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ABSTRACT

As the Arctic becomes a place of commerce and industry, operating safely and

ecologically in the region is growing in importance. Vessels traveling in ice-covered

waters must constantly maintain awareness of conditions in the immediate area as well

as large-scale regional ice and weather conditions to ensure the safety of the craft,

its cargo and its crew. One of the key ways of doing this is by standardized visual

observation. Many ice-going vessels are equipped with a variety of camera systems

including thermal imagers and CCTV cameras. While these cameras are often used in

support of the vessel and their operation, humans are kept in the loop. As commerce

and exploration in the Arctic increases, better techniques are needed for extracting

pertinent information, visualizing key data, and interaction.

In this work I present a few imaging systems used in polar regions, and a series

of techniques for extracting high level information from these systems. This work is

aimed at assisting in decision-making for crafts, and people operating in and studying

this environment. To this end, I have developed a 3D camera system for long term

deployment aboard vessels in ice-covered waters. The Polar Sea Ice Topography RE-

construction System, or PSITRES has been deployed on three research expeditions

and collected terabytes of image data. Processing this data requires new techniques to

make the problem tractable and to deal with the challenging nature of the data. In

addition to PSITRES data, I present images collected from a variety of other imaging

systems that were operated in parallel to PSITRES during its deployments, as well as

remote sensing data.
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Chapter 1

INTRODUCTION AND BACKGROUND

In this chapter I will motivate this work and introduce some of the central

topics. I will give a background on computer vision, and sea ice. This chapter will go

over some basics of both, as this work is intended for an audience that may consist of

researchers from a computer vision background who may be unfamiliar with sea ice,

as well as polar science researchers who may be unfamiliar with some of the basics of

computer vision and image processing.

1.1 Introduction

In this work I will present a series of computer vision algorithms and tools

designed to support a variety of polar science disciplines and work towards developing

safe automatic ways of extracting relevant measurements. My window into the world

of polar science has been in the form of research expeditions aboard ice-going ships,

and many of the applications discussed will focus on this facet of polar science, however

I hope that there will be broad appeal.

The work presented in this thesis aims to tackle a number of problems that

can occur when working with camera systems for a number of scientific applications in

polar regions, and in particular I will focus on aspects of reconstruction, segmentation,

detection as well as visualization. Many of these topics have been explored using the

PSITRES camera system, and Chapter 2 will discuss this platform and its expeditions.

In chapter 3 I will discuss techniques for rapidly detecting algae, melt ponds and open

water fraction in PSITRES imagery. Chapter 4 will focus on low texture reconstruction,

which is critical for modeling the surface of ice. In Chapter 5 I will discuss a machine

learning framework for detecting polar bears as well as their prints using two camera
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systems aboard the RV Polarstern, I will additionally discuss some use cases of the

PSITRES camera system for analyzing tracks left by other mammals.

Chapter 6 details stereo ray trace reconstruction techniques that have been

developed to reconstruct subsurface portions of ice floes and can be used to estimate

ice thickness by explicitly modeling refraction. The technique is extended to handle

reflection and utilize multiple modalities of imaging. In chapter 7 I discuss a virtual

reality application for visualizing data from multimodal camera systems and discuss

the process of aligning the systems. I detail a framework for geospatial data to facilitate

immersive virtual reality applications with diverse map data in chapter 8. In Chapter

9 I conclude with a brief summary of the works carried out and some closing remarks.
In summary, the list of intellectual contributions presented in this work is as

follows:

• A 3D camera system designed for deployment on ice-going ships with applications
to polar sciences.

• A novel colorspace transformation and fast vectorized thresholding scheme to
detect algae, melt ponds, and open water fraction.

• A low texture reconstruction technique that leverages shading information to
improve 3D reconstruction

• A deep learning framework for detecting polar bears and their prints in different
image modalities.

• A reconstruction technique that utilizes ray tracing to allow for reconstruction
in the presence of refracting or reflecting surfaces.

• A technique for aligning multimodal imagery from drastically different camera
systems and facilitate a panoramic virtual reality application

• A method for converting 2D map data into rich interactive virtual reality appli-
cations.

The rest of this Chapter will give some background on some of the important

information about sea ice and the computer vision techniques that are a necessary

prerequisite to understanding the techniques discussed in later chapters.
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Figure 1.1: A sea ice floe in late stages of melt with a large ridge

1.2 Sea Ice

When seawater cools to approximately -1.8◦C it freezes, forming sea ice. Any

contiguous piece of sea ice is referred to as a floe [75]. Like freshwater ice, sea ice is less

dense than water, and therefore floats. Unlike fresh water ice, sea ice contains brine

channels, which form by a process called brine exclusion. Salt ions are rejected from

the lattice of newly forming ice crystals, and the remaining saltier brine forms cells

and drains out through these channels. These channels have a number of effects on the

physical properties of the ice, including its overall density and mechanical properties.

Sea ice can have a density of as high as 940kg/m3 compared to freshwater ice with

a density of 917kg/m3 which means both sea ice and freshwater ice float because

fresh water and salt water have approximate densities of 1000kg/m3 and 1020kg/m3

respectively. However, since it is denser, sea ice is not as buoyant as freshwater ice and

an identical volume of sea ice will float lower in the water than its matching volume

of freshwater ice. Sea ice also has different optical properties than freshwater as brine

and air inclusions result in more scattering making sea ice largely opaque [101].

Sea ice has a 3-dimensional volume, but practically it is often viewed separately

in terms of its 2-dimensional extent, or area on the surface of the water and its thickness.
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Figure 1.2: A melt pond as seen from the ice.

The ratio of water to ice over a given area is referred to as the coverage. Freeboard is

the amount of ice which sits above the surface measured vertically from the top of the

floe to water level. This measurement gives good insight to the overall thickness of the

ice, because when the ice floats it reaches a point of equilibrium, where its weight and

the force of buoyancy are equivalent. With known densities it is possible to estimate

the amount of ice below the surface by measuring the amount above the surface.

Throughout the year sea ice goes through cycles of melting and freezing. De-

pending on the mechanism of this melting, and other factors like snow, melt ponds can

form on the surface of the ice. In the Arctic surface melt is more common than the

Antarctic [101]. These ponds can drastically change the albedo of the surface of the ice

and often lead to more melting as more light is absorbed. Early in the melting period

these ponds start off as discrete puddles, but as melting continues the entire surface

of vast floes can become covered in an interconnected network of melt ponds. The

surface of these ponds can freeze over, evaporate, or drain, depending on conditions,

but according to the work of [32] approximately 25% of the volume of ice melt forms in

melt pools in the Arctic. More recent work has shown early spring melt pond coverage

to be an excellent indicator of the status later in summer [28].

Sea ice provides provides habitat for a large number of organisms, ranging from

single celled algae, to the largest land predator on earth, the polar bear. In Polar

Regions, plant life is minimal, so in the Arctic Ocean algae forms the basis for the

food web. According to the work of [17] about 45% of the primary production in the

Arctic comes from a species of algae called Melosira Arctica. This diatom performs
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photosynthesis and in turn is eaten by zooplankton and other fauna. Melosira Arctica

forms aggregates that hang down from the underside of ice floes. Vast aggregates were

previously observed in the Arctic, however recently these aggregates are observed on

a smaller scale. As sea ice melts a large amount of algae is deposited to the benthos,

the deep ocean. More than 85% of the carbon export (nutrient reaching the benthos)

comes from Melosira Arctica [17]. So measuring the biomass of this algae is of great

importance to researchers studying the ecology of the Arctic.

Thickness measurements are traditionally carried out by drilling a hole through

the ice, and lowering a weighted tape measure to the bottom of the floe [33]. This

process has a very small sampling footprint and as a result is highly sensitive to local

features in the ice. To overcome this many samples are taken over a small area. This

process can be time consuming and necessitates the physical presence of researchers on

the ice, which can be a dangerous environment. Ice observations are used to measure

concentration and ice type. Ice observers visually classify ice into different types,

and approximate ice concentration over the observable field from whatever platform

(typically a ship, plane or standing platform).

Ice observations are carried out from a variety of platforms using a standardized

procedure. Standards for the Arctic differ from the Antarctic, and while the Canadian

Manual of Standard Procedure for Observing and Reporting Ice Conditions (MANICE)

[68] has been widely used, more recently shipborne ice observations have been carried

out using the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) [89]. Observers

look at the ice 360◦ around the ship. Parameters such as freeboard, snow coverage,

melt pond coverage, topography type, and others are estimated. Some ships put a scale

over the side so when the ship is moving observers can directly measure the thickness

of floes as they become upturned as the ship moves through. Ice observations are done

on an hourly basis, but rarely do people volunteer for observation during the middle of

the night, and if multiple observers are carrying out the observations, each can disagree

or perform things differently.
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1.3 Computer Vision

Computer vision aims to replicate the functionality of human vision by extract-

ing high level information from images. As an active research field there are many

subtopics within computer vision, and it is well beyond the scope of this work to detail

them here. I present a selection of a few relevant subtopics in the rest of this section.

These subtopics are active areas of ongoing research in their own right, and there is a

great deal of writing on each of them. I will focus on 3D reconstruction in the form of

stereo vision, as well as shape from shading and structure from motion. I will discuss

image segmentation, and detection. I will briefly discuss different imaging modalities

with an emphasis on long wave infrared. Lastly, I will discuss data visualization and

development of Virtual Reality applications.

1.3.1 Stereo Vision

Stereo vision is a technique of using two cameras to generate a 3D model. This

technique is a form of bio-mimicry that attempts to operate the way that many or-

ganisms with eyes perceive depth. Coarsely speaking the scene forms two images on

the different cameras, and then points in these images are matched and depth can be

inferred from the relative position of matching points in the image. To aid in under-

standing I will first discuss the simple case, often called a canonical stereo setup. In

a canonical stereo setup the two cameras are aligned so that the image planes of each

are coplanar, and that the only translation between them is a horizontal shift, called a

baseline as seen in Fig 1.3. In a cononical setup matching image points can be found

along horizontal scan lines. The relative position of these matching points is called the

disparity, and it is directly related to the depth of the point in the scene by

d = fB/Z (1.1)

where d is the disparity, f is the focal length, B is the baseline, and Z is the depth of

the point[56].
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Figure 1.3: A canonical stereo setup

Computing the disparity of a given image is however not trivial and there are

numerous techniques that have been developed in this line of research. In areas where

there is little texture information the problem is inherently ill defined [9]. This poses a

problem for scenes with large areas with little texture information such as those with

ice.

Additionally many stereo camera systems are not canonical, and have rotation

between the camera axes as well as translation on more than just the horizontal axis.

In these cases there is still a relationship between a given image point and its matching

point on the other image, however. Epipolar geometry relates corresponding points

between images according to the depth of the scene point. Stereo matching in these

images however becomes more difficult as scanning across an epipolar scanline requires

more complex rasterization, and therefore is far more computationally intensive. To

combat this non canonical stereo images are typically rectified, or warped such that

correspondences lie on horizontal scanlines. Rectification can be done in using cali-

bration parameters, or using uncalibrated techniques which require feature matching

[37].

Stereo calibration is the process of fitting a model to the physical properties of

the camera setup. This model incorporates the intrinsic parameters of the cameras,
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encapsulating focal length and skew, the extrinsic parameters which model the trans-

lation and rotation of the different cameras and radial distortion parameters which

capture image warping. The process of calibration typically involves photographing a

calibration pattern (often a checkerboard) and using a nonlinear optimization frame-

work to iteratively improve estimates for the various parameters based on the seminal

work of [119].

1.3.2 Structure From Motion

Another technique for 3D scene reconstruction is to use a single camera and

a moving scene to extract depth information. This technique, called Structure From

Motion (SFM) is commonly used for large areas where a stereo system would be im-

practical. In its earliest incarnation Structure From Motion required tacking a rigidly

moving scene across consecutive video frames to generate a sparse 3D point cloud. SFM

has undergone considerable research since then and is now one of the most widely used

reconstruction techniques. At its core, SFM requires correspondences between image

frames, which are used to construct an observation matrix, a matrix which contains the

position of tracked points across frames at different time instances. If observations of

these points can be made across at least 3 frames, the matrix can be decomposed into

the 3D position of the point in the scene and the position of an orthographic camera

capturing the scene [37].

This leaves quite a bit to be desired however as most cameras are far from or-

thographic and many points in a scene are occluded, or not present in a given image.

Techniques such as bundle adjustment [104] have been used to leverage the sparsity of

the Jacobian (matrix of partial derivatives) of the observation matrix to iteratively re-

fine both the estimated 3D point and a projective camera observing that point. Modern

SFM techniques additionally use stereo matching on the images using the estimated

position and orientation of the cameras. These techniques can yield high quality dense

3D models from unstructured collections of images without any calibration informa-

tion or predefined models of the scene. However, there is an inherent scale ambiguity
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because there is no metric information about the position or scale of the model or

estimated camera models. This means, that while the models are dense and realistic

in their appearance, they are not real world scale (such as meters or inches) like stereo

images.

1.3.3 Shape From Shading

Reconstruction is even possible to some extent with a single uncalibrated image

based entirely on shading information. If I assume a completely Lambertian (com-

pletely diffuse or matte) surface, devoid of specularity (reflective or mirror like), the

intensity at a given pixel is computed by

I = L ·NIl (1.2)

where I is the intensity at that point, L is the normalized light vector, N is the surface

normal and Il is the light intensity. This means based on a known light vector and

shading information the surface normal can be approximated given the albedo of the

material. This is useful for generating a model with scaled depth from a single image

source [118].

1.3.4 Segmentation and Detection

Detection is the process of locating an object or feature in and image and there

are many application in computer vision. A common example that many readers may

be familiar with is that of face detection, which is widely implemented on many cameras

and devices. The goal of detection is given image, does it contain the object of interest?

If so where is the object in the image? There are many ways of performing detection,

and many different detectors for varied applications.

Image segmentation, or clustering, as the name suggest is the process of breaking

an image, into groups of pixels sometimes referred to as superpixels with common fea-

tures. Ideally this segmentation would separate the image into highly relevant regions.

Segmenting specific objects from an image can be viewed as form of detection.
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There are a number of approaches for image segmentation and each attempts

to group pixels together by some notion of similarity, be it spatial proximity, color or

texture similarity, or higher dimensional feature. The human brain performs this sort

of operation constantly and research into how humans cluster visual data has led to

the study of Gestalt psychology, which offers insight into how automatic clustering can

be achieved.

The process of splitting clusters or entire images is referred to as partitioning,

and the process of combining separate groups or clusters is referred to as grouping.

These two processes work together in most segmentation schemes.At a coarse level

segmentation techniques can be viewed as agglomerative or divisive. In agglomerative

techniques each individual data item (either a pixel or small patch) is regarded as a

cluster and clusters are repeatedly merged to form a good segmentation of the entire

scene. In divisive clustering the entire dataset is considered as a whole and then split

until a good segmentation is found. There exist numerous different approaches and

variations of techniques in these categories, and it is not the intention of this work to

enumerate or describe them. More complex methods can often become intractable on

large datasets.

By far the most simple segmentation schemes is thresholding. To perform sim-

ple thresholding on intensity, a threshold is selected and pixels above that intensity are

clustered into one cluster, and pixels below that threshold are grouped into another.

This can be done using a single threshold or multiple spanning the intensity space. A

large advantage of thresholding is that it is very simple and fast to compute. Thresh-

olding has some serious shortcomings however. It can be very sensitive to illumination

changes and can be very inflexible. Since thresholding is performed on a per pixel

or per patch basis no scene level information is leveraged, and patches which may be

adjacent spatially and very close in intensity can be assigned to different clusters. For

many real world applications standard thresholding alone is not sufficiently robust or

discriminative.
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1.3.5 Color Spaces

To leverage the efficiency and extend the use of thresholding techniques, different

color spaces are used. A color space is a means of representing color, a wavelength of

light, as a vector quantity. For many applications RGB color space is used. This color

space uses red, green, and blue channels in different amounts to represent different

colors. This space is common because it is most easily used in screens and monitors.

Another common color space is CIE XYZ, which is often called LAB, because it is

expressed in terms of lightness and color opponents a and b. This color space is

modeled after human vision and aims for perceptual uniformity. CMYK color space,

uses channels for cyan, magenta, yellow and black. This color space has found wide

use in inks and paint, and is used in printers. HSV or hue saturation and value, is a

color space which aims to maintain semantically meaningful properties in the encoding

of individual colors. Transforming one color space to another can be done according

to specific standards. These transformations allow for thresholding in new domains.

A threshold can be applied on the saturation of an HSV color space image, or the

lightness of an LAB color space image. Converting between color spaces varies in

complexity depending on the source and target color space. One of the most simple

transformations that most would be familiar with is going from an RGB image to a

greyscale image. This transformation is a weighted sum of the three color channels

that preserves luminosity[37].

1.3.6 Imaging modality

Camera systems have been developed to image light well outside of the visible

portion of the electromagnetic spectrum. These cameras operate according to similar

principles as their more common visible band counterparts, however they are sensitive

to different portions of the spectrum. In this work I will focus on Long Wave InfraRed

(LWIR) cameras, sometimes called thermal cameras, which are sensitive to light be-

tween 7 to 14 µm in wavelength. This wavelength corresponds to black body radiation

at typical environmental temperatures. This means objects at ambient temperatures
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emit light at these wavelengths and furthermore the wavelength of light emitted scales

with temperature. This allows LWIR cameras to detect the temperature of objects

based on emitted light radiating from the object’s surface. Not all light in this band

is emitted from surfaces, as it can be reflected and transmitted through different ma-

terials like other wavelengths. This means that a ’hot spot’ in a thermal image can be

a reflection, for example a reflection of the sun.

Long Wave Infrared cameras have a lens with a focal length and aperture just

like a visible camera, however the optics are made of different materials as standard

optics grade glass is reflective to light at these wavelengths. LWIR lenses are usually

fabricated from Germanium, and are expensive as a result. Often images from different

modalities are colormapped for visualization in the visible band. While the images are

captured as intensity images, viewing them as such is not practical for humans, and

color is used to enhance and clarify the images.

Coarsely LWIR cameras can be broken into cooled and uncooled varieties, with

the difference being whether or not the sensor is cooled by means of some sort of

refrigerant. Typically cooled sensors outperform their uncooled counterparts in virtu-

ally every imaging metric, however they are more expensive, bulky and power hungry.

Recent innovations in microbolometer technology have made uncooled sensors more

sensitive, and cheaper to produce, so these sensor types have become increasingly com-

mon following the first Gulf war[86].

1.3.7 Virtual Reality

Recent consumer hardware releases have brought Virtual Reality (VR) technol-

ogy into the mainstream. With relatively affordable price tags, a number of headsets

or Head Mounted Displays (HMDs) have been released within the last year. Modern

HMDs feature high resolution low latency displays with full positional tracking. These

allow users to move their head and body in natural ways in a fully immersive 3D en-

vironment. Tracked motion controllers allow for hand presence as well, allowing users
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to reach out and grab virtual objects in a natural way. This technology is new to mass

consumer markets, and is rapidly developing.

Presently there are limited applications outside of gaming, but the technology

offers a wealth of new and exciting potentials for interacting with and exploring 3D

data in a wide variety of forms. Development for VR has largely been pioneered by

game developers, and many of the tools for VR development have been built for game

making. These tools are tailored for building interactive 3D environments and contain

many cutting edge graphical and user interface advancements.

1.4 Code Availability

Many of the chapters in this thesis discuss new algorithms and in an effort to

assist others in continuing this line of research I have provided code for many sections

with sample scripts and links to sample data hosted on Dropbox. I encourage inter-

ested parties to explore these modules and build upon this work. Code is hosted on

Github at https://github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code. The

code has mostly been implemented in Matlab, and will require a license for Matlab

itself, as well as the Computer Vision Systems toolbox, mapping toolbox and poten-

tially others. Chapter is implemented using Tensorflow, with python. Each chapter

with corresponding code will contain a link to the associated code.
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Chapter 2

THE POLAR SEA ICE TOPOGRAPHY RECONSTRUCTION SYSTEM

In this chapter I will discuss the Polar Sea Ice Reconstruction System, or

PSITRES, its development, role, and its deployments. I will briefly discuss the data

collected, and the challenges posed to many existing techniques. I will conclude with a

brief description and comparison of several other camera systems for this environment

with an emphasis on cameras that have been deployed in parallel to the PSITRES

system.

2.1 Purpose

Through a collaboration between University of Alaska Fairbanks, University of

Virginia, and The Video Imaging Modelling and Synthesis (VIMS) lab at the Univer-

sity of Delaware the Walrus Habitat and Ice Terrain Mapping Using Video Imaging or

WHITEMUVI project was formed. This project was founded with the goal of bringing

together scientists and engineers with expertise in computer vision, computational sci-

ence, sea ice geophysics and marine mammal ecology, with the overall aim of developing

and implementing a readily-deployable video imaging system to routinely map marine

mammal habitat in ice covered waters. The rationale behind this system is ultimately

a tool for quantifying the effects of climate change on sea ice and the affect this has on

the walrus that live there.

With the ecosystem of the Arctic in a period of rapid change, the future of

the walrus is uncertain. All species of ice-dependent marine mammals of around the

Bering sea have been subject to petitions to designate them as threatened or endan-

gered under the Endangered Species Act of 1973 [99, 105]. Some, like the polar bear,
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have been classified as threatened, however the walrus has a classification of ’Data De-

ficient’ according to the International Union for the Conservation of Nature (IUCN).

Quantifiable data about the specific habitat of walrus could help reclassify the animal

and protect it under existing laws.

