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Abstract
A new methodology for implementing nonlinear receding horizon optimization is presented, with direct appli-

cation to robot navigation in cluttered environments. The methodology combines elements from statistical learning
theory with nonlinear receding horizon schemes that use control Lyapunov functions as terminal costs, while relax-
ing the conditions on the time derivatives of the latter, based on a new result for stability of nonlinear systems with
switching dynamics. As the theoretical analysis indicates, and numerical results verify, the proposed receding hori-
zon scheme can utilize terminal costs that are not control Lyapunov functions. The resulting strategy is shown to
outperform traditional potential field-based techniques, even when additional optimization objectives are imposed,
and allows for trade-offs between performance and computational complexity.

1 Introduction

1.1 Overview
The discussion in this paper focuses on robotic systems with switching dynamics which can be expressed in the form

ẋ = fσ (x,u) , (1)

with x ∈ Rn being the state, u ∈ Rm the control input, and σ ∈ Σ ⊆ R being the index that indicates the particular
dynamics currently active. It is assumed that the system’s workspace is a set W ⊂Rn and that the system is constrained
to stay clear of a possibly disconnected region of the state space O ⊂ W which may represent areas occupied by
obstacles or sets of states that violate certain constraints. Let Q , W \O denote the remaining, admissible region of
the system’s workspace. The boundary of Q is assumed known exactly.

The problem is to design a feedback control law u = k(x) to steer to, and asymptotically stabilize the system at,
a desired state xd which for simplicity it is assumed to be the origin in Rn, along trajectories that belong in Q for all
time, and are optimal (or near optimal in the sense of [2]) in terms of some task objectives. The control law does not
have to be continuous in x, nor time-invariant, but it will be assumed to be piecewise continuous in x and continuous
in time.

Problems of this nature arise when mobile robots with limited power resources need to navigate in cluttered en-
vironments, without reliance on pre-computed motion plans. A justification for the latter requirement could be the
presence of uncertainty, either in the system dynamics or in the description of the environment, and possibly the need
for re-tasking and reconfiguration, both of which necessitate the use of real-time feedback control signals. These prob-
lems are slightly more challenging than standard robot navigation problems, particularly due to the desire for on-line
computed optimal control strategies.

The approach outlined in this paper is a blend of control Lyapunov function-based model predictive control
schemes, with navigation functions and randomized optimization algorithms. What motivated the search for a solution
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with these ingredients is the desire for real-time computation by miniature mobile robots of optimal or near-optimal
motion plans with guaranteed stability and convergence properties. Ideally, although not addressed in this paper, the
control design scheme should be robust to environment and model uncertainty. A nonlinear receding horizon architec-
ture is chosen because it allows the real-time generation of sub-optimal control laws for systems of the form (1). It has
been shown that such architectures, when combined with control Lyapunov functions (CLFs), can guarantee closed
loop asymptotic stability [3]. The motion planning nature of the task, as well as the need for a control Lyapunov
function, suggested the integration of navigation functions into the nonlinear receding horizon framework. Finally, the
role of randomized algorithms is to simplify the online optimization task, enforce some task-specific constraints, and
offer the designer a clear path to robustifying the overall architecture against model and environment uncertainty. The
latter task is part of ongoing work, and research directions along these lines are outlined in Section 6.

1.2 Contribution and related work
It has been demonstrated [4, 3, 5] that the use of control Lyapunov functions as terminal costs in receding horizon
nonlinear optimization offers closed loop stability in the infinite horizon, as well as robustness [6]. These features are
reported as improvements over earlier approaches which enforced stability by means of terminal equality constraints
[7], more so since the latter formulation has an adverse effect on computational complexity. For the unconstrained
case, it is shown [8, 6] that an appropriately long control horizon allows the terminal cost to be set to zero, although
numerical conditioning considerations may dictate that a nonzero cost is used nonetheless [3]. Practically, the solution
of nonlinear receding horizon problems requires the use of numerical optimization packages, among which non-
proprietary examples include RIOTS [9] and NTG [10].

