 28.5 

Fifth shell 363.9 398.1 495.0 419.0 131.2 26.8 

Mg2P4O12 (P1) 

Experimental 272.5 329.4 487.0 363.0 214.5 --- 

First shell 240.8 280.6 403.6 303.8 162.9 58.7 

Third shell 262.6 317.3 479.4 353.1 216.8 10.0 

Fifth shell 258.7 316.8 489.9 355.1 231.2 10.9 

Mg3(PO4)2 

Experimental 315.7 325.7 344.2 328.5 28.5 --- 

First shell 293.7 303.7 327.1 308.2 33.4 20.5 

Third shell 303.4 317.5 331.3 317.4 27.9 11.3 

Fifth shell 305.4 313.5 336.0 318.3 30.6 10.4 
aCalculations performed at the PBE/TZ2P/AE level of theory. 
bThe isotropic magnetic shielding and span are defined by 𝜎𝑖𝑠𝑜 = (𝜎11 + 𝜎22 +

𝜎33)/3, and  = 33 - 11, respectively. 

c𝑅 = √
1

3
∑ (𝜎𝑖𝑖

𝑒𝑥𝑝 − 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐)

2
𝑖𝑖  . 

 



 190 

The lowest residuals between calculation and experiment for the three sizes of 

model clusters examined are generally observed for the third- and fifth-co-ordination-

shell clusters.  However, for Na2SiO3, the lowest value of R is found for the first co-

ordination shell.  This deviation from the general trend appears to be the result of 

accidental cancellation of errors, as indicated by the computed spans ().  The 

experimental span of 130.9 ppm is more in line with the values calculated for the third- 

and fifth-co-ordination-shell clusters (141.1 ppm and 131.2 ppm, respectively) than with 

the span calculated for the first-co-ordination shell cluster (82.4 ppm). 

6.3.2 Basis-Set and Pseudopotential Effects 

Calculated magnetic-shielding constants depend strongly on basis sets and 

electronic-state approximations such as pseudopotentials used in the calculation.  

Results obtained near the basis-set limit can be used to compare computational 

methodologies because finite-basis-set effects are minimized.  To test the convergence 

of computed NMR parameters with respect to the basis-set size, plane-wave 

pseudopotential calculations were run on SiO2 and Mg3(PO4)2 with cutoff energies of 

200 eV, 400 eV, 600 eV, and 800 eV.  Similarly, cluster-based calculations were run on 

the same systems, for which the Slater-type basis set on the central SiO4 or PO4 

tetrahedra was DZ, DZP, TZP, and TZ2P, in increasing order of flexibility.  The results 

of these calculations are presented in Table 6.2. 

The difference in the calculated principal components of the magnetic-shielding 

tensor derived with the TZP basis set, as compared to those determined with the TZ2P 

basis set (or in going from a cutoff energy of 600 eV to a cutoff energy of 800 eV for 

the GIPAW calculations), is negligible.  For the GIPAW calculations, individual 

principal components of the computed magnetic-shielding tensor differ by no more than 
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0.4 ppm between cutoff energies of 600 eV and 800 eV.  In the cluster calculations, the 

largest difference in computed magnetic shielding between TZP and TZ2P is 1.6 ppm.  

Similarly, the largest difference in calculated spans between 600 eV and 800 eV is 0.2 

ppm and the largest difference in spans between TZP and TZ2P is 0.7 ppm. 

Table 6.2.  Calculated 29Si and 31P principal components of magnetic shielding 

tensors for various all-electron Slater-type and pseudopotential plane-wave basis 

sets.a 

 

Basis Set 
11 

(ppm)

22 

(ppm)

33 

(ppm)

iso 

(ppm)



ppm

SiO2 

DZ 451.9 463.0 471.8 462.2 19.8 

DZP 451.7 454.5 464.4 456.9 12.6 

TZP 448.1 451.7 457.7 452.5 9.5 

TZ2P 447.0 450.3 456.4 451.2 9.4 

200 eV 413.2 424.0 426.7 421.3 13.5 

400 eV 427.6 431.4 435.1 431.4 7.5 

600 eV 426.8 430.6 434.5 430.6 7.7 

800 eV 426.7 430.2 434.2 430.4 7.5 

Mg3(PO4)2 

DZ 304.9 321.0 335.3 320.4 30.4 

DZP 300.8 316.6 330.9 316.1 30.1 

TZP 304.2 319.1 332.8 318.7 28.6 

TZ2P 303.4 317.5 331.3 317.4 27.9 

200 eV 258.3 262.7 284.7 268.6 26.4 

400 eV 267.8 273.8 297.2 279.6 29.4 

600 eV 268.6 274.4 297.9 280.3 29.3 

800 eV 268.6 274.4 297.9 280.3 29.3 
aCalculations performed at the PBE level of theory. 
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The periodic and cluster-based computational methodologies yield NMR 

parameters that differ significantly.  At the basis-set limit (600 eV or TZ2P), 

calculations that used Slater-type basis functions yielded magnetic-shielding parameters 

that are more shielded than those that were obtained using plane waves.  For SiO2, the 

difference in computed isotropic shielding is about 21 ppm; for Mg3(PO4)2, the 

difference in isotropic shielding is about 37 ppm.  However, both methods predict 

similar values for the spans of the magnetic-shielding tensors of these sites, indicating 

that the two methods predict similar differences between nuclei in different chemical 

environments, but different absolute shieldings. 

6.3.2.1 Comparison of Periodic and Cluster Models 

All results presented in this section were obtained with the PBE functional.  As 

suggested in the previous section, magnetic-shielding constants obtained using the 

cluster-based method are substantially more shielded than those obtained with the PBC 

method.  The mean absolute deviations between the two methodologies for 29Si and 31P 

are 21.4 ppm and 38.0 ppm, respectively.  The cluster-based calculations are in closer 

agreement with experimental magnetic-shielding constants determined from chemical 

shifts and the absolute reference shieldings of Jameson [66, 67].  For 29Si, the residuals 

between calculation and experiment are 51.2 ppm for the GIPAW approach and 25.3 

ppm for the VMTA/BV approach.  For 31P, the residuals between calculation and 

experiment are 57.4 ppm for the GIPAW approach and 13.3 ppm for the VMTA/BV 

approach. 

Plots illustrating the relationship between calculated (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐) and experimental 

(𝜎𝑖𝑖
𝑒𝑥𝑝

) principal components of the magnetic-shielding tensors illustrate the relationship 

between the two computational methodologies and experimental results (Figures 6.3 
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and 6.4).  For 29Si magnetic shielding, linear regression on the GIPAW and VMTA/BV 

datasets yields the best-fit relations: 

 𝜎𝑖𝑖
𝐺𝐼𝑃𝐴𝑊 = (1.05 ± 0.02) 𝜎𝑖𝑖

𝑒𝑥𝑝 − (67 ± 7) 𝑝𝑝𝑚, (Eq. 6.4) 

 𝜎𝑖𝑖
𝑉𝑀𝑇𝐴/𝐵𝑉

= (1.02 ± 0.02) 𝜎𝑖𝑖
𝑒𝑥𝑝 − (33 ± 9) 𝑝𝑝𝑚. (Eq. 6.5) 

For 31P magnetic shielding, linear regression on the GIPAW and VMTA/BV datasets 

yields: 

 𝜎𝑖𝑖
𝐺𝐼𝑃𝐴𝑊 = (1.10 ± 0.01) 𝜎𝑖𝑖

𝑒𝑥𝑝 − (85 ± 4) 𝑝𝑝𝑚, (Eq. 6.6) 

 𝜎𝑖𝑖
𝑉𝑀𝑇𝐴/𝐵𝑉

= (1.04 ± 0.01) 𝜎𝑖𝑖
𝑒𝑥𝑝 − (24 ± 5) 𝑝𝑝𝑚. (Eq. 6.7) 

The linear-regression parameters for the GIPAW calculations of 31P magnetic shieldings 

are the same (to within experimental uncertainty) as those reported previously for 

phosphorus-containing molecular solids .  Statistical data are presented in Table 6.3. 
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Figure 6.3.  Plots illustrating the relationship between calculated and experimental 

principal components of 29Si magnetic-shielding tensors.  Values obtained using the 

GIPAW approach are shown in red, and results obtained using the cluster-based 

VMTA/BV approach are shown in blue.  Results were computed at the PBE level of 

theory.  The best-fit lines are shown in black. 
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Figure 6.4.  Plots illustrating the relationship between calculated and experimental 

principal components of 31P magnetic-shielding tensors.  Values obtained using the 

GIPAW approach are shown in red, and results obtained using the cluster-based 

VMTA/BV approach are shown in blue.  Results were computed at the PBE level of 

theory.  The best-fit lines are shown in black. 
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6.3.3 Benchmarking DFT Functionals 

Magnetic-shielding calculations were also performed using the DFT functionals 

CA-PZ, PW91, rPBE, PBEsol, WC, and PBE0.  Of these calculations, those using the 

CA-PZ, PW91, rPBE, PBEsol, and WC functionals were performed using the GIPAW 

method.  Calculations with the hybrid PBE0 functional used the cluster-based approach.  