There are a number of problems in quantifying what exactly constitutes walrus

habitat however. Walrus are migratory, the ice on which they rest is dynamic and

constantly moving. The ice itself needs to physically accommodate their mass and

mobility. Walrus are social creatures and they stay in herds in the water and on the

ice. This means that they seek ice floes which can support a number of individuals

in close proximity. Walrus exhibit a preference for broken pack ice and pack ice with

leads [81]. In addition to floe size, various 3D parameters are thought to play a role in

desirable habitat, such as surface roughness.

Quantifying the 3D features of sea ice that makes for good walrus habitat was

what has motivated the WHITEMUVI project, and what has led to the creation of

the PSITRES camera system. PSITRES was built to capture large volumes of im-

age data from an icegoing vessel in transit. The system was designed to capture 3D

characteristics of sea ice for long swaths as the ship moves through ice covered waters.

2.2 Development of PSITRES

The Polar Sea Ice REconstruction System was built for long term deployment

aboard icegoing vessels. The environment in which the system would operate pre-

sented many design constraints and engineering challenges which had to be addressed.

PSITRES was first built in anticipation of the ARKXXVII/3 cruise in summer of 2012.

In preparation I was given information about the ship and the cruise itself. The RV Po-

larstern, a German research icebreaker owned by the Alfred Wegener Institute (AWI)

would be hosting PSITRES for two and a half months from August until October, on

a cruise through a large area of the central Arctic Ocean and its neighboring seas.

In order to achieve the largest possible viewing volume, I chose to mount the

cameras at the highest point accessible to us, namely the flying bridge. To maintain
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(a) The PSITRES Camera System (b) PSITRES’s Viewing Area

Figure 2.1: PSITRES

stereo calibration a rigid frame was needed to maintain the relative orientation of the

cameras throughout the entire deployment. 316 stainless steel was selected because it

has a very low coefficient of thermal expansion, meaning the frame would not change

size with the drastic changes in temperature it would be encountering. Additionally

this steel is corrosion resistant, making it nearly ideal for the purposes in a cold salt

water environment.

The system needed to be weatherproof, and as the system would be on a German

ship, it needed to run on standard 220 volt European electrical systems. The cameras

needed to be on the flying deck, however capturing and storing all the images requires

a workstation computer. This means the cameras would need to operate at a distance

from the workstation. Gigabit Ethernet cameras were selected as this is the only

protocol that supports a high bandwidth at distances up to 100 meters, and additionally

Ethernet is available for outdoor use, meaning it would tolerate the environmental

conditions.

2.3 Technical specifications

PSITRES consists of two to three cameras, two acting as a stereo pair with a two

meter baseline. The stereo cameras are Point Grey Flea3 5 megapixel CCD cameras.

Typically these have been deployed with 8mm wide angle lenses. They are synchronized

in hardware by a custom printed timing circuit. These cameras are housed in Dotworkz

ring of fire enclosures, which are weatherproof and heated. The optional center camera
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(a) The stereo cameras used
in PSITRES

(b) A stereo camera in its
enclosure (c) The center camera

Figure 2.2: The cameras used in the PSITRES system

is a Stardot NetCam SC, a 10 megapixel IP camera designed for security use. It has

a wider field of view and does not need heating due to its low-temperature tolerance.

The system is designed to mount to rails on the flying deck of a ship looking obliquely

at the ice to one side of the ship as seen in Fig 2.1.

2.4 Deployments

PSITRES has been successfully deployed on three separate research expeditions

in ice covered waters. These expeditions were completed aboard three separate vessels

in different parts of the Arctic and at different times of the year.

In 2012 PSITRES was deployed aboard the RV Polarstern for 80 days over a

large region of the central Arctic, as well as the Berentz, Kara, and Laptev seas. This

expedition, The ARKXXVII/3 cruise, was the longest and northernmost, covering more

than 8750 nautical miles, and reaching as far as 89.283◦ North. For PSITRES’s first

deployment the stereo cameras were triggered at a rate of 1/3 frames per second (FPS),

and the center camera was triggered at 1 FPS. PSITRES operated for over 39 days, the

vast majority of the time spent in ice covered waters. During this deployment a record

minimum of Arctic sea ice was recorded, and the ship spent a good deal of time in

waters that had historically never been ice free. For these extents of time the cameras

were shut off and no data was recorded. All in all PSITRES recorded 2,700,285 images

totaling 1.17 TB.

In 2013 PSITRES was again deployed, this time aboard the Oden, a Swedish

17



icebreaker as part of the Oden Arctic Technology Research Cruise (OATRC 2013).

OATRC brought PSITRES to the Fram Strait and the Greenland Sea. This cruise,

the shortest of the three deployments, had consistently larger and older ice floes, as the

Fram Strait is the primary exit for multiyear ice floes from the central Arctic due to

the transpolar current [101]. For this deployment the framerate of the stereo cameras

was increased to approximately 2 FPS, and the central camera remained at 1 FPS.

This allowed PSITRES to capture 3,006,554 images totaling 1.46 TB.

For its most recent deployment PSITRES was installed and operated aboard

the RV Sikuliaq, an American ice-capable research vessel for its maiden expedition

in ice covered waters, the SKQ201505S cruise. This cruise through the Bering Sea

began on March 19th 2015 and lasted 25 days. For this cruise the stereo cameras were

triggered at approximately 2 FPS, however the central camera was not deployed. As

this expedition spanned late winter into early spring, much more newly formed sea ice

and thinner younger floes formed the majority of the icescape. PSITRES captured

2,341,876 images totaling 1.87 TB.

In total PSITRES has spent 118 days at sea, collected 8,048,715 images or

4.5 Terabytes of data, endured snow, ice, gale force winds, an Arctic hurricane, and

throughout this entire ordeal has suffered only one unexpected shutdown. The system

is reliable, and capable of running for days on end with little intervention. It has proven

itself on multiple occasions, and the diverse environments of the geographic locations,

as well as the diversity of the platforms on which it has been deployed testify to its

readily deployable nature. The system once installed and calibrated needs only basic

maintenance in the form of ice removal when necessary.

2.5 The Data

The image data captured by the PSITRES camera system are truly unique. No

other stereo camera system has been deployed in such and environment, offering certain

capabilities unmatched by 2D counterparts. The system has captured approximately
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3.5 million stereo pairs, each of which consists of two 5 megapixel images, which can

result in up to 5 million accurate 3D points when triangulated.

The data itself presents numerous challenges to typical computer vision tech-

niques. There are complications due to rain, fog, and snow, there are swaths of open

water with no ice visible, there are large specular highlights from the sun, and many

other environmental issues. There are dropped frames and corrupted frames, and im-

ages that have been over or under exposed. But in spite of these environmental and

technical difficulties the largest problem is the sheer volume of data. With over 8

million images many traditional image processing approaches become completely un-

feasible. For example a process taking just one minute per image would require more

than 15 years to complete if run sequentially.

2.6 Other Camera Systems

PSITRES is not the first camera system to be deployed aboard ice-going vessels,

and while its capabilities and specific goals are unique, many other systems have been

deployed with the overall goal of extracting information about the environment around

the ship. In this section I will briefly discuss several camera systems and compare them

to the PSITRES system.

2.6.1 Eiscam

Eiscam 1 and 2 are monocular camera systems developed by [109] to observe

a swath of ice and water adjacent to an ice breaker. Both Eiscam were deployed

aboard the icebreaker NB Palmer, during the 2007 SIMBA (Sea Ice Mass Balance in

Antarctic) cruise. The systems recorded at 3 and 10 frames per minute recording at

480 TVL, an analog picture format typically with a resolution equivalent of 510 x 492.

In order to obtain quantitative measurements of the ice the images were orhtorectified

using control points measured on the ice and rectified using ENVI image processing

software, which uses techniques developed by spacemetrics for othorectification. The

system was used to derive ice concentration, ice types, floe sizes, and area of deformed

19



Figure 2.3: Eiscam 1 and 2 mounted on the port and starboard side of the NB Palmer
as shown in [109]

ice. These 2D parameters require careful selection of image sequences however, as ship

roll is unaccounted for. In all both cameras operated for approximately 125 hours over

the course of approximately 900 km of transit.

2.6.2 Okhotsk Sea Stereo System

Figure 2.4: The stereo system used in the Okhotsk Sea as seen in [73]

In 2009 and 2010 a group from Tokai University Research and Information Cen-

ter in Japan constructed and tested a stereo camera system aboard a small icebreaker

in the Okhotsk sea in the north of Japan [73]. The system was mounted aboard the

small sightseeing icebreaker the Garinko-2, in the Monbetsu Bay of Hokkaido. The

system was mounted 2.5m above sea level with a viewing area of a few square meters.

The system was not built for full 3D reconstruction of ice, but was used to manually
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measure the cross sectional thickness of upturned floes. The system recorded data over

a few kilometers taking approximately 30 image pairs that were evaluated manually.

2.6.3 360 Cam

Figure 2.5: One of the two omnidirectional cameras used for the 360 Cam

The 360 Cam is a camera system consisting of two omnidirectional cameras

mounted on the port and starboard flying deck of the Oden during the OATRC 2013

cruise. These cameras were mounted such that they had a panoramic view 360◦ around

the ship and captured 6 images from two mounting points at 2560 x 1920 resolution.

The Images could then be stitched together to form a single panorama. Images were

captured every 5 seconds for much of the cruise.

2.6.4 Securus

Figure 2.6: The Securus camera
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In addition the 360 Cam the OATRC cruise also had a LWIR camera system

capable of Pan Tilt and Zoom (PTZ). This system, developed by Securus, was operated

as part of the marine mammal watch. Warm blooded mammals are easy to spot against

the cold background of ice and water. This camera was capable of viewing 360◦ around

the ship, through use of the built in PTZ. Images were captured at high resolution,

with two lenses at different focal lengths with digital zoom between these two discrete

lenses. The system was used to spot and identify marine mammals sometimes at a

great distance.

2.6.5 FIRSTNavy IR System

Figure 2.7: The FIRSTNavy IR system aboard the RV Polarstern

The FIRSTNavy IR system is an omnidirectional gimbal stabilized LWIR cam-

era system developed by Rheinmetall Defence. It was originally created for the German

military to detect surface to air missiles, but has made its way on the RV Polarstern

for marine mammal observation, and it has been used in the past to automatically

monitor for whale blows [120]. The camera system consists of a LWIR line scanning

camera which is spun atop the a gimbal which stabilizes the system and isolates it

from the ship’s motion. The sensor is a cooled LWIR sensor sensitive to light at 8 to

12 µm. The camera takes images at a resolution of 7200x576 at a frame rate of up to
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5FPS. Much about the camera is however unknown to the public as the system was

developed for military operations and much of its inner workings are classified.

2.7 Comparison

Unlike these other systems PSITRES was purpose built for high resolution re-

construction of ice. It features a smaller pixel footprint than any of the systems listed

except the Okhotsk Sea Stereo system. This system is the only other 3D system, and

therefore most readily compares to PSITRES. PSITRES’s viewing area is much larger

than this system, and it has been developed for fully automatic reconstruction with

minimal human involvement. Furthermore PSITRES has been developed to capture

large volumes of data automatically in even more extreme regions. It requires more

weatherproofing and software to allow for round the clock capture.

PSITRES has a fixed viewing area adjacent to the ship, which is necessitated by

the nature of calibrated stereo. The 360 cam and FIRSTNavy are both omnidirectional

and Securus is on a Pan Tilt Zoom (PTZ), allowing these camera systems to view

different areas around the ship.

PSITRES operates in the visible band like the 360 cam, Eiscam, and the

Okhotsk Sea system, unlike Securus and FIRSTNavy system. These two systems allow

for easy detection of warm blooded animals as they contrast with the cold background.

PSITRES is used in conjunction with one of these systems for detection of polar bears

in chapter 5, building on complementary strengths of these two modalities.

In many ways PSITRES is competitive with these camera systems, but each

has been designed with a slightly different purpose and at different price points. In

chapter 5 and 7 I will discuss some applications using complementing camera systems

using PSITRES and the FIRSTNavy system.
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Chapter 3

RAPID DETECTION OF ICE FEATURES

In this chapter I present a scheme to quickly extract key measurements from a

large dataset of nearly six million images of sea ice captured by PSITRES. The large

scale of the data collected means many traditional reconstruction and segmentation

techniques are computationally prohibitive. The goal of the system is to function as an

automatic platform for ice observation, and to this end I put forth a scheme to automate

some of the work traditionally carried out by trained observers. This scheme, based

on a fast color space transformation and thresholding scheme, sparse feature based

reconstruction, and reprojection, allows for the entire dataset to be processed in a

reasonable time on available hardware.

3.1 Methods

3.1.1 Color space transformation

I propose a novel color transformation and thresholding scheme which is fast,

discriminative, and robust to illumination changes. The transformation is expressed

as f(rgb) = N3 → N4 and transforms pixels from RGB to RGBI or red, green, blue,

intensity space. It is computed:

m = min(r, g, b).

f(r, g, b) = {r −m, g −m, b−m,m}.
(3.1)

This formulation is independent per pixel and is easily parallelized. Moreover it

is incredibly fast, requiring on average 0.0258 seconds per image. On its own, m is sim-

ilar to a grayscale image but with darker artifacts. At least one of r −m, g −m, b−m

will be 0 for a given pixel. This transformation preserves the relative differences be-

tween channels, making it robust to slight differences in illumination or intensity. The
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RGBI color space is also discriminative of colored regions in scenes where the primary

variation is in luminosity, such as PSITRES images. These properties make it ideal for

segmenting out melt ponds and algae, each of which can be distinguished from the ice.

3.1.2 Segmentation scheme

Segmentation is carried out on a per channel basis and is formulated formally

for every pixel pi = {Ri, Gi, Bi, } where Ri, Gi, and Bi are the red green and blue color

channels, I compute f(pi) = {Rmi, Gmi, Bmi,m}. I use two vectors, t = tr, tg, tb, tm

where tr, tg, tb, tm, are the thresholds along each channel, and u = ur, ug, ub, um is a 4

element trinary vector with 3 possible values, indicating whether the threshold should

be done using the ≤ or ≥ operator or the channel should be ignored. The individual

results are combined together using logical AND. Like many threshold based methods

this can lead to noisy segments. To mitigate this, morphological closing and opening

are used. I use a small diamond shaped structuring element of radius of 12.

3.1.3 Feature based reconstruction

Due to low texture, ice is particularly difficult to reconstruct [9]. A number

of low texture reconstruction approaches have been developed [82],[83], [84], however

these are time consuming. Using a stereo pipeline as outlined in [49] with disparity

method [51], it takes 5 minutes 45 seconds to go from image pair to point cloud. This

would require 27.3 years to run on the entire dataset. Furthermore the resulting models

would total 300 TB. Clearly this is impractical. The nature of the images means there is

a predominant plane. By extracting this plane it is possible to determine the footprint

of features within the plane. Plane fitting is a common problem and typically principle

component analysis (PCA) is used. By efficiently finding the plane, two dimensional

features can be projected while preserving metric scale.

I propose a sparse feature-based reconstruction to compute a fast, accurate, and

manageable reconstruction. For this reconstruction, correspondences are computed

using feature matching and then triangulated. The stereo cameras on PSITRES are
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not canonical, so reconstruction involves rectifying the images, computing disparity,

unrectifying the disparity map and then triangulating correspondences. With a feature

based reconstruction, correspondences are computed directly, avoiding the need to

rectify, compute disparity and unrectify. Triangulation is identical, however there

are fewer correspondences, so there are fewer points to triangulate. In section 3.2.2, a

number of different features are compared quantitatively on PSITRES data. I advocate

this technique as it is fast to compute and preserves the estimate of the plane.

3.1.4 Homography estimation

Projecting 2D features while preserving scale can be done by calculating the

homography between the image plane and the scene plane. At least 4 correspondences

are needed using the methods of [44] and [43]. With known planes, it is possible to gen-

erate correspondences by randomly selecting points in the scene plane and projecting

them to the image plane. To convert to homogeneous coordinates, the ground plane

is defined in terms of a point on the plane,
−→
b0 , and two linearly independent vectors

contained within the plane,
−→
b1 and

−→
b2 .

In this implementation
−→
b0 , is the centroid of the point cloud, and

−→
b1 and

−→
b2 , are

the first and second coefficients obtained from PCA of the point cloud. Using randomly

generated numbers P and Q, I generate a number of points on the plane using

−→x1i =
−→
b0 + S ∗ P ∗

−→
b1 + S ∗Q ∗

−→
b2 (3.2)

The homogenous coordinate is then (P,Q). The corresponding point on the image plane,

−→x2i, is the projection of −→x1i onto the image using the camera parameters obtained from

calibration. S is a scale factor relating pixels to the units of the 3D model, and is used

to determine the size of the resulting reprojection.

3.2 Experiments and Results

In this section I compare the techniques described above and discuss perfor-

mance both in terms of accuracy and speed as well as the feasibility of these approaches
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Transformation Grayscale LAB HSV CMYK RGBI
time (s) Matlab 0.0083 0.0370 .6596 4.7150 0.0105
time (s) C++ 0.0073 0.0334 0.0382 N/A 0.0258

Table 3.1: Color space transformation times

for application to the entire PSITRES dataset. Tests have been conducted on the same

machine, with a Core i7-4930k CPU, and 64 GB of RAM. For results specified as using

Matlab, Matlab 2014A was used and C++ results using OpenCV 3.4.9 and gcc 4.6.3.

3.2.1 Color space transformation and segmentation

To test the segmentation approach, two experiments were conducted. First I fo-

cus on timing. As the approach is threshold based, accuracy depends on the threshold

selected however computation time does not. I compare with 4 traditional color trans-

formations. Each approach was tested on a set of 50 images and the mean is reported.

Timing results are shown in table 3.1. It is clear that this transformation is well suited

for big data. The entire Polarstern dataset could be transformed in less than 17 hours,

a much more feasible time-frame compared to 311 days. Application of the threshold is

quite fast, taking 0.0376 seconds, and the morphological operations take 0.126 seconds.

In total this scheme takes 0.174 seconds, meaning the entire dataset could be processed

in a little less than 12 days (excluding I/O time).

To evaluate the accuracy I have manually labeled 50 images for each feature and

iterate over each possible value on two channels. Results are shown in Fig. 3.1, and

3.2. This scheme performs well for classifying ice coverage and melt ponds, but algae is

a more difficult task as it appears as a subtle difference in color in small regions. Due

to high contrast ice concentration results are excellent for a large range of thresholds

on the m channel and are not shown. Fig. 3.3 shows some results of the proposed

segmentation scheme.
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Figure 3.1: True and false positive rate melt ponds

Figure 3.2: True and false positive rate for algae

3.2.2 Reconstruction results

One hundred random stereo pairs were selected for the following experiments.

As the proposed scheme is a feature-based reconstruction, the overall time is dependent

on the time taken to compute correspondences. A number of different feature scores

exist, and they vary in complexity and density. The data contains large areas with

little texture, so some features do not perform well. I evaluate the proposed approach

on commonly used features. The number of correspondences, and time taken is shown

in table 3.2.

The overall goal of sparse reconstruction is to extract the ground plane, so I com-

pare plane parameters extracted using the proposed method against those extracted

using an existing stereo implementation as outlined in [49] and [83]. Outlier elimination

is done by removing points with a triangulation error of more than a 10 cm. I plane fit
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Figure 3.3: Segmentation using the proposed scheme

Feature Time (s) Matlab time(s) c++ # matches Matlab # matches c++
Harris 4.09 0.7799 118.50 889.0310
MSER 3.05 4.081 144.57 725.3510
SURF Matlab 1.085 10.0281 504.00 15511.8604
SIFT Matlab 73.40 4.5768 4199.11 5556.6499

Table 3.2: Matching results for different features

both point clouds and compare the normals of the two planes using cosine similarity,

meaning an ideal score is 1. Additionally I compute the centroid of each cloud. Since

this represents a physical location in the scene Euclidian distance is used with an ideal

score of 0. SIFT and SURF based reconstructions were compared as they tended to

have accurate matches. In the table 3.3 it is apparent that this approach successfully

captures the predominant plane with a high degree of accuracy.

To extract plane parameters using the full reconstruction, it would take 21.32

years for the entire stereo dataset, and the proposed approach using SURF features

would take 27 days; a speedup of 284 times. Furthermore to reproject these images it

is not necessary to store point clouds, just the parameters of the plane, which would

mean only 3 3-dimensional vectors. The entire set of stereo images can have their

parameters stored in a single 120 MB file.
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SIFT based SURF based
Surface normal similarity 0.9942 0.9867
Centroid distance (mm) 0.070 6.83

Table 3.3: reconstruction results

3.2.3 Homography and reprojection results

Figure 3.4: A)The surveyed result. B)A reprojected image

To validate image reprojection, I compare to physical measurements made of the

viewing area. A survey of the visual field was made by placing markers as close to the

corners of the visible field as was safe. A laser range finder was used to measure pairwise

distance between markers. I traced circles with corresponding radii and intersect them

to estimate the overall viewing area. The quadrilateral in Fig. 3.4A is the surveyed

area of the left camera, and Fig. 3.4B is a reprojected image. Qualitatively, I argue

that the shapes are similar and within the margin of error for the surveying technique.

Quantitatively the overall area is within 3.92%, and the near range length (the red lines

in Fig. 3.4A and 3.4B) vary by 2.93%. These results are excellent given the nature of

the surveying.

30



3.3 Results for the 2012 cruise

I have used the techniques described above to identify algae presence as well

as melt pond fraction throughout the cruise track of the RV Polarstern during the

ARKXXVII/3 cruise. To do this I have used just the left stereo images, as the right

image would be almost identical and is therefore redundant. I present results in the

form of North Polar Stereographic maps of the cruise track with color representing con-

centration. For each map concentration is the portion of pixels classified as containing

algae or melt ponds naively ignoring spatial pixel coverage. The results for melt ponds

is shown in Figure 3.5. Algae results are shown in Figure 3.6, and the color scale used

in both maps is shown in Figure 3.7. White regions represent times when the camera

system was not in operation (typically due to lack of ice.)