Randomized algorithms have been suggested as a viable alternative to exact analytic or numerical optimization
techniques [11, 12]. Using randomized algorithms for control synthesis was motivated by early results on the com-
plexity of several robust stability design problems [13], and following the categorization of [14], existing approaches
fall into two groups; the first is based primarily on the Vapnik-Chervonenkis theory of statistical learning, and repre-
sentative samples include [2, 15]; the second employs sequential approximation techniques as in [14, 16, 17, 18, 19].
Part of the elegance of these randomized approaches is due to the fact that they offer explicit bounds on the number of
samples required to guarantee specific performance levels. This set of statistical learning tools have proven effective
in linear robust control design problems [12, 2].

Robot motion planning in the presence of obstacles is also an NP-hard problem [20]. To address such problems
both purely analytical [21], numerical [22], randomized [23], as well as hybrid [24] methods have been proposed, with
the latter aimed at addressing through graph search techniques the problem of local minima present in the classical
potential approach of [21]. Despite this limitation, potential fields have been particularly appealing due to their abil-
ity to provide feedback motion planning controllers, and several different solutions have been proposed to the local
minima problem [25, 26, 27, 28]. Of the latter, probably the most popular technique being the approach of navigation
functions [28], a special potential function construction which can be tuned1 so that the only minimum is the desired
configuration. From a control theoretic perspective, an additional desirable feature of a navigation function is that it
serves as a natural Lyapunov function candidate. For time-varying or switching systems, standard Lyapunov stability
conditions may impose limitations on the use of navigation functions, since the gradient of latter cannot be guaranteed
to be non-vanishing, except for trivial cases.

The technical challenge addressed in this paper is that of integrating nonlinear model predictive control, navigation
function-based motion planning, and randomized algorithms, while preserving the desirable attributes of the original
methods, such as the feedback character of the control laws, the closed loop stability, the sub-optimality of the solu-
tions, and the guaranteed constraint satisfaction. To achieve this integration, the paper suggests a new set of sufficient
conditions for asymptotic stability in switching nonlinear systems, which are relaxed compared to related results that
involve a common Lyapunov function, in the sense that the function does not need to have a negative semidefinite
time derivative. Based on this result, the stability properties of CLF-based receding horizon schemes are re-established
along the lines of the analysis in [3]. The last part of the paper’s technical discussion involves a class of randomized
algorithms used in distribution-free statistical learning methods, in order to solve the finite horizon nonlinear optimal
control problem. The method employed here falls within the class of the VC-theory based methods, with the choice
motivated by the fact that at this stage of this work uncertainty is not directly addressed. The integration of this compo-
nent relies on parameterization of the set of solutions to the model predictive control design problem, and subsequent

1Although theoretical results guarantee the existence of lower bounds for the admissible values of the tuning parameters, the tuning process
might be challenging, especially in high dimensional spaces.
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sampling of the parameter space using a number of samples sufficiently large to guarantee an approximation of the
optimal solution to a desired level of confidence.

From the theoretical standpoint, the paper contributes by relaxing the requirements on the terminal cost as they
appear in [3], and allow the class of terminal cost candidates to include a wider range of positive definite functions
—not necessarily control Lyapunov functions. From the applications standpoint, the proposed approach introduces a
new set of (randomized) optimization tools within the receding optimization framework, and links this type of control
design methodology to problems in robot navigation in the presence of constraints. In the proposed mix, the technolo-
gies involved complement each other: Navigation functions offer constrained finite horizon optimal solutions without
the explicit use of constraint conditions in optimization. The receding horizon framework alleviates the problem of
navigation function parameter tuning by enhancing the field of view compared to the “myopic” gradient descent (some
local minima can be tolerated). The randomized algorithms facilitate the implementation of receding horizon schemes
by eliminating the dependence on specialized numerical optimization libraries, and offer trade-offs between control
performance and computation speed. In addition, due to the randomized approach to the receding horizon optimiza-
tion, the resulting architecture does not rely on a particular model structure: the system dynamics just needs to be
considered in the formulation of the terminal cost function, which when constructed as a navigation function offers
a vehicle to incorporate state constraints without explicitly stating them as such during optimization. Quite recently,
a “dual,” hierarchical approach was explored [29], where state constraints are enforced at the higher level using a
model predictive scheme while collision free trajectory generation is done using navigation functions. Here, naviga-
tion functions are used as a vehicle for efficiently introducing state constraints into the receding horizon framework,
and simultaneously establishing stability for the infinite horizon.