Statistical data associated with these calculations, as well as the calculations described 

in the previous section, are summarized in Table 6.3.  Five measures are used to quantify 

agreement between calculation and experiment.  The first two are the slope (m, ideally 

unity) and intercept (b, ideally zero) of the best-fit line.  In addition, we define the 

residual RN as the standard error between calculated magnetic shielding (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐) and 

experimental magnetic shielding (𝜎𝑖𝑖
𝑒𝑥𝑝

), the residual RN-1 as the standard error between 

𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 and the predicted magnetic shielding (𝜎𝑖𝑖

𝑝𝑟𝑒𝑑
) obtained using the linear-regression 

parameter b for that model chemistry, and the residual RN-2 as the standard error between 

𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 and the predicted magnetic shielding (𝜎̂𝑖𝑖

𝑝𝑟𝑒𝑑
) obtained using the linear-regression 

parameters m and b for that model chemistry.  Of these metrics, RN and b measure the 

ability of the model chemistry to calculate magnetic shielding on an absolute scale, RN-

1 and m measure the ability to calculate relative chemical shifts, and RN-2 measures the 

scatter around the best-fit line. 

The GIPAW calculations for each DFT functional result in trend lines with 

slopes ranging between 1.03 and 1.08 for 29Si and between 1.09 and 1.14 for 31P.  The 

computed intercepts range between -52 ppm and -100 ppm for 29Si and between -70 

ppm and -120 ppm for 31P.  As demonstrated in the previous section, PBE calculations 

employing the TZ2P basis set outperform calculations obtained using plane waves.  This 

result is reflected in the statistical data in Table 6.3.  Further improvement over the PBE 
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model is observed when employing the hybrid PBE0 functional (Figures 6.5 and 6.6).  

For 29Si, the calculations yield: 

 𝜎𝑖𝑖
𝑃𝐵𝐸0 = (1.00 ± 0.02) 𝜎𝑖𝑖

𝑒𝑥𝑝 − (10 ± 10) 𝑝𝑝𝑚, (Eq. 6.8) 

Similarly, calculations for 31P yield: 

 𝜎𝑖𝑖
𝑃𝐵𝐸0 = (1.00 ± 0.01) 𝜎𝑖𝑖

𝑒𝑥𝑝 − (1 ± 4) 𝑝𝑝𝑚. (Eq. 6.9) 

We note that the slopes of the lines obtained at the PBE0/TZ2P level do not 

differ from unity to within experimental error, whereas the results obtained with the 

pure PBE method do, and that the intercepts of the lines for PBE0/TZ2P are much closer 

to zero than are those observed with the PBE method.  In the case of 29Si, the uncertainty 

in the experimental reference shielding is ± 10 ppm.  Given the uncertainties in m and 

b, deviations in RN-2 are not statistically significant among the computational 

methodologies. 

There is a significant trend in the correlation between errors in m, b, RN, and RN-

1, which follow the scheme CA-PZ/GIPAW > WC/GIPAW > PBEsol/GIPAW > 

PW91/GIPAW > PBE/GIPAW > rPBE/GIPAW > PBE/VMTA/BV > 

PBE0/VMTA/BV (Table 6.3).  This trend is consistent for both nuclei.  The strong 

correlation between the two linear-regression parameters m and b suggests a link 

between errors in absolute magnetic shielding (evaluated by b) and errors in relative 

chemical shifts (evaluated by m) for the eight model chemistries considered here (Figure 

6.7). 
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Figure 6.5.  Plot illustrating the relationship between calculated and experimental 

principal components of 29Si magnetic-shielding tensors.  Results were computed at the 

PBE0 level of theory.  The best-fit lines are shown in black. 
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Figure 6.6.  Plot illustrating the relationship between calculated and experimental 

principal components of 31P magnetic-shielding tensors.  Results were computed at the 

PBE0 level of theory.  The best-fit lines are shown in black. 
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Table 6.3. Linear-regression parameters (m, b) for the relationship between 

experimental and calculated principal components of magnetic-shielding tensors and 

residuals between experimental and calculated magnetic shielding. 

 

Functional Method m 
b RN

a RN-1
b RN-2

c 

(ppm) (ppm) (ppm) (ppm) 

Silicon-29 

CA-PZ GIPAW 1.08 ± 0.02 -100 ± 8 65.6 35.9 4.2 

WC GIPAW 1.05 ± 0.02 -76 ± 8 51.2 26.0 4.0 

PBEsol GIPAW 1.05 ± 0.02 -74 ± 8 50.6 24.6 4.0 

PW91 GIPAW 1.05 ± 0.02 -67 ± 7 46.7 21.8 4.1 

PBE GIPAW 1.04 ± 0.02 -67 ± 7 46.4 21.6 4.0 

rPBE GIPAW 1.03 ± 0.02 -52 ± 7 37.9 15.3 3.9 

PBE VMTA/BV 1.02 ± 0.02 -33 ± 9 25.3 10.3 4.9 

PBE0 VMTA/BV 1.00 ± 0.02 -10 ± 10 11.1 5.6 5.5 

Phosphorus-31 

CA-PZ GIPAW 1.14 ± 0.01 -120 ± 4 72.7 46.0 5.2 

WC GIPAW 1.11 ± 0.01 -95 ± 5 56.7 37.4 6.2 

PBEsol GIPAW 1.11 ± 0.01 -92 ± 4 54.3 36.7 5.0 

PW91 GIPAW 1.10 ± 0.01 -86 ± 4 50.5 34.2 5.1 

PBE GIPAW 1.10 ± 0.01 -85 ± 4 49.9 34.1 5.0 

rPBE GIPAW 1.09 ± 0.01 -70 ± 4 40.2 29.1 4.9 

PBE VMTA/BV 1.04 ± 0.01 -24 ± 5 13.3 13.5 6.6 

PBE0 VMTA/BV 1.00 ± 0.01 -1 ± 4 6.3 6.3 6.1 
aStandard error between calculated magnetic shielding and experimental magnetic 

shielding, 𝑅𝑁 = √
1

𝑁
∑ (𝜎𝑖𝑖

𝑒𝑥𝑝 − 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐)

2
𝑖𝑖 . 

bStandard error between calculated magnetic shielding and the predicted magnetic 

shielding obtained using the linear-regression parameter b for that model chemistry, 

𝑅𝑁−1 = √
1

𝑁−1
∑ (𝜎𝑖𝑖

𝑝𝑟𝑒𝑑 − 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐)

2

𝑖𝑖 , 𝜎𝑖𝑖
𝑝𝑟𝑒𝑑 = 𝜎𝑖𝑖

𝑒𝑥𝑝 + 𝑏. 

cStandard error between calculated magnetic shielding and the predicted magnetic 

shielding (𝜎̂𝑖𝑖
𝑝𝑟𝑒𝑑

) obtained using the linear-regression parameters m and b for that 

model chemistry, 𝑅𝑁−2 = √
1

𝑁−2
∑ (𝜎̂𝑖𝑖

𝑝𝑟𝑒𝑑 − 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐)

2

𝑖𝑖 , 𝜎̂𝑖𝑖
𝑝𝑟𝑒𝑑 = (𝜎𝑖𝑖

𝑒𝑥𝑝 + 𝑏)/𝑚. 
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Figure 6.7.  Correlation between the linear-regression parameters m and b for eight DFT 

model chemistries.  Results for 29Si and 31P are shown in red and blue, respectively.  

GIPAW results are shown as circles; cluster-based VMTA/BV results are shown as 

squares. 

6.4 Conclusions 

We present DFT calculations of 29Si and 31P magnetic-shielding constants in 

crystalline solids obtained using the VMTA/BV method, where the outermost atoms of 

the cluster are given an effective nuclear charge to reduce the net charge of the cluster.  

These calculations are compared to values obtained using the GIPAW approach, which 

treats the materials with periodic boundary conditions.  We find that the cluster-based 

calculations lead to a modest increase in accuracy for relative chemical-shift parameters 

over those obtained by the GIPAW approach.  Furthermore, the cluster-based 
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calculations lead to a significant increase in accuracy for absolute magnetic-shielding 

parameters. 