3.4 Code

Code for segmentation is available at https://github.com/sorensenVIMS/

Scott_Sorensen_Thesis_Code/tree/master/FastSegmentation and reprojection code

is available at https://github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code/

tree/master/fastReprojection.
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Figure 3.5: Detected melt ponds for the 2012 cruise
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Figure 3.6: Detected algae for the 2012 cruise

Figure 3.7: The color scale used for concentration in Figures 3.5 and 3.6
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Chapter 4

LOW TEXTURE RECONSTRUCTION TECHNIQUES

Textureless regions in images are problematic to traditional reconstruction tech-

niques which require matching between images. In stereo, textureless regions are inher-

ently ambiguous [9]. In this chapter I will discuss work towards low texture disparity

matching by leveraging shading information, which is extended to SFM on unordered

sequences of images. I will also discuss large scale analysis of stereo images and discuss

the feasibility of these approaches.

4.1 Leveraging Shading Information

Reconstructing 3D scenes may be thought of as extraction of two types of in-

formation, the shape of the objects present in the scene and their relative position

and orientation with respect to the camera. It could then be argued that Shape From

Shading (SFS) lies at one extreme of this spectrum and techniques like Structure From

Motion lie at the other. SFS, seen as a special case of photometric stereo in the seminal

work by Horn [54], focuses on extracting only the shape of the object and does not

recover any information about its pose in the 3D world. Hence, even the recovered

shape is only a scaled model.

Stereo and multiple view techniques [42] model the scene in terms of infinitesimal

surfaces, each of which is a single point. Thus stereo relies on the distinctiveness of

these patches, although some generic constraints may be used to restrict their pose.

The exact position of a flat Lambertian surface are shown to be inherently ambiguous

for stereo for this [9]. However, it is such Lambertian surfaces that SFS excels at

reconstructing. Ice is a common example of a Lambertian surface which is challenging

to multiple view techniques.
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There have been many attempts at the synthesis of the two solutions[15]. SFS

cues have been used incorporated in a variety of forms to aid stereo, such as modu-

lating smoothness of the surface [41, 57, 13] and constraining feature trajectories in

multiple views [116]. Wu et al. used multiple view stereo and SFS for general, un-

known illumination and explicitly handled scenes with self-illumination[111]. Maki et

al. introduced a geotensity constraint, a combination of geometry and intensity [67].

The intensity of a point in one image is modeled as a linear combination of that point

projected into the others . While some of the techniques above use a dense stereo

match as initialization, others iteratively estimate disparity. However, since stereo is

susceptible to large errors in textureless regions, I propose an algorithm that only relies

on sparse correspondences. In the absence of depth discontinuities, the gradient of the

disparity is constrained by shading.

4.2 Gradient Constrained Interpolation

Consider a sequence of distinct pixels {p1, . . . , pN}, each of which is a neighbor

of the preceding pixel. The values of a function at extremal pixels is given as f(p1) =

f1 and f(pN) = fN , and a constraint on the gradient specified as g(p). I find the

interpolant f that minimizes Equation 4.5 while satisfying the boundary conditions.

Discretizing the derivative of f(p), I can formulate the problem as the system

A ∗ f = αg + q. (4.1)

Here f = [f(p2) . . . f(pN−1)]T and g = [g(p1) . . . g(pN−1)]T . q is as shown in Algorithm

1. A denotes the discrete version of the differential operator. For example, if forward

differences are used and N = 5

A =


1 0 0

−1 1 0

0 −1 1

0 0 −1

 . (4.2)

Since the system is overconstrained, solutions of f do not exist for all values of α.

I iteratively solve for f and α until I find a solution that satisfies Equation 4.1 exactly.
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The process is outlined in Algorithm 1. The case of f1 = fN needs to be handled as a

special case by returning all elements of f as f1, without entering the loop. If p1 and

pN denote two pixels where initial disparity is provided, and the sequence of pixels is a

path from p1 to pN , solving Equation 4.1 provides us with disparities of all the pixels

on that path.

Algorithm 1 Gradient Constrained Interpolation

function GCI(g, f1, fN)

q ←
(
f1 0 . . . 0 fN

)T
repeat

p← A+(g + q) . + denotes Pseudo-Inverse
r ← A ∗ p− (g + q)
t← 〈r, g〉 / 〈g, g〉 . 〈, 〉 denotes dot product
g ← g + tg

until ‖r‖ < 0

return
(
f1 pT fN

)T
end function

4.3 Gradient Constrained Interpolation For Stereo

For a pair of rectified stereo images I1, I2 : Z2 → R, The disparity between the

images f(x, y) satisfies the following property

argmin
f

∑
p=(x,y)∈Z2

|I1(p)− I2(x+ f(p), y)|2 +
∑
p/∈Ω

|∇f(p)|2 (4.3)

where Ω is the set of pixels where depth transitions are discontinuous. In regions with

little or no texture information, the first term is close to zero over a wide range of

candidate disparity values. The disparity in such regions is thus interpolated flatly.

If the surface being reconstructed is Lambertian, then the shading on the surface

provides a direct measure of how well the surface normal is aligned with the direction

of the light source. Assuming a directional light parallel with the camera’s optical axis,

it has been shown that the depth is related to luminance L(p) by the Eikonal equation

‖∇f(p)‖ =
1√

1/L(p)2 − 1
. (4.4)
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The presence of singular points precludes global solutions to the equation. Esti-

mation of local patches can be formulated as a manifold geodesic problem and achieved

using Fast Marching Method[62]. However, without precise information about light in-

tensity and surface albedo, the reconstruction is only up to a scale. To obtain a true

scale reconstruction, information from stereo or multiple views may be incorporated.

Zhang et al. [116] obtain a trajectories of the feature points in presence of photometric

changes. A rigid structure from motion reconstruction of these points is then used to

calculate an affine scaling function for the solution of the Eikonal equation. The use of

a global scaling function may not be accurate when the scene contains multiple singular

points. This problem is somewhat alleviated in the work of Chow and Yuen where the

surface is segmented into regions based on proximity of singular points [24]. Regions

belonging to corresponding singular points are reconstructed separately using FMM

and then an inverse rectification transform is applied to obtain the final depth map.

As reprojection is a critical step in the process, the method needs the knowledge of

intrinsic and extrinsic parameters of the stereo setup. In contrast, the method outlined

here only needs sparse correspondences between the image pairs.

I formulate the problem of dense disparity estimation as

argmin
f

∑
p∈Z2

| ‖∇f(p)‖ − αg(p)|2 (4.5)

with the constraints on disparity for pixels (S) where an estimate is available

f(ps) = ds,∀ps ∈ S. (4.6)

For g(p), I use the right hand side of Equation 4.4. α accounts for the unknown

scaling factor between the solution of the Eikonal equation and the true disparity and

it depends on the depth of object in the scene and local albedo on the surface. Since I do

not perform any stereo matching, other than obtaining initial sparse correspondences,

the dense disparity estimation can be looked upon as an interpolation of sparse values

constrained by the gradient derived from shading. To solve this, I develop the Gradient

Constrained Interpolation (GCI) method. The next section presents the solution for
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a one dimensional case which is extended to solve the disparity problem in the next

section.

The GCI algorithm provides interpolated values of a function along a path of

pixels if the gradient constraint along the path and the end values are provided. If a

set of paths was constructed to cover all the pixels of the image such that each path

starts and ends on a pixel with initial disparity, then these paths could be used to

obtain a dense disparity estimate. This is akin to the use of minimum spanning trees

in the area of Gradient Domain Reconstruction [5].

Since I use shape from shading to constrain the gradient of disparities, paths

that violate the assumptions of convexity must be avoided. Pixels in textured regions

do not satisfy the constant albedo assumption. Since image edges often indicate depth

discontinuities, a path through them leads to erroneous interpolation. In view of these,

one of the possible methods for estimating the cost γ of a path P = {p1, . . . , pN} is by

summing the image gradient along the pixels in the path.

γ(P ) =
∑
p∈P

|∇I1(p)|2. (4.7)

Smaller γ indicates a better path. This can be augmented with other image

specific parameters such as pixel color or brightness based on the domain of application.

Table 4.1: Mean (Median) errors in a disparity range.

Data Disparity Range Iso. Diffusion my method
Syn 13 1.64 (0.29) 1.45 (0.21)
Ice 161 89.57 (77.55) 24.34 (19.32)

For every pixel p, a path Π(p) = {p1, . . . , pN} with p1, pN ∈ S and pi = p for

some 1 ≤ i ≤ N , such that γ(P ) is minimal. I can combinatorially search S for such

p1 and pN . However, a better strategy is to use geodesic maps created using FMMs for

efficient path creation. Let Γs(p) denote the cost of the optimal cost among all paths

P which start at p and end in one of the pixels in S. Γs is the manifold geodesic with

the metric |∇I1(p)|2 and can be computed using FMM [62]. Another useful by-product
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of this calculation is the mapping Qs(p) : Z2 → S which maps each pixel to its closest

pixel in S. I will refer to the equivalence class induced by Qs as cells (as in Voronoi

cells if the metric were Euclidean). Let B denote the pixels on the boundaries of such

cells and Λ : B → B as the mapping that maps each boundary pixel to the boundary

pixel adjacent to it from the neighboring cell. If a pixel p lies in a cell, it is clear that

Qs(p) is one of the end points needed for constructing the path through p. To find

the other end point, I note that the path cannot end in the same cell. Hence, it has

to cross through one of the boundary pixels into an adjacent cell. To facilitate finding

the best boundary pixel to cross over, I create another geodesic map Γb with same

metric as Γs but using pixels in B as the seed points. The corresponding function

Qb : Z2 → B maps every pixel to the nearest pixel on its cell boundary. Given a

pixel p, the path covering it with the least cost is found to take the route Qs(p)-p-

Qb(p)-Λ(Qb(p))-Qs(Λ(Qb(p))). The list of all the pixels in between can be obtained by

backtracking along the corresponding geodesic.

I obtain the disparity value at each pixel p by interpolating along the path

Π(p) using GCI. I can however, improve the accuracy and speed of interpolation by

interpolating paths with smaller cost before I interpolate along longer paths. The

accuracy is improved, as integration along regions of small |∇I1(p)|2 ensures that I

am interpolating along mostly uniform regions, and speed is improved because the

complexity of GCI depends on path length N .

I sort the pixels by the cost of their corresponding paths, which may be ap-

proximated by Γs(p) + Γs(Λ(Qb(p))). While traversing this list, I skip pixels whose

disparity is already assigned. For other pixels, I compute the path Π(p), but perform

GCI only on a sub-path. This sub-path is chosen as the smallest sub-path of Π(p)

whose end-points have disparity assigned. This ensures that, as I move down the list

of pixels, GCI is performed on paths with fewer pixels.
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Figure 4.1: Results on the synthetic image. (a) Input left image, markers indicate where
sparse disparity was sampled, (b) Ground truth disparity, (c) Disparity estimated using
isotropic diffusion, and (d) Disparity using my method. Notice that the sharpness of
the edges is preserved with the use of SFS cues.

Figure 4.2: Results on image of an icescape. (a) Input left image (5 megapixel image)
(b) Sparse disparity , (c) Dense disparity estimate by isotropic diffusion, (d) Disparity
using my method, (e) Textured 3D model constructed using my disparity result - the
section of the model corresponds to the red rectangle in (a), and (f) Untextured version
of the model in (e).

40



Figure 4.3: An SFM reconstruction of the RV Polarstern from an unordered set of
images. The 3D model and estimated camera pose are both shown.

4.4 Gradient Constrained Interpolation For SFM

This technique was extended to handle reconstruction using unordered collec-

tions of images and structure from motion. The goal of this work was to fill holes in 3D

models that result from low texture, but the technique also works when scene points

cannot be tracked through three or more images due to occlusion or other failures.

Many modern structure from motion software suites are available today, and it can

even be done using smartphone apps such as 123D Catch. Essentially these programs

take as input a series of images, and produce a 3D model and set of virtual cameras.

This model and camera parameters are such that the projection of the 3D model onto

the virtual cameras correspond to the original images as seen in Figure 4.3.

For reconstruction, first I obtain the shading information directly from the im-

ages by choosing the image where the view of the missing region is most direct (Section

4.4.1). Second, I calculate a set of 1D paths for all pixels with unknown depth, with

endpoints of known depth. I show my method for calculating these paths in Section

4.4.2. Third, I interpolate the depth along these paths using GCI in Section 4.4.3.

The input to my algorithm is a set of m images I = {I1, I2, . . . , Im} used in

SFM, the corresponding projection matrices P = {P1, P2, . . . , Pm} with Pi = Ki[Ri|Ti]
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being a combination of the intrinsic parameters Ki and extrinsic parameters Ri and

Ti, and a 3D model. The camera parameters and model come as output from SFM.

I assume that the missing region is Lambertian and textureless. For white ice, the

albedo is dominated by scattering in a few-centimeter-thick surface scattering layer

of granular, decomposing ice [79]. Moreover, this assumption is common in many

algorithms involving SfS [117].

4.4.1 Obtaining Shading Cues for Depth Estimation

Let Ω be the set of discrete 3D vertices which lie on the boundary of the missing

region, let ωpersi be the perspective projection of Ω onto Ii using Pi, and let ωorthoi be

the orthographic projection of Ω onto Ii using Ri and Ti. By running Bresenham’s line

algorithm[19] on ωpersi and ωorthoi I create new, dense sets of 2D points ω′persi and ω′orthoi .

Let Hpers
i be the region enclosed by ω′persi and Hortho

i be the region enclosed by ω′orthoi .

Then I choose the image by the following equation,

arg max
k

α · rank(| Hortho
k ∪ ω′orthok |) +

(1− α) · rank(| Hpers
k ∪ ω′persk |), (4.8)

where rank is an ordering of the calculated areas from largest to smallest, and α is a

weighting parameter. By increasing α, more direct views of the hole are favored, and

by decreasing α, zoomed in views of the hole are favored. Occluded views of the hole

can still be chosen as the best views in this formulation, which would lead to incorrect

results. Therefore, rays can be traced from the camera center through a pixel to the

corresponding 3D point in Ω. If any intersections are detected before Xi ∈ Ω, then

that point is not projected to ωpersk or ωorthok . This will eliminate incorrect ranking due

to common occlusions.

The necessary information for GCI is provided by the Eikonal equation,

g(p) =
1√

1/Ik(p)2 − 1
, (4.9)

with p ∈ Hpers
k ∪ ω′persk . The Eikonal equation relates depth to luminance, assuming a

light source at the optical center of the camera and a Lambertian surface.
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The goal of this algorithm is to interpolate the depth values at Hpers
k using the

shading information from the image. An example image with labeled sets is shown in

Figure 4.4.

Figure 4.4: Example input. a) A 3D character model and estimated camera parameters
are obtained via SFM. b) Corresponding images. c) The set of points with known depth
(red line), ω′persi , and the set of points with unknown depth, Hpers

i (inside the red area).

4.4.2 Path Generation Via Fast Marching Method and Geodesic Voronoi

Cells

Since GCI operates on a 1D path of pixels, I calculate 1D paths for all pixels

p ∈ Hpers
k , which results in a dense depth estimate for the entire region. Paths which

violate the convexity assumptions should be discarded; paths with smaller gradient

which do not cross over edges should be preferred. Therefore, I choose a path cost γ

which minimizes the sum of squared gradients along the path P :

γ(P ) =
∑

p∈Π(p)

| ∇Ik(p) |2 . (4.10)

For every pixel p ∈ Hpers
k , I must choose a path Π(p) which has endpoints e1p, e2p ∈

ω′persk of known depth, and which minimizes γ(P ). The strategy I use for finding
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the minimal cost paths is by using the Fast Marching Method (FMM) [62] to create

geodesic distance maps. Let Dp be the distance map created by FMM using the speed

map S = 1/(| ∇Ik |2 +ε), with 0 < ε << 1, and p as the source node. Dp(y) is the

total geodesic distance from the source p to the pixel y.

The first endpoint e1p is given by

e1p = arg min
x∈ω′persk

Dp(x), (4.11)

which describes the closest (in geodesic distance) projected point with known depth.

Let V : N2 → N2 be the function that maps p with unknown depth to the nearest

point e1p with known depth. V induces the equivalence classes {v1, v2, . . . , v`}, which

are geodesic Voronoi cells. One consequence of the geodesic Voronoi cells is that any

path through pixels in the same equivalence class as p will have the closest endpoint

of e1p. Therefore, to find the second endpoint e2p I must find the best path from p

to the closest pixel in a different Voronoi cell. Let B denote the set of pixels on the

boundary of the geodesic Voronoi cell V (p). To find the best path, I compute a second

set of distance maps D′p using the same speed map metric, but with pixels in B as

the seed points. Let b1p ∈ B be the best boundary point, and b2p be a neighboring

pixel of b1p such that V (b2p) 6= V (b1p). Then the second endpoint of the path for p

is given by

e2p = arg min
x∈ω′persk

Db2p(x). (4.12)

Therefore, the path chosen to interpolate along for pixel p is the least cost route through

the distance maps from e1p → p → b1p → b2p → e2p. This is shown graphically in

Figure 4.5.

Since paths for different pixels can overlap or intersect, I take the subpath

starting from p to the nearest pixel with assigned depth on each side. This results

in smaller, more accurate paths which are faster to compute, without overwriting the

interpolated depth. Moreover, to further increase the accuracy and speed, I sort the

paths by cost.
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Figure 4.5: Path generation via Fast Marching Method. The different colors denote
different Voronoi cells.

4.4.3 Gradient Constrained Interpolation of Depth

Depth is related to shading information from the image as in Eq. 4.9. I formulate

the problem of dense depth estimation as

argmin
f

∑
p∈Hpers

k

| ‖∇f(p)‖ − α · g(p)|2, (4.13)

where g(p) is from Eq. 4.9, and α is an unknown scale factor due to unknown local

albedo on the surface.

Consider the 1D path Π(p) = [p1,p2, . . . ,pn], with the value of the endpoints

e1p = p1 and e2p = pn, and g(p) as in Eq. 4.9. Discretizing Eq. 4.13, I can formulate

the problem as a system of equations

Af = αg + q, (4.14)

where the unknown depth f = [fp2 , fp3 , . . . , fpn−1 ], g = [gp1 , gp2 , . . . , gpn−1 ], and q is

as shown in Algorithm 1. A denotes the discrete differential operator

There are n− 2 unknowns and n− 1 equations for an over constrained system.

I iteratively solve for f using the Moore-Penrose pseudoinverse and α using gradient
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descent. If f1 = fn, then all unknown depth values f are set to f1. The pseudocode

for the GCI algorithm was presented in the previous section.

4.4.4 Experiments and Results

I apply the GCI algorithm for SFM to both real and synthetic data. In both

cases, I choose the 3D points Ω manually since hole detection in a 3D mesh is a non-

trivial problem; however, automatic methods exist [14] [108].

4.4.4.1 Experiments with Synthetic Data

I obtained a full character model and synthetically added holes to the mesh

to simulate missing regions from SFM. A synthetic camera with a focal length of

35mm was placed in the scene and rotated about the model on a circle with a 6m

radius. Synthetic images were rendered every 1.5◦, and the corresponding rotation and

translation were recorded. I compare the interpolated depth values from my method,

which uses image cues, against depth values obtained with other methods that do

not use image cues. As a baseline, I compare against simple grid based interpolation

(linear, cubic, and nearest neighbor) of the depth in 2D.

mean std max
Linear 0.77 0.55 2.23
Cubic 0.76 0.54 2.18

Nearest Neighbor 0.73 0.66 3.05
Poisson [60] 0.78 0.67 5.31
VCG [26] 1.40 1.06 7.54

My Method 0.46 0.36 2.20

Table 4.2: Results from synthetic data on leg region of the character model. Results
are given as a per pixel relative percent from the ground truth.

I compare against Poisson reconstruction [60] and VCG Surface Reconstruction

[26]. Poisson reconstruction is applied with an octree depth of 6 and the VCG algorithm

uses a widening factor of 10. Since SFM and SFS do not give metric depth, my results

are given as a per pixel relative percentage from the ground truth depth. A comparison

of the results for two different regions is given below in Table 4.2 and Table 4.3.
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mean std max
Linear 0.36 0.28 0.94
Cubic 0.36 0.28 0.93

Nearest Neighbor 0.39 0.37 1.7
Poisson [60] 0.48 0.20 1.05
VCG [26] 0.28 0.23 1.01

My Method 0.25 0.18 0.94

Table 4.3: Results from synthetic data on chest region of the character model. Results
are given as a per pixel relative percent from the ground truth.

Figure 4.6: Results of reconstruction using GCI on real data with a synthetic hole.
Results are given as a per pixel relative percent from the ground truth.

The part of the character model used in Table 4.2 contains more curvature than

the part of the model used in Table 4.3. As a result, the errors for all methods is

increased in Table 4.2. However, in both cases, my method has a lower mean and

standard deviation than the other methods. While cubic grid based interpolation

gave the smallest maximum error, my method was within 0.02% in both cases. One

explanation of the performance of GCI is that it tends to keep sharp boundaries at

depth discontinuities that are smoothed over using other methods.

Figure 4.7: Results of reconstruction using GCI on real data. a) An image of the hole
with projected 3D points. b) A texture mapped mesh of the ice with the hole present.
c) A wireframe mesh with the hole filled.
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Figure 4.8: Results of reconstruction using GCI on real data with synthetic hole. a)
Projection of synthetic hole. b) The mesh with a hole. c) Ground truth mesh d)
Reconstructed mesh using GCI.