1.3 Organization
Section 2 that follows discusses stability issues related to using navigation functions as Lyapunov functions in systems
with switching dynamics, and suggests a remedy for cases where switching is not arbitrarily fast. Section 3 integrates
navigation functions into a receding horizon control scheme in the role of terminal cost functions, and establishes the
asymptotic stability of the closed loop system by exploiting the results of the preceding section. The nonlinear opti-
mization problem is then approached from a statistical learning tool perspective in Section 4, where the computation
of probable near optimal control laws is discussed.

2 Navigation Functions and Switching Dynamics
Navigation functions have been long used in robot motion planning, and although not always explicitly used as such,
they are natural control Lyapunov function candidates. This section addresses some issues related to the application of
navigation functions for motion planning and control in systems with switching dynamics. The discussion highlights
the fact that switching system stability requires more stringent conditions which navigation functions may not readily
satisfy. It is thus deemed useful to develop alternative stability requirements, which relax some of the assumptions
placed by existing techniques. As expected, there is a trade-off, and in this case this comes in the form of restrictions
on the rate of change of the control Lyapunov function as well as on switching times.

A navigation function on ϕ : Q→ [0,1], where Q denotes the obstacle-free configuration space of a robot, is a
function that satisfies the following properties [28, 30]:

1. is smooth (or at least C2),

2. has a unique minimum at a single point qd ∈ Q,

3. is admissible (uniformly maximal) on the boundary of Q, and

4. is a Morse function (its critical points are non-degenerate).

It has been shown [31] that the function

ϕ(q) =
‖q−qd‖2

(‖q−qd‖2κ +β )1/κ
,
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where β is the product of a number of functions βi = ‖q−qi‖− ri, each representing a spherical obstacle of radius ri
centered at qi in the robot’s workspace, can be made into a navigation function for a sufficiently large value of κ > 0.
The product includes a boundary obstacle function expressed as β0 = r2

0−‖q− q0‖2, with r0 being the radius of the
robot’s spherical workspace, centered at configuration q0. The effect of increasing κ is that obstacles appear “sharper”
in the potential function, and their influence is diminished away from their boundary. The problem with increasing κ

is that the free space becomes “flatter,” gradients are small and scaling them into velocity reference commands could
become problematic, and the effect of obstacles may be felt only when the robot is too close to them.

2.1 Control via navigation functions
The idea behind potential field methods is to steer the system at hand along the direction of the negated gradient of
the navigation function. For cases where the kinematics can be trivially described by q̇ = u, this is achieved by setting
u = −∇qϕ(q). In that sense, one can consider the navigation function being used as a control Lyapunov function.
A control Lyapunov function [32] is a differentiable, positive definite and proper (radially increasing) function of the
state V : Rn→ R+ for which

inf
u

{
∂V (x)

∂x
f (x,u)

}
< 0, ∀x 6= 0 . (2)

For the case of navigation function-based feedback of the form u(q) = −∇qϕ(q), if ϕ(q) is used as a control
Lyapunov function, one obtains ∂V (q)

∂q f (q) =−‖∇qϕ(q)‖, and (2) is satisfied almost everywhere (a. e.) in Q, with the
exception of a set of measure zero containing the saddle points of the navigation function. These points might appear
as a small nuisance in the case of continuous-state feedback control, but they present a more significant challenge in
the case of discontinuous feedback, since then the system is essentially time-varying and (2) has to be strengthened in
the form [33, 34, 35]

inf
u

{
∂V (x)

∂x
f (x)

}
≤−W (x) , (3)

where W (x) is a continuous positive definite function of the state. Condition (3) in particular, cannot be satisfied
when navigation functions are used as control Lyapunov functions, unless one is prepared to exclude neighborhoods
of the saddle points. Similar stability considerations may arise in the case of time-invariant feedback stabilization of
nonholonomic systems, particularly when robustness to measurement errors is desired [36].