Further calculations with the two computational methodologies evaluate 

differences in eight model chemistries for the prediction of 29Si and 31P magnetic 

shielding.  The hybrid functional PBE0 improves upon the GGA-PBE functional for 

calculations of the principal components of magnetic-shielding tensors of both 29Si and 

31P sites.  The extrapolated shielding of the reference compounds (TMS for 29Si and 

H3PO4 for 31P) are predicted to be more shielded when using the PBE0 functional than 

is observed for the pure DFT functionals.  The higher predicted values for the reference 

shielding are in closer agreement with work on absolute shielding reference scales.[66, 

67]  The PBE0 model chemistry yields best-fit lines between experimental and 

calculated magnetic shielding with slopes and intercepts not statistically different from 

unity and zero, respectively. 
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Chapter 7 

SEMI-EMPIRICAL REFINEMENTS OF CRYSTAL STRUCTURES USING 
17O QUADRUPOLAR-COUPLING TENSORS 

 

7.1   Introduction 

Solid-state nuclear magnetic resonance (NMR) spectroscopy has emerged as a 

robust technique for obtaining structural information, leading to suggestions that one 

may determine crystallographic structures by comparison of experimental NMR 

parameters to predictions of calculations on theoretical structures [1]. As implemented, 

NMR crystallography combines solid-state NMR spectroscopy and modern 

computational methods to verify, refine, or predict crystal structures.  One significant 

advantage that solid-state NMR spectroscopy has long had over X-ray diffraction is the 

ability to locate the positions of hydrogen atoms with a high degree of precision.  The 

positions of hydrogen atoms in extended hydrogen-bonding networks have been refined 

in numerous materials using techniques that compare NMR parameters to predictions 

based on theoretical structures [2-5].  NMR crystallography has also been used to detect 

distortions in molecular symmetry below the limit of detection of neutron diffraction 

[6], identify the number of molecules in the asymmetric unit [7], predict stereochemistry 

[8, 9], refine bond lengths and other ambiguous structural features in disordered systems 

[10-14], resolve space groups [15], and characterize static disorder in co-crystals [16, 

17].  Beyond the ability to refine structures, several studies have illustrated complete, 

or partial, structural prediction based on constraints derived from NMR spectroscopy in 

conjunction with calculations of NMR parameters [18-22]. 
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This study focuses on refinements of atomic coordinates in X-ray- or neutron-

diffraction-derived crystal structures using parameters obtained by solid-state NMR or 

nuclear quadrupole resonance (NQR) spectroscopy.  To date, several types of NMR data 

have been used to refine crystal structures.  These include isotropic chemical shifts, 

quadrupolar coupling constants, and homonuclear spin-spin coupling constants [23].  

Chemical-shift tensors, which provide more structural detail than isotropic shifts, have 

been used to assess structural refinements.  For example, Harper et al. have illustrated 

that refinement of structures of molecular solids can be evaluated by comparison to 

computed 13C magnetic-shielding tensors [24].  Kalakewich et al. have performed a 

similar analysis using computed 15N magnetic-shielding tensors [23]. Studies by 

Brouwer and co-workers have discussed refinements of zeolite structures using 

agreement of 29Si chemical-shift tensors with predicted values [25-27].  Another study 

has refined atomic coordinates in sulfates through examination of 33S chemical-shift 

tensors [28].  These various studies illustrate how comparison of computed NMR 

chemical-shift tensors to experimental results provide a barometer of the refinement of 

atomic positions in crystal structures to a precision that exceeds that of single-crystal X-

ray diffraction alone.  In some cases, it appears that such a procedure may match or 

exceed the structural resolution obtainable by neutron diffraction [23, 24, 29]. 

Although it has been illustrated that structural refinements can be assessed 

through agreement of computed chemical-shift tensors with experiment, other tensor 

parameters, such as quadrupolar-coupling tensors, may also prove valuable in this 

endeavor.  The sensitivity of the 17O quadrupolar-coupling tensor to structure has been 

established both experimentally [30-35] and computationally [36-42].  Several reviews 

of techniques and applications of 17O NMR spectroscopy have been provided [43-45].  
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One significant application of 17O NMR crystallography is the evaluation of 

distributions of structural features in glasses [46-55].  Numerous studies of oxygen-

containing molecular solids exist [56-61], including investigations of active 

pharmaceutical ingredients [62].  A compilation of 17O quadrupolar-coupling 

parameters in molecular solids indicates that the range of the principal values of the 17O 

quadrupolar-coupling tensor is approximately 18 MHz [43]. 

The reported uncertainties of 17O quadrupolar parameters determined by NMR 

and NQR are different.  It is common to determine the quadrupolar-coupling constant, 

CQ, to ± 0.3 MHz and the asymmetry parameter, , to within ± 0.05 by NMR 

spectroscopy.  In contrast, NQR studies are able to specify CQ and  to within ± 0.02 

MHz and ± 0.02, respectively.  The wide range of possible 17O quadrupolar-coupling 

tensors suggests comparison of computed quadrupolar parameters to experiment may 

serve as a sensitive probe of the structure of molecules containing 17O sites. 

In this study, various refinements of crystal structures are assessed by 

comparison of calculated 17O quadrupolar-coupling tensors to experimental results.  

Plane-wave density functional theory (DFT), which inherently accounts for lattice 

forces during geometry optimization and intermolecular contributions to computed 

NMR parameters, is used in all calculations.  We find that optimizations employing 

conventional plane-wave DFT are often insufficient to aid in refinement of structures of 

molecular solids, in a predictable and consistent manner, on the basis of comparison 

with experimental 17O quadrupolar-coupling tensors.  To overcome this difficulty, we 

demonstrate a semi-empirical method to perform geometry optimizations with a re-

parameterized two-body dispersion force field developed by Grimme [63]. The semi-

empirical method is optimized to replicate experimental 17O quadrupolar-coupling 
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tensors in a series of model compounds.  Subsequently, the optimized method is applied 

to the prediction of 17O quadrupolar-coupling tensors for forty-three oxygen sites in 

twenty-two materials.  In addition, we assess structural refinements by this method, 

using 13C, 15N, and 17O chemical-shift tensors as well as 35Cl quadrupolar-coupling 

tensors.  We find that the structures obtained with this methodology give better 

agreement with experiment than structures obtained by either X-ray diffraction or 

conventional plane-wave DFT refinement of diffraction structures.  Finally, we 

illustrate that calculations of 17O quadrupolar-coupling tensors using structures refined 

with this methodology give closer agreement with experiment than do similar 

calculations on structures derived from neutron-diffraction experiments. 

7.2   Computational Details 

7.2.1   Overview and Computational Strategy 

All calculations were performed using crystal structures with atomic coordinates 

initially determined from X-ray or neutron diffraction studies.  We explore several 

plane-wave DFT strategies for refining atomic coordinates in crystal structures, based 

on comparing computed 17O quadrupolar-coupling tensors with experiment.  The 

strategies are based on refinements performed at the PW91 level [64], the PW91-D2 

level [63], and the PW91-D2* level, a semi-empirical method developed in our 

laboratory.  Geometry optimizations and calculations of NMR parameters, including 

quadrupolar-coupling and magnetic-shielding tensors, used the CASTEP module of 

Accelrys’ Materials Studio 7.0 [65].  Calculations were performed with a plane-wave 

cutoff energy of 600 eV and with core orbitals replaced by ultrasoft pseudopotentials 

generated on the fly [64].  The Brillouin zone was sampled with a k-point spacing of 



 213 

0.07 Å-1.  Structural refinements employed the energy-minimizing scheme of Broyden, 

Fletcher, Goldfarb, and Shanno [66].  The thresholds for structural convergence include 

a maximum change in energy of 5  10-6 eV atom-1, a maximum displacement of 5  

10-4 Å atom-1, and a maximum Cartesian force of 0.01 eV Å-1.  Lattice constants 

remained fixed during the geometry optimizations.  Magnetic-shielding tensors were 

calculated with the GIPAW method of Pickard and Mauri [67]. 

7.2.2   Semi-Empirical Geometry Optimizations 

In the proposed semi-empirical approach to geometry optimization, one 

incorporates a two-body force field into the Hamiltonian, the force field having been 

optimally parameterized to reflect 17O quadrupolar-coupling tensors of a calibration set 

of materials.  The structural-refinement strategy employs a re-parameterization of the 

two-body force field developed by Grimme for the description of long-range correlation 

interactions (dispersion), commonly referred to as DFT-D2 [63].  The semi-empirical 

dispersion energy follows the general form of Eq. 7.1: 

 𝐸𝑑𝑖𝑠𝑝
𝐷2 = −𝑠6 ∑

𝑐6
𝑖𝑗

𝑅𝑖𝑗
6 𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗).

𝑁

𝑖,𝑗>1

 (Eq. 7.1) 

In Eq. 7.1, 𝐸𝑑𝑖𝑠𝑝
𝐷2  is the two-body dispersion correction to the Kohn-Sham energy (EKS).  

s6 is a scaling factor, the indices i and j denote the N atoms, 𝑐6
𝑖𝑗

 is the dispersion 

coefficient for an atomic pair (i, j), Rij is the interatomic distance of atomic pairs (i, j), 

and 𝑓𝑑𝑎𝑚𝑝 (𝑅𝑖𝑗) is a damping function that determines the effective range and steepness 

of the dispersion interaction.  The total energy (Etot) is given by 

 𝐸𝑡𝑜𝑡 = 𝐸𝐾𝑆 + 𝐸𝑑𝑠𝑖𝑝
𝐷2 . (Eq. 7.2) 
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In the empirical D2 model, the damping function has a form similar to that of a Fermi-

Dirac distribution function, as shown in Eq. 7.3: 

 
𝑓𝑑𝑎𝑚𝑝(𝑅𝑖𝑗) =

1

1 + exp [−𝑑 (
𝑅𝑖𝑗
𝑅0
− 1)]

. 
(Eq. 7.3) 

In this expression, R0 is the sum of the van der Waals' radii of atoms i and j, and d is a 

damping parameter that specifies how sharply the dispersion interaction tends towards 

zero.   