4.4.4.2 Experiments with Real Data

For my experiments using real data, I used reconstructions of icebergs made

using the 123D Catch framework. The images were captured off the coast of north-

east Greenland during the OATRC 2013 research cruise aboard the Swedish icebreaker

Oden. Though these images contain large white areas there is very little snow present.

The texture of the iceberg and surrounding sea ice floes stems from the optical prop-

erties detailed in [94, 79]. The resulting SFM reconstructions contain holes in areas of

occlusions and low texture regions.

To measure my reconstruction against ground truth, I artificially created a hole

in one of the iceberg models. Figure 4.8 shows the projection of the artificial hole and

compares a GCI reconstructed mesh to the ground truth. Figure 4.6 shows the results

of using the proposed GCI method against other baseline interpolation schemes.

For the real holes, where no ground truth exist to compare with, the results

are visually plausible. In Figure 4.7 I show a wire frame rendering to illustrate the
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Figure 4.9: Results on a face of the iceberg that fialed due to low texture

geometry of my result. In Figure 4.9 I show results for a real reconstruction with a

large missing region. This region has little texture and is not well represented in the

input images.

4.5 Large Scale Analysis

While I have demonstrated that shading information can be leveraged to better

reconstruct low texture surfaces, from a runtime standpoint this method is impractical.

The goal of the PSITRES camera system is to evaluate 3D conditions around the ship.

To do this any algorithm needs to function quickly, ideally in real time. While the

algorithms presented in this chapter are meant to improve accuracy, a fast and accurate

method is needed. In this section I present an assessment of the state and feasibility

of reconstruction on a large volume of PSITRES data. I also carry out a long term 3D

analysis from data over the course of the 2013 cruise aboard the Oden.

To do this I will compare running time and accuracy of multiple reconstruction

techniques. As a baseline I use the low texture disparity techniques put forth by

[82], as these techniques have good accuracy while maintaining an acceptable running

time. These results are then compared against Feature based reconstruction in the

form of SIFT [66], and SURF [11] feature matching, as well as the Semi Global Block
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Table 4.4: Averaged Surface Similarity Results for different matching techniques

Method Cosine Similarity
SGBM .9313
SIFT .9416
SURF .9370

Matching (SGBM) [51] disparity estimation technique. Since the goal is a fast accurate

reconstruction I have also experimented with the sub-sampling (re-sizing) our images

to see the effect this has on 3D parameters such as surface roughness.

4.5.1 Accuracy and Timing Comparison

To evaluate the feasibility of running different reconstruction algorithms I have

used a dataset of more than 400 stereo pairs and reconstructed each image using the

low texture stereo technique, and use this as ground truth. I then compare these

against the other disparity and feature based reconstruction techniques. To facilitate

comparison I fit a plane to the scene, and take the plane normal as well as the Root

Mean Square Error (RMSE) of the plane fit. RMSE is a measure of surface roughness,

which is one of the critical 3D parameters associated with sea ice. I then can compare

the results of other techniques using the cosine similarity of the surface normals, and

the difference in reported RMSE, as well as statistical correlation in the form of Pearson

Correlation Coefficients [78].

I split the results into different matching techniques and sub-sampling and

present the results in the form of the Figures and tables below below. Surface normal

results for the different reconstruction schemes are shown in Figure 4.10 as well as Ta-

ble 4.4. Surface roughness results for the different techniques are presented in Figure

4.11, and the correlation with the ground truth surface roughness is shown in Figure

4.5.

I have sub-sampled the images, by re-sizing the images before reconstruction us-

ing half scale, quarter scale and eighth in both dimensions. Results for the sub-sampled

images are shown in the following tables and Figures I present the results. Figure 4.12
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Figure 4.10: Surface similarity results for different reconstruction techniques

Figure 4.11: Surface roughness results for different reconstruction techniques

Table 4.5: Correlation with ground truth roughness for different reconstruction tech-
niques

Method Correlation Coefficient
SGBM 0.6763
SIFT -0.2172
SURF 0.4039
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Figure 4.12: Surface similarity results for different sub-sampling scales
, and the correlation with the ground truth

Table 4.6: Averaged surface similarity for different sub-sampling scales

Method Cosine Similarity
Half Scale .0.7976
Quarter Scale 0.8587
Eighth Scale 0.9202

shows the results for surface similarity across all the images and the averaged results

are reported in table 4.6. Surface roughness results are presented in Figure 4.13 and

the statistical correlation with the ground truth is presented in 4.7.

To put these schemes in context I report averaged timing results over a sample

of 10 stereo images and report the results in Table 4.8.

These results show that this problem still needs attention. There is presently

no good solution for fast and accurate reconstruction of ice. The sub-sampled images

Figure 4.13: Surface roughness results for different sub-sampling scales
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Table 4.7: Correlation with ground truth surface roughness for different sub-sampling
scales

Method Correlation Coefficient
Half Scale -0.6715
Quarter Scale -0.6129
Eighth Scale 0.3731

Table 4.8: Timing results for different reconstruction schemes

Method reconstruction time
Full Reconstruction 4.80 minutes
SGBM 2.93 minutes
SIFT 56.28 seconds
SURF 2.61 seconds
Half Scale 1.14 minutes
Quarter Scale 1.41 minutes
Eighth Scale 1.48 minutes

did see some speedup, however speedup resulted in diminishing returns, with smaller

images actually taking longer, and overall accuracy decreasing considerably. The higher

plane fit error (RMSE) shows that techniques often overestimate the roughness of a

surface. Even the ground truth data is roughly a meter greater than [12] reported in

similar conditions. Their results are from an aerial LiDAR system with a very different

1D sampling procedure. The ground truth presented here is sampled at the floe edge

where the ship travels, and measures a larger area with less flat ice, so the roughness

reported above is understandably higher, however the results of many reconstruction

techniques here report values that are unrealistic, in the 5+ meter range.

4.5.2 Large Scale Experiment

I have taken the results of the previous subsection and run the full resolution

low texture stereo technique and carried out a large scale experiment in reconstructing

pairs from the OATRC 2013 cruise aboard the Oden. I have reconstructed every 50th

synchronized pair of images (which corresponds to roughly every 20 seconds). The

resulting reconstructions are noisy so I have applied a running Guassian filter over 100
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Figure 4.14: Surface roughness for the OATRC 2013 cruise

samples. The results are shown in Figure 4.14.

These results show a good amount of variance in surface roughness over the

cruise. The straight line in the center comes from the ice station deployment for which

the ship was stationary and as result the camera system was turned off.

4.6 Conclusion

Reconstruction using multiple view geometry requires identifying correspon-

dences between images. Identifying these correspondences is a difficult problem. In

this chapter I have discussed a technique for leveraging shading information to assist in

reconstruction. Large textureless regions are difficult for correspondence matching, but

these regions can offer shading cues. I have also compared the computational cost of a

variety of matching schemes and used the results of this analysis to carry out a large

scale experiment by reconstructing data collected by the PSITRES camera system.
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Chapter 5

DETECTION OF MARINE MAMMALS

In this chapter I will discuss marine mammals. The focus will be on detection of

marine mammals in different image modalities but I will also discuss some background

on the animals themselves as well as the applications of PSITRES to marine mammal

observations.

5.1 Background

Marine mammals are crucial to marine ecosystems worldwide, and are subject

to international protection as part of conservation efforts. The first act of the United

States Congress to specifically call for an ecosystem approach to conservation was the

Marine Mammal Protection Act (MMPA) of 1972, which forbids the acts of hunt-

ing, killing, capturing or harassing marine mammals [2]. Additionally many marine

mammals are protected by the Endangered Species Act [3], and international treaties

such as International Agreement on the Conservation of Polar Bears [100], and The

International Convention for the Regulation of Whaling [45].

Though it is often erroneously presumed to be snow covered, thick sea ice is

white in appearance in its natural state due to internal melt processes that result

in scattering [80]. Unlike snow sea ice can be quite hard, and oftentimes animals will

leave no trace when walking on ice. In certain conditions however, animals leave telltale

tracks which testify to their presence on the ice. Since antiquity, footprints and tracks

have offered human beings insight into the animals that leave them behind and skilled

hunters and trackers can tell quite a bit about an animal based on its footprints and

tracks.
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Figure 5.1: Polar bear tracks left on the ice

While many mammals live on the ice, pinnipeds (seals) typically do not travel

across the ice for long distances. There are mammals in this region whose primary

means of locomotion is walking across the ice however, the polar bear and arctic fox.

These quadrupeds leave long continuous tracks when the conditions are right, and the

tracks can last for long periods of time hardened in ice as seen in Fig 5.1.

5.2 Deep Learning for Polar Bear Detection

In this section I present a method for detecting polar bears in images collected by

both the PSITRES and FIRST-Navy IR camera systems. While the images collected by

these systems are dissimilar, I have developed a common approach to transfer learning,

that allows me to use the same training scheme for both image types.

5.2.1 Related Work

Camera systems have been used to detect animals and marine mammals in

particular for some time. Works utilizing thermal cameras for identifying the denning

sites of polar bears dating back to the 1970s [20]. Much of the work has been done
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using aerial imagery [20, 6]. These techniques have predominantly been manual or

kept people in the loop, including the use of Infrared Binoculars [10]. Fully automatic

detection of whales has been studied from a variety of thermal imaging platforms [46]

including the FIRST-Navy IR system used in this work [120].

Machine learning has been used for classifying images that may contain animals

with many recent classification and detection datasets targeting common animal types.

The ImageNet Large Scale Visual Recognition Challenge dataset [85] contains 1000

different classes including polar bears, and birds. A number of works have targeted

this challenge using convolution neural networks [90, 77].

5.2.2 Methods

In this section I will discuss my techniques for preprocessing images, and my

framework for transfer learning. The two modalities of image vary significantly from

each other, and therefore detection is treated differently. In practice these differences

manifest themselves predominantly in how I treat preprocessing and labeling the data.

5.2.2.1 IR Preprocessing

The IR images themselves are captured from a sensor mounted on the crow’s

nest of the ship, but are not at the highest point, meaning that a portion of the

crow’s nest and radar mast are present in every image. The stabilization used on

the sensor means that these components move relative to sensor and are not fixed in

the images. To combat this I have masked off a region in the images larger than the

area corresponding to ship regions. This mask covers the entire crows nest and radar

mast, which are relatively stable, as well as a large area around the railings and other

components that move more relative to the sensor. I only process regions outside of

this masked area throughout the remainder of the technique.

The IR images are high resolution and only contain small salient regions with

animals. To reduce the computational load of detecting animals in these images I

leverage the fact that the animals in these images are warm blooded and stand out
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against the cold environment in thermal images. To do this I employ a simple intensity

threshold (Iτ = 150) to eliminate image regions with nothing that could be a warm

blooded animal. This threshold was selected because it excludes the vast majority of

unimportant image regions while still remaining maximally inclusive to animals in the

scenes.

After thresholding based on intensity, I am left with a number of variable sized

image patches containing animals or other warm components in the scene. These other

scene components consist melt ponds and other regions of ice and water that are warmer

than the surrounding scene due to friction or asymmetric solar heating. Some of these

regions can be quite large (on the order of hundreds of meters). I place an additional

constraint that these regions are of an appropriate size by putting a threshold on patch

size of (Wτ = 200 and Hτ = 100). This exceeds the projected size of even the largest

bear appearing closest to the ship in the data, but still includes small ambient regions.

I use the resulting small patches for classification using the transfer learning

scheme discussed in section 5.2.2.3. To develop a training set I have developed a GUI

that was used to label more than 10,000 patches as containing either bears, birds,

seals or ambient components. Sample patches for each category are shown in Fig 5.2.

These patches are then stored with labels to use for training and testing of the machine

learning approaches.

5.2.2.2 PSITRES data preparation

The PSITRES system has a much smaller viewing volume than the FIRST-Navy

system and views only an area adjacent to the ship. As a result the animals who are

wary of a large, noisy ship do not enter the field of view of the cameras. There are

however indicators of habitat that do enter the camera system’s field of view. Blood,

scat, and other indications of animal presence are all left on the ice, but by far the

most common that are readily apparent in PSITRES images are footprints. Not all ice

condition cause footprints to appear, but footprints are an indication that bears are

present in the region.
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Figure 5.2: Patches containing bears (top left two images), birds (top right two images)
and ambient components (bottom row)

Figure 5.3: Positive samples with patches (left three images), and negative samples
without patches(right three images).

I have created a dataset by manually labeling approximately 5000 prints in

PSITRES data. I extract a small patch around each print, and experiment with dif-

ferent patch sizes in Section 5.2.3.2. I have collected an identical number of patches

that do not contain prints from elsewhere in the same scenes to create a set of negative

samples. Figure 5.3 shows a few positive samples with prints and negative samples for

a patch size of 160x160.

5.2.2.3 Transfer Learning Scheme

I have formulated the problem of detection differently in both modalities of

image, however the differences are mostly manifest in the preprocessing steps, and the

treatment of the results. Training is done using the same scheme of transfer learning

for classification. In the visible band images this is a binary classification of patches

containing polar bear prints or patches without polar bear prints. In LWIR the problem
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is complicated by other animals, and I have used a 3 label scheme with bears, birds,

and ambient components. I initialize networks for both modalities of images using the

InceptionNet[95] implementation in Google’s Tensor Flow deep learning framework [4].

The network was originally trained on the ImageNet Large Scale Visual Recogni-

tion Challenge dataset [85] which consists of 1000 different image classes. This network

consists of 22 layers, composed of convolution, pooling, and softmax operations. I have

formulated the problem as a binary classification task in the visible band and a 3 class

labeling problem in LWIR. To accommodate the large change in number of labels I

have modified the network using a new softmax layer with the corresponding number

of outputs to the classification domain.

5.2.3 Experiments and Analysis

I have developed experiments to both validate the classification/detection scheme

as well as to validate some aspects unique to this problem. Validating this approach

to detection is done using traditional means, but since this framework has been devel-

oped for the application of polar bear detection from a vessel in polar regions, I aim

to quantify how well detection works in this context.

5.2.3.1 Cross Validation

To validate the classification and detection framework I have used ten fold cross

validation. This means I train 10 models with non overlapping testing sets spanning

the data. I evaluate accuracy on the testing set for each fold and average the results.

I have conducted a few different experiments within this framework to evaluate both

LWIR and visible band classification.

The main criteria for evaluation is accuracy on the testing set averaged across

each fold. In the following subsection I discuss different patch sizes for PSITRES

imagery, but in general I found a trend of larger patch sizes resulting in higher accuracy,

so I will report visible band results on the largest patch sizes of 160x160. Table 5.1

shows results for both image modalities.
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Table 5.1: Performance Results in LWIR and Visible band

10 fold accuracy
LWIR 97.46%
Visible 90.67%

Figure 5.4: Results for different patch sizes

5.2.3.2 Patch Size

Since I extract patches around individual prints, I have experimented with dif-

ferent patch sizes to evaluate how this affects accuracy. I have run ten fold cross

validation on 8 different datsets of varying patch sizes. The patch sizes are of 20x20

to 160x160 in increments of 20 pixels. Figure 5.4 shows results for each patch size

including the average across all ten folds as well as the accuracy of the top performing

fold.

5.2.3.3 Supplementary Validation

The LWIR data features many consecutive frames of the same individual bears.

While the bears move and this results in a larger training set, many of the images
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are homogeneous. Even with 10 fold cross validation there is a high chance that for

a given testing image the model was trained on a highly similar image. To ensure

that the model is robust I have isolated a secondary test set of images consisting of

an individual bear that was not part of the training, testing or validation set. After

training I apply each model to the isolated image patches and compare the resulting

label to the ground truth.

Each model achieved a perfect accuracy of 100% on all 11 image patches with the

isolated bear. Furthermore the minimum reported confidence from any classification

was 0.577, which is a convincing majority for a 3 class labeling problem.

5.2.3.4 Use Case

Since this work aims to detect polar bears from a ship in ice covered waters one

of the most practical pieces of information for users is how far away the bears are. On

research vessels such as the RV Polarstern, scientists carry out ice stations, where they

work on the ice. Bears in the vicinity of people working on the ice is dangerous and

protocol dictates evacuation. In a more general setting giving marine mammals such

as polar bears a wide breadth is not only important, but a legal requirement. I aim to

quantify the conditions under which bears can be detected, and put these in terms of

real units.

To evaluate performance in these terms I have conducted an experiment to

evaluate the maximum range for detection of bears in LWIR. To do this I haves used

the reprojection scheme developed in [92], and discussed in Chapter 7, and measured

the Euclidean distance from the sensor to the detected bears in the dataset. I have

taken the smallest 100 detected regions and reprojected the center-point of the patch

using spherical projection and ray tracing. The distribution of these distances is shown

in Figure 5.5 as a histogram. This shows that a bear can be detected by this scheme

at up to half a kilometer.
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Figure 5.5: The distribution of distance from the sensor to the 100 smallest detected
bears.
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Figure 5.6: Detected prints and bears in both modalities of images (thermal in red,
and visible band in blue

5.2.3.5 Habitat identification

I have run the outlined approach for the LWIR and PSITRES data from 2012-

09-17 which had the highest concentration of polar bears from the cruise. Figure

5.6 shows results for both modalities for the morning, showing detected bears in the

thermal modality as vertical red lines. The detected paw prints are shown in blue as

the fraction of patches in the image with a moving average 1D filter applied to the

noisy time series data.

5.2.4 Large Scale Detection Experiment

While the thermal images available to me only span few days of the ARXXVII/3

cruise, PSITRES was operated for nearly the entirety. I have used the best trained

module from 10 fold cross validation with the largest patch size to identify prints across

the entire cruise track. I have subsampled PSITRES images at a rate of approximately

one image every 5 minutes for the total runtime of the cruise. Each image was split
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Figure 5.7: Polar bear paw print frequency over the entire ARKXVII/3 cruise

into equally sized patches and the patches were classified using the trained model. The

resulting frequency of patches was then filtered using a moving average filter over 10

samples. Results are shown in Figure 5.7.

These results show peaks on days where polar bears were spotted, including a

strong peak on September 17, but also shows peaks at days with ice stations, such as

the Aug 11-12, where many of these tracks were left by humans. The classifier was not

presented with the challenge of classifying bear prints and human prints seperately,

and as a result the trained classifier identifies human prints as well.

5.2.5 Analysis

The results of these experiments show that polar bears and their prints can

accurately be identified using a convolutional neural network. The transfer learning

scheme applied to imagery from both modalities casts the problem of detection into

a multi-label classification problem, and allows us to us the same training scheme for

both image modalities. The Classifier was trained with bear prints, but also returns

high response in areas with human prints. While this is undesireable in the case of ice

stations, where people work on the ice in full view of these cameras, this is not the

case for most ships operating in this region, and the cameras could be switched off.

This classifier may also detect other paw prints such as arctic fox, and reindeer prints
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given sufficiently clear images, and in the future, a classifier that can differentiate these

prints may even be possible.

5.3 Miscellaneous Animal Tracks

Though far less common in the dataset, PSITRES has recorded other animal

tracks left on the ice. These tracks represent anomalies, and valuable use cases for the

PSITRES system. Below I will discuss two examples where the PSITRES system was

used to supplement ongoing marine mammal reporting, and was used to help draw

informed conclusions about the presence of mammals in the region. These examples

both come from the SKQ201505S cruise aboard the RV Sikuliaq in 2015. Active marine

mammal and bird observers were stationed on the bridge and in both examples they

briefly spotted something out of the ordinary but were unable to draw a definitive

conclusion from their brief view of the affected ice.

5.3.1 Arctic Fox Tracks Far from Land

On March 28 2015 a marine mammal observer spotted a series of small tracks

moving along a floe adjacent to the ship. The ship at the time was quite a long ways

from the nearest viable land, and the tracks were unidentified during the brief time

they were visible during transit. A note was made of the time, and the corresponding

PSITRES images were reviewed and retrieved as seen in Fig 5.8a. The tracks were

small but without a sense of scale they remained unidentifiable.

(a) The Unidentified Tracks
(b) Measuring Stride Length in the Recon-
structed Model

Figure 5.8: Arctic Fox Prints Identified Using the PSITRES System
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The metric 3D reconstruction offered by calibrated stereo from PSITRES al-

lowed for not only a sense of scale, but a direct measurement within the 3D recon-

structed model. After reconstruction the stride length of the tracks was measured,

and averaged over the few paces visible in the images. The results helped the marine

mammal observer and the Yupik guide determine that these prints must have been

left by an arctic fox that had traveled quite some distance from land, which while not

unheard of, is not commonplace.

5.3.2 Pinniped Haul-out

On March 22 2015 a set of strange tracks across a single floe was spotted off the

port side of the Sikuliaq, in view of the PSITRES system. Images of the track were

identified as the location where a pinniped, most likely a walrus, had hauled itself out

of, and across the ice for a brief time. The angled repeating strokes were indicative

of flippers being used to move the animal forward. A 3D reconstruction of the images

was made and various components of the track including width and stride length were

made. The results are somewhat inconclusive however a walrus or large seal could have

made the tracks. The original image and the 3D model can be seen in Figure 5.9.

(a) The original image of pinniped Haul-out
(b) Measuring flipper length in the Recon-
structed Model

Figure 5.9: Analyzing pinniped haulout using PSITRES
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5.4 Code Availability

Code for classification of visible band and thermal patches is available at https:

//github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code/tree/master/marineMammal.