This motivates one to seek alternative conditions for asymptotic stability in the case of switching dynamics or
discontinuous feedback, which are relaxed compared to (3) in the sense that they do not bound the derivative of the
control Lyapunov function below another negative definite function.

2.2 Lyapunov-based extensions
This section suggest a set of conditions for asymptotic stability of switching systems for which switching intervals
lengths can be lower bounded by arbitrarily small bounds. The conditions presented allow a Lyapunov-like function to
temporarily increase in a controlled fashion along the trajectories of the switched system, if it can be ensured that by
the next switching instant the function will have been sufficiently decreased. Thus, the time derivative of this function
is no longer required to be negative definite, but in the case it is, one may allow the switching interval lengths to
collapse to zero and recover the known conditions for uniform asymptotic stability.

The conditions placed by the following proposition can be hard to verify in the general case, and therefore cannot
substitute for the classical sign definiteness inequalities. One, however, can find instances of control design problems
(as in the case of receding horizon control) when these conditions may be enforced, either constructively or in the form
of (optimization) constraints.

Definition 1 (Nonzero Interval Switching sequence). A sequence s , {(τk,σk)}∞
k=0, where σk is an index from a set

Σ ⊆ R, is a nonzero interval switching sequence if there exists an arbitrarily small τ > 0 such that τn+1− τn ≥ τ for
all n ∈ N.

UDMETR-2010-0001 4



Proposition 1. Let V (x) be a differentiable, positive definite function that is lower bounded by a class-K∞ function
θ(‖x‖). If for a class-K∞ function γ(·), within each of the switching intervals (τi,τi+1] in s

max
t∈(τi,τi+1]

{
∂V
∂x

f (x)
}

<
θ(‖x(τi)‖)
τi+1− τi

, (4)∫
τi+i

τi

∂V
∂x

f (x) dt ≤−γ(‖x(τi)‖) , (5)

then (1) is asymptotically stable at the origin.

Proof. Pick an ε > 0 and define a ball Bε , {x ∈ Rn | ‖x‖ ≤ ε} (Figure 1). On the boundary of Bε , V (x) attains
a minimum by continuity. Set Vε , minx∈∂Bε

V (x) and define Ωε to be the path connected component of the set
{x ∈ Rn | V (x) ≤ Vε}, which contains the origin. Let Vδ , Vε − θ(‖x(τi)‖) > 0 and similarly define Ωδ as the path
connected component of the set {x ∈ Rn | V (x) ≤ Vδ} containing the origin. Fit a ball Bδ inside Ωδ , by defining it
as Bδ = {x ∈ Rn | ‖x‖ ≤ minx∈∂Ωδ

‖x‖}. Now let Ωd , {x ∈ Rn | V (x) ≤ Vδ − γ(‖x(τi)‖)}. Assume that at time τi,

Figure 1: The sets defined in the proof of Proposition 1.

x(τi) ∈ Bδ . Since Bδ ⊆ Ωδ , V (x(τi)) ≤ Vδ = Vε − (τi+1− τi)d. For the evolution of V (x(t)) in t ∈ (τi,τi+1) one has
V (x(t)) = V (x(τi)) +

∫ t
τi

∂V
∂x fσ (x(τ)) dτ and due to (4), V (x(t)) ≤ V (x(τi)) + d(t − τi), where d , θ(‖x(τi)‖)

τi+1−τi
. Thus,

x(t) ∈ Ωε , for all t ∈ (τi,τi+1]. In addition, due to (5) x(τi+1) ∈ Ωδ , and an inductive argument using (4) and (5)
shows that x(τk) ∈Ωδ ⊂Ωε for all k ≥ i. Thus stability is established. Note though that the level sets of V (x) are not
necessarily invariant: even if x(τi) ∈ Ωδ , x(t) for t ∈ (τi,τi+1] is not forced to stay in Ωδ as in the case where V̇ (x) is
negative semidefinite.

