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Abstract

Uranium series coral ages for emergent units from the passive continental margin US Atlantic Coastal Plain (ACP) suggest sea

level above present levels at the end of marine oxygen isotope stage (MIS) 5, contradicting age-elevation relations based on marine

isotopic or coral reef models of ice equivalent sea level. We have reexamined this problem by obtaining high precision 230Th/238U

and 231Pa/235U thermal ionization mass spectrometric ages for recently collected and carefully cleaned ACP corals, many in situ. We

recognize samples that show no evidence for diagenesis on the basis of uranium isotopic composition and age concordance.

Combining new and earlier data, among those ages close to or within the age range of MIS 5, over 85% cluster between 65 and

85 kaBP. Of the corals that we have analyzed, those that show the least evidence for diagenesis on the basis of uranium isotopic

composition and age concordance have ages between 80 and 85 kaBP, consistent with a MIS 5a correlation. The units from which

these samples have been collected are all emergent and have elevations within B3–5m of those few units where early stage 5

(B125,000 kaBP) coral ages have been obtained. The ACP appears to record an unusual history of relative sea level throughout

MIS 5, a history that is also apparent in the dated coral record for Bermuda. We speculate that this history is related to the regional

(near-to intermediate-field) effects of ancestral Laurentide Ice sheets on last interglacial shorelines of the western North Atlantic.

r 2004 Elsevier Ltd and INQUA. All rights reserved.
1. Introduction

The geochronology of Pleistocene coral terraces,
combined with marine isotopic records, elucidates the
timing and magnitude of changes in global ice
volume on a variety of time scales. The interval
between ca. 140 and 70 kaBP, well dated by classical
(alpha-spectrometry) and modern thermal ionization
mass spectrometric (TIMS) uranium-series techniques,
is understood to include a series of ice-volume
minima (sea-level maxima) that can be broadly defined
as the ‘‘last interglacial.’’ This interval (marine
isotope stage (MIS) 5) includes a period of smaller-
than-present ice volume (eustatic sea level higher
g author.

s: jwehm@udel.edu (J.F. Wehmiller).

ess: US National Park Service, SE Regional Office,

SW, Atlanta, GA 30303, USA.

ess: Department of Earth, Ecological, and Environ-

University of Toledo, OH 43606, USA.

front matter r 2004 Elsevier Ltd and INQUA. All rights

int.2004.01.002
than present) around 125 kaBP (substage 5e), with
subsequent ice-volume minima at roughly 105 ka
BP (substage 5c) and 80 kaBP (substage 5a). Sea levels
during substages 5c and 5a have been interpreted to
have been between 10 and 25m lower than present,
compared with roughly 120–135m below present for
full-glacial ice volume (Lambeck and Chappell, 2001;
Yokoyama et al., 2001; Cutler et al., 2003 and references
therein).
The sea levels derived from tropical coral terraces and

the marine isotopic record are references against which
other dated coastal records can be compared. These
comparisons can yield estimates of local tectonic
deformation rates, or they can provide age estimates
for a sequence of coastal units when there is little
independent geochronologic information. In some cases,
reliable geochronologic data for selected coastal units in
mid-latitude regions are inconsistent with eustatic
records based on tropical coral reef chronologies (Muhs
et al., 2002a, b).
reserved.
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There is a long history of U-series dating of sites from
the US Atlantic Coastal Plain (ACP) (Fig. 1), beginning
with Oaks et al. (1974) and continuing with work by
Szabo and colleagues at the US Geological Survey
(Cronin et al., 1981; McCartan et al., 1982; Szabo,
1985). The vast majority of these results, all obtained by
alpha-spectrometry on ahermatypic corals collected
from units that are presently emergent (elevations up
to +8m), fall in the interval between 65 and 85 kaBP.
These U-series ages have been questioned because of:
(1) their inconsistency with what has been assumed to
be a global eustatic record (e.g., Bloom et al., 1974;
Shackleton, 1987), given the assumed tectonic stability
of the passive margin ACP; (2) some isotopic evidence
for open system behavior, and (3) problematic implica-
tions of associated amino acid racemization results
(Wehmiller and Belknap, 1982; Szabo, 1985; Wehmiller
et al., 1992). Additionally, the striking paucity of ACP
U-series coral ages in the 125 kaBP range (the age most
frequently observed for emergent units on other low-
uplift-rate continental margins and islands—e.g., Chen
et al., 1991; Stirling et al., 1998; Muhs et al., 2002a)
suggests that the coastal evolution of the dated portions
of the ACP may be unique.
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Fig. 1. Coastlines of the western North Atlantic, including the Atlantic

coastal plain (New Jersey to Florida), Bermuda and the Bahamas,

showing sites dated by U-series methods Open boxes: enlarged as Fig.