In Grimme’s original work, the values of the adjustable parameters (s6, 𝑐6
𝑖𝑗

, R0, 

and d) were obtained by modeling gas-phase thermochemistry [63].  This approach has 

been applied to periodic systems to predict properties of crystals, such as cohesive 

energies, lattice constants, bulk moduli, and vibrational lattice modes [68, 69].  Civalleri 

et al. have illustrated that the original parameterization may not be appropriate to 

molecular solids exhibiting hydrogen bonding, as is evident by the systematic 

overestimation of cohesive energies in such systems [69].  Jurečka et al. have shown 

that the damping function is “the most critical point in DFT-D”, and that rescaling this 

function often yields superior results [68].  In particular, rescaling the van der Waals' 

radii can change the effective distance of the dispersion interaction, whereas rescaling 

the damping parameter, d, controls the steepness of the onset of the dispersion 

correction.   

In the present chapter, I explore a strategy for re-parameterizing the damping 

function by systematically varying the value of d across the range 2.5 ≤ d ≤ 20.  

Geometry optimizations employing the various values of d are performed on a series of 

model compounds, and the resulting structures are assessed by comparing computed 17O 

quadrupolar-coupling tensors, calculated for each structure, to experimental values.  



 215 

After that calibration step, this strategy is applied to a larger and more varied array of 

materials to assess the universality of the strategy.  When additional types of NMR data, 

such as chemical-shift tensors, are available, these are also used as additional figures of 

merit to assess the structural-refinement strategy. 

7.2.3   Conventions for Reporting NMR Parameters 

The nuclear quadrupolar coupling reflects the electric-field gradient (EFG) in 

the vicinity of the nucleus.  The EFG is represented by a traceless, second-rank tensor 

with principal values |V33| ≥ |V22| ≥ |V11|.  Because the EFG tensor is traceless, the 

quadrupolar-coupling tensor can be characterized completely by two parameters.  Often, 

the quadrupolar-coupling tensor is described by the quadrupolar-coupling constant, CQ, 

and the asymmetry parameter, , given by 

 𝐶𝑄 = 𝑒𝑉33𝑄/ℎ,   and (Eq. 7.4) 

 𝜂 =
𝑉11−𝑉22

𝑉33
. (Eq. 7.5) 

In these expressions, e is the elementary charge, h is Planck’s constant, and Q is the 17O 

quadrupole moment.   Because only the experimental magnitude of CQ is typically 

reported, the analysis assumes that the sign of the experimental value of CQ is the same 

as that predicted by the calculations.  Similarly, the quadrupolar-coupling tensor can be 

characterized by two unique principal values (𝐶11 = 𝑒𝑉11/ℎ, 𝐶22 = 𝑒𝑉22/ℎ, 𝐶11 +

𝐶22 = −𝐶𝑄).  Errors reported in this study are based on differences between experiment 

and calculation for the principal values. 

The relationship between the principal components of calculated magnetic-

shielding tensors (𝜎𝑖𝑖
𝑐𝑎𝑙𝑐) and experimental chemical-shift tensors (𝛿𝑖𝑖

𝑒𝑥𝑝
) is fit to the 

form 
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 𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 = 𝜎𝑟𝑒𝑓 − |𝑚|𝛿𝑖𝑖

𝑒𝑥𝑝
. (Eq. 7.6) 

In Eq. 7.6, 𝜎𝑟𝑒𝑓 is the magnetic shielding of the reference compound, and |m| is the 

magnitude of the slope of the best-fit line relating the principal values of  𝜎𝑖𝑖
𝑐𝑎𝑙𝑐 and 

𝛿𝑖𝑖
𝑒𝑥𝑝

.  Calculated magnetic shielding is converted to the chemical-shift scale (𝛿𝑖𝑖
𝑐𝑎𝑙𝑐) for 

comparison with experimental results by Eq. 7.7. 

 𝛿𝑖𝑖
𝑐𝑎𝑙𝑐 =

𝜎𝑟𝑒𝑓−𝜎𝑖𝑖
𝑐𝑎𝑙𝑐

|𝑚|
. (Eq. 7.7) 

A more thorough discussion of the fitting procedure and the effects of different model 

chemistries on computed magnetic shielding is available in the literature [70].  We have 

modeled the relationship between principal components of computed magnetic-

shielding tensors and experimental chemical-shift tensors with Eq. 7.6.  Values for 𝜎𝑟𝑒𝑓 

and |m| for 13C, 15N, and 17O sites, obtained by modeling the results with Eq. 7.6, are 

summarized in Table 7.1. 

 

Table 7.1.  Summary of linear-regression parameters describing the relationship 

between the principal components of calculated magnetic-shielding tensors and 

experimental chemical-shift tensors. 

Nucleus Reference compound ref (ppm) |m| 

Carbon-13 TMS 184.8 1.06 

Nitrogen-15 CH3NO2 -171.2 1.10 

Oxygen-17 H2O 291.8 1.10 
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7.3   Results and Discussion 

7.3.1   Parameterization of Force Field Using Model Compounds 

We assess the structural effects due to rescaling of the damping function (Eq. 

7.3) through computed 17O quadrupolar-coupling tensors for a series of model 

compounds (formic acid [56, 71], acetic acid [56, 72], -oxalic acid [56, 73], -oxalic 

acid [56, 74], acrylic acid [56, 75], and urea [76, 77]).  Geometry optimizations 

performed at the PW91-D2 level result only in small and inconsistent improvements in 

computed 17O quadrupolar-coupling tensors over optimizations performed at the PW91 

level. We find that the largest and most systematic variations in 17O quadrupolar-

coupling tensors result from structural refinements following rescaling of the damping 

parameter.  Geometry optimizations performed on the model compounds for values of 

the damping parameter over the range 2.5 ≤ d ≤ 20, with a fixed value of the scaling 

factor, s6, of 1.00, demonstrate that the value of d affects both intramolecular bond 

lengths and intermolecular arrangements after geometry optimization. 

The results of these calculations are summarized in Figure 7.1.  Mean-absolute 

errors (MAEs) between experimental and computed principal components of 17O 

quadrupolar-coupling tensors vary significantly over the range of values of d.  However, 

increased agreement with experiment is observed only when the steepness of the 

damping function is decreased, i.e., when the dispersion correction is active at short 

ranges, where the correlation is already partially described by the PW91 functional.  

Optimizations performed with this method for d ≥ 8 have little effect on computed 17O 

quadrupolar-coupling parameters, relative to values predicted at the PW91 level.  An 

important feature of the results in Figure 7.1 is that a value of d that minimizes 17O 

MAEs is d = 3.5, suggesting that this value is optimal for refining structures using 
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experimental 17O quadrupolar-coupling tensors.  A minimum 17O MAE near d = 3.5 was 

observed for all 17O sites, regardless of the functional group.  In the subsequent text, 

structural refinement employing the PW91-D2 functional with d = 3.5 is referred to as 

the PW91-D2* method, to differentiate the re-parameterized form of the dispersion 

function from the more common form with d = 20. 

17O quadrupolar-coupling tensors have been computed for the six model 

compounds using unrefined X-ray diffraction structures, using X-ray diffraction 

structures refined at the PW91 level, using structures refined at the PW91-D2 level, and 

using structures refined at the PW91-D2* level.  Table 7.2 is a summary of the 17O 

quadrupolar-coupling tensors and associated statistical data for these four sets of 

calculations.  Structures refined at the PW91-D2* level result in significantly closer 

agreement with experimental values than do the results obtained using X-ray diffraction 

structures, as is evident by the root-mean-square deviations (RMSDs) of 0.20 MHz and 

0.42 MHz, respectively.  Results obtained by refinement at the PW91 and PW91-D2 

levels have RMSDs of 0.55 MHz and 0.52 MHz, respectively.  Because of the similarity 

between values obtained from structures refined at the PW91 and PW91-D2 levels, only 

PW91 refinements are reported subsequently. 

Dispersion correction plays an indirect role in modeling NMR parameters.  

Calculations of 17O NMR parameters on the same structure using the PW91 and PW91-

D2* methods yield essentially the same results by construction.  Computed 17O 

quadrupolar couplings differ by ~ 0.001 MHz, whereas computed 17O magnetic 

shieldings differ by ~ 0.1 ppm, reflecting the level of convergence in the calculations.  

Thus, differences in computed NMR parameters in Table II reflect differences in 
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structures, rather than differences in the model chemistry used to predict the NMR 

parameters. 

 

 

Figure 7.1.  Mean-absolute errors (MAEs) in computed 17O quadrupolar-coupling 

tensors as a function of the value of the damping parameter (2.5 ≤ d ≤ 12) used in the 

structural refinement using PW91-D2.  The minimum MAEs for the materials cluster 

around a value of d = 3.5. 
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Table 7.2.  Experimental and computed 17O quadrupolar-coupling tensors obtained 

from X-ray diffraction structures or from structures refined at the PW91, PW91-D2a, 

or PW91-D2*b levels, and root-mean-square deviations of the sets. 