Condition (5) implies the existence of a converging sequence {V
(
x(τk)

)
}, since V (x) is lower bounded by 0 away

from x = 0 and it is strictly decreasing. It follows that as k → ∞, the difference between two consecutive terms
‖V
(
x(τi)

)
−V

(
x(τi+1)

)
‖ should converge to zero. Unless limk→∞ V

(
x(τk)

)
= 0, this means that γ(‖x(τk)‖)→ 0,

without ‖x(τk)‖ → 0, which is impossible since γ(·) is a class-K∞ function. Therefore, {V
(
x(τk)

)
} → 0 as k→ ∞

which suggests that ‖x(τk)‖→ 0 when k→ ∞. As a result, (1) is asymptotically stable at the origin.

Contrary to existing asymptotic stability conditions, the ones of Proposition 1, although more relaxed, do not
appear particularly useful for they may not be verifiable in a straightforward manner: the switching sequence needs to
be known a priori, and then the function’s directional derivative has to be integrated along the system’s trajectories to
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check (5). Nonetheless, there are instances of receding horizon control design where these relaxations are applicable.
This is particularly true when the receding horizon optimization is performed in a randomized way, due to the fact
that (5) may be enforced by construction. The next section binds Proposition 1 to the CLF-based receding horizon
framework and verifies that asymptotic stability for the infinite horizon is recovered even under the relaxations of
Proposition 1.

3 Model Predictive Navigation
In this section that a function that satisfies the requirements of Proposition 1 can be used as a terminal cost in a
receding horizon scheme, to ensure stability in the infinite horizon without the need to impose additional terminal cost
constraints on the optimization process.

In finite horizon optimization, one aims to minimize the functional

JT
(
x,u(·)

)
,
∫ T

0
q
(
xu(τ;x),u(τ)

)
dτ +V

(
xu(T ;x)

)
, (6)

that quantifies the cost of flowing along a closed loop system trajectory

xu(t;x) , x+
∫ t

0
f
(
xu(τ;x),u(τ)

)
dτ , (7)

starting at x, under the control law u(τ), for a time interval in which t ∈ [0,T ]. The function V (·) in (6) is an approxi-
mation to the tail of the truncated integral compared to the infinite horizon case where

J∞

(
x,u(·)

)
,
∫

∞

0
q
(
xu(τ;x),u(τ)

)
dτ .

The integrand q : Rn×Rm → R+ is a C2 function that measures the performance of the system, by penalizing both
state and control, and just as in [3] it is assumed to satisfy

q(x,u)≥ cq(‖x‖2 +‖u‖2), x ∈ Rn, u ∈ Rm

for some cq > 0 and q(0,0) = 0, and be a convex function u 7→ q(x,u) for each x ∈ Rn.
The problem is to determine a control law that minimizes the finite horizon cost from x,

u∗T (x; ·) , argminJT
(
x,u(·)

)
,

giving rise to an optimal finite horizon trajectory
(
x∗T (t;x),u∗(t;x)

)
, for t ∈ [0,T ], when u∗(x; ·) is used in (7) to

compute x∗T (t;x) = x +
∫ T

0 f
(
x∗T (τ;x),u∗T (τ)

)
dτ . In a receding horizon strategy, one uses u∗T (t;x) for t ∈ [0,ζ ], with

ζ < T , and then recomputes u∗
(
t;x∗(ζ ,x)

)
. One issue related to this strategy is whether the sequence of finite horizon

optimal control laws u∗T (t;xk), with xk = x
(

∑
k
i=1 ζi

)
stabilizes (1) for the infinite horizon, that is for t ∈ [0,∞). For it

can be demonstrated that although J∗T (x) , JT
(
x,u∗(·)

)
can behave nicely, the closed loop system may be unstable,

particularly so in a case that combines setting V in (6) to zero with a small prediction horizon T .
Control Lyapunov functions offer a solution to the infinite horizon stability problem of receding horizon control

schemes [4, 5] when used to approximate the terminal cost within a finite horizon optimization. Although relaxed sta-
bility conditions have been suggested [6], the standard assumption for the control Lyapunov function in this framework
[3] is that it is compatible with the incremental cost q(x,u), in the following sense

inf
u(·)