2a and b; S=Savannah, Georgia; C=Charleston, South Carolina;

MB=Myrtle Beach, South Carolina; VB=Virginia Beach, Virginia;

CL=Cape Lookout, North Carolina; CH=Cape Hatteras, North

Carolina Circles: Bermuda: Muhs et al. (2002b); San Salvador and

Great Inagua: Chen et al. (1991); Grand Bahama, Lundberg and Ford

(1994); Central Florida: (Muhs et al., 1992, 2004); Florida Keys:

Osmond et al. (1965); Broecker and Thurber (1965); Toscano and

Lundberg (1999); Fruijtier et al. (2000); Muhs et al. (1992, 2004); Cape

Canaveral: Osmond et al. (1970).
In this paper we review existing ACP U-series data
and present 26 new U-series coral ages, the first ACP
dates obtained with TIMS and inductively coupled
plasma mass spectrometric (ICP-MS) methods (Ed-
wards et al., 1987; Shen et al., 2002). The samples are
from one site in southeastern Virginia, one in north-
eastern North Carolina, two in central South Carolina,
and one in Georgia. These samples were collected with
mollusks that are part of ongoing studies of amino acid
racemization geochemistry/geochronology at these and
other related localities (Wehmiller et al., 1988, 1992;
Mirecki et al., 1995). In no case have new collections
been made at the precise location of previous analyses,
although in at least two cases the new collections very
closely duplicate collections made in the late 1970’s and
early 1980’s (McCartan et al., 1982; Szabo, 1985). The
TIMS and ICP-MS results presented here refine and
reinforce the previous conclusions based on alpha-
spectrometric ages.
2. Localities and samples

Information about the sample collection sites is
summarized in Table 1. Fig. 2 shows the locations of
these collection sites, along with some nearby sites for
which relevant alpha-spectrometric U-series data are
available (Szabo, 1985). In most cases, the exposures at
these sites have been created by commercial excavation,
so outcrops change rapidly or disappear after several
years. An exception is the excavation at Gomez Pit,
Virginia Beach, Virginia (G), which has been accessible
for over 15 years. Corals from various sites within this
large (B1 km2) excavation were collected between 1985
and 1999. The Moyock, North Carolina (M), site was
originally sampled in the late 1970’s (Cronin et al., 1981)
but only samples collected in 1992 were included in the
present study; the Rifle Range (RR) and Berkeley Pit
(BP) South Carolina exposures were created in 1990 and
were collected in 1991 and 1992. The Jones site (J)
Georgia (Hulbert and Pratt, 1998), created in 1995, is
a private excavation that it is now flooded. Images of
most of these sites and analyzed coral specimens
can be found at http://www.geology.udel.edu/wehmiller/
CoralGeochronology/CoralMap.html.
The deposits from which the corals were collected

generally consist of shelly sands (G, M, RR) or fine
sands and muds, representing back-barrier or inlet
depositional environments (typical water depths B1–
6m). In most cases, these deposits are less than 4m
thick, overlying either earlier Pleistocene or Tertiary
units. At G, at least one earlier Pleistocene unit is found
below the coral-bearing unit (Mirecki et al., 1995). At
the BP and RR pits, a wide range of racemization ratios
suggests that multiple ages of mollusks are present,
although diagenetic effects are also apparent (Wehmiller

http://www.geology.udel.edu/wehmiller/CoralGeochronology/CoralMap.html
http://www.geology.udel.edu/wehmiller/CoralGeochronology/CoralMap.html
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Table 1

Sample localities, with information on elevation, collection history, and other references describing the sites

Site N.

Latitude

W.

Longitude

Outcrop

elevation

range (m)

Max. elevation

of coral-bearing

unit (m)

Collection

date

Previous

alpha-spec

data?

Associated

racemization

data

Reference

Gomez Pit, Va 36.7823 76.1966 �2 to +8 B7.5 Jul-89 Yesa Yes Cronin et al.

(1981), Szabo

(1985),

Gomez Pit, Va 36.7807 76.1943 �2 to +8 B7.5 Jun-99 Yesa Yes Mirecki et al.

(1995)

Moyock, NC 36.508 76.153 0 to +4 B5 Jan-92 Yes Yes Cronin et al.

(1981), Szabo

(1985)

Berkeley Pit,

SC

32.8586 79.7803 �1 to +6 B5 Jun-91 Yesb Yes Cronin et al.

(1981), McCartan

et al. (1982)

Jun-92 Wehmiller and

Belknap (1982),

and Szabo (1985)

for nearby sites

Rifle Range Pit,

SC

32.8152 79.8324 �1 to +6 B5 Jun-91 Yesb Yes Cronin et al.

(1981), McCartan

et al. (1982),

Wehmiller and

Belknap (1982)

and Szabo (1985)

for nearby sites

Jones Site, GA 31.916 81.071 �1 to +4 B3 Jul-95 No Yes Hulbert and Pratt

(1998)

For additional information on most of these sites, see: http://www.geology.udel.edu/wehmiller/CoralGeochronology/CoralMap.html.
aOn nearby exposures: Cronin et al. (1981) and Szabo (1985).
bOn nearby sites: Cronin et al. (1981); McCartan et al. (1982) and Szabo (1985); early results in B95 kyr range (Cronin et al., 1981) later

recalculated to B86 ka (Szabo, 1985).
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et al., 1993). Because superposed aminozones (clusters
of distinct D/L values—see Wehmiller and Miller, 2000)
are found at other sites in the Charleston, South
Carolina, area (Corrado et al., 1986; York et al., 1999;
Harris, 2000), there is often the possibility of multiple
sample ages being found in any of these exposures, but
this issue is not a factor in the present discussion of the
coral results. Corals (genera Astrangia and Septastrea)
are relatively common at all sites, often attached to
mollusk shells or other clasts. Articulated bivalves
(mostly Mercenaria) in life position are found at all
these sites, suggesting that there has not been extensive
transport of fossil material. At BP the coral samples are
abundant in a fine-grained deposit, mostly attached to in
situ oysters (Crassostrea), also implying that the corals
have not been transported. The J site contains a mixture
of Crassostrea and Mercenaria, with corals attached to
shells of both genera. The M corals used in this study
were collected from sorted spoil material at the site; they
were selected for preliminary testing of sample prepara-
tion procedures because of the unusual abundance of
coral material from this site. Additional descriptions of
most of these sites can be found in Kaufman et al.
(1996), who studied the U-series geochemistry of
Pleistocene mollusks from the region.
3. Analytical methods