Oxygen Site 

Experimental X-ray PW91 PW91-D2 PW91-D2* 

CQ 

(MHz) 


CQ 

(MHz) 


CQ 

(MHz) 


CQ 

(MHz) 


CQ 

(MHz) 


Formic acid 

(O1) 
7.82 0.07 8.97 0.05 7.68 0.28 7.75 0.26 8.09 0.06 

Formic acid 

(O2) 
-6.90 0.08 -6.78 0.06 -6.77 0.15 -6.86 0.11 -6.88 0.09 

Acetic acid (O1) 8.11 0.15 8.84 0.04 8.20 0.31 8.23 0.31 8.40 0.14 

Acetic acid (O2) -7.28 0.19 -6.97 0.35 -7.41 0.10 -7.42 0.10 -7.44 0.10 

-Oxalic acid 

(O1) 
8.46 0.00 8.64 0.03 8.44 0.17 8.47 0.15 8.59 0.01 

-Oxalic acid 

(O2) 
-7.55 0.16 -7.22 0.33 -7.74 0.06 -7.78 0.07 -7.73 0.06 

-Oxalic acid 

(O1) 
8.11 0.08 8.50 0.04 7.99 0.25 8.00 0.25 8.29 0.06 

-Oxalic acid 

(O2) 
-7.35 0.14 -7.39 0.19 -7.40 0.06 -7.41 0.06 -7.53 0.09 

Acrylic acid 

(O1) 
7.57 0.31 8.54 0.20 7.45 0.52 7.44 0.51 7.72 0.30 

Acrylic acid 

(O2) 
-7.20 0.17 -7.44 0.13 -7.22 0.09 -7.25 0.10 -7.29 0.11 

Ureac 7.24 0.92 7.58 0.94 -7.74 0.98 -7.74 0.98 7.64 0.89 

RMSD (MHz)   0.42 0.55 0.52 0.20 

Max. (MHz)   0.81 0.87 0.79 0.46 

aCalculations employed Grimme's dispersion function with d = 20. 
bCalculations employed a re-parameterization of Grimme's dispersion function with 

d = 3.5. 
cThe sign of the computed value of CQ for urea differs among the various structures. 

 

7.3.2   Changes in Bond Lengths 

The bond lengths determined by structural refinement at the PW91 level differ 

from those determined at the PW91-D2* level for the set of model compounds (formic 

acid, acetic acid, -oxalic acid, -oxalic acid, acrylic acid, and urea).  For refinement at 

the PW91 level, bonds containing only non-hydrogen atoms are lengthened by an 

average of 0.009 Å, relative to the X-ray structures.  Single bonds (C-C, C-N, and C-O) 
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are lengthened by an average of 0.005 Å, whereas double bonds (C=C and C=O) are 

lengthened by 0.015 Å, on average.  The largest changes following refinement are seen 

for C-H, N-H, and O-H bond lengths, with an average lengthening of 0.110 Å, relative 

to bond lengths derived from X-ray diffraction.  For refinement at the PW91-D2* level, 

lengths of bonds between non-hydrogen atoms decrease by an average of  0.013 Å, 

relative to the X-ray structures; specifically, single bonds decrease by 0.014 Å, on 

average, and double bonds decrease by 0.012 Å, on average.  C-H and O-H bonds are 

lengthened upon refinement by an average of 0.092 Å whereas the N-H bond is 

shortened by 0.041 Å (Figure 7.2.)   

Two trends are notable in these results.  First, structural refinement at the PW91 

level results in lengthening of bonds of all types, whereas refinement at the PW91-D2* 

level results in the shortening of all types of bonds except for C-H and O-H bonds, 

which are lengthened.  Second, refinement at the PW91 level results in significantly 

larger changes to the lengths of highly correlated double bonds (0.0146 Å) than to single 

bonds containing only non-hydrogen atoms (0.005 Å).  In contrast, refinement at the 

PW91-D2* level affects both bond types similarly. 

An important consideration is whether the refined structures are distinguishable 

from structures derived from X-ray diffraction, within experimental uncertainty.  For 

example, for acetic acid there are four separate determinations of the crystal structure 

by X-ray diffraction reported in the Cambridge Structural Database.  The range of bond 

lengths reported for these structures give an estimate of the uncertainty in the reported 

X-ray-determined bond lengths ( = 0.05).  From these data, one finds that the X-ray-

determined C-O, C=O, and C-C bond lengths are 1.312 ± 0.014 Å, 1.223 ± 0.013 Å, 

and 1.492 ± 0.029 Å, respectively.  The PW91-D2*-refined bond lengths are 1.310 Å, 
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1.211 Å, and 1.467 Å, respectively.  In all cases, those bond lengths derived for the 

PW91-D2* refinement are within the uncertainty of the X-ray-determination. 

 

 

Figure 7.2.  Changes in bond lengths in model compounds between X-ray diffraction 

and refined crystal structures.  Black: PW91 v. X-ray; dark grey: PW91-D2* v. X-ray; 

light grey: PW91 v. PW91-D2*. 

7.3.3   Assessment of Structural Refinements by Agreement of Calculated 17O                       

Quadrupolar-Coupling Tensors with Experiment 

Figure 7.3 shows the relationship between calculated and experimental principal 

components of 17O quadrupolar-coupling tensors for forty-three 17O sites.  These 

include the 17O sites of twenty-two materials: formic acid [56, 71], acetic acid [56, 72], 

-oxalic acid [56, 73], -oxalic acid [56, 74], acrylic acid [56, 75], urea [76, 77], oxalic 

acid·2H2O [78, 79], L-alanine [58, 80], benzophenone [57, 81], thymine [61, 82], uracil 
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[61, 83], cytosine [61, 84], benzamide [85, 86], taurine [87, 88], salicylic acid [59, 89], 

phthalic acid [59, 90], maleic acid [56, 91], cyanoacetic acid [56, 92], glycine·HCl [58, 

93], L-alanine·HCl [58, 93], L-valine·HCl [58, 94], and L-cysteine·HCl·H2O [58, 95].  

Calculations of 17O quadrupolar-coupling tensors were performed on structures 

obtained by single-crystal X-ray diffraction (Figure 7.3a), on structures obtained by 

PW91 refinement of diffraction structures (Figure 7.3b), and on structures obtained by 

PW91-D2* refinement of diffraction structures (Figure 7.3c).  The three datasets in 

Figure 7.3 differ significantly in the distribution of RMSDs.  For unrefined X-ray 

structures, the RMSD is 0.58 MHz.  For PW91 and PW91-D2* refinement of X-ray 

structures, the RMSDs are 0.53 MHz and 0.28 MHz, respectively.  In almost all cases, 

the errors associated with the prediction of 17O quadrupolar-coupling tensors for the X-

ray structures and the PW91-refined structures are larger than the expected uncertainties 

in the experimental values [43].  In contrast, with the values determined with the PW91-

D2*-refined structures are often within the uncertainty of the experimental values. 

Relative to values predicted from diffraction structures, PW91-D2* refinement 

brings sixty-two of the eighty-six principal values into closer agreement with 

experiment.  Refinement at the PW91 level brings only thirty-three of the eighty-four 

principal values into closer agreement with experiment.  The largest error in any 

principal component of a 17O quadrupolar-coupling tensor arises from the unrefined X-

ray structure of oxalic acid·2H2O.  Specifically, this value is associated with the 17O site 

in the water molecule, suggesting that one of the largest sources of error in the prediction 

of 17O quadrupolar-coupling tensors is associated with the positioning of hydrogen 

atoms in the hydrogen-bonding network.  The prediction of this principal component is  
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Figure 7.3.  Relationship between principal components of calculated 17O quadrupolar-

coupling tensors and experimental principal components of 17O quadrupolar-coupling 

tensors.  Computed results were obtained from (a) X-ray diffraction structures, (b) 

structures obtained with refinement using PW91, and (c) structures obtained with 

refinement using PW91-D2*.  The dashed lines represent perfect agreement between 

calculated and experimental values. 
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improved by 3.01 MHz following refinement at the PW91-D2* level.  In contrast, the 

largest increase in error following PW91-D2* refinement for any of the eighty-four 

principal components is 0.32 MHz. 

7.3.4   Additional Figures of Merit for Assessing Structural Refinements 

Although structures optimized at the PW91-D2* level have superior agreement 

with experimental 17O quadrupolar-coupling tensors compared to structures obtained by 

either X-ray diffraction or PW91 refinements of diffraction structures, it is important to 

include additional figures of merit to assess the quality of these structural refinements.  

Further assessment of the quality of structural refinement on these 17O-containing 

materials is provided by calculations of the forces on the atoms and by calculated NMR 

parameters of other nuclear sites in the material.  A summary of forces and errors 

associated with computed NMR parameters of the materials in these materials is 

provided in Table 7.3. 

Plane-wave geometry optimization at either the PW91 or PW91-D2* level 

reduces the mean forces experienced by the individual atoms in the lattice by three 

orders of magnitude in all cases, indicating that the diffraction structures are different 

from the energy-minimized structures.  There does not appear to be a direct correlation 

between the reduction in forces and the amount of improvement in 17O quadrupolar-

coupling tensors.  Differences in forces between the two energy-minimized structures 

(PW91 and PW91-D2*) are under 0.003 eV Å-1 for all materials. 