(
∂V
∂x

f (x,u)+q(x,u)
)
≤ 0 . (8)

This section suggests that the use of a navigation function as a control Lyapunov function in the role of the termi-
nal cost V is sufficient to provide stability for the closed loop system. Such a choice appears appealing because the
navigation function becomes a vehicle for introducing state constraints into an (otherwise unconstrained) optimization
problem, without stating them explicitly as such —doing so increases the computation burden significantly [3]. How-
ever, a navigation function cannot satisfy (8) in any small neighborhood of its critical (saddle) points. This is where
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Proposition 1 is utilized. In this case the switching sequence is {ζk}∞
k=1, and there are practical reasons (computation

time for optimization) that force ζk to be nonzero, at any computational platform, no matter how fast.
The rest of the section traces the steps of the stability analysis in [3], showing why a terminal cost V (x) ≡ ϕ(x)

that is not formally a control Lyapunov function, and it is not monotonically decreasing as (8) is requiring, can be used
in (6) with guaranteed infinite horizon stability, if the conditions of Proposition 1 are met. The following assumption
is made in [3], and is adapted here by defining Ω as the path connected component of {x ∈ Rn | 0≤V (x)≤ cV < ∞}
containing the origin, where cV is a positive constant. (If V (x) is a navigation function, cV = 1.)

Assumption 1 (Bounds on optimal cost). For all x ∈Ω and T > 0 there exist positive constants cT and m∞

1. J∗∞(x)≥ m∞‖x‖2 ,

2. J∗T (x)≤ cT‖x‖2 .

The next assumption is the equivalent of (8) in [3], adapted to the relaxed requirements of Proposition 1.

Assumption 2 (Cost compatibility). The incremental cost and the terminal cost function are compatible in the sense
that there exists a feedback control u = k(x), a K∞ class function γ(·), and a constant ζ > 0 for which∫

ζ

0
q
(
x(τ),k(x(τ))

)
dτ ≤ γ

(
‖x(0)‖

)
≤−

∫
ζ

0
V̇
(
x(τ),k(x(τ))

)
dτ, ∀x(0) ∈Ω . (9)

The left hand side of (9) can always be satisfied for a suitable choice of ζ : one can always find a class K function
to bound locally from above the integral of the closed loop incremental cost, since the latter is a positive definite
function of x. If V

(
x,k(x)

)
is a Lyapunov function, then the right hand side of the inequality is trivially satisfied.

Although a positive scaling on V might help separating the left and right parts of (9), the remaining challenge is the
behavior of the corresponding bounds in the neighborhood of x(0) = 0. For example, if the left hand side of (9) is
bounded by a linear function of ‖x(0)‖, while the right hand side is bounded by a quadratic one, then these two bounds
cannot reconcile. At the limit, when ζ → 0, (9) reduces to (V̇ + q)(x,k(x)) ≤ 0 of [3], in which case one may set
γ(‖x‖) , q(x,k(x)). When V̇ is not negative semidefinite, one gets yet another shot at establishing stability if able to
identify appropriate ζ and k(x) such that both inequalities are satisfied.

Next comes a restatement of [3, Theorem 2.2.1], for a terminal cost function that satisfies (4) and (9). Note that
although (4) is not explicitly invoked in the following discussion, it has to be enforced to ensure stability as well
as the satisfaction of any constraints encoded in V (x) ≡ ϕ(x). Specifically, θ(‖x0‖) must be small enough so that
ϕ
(
x(t)
)
+θ(‖x0‖) < 1, for all t ∈ [0,ζ ].