Because previous alpha-spectrometric results required
relatively large (usually greater than 3 gm) coral
samples, many of the early analyses were conducted
on whole-coral samples that were not cleaned exten-
sively by mechanical or chemical methods prior to
analysis (Szabo, 1985; Szabo, personal communication,
1992). These methods raised the potential for contam-
ination by detrital minerals, and wide age ranges and/or
relatively low 230Th/232Th activity ratios (a measure of
detrital contamination) were apparent in many of the
analyses (Cronin et al., 1981; Mixon et al., 1982; Szabo,
1985). In the present study, available TIMS and ICP-
MS technology permits analysis of much smaller
samples, usually less than 400mg. Consequently, one
of the major efforts in sample preparation involved
reduction of the coral sample to only the most robust
and visibly ‘‘clean’’ polyp walls. This reduction was
accomplished with the use of carbide or diamond-tipped
dental burrs (o1mm diameter). Coral fragments were
viewed under a binocular microscope and all discolored,
chalky or porous carbonate material was removed by
slow abrasion while keeping the coral fragments
immersed in distilled water. At the end of this process,

http://www.geology.udel.edu/wehmiller/CoralGeochronology/CoralMap.html
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Fig. 2. (a) Details of southeastern Virginia; see Cronin et al. (1981),

Mixon et al. (1982), Szabo (1985), and Wehmiller et al. (1988).

Approximate positions of shoreline features (scarps) as mapped by

Oaks et al. (1974): H–F=Hickory–Fentress scarp; Sflk=Suffolk

Scarp. Site abbreviations: T’s=T’s corner, Virginia; NB=Norris

Bridge, Virginia; G, NL, TA=Gomez Pit, New Light, and Toy

Avenue, Virginia Beach, Virginia; M=Moyock, North Carolina;

SP=Stetson Pit, North Carolina; PZ=Ponzer, North Carolina.

Underlined symbols (G, M) identify sites from which samples analyzed

here have been collected. (b) Details of South Carolina and Georgia

locations; see Cronin et al. (1981), Szabo (1985), Wehmiller et al.

(1988), Hulbert and Pratt (1998) and York et al. (2001). Site

abbreviations: EB=Edisto Beach; MC=Mark Clark; RR=Rifle

Range; BP=Berkeley Pit; DS=Detyens Shipyard; SI=Scanawah

Island; J=Jones Pit, Skidaway Island. Underlined symbols (BP, RR,

J) identify sites from which samples analyzed here have been collected.
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several dozen fragments of coral polyp wall (most
weighing o25mg) were produced, each with no visible
porosity, discoloration, or adhering detritus. Each
sample required a minimum of 3 h of processing in
order to obtain enough material for TIMS analysis. In a
few cases, corals selected for processing failed to yield
enough suitable material. Calcite-aragonite determina-
tions were made on selected grains of each coral
prepared in this manner. In all cases, calcite above
detection limit (approximately 1.5%) was not observed.
In the initial phases of this work, the 230Th/238U TIMS
analyses were performed at the US Geological Survey in
Denver, Colorado using samples collected between 1989
and 1995 and analytical methods described by Ludwig
et al. (1992). Later in the course of this study, with the
advent of techniques for TIMS 231Pa/238U geochronol-
ogy (Edwards et al., 1997), a second sample from the J
site was analyzed by TIMS techniques at the University
of Minnesota lab for both 230Th/238U and 231Pa/238U.
TIMS 230Th/238U techniques at both laboratories are
modifications of those of Edwards et al. (1987), with
specifics of the US Geological Survey methods given in
Ludwig et al. (1992) and specifics of the University of
Minnesota methods given in Cheng et al. (2000). The
TIMS 231Pa/238U techniques are given in Edwards et al.
(1997) and Shen et al. (2003).
Additional G samples (JW99-59 in Table 2), collected

in June 1999 from a freshly excavated exposure, were
used to examine intra-sample variability using a less
aggressive cleaning procedure than the mechanical
disaggregation described above. Samples JW99-59-J-1
(1, 2, 3) and JW99-59-J-2 (1, 2, 3) (Group Ga in Table 2)
were subsampled on the outer portions of the coral,
after removing the fine septa and encrusting detritus
within the coral polyps. Cleaned samples were immersed
in distilled water and subjected to ultrasonic cleaning for
20min, after which the densest (least chalky) fragments
were selected for analysis. Samples 99-59-J-1 (11, 12)
and 99-59-J-2 (11, 12), along with samples 99-59-J-3 (11,
12) (Group Gb in Table 2) were taken from deeper
within the coral polyps and sonicated for 30min prior to
selection of fragments for analysis. These samples were
analyzed for 230Th/238U using ICP-MS techniques (Shen
et al., 2002).
4. Results