Formic acid [96], acetic acid [97], -oxalic acid [98], and oxalic acid·2H2O [98], 

have been characterized by the 13C chemical-shift tensors of carboxyl carbon sites, and 

L-alanine[99] has been characterized by the 13C chemical-shift tensor of each carbon 

site in the material.  Refinement at the PW91 level results in improvement of the 
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prediction of 13C chemical-shift tensors for two materials (acetic acid and L-alanine) and 

in poorer agreement with experiment for three materials.  Refinement at the PW91-D2* 

level results in improvement of the prediction of 13C chemical-shift tensors for all five 

materials. 

Thymine, uracil, cytosine, and benzamide have been characterized by the 15N 

chemical-shift tensor for each nitrogen site [100].  For the prediction of 15N chemical-

shift tensors, refinement at the PW91 level results in improvement for one material 

(benzamide), whereas refinement at the PW91-D2* level results in improvement of 

agreement with experiment for all four materials.   

Taurine [88], salicylic acid [60], -oxalic acid [101], thymine [61], uracil [61], 

cytosine [61], and benzamide [85] have been characterized by the 17O chemical-shift 

tensor for each unique oxygen site.  Refinement at the PW91 level results in 

improvement of the prediction of 17O chemical-shift tensors for five materials (all except 

taurine and salicylic acid), whereas refinement at the PW91-D2* level results in 

improvement for all seven materials.   

The experimental 35Cl quadrupolar couplings for glycine·HCl [102], L-

alanine·HCl [95], L-valine·HCl [102], and L-cysteine·HCl·H2O [95] have been 

reported.  Refinement at the PW91 level results in improvement of the prediction of the 

35Cl quadrupolar coupling for one material (L-cysteine·HCl·H2O), whereas refinement 

at the PW91-D2* level results in improvement of the prediction of 35Cl quadrupolar 

parameters for all seven materials.  A summary of experimental and calculated 35Cl 

quadrupolar tensors for the four amino acid hydrochlorides is provide in Table 7.4.  The 

RMSDs for the X-ray, PW91-refined, and PW91-D2*-refined structures are 1.45 MHz, 

1.62 MHz, and 0.59 MHz, respectively.  The measurement of 35Cl quadrupolar 
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parameters has become an important tool for assessing the crystal structures of 

pharmaceuticals and related HCl salts [95, 103, 104], as many pharmaceuticals are 

marketed as HCl salts.  As these results indicate, computed 35Cl quadrupolar-coupling 

tensors are very sensitive to structural refinements. 

Overall, we have found that of the twenty sets of 13C, 15N, and 17O chemical-

shift tensors and 35Cl quadrupolar-coupling tensors listed in Table 7.3, agreement with 

experiment is lowered for eleven parameters following pure plane-wave DFT structural 

refinements (relative to the original X-ray structure), and agreement with experiment is 

improved for nine values.  In contrast, refinement at the PW91-D2* level led to 

improvement of all twenty parameters.  Furthermore, seventeen parameters are 

improved by PW91-D2* refinement, relative to PW91 refinement. 

7.3.5   Discussion of Chemical Shifts 

The relationship between computed magnetic-shielding tensors and 

experimental chemical-shift tensors for 13C, 15N, and 17O sites is provided in Figure 7.4, 

which illustrates the superior agreement with experiment for prediction that uses PW91-

D2*-refined structures over X-ray diffraction structures.  Table 7.5 shows statistical data 

associated with the prediction of chemical-shift tensors.  RMSDs for the 13C and 15N 

chemical-shift tensors are within the ranges established in previous benchmark studies 

[29, 70, 105, 106].  Hartman et al. have reported a survey of several calculated 17O 

isotropic chemical shifts in crystals with a RMSD of 9.8 ppm [107].  We report a RMSD 

of 18.3 ppm for calculations of principal components of 17O chemical-shift tensors for 

structures refined at the PW91-D2*. 
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Table 7.3.  Summary of structural information and statistical data associated with the 

relationship between experimental and calculated NMR parameters. 

   Chemical Shift Quadrupolar Coupling 

Material Data Type 
Forces 13C MAE 15N MAE 17O MAE 17O MAE 35Cl MAE 

(eV Å-1) (ppm) (ppm) (ppm) (MHz) (MHz) 

Formic acid X-ray 7.290 9.0 - - 0.41 - 

 PW91 0.005 12.0 - - 0.60 - 

  PW91-D2* 0.005 3.7 - - 0.10 - 

Acetic acid X-ray 7.310 7.9 - - 0.56 - 

 PW91 0.006 3.7 - - 0.52 - 

  PW91-D2* 0.004 5.8 - - 0.25 - 

-Oxalic acid X-ray 2.336 4.8 - 22.5 0.44 - 

 PW91 0.006 7.6 - 13.2 0.57 - 

  PW91-D2* 0.003 1.9 - 17.0 0.28 - 

Oxalic acid·2H2O X-ray 1.035 5.4 - - 2.26 - 

 PW91 0.005 8.9 - - 0.89 - 

  PW91-D2* 0.007 2.6 - - 0.68 - 

L-Alanine X-ray 5.831 11.0 - - 0.44 - 

 PW91 0.004 9.4 - - 0.39 - 

  PW91-D2* 0.002 3.0 - - 0.25 - 

Taurine X-ray 8.997 - - 14.9 0.30 - 

 PW91 0.005 - - 22.6 0.30 - 

  PW91-D2* 0.004 - - 10.9 0.08 - 

Salicylic acid X-ray 6.366 - - 24.9 0.52 - 

 PW91 0.004 - - 29.5 0.60 - 

  PW91-D2* 0.004 - - 17.3 0.30 - 

Thymine X-ray 6.057 - 8.7 46.9 0.56 - 

 PW91 0.004 - 16.8 31.6 0.51 - 

  PW91-D2* 0.005 - 4.9 30.6 0.32 - 

Uracil X-ray 6.831 - 9.3 26.2 0.59 - 

 PW91 0.005 - 19.5 15.4 0.47 - 

  PW91-D2* 0.005 - 4.6 4.5 0.33 - 

Cytosine X-ray 4.054 - 14.9 26.2 0.53 - 

 PW91 0.005 - 14.2 17.5 0.58 - 

  PW91-D2* 0.006 - 8.2 10.6 0.33 - 

Benzamide X-ray 5.350 - 10.3 102.1 0.85 - 

 PW91 0.004 - 19.7 25.5 0.68 - 

  PW91-D2* 0.006 - 2.3 24.6 0.09 - 

Glycine·HCl X-ray 2.688 - - - 0.24 2.36 

 PW91 0.005 - - - 0.30 2.57 

  PW91-D2* 0.004 - - - 0.14 1.08 

L-Alanine·HCl X-ray 2.902 - - - 0.80 0.61 

 PW91 0.003 - - - 0.40 1.12 

  PW91-D2* 0.004 - - - 0.19 0.17 

L-Valine·HCl X-ray 5.994 - - - 0.37 0.95 
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 PW91 0.003 - - - 0.30 1.17 

  PW91-D2* 0.004 - - - 0.25 0.39 

L-

Cysteine·HCl·H2O X-ray 7.326 - - - 0.33 1.12 
 PW91 0.004 - - - 0.51 0.15 

  PW91-D2* 0.004 - - - 0.33 0.19 

 

 

Because accurate modeling of chemical shifts requires refinement of atomic 

positions in crystal structures, a common concern in calculations of magnetic shielding 

is the possible cancellation of errors due to flaws in the structure, such as systematic 

over- or underestimation of bond lengths, and errors in the model chemistry used to 

calculate the shielding.  It is well-established that calculated magnetic-shielding tensors 

vary significantly among model chemistries [70, 105, 108].  Similarly, GGA functionals 

such as PW91 tend to overestimate bond lengths [109], an effect consistent with the 

results obtained in the present study.  A structural-refinement technique that 

systematically overestimates bond lengths, paired with a method that overestimates 

magnetic shieldings, or vice versa, could lead to artificial agreement with experiment 

due to error cancellation [110].  To account for systematic errors in computed magnetic 

shielding due to the model chemistry, and systematic errors in structures, it is common 

to model the relationship between computed magnetic shielding and experimental 

chemical shift with linear regression to account for non-random sources of error (Eq. 

7.6).  When computed magnetic shieldings are converted to chemical shifts using least-

squares linear-regression parameters (Eq. 7.7), systematic errors associated with the 

structure and the magnetic shielding are partially removed, since these can be accounted 

for by fitting the values of ref and |m|.   
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Table 7.4.  Summary of experimental and calculated 35Cl quadrupolar-coupling 

tensors. 