The trained models for the best performing thermal and visible band classifiers are

available at https://www.dropbox.com/sh/7q7po6zkb7dkvhz/AAB5YvDlB3ZDvY9ndPu5pykfa?

dl=0.
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Chapter 6

STEREO RAY TRACE RECONSTRUCTION

In this chapter I will discuss Stereo Ray Trace Reconstruction, a technique for

reconstructing 3D scenes in the presence of refraction and reflection. This technique

was originally developed to calculate ice thickness directly by allowing reconstructing

the underwater portion of an ice floe. The idea has applications outside of polar

research however, and I extend the idea to handle reflection across imaging modalities.

Typical stereo techniques are not well suited to deal with specular refractive or reflective

surfaces. These surfaces can lead to falsely matched correspondences and incorrectly

reconstructed objects. Ray tracing models the trajectory of light in reverse from the

camera into the scene and is used widely in graphical applications. Ray tracing is well

suited for complex refraction, and reflections through multiple interfaces, however this

requires complete knowledge of the 3D scene. Stereo reconstruction aims to accurately

model a 3D scene with no prior model of the scene itself. This technique can coarsely

be broken up into two stages, first I extract the specular surface, and then ray tracing

is used to reconstruct the scene.

6.1 Ray Tracing

Ray tracing is the rendering process of projecting rays through each pixel into

a 3D scene to compute intensity. For a given pixel pi = [xi, yi], the equation for a ray

Vi is given by

Vi = C0 + t · β

norm(β)
(6.1)

where C0 is the camera center, and

β = R′ · A−1 · [xi, yi, 1] (6.2)
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where A is the camera matrix, and R is the camera rotation.

These rays are intersected with surfaces in the scene. For this approach the

relevant equation is ray-plane intersection. A plane is as defined

P · n+ d = 0 (6.3)

where P is a point in the plane, n is the plane normal and d is some constant. To solve

for the intersection I substitute P with Vi from equation 6.1, and solve for t. Plugging

t back into equation 6.1 yields intersection point Ii.

Refraction is governed by Snell’s law, which is formulated in 3D as

Vrefract = r · l + (r · c−
√

1− r2 · (1− c2)) · n (6.4)

where n is the interface normal, l is the light vector, r is the ratio of the index of

refraction’s (IOR) of the two materials n1/n2 and c = −n · l. For this application the

refracted ray thus has an origin of Ii, and a direction of Vrefract.

Reflection is governed by the law of reflection, which is formulated as

Vreflect = l + (2 · n · c) (6.5)

These two laws form the basis of the stereo ray trace reconstruction technique.

6.2 Refractive Stereo Ray Tracing

Scenes where underwater objects are visible from the surface are commonplace,

however the refraction of light causes 3D points in these scenes to project non-linearly.

This approach uses techniques from ray tracing to compute the 3D position of points

behind a refractive surface. This technique has been developed to reconstruct underwa-

ter structures in situations where access to the water is dangerous or cost prohibitive.

Raytracing can model refraction, however it requires prior knowledge of the refracting

surface. To allow for accurate ray tracing reconstruction I first reconstruct and model

the refracting surface as a simple plane. To reconstruct the scene I will leverage several

physical properties outlined in the next subsections.
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6.2.1 Physical Properties of Water

Water has a number of physical properties being utilized in this work, but here

I focus on just a few of them, namely its optical properties, emissivity, the force of

buoyancy and the dynamics of small wind generated waves.

6.2.1.1 Buoyancy

Buoyancy is the upward force exerted on an object by the fluid it displaces.Buoyancy

causes less dense objects to float, and they come to rest at the air-water interface [115].

Ice is less dense than water and therefore floats. Additionally, in the Arctic, ice is nat-

urally occurring and would not need to be added to a scene. Furthermore, ice naturally

dampens waves [21] which reinforces the planar assumption for modeling the refractive

surface. Sea ice floats as do many common materials, and this can be used to identify

the position of the air-water interface, which is precisely the refracting surface I aim

to model. In the controlled experiments presented in section 6.2.3.1 I add small strips

of colored paper to the surface of the water, and in 6.4.3 I will extend the technique

with ice.

6.2.1.2 Index of Refraction

The index of refraction of a material is defined as the speed of light in vacuum

divided by the speed of light in the material. This property of materials causes light

to bend as it travels through an interfaces according to Snell’s law. The IOR of pure

water is 1.3330, however this can change based on inclusions such as salt, the wave-

length of light, the temperature and pressure. These conditions are typically relatively

insignificant, minimally affecting IOR. For the controlled lab experiments an IOR of

1.333 is used for tap water.

6.2.1.3 Turbidity and Light Attenuation

One of the properties of water affecting surface based reconstruction is light

attenuation. Light is absorbed by water much more readily than in the atmosphere.
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This means objects at depth receive less light and additionally less of the reflected

light reaches an observer or camera system. The attenuation of light is a well stud-

ied optical property in oceanography, and plays an important part of the heat budget

of the ocean. Water itself absorbs light across a range of the frequencies to varying

amounts. Suspended solids and dissolved materials add to the absorbancy and scat-

tering, increasing the attenuation of light. These particles cause cloudiness or haziness

called turbidity. Turbidity can be caused by a variety of ocean matter, including sand,

sediments, organics, and plankton.

In general optical attenuation at depth is modeled exponentially using

I(z) = Ioe
−Kz (6.6)

where I is intensity, Io is the intensity at the surface, z is depth and K is the attenuation

coefficient. Attenuation coefficients are wavelength dependent, with the blue portion

of visible light having the lowest coefficients [97]. Oceanographers have measured

attenuation coefficients for deep and coastal waters using photo resistors and typical

values for range from 0.8 for clear ocean waters to 1.8 for turbid coastal waters [97].

However, this measure of attenuation is more difficult to relate to the problem of surface

based reconstruction, as exponential decrease of light is difficult to directly relate to

visibility and its relation to matching.

Before modern electronic measuring devices, attenuation was measured with a

Secchi disk; a high contrast disk that was lowered until it was no longer visible to an

observer. For the purposes of reconstruction this measurement is actually rather useful

as it is a direct measure of detection of a submerged object from the surface, albeit by

an observer and not a camera system. While the visibility of a high contrast pattern

is not a direct measure of the ability to match points at depth it is helpful for placing

an upper limit on depth for surface based reconstruction. In Table 6.1 I present ranges

for historical values with a focus on Arctic waters.

These numbers seem to indicate that surface based reconstruction beyond 30

meters is out of the realm of possibility, but more shallow 5− 10 meter reconstructions
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Table 6.1: Secchi depth for various bodies of water

Body of Water Min Depth (m) Max Depth (m)
Atlantic [65] 13 33
Pacific [65] 12 37
Arctic Basin [38] ∼20 ∼20
East Siberian Sea[38] <10 20
Chuckchi Sea [38] <10 18
Beaufort sea [38] <10 18
Barents Sea [38] 7 39
Kara Sea [38] 3 24
Bering Sea [38] 6 29

are viable in a variety of sea conditions including much of the Arctic.

6.2.1.4 Emisivity

Emissivity is the measure of a surface’s effectiveness of emitting thermal radi-

ation. Emissivity values range from 0 (totally non-emissive) to 1 (perfectly emissive).

Perfectly emissive surfaces are called black bodies, and a black body at room temper-

ature emits 448 watts per square meter at room temperature. The wavelength of the

emitted radiation depends on the temperature of the object, with objects around room

temperature emitting the most energy in the long wave infrared band. This allows for

Long Wave Infrared imaging to view the temperature of objects. Both ice and water

are emissive with typical emissivity values in the range of 0.8− 0.9 for, however ice is

more emissive than water, with emissivity values in the range +0.1 or +0.2 over open

water counterparts [35, 93].

This difference in emissivity means that even at a close range of temperatures, ice

will have a different apparent intensity in LWIR imagery. Furthermore the attenuation

coefficient of of water in the LWIR band is on the order of magnitude of 105. Using

equation 6.6 I find that more than 99% of LWIR light is attenuated within the first

100µm, making water essentially opaque in this modality as shown in Figure 6.1. This

means underwater scenes at shallow depths are visible in the optical modality, but

totally occluded by the surface of the water in long wave infrared.
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Figure 6.1: A hand inserted into water showing it is opaque in LWIR images

6.2.1.5 Wave Properties

In this work I model the refracting surface as a plane. This assumption holds

well for still water where any affect from the meniscus can be completely ignored in

a container with large surface area. In large bodies of water however waves break

this assumption by a large degree. Large waves will certainly invalidate this technique,

however even in still bodies of water mall waves may present problems to this technique.

Ice is very effective at dampening waves, but wind is still present in dense pack ice.

Wind creates capillary waves, small, irregular naturally occurring wind generated waves

which differ from larger gravity waves [48].

To examine possible affect capillary waves will have on this technique I examine

the waves themselves and the affect they have on the surface. Capillary waves have

wavelengths of no more than 1.74cm and a maximum wave height (amplitude) of

0.243cm [48]. While this water is not completely planar, at the sampling size of a

large scene of say 100 m2 a network of maximum amplitude capillary waves would
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mean a depth variation of only 0.1% of the scene width. The surface also experiences

a perturbation in orientation, which I also consider. Considering capillary waves as

idealized sine waves in 2 dimensions, they can be expressed as

sin(2x/1.7π) ∗ (0.243/2) (6.7)

If I differentiate this function to compute the tangent and compute an orthogonal

vector, I find that capillary waves have a maximum surface perturbation angle of

24.1801◦. This represents the most extreme difference in surface orientation for a

maximum size capillary wave.

6.2.1.6 Reflection and Specular Highlights

Another optical phenomena that can complicate reconstruction is specular high-

lighting. Specular highlights are view dependent, and therefore create view discrepan-

cies which are unsuitable for stereo reconstruction. Techniques for detecting specular

highlights have been developed [29] and mitigate them with external light sources [36].

Here I analyze the cause and quantify how much action to take to mitigate this problem

by moving.

In graphics specular highlights are modeled using the Blinn-Phong lighting

model [16], where the specular component is defined by

Ls = KsImax(0, n · h)p (6.8)

where ks is the specular coefficient, p is the Phong exponent, n is the surface normal

I is the light intensity, and h is the half vector between the light l and view vectors

defined by

h =
v + l

||v + l||
. (6.9)

Graphical artists use a variety values for the specular coefficient and Phong

exponents for different applications, but for these purposes I use the recommended

values in the Blender ray tracer tutorial [8], which recommends ks = 0.65 and p =

29. Since the material properties of water dictate the specular coefficient and Phong
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exponent, and the surface normal is fixed for flat water, I recommend altering the view

vector to combat specular highlights. This can be accomplished by maneuvering the

imaging platform such that that n · h is minimized, and for a ship mounted-camera

system like PSITRES this can be done by turning the ship.

If the imaging platform is directly in the center of the specular highlight, ac-

cording to Equation 6.8, to reduce the intensity by 99% I must alter h by 31.44◦, or

the view vector by 62.88◦. While moving the imaging platform may be impractical in

some cases, smaller changes may suffice, and in an outdoor scene with natural lighting,

the sun and therefore the lighting vector moves at roughly 15◦ per hour (depending on

latitude and time of year).

6.2.2 Method

This reconstruction technique is roughly divided into three steps, first the re-

fracting surface is extracted, stereo matching is then performed, and correspondences

are ray traced for reconstruction.

6.2.2.1 Plane Extraction

I extract the plane by leveraging buoyancy via buoyant elements added to the

scene. In the first set of controlled experiments (Section 6.2.3.2) I add small strips of

colored paper to the surface of the water. Contrasting color can aid in segmentation,

and SIFT matching is used to reconstruct just these objects on the surface. To extract

plane parameters I perform a principle component analysis (PCA) of the reconstructed

SIFT matches of floating objects described above. I then compute the centroid, and

define the plane as the computed normal and centroid for a plane origin as defined in

equation 6.3.

6.2.2.2 Stereo Matching

Stereo matching is an active area of research in computer vision, and feature

based techniques are quite common as are disparity based approaches. Feature points

are used in numerous applications to find correspondences and among these SIFT
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matching [66] is one of the most common and best performing. In rectified stereo images

disparity estimation techniques are typically used to find dense correspondences. Under

refraction however, the surface normal and camera position will affect rectification.

Therefore it is necessary to calculate new rectification parameters for each image pair in

which scene has changed. I crop the stereo pairs around the relevant objects, recompute

rectification parameters[49] and dense correspondences are calculated using the semi

global block matching technique[51]. SIFT and disparity based correspondences are

used for experiments in section 6.3.2.

6.2.2.3 Refraction Based Reconstruction

To reconstruct points behind a refractive plane, I employ ray tracing techniques.

Correspondences in stereo images can be thought of as 2 rays from the camera cen-

ters into the 3D scene. These rays intersect the plane and are refracted according to

equation 6.4.

I then compute the closest intersection of these rays using a least squared error

by looking at the squared error function for a parametrically defined ray. For line i,

the squared error function is

D2(t) = (x− xi − ai ∗ t)2 + (y − yi − bi ∗ t)2 + (z − zi − ci ∗ t) (6.10)

where the point is defined as [x, y, z], and the ray is defined as initial point [xi, yi, zi]

and unit direction vector [ai, bi, ci].

li = [xi, yi, zi] + ti ∗ [ai, bi, ci] (6.11)

To minimize the error I take the derivative of the function to find the minima at

0. This allows me to solve a system of 6 equations with 5 unknowns [x, y, z, t1, t2].

Solving this system gives the intersection, [x, y, z], and by using the calculated t1

value I can determine triangulation error. The point on ray 1 closest to the [x, y, z]

is p1 = [x1, y1, z1] + t1 ∗ [a1, b1, c1]. Triangulation error is then the Euclidian distance

Et = dist(p1, [x, y, z]) and is very useful for classifying points as inliers or outliers. I

discard points where Et ≥ µ for a choice of threshold µ.
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6.2.3 Experiments

I have conducted experiments on both real and synthetic data. Synthetic data

is rendered using a raytracer, and the controlled experiments were conducted in a lab

setting minimizing possible sources of error.

6.2.3.1 Synthetic Experiments

Here, I will test the basic reconstruction technique with synthetic scenes as well

as quantify sources of error. I test various sources of error in this approach using

rendered scenes for which I have ground truth. The scene consists of a textured object,

either a cube or sphere, and a refractive plane as shown in Figure 6.2b. The objects

have been rendered with a highly textured surface to facilitate dense SIFT matching. I

measure Root Mean Square (RMS) from the surface to the reconstruction normalized

to the radius of the sphere or half cube length. I will focus on 3 sources of error

specific to this problem, namely errors introduced in estimating the plane normal,

errors in estimating the plane origin, and errors in estimating the refracting material. I

synthetically vary the estimates for these parameters and observe errors in the resulting

reconstruction. I conduct 8 experiments with each shape varying IOR for the refractive

plane. Results are discussed in section 6.2.4.1.

To quantify the effect of an inaccurate estimate of the surface normal I randomly

perturb the refractive plane normal by set increments. To do this I take the ground

truth normal vector and perturb it as follows. The set of all vectors with θ angle to

unit vector v1 form a circle of the unit sphere. The parametric equation for a circle is

p(t) = r · cos(t)u+ r · sin(t) · u× n+ c (6.12)

where r is the circle radius, n is the unit normal to the circle, c is the center, and u is

a unit vector orthogonal to the normal. For this applications n is the original normal,

r = sin(θ), c = n · cos(θ). To generate a random point on the circle I find the plane

on which the circle lies, defined by n and c. I generate a random linear basis in the

plane for the intersection with the circle. I then randomly select a point on this circle,
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and take this to be the new estimate for the plane normal. I perturb the estimate

normal from 0◦ to 30◦ in steps of 0.05◦. Since this is a stochastic process I repeat the

experiment 100 times for each increment of perturbation, and report the mean.

Additionally I experiment with artificially altering the origin of the plane, by

moving the origin along the normal and measure error. For each synthetic scene I

vary the position of the estimated plane centroid from [0,0,1.5] to [0,0,9] (the ground

truth plane is at [0,0,4]) in increments of 0.01 and report the resulting RMS. Finally to

explore how misestimation of the index of refraction affects reconstruction I vary the

estimated IOR from 0.5 to 1.5 in increments of 0.001 and report the resulting RMS.

Unlike the surface normal these processes are deterministic and therefore need only be

performed once for each value.

6.2.3.2 Controlled Experiments

To demonstrate that this approach works in a real world scene I have conducted

a series of experiments with real objects. I have constructed a calibrated stereo system

which captures images of objects in a bin that is subsequently filled with water as

illustrated in Fig. 6.2a. I place objects in a stable position in the bin, capture stereo

pairs as ground truth, and siphon water from an upper reservoir so as to not disturb

the object. I then add small pieces of colored paper that float to the water for use in

extracting the refractive plane parameters and stereo pairs are captured again. I mask

the region with colored paper and reconstruct SIFT points in this region, erroneous

points are manually removed, and PCA is applied. Quantitative results are obtained

by measuring point cloud to point cloud distance using the Cloud Compare utility

[30]. This allows me to measure the distance between the ground truth and refracted

reconstruction.
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(a) The controlled setup with water being
siphoned from upper reservoir to the imaging
vessel.

(b) An illustration of the synthetic stereo
setup.

Figure 6.2: The experimental setup.

6.2.4 Results

6.2.4.1 Synthetic Results

Results for synthetic experiments are shown in Figs. 6.3, 6.4 and 6.5. The color

key is in Fig 6.6.

From the results in Fig. 6.3, I note that with increased perturbation, I do not

see a large initial increase in RMS nor do I see a large decline in the number of points

classified as inliers. This suggests that for small perturbance in the normal there is

not much effect on the reconstructed surface, and triangulation error increases a small

amount. With a perturbation of more than 5◦ I see a rapid decline in the number

of points that are classified as inliers, coupled with a slow but erratic increase in

RMS. This suggests that while I do see an increase in error, many points are correctly

discarded by thresholding on triangulation error. At more extreme angles however,

RMS reaches the highest of any synthetic experiment (Note: each graph has a different

scaling).

Results for varying the plane origin are shown in Fig. 6.4. In the scene the plane

is at z = 4 and I find that the error reaches a minimum at this point. These results
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Figure 6.3: The RMS and Inliers found for varying normal perturbation.

Figure 6.4: The RMS and Inliers found for varying estimated plane position
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Figure 6.5: The RMS and Inliers found for varying estimated IOR.

Figure 6.6: the color key for all synthetically rendered scenes.
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show that the plane position, and therefore intersection point has a less significant

effect on the total error than the IOR and surface normal, however it is also more

difficult to classify points as outliers.

Results for varying the IOR of the refracting plane are shown in Fig. 6.5. These

results indicate a good estimate of IOR is important, but in practice this is easily done

for fresh water, as even many inclusions do not drastically affect IOR[27]. The values

for salt water bodies is also easy enough to look up. The results show within a small

neighborhood IOR minimally affects error.

6.2.4.2 Controlled Experiment Results

In this section I compare the reconstruction of real world objects with and

without refraction. In Fig. 6.7a and 6.8a I show qualitative results of reconstructing the

model brain and flower pot respectively. The models, reconstructed with and without

refraction, are presented occupying the same coordinate space. It worth noting that in

both sets of reconstructions slightly different portions of the objects are reconstructed.

This is because with a refractive surface the cameras see a different view of the object,

and in the case of this experimental setup they see a more direct view of the top of the

object.

For quantitative results I show the distance map from the refracted reconstruc-

tion to the ground truth model in Fig. 6.7b and 6.8b. The bounding boxes for both

point clouds are shown with the reference (non refracted) box in green and the refracted

reconstruction bounding box in yellow. For the flower pot I achieve a mean distance of

5.007mm with a standard deviation of 4.712mm. For the model brain I obtain a mean

distance of 8.536mm, and a standard deviation of 7.584mm.

6.3 Reflective Stereo Ray Tracing Using Different Image Modalities

While this technique was initially developed for refraction with the intent of

reconstructing the underwater structure of sea ice, it has application outside of refrac-

tion. Reflection is another optical phenomena that is easily modeled by ray tracing
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(a) The ground truth and refracted models (b) The cloud-cloud distance and bounding
boxes for the refracted model

Figure 6.7: Results for the reconstructed flower pot.

techniques. The approach to reconstruction is similar, with one large exception. To

extract the reflecting surface I use different modalities of stereo vision, and make use

of reflection and emissivity.

Reflectivity or reflectance is the property of a material to reflect radiation. The

reflectance spectrum or spectral reflectance curve of a material is a function of wave-

length, and different materials reflect different portions of the spectrum to varying

degrees. Brushed aluminum for example, is not very reflective in visible light but

almost completely mirror-like in long wave infrared. Coatings like ink, paint, and an-

odization can have an effect on the emissivity, but in small amounts they do not affect

appearance in LWIR, yet are apparent in visible wavelenghts. This means that a tex-

tured surface in the visible band can appear highly mirrored in LWIR and vice versa.

I propose using multiple modalities of imaging system to capture both the reflective

surface as well as the reflected scene. I use a four camera system consisting of a visible

band stereo pair and long wave infrared stereo pair. By using these different modali-

ties I can simultaneously extract the reflecting surface, as well as capture the reflected

scene. This allows for accurate reconstruction of the reflected scenes via ray tracing,
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(a) the ground truth and refracted models (b) The cloud-cloud distance and bounding
boxes for refracted model

Figure 6.8: Results for the reconstructed brain model.

and can be applied to a wide array of scenarios with reflecting surfaces. I demonstrate

that this approach works in both modalities, reconstructing a visible band scene as

well as a LWIR scene using the other modality to extract the reflecting surface.

6.3.1 Method

In this subsection I will discuss the overall approach which I will coarsely divide

into a technique for calibrating, techniques for extracting the reflecting surface, and

lastly a technique for stereo matching and reconstruction.