The results of the TIMS and ICP-MS analyses from
both laboratories are presented in Table 2. Ages have
been calculated using the half lives reported in Cheng
et al. (2000). Information is given for uranium content,
232Th (as an indicator of initial 230Th and 231Pa),
230Th/238U and/or 231Pa/235U ages, and initial
234U/238U (derived from the measured 234U/238U and
the 230Th/238U age). Corrected ages are calculated by
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subtracting a component of the sample’s 230Th calcu-
lated from the measured 232Th content of the sample.
The uranium in this component is calculated assuming a
232Th/238U ratio equivalent to the bulk earth value of
3.8. The 234U, 230Th, and 231Pa contents of this
component are calculated assuming that these nuclides
are in secular equilibrium with their uranium parents.
The calculated 230Th/232Th atomic ratio of this compo-
nent is 4.472.2� 10�6 and the calculated 231Pa/232Th
atomic ratio is 8.8874.44� 10�8. Errors on these ratios
are arbitrarily assumed to be 50%. Corrections using
this component are insignificant for all samples except
for 95-61c1 and 95-61c2, both from the J. These are the
samples upon which 231Pa/235U analyses were per-
formed. As larger samples sizes were required for the
Pa analyses, contaminant levels were somewhat higher
(see 232Th concentrations for these samples as compared
with the others in Table 2). However, even for the J
samples, with the highest 232Th levels of any in this
study, the corrections only amount to about 1.5 ka for
the 231Pa ages and 3 ka for the 230Th ages. Thus, these
corrections are small, on the order of analytical error,
and much smaller than the difference in age between
marine oxygen isotope sub-stages.
The 230Th/238U, 231Pa/235U, and 231Pa/230Th ages of

the J samples are all concordant within errors, with ages
ranging between 82 and 92 kaBP (Table 2, 82–87 kaBP
range if the 231Pa age with the largest error is ignored).
These observations, along with the observation that the
J samples all have marine uranium isotopic composition
(discussed below) suggest that the ages of these samples
are accurate and are consistent with an MIS 5a
correlation.
5. Discussion

5.1. Ages and isotopic systematics

Following earlier discussions of the ACP U-series
geochronology, we will show that the mass spectro-
metric coral ages presented here are quite likely ‘‘late
stage 5’’ (B80 kaBP) in age, confirming the original
alpha-spectrometric late stage 5 age assignments for sites
in the region (Szabo, 1985). The relatively large range
(up to 12 kyr) of 230Th/238U ages seen in some of the
analyses from the RR and BP sites may be the result of
instrumental problems that resulted in relatively high
errors. These problems were eliminated during the latter
stages of the analyses. There is internal consistency
between the two laboratories, and the range of mass
spectrometric results (from 64 ka to 87 kaBP) matches
the range seen in earlier studies (Szabo, 1985). However,
this range is too large to be consistent with the general
range of ‘‘late stage 5’’ (B76–84 kaBP: Gallup et al.,
1994; Shackleton, 2000; Cutler et al., 2003) unless
diagenetic factors are invoked.
Some insight into a possible diagenetic overprint on

the results is gained from Fig. 3, which shows that initial
234U/238U values are lower for those samples with the
younger apparent ages, and that many of these initial
234U/238U activity ratios are too low to be consistent
with modern seawater analyses (modern corals give a
modern marine 234U/238U activity ratio of
1.145870.0019: Cheng et al., 2000). The samples with
the lowest 234U/238U activity ratio are generally those
from G that were subjected to the least aggressive
mechanical cleaning (the Ga sample series, Table 2).
This positive correlation between initial 234U/238U and
230Th/238U age has been observed in reef-building corals
at a number of localities worldwide and has been most
extensively studied in Barbados (Bender et al., 1979;
Gallup et al., 1994; Thompson et al., 2003). It is likely
that this broad relationship is due to mobility of both
230Th and 234U coupled with dissolution/reprecipitation
of coralline aragonite (Gallup et al., 1994), with the
proportions of these nuclides influenced by recoil
phenomena (Thompson et al., 2003). Of interest in this
regard is the slope of our 234U/238U–230Th/238U age
trend, which is four times lower than the slope for
comparable-age reef-building corals from Barbados.
Much of the Barbados trend can be explained by recoil
phenomena (Thompson et al., 2003). The difference in
slope indicates that the ACP trend must involve
additional processes beyond recoil-related phenomena.
Kaufman et al. (1996), in their study of [U] and
234U/238U of mollusks from several of these sites, noted
234U/238U values (even in the same mollusk) that were
both greater and less than modern seawater values,
suggesting a variety of possible paths for either uranium
gain or loss. Without specific knowledge of the processes
responsible for the trend, we follow earlier workers and
consider those samples with initial 234U/238U values
closest to the marine value to be the ones that are least
altered. Inspection of the trend and the individual data
points in Fig. 3 shows that the ages of the samples that
record marine uranium isotopic composition lie broadly
in the range of 80–85 kaBP. Included among the
samples that record marine uranium isotopic composi-
tions are the J samples, which also record concordant
230Th/238U, 231Pa/235U, and 231Pa/230Th ages (see above),
supporting the accuracy of this age assignment.

5.2. The elevation of B80 ka BP deposits on the US ACP

The U-series coral ages presented here reinforce a
continuing conflict between the ACP Quaternary record
and eustatic sea levels derived from either marine
isotopic data, uplifted tropical coral reef sequences, or
carbonate island submerged speleothem records
(Bloom et al., 1974; Shackleton, 1987; Bard et al.,
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Table 2

ACP corals: U and Th concentrations, isotopic activity ratios, and U-series ages

Locality and

sample name

Genus U ppm

(+/�)

232Th ppb

(+/�)

234U/238 U

AR

corr(+/�)

230Th/238U

AR corr

(+/�)

230Th/232Th

atomic

� 10�6

230Th/238U Age

(ka) (+/�)

234U/238U

init AR

(+/�)

231Pa/238U Age

(ka) (+/�)