Proposition 2. Suppose that x ∈ Rn and T > 0 are such that

x∗T (T ;x) ∈Ω . (10)

Then, for any ζ (x), and feedback control u = k(x(t)) for which there exists a K∞ class function γ satisfying (9):∫ T+ζ

T
V̇ (x(τ),k(x(τ))) dτ ≤−γ(‖x(T )‖)≤−

∫ T+ζ

T
q
(
x(T + τ),k(x(T + τ))

)
dτ ,

for x ∈Ω, the optimal cost from x∗T (ζ ;x) is such that

J∗T (x∗T (ζ ;x))≤ J∗T (x)−
∫

ζ

0
q(x∗T (τ;x),u∗T (τ;x)) dτ . (11)

Proof. Let (x̃(t), ũ(t)), t ∈ [0,T +ζ ], be the trajectory obtained by concatenating (x∗T ,u∗T )(t;x), t ∈ [0,T ], and (xk,uk)(t−
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T ;x∗T (T ;x)), t ∈ [T,T +ζ ]. Consider the cost of using ũ(·) for T seconds beginning at an initial state x∗T (ζ ;x),

JT (x∗T (ζ ;x), ũ(·)) =
∫ T+ζ

ζ

q(x̃(τ), ũ(τ)) dτ +V (x̃(T +ζ ))

=
∫ T

ζ

q(x∗(τ;x),u∗(τ;x)) dτ +
∫ T+ζ

T
q(x̃(τ), ũ(τ)) dτ +V (x̃(T +ζ ))

= J∗T (x)−
∫ T

0
q(x∗T (τ;x),u∗T (τ;x)) dτ−V (x∗T (T ;x))+

∫ T

ζ

q(x∗(τ;x),u∗(τ;x)) dτ

+
∫ T+ζ

T
q(x̃(τ), ũ(τ)) dτ +V (x̃(T +ζ ))

= J∗T (x)−
∫

ζ

0
q(x∗T (τ;x),u∗T (τ;x)) dτ−V (x∗T (T ;x))+

∫ T+ζ

T
q(x̃(τ), ũ(τ)) dτ +V (x̃(T +ζ ))

= J∗T (x)−
∫

ζ

0
q(x∗T (τ;x),u∗T (τ;x)) dτ−V (x̃(T ;x))+

∫ T+ζ

T
q(x̃(τ), ũ(τ)) dτ +V (x̃(T +ζ ))

= J∗T (x)−
∫

ζ

0
q(x∗T (τ;x),u∗T (τ;x)) dτ +

∫ T+ζ

T
q(x̃(τ), ũ(τ)) dτ +

∫ T+ζ

T
V̇ (x̃(τ)) dτ

≤ J∗T (x)−
∫

ζ

0
q(x∗T (τ;x),u∗T (τ;x)) dτ

since
∫ T+ζ

T q(x̃(τ), ũ(τ)) dτ +
∫ T+ζ

T V̇ (x̃(τ)) dτ ≤ 0 by (9). The result follows since the optimal cost satisfies J∗T (x∗T (ζ ;x))≤
JT (x∗T (ζ ;x), ũ(·)).

Note that ζ needs not be constant (uniform) for all x; it can depend on x as long as ζ (x) > 0, for all x ∈Ω.

Corollary 1. Suppose the terminal cost function is replaced by the infinite horizon cost-to-go resulting from the
application of an a priori obtained stabilizing controller that satisfies (9) for a sequence of control horizons {ζ`}, with
terms defined recursively as ζ` = ζ

(
x
(

∑
`−1
k=1 ζk

))
. Then (11) still holds.

Proof. The argument follows almost inductively, based on the proof of Proposition 2:

JT (x∗T (ζ1;x), ũ(·)) =
∫ T+ζ1

ζ1

q(x̃(τ), ũ(τ)) dτ +
∫

∞

T+ζ1

q(xk(τ;x(T +ζ1)),k(x(τ))) dτ

=
∫ T+ζ1

ζ1

q(x̃(τ), ũ(τ)) dτ +
∞

∑
`=1

∫ T+∑
`+1
k=1 ζk

T+∑
`
k=1 ζk

q(xk(τ;x(T + `ζ )),k(x(τ))) dτ

= J∗T (x)−
∫

ζ1

0
q(x∗T (τ;x),u∗T (τ;x)) dτ−

∞

∑
`=0

∫ T+∑
`+1
k=1 ζk

T+∑
`
k=1 ζk

q(xk(τ;x(T +
`

∑
i=1

ζi)),k(x(τ))) dτ

+
∫ T+ζ1

T
q(x̃(τ), ũ(τ)) dτ +

∞

∑
`=1

∫ T+∑
`+1
k=1 ζk

T+∑
`
k=1 ζk

q(xk(τ;x(T +
`

∑
i=1

ζi)),k(x(τ))) dτ

= J∗T (x)−
∫

ζ1

0
q(x∗T (τ;x),u∗T (τ;x)) dτ

+
∫ T+ζ1

T
q(x̃(τ), ũ(τ)) dτ−

∫ T+ζ1

T
q(xk(τ;x(T )),k(x(τ))) dτ

= J∗T (x)−
∫

ζ1

0
q(x∗T (τ;x),u∗T (τ;x)) dτ

The proof is completed by noting that the optimal cost satisfies J∗T (x∗T (ζ ;x))≤ JT (x∗T (ζ ;x), ũ(·)).

The following lemma is the equivalent of [3, Lemma 2.2.1] which states that if originally satisfied, condition (10)
remains true under each iteration of the receding horizon scheme.

Lemma 1. Suppose that x ∈Ω. Then x∗T (T ;x) ∈Ω for any T = ∑
`
i=1 ζi, and for every `≥ 1, where ζi satisfies (9).
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Proof. The statement follows directly from the stability argument in the proof of Proposition 1, once inequality (9) is
established.

The next statement is pivotal in establishing stability for the infinite horizon. It is the equivalent of [3, Prop 2.2.2],
stated and proved for a function that satisfies the requirements of Proposition 1 in the role of the terminal cost function
in (6).

Proposition 3. Let T > 0, be such that x∗T (T ;x) ∈ Ω for all x ∈ Γ, where Γ is the path connected component of Ω in
which J∗T (x) is finite.2 Let x0 ∈ Γ and consider a trajectory (xrh(t),urh(t)), t ≥ 0, resulting from the use of a receding
horizon strategy RH (T,{ζk}) with δk > 0, ∑k=0` ζk→ ∞ as `→ ∞. Then,

J∞(x0,urh(·))≤ J∗T (x0) .

Proof. The receding horizon strategy defines a sequence of points {xk}∞
k=0 according to xk+1 = x∗T (ζk,xk), starting

with x0 so that xk = x(∑k
i=1 ζi). By the principle of optimality, the cost of flowing from xk to xk+1 is given by

∫
∑

k+1
i=1 ζi

∑
k
i=1 ζi

q
(
xrh(τ),urh(τ)

)
dτ = J∗T (xk)− J∗T−ζk+1

(xk+1)≥ 0 .

The total cost of this strategy is

J∞(x0,urh(·)) = J∗T (x0)+
∞

∑
k=1
{J∗T (xk)− J∗T−ζk+1

(xk)} ≤ J∗T (x0) ,

where the final inequality follows from the fact that J∗T (xk)≤ J∗T−ζ
(xk), for all ζ ≥ 0 satisfying (9) and k ≥ 0. Indeed,

J∗T (x) =
∫ T−ζ

0
q(x∗T (τ;x),u∗(τ;x)) dτ +

∫ T

T−ζ

q(x∗T (τ;x),u∗(τ;x)) dτ +V (x∗T (T ;x))

≤
∫ T−ζ

0
q(x∗T (τ;x),u∗(τ;x)) dτ +

∫ T

T−ζ

q
(
xk

T (τ;x),uk(τ;x)
)

dτ +V (x∗T (T ;x))

≤
∫ T−ζ

0
q(x∗T (τ;x),u∗(τ;x)) dτ−

∫ T

T−ζ

V̇
(
x∗T (τ;x),u∗(τ;x)

)
dτ +V (x∗T (T ;x))

=
∫ T−ζ

0
q(x∗T (τ;x),u∗(τ;x)) dτ +V (x∗T (T −ζ ;x)) = J∗T−ζ

(x) .

The sequence of results in this section culminates to the following (exponential) stability statement, the analog of
[3, Thm 2.2.2], established similarly thanks to Assumption 1, which although reasonable, may