6.3.1.1 Calibration

This system consists of four cameras, operating as two stereo pairs. While these

stereo pairs operate largely independently of each other, this approach requires a com-

mon coordinate system, necessitating calibration. First each stereo system is calibrated

independently. In the visible spectrum this is easily done with off the shelf calibration

methods such as [18]. For long wave calibration the problem is more difficult. I use

the method outlined in [87] which is briefly summarized below.
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Essentially a ceramic backed paper calibration pattern is heated under a heat

lamp. This causes the pattern to be visible in LWIR imagery due to increased heat

and a change in emissivity from the printed surface. The pattern is however not

uniformly heated. Artefacts of this process are mitigated by a preprocessing technique

which involves masking out the calibration pattern using Otsu’s method[76]. The

masked region undergoes iterative quadric fitting in the intensity space. This quadric

is subtracted from the intensity image, and tophat filtering is applied. These steps are

repeated and finally a sharpening filter is applied to the images. This preprocessing

technique allows standard calibration methods to be applied to the LWIR images.

(a) A calibration pattern in
the visible band

(b) A calibration pattern in
the LWIR band

(c) The result of preprocess-
ing the LWIR image

Figure 6.9: An illustration of the preprocessing step for calibration.

Calibrating between modalities however requires a simple modification of this

technique. This technique aims to use standard calibration tools for LWIR images,

but in order to use it across modalities it is important to take emissivity into account.

The printed pattern I use is a common checkerboard pattern used in many calibration

techniques. In visible images this pattern consists of dark black printed squares and

white spaces from the paper. In the LWIR imagery I similarly see dark and light

squares but the cause is different. The surface of the calibration pattern is radiating

heat, and the printed pattern changes the emissivity, in the case of the printed pattern

the black toner is more emissive, radiating more energy and therefore higher intensity

in the images. I therefore invert the intensity in the masked region of the preprocessed

image, which allows for simple cross modality calibration using existing tools.

86



6.3.1.2 Extracting the Reflecting Surface

In this section I discuss the technique for extracting the reflecting surface in

the scene. I do not aim to detect specularity or identify which regions of the image

constitute reflections. In this work I assume the position of the reflective surface

is known in image space. In the experiments the reflective surface occupies nearly

the entirety of the view in the images captured from all four cameras. The problem

then becomes reconstructing the surface. This can be done using the other stereo

vision modality. In section 6.3.2.1 I show it is possible to add texture to a surface

that is visible in one modality and not greatly affect the imagery from other modality.

Adding texture enables the use of standard feature matching techniques, such as SURF

matching [11].

To add texture to visible imagery that is invisible in LWIR I write on the

material with a marker. Adding texture to LWIR imagery without affecting the visible

imagery can be done by adding heat to an emissive surface. In section 6.3.2.1 I heat

up emissive surfaces by placing a gloved hand on the surface for a few seconds before

imaging. The resulting hand print is visible only in infrared.

While these methods of adding texture to both modalities of image are active

and require physical access to the surface itself, it is easy to imagine using a pattern

of structured light or heat source that would be visible in one modality and not the

other. Some materials, such as galvanized steel are already quite textured in the visible

band, and depending on grain and polish could be effectively used without need for

modification.

After adding texture I capture synchronized images with all four cameras.

Within the non reflected modality with added texture, I extract and match image

features. In this work, SURF points are detected and matched. These matches are

then triangulated using the method outlined in [49] to form a sparse point cloud. I

place a threshold on Euclidian error and eliminate points from the sparse cloud with a

high triangulation error, which helps ensure quality results.

To ray trace correspondence from the complementary stereo pair an implicit
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surface is needed. Since this is the first attempt using different modalities to extract

the reflecting surface, I have modeled a simple reflecting surface, namely a plane,

however, more complex surfaces could be modeled if dense correspondences can be

found and a surface fit to the reconstructed points. I perform a principal component

analysis of the sparse point cloud, taking the third set of coefficients as the normal, and

the centroid is taken as the origin. This plane is used to model the reflecting surface,

and its implicit form, Equation 6.3, can be used to intersect arbitrary rays for use in

the reconstruction phase.

6.3.1.3 Stereo Matching

Reconstructing the reflected scene requires correspondences. Stereo matching

is an ongoing and active research area and LWIR stereo has been studied [64]. Stereo

matching in this modality is challenging due to low variance in intensity. Additionally

LWIR cameras are typically lower resolution and have limited optics. These problems

coupled with reflection make for challenging stereo matching and lead to noise in the

reconstruction. Much of the research effort in stereo matching has been focused in

the disparity domain, which requires rectified images. In a reflected scene rectification

parameters from camera calibration will no longer accurately rectify the scene. In a

scene with a more complex reflecting surface rectification may not be possible, and

feature matching would be the best option.

To facilitate dense correspondence matching in the presence of reflection I calcu-

late new rectification parameters using uncalibrated rectification [49]. Once the images

are rectified typical disparity matching techniques can be used. I employ Semi Global

Block Matching (SGBM)[51] due to its record for good performance [40]. This facil-

itates dense correspondences, but these correspondences are of reflected objects, so

reconstruction is not simple matter of triangulation.
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6.3.1.4 Ray Trace Reconstruction

To reconstruct the dense correspondences of the reflected scene I employ tech-

niques from ray tracing. Rays from the camera centers are intersected with the re-

flecting plane as defined in section 6.1. Corresponding sets of reflected rays are then

triangulated by solving for the closest point of intersection using least squares as in the

case of refraction based reconstruction. Euclidian error thresholding is again applied

to ensure a quality reconstruction.

6.3.2 Experiments

In this section I outline the experimental setup and present tests to validate this

method. For all experiments I utilize the same 4 camera setup shown in Fig 6.10a. This

setup consists of 2 visible band cameras, Point Grey Flea2G’s capturing at 1280 x 960

resolution. The long wave infrared cameras are Xenics Gobi-640-GigE’s capturing at

640 x 480 resolution and 50 mK thermal sensitivity. The whole setup is synchronized

by software trigger to within a few milliseconds. The system was calibrated using

the method described in section 6.3.1.1. I conduct a number of experiments with this

system to test various aspects of the proposed approach.

(a) The 4 cam-
era system with
LWIR and visi-
ble cameras

(b) The experi-
mental reflection
rig

(c) A LWIR re-
flection of a mug
with hot liquid.

(d) Recon-
structed results
for the mug

Figure 6.10: The experimental setup

6.3.2.1 Cross Modality Texture Experiment

To demonstrate that texture can be added in one modality while remaining

invisible in the other, I capture images of a surface in both visible and long wave

89



infrared, add texture to the surface and image it again. First a baseline image is taken,

followed by a control image where no texture is added. I then add texture to the

surface, and capture images again. The control image is to find the natural variation

from pixel drift and noise. I compare 7 materials adding texture in only one modality.

The metals are highly reflective in the LWIR band but far less in the visible band.

The plastic mirror is highly reflective to visible light, but not reflective in LWIR .

For the metals and the whiteboard I add texture in the form of a marker which is

apparent in the visible spectrum. For the plastic mirror and phenolic sheet, I placed a

hand with a polyethylene glove on the surface to transfer heat to the surface without

leaving a smudge that would be detectable in the visible spectrum. Additionally I

have conducted a short experiment to show how surface corrosion affects reflection and

emissivity by comparing a corroded piece of galvanized steel with a polished one. I

present results comparing the baseline to both control and textured images for both

modalities in section 6.3.3.1.

6.3.2.2 Reflecting Surface Extraction

To validate this approach to extract the reflecting surface, I set up an experi-

mental rig shown in Fig 6.10b where different materials can be swapped in and out in

a way that the surfaces are oriented and positioned the same each time. For a baseline

measurement I placed a lambertian textured surface, and reconstruct the surface as

outlined in section 6.3.1.2. Subsequent materials are imaged and I compare surface

orientation using cosine similarity. Results are reported in section 6.3.3.2.

6.3.2.3 Reconstruction Experiments

To evaluate this reconstruction technique I reconstruct objects reflected in each

modality. Quantitative reconstruction results are obtained by comparing the recon-

structed models to ground truth measurements made on the objects using a ruler and

caliper. For visible reflection I reconstruct a textured cube. I measure the visible faces
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and compare the reconstructed result to ground truth measurements. For LWIR re-

flection I reconstruct the camera system itself as well as a mug filled with hot water,

and compare to physical measurements made of the lenses and camera bodies, as well

as the mug.

6.3.3 Results

In this section I present the results from the experiments described in section

6.3.2. I further analyze the results and briefly discuss the implications on the proposed

methodology.

6.3.3.1 Cross Modality Texture Results

As outlined in section 6.3.2.1, I compare baseline image to a control as well as

a textured image, and results are shown in table 6.2. Results are reported in absolute

mean pixel intensity difference. Note that the LWIR images are captured as 16 bit

intensity images, shown colormapped in figures. The visible band images are 8 bit,

which explains in part why there is such a large variance in the LWIR images. This

variance can be seen even in the control images, however when I add LWIR texture

(second set of materials in table 6.2) I see a dramatic difference from other tests. These

results demonstrate that it is indeed possible to add texture in one modality without

affecting the other.

To further illustrate this I show a series of difference images in Fig 6.11. Figures

6.11a, and 6.11c are visible band difference images, and 6.11b, and 6.11d are LWIR

difference images. In the top row writing with a marker has been added to the surface

and in the bottom row a hand has been placed on the image. The writing is clearly

apparent in the visible image but not the LWIR image. Similarly the handprint is not

apparent in the visible image, but obvious in LWIR. These images testify that texture

can be added in one modality without affecting the other greatly. In Fig 6.11b and

6.11c, the difference image mostly shows noise as well as some reflected parts of the

room, that may have moved slightly relative to the camera or surface.
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I compared corroded galvanized steel to polished steel by heating both with

a gloved hand. Results are presented in table 6.3. The polished steel is much less

emissive, and does not clearly show any signs of the added LWIR, however the corroded

surface is more emissive, and therefore not only shows the added texture, but does not

reflect. This shows that surface properties are critical, and even the same material can

have drastically different reflection and emission based on corrosion.

Control Visible Textured Visible Control LWIR Textured LWIR
Polished Aluminum 1.24 7.00 80.96 2.20
Unpolished Aluminum 0.58 2.60 0.24 10.51
Galvanized Steel 0.09 12.97 20.04 65.71
Brushed Aluminum 0.22 4.94 4.87 15.72
Whiteboard 0.36 30.67 49.32 36.80
Plastic Mirror 0.62 1.10 5.89 150.55
Phenolic Sheet 0.34 0.56 7.31 194.07

Table 6.2: Results from experiment 6.3.2.1. Results are presented in absolute mean
pixel intensity difference.

Control Visible Textured Visible Control LWIR Textured LWIR

Polished 0.20 1.7 2.43 17.01
Corroded 2.67 2.91 8.45 215.30

Table 6.3: Results from experiment 6.3.2.1 on Galvanized steel with and without cor-
rosion. Results are presented in absolute mean pixel intensity difference.

(a) The differ-
ence image from
writing on a
surface in visible
band

(b) The differ-
ence image from
writing on a
surface in LWIR
band

(c) The differ-
ence image from
a gloved hand-
print in the visi-
ble band

(d) The dif-
ference image
from a gloved
handprint in the
LWIR band

Figure 6.11: Difference images in the visible band and LWIR
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6.3.3.2 Reflecting Surface Results

Results for experiment 6.3.2.2 can be found in table 6.4. These results show

that by adding texture to a surface it is possible to extract these surfaces even though

they are typically considered specular. The plastic mirror has been extracted using

the LWIR modality, and has the highest error in part because of low resolution and

texture in the images.

Material Normal similarity
Unpolished Aluminum 0.97989
Polished Aluminum 0.84069
Plastic Mirror 0.81880

Table 6.4: Results for extracting the reflecting surface for reflective materials

6.3.3.3 Reconstruction Results

To demonstrate that the proposed reconstruction technique effectively handles

reflection I have reconstructed a self portrait of the camera system. I have placed the

camera system in front of an aluminum plate which is highly reflective in the LWIR

band, but much less reflective and textured in the visible band. Sampled Visible and

LWIR images are shown along with the resulting reconstructed model in Fig 6.12.

Note that the positions of cameras appear reversed between Fig 6.12b and 6.12c, this

is due to the fact that 6.12b shows a reflected image. This approach captures the real

geometry, and so the cameras are in the correct orientation. To obtain quantitative

results I measure the camera system with a ruler and caliper, measuring the lenses

and camera bodies where the reconstruction is not overly noisy. In total I took 6

measurements and report the RMS error in table 6.5. Additionally I reconstructed a

mug as shown in Fig 6.10c and 6.10d. I measured the height and radius of the mug in

5 places and compare to the reconstructed model.

For the visible band I reconstructed a textured box. The box has two faces

visible in the reflected image, and I measure the seven edges and four hypotenuse of

the reconstructed results. The RMS is reported in table 6.5. The visible results are
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less noisy and the reconstructed model looks better, but the sensor is higher resolution,

and there is more contrast and less noise in the images. The LWIR reflected scene re-

quires thermal variation in contrast, and most objects will come to thermal equilibrium

with their environment over time. This makes the problem especially difficult in this

modality, and is among the reasons these scenes were selected for the scene as they

contain objects which are hotter than the environment.

RMS
Visible Cube Reconstruction 8.71 mm
LWIR Camera System Reconstruction 11.36 mm
LWIR Mug Reconstruction 6.34 mm

Table 6.5: Reconstruction results for the reflected scenes outlined in 6.3.2.3

(a) The reflecting
surface with tex-
ture

(b) The camera
system reflected in
LWIR (c) The reconstructed model

Figure 6.12: Results from reconstructing a self portrait of the camera system.

(a) The reflection ex-
perimental setup

(b) The textured sur-
face in LWIR

(c) The reconstructed
result

Figure 6.13: The visible band reconstruction results
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6.4 Refractive Stereo Ray Tracing Using different Image Modalities

I have also used multiple modalities for refraction and have conducted several

tests as well as some evaluation for how this could be used in a polar science context

for reconstructing the draft of an ice floe for measuring thickness.

6.4.1 Methods and Experiments

In this section I will outline some laboratory experiments conducted with the

multimodal stereo rig to evaluate its efficacy for surface extraction and refractive ray

trace stereo reconstruction. I will also illustrate ray trace stereo reconstruction on a

practical example of measuring the thickness of sea ice using the PSITRES camera

system.

6.4.2 Multi Modal Surface Extraction

I advocate using a different imaging modalities to extract and model the water

surface using ice to create a thermal and material gradient. I have conducted an

experiment using the multimodal stereo rig discussed in section 6.3.2 using a shallow

bin that was filled with water. I then added approximately 1.5kg of ice to the bin

and captured time series thermal stereo images at 5 minute intervals as the ice melted

and the water temperature approached equilibrium. After two hours when the ice was

almost completely melted I placed small pieces of brightly colored foam on the water

and imaged the scene with optical band stereo images. I reconstruct points on the

foam pieces and then fit a plane to the surface for a ground truth plane to compare to.

I match SIFT points [66] in the thermal time series images and fit a plane to

these points using MLESAC [103]. This plane is then transformed into the coordinate

system of the visible cameras and compared against the ground truth plane. I show

results for the plane normal using cosine similarity in Fig 6.14 and the offset (the value

of d in equation 6.3) in Fig 6.15.

These results show that the surface normal can be recovered well even long after

ice has been added to the scene, and the temperature has equalized. After nearly 2
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Figure 6.14: Cosine similarity of the extracted refracting surface over time

Figure 6.15: Extracted plane offset difference refracting surface over time

96



(a) Optical Image (b) Thermal image

Figure 6.16: Images from the multi modal rig

hours there were only a few small pieces remaining resulting in few correspondences

and poor reconstruction in some images.

6.4.3 Multimodal Ray Trace Stereo

To demonstrate this approach to refractive stereo ray tracing using multimodal

stereo I have used the 4 camera system outlined in 6.3.2 with a small bin that can be

filled with water slowly. This allows me to image an object without refraction, and

use this as ground truth, and then slowly fill the bin with water, and image it again.

I have demonstrated this approach with a small toy dinosaur, adding a handful of ice

after filling the bin with water. The optical band and thermal images are shown in Fig

6.16. Accuracy is assessed with the CloudCompare utility [30].

By tuning the triangulation error threshold I can discard points that are inaccu-

rate for a less dense but more accurate model, or choose to reconstruct a more dense,

but distorted model. Using a triangulation error threshold of 7mm I reconstructed

an approximately 84300 point model with mean error of 11mm. By increasing the

triangulation threshold to 35mm I reconstruct a far denser 400k point model with a

mean error of 28mm shown in Fig 6.17.
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Figure 6.17: Reconstructed model imaged under water

6.4.4 Ice Thickness Examples

When modeling ice in a natural scene the problem of reconstruction in the

presence of refraction becomes more challenging. Waves, illumination changes, poor

visibility as well as other compounding effects are ever present in the image captured

by the PSITRES system. Ice is inherently difficult to reconstruct, as it has large areas

with little texture. In this section I present a few examples of reconstructing the draft

of ice floes I also present an example of comparing it to estimated freeboard of an ice

floe. I present this work on stereo pairs from the PSITRES camera system on clear days

with good visibility. This process requires manually selecting the region to reconstruct

as well as tuning plane parameters.

To begin with a dense reconstruction of the surface is made using low texture

stereo techniques [83]. Fig 6.18 shows the initial stereo image, a close up on the floe I

will analyze and the initial reconstruction.
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(a) The left stereo Image

(b) The floe and keel to be reconstructed

(c) The stereo reconstruction

Figure 6.18: The input images and reconstruction
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While there is very little wave motion in these images, the rough surface and

minor lens distortion complicate plane fitting. I fit an initial a plane to the scene using

PCA, and manually identify the plane offset such that it lies as close as possible to

observed sea level as shown in Figure 6.19. In future versions of the PSITRES camera

system a thermal stereo pair could aid in automating this task.

Figure 6.19: The extracted plane and reconstructed model

I mask off the underwater portion of the floe by segmenting out the blue pixels

using the technique in Chapter 3, and select the region around the chosen floe. SIFT

matches are taken from the masked region and these are used for ray trace recon-

struction. An IOR of 1.346 was selected for water because of the work of [7] which

determined this value for light of 476nm wavelength and water with 34.998g/kg at 1◦C

which closely match what one would typically see for Arctic waters and the blue light

that is refracted in the scene. A triangulation threshold of 250 mm was selected to

discard truly erroneous points.

To measure the draft or keel of the ice floe I look at the deepest reconstructed

point in relation to the estimated plane. The draft of this floe is therefore 1.834 meters.

The freeboard (vertical measure of the floe above the water line) can also be measured

in the model, giving us a total thickness of 2.67m which a credible estimate for ice in

the region these images were taken from, however there is no ground truth to make an

accurate assessment for this data.
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Table 6.6: Estimated Keel Depth

Category estimated depth
floe 1 shallow 0.432 m
floe 2 shallow 0.364 m
floe 3 moderate 0.977 m
floe 4 moderate 0.761 m
floe 5 deep 2.8 m
floe 6 deep 5.198 m

I have used this technique to reconstruct 6 additional ice floes with varying

keel depth. As there is no ground truth for these examples I have coarsely broken the

examples into categories with the labels shallow, moderate and deep. Examples of each

are shown below (Figures 6.20-6.22), and table 6.6 reports the results of this technique

on floes of each category.

These results show a trend of increasing estimated depth with increase in actual

depth, and the results are in the correct ballpark, with floe 6 having by far the largest

estimated depth at approximately 5 meters. Figure 6.20 shows floe 6, which is indeed a

very large and deep floe, likely fractured from a ridge of a larger floe. Similarly a shallow

floe is shown in Figure 6.21, and my technique estimates a depth of approximately 1/3

meter. Figure 6.22 shows an example of a moderate depth floe with an estimated depth

of just under a meter.
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Figure 6.20: An ice Floe with an estimated 5.2 meter keel (Note: this is a full resolution

PSITRES image)
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Figure 6.21: An ice Floe with an estimated 360mm meter keel (Note: this image has

been cropped to approximately 1/4 scale for clarity)

Figure 6.22: An ice Floe with an estimated 977mm meter keel (Note: this image has

been cropped to approximately 1/4 scale for clarity)
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6.5 Summary

I have presented a technique for reconstruction in the presence of specular sur-

faces. This technique models the specular surface as a plane, which is simple to model,

and holds for a wide variety of specular surfaces. I have demonstrated this tech-

nique for both refracting water surfaces as well as reflecting surfaces. I have shown

that the refracting air-water interface can be extracted using buoyancy to identify the

position and orientation of the surface relative to the cameras. I have shown that

reflecting surfaces can be captured using different modalities of stereo vision. I have

conducted experiments with synthetic data to quantify potential sources of error in

this approach. I have conducted controlled experiments in the lab and demonstrated

that this approach accurately models both refraction and reflection using real cameras.

Furthermore I have illustrated that this technique can be used to measure ice thickness

on data captured from the PSITRES system.

6.6 Code

Code for this chapter is available at https://github.com/sorensenVIMS/Scott_

Sorensen_Thesis_Code/tree/master/rayTraceStereo. There are seperate modules

for reflection and refraction with example data.

104

https://github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code/tree/master/rayTraceStereo
https://github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code/tree/master/rayTraceStereo


Chapter 7

MULTIMODAL ALIGNMENT AND VISUALIZATION

In this chapter I will discuss spatially and temporally aligning The PSITRES

and FIRST-Navy camera systems, as well as a Virtual Reality application built for

visualizing image streams from both sensors.

Recent advances in consumer Virtual Reality hardware have allowed for the

development of immersive 3D applications. While the hardware has been developed

for gaming, it has far reaching applications and here I will present a scheme for 3D

data visualization from image streams from both camera systems. To do this I will

discuss temporal and spatial alignment of the two sensors and their image streams, as

well as development using the Unreal Engine.