Material Data Type 
CQ 


MAE 

(MHz) (MHz) 

Glycine·HCl Exp. -6.42 0.61 - 
 X-ray -11.00 0.46 2.36 
 PW91 -9.11 0.91 2.57 

  PW91-D2* -6.91 0.87 1.08 

L-Alanine·HCl Exp. -6.4 0.75 - 
 X-ray -8.11 0.57 0.61 
 PW91 -8.97 0.74 1.12 

  PW91-D2* -6.74 0.71 0.17 

L-Valine·HCl Exp. -5.89 0.51 - 
 X-ray -4.02 0.68 0.95 
 PW91 -7.63 0.60 1.17 

  PW91-D2* -5.91 0.64 0.39 

L-Cysteine·HCl·H2O Exp -3.97 0.47 - 
 X-ray -1.90 0.53 1.12 
 PW91 -4.06 0.39 0.15 

  PW91-D2* -4.05 0.37 0.19 

 

 

In contrast to the results of other studies [23, 24], we find that plane-wave DFT 

structural refinements (without the D2* correction) sometimes result in poorer 

prediction of chemical-shift tensors than do unrefined X-ray diffraction structures.  As 

discussed above, the origins of errors in calculated magnetic shieldings are sometimes 

difficult to pinpoint.  However, the PW91-D2* structural-refinement strategy may 

provide a method for decoupling errors associated with systematic over- or 

underestimations of bond lengths from errors associated with over- or underestimations 
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of chemical shifts.  Rather than refining structures by searching for a global energy 

minimum, the PW91-D2* structural-refinement method selects structures based on their 

ability to predict experimental EFGs at the nuclear sites, parameters that are strongly 

correlated with local electronic structure.  Furthermore, EFG tensors are generally 

simpler to calculate than magnetic-shielding tensors, as the former result from integrals 

over the ground electronic state only, whereas the latter result from a summation of 

integrals over the ground and excited electronic states.  Thus, the semi-empirical 

structural-refinement methodology, where structures are selected by their ability to yield 

17O quadrupolar-coupling tensors in significant agreement with experiment, may 

separate errors associated with the structure from errors associated with the model 

chemistry used to calculated magnetic-shielding tensors, and provide insights that 

would otherwise go unnoticed. 

Table 7.5.  Statistical data associated with the prediction of 13C (N = 21), 15N (N = 

24), and 17O (N = 42) chemical-shift tensors using structures obtained by X-ray 

diffraction, by PW91 refinement, and by PW91-D2* refinement of diffraction 

structures. 

Method 
13C RMSD 15N RMSD 17O RMSD 

(ppm) (ppm) (ppm) 

X-ray 9.4 11.1 39.6 

PW91 9.4 14.5 24.3 

PW91-D2* 3.7 5.8 18.3 

 

The sensitivity of NMR parameters to structural changes due to refinement 

depends on many factors, including the set of materials examined.  For this particular 

set of materials, one may compare the results on X-ray-determined structures with the 
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results for PW91-D2*-refined structures.  The RMSDs of PW91-D2*-derived chemical-

shift tensors all improve by factors of around 2 relative to the X-ray-structure-

determined chemical-shift tensors: 13C by 2.5, 15N by 1.9, and 17O by 2.2.  For prediction 

of quadrupolar-coupling tensors, a similar improvement is seen when the PW91-D2*-

derived structures are used: the RMSD of 17O quadrupolar-coupling tensors decreases 

by a factor of 2.1; and the 35Cl quadrupolar-coupling tensors by a factor of 3.5.   
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Figure 7.4.  Correlation between experimental chemical-shift tensors and calculated 

magnetic-shielding tensors for (a) 13C sites, (b) 15N sites, and (c) 17O sites.  Computed 

magnetic-shielding constants were obtained from either unrefined X-ray diffraction 

structures (red crosses) or PW91-D2* refinements of diffraction structures (black 

circles). 
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7.3.6   Comparison to Neutron-Diffraction Structures 

Crystal structures obtained from neutron diffraction are often considered to be 

more accurate than those derived from X-ray diffraction due to the ability to locate 

hydrogen atoms with greater accuracy.  Neutron structures have been reported for ten 

systems in the present study (formic acid [111], acetic acid [112], oxalic acid·2H2O 

[113], urea [114], benzamide [115], L-alanine [116], taurine [117], salicylic acid [118], 

glycine·HCl [119], and valine·HCl [120]).  As a final figure of merit, a comparison is 

made between computed 17O quadrupolar-coupling tensors obtained from X-ray 

diffraction structures, neutron-diffraction structures, and PW91-D2*-refined X-ray 

diffraction structures (Figure 7.5).   

As is evident in Figure 7.5, calculations performed on PW91-D2*-refined 

structures yield 17O quadrupolar-coupling tensors in closer agreement with experimental 

values than those calculated using X-ray diffraction structures.  In addition, calculations 

on the PW91-D2*-refined structures provide more accurate results than calculations on 

the neutron-diffraction-derived structures for seven of the ten materials.  The largest 

difference in computed 17O quadrupolar coupling between neutron-diffraction-derived 

and PW91-D2*-refined structures is observed for acetic acid (0.27 MHz), whereas the 

smallest differences are found for urea and L-alanine (0.05 MHz).  13C and 15N chemical-

shift tensors are the only NMR-derived parameters that have been used to provide 

crystal structures that are more refined than those obtained with neutron diffraction [6, 

23, 24, 29].  The present results suggest that 17O quadrupolar-coupling tensors may also 

provide another means to refine crystal structures beyond the refinement provided by 

neutron diffraction. 
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Figure 7.5.  Mean-absolute errors between calculated and experimental 17O quadrupolar 

coupling tensors in formic acid, acetic acid, oxalic acid·2H2O, urea, benzamide, L-

alanine, taurine, salicylic acid, glycine·HCl, and valine·HCl.  Calculated values were 

obtained using X-ray diffraction structures (black), neutron-diffraction structures (dark 

grey) or PW91-D2*-refined X-ray diffraction structures (light grey). 

7.4   Conclusion 

Calculations of 17O quadrupolar-coupling tensors have been used to assess 

refinement of crystal structures.  In particular, refinement used plane-wave DFT at the 

PW91 level, the PW91-D2 level, and a re-parameterization of the latter method termed 

PW91-D2*.  The PW91-D2* method originated from the re-parameterization of the 

Grimme damping function to yield structures that result in accurate predictions of 

experimental 17O quadrupolar-coupling tensors.  The use of the PW91-D2* method 
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produces structures that differ significantly from both X-ray diffraction structures and 

structures found with PW91 refinement of diffraction structures.  Bond lengths 

involving non-hydrogen atoms in the PW91-D2* structures are, on average, 0.013 Å 

shorter than in the X-ray structures, whereas other optimization strategies tend to result 

in longer bonds.  We find a RMSD for 17O quadrupolar-coupling tensors calculated with 

PW91-D2*-refined structures in six model compounds of 0.20 MHz.  In contrast, X-ray 

structures, and PW91 or PW91-D2 refinements of X-ray structures, yield substantially 

larger errors, with RMSDs of 0.42 MHz, 0.55 MHz, and 0.52 MHz, respectively. 

Refinements at the PW91-D2* level were applied to a larger database containing 

forty-three oxygen sites.  For this larger database, PW91-D2* refinements led to 

structures with a RMSD of 0.28 MHz for 17O quadrupolar-coupling tensors.  For 

comparison, X-ray or PW91-refined structures yielded RMSDs of 0.58 MHz and 0.53 

MHz, respectively.  Many materials in this database have been characterized by 

heteronuclear NMR studies.  We have calculated the 13C, 15N, and 17O chemical-shift 

tensors and 35Cl quadrupolar-coupling tensors.  In every case, structures refined at the 

PW91-D2* level yield better agreement with experimental NMR parameters than do 

unrefined X-ray structures. 
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Chapter 8 

CONCLUSION 

 

This dissertation discusses several critical aspects of the accurate and efficient 

calculation of magnetic-shielding and quadrupolar-coupling tensors in crystalline 

solids.  The bulk of the discussion is devoted to exploring the accuracy of cluster-based 

computational protocols for modeling NMR parameters in solids.  The analysis extends 

from pure molecular solids, such as naphthalene, to covalent network solids, such as 

quartz.  Calculations of NMR parameters are applied to 13C, 15N, 17O, 19F, 29Si, 31P, 35Cl, 

and 43Ca sites.  The accuracy of cluster-based calculations are benchmarked against 

popular periodic computational protocols such as the GIPAW approach.  More 

importantly, the ability to use a wider selection of model chemistries in the cluster-based 

calculations allows one to specify the effects of choice of hybrid functionals in DFT and 

other modern electronic-structure methods for the prediction of NMR parameters in 

solids. 

In Chapter 2, a quantum-chemical method for modeling solid-state NMR 

chemical-shift tensors by calculations on large symmetry-adapted clusters of molecules 

is demonstrated.  Perhaps the most significant result of this chapter is that 13C chemical-

shift tensors in molecular solids can be calculated accurately using clusters of molecules 

designed to represent a local portion of the lattice structure.  NMR parameters are 

calculated using the hybrid exchange-correlation functional B3PW91, a model 

chemistry which is difficult to implement efficiently in periodic codes.  465 principal 

components of the 13C magnetic-shielding tensors of twenty-four organic materials are 

analyzed by this method.  The comparison of calculations on isolated molecules with 
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molecules in clusters demonstrates that intermolecular effects can be successfully 

modeled using a cluster representing a local portion of the lattice structure, without the 

need to use periodic-boundary conditions (PBCs).  The accuracy of calculations that 

model the solid state using a cluster rivals the accuracy of calculations which model the 

solid state using PBCs [1], provided the cluster preserves the symmetry properties of 

the crystalline space group.  The size and symmetry conditions that the model cluster 

must satisfy to obtain significant agreement with experimental chemical-shift values are 

discussed.  In particular, it is illustrated that the chemical-shift skew of the quaternary 

carbon in pentaerythritol is altered significantly if the proper symmetry of the cluster is 

not realized.  It is illustrated for oxalic acid dihydrate and squaric acid that computed 

13C magnetic-shielding tensors tend to converge smoothly with increasing cluster size.  