Gomez Pit VA

Gua

JW 89-118 Astrangia 2.139

(0.002)

8.4 (0.1) 1.1155

(0.0021)

0.5544

(0.0041)

2300 73.9 (0.80) 1.1424

(0.0026)

nd

JW 89-117 Septastrea 2.315

(0.003)

21.1 (0.3) 1.1165

(0.0021)

0.5476

(0.0067)

982 72.6 (1.30) 1.143

(0.0026)

nd

JW 89-124B Septastrea 1.935

(0.003)

14 (0.9) 1.1139

(0.0028)

0.562

(0.0356)

1262 75.6 (6.80) 1.141

(0.0043)

nd

Gaa

JW99-59 J-1-1 Astrangia 2.953

(0.005)

25.2 (0.1) 1.1072

(0.0024)

0.4958

(0.0032)

844 63.9 (0.70) 1.1287

(0.0045)

nd

JW99-59 J-1-2 Astrangia 2.505

(0.005)

23.1 (0.1) 1.1098

(0.0026)

0.5067

(0.0039)

902 65.6 (0.80) 1.1325

(0.0050)

nd

JW99-59 J-1-3 Astrangia 2.66

(0.005)

23.6 (0.1) 1.1096

(0.0028)

0.5146

(0.0033)

950 67 (0.70) 1.1328

(0.0051)

nd

JW99-59 J-2-1 Astrangia 2.634

(0.005)

23.9 (0.1) 1.1134

(0.0023)

0.5288

(0.0032)

964 69.2 (0.70) 1.1382

(0.0046)

nd

JW99-59 J-2-2 Astrangia 2.634

(0.007)

51.8 (0.5) 1.1097

(0.0030)

0.5437

(0.0071)

456 72 (1.50) 1.1352

(0.0061)

nd

JW99-59 J-2-3 Astrangia 2.614

(0.006)

24.4 (0.1 1.108

(0.0036)

0.5282

(0.0036)

933 69.6 (0.90) 1.1318

(0.0063)

nd

Gba

JW99-59 J-1-

11

Astrangia 2.632

(0.008)

19.3 (0.2) 1.1157

(0.0044)

0.5487

(0.0058)

1232 72.7 (1.30) 1.1424

(0.0080)

nd

JW99-59 J-1-

12

Astrangia 2.818

(0.01)

21.7 (0.2) 1.1121

(0.0042)

0.552

(0.0051)

1186 73.6 (1.20) 1.1383

(0.0084)

nd

JW99-59 J-2-

11

Astrangia 2.881

(0.008)

27.2 (0.3) 1.1125

(0.0037)

0.5608

(0.0061)

981 75.2 (1.30) 1.1395

(0.0070)

nd

JW99-59 J-2-

12

Astrangia 2.784

(0.008)

28.9 (0.2) 1.111

(0.0040)

0.5559

(0.0047)

886 74.4 (1.10) 1.1374

(0.0075)

nd

JW99-59 J-3-

11

Astrangia 2.9 (0.01) 115.5 (0.4) 1.1135

(0.0030)

0.4956

(0.0036)

205 62.5 (1.20) 1.1369

(0.0059)

nd

JW99-59 J-3-

12

Astrangia 3.064

(0.009)

100.8 (0.5) 1.1099

(0.0037)

0.5003

(0.0046)

251 63.8 (1.20) 1.1328

(0.0070)

nd

Moyock NC

Mua

JW92-48b Septastrea 2.483

(0.003)

44.6 (0.3) 1.1203

(0.0020)

0.5775

(0.0040)

526 77.8 (0.8) 1.1499

(0.0024)

nd

Berkeley Pit

SC

Bpua

JW 91-175 Septastrea 3.468

(0.004)

41.4 (4) 1.1102

(0.0024)

0.5986

(0.0588)

821 83.2 (12.1) 1.1394

(0.0056)

nd

JW 91-187 Septastrea 2.329

(0.003)

7.6 (0.5) 1.1135

(0.0019)

0.5982

(0.0409)

2981 82.7 (8.3) 1.1434

(0.0041)

nd

JW 91-186 Septastrea 2.715

(0.003)

23 (0.3) 1.1098

(0.0019)

0.5833

(0.0078)

1122 80.2 (1.6) 1.1377

(0.0024)

nd

Rifle Range

Pit SC

RRua

JW91-52 Astrangia 2.128

(0.002)

18.1 (1.6) 1.1101

(0.0035)

0.5594

(0.0509)

1074 75.5 (9.8) 1.1363

(0.0056)

nd

JW91-54 Astrangia 2.179

(0.003)

104.6 (8.6) 1.1129

(0.0026)

0.6126

(0.0514)

209 85.8 (10.8) 1.1439

(0.0054)

nd
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Table 2 (continued)

Locality and

sample name

Genus U ppm

(+/�)

232Th ppb

(+/�)

234U/238 U

AR

corr(+/�)

230Th/238U

AR corr

(+/�)

230Th/232Th

atomic

� 10�6

230Th/238U Age

(ka) (+/�)

234U/238U

init AR

(+/�)

231Pa/238U Age

(ka) (+/�)

Jones Pit GA

Jua

96-061-bu Septastrea 2.211

(0.003)

15 (0.2) 1.119

(0.0017)

0.6112

(0.0033)

1439 84.7 (0.70) 1.1512

(0.0021)

nd

96-061-a Septastrea 2.55

(0.003)

21 (0.1) 1.1152

(0.0019)

0.5986

(0.0052)

1193 82.6 (1.10) 1.1455

(0.0024)

nd

Jma

95-61c1(I) Septastrea 2.983

(0.006)

426.9 (8.6) 1.1169

(0.0045)

0.6229

(0.0051)

725 83.8 (4.3) 1.1541

(0.0077)

86.2 (6.7)

95-61c1(II) Septastrea 2.964

(0.003)

334 (8.3) 1.1157

(0.002)

0.6178

(0.0029)

918 83.7 (3.3) 1.1512

(0.0054)

84.3 (5.4)

95-61c2 Septastrea 3.149

(0.003)

516.9 (6.5) 1.1166

(0.0012)

0.617

(0.0039)

628 82.1 (4.7) 1.1538

(0.0033)

92 (11.0)

AR=activity ratio; initial AR calculated from 230Th/U age.