7.1 Problem Statement

The PSITRES and FIRST-Navy camera systems discussed in the Chapter 2

vary greatly in virtually every aspect of their imaging capabilities. The camera systems

have radically different fields of view as illustrated in Figure 7.1. The cameras have

non-overlapping viewing area. Additionally the cameras operate in radically different

portions of the electromagnetic spectrum, with PSITRES operating between 375 to 715

nm and the FIRSTNavy system operating between 8 to 12µm. Lastly both cameras

were operated at different frame rates, with PSITRES operating at 1/3 FPS and the

FIRSTNavy system operating at either 5 or 1 FPS. I aim to incorporate both of

these camera systems into a unified Virtual Reality system that provides users new

capabilities of observing and working with images from these camera systems. To do

this the cameras must be spatially and temporally aligned.
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Figure 7.1: An illustration of the differing Fields of View of both camera systems. Both
modalities of image are shown reprojected here in a rendering

Aligning these two modalities is a difficult task even with overlap. Cross modal-

ity matching is inherently difficult because texture and edges in one modality may have

no counterpart in other modalities. The problem is further complicated by the lack of

overlap between the two scenes, a dynamic environment, and different resolutions spa-

tially and temporally. Both systems were operated for extended periods of time in an

environment with no internet access, and as a result clock drift affects their temporal

alignment. Dropped frames and non uniform frame rates further complicates temporal

alignment of sequences.

To overcome these limitations I leverage the geometry and physical configuration

of the two systems, as well as the scene layout to align the 3D coordinate systems of

each sensor. Temporal alignment in both modalities is done by calculating a time offset

and matching frames based on histogram binning. This allows for a common temporal

and spatial coordinate system and the reprojection of these two image modalities.

The common scale and alignment of the reprojection allows me to create real

time Virtual Reality (VR) visualizations of the conditions around the ship. The tech-

nique allows for video streams from each camera to be overlaid on corresponding real
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scale geometry. A Head Mounted Display (HMD) provides a wearer with a real sense

of scale, intuitive control and unprecedented interaction with data from the two cam-

era systems. This system could help provide people aboard vessels like this to make

informed decisions with a more complete understanding of the environment around

the ship. The same system can be used for education and outreach purposes as well,

allowing people from across the planet to virtually explore the Arctic.

7.2 Related Works

There are many works related to using imagery of different modalities for a wide

number of tasks. In this Chapter I use both optical band stereo and omnidirectional

long wave infrared, with applications to virtual reality, and in this section I will focus

on a few related works with applications of cross modality matching, 3D calibration

and alignment, and virtual reality.

Image based matching between modalities is a difficult task, and a number

of works have attempted to solve this problem using different schemes, [102] used

RANSAC based trajectory-to-trajectory matching for sensor fusion. [22] approximate

the shape of the targets and align two video sequences via affine transformation. Many

techniques have attempted to match thermal and visible images of faces [55, 23, 88].

Unlike these works these sensors are quite spatially distant from one another, and have

predominantly unshared fields of view.

A number of works have developed techniques for calibrating cameras of dif-

ferent modalities together. Many of these works use custom built calibration objects.

[106] and [50] have cut a calibration pattern into the surface of a board to create ther-

mal gradient. Other works have used grids of wire [113], and light bulbs [112, 34],

which generate heat to use for calibration. By calibrating the cameras with a cooled

calibration board [58] fuse images from different modalities on a small baseline. Unlike

these works, this calibration and 3D alignment approach uses scene alignment, and

was performed asynchronously.
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Virtual Reality systems have been developed for telepresence[31], therapy[69],

surgical training[47], and teleoperation of vehicles[59]. Head Mounted Displays have

been incorporated into an augmented reality system aboard the F-35 aircraft [63]. The

system I have developed has potential applications in the operation and teleoperation

of vessels in ice covered waters. It combines video feeds in different modalities from

different areas of a 3D scene and allows the user to view them in a geometrically

accurate way.

7.3 Methods

To build a unified VR application that integrates both camera systems, I find

geometric reprojections of the different images, and align these models. The image

sequences themselves are temporally aligned so that sequences are matched on a frame

level. In this section I will discuss the methods for calibration, reprojection, spatial

alignment, and temporal alignment. These techniques are aimed to realistically align

the differing modalities of image to facilitate an immersive, and useful VR application.

7.3.1 Calibration Using the Horizon

The PSITRES camera system was calibrated using Zhang’s method [119], and

therefore its projection matrices are known, however the FIRSTNavy system does not

easily conform to the pinhole model of projection, and furthermore the configuration

and scale of its viewing area means typical calibration techniques are ill suited. The

camera system has a 360◦ FOV in the horizontal image axis, and an 18◦ FOV verti-

cally. This means I can model the projection spherically, with images projected from

a segment of a sphere centered at the sensor with arbitrary radius. This segment is

defined for every azimuth angle between a minimum and maximum angle of elevation.

These angles, φmin and φmax are however unknown. To solve for these angles I assume

a uniform pixel pitch in both the x and y dimensions of the image. The size of the
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image is 7200x576 so

Pitchx = 360◦/7200

Pitchy = 18◦/576

Where Pitchx and Pitchy are the angle pixel pitch in the horizontal and vertical

direction respectively. Using these pixel pitch values correspondences between the

scene and the images can be used to relate objects in the scene to their projection.

By associating known scene objects with their projection I can fix φmin and

φmax, to do this I use the horizon. I computed Sobel edge image [91] for 4413 images

and summed the result to find consistent scene edges. While it appears faint in a given

image, the horizon stays consistent, because the sensor itself is gimbal stabilized. I

found a common edge at yh = 40 pixels. The angle of declination to the horizon can

be calculated by

d ≈ 3.57
√
h (7.1)

where d is the distance to the horizon in km, h is the height in meters [114]. The angle

of declination to the horizon is therefore

φdec = −1 ∗ arctan (h/d) (7.2)

Using this angle of declination I can solve for φmin and φmax

φmin = φdec − ((576− yh) · Pitchy

φmax = Pitchy · yh + φdec

This allows for scene to pixel correspondences and is used for reprojecting the images

discussed in the next section.

7.3.2 IR Reprojection

Visualizing the 360◦ images on a flat screen is akin to an extreme fish eye

effect, and scene motion is unintuitive. To facilitate realtime playback in a manner

that preserves geometry, I have generated a 3D mesh on which to apply imagery from
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the IR system. I present techniques for generating this mesh including the vertex

locations, normals, and texture coordinates. I have developed a planar reprojection,

and corresponding 3D mesh that follows naturally from the camera configuration. To

reproject the images I define a UV texture parameterization with the mesh, allowing

me to directly apply the images as texture.

Intuitively the planar reprojection is the projection of the images onto a plane

at sea level. This is especially useful because it relates the images to real scale, and the

projected images closely match the real world scene for objects near sea level (which is

most of the scene). With the sensor at the origin, I can model sea level as a plane at

z = −h with surface normal [0, 0, 1]. To generate the planar mesh I uniformly sample

−π/2 ≤ θ ≤ 3π/2 and φmin ≤ φ ≤ φdec using polar coordinates with R = 1. This

allows us to tune the polygon count of the mesh by adjusting the sampling of θ and

φ, allowing me to adjust the quality and computational load. This gives a set of unit

vectors from the sensor to the sea level plane for points on the image ranging to the

horizon. Vertices in the model are the intersection of these vectors with the sea level

plane computed by

i = t ·R (7.3)

where

t = ((Cp ·N)/(R ·N) (7.4)

and Cp is the plane center [0, 0,−z], N is the plane normal [0, 0, 1], R is the ray

direction. Note that this is a specific case of ray plane intersection with ray origins at

the global origin. Normalized texture coordinates are computed ((θ + π/2)/2π, (φ −

φmin/(φmax−φmin)). I define faces by explicitly indexing vertices and creating a series

of upper an lower triangle faces connecting each vertex to its neighbors. This mesh

provides a geometric canvases onto which the images can be overlaid using texture

mapping based on the UV parameters.
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7.3.3 PSITRES Reprojection

The PSITRES camera system uses calibrated stereo, capable of producing very

high polygon count 3D meshes. While directly integrating these meshes seems intuitive

at first, I advocate a planar reprojection of PSITRES imagery in this work for a number

of reasons. Reconstructing each mesh is very time consuming, and takes roughly 2-5

minutes with the low texture stereo techniques outlined in [83]. This is time prohibitive

for a real time application. Furthermore, using a low polygon reprojection means it

is possible to maintain a higher framerate in the VR application, which is critical for

reducing simulation sickness and maximizing user comfort [107].

I do not ignore 3D information however, instead I advocate an offline approach

to ensure geometrically accurate reprojection. To do this I use stereo information to

identify the water and ice surface, model the surface, and reproject the images on a

generated mesh. Since PSITRES looks obliquely at a patch of ice and water adjacent

to the ship, the scene is typically quite planar with most of the ice lying withing a few

centimeters of the water surface. I took 100 stereo pairs captured by the PSITRES

system sampled over the course of 6 weeks of its deployment during the ARKXXVII/3

cruise. I reconstructed each pair, and fit a plane to the resulting point clouds. To do

this I perform a Principal Component Analysis (PCA) of the resulting point clouds,

and take the three dimensional mean as the plane origin.

With a mean plane I can generate a mesh based on the projection using a ray

tracing technique. This is similar to the technique for generating the planar mesh in

section 7.3.2, but instead of using a spherical projection I now use camera calibration

parameters directly. For xi uniformly sampled from 1 to the image width and yi sample

from 1 to the image height. I generate rays Vi by

Vi = C0 + t · β

norm(β)
(7.5)

where C0 is coordinates of the camera center, and

β = R′ ·A−1 · [xi, yi, 1] (7.6)
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where A is the camera matrix, and R is the camera rotation matrix determined from

stereo calibration. These rays are then intersected with the 3D plane by substituting

solving P from the plane equation

P · n+ d = 0 (7.7)

with Vi. Where P is the plane origin, n the plane normal and d is a constant. These

intersection points become the vertex coordinates of the 3D mesh, with vertex normal n

defined by the scene plane, and [xi, yi] serving as UV coordinates for texture mapping.

7.3.4 Temporal Alignment

While the goal of this technique is to work towards a real time system with

the potential to operate on board a vessel while underway, development and testing

necessarily happened afterwards with prerecorded data. In development I have worked

towards building a system that could operate with video or image streams over the

ship’s network. In testing I work with prerecorded data that is sampled at different

resolution spatially and temporally. While both camera systems record a timestamp,

clock drift means that timestamps alone cannot be used. Temporally aligning the two

modalities is further complicated by the fact that the area inside the closest extent

of the infrared camera (the area in which PSITRES’s field of view is contained) is

very dynamic. This is the region where the ship breaks and moves ice. The scene

undergoes considerable change between the time it exits the field of view of the IR

camera system and enters into the field of view of PSITRES. There is also a timezone

change between the recorded timestamps, which was noted, but in conjunction with

the other problems made searching harder. Dropped frames and varying framerate

further complicates aligning sequences. I decompose the problem into two steps, that

of finding a time offset, and of frame matching between the modalities.

To find the time offset between images captured by both systems I use images

from the center camera of PSITRES, which operated at 1 fps for the ARK XXVII/3

cruise. This camera used a 3.9mm lens compared to the 8mm lenses on the stereo
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Figure 7.2: A histogram used for aligning the two sequences of images. The vertical
axis shows IR image frames matched to optical images on the horizontal axis (and
therefore the number of optical frames to repeat)

camera, meaning a much wider field of view which in turn more closely matches the

FIRSTNavy system. To facilitate a more direct comparison I used a small patch of

the Infrared system corresponding to a 40◦ wedge from the center of the ship to the

port side. I manually compared patches of open water and different ice types in both

modalities to facilitate minute scale alignment. Fine grain or second scale alignment

was done by manually tracking ice features visible in both modalities. This was done

by observing distinctive melt ponds and ridges. The result was an approximately 7.5

minute offset for aligning sequences.

Matching sequences of frames is accomplished by computing a single scalar for

each adjusted timestamp (similar to Unix epoch time). Frame level matching can then

done by computing a histogram with the bin values of the the scalar times of the

lower framerate optical camera. Figure 7.2 shows a generated histogram for a sequence

approximately 20 minutes in length. The counts of the bins correspond to the number

of times these frames must be repeated for each corresponding frame of IR imagery. In

this way dropped frames are simply repeated 0 times and ignored in the other modality.

The result are synchronized sequences with drops occurring in both modalities, which

results in jumps in the video, but consistent playback framerate and synchronization

between both feeds.

113



7.3.5 Spatial Alignment

So far I have discussed each camera system and its 3D reprojection indepen-

dently, but in order to facilitate a cohesive Virtual Reality application I must spatially

align the coordinate systems of both sensors. This means I must find [Rinter|Tinter], or

the rotation Rinter and translation Tinter from the FIRSTNavy system to PSITRES.

Thus 3D points in the PSITRES coordinate system can be mapped to their correct

position relative the the FIRSTNavy system by

PIR = (Rinter · Pstereo) + T (7.8)

where PIR and Pstereo are 3D points in the IR system and PSITRES respectively. To

solve for Rinter and Tinter, I again leverage the known configurations of the two systems.

One can directly observe Tinter by finding the left camera of PSITRES in the IR

coordinate system. To do this I use a 3D model of the Polarstern. I made this model

using Structure From Motion (SFM) reconstruction that from images I captured by

flying around the ship in a helicopter with a DSLR camera during the ARK XXVII/3

cruise. I used the freely available Autodesk Memento software to produce the original

model, which was subsequently aligned to the axes and centered at the FIRSTNavy

system. While SFM does not produce metric scale reconstructions, technical drawings

of the ship allow for the model to be scaled according to real units. A uniform scale

factor was computed by taking multiple measurements of the model and comparing

them to known values of the ship’s beam and overall length, and taking the mean

of the sampled values. Scaling the entire model by this factor gives a model in the

same metric scale as the IR and stereo models. I manually identified approximately 20

vertices belonging to the left camera housing of PSITRES in this model, and take the

centroid of these points to be location of the origin of the left camera, and therefore

Tinter.

ComputingRinter is more complicated. While the mounting system for PSITRES

is rigid, with a set angle of declination, and a set vergence angle between the two

cameras, in practice the cameras themselves are mounted inside their weatherproof
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Figure 7.3: The scaled axis aligned SFM reconstruction of the RV Polarstern

housings by hand. This means there can be small rotations in multiple axes. As the

stereo model is a mean plane generated from reconstruction, it represents a plane near

sea level, which is an xy plane in the coordinate system. I use the known angles as a

starting point and solve for a best rotation matrix to align the mean stereo plane to

the sea level plane. To do this I create a rotation matrix Rbase which is created using

the known angle of declination and vergence from the PSITRES mounts by

Rbase = EulerToRot(φc, 0, θc) (7.9)

where φc is the declination angle of camera mount, and θc is the angle relative to

forward from the vergence angle of the camera mount, and the function EulertoRot

converts from Euler angles to a rotation matrix. This matrix Rbase only roughly aligns

the two planes however, and the value of θc has no affect on the plane alignment as

this rotates points within the z axis, parallel to sea level. To precisely align the two

planes I find

arg max
φd,ψd

((EulerToRot(φd, ψd, θc) · nstereo) · [0, 0, 1]) (7.10)
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Figure 7.4: Optimizing φc and ψc using cosine similarity

This effectively maximizes the cosine similarity with the sea level plane normal. To

find φd and ψd I bind the search to a narrow wedge of 25◦ in both directions around φc

to compute φd. I similarly search a 25◦ wedge in both directions around 0 to compute

ψd . I do this by sampling 1000 values for φc and ψc in steps of 0.05◦, as shown in

Figure 7.4. Thus the final rotation matrix becomes

Rinter = EulerToRot(φd, ψd, θc) (7.11)

and the cosine similarity between the sea level plane and the rotated stereo plane is in

excess of 99.99%. The resulting spatial alignment is shown in Figure 7.1.

7.4 Experimental Verification

In this section I will verify the alignment of the two camera systems using

metrics that are independent of those used to align the systems in the first place. This

means I will not use the plane normal similarity, as this was maximized in the course
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of alignment. The planes can be compared in their position however as this is purely a

function of the scene depth and the translation T which was computed by other means.

Additionally I can compare projected motion vectors, because the reprojections should

ensure a common coordinate system.

7.4.1 Plane Offset

The transformation [Rinter|Tinter] should align the mean plane mesh and sea level

plane, but the Translation Tinter was only computed using the apparent position of the

camera housing in the 3D ship model. To evaluate the transformation, I compare

the average distance between the two planes over the extent of the stereo model. I

computed point plane distance for more than 2000 vertices and arrived at mean distance

of 3.4 meters or 13.33% of the total distance to the plane.

This number is somewhat high, however there are a number of compounding

factors that contribute to it. The 3D model of the ship used for measurement is

somewhat noisy, and the PSITRES camera system in this model is a very small piece

of the model as a whole. Furthermore, the sea level plane was derived from technical

drawings of the ship, and in reality is not a constant value, as the draft changes with

ballast, fuel weight and a number of other factors. Lastly the stereo plane represents an

average reconstruction of scenes with ice, not just water and this affects the estimated

position of the plane relative to the sensor. The displacement of these two planes is not

apparent, and far less important than the orientation of the plane from the perspective

of a user of the VR system.

7.4.2 Projected Motion Vectors

I further verify the alignment by looking at motion. Projected motion from the

images in both modalities should be the same if the alignment is accurate. To compare

projected motion I can compare motion vectors from tracking in both modalites. To

do this I use sequences of images in both modalities with relatively uniform motion.

In each modality I track points between consecutive images using SIFT matching [66].
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Figure 7.5: A sampling of projected motion and mean motion vector for the IR and
stereo cameras

These vectors can then be projected in the same way as the meshes in sections 7.3.2

and 7.3.3.

Motion tracking in the infrared modality is less straightforward than in the

optical band images from PSITRES. The images are first masked to eliminate parts of

the ship which can obfuscate tracking. To facilitate faster more dense motion tracking I

first split the frame into 4 independent images, and place a threshold τ on the maximum

distance between matches from frame to frame. For the experiment below I use a value

of τ = 15 pixels.

To compare motion vectors I select a temporally aligned sequence of 2544 IR

images and the corresponding 150 visible images from the left stereo camera. I compute

correspondences via SIFT matching between consecutive frames in both modalities, and

The resulting correspondences are then reprojected into the scene as shown in figure

7.5

While the camera systems capture at different framerates it is possible to com-

pare the orientation of these projected motion vectors. To do this I average vectors

over the entire sequence and use cosine similarity to compare the vectors. The result is

a 91.81% similarity. These averaged motions vector could also be used to further opti-

mize the rotation matrix in section 7.3.5, as this error metric is more directly affected

the θc term, which was not used in optimization. I have however not done so for the

purposes of this work, to include it here as a means of validation.
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Figure 7.6: A) An example view through the HMD looking at both the planar thermal
and stereo models B) A top down perspective from the VR app

7.5 Virtual Reality Application

I have used these alignment and reprojection techniques to develop a VR ap-

plication using the Unreal Engine 4. The application allows a user to move around

in a real scale 3D space and observe the reprojected imagery in a novel and intuitive

ways. The infrared images have been colormapped to aid in visualization and enhance

the aesthetics. The real benefit of the application is the ability to move around in 3

dimensions seamlessly. Users are not limited to the view from the sensors, and can

actually fly around in any direction and generate new views. If an interesting object in

the scene is identified, for example a polar bear, the user can fly out and watch it. The

user can fly straight up and view a mixed modality bird’s eye view of the area around

the ship as seen in Fig 7.6.

The Unreal Engine has a powerful set of tools to allow us to build an application

that works seamlessly with a variety of display and interface hardware. The Unreal

Engine handles lighting, rendering, movement, and peripheral support, greatly accel-

erating development time. Using the Unreal Engine means that the application readily

ports to different head mounted displays and natively supports a variety of common

control schemes. I have tested the application with a standard HD monitor, and the

Oculus Rift DK2, The Oculus Rift CV1, and the HTC Vive using either a keyboard

and mouse, or a gamepad.

The Unreal Engine supports video textures in the form of both pre-recorded

video files and video streams from across a local network or the internet. In a real
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Figure 7.7: The application I have constructed supports both head mounted displays
and traditional monitors as well as a variety of input devices,

world deployment this system would use networked video streams from each sensor

across the ship network, which means little modification would be needed to the offline

version of this application. I have experimented with video streams and give results

below.

This application testifies to the above alignment and reprojection techniques.

In Figure 7.6 you can see a lead (a linear area of open water in an expanse of ice) which

extends from the stereo reprojection into the infrared reprojection. I have developed

the application to be easily extendable, and using the Unreal Engine means it is readily

adaptable to different computing environments.

7.5.1 Evaluation

To evaluate the application I have compared several objective metrics related

to performance and I have conducted a user evaluation with a small board of 5 experts

in the fields of sea ice and biological science, ship’s crew, thermal imaging experts and

navigators. Quantitative evaluation was designed to evaluate the real time operation
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and feasibility of the application in a simulated environment.

The application runs on a variety of displays ranging from traditional 2D moni-

tors to a range of consumer HMD’s. For evaluation I have used a portable workstation

computer with an Intel Core i7 6700K, and Nvidia GTX 980. I have tested the ap-

plication with the Oculus Rift DK2, The Oculus Rift CV1, and the HTC Vive. The

application works at maximum resolution and operates at the maximum supported

framerate of each device. Furthermore I have run the application using video feeds

across a wired gigabit network, and it used between 1.5% and 5% of the available

bandwidth on a single connection, with the application playing the video stream at 5

times the speed of recording.