Furthermore, electronic-structure approximations, such as the use of locally dense and 

locally sparse basis functions, are discussed.  The computational protocols described in 

this chapter provide a systematic route for incorporating intermolecular effects into 

magnetic-shielding calculations.   

In Chapter 3, the principal components of the 13C chemical-shift tensors for the 

eight unique carbon sites of crystalline indigo are measured using the ROCSA pulse 

sequence.  The chemical shifts are assigned unambiguously to their respective nuclear 

sites through comparison of the experimental data to the results of DFT calculations 

employing a refined X-ray diffraction structure.  These measurements expand the 

database of measured aromatic 13C chemical-shift tensors to the indole ring.   Magnetic 

shielding calculations for hypoxanthine and adenosine are also reported.  The 

experimental and calculated results reveal that 13C magnetic-shielding tensors display a 

significant dependence on the placement of nitrogen atoms in the ring, with 33, or 33, 
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values being most affected.  Comparison of calculations that include the effect of the 

crystalline lattice with calculations that model indigo as an isolated molecule give an 

estimate of the intermolecular contribution to the magnetic shielding, which can be as 

large as 20 ppm for particular principal components.   

In Chapter 4, I assess periodic (GIPAW) and GIAO/symmetry-adapted cluster 

(SAC) models for computing magnetic-shielding tensors by calculations on a test set 

containing 72 molecular solids, with a total of 393 principal components of chemical-

shift tensors from 13C, 15N, 19F, and 31P sites.  When clusters are carefully designed to 

represent the local solid-state environment, both methods predict magnetic-shielding 

tensors that agree well with experimental chemical-shift values, demonstrating the 

correspondence of the two computational techniques.  At the basis-set limit, I find that 

the linear-regression parameters describing the relationship between experimental 

chemical shifts and calculated magnetic shieldings are, to within experimental 

uncertainty, identical for both computational protocols, for three of the four nuclides. 

Subsequently, the effects of additional DFT methods available only with the 

GIAO/cluster approach, particularly the use of hybrid-GGA functionals, meta-GGA 

functionals, and hybrid meta-GGA functionals that demonstrate improved agreement in 

calculations on symmetry-adapted clusters, were explored.  The results demonstrate that 

meta-GGA functionals improve computed NMR parameters over those obtained by 

GGA functionals for all four nuclides, and that hybrid functionals improve computed 

results over the respective pure DFT functional for all nuclides except 15N.  One of the 

most significant theoretical insights in this chapter was gained from the systematic 

analysis of 13C magnetic-shielding tensors.  For this nucleus, the correlation between 

calculated magnetic shieldings and experimental chemical shifts for sp3- and sp2-
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hybridized carbons were modeled separately.  In agreement with earlier work [1], I 

found that GGA functionals such as PBE and PW91 result in distinct subpopulations 

that can be modeled with statistically different linear-regression parameters.  This result 

appears to be a general feature of pure DFT functionals, as similar findings were 

obtained for the meta-GGA functional TPSS.  In contrast, the hybrid DFT functionals 

PBE0, B3PW91, and TPSSh model carbon sites of all types with a single set of linear-

regression parameters. 

Chapter 5 presents a computational study of magnetic-shielding and 

quadrupolar-coupling tensors of 43Ca sites in calcium carboxylates and calcium-

containing inorganic solids.  Due to the limited experimental 43Ca NMR data available 

in the literature [2], the analysis is limited to ten calcium sites.  A comparison between 

periodic and cluster-based approaches for modeling solid-state interactions 

demonstrates that cluster-based approaches are suitable for predicting 43Ca NMR 

parameters.  The cluster-based calculations employ a hybrid approach, in which  a 

cluster of atoms or molecules represents the local environment of the 43Ca site and long-

range polarization effects are modeled with electrostatic embedding.  At the PBE level, 

GIPAW and cluster-based calculations yield an RMSD of 14 ppm and 15 ppm for the 

principal components of the 43Ca magnetic-shielding tensors, respectively, and 0.14 

MHz and 0.16 MHz for the principal components of the quadrupolar-coupling tensors, 

respectively.  Significantly, the slopes of the correlation lines between experimental 

chemical shifts and calculated quadrupolar couplings are around -1.37 ± 0.08 for both 

methods.  Several model chemistries, including Hartree-Fock (HF) theory and 

seventeen DFT approximations (SVWN, CA-PZ, PBE, PBE0, PW91, B3PW91, rPBE, 

PBEsol, WC, PKZB, BMK, M06-L, M06, M06-2X, M06-HF, TPSS, and TPSSh), are 
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evaluated for the prediction of 43Ca NMR parameters.  All DFT methods lead to 

substantial, and frequently systematic, overestimations of experimental chemical shifts.  

Hartree-Fock calculations outperform all DFT methods for the prediction of 43Ca 

chemical-shift tensors.  At the HF level, an RMSD for the principal components of the 

43Ca magnetic-shielding tensor is only 9 ppm.  Convergence of NMR parameters with 

respect to basis sets of the form cc-pVXZ (X = D, T, Q) is also evaluated.   

In Chapter 6, 29Si and 31P magnetic-shielding tensors in covalent network solids, 

specifically silicates and phosphates, are evaluated using periodic and cluster-based 

calculations.  The cluster-based computational methodology employs pseudoatoms to 

reduce the net charge (resulting from missing co-ordination on the terminal atoms) 

through valence modification of terminal atoms using bond-valence theory 

(VMTA/BV), a computational strategy for modeling NMR parameters in covalent 

network solids recently proposed by Alkan and Dybowski [3] as an extension of the 

earlier work of Brown [4].  Although the VMTA/BV model has previously been applied 

to the prediction of 207Pb magnetic-shielding tensors, this is the first study in which the 

magnetic-shielding tensors computed with the VMTA/BV method are compared to 

magnetic-shielding tensors determined with the periodic GIPAW approach.   

The performance of the DFT functionals CA-PZ, PW91, PBE, rPBE, PBEsol, 

WC, and PBE0 were assessed for the prediction of 29Si and 31P magnetic-shielding 

constants in silicates and phosphates.  Consistent with previous calculations, the pure 

DFT functionals led to systematic overestimations of chemical shifts.  Calculations 

using the hybrid functional PBE0, in combination with the VMTA/BV approach, result 

in excellent agreement with experiment.  Furthermore, proposed absolute shielding 

scales for 29Si and 31P allow another dimension for assessing the accuracy of 
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calculations [5, 6].  All-electron calculations result in magnetic-shielding constants that 

agree better with experiment on an absolute scale.  At the PBE0 level, the relationship 

between experimental and calculated magnetic-shielding tensors results in an ideal 

correlation, with a slope and intercept that are not statistically different from unity and 

zero, respectively, for both nuclides. 

Chapter 7 demonstrates a modification of Grimme’s two-parameter empirical 

dispersion force field (referred to as the PW91-D2* method), in which the damping 

function is optimized to yield geometries that result in predictions of the principal values 

of 17O quadrupolar-coupling tensors that are in close agreement with experiment.  The 

predictions of 17O quadrupolar-coupling tensors using PW91-D2*-refined structures 

yields a RMSD (0.28 MHz) for twenty-two crystalline systems that is smaller than the 

RMSD for predictions based on X-ray diffraction structures (0.58 MHz) or on structures 

refined with PW91 (0.53 MHz).  In addition, 13C, 15N and 17O chemical-shift tensors 

and 35Cl quadrupolar-coupling tensors determined with PW91-D2*-refined structures 

are compared to experiment.  Errors in the prediction of chemical-shift tensors and 

quadrupolar-coupling tensors are, in these cases, substantially lower than predictions 

based on PW91-refined structures.  With this PW91-D2*-based method, analysis of 42 

17O chemical-shift-tensor principal components gives a RMSD of only 18.3 ppm, 

whereas calculations on unrefined X-ray structures give a RMSD of 39.6 ppm.  A 

similar analysis of 35Cl quadrupolar-coupling tensor principal components gives a 

RMSD of 1.45 MHz for the unrefined X-ray structures, and 0.59 MHz for the PW91-

D2*-refined structures. The results in this chapter have the potential to serve as the 

groundwork for future studies on NMR crystallography. 
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This dissertation provides a practical route to the prediction of magnetic-

shielding and quadrupolar-coupling tensors in ordered solids.  The results illustrate that 

cluster-based approaches can be applied successfully to model NMR parameters in 

solids.  Theoretical considerations, related to the selection of model chemistry, are 

assessed for the prediction of NMR parameters.  Finally, it is demonstrated that accurate 

predictions of solid-state NMR parameters can be used for semi-empirical refinements 

of the coordinates of atoms in crystal structures. 
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