The Gomez Pit Ga group represents two separate corals, each split into three subsamples (J-1-1, J-1-2, etc.) from the outer portion of the coral. The

Gomez Pit Gb group represents three corals (including the two in Ga), each subsampled twice in the deeper portions of the coral. See text for further

discussion.
aAbbreviations are those used for data plotted in Fig. 3; all those ending with ‘‘u’’ were analyzed at USGS Denver, others analyzed at University of

Minnesota.

3A single B130 kyr alpha-spectrometric coral age from the

Intracoastal Waterway in Myrtle Beach SC was rejected by Szabo

(1985); a B200ka alpha-spectrometric coral age from Norris Bridge

VA is also considered inaccurate (B.J. Szabo, personal communica-

tion, 1992).
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1990; Lundberg and Ford, 1994; Gallup et al., 1994;
Chappell et al., 1996; Ludwig et al., 1996; Toscano and
Lundberg, 1999; Lambeck and Chappell, 2001; Cutler
et al., 2003). However, similar late stage 5 ages have
been obtained for corals presently above sea level in
Bermuda, an oceanic island that is interpreted to have
had little or no vertical motion during the late
Quaternary (Harmon et al., 1983; Ludwig et al., 1996;
Muhs et al., 2002b). Only by invoking uplift of at least
10–15m can the nearly uniform (0–B+6m) elevation of
these B80 kaBP units in Virginia, South Carolina, and
Georgia be reconciled with the record inferred from
uplifted coral terraces. This conflict requires continuing
discussion of the geochemistry, stratigraphy, geomor-
phology and tectonics of the region. It is clear that the
US ACP preserves an unusual record of late Pleistocene
sea levels, although both the Bermuda record and that
of the southern Australian margin Murray-Wallace
(2002) raises similar questions about the elevation of
late stage 5 shorelines, as do dated records from clastic
terraces on the Pacific coast of the US (Muhs et al.,
1994, 2002a) and even some interpretations of the New
Guinea terrace sequence (Bloom and Yonekura, 1985).
One approach to the question of the present elevation

of the units discussed here is to compare these ages with
any B125 kaBP (early stage 5 or substage 5e) coral ages
that are available. Presently no TIMS ages in the
substage 5e range have been obtained from sites on the
US ACP, but Szabo (1985) presented two such alpha-
spectrometric ages for sites near Charleston, South
Carolina (sites DS and MC, Fig. 2b). Assuming that
these alpha-spectrometric ages are correct, we note that
the elevations of the early stage 5 units are within 3m of
the late stage 5 units in the Charleston region. There-
fore, any monotonic uplift mechanism invoked as an
explanation for the elevation of the late stage 5 units
would be expected to resolve the 5e and 5a records
geomorphically much more than presently observed. It
appears that early and late stage 5 units are preserved at
very similar elevations, at least in South Carolina (no
early stage 5 coral U-series ages are available from the
North Carolina or Virginia sites). Additional coral ages
between 80 and 130 kaBP for localities near Myrtle
Beach, South Carolina (Fig. 1) are problematic because
of sample quality and/or stratigraphic ambiguity, but
nevertheless reinforce the conclusion that early and late
stage 5 coral ages are observed at comparable elevations
(Szabo, 1985; Hollin and Hearty, 1990). Similarly, all
the other reliable3 alpha spectrometry ages (two
B200 kaBP ages from North Carolina, one from South
Carolina) (Szabo, 1985) also occur within units that are
no more than 8m above present sea level. The low
elevation of these o250 kaBP Pleistocene units is
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Jm

Jm

Jm

Ju

Ju

RRu*

RRu*

BPu*

Mu

Gu*

Gu
Gu

1.100

1.104

1.108

1.112

1.116

1.120

1.124

1.128

0.46 0.50 0.54 0.58 0.62 0.66
230Th/ 238U

BPu*

Ga

Gb

Gb
Ga

Ga
Ga

Ga Gb

Gb

Gb
Gb

Ga

BPu

23
4 U

/ 2
38

U

80 9070

60

1.13

1.14

1.15

Fig. 3. 234U/238U vs. 230Th/238U values (corrected for initial Th) and 230Th age for all analyses reported in Table 2. Isotope ratio evolution curves for

initial 234U/238U values of 1.13, 1.14, and 1.15 are shown, as well as an envelope (dashed lines) representing the analysis of modern seawater

(1.145870.0019: Cheng et al., 2000). Plotted uncertainties are the 2 sigma ranges as reported in Table 2. Abbreviations as in Fig. 2, modified as

follows: Gu=Gomez Pit USGS analyses; Ga and Gb=Gomez Pit Minnesota analyses with differing sample cleaning steps (grouped in Table 2 and

discussed in text)); Mu=Moyock, BPu=Berkeley Pit and RRu=Rifle Range Pit, all USGS analyses; Ju=Jones Pit, USGS analyses; Jm=Jones Pit,