To evaluate the efficacy of the system from a user standpoint I had each member

of the board of experts look at static 2D images as well as their VR projections. Users

were given 45 seconds to identify animals in the scene and quantify ice coverage and

maximum floe length. The users were told they were not looking at the same images,

however they were presented with mirrored reprojections. Every user preferred the VR

application, and on average spotted more animals. Distance estimates varied greatly

in both setups, indicating an area for possible improvement.

7.6 Conclusion

In this chapter I have presented a framework for multimodal virtual reality

visualization using images captured from 360◦ thermal camera and a optical band

stereo system. I have developed a system that unifies imagery from these very different

camera systems into a single VR application which allows users a novel means of

viewing imagery. Such a system could be used by those onboard a vessel in ice covered

waters to ensure safe passage for the vessel as well as the environment and animals

around it. The application allows for video streams from both camera systems to be

reprojected in real time in a geometrically accurate way preserving scale.

To do this I have spatially aligned the coordinate systems of both sensors. This

was done by leveraging the geometry of sensors, and the environment around the ship.
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I have created 3D models to overlay images directly onto the models as texture. This

allows for video streams to be applied directly to the model, with minimal overhead,

ensuring a geometrically accurate reprojection in real time. I have combined these

aligned reprojections in Virtual reality application using the Unreal Engine 4, which

enables users freedom to move around in 3D and view the reprojected images from

different perspectives.

This application was built to be readily deployable in a real environment on

a ship, and functions with video streams across a network, simulating its potential

operating environment. The VR application runs exceptionally smoothly, and works

with a variety of common control schemes, ensuring that a user can operate the system

with minimal instruction. This application allows for users to view conditions around

the ship in every direction, and combines visible and thermal imaging.

7.7 Code

Code fore reprojection and mesh generation for both imaging platforms can be

found at https://github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code/tree/

master/multiModalReproject. This code module will generate mesh models in the

same coordinate systems which are suitable for import into Virtual Reality or rendering.
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Chapter 8

GEOSPATIAL DATA IN VIRTUAL REALITY

Recent consumer Virtual Reality (VR) systems have enabled development of

many new VR applications, allowing for these applications to reach a wider user base

than ever before. New head mounted displays (HMD) are high resolution, lightweight,

and have been built for mass consumption by gamers. Game developers have put

considerable effort into 3D navigation, user interfaces, and interaction and have made

good headway in VR development. The technology developed for immersive VR gaming

in 3D environments has far ranging applications outside of video games, and in Chapter

I will demonstrate applications of geospatial data visualization using gaming hardware

and game development software.

Researchers studying polar environments use geospatial data of many different

types including remote sensing data from satelite. In this chapter I will discuss the

development and use of virtual reality for geospatial data. I will discuss a few different

schemes for map and model generation, and how interaction in VR can be handled. I

will draw attention to some advantages VR.

8.1 Background

With the release of the Oculus Rift and HTC Vive in Spring of 2016, it has been

been dubbed the year of VR by gaming and news outlets [70, 1]. The hardware is still

expensive by consumer standards, but it is widely available, and for the first time, there

is a viable platform for developing VR software with mass market capabilities. While

the hardware has been marketed as a a gaming platform, there is an increasing push for

non-gaming applications on multiple platforms. Oculus has a variety of applications
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and ”experiences” on their platform store, and the newly launched Viveport is an app

store for VR content that does not fit the mold of a game.

Many of these applications have been produced using game development engines

like Unity, or the Unreal Engine 4. These engines provide a framework for content

development and creation. The rise of 3D games has led to a plethora of advances

in real time graphics capabilities including techniques for ambient occlusion [110] and

near real time motion capture [98]. Using game engines allows for developers to take

advantage of many developments and optimization efforts without re-implementing

from scratch. Furthermore, game engines handle movement, physics, and common

schemes for interaction in 3D. In this work, I will describe my workflow for developing

scientific visualization VR apps with the Unreal Engine 4.

8.2 Methods

In this section I discuss the techniques used to develop Virtual Reality ap-

plications for scientific visualization. This chapter does not aim to be a tutorial or

instruction book on game development, but instead focuses on elements of develop-

ment that make geospatial and scientific applications unique. These techniques are

focused on generating models and corresponding texture that can be easily imported

and utilized by game engines, which in turn, can be rapidly converted into virtual

reality applications.

Game engines have utilized 3D mesh objects since the 1990s, and modern games

consist of hundreds of thousands of polygons on screen at a given time. The realtime

graphics pipeline for 3D games is well suited for 3D meshes with UV texture parameter-

ization with associated materials and textures. By inserting purpose-built 3D meshes

and associated output textures, I can create dynamic VR models, and allow for natural

observation and more intuitive physical interaction.

124



8.2.1 Reconstruction

Reconstructions are commonly used in many geospatial applications, with Li-

DAR and photogrammetric (image based reconstructions including SFM) reconstruc-

tions increasingly becoming more frequent. Visualizing these models using conventional

means is undesirable because 3D viewing applications can be difficult to use, and each

has a unique, and sometimes unintuitive user interface. By comparison, the use of VR

headsets allows for not only an immersive stereo view of the scene, but motion par-

alax and natural movement which provides an intuitive sense of scale and ease of use.

Creating simple VR applications with reconstructed models is straightforward using

the Unreal engine. Any reconstructed point cloud simply needs to be converted to a

mesh and imported into the engine as either an FBX or OBJ file, and then it can be

directly imported and added to the 3D viewport. The Meshlab utility [25] provides an

excellent set of tools for surface fitting 3D points and means of converting between file

formats, as well as many other tools for 3D modeling

In Fig. 8.1, I show a screenshot from a VR app that contains models created

using a low cost Microsoft Kinect, and a more sophisticated LiDAR setup. The Kinect

SDK provides a way to directly export the mesh files. The LiDAR system outputs

point clouds, and I have used Poisson reconstruction [61] to fit a mesh. Both scans

were simplified using quadratic edge collapse decimation [52] to reduce to polygon count

to maintain high frame rate in VR. Image-based reconstruction techniques can be used

for texture mapping, resulting in more realistic models in VR. Many commercially

available photogrammetry applications will export fully texturemapped meshes, and

these can be directly imported into the engine. I utilize texture mapping by projecting

3D points onto an image frame to compute UV parameters in my own reconstruction

works. Fig. 8.2 shows an application using models created using both commercial SFM

applications (Autodesk 123D Catch) and the low texture stereo approach [83].
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Figure 8.1: A screenshot of a VR application with textureless models created using a
Microsoft Kinect and a lidar scan.

Figure 8.2: Screenshot from a VR application with models created using SFM and
stereo, as well as atmospheric particle effects.
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8.2.2 Mesh Generation

While reconstructions are a natural fit for VR applications, There are many

other types of images that translate nicely into VR. While any 2D image can be rep-

resented on a simple rectangular mesh, there is little benefit to viewing these in VR

over traditional displays. I advocate a technique for mesh generation to create geo-

metric canvases on which image data of many types can be reprojected and visualized.

To create these meshes, I create parametric meshes programmatically and generate

vertices, faces, vertex normals, and texture parameters based on image data. This

technique has wide ranging applications, and is similar to the mesh generation used

in chapter 7. In this section I will illustrate this approach using geospatial data. I

have developed applications with data accquired from NASA’s Moderate Resolution

Imaging Spectroradiometer, or MODIS [72], as well as the Brittish Antarctic Survey’s

Bedmap2 project[39], as well as artistic rendering.

There are two satellites with MODIS instruments aboard that collectively image

the entire globe every 1-2 days. MODIS captures many spectral bands that pertain

to atmospheric, surface, and oceanographic properties of the planet, and here I will

focus on two, namely surface temperature and an index of vegetation reflection. The

Bedmap2 data combines surveys and remote sensing data from many different sources

including MODIS. The data itself has been compiled to illustrate surface elevation,

ice-thickness and the seafloor and subglacial bed elevation.

MODIS and Bedmap2 data, are georeferenced, meaning there is a mapping

between pixel coordinates in the image to real geographic position, and I use this

mapping to generate meshes and for texture mapping. For geospatial data, projection

is an important variable, and I will discuss three that I have used for VR. I have

developed a VR globe, a 3D analog of Web Mercator, as well as a 3D south polar

stereographic projection. I will discuss generation of the globe first as it is simpler,

and then extend the techniques for 3D Web Mercator illustrating the technique with a

map of the conterminous United States. I will conclude by illustrating the technique on

a multi-layer topographic map of Antarctica that allows users to visualize ice thickness
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and underlying rock.

8.2.2.1 Globe Generation

To generate a globe I will model the planet as a sphere which I will program-

matically generate. I uniformly sample 0 ≤ θ ≤ 2π and −π
2
≤ φ ≤ π

2
in steps of δ. The

choice of δ allows me to tune the polygon count of the resulting mesh, for higher quality

or to maintain higher framerate in VR. Vertices are the set of all points P = [θ, φ, 1]

in polar coordinates. The UV coordinates for each vertex are normalized by

[U, V ] = [1− x

2π
, 1−

y + π
2

π
] (8.1)

Since this is a unit sphere, the vertex normal is the vertex location for each point. I

explicitly index faces by creating a set of upper and lower triangles from the uniformly

sampled points. This completes the globe model, and I can apply any geospatial images

as texture, as long as they are projected in web Mercator for the entire globe. Fig. 8.3

shows the model texture mapped with MODIS imagery . This model was made using

δ = 5◦, and contains fewer than 3000 vertices, which is of satisfactory resolution and

minimally intensive for computation.

8.2.2.2 Web Mercator Map of Conterminous USA

To generate 3D web Mercator maps I have used topographic data from the

National Geophysical Data Center[74]. I first generate a binary mask for the area

in the conterminous, by rasterizing shapefiles. This allows me to generate vertices

within the bounds of the USA. To generate the mesh I again uniformly sample points,

but this time I sample Latmin ≤ Lat ≤ Latmax and Lonmin ≤ Lon ≤ Lonmax where

Latmax is the maximum latitude, Lonmin is the minimum longitude etc. These values

are obtained by padding a small area (one degree) around the points in the shapefile.

Points are uniformly sampled in steps of δ degrees.

For each point, I find the height by extracting the value from the topographic

map, and a binary value indicating whether the point is within the bounds of the
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Figure 8.3: Colormapped MODIS derived mean monthly surface temperature imagery
applied to the generated globe.

USA. Since the units of our map are in degrees, I must scale the height, which is in

meters, and for this work I have chosen to scale the values by 0.001. This means the

scale of the model is 1unit
1◦Longitude

in the x dimension, 1unit
1◦Latitude

in the y dimension and

1unit
1000m

in the z dimension. Normals are computed across the whole set of vertices using

the local neighborhood of points[53]. I construct faces by again indexing triangular

faces over the grid of points, but only including faces where all 3 vertices are valid

points within the US. Texture mapping uses the exact same normalization scheme as

the globe, because this allows me to use the same geoscale data for multiple models

in the same application. Fig. 8.4 shows a model generated with approximately 36,000

vertices.

8.2.2.3 Polar Stereographic Map of Antarctica

Using the Bedmap2 dataset I have constructed a multi-layer map of Antarctica

which includes the bed and surface layers. To do this I have created a mesh which

includes multiple materials, to allow for multiple different textures to be applied to
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Figure 8.4: The generated model of the conterminous USA with overlaid MODIS data

overlapping 3D geometry. For meshes with multiple layers each layer is grouped, and

consists of its own vertices, faces, normals, and UV parameters. I generate this mesh

by iterating over both images simultaneosuly and creating two sets of vertices simulta-

neously. The process is carried out identically to the previous two examples, but with

two maps and two sets of mesh parameters. I scale the height of both components by

approximately 80 times to exaggerate vertical featurers. Both input map layers are

colormapped to apply as texture. To visualize both the ice surface and underlying

topography I add transparency to the surface layer. Figure 8.5 shows a rendering of

the mesh with α = 0.3 for the transparency of the surface layer.

Figure 8.5: The generated mesh of Antarctica showing a semi-transparent surface layer,
and the underlying bed
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8.2.3 Application Development

After creating the mesh models I save them as OBJ files and import them di-

rectly into the Unreal Engine. The Unreal Engine supports complex dynamic materials,

and while it is beyond the scope of this work to go in depth here, I will discuss some

specific use cases with geospatial data. With the meshes I have created I can apply

any geospatial images with the proper projection, and I can even show time series data

by using media textures.

The Unreal Engine’s media textures allow for videos to be applied to materials.

The applications with MODIS surface temperature band and vegetation reflectance

indices show the progression of seasons and climate trends. Videos can be played

across a network and via streams, opening up possibilites for real time applications with

live image data. Furthermore, any image stream can be used with the same texture

mapping, meaning any image processing step can be used so long as it preserves image

geometry, for example colormapping which has been used extensively here. Detection

and classification results can be overlaid directly on images and displayed graphically

with no issue. While the Unreal Engine offers many options for advanced shaders in the

material properties, often with image data, a simple emmisive color is sufficient, with

no base or specular component. The intent of designing visualizations is to present

the image data in a clear way, and this has the added benefit of reducing the cost of

computing scene illumination.

For the map of Antarctica, I have used two materials with the surface layer tran-

sitioning from mostly transparent to mostly opaque over the course of a few seconds.

To achieve this effect I have utilized the blueprint scripting built into the material edi-

tor of the Unreal Engine. A sine wave coupled with simple arithmetic operators slowly

oscillates the α value between 0.3 and 0.7. The main texture is still purely emmissive,

and only the opacity changes.
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8.2.4 Interaction

VR presents new methods for not only observing data, but new means of in-

teracting and manipulating data in 3D. The Unreal Engine supports a wide array of

peripherals, and common locomotion schemes. Standard keyboard and controller in-

puts work with no need to configure anything. These schemes are relatively intuitive

and users with any experience with games can operate the controls with minimal in-

struction. Motion controls allow for even more natural interaction and manipulation

of 3D data. With motion controls like those of the HTC Vive, or the Oculus touch,

users can physically grab and move meshes in the VR application similar to how they

would grab a real object. This allows users to do things like view a region on the globe

by spinning it, or looking closely at a specific part of the map by bringing it close to

their face. This control scheme is now supported by a free plugin in the Unreal Engine,

making it easy to implement.

Motion controls allow users to manipulate two objects at once using each hand,

and I have leveraged this fact by building a scale that can be used to measure ice

thickness on the Antarctica map by using it as a ruler. Users can grab the map mesh

and the scale mesh in each hand and measure any vertical component directly. The

meshes are not physical, so the scale can pass through the map with no issue.

8.3 Example applications

I have developed many VR applications with these techniques, ranging from

visualizations of simple textureless meshes, to interactive motion controlled visualiza-

tions with multiple media textures playing back simultaneously. The Unreal Engine

implements many features that would be time consuming for researchers to implement

on their own. I use VR as an integral part of prototyping and visualization, and have

developed applications with a wide range of data from thermal images collected in the

Arctic, to 3D data from MRI and stereo images accquired in vivo by a stereo laparo-

scope. In the examples below I have used the Unreal Engine 4 to create applications

that support motion controls, allowing users to grab and manipulate the meshes in
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3D. In these application the motion controllers are rendered as hands with gripping

animation when the user pressed the trigger to grab.

I have constructed an applications using two copies of the generated globe mesh

that allows a user to observe timeseries data recorded by MODIS sensors. I have

colormapped the surface temperature and vegetation index bands for the period of

2000 to 2013. In this application, one month plays back in a single second, and a user

can walk around, grab, hold, and even throw the meshes. The walls show the current

date for the playback, and there is a legend showing what the colormapping means in

real units. Fig. 8.6 shows an app with two globe meshes with both bands. This app

allows for visualizing seasonal change, and you can see the effect of this on vegetation

simultaneously. MODIS covers the entire earth, including polar regions. So it possible

to view the temperature in Antarctica in this app as shown in Figure 8.7.

The time series playback allows for data visualization much like NOAA’s Science

on a Sphere project, which uses a series of projectors to display geospatial data on

a 6 foot sphere, creating an interactive globe. In contrast to this system, the VR

application offers cheap space efficient visualization of similar data. Other than initial

hardware purchase and setup there is little needed in the way of physical installation

and virtually no cost. While this setup is more difficult to demo to large groups, it is

portable and can be run by anyone with the hardware to do so.

Fig. 8.8 shows the 3D web Mercator mesh with surface temperature, and it

clearly shows the effect of elevation on temperature as the area in the Rocky mountains

is significantly cooler. These meshes support map data of many different types in the

same projection. To illustrate this fact I have applied geospatial data from an Artist

that color coded river basins across the United states [96], as well as a cloud free image

of the US from NASA’s Visible Earth series[71]. In conjunction with topographic map I

have generated this allows for the users to visualize the effect of the continental divide

as shown in Figure 8.9, or the appearance of different climates across the nation as

shown in Figure 8.10.

The map of Antarctica features two layers, with transparency. The top surface
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Figure 8.6: A screenshot of the VR app with two globes showing timeseries of MODIS
data.
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Figure 8.7: A) The VR application showing surface temperature of Approximately
−60◦ in some regions of Atarctica. B) The VR application showing virtually no vege-
tation reflectance in Greenland.

Figure 8.8: A screenshot of the VR app with a 3D web Mercator map with MODIS
surface temperature overlaid.
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Figure 8.9: The 3D web Mercator map with river basins illustrated
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Figure 8.10: The 3D web Mercator map with NASA’s Visible Earth imagery overlaid

layer slowly transitions from mostly opaque to mostly transparent, and the included

scale allows users to measure ice thickness. Figure 8.11 shows this application with the

scale in use.

8.4 Conclusion

In this chapter I have presented a scheme for quickly developing geospatial Vir-

tual Reality visualization applications. Using gaming hardware and game development

engines, it is possible to rapidly build high quality applications for a variety of VR

platforms with minimal development time. I have demonstrated an approach to gener-

ating 3D meshes from map data. I have used these techniques for the development of

many applications, and have begun to use VR as part of our workflow of prototyping

and development for many projects.

Virtual Reality offers some advantages over 2D maps in that it allows for 3D

visualization in an immersive way. 3D scale is directly observable in VR, and I have

demonstrated one way of measuring vertical components using a virtual analog to
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Figure 8.11: The 3D polar stereographic map of Antarctica with the scale for measure-
ment.
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a simple ruler. VR also allows users natural means of interaction. Human beings

intuitively understand grabbing and rotating objects with their hands, and looking

around with their heads. VR is also a novel and emerging technology. People find it

exciting and are interested in trying new applications in this medium, which makes

VR a good medium for outreach and education.

8.5 Code

Example code for generating 3D mesh models of the United States and Antarc-

tica is available at https://github.com/sorensenVIMS/Scott_Sorensen_Thesis_Code/

tree/master/GIS3D. The models this code module will generate mesh models that are

suitable to be imported into Virtual Reality, or for rendering.
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Chapter 9

CONCLUSION

Polar regions are undergoing considerable change, and as human presence in

these regions increases intelligent systems are going to play an increasing role. Re-

searchers and others working in these regions need systems that support safe and eco-

logical operation. In this dissertation I have presented camera systems and algorithms

for applications in polar science. I have developed and deployed the Polar Sea Ice

Topography REconstruction System, I have presented schemes for extracting informa-

tion about the environment around an icebreaker, I have developed 3D reconstruction

approaches, and I have built 3D Virtual Reality applications.

The Polar Sea Ice Topography REconstruction System, or PSITRES, is 3D

camera system designed for long term deployment on an icebreaker. The camera system

was engineered to continuously record images from the flying deck of a ship and has

been designed to mount to a variety of different platforms. It is weatherproof and

reliable. The system and I have been deployed on three separate research expeditions,

and it has recorded large amounts of image data.

Processing this data requires fast, tractable techniques. To this end I have

developed a scheme to rapidly detect key parameters related sea ice, and a fast way

of reprojecting these features to their real world scale. These techniques have allowed

me to process millions of images and extract high level information over entire cruise

lengths.

3D reconstruction of ice using multiple view techniques is a challenging prob-

lem, and I have developed an approach that leverages shading information to improve

results. This technique has been applied to stereo and Structure From Motion recon-

struction, and improves upon existing works. I have also carried out an evaluation
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of the feasibility of reconstruction, and used the results to carry out a large scale 3D

evaluation.

To reconstruct the draft of ice floes I have used ray tracing techniques. My

approach allows for reconstruction in the presence of refraction. The approach has been

extend to handle reflection and a multi-modal camera system that leverages material

properties to reconstruct the surface and the distorted scene.

To detect polar bear habitat I have used convolutional neural networks and a

transfer learning scheme. The approach casts the problem as a multi-class labeling

problem. The deep learning approach used effectively handles the task of detecting

polar bears in thermal images as well as polar bear prints in PSITRES imagery.

I combined multiple image streams and incorporated 3D information to reproject

multi-modal imagery from cameras aboard the RV Polarstern into a VR visualization

application. The application allows users to visualize conditions around the ship in

both optical and thermal imagery. It supports video feeds over a network, and runs in

a real time, meaning it could integrate into a ship’s network with little modification.

I have also developed a framework for translating geospatial data into VR. By

generating 3D meshes from maps, I have created a variety of 3D analogs to existing

map projections. I have illustrated this technique using time series data from satellite

imagery that covers the entire planet. Additionally I have developed a VR visualization

app that allows users to observe ice thickness and underlying bedrock topography.

These techniques have been motivated by the problems of working in polar en-

vironments, and the problems researchers who study these regions face. It is my hope

that these and future algorithms allow researchers to better understand and protect

polar regions. My experience working on these problems has given me a true appreci-

ation for the Arctic, and I hope that the work itself helps preserve the environment I

have grown to love.
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