Minnesota analyses. Analyses marked with asterisk (�) and portrayed with dashed ellipses have large uncertainties—most represent analyses done

early in the course of this work when instrumental difficulties had not yet been minimized.
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difficult to explain if uplift has affected the younger
units that yield the B80 kaBP TIMS ages.
Muhs et al. (2002b) reported numerous U-series

TIMS coral ages for sites in Bermuda (Fig. 1), including
the controversial site (ca.+1m) at Fort St. Catherine, at
the eastern end of Bermuda. These new results for the
Fort St. Catherine site cluster tightly around 80 kaBP,
while at Grape Bay (Bermuda), samples at +1 to +4m
date to B120 kaBP. Consequently, it appears that the
Bermuda record is comparable to that of the ACP in
that both have deposits ranging from B125 ka to
B80 kaBP (early to late stage 5) at very similar
elevations, slightly above present sea level. Because of
contrasting responses to possible hydroisostatic defor-
mation between the oceanic island (Bermuda) and the
broad continental shelf (ACP), the similarity in eleva-
tions of stage 5 records in Bermuda and the ACP must
represent a large-scale regional signal rather than being
a local record. Only at more southerly latitudes, near the
southern end of the Florida peninsula and in the
Bahamas (Fig. 1) do the substage 5e and 5a records
appear to have significantly different elevations (10m or
more), based on a combination of data from emerged
coral reefs and either submerged reefs or speleothems
(Chen et al., 1991; Lundberg and Ford, 1994; Richards
et al., 1994; Ludwig et al., 1996; Toscano and Lundberg,
1999).
The apparent trend of increasing separation of
elevations of the early and late stage 5 (125 ka to
80 kaBP) shoreline records from north to south
(specifically, Virginia to Florida—see Fig. 1) appears
to be a unique feature of the western North Atlantic
region. We interpret this record to be an as yet
unexplained ‘‘near-to intermediate-field’’ effect of the
Laurentide Ice Sheet (Fig. 1), which would have
produced forebulge growth and collapse during stages
6 and 5, just as during stages 2 and 1 as recorded in
Holocene sea level rise rates for the ACP (e.g., Peltier,
1999). It is beyond the scope of this paper to propose
any model for the complex isostatic adjustment history
of the ACP through multiple glacial–interglacial cycles,
but attempts are underway to understand this phenom-
enon (Potter et al., 2002; Potter and Lambeck, 2004),
which has most likely been modulated by hydroisostatic
effects on the broad continental shelf of eastern North
America (e.g., Cronin et al., 1981). Various studies of
coastal units (with less precise age control) between
38�N and 40�N (Toscano and York, 1992; Toscano,
1992; Sheridan et al., 2000; O’Neal and McGeary, 2002;
O’Neal and Dunn, 2003) also support the conclusion
that the age/elevation relation for western North
Atlantic late Quaternary shorelines is not the same as
that seen in stable or uplifted records in far-field regions
such as New Guinea or Barbados.



ARTICLE IN PRESS
J.F. Wehmiller et al. / Quaternary International ] (]]]]) ]]]–]]] 9
5.3. Stratigraphic implications—the nature of the stage 5

coastal record on the ACP

The stratigraphic record of Quaternary coastal
deposits preserved on the US ACP is complex, with a
variety of erosional and depositional features produced
through multiple glacial sea-level cycles on a passive
continental margin with a limited sediment supply. The
emergent portion of the ACP Quaternary marine record
is mostly below 30m elevation, and deposits of the
upper middle and upper Pleistocene are generally below
B15m and typically less than 10m thick (see reviews by
Colquhoun et al., 1991; Muhs et al., 2004). In many
cases, only the final regressive phase of a transgressive
cycle is reasonably well preserved, as earlier highstand
deposits were overtopped or eroded. Removal of pre-
existing units is particularly common across the Cape
Fear Arch south of the Albemarle Embayment in North
Carolina, as evidenced by condensed stratigraphic
sections (Pilkey et al., 1981; Riggs and Belknap, 1988;
Riggs et al., 1992, 1995) and the presence of reworked
Pleistocene mollusks on modern beaches (Wehmiller
et al., 1995). Consequently, because of incomplete
preservation on the ACP, landforms and associated
stratigraphic units representing Pleistocene highstands
may be difficult to correlate with specific ice-volume
minima.
From the distribution of U-series ages, it appears that

the stratigraphic record of isotope stage 5 sea levels is
dominated by those units representing the last of the
three transgressive phases (substage 5a), rather than the
earliest phase (substage 5e) that would be predicted
based on elevation alone. For example, in southeastern
Virginia, the shoreline and barrier-island complex
associated with the G and M sites, the Hickory–
Fentress ridge of Oaks et al. (1974), is the most
prominent shoreline feature of the outer Coastal
Plain (Fig. 2a). In part because of the +7.5m
elevation of the top of the barrier deposits (an indicator
of contemporaneous sea level), this allostratigraphic
unit has been considered the most likely candidate for
the substage 5e highstand. This interpretation is
supported by the existence of three additional pre-
Holocene shoreline ridge complexes that lie seaward of
the Hickory–Fentress ridge (Oaks et al., 1974). How-
ever, if the Hickory–Fentress shoreline is indeed
B80 kaBP or slightly younger, as required by the U-
series data, these younger shoreline features must
represent deposition over B5 kyr during post-80 kaBP
regression before a rapid drop in relative sea level
(Cutler et al., 2003). Older upper Pleistocene units are
recognized in southeastern Virginia and the Virginia
Eastern Shore based on geomorphic, stratigraphic, and
racemization data (Mixon, 1985; Mixon et al., 1989),
but none has been identified as B125 kaBP based on
U-series analysis.
South of Charleston, South Carolina (Fig. 2b), a
series of five to seven upper Pleistocene shorelines can be
arranged into groups of barriers (oldest to youngest)
with elevations of 7.3–6.1m, 4.9–3.6m, and 4.5–3.0m
and 3.0–0.0m (Winker and Howard, 1977; Colquhoun
et al., 1991; Harris, 2000). Geomorphic, allostrati-
graphic, and aminostratigraphic evaluation of these
shoreline features suggests that the units at BP and RR
pit, north of Charleston Harbor, are correlative with all
but the oldest of these barriers, although the record
north of Charleston Harbor is condensed and individual
highstand events are less well resolved (Weems and
Lemon, 1993). Additional racemization results for a site
near Edisto Beach, South Carolina (Fig. 2b) (York et al.,
2001), compared with paired racemization and U-series
data for Scanawah Island, South Carolina (Fig. 2b)
further imply that shoreline features younger than
80 kaBP are preserved above present sea level, just as
in southeastern Virginia.
The pattern of preservation for these representative

sections of the ACP is that the surficial units for
much of the outer Coastal Plain, with elevations from
+7.5 down to 0m, comprise a series of regressive
shorelines deposited during substage 5a. Substage 5e
highstand deposits have minimal preservation as
erosional remnants at +7 to +8m, except where
sediment supply was sufficient to create a barrier
island or spit and shoal complex. Substage 5c deposits,
if preserved, have subtle surface and subsurface records.
The apparent occurrence of early and late stage 5 units
and/or landforms at nearly identical emergent
elevations, with coral ages from substage 5a being far
more abundant than those from substage 5e,
requires some mechanism (such as hydroisostatic
subsidence) by which the B45 kyr of flooding
of the continental margin during stage 5, coupled
with forebulge collapse following MIS 6 glaciation,
generated this unusual record of coastal evolution. If
this model of sea-level history for the region is
correct, then the relative frequency of B80 kaBP
U-series ages compared with B125 kaBP ages should
not be surprising. We note also that some paleoenviron-
mental interpretations of sites in the region (Cronin
et al., 1981; York et al., 1989) have implications for
this model. In contrast to several Pacific coast records,
where faunal records of warm and cool water corre-
spond with early and late stage 5 age estimates,
respectively (Muhs et al., 2002a), records from central
South Carolina are interpreted as ‘‘subtropical’’
(warmer than present) throughout the interval dated
between B125 ka and B75 kaBP (Cronin et al., 1981).
Although this record could be explained by a stable Gulf
Stream influence on the region throughout MIS 5,
mixing of early stage 5 (warm) fossils into the later stage
5 units could also result in a similar paleoclimatic
interpretation.
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6. Summary and conclusions

The TIMS and ICP-MS coral ages presented here
confirm the original alpha-spectrometric B80 kaBP
coral ages obtained by Cronin et al. (1981), Mixon
et al. (1982), and Szabo (1985), although there is
evidence for open system alteration of at least some of
the newly analyzed corals. Nevertheless, concordant
230Th/238U, 231Pa/235U, and 231Pa/230Th ages and
marine initial 234U/238U values for a number of samples
support the general conclusion that these B80 kaBP
ages are indeed accurate, in spite of years of speculation
about their consistency with eustatic sea level records.
Although most of the B80 kaBP corals were not
attached to any substrate when collected, a few of these
corals were very definitely in place, hence their current
position or elevation cannot be explained as the result of
storm transport.
The vast majority of the ‘‘stage 5’’ U-series dates

for emergent units of the ACP, either previous or new,
fall in the B80 kaBP range, rather than in the
B125 kaBP range that would be expected based on
the elevation of the deposits and comparisons
with eustatic sea level models derived from the
Barbados and New Guinea coral terrace records.
The similarity in elevation of units containing
B80 kaBP and B125 kaBP corals suggests that the
most recent transgression could have removed some
or all of the record of early stage 5 (or older units)
in selected areas.
Emergent B80 kaBP deposits are also found in

Bermuda, at elevations virtually identical to those for
B125 kaBP deposits (Muhs et al., 2002b). The similar-
ity of the Bermuda and ACP records (those north of
Florida) suggests a large-scale regional effect on these
sea level records, explained by the multiple cycles of
submergence, emergence, and forebulge growth and
collapse over the past B150 ka or more. If this
hypothesis is correct, then it is not necessary for the
sea level records of Bermuda or the ACP to have the
same age-elevation relation as seen in other stage 5
deposits from far-field regions.
Amino acid racemization data from the ACP,

particularly from sites near Charleston, South Carolina,
have been cited as evidence against the accuracy of
the original alpha-spectrometric B80 kaBP coral
ages (Wehmiller and Belknap, 1982; Wehmiller et al.,
1988). The new mass spectrometric coral ages clearly
support the accuracy of the original analyses, requir-
ing reevaluation of the models used to interpolate
racemization data between widely separated calibration
sites (e.g., Wehmiller, 1997; Muhs et al., 2004). That
ongoing evaluation will offer a combination of diage-
netic and stratigraphic factors to explain some of
the inconsistencies between racemization models and
U-series results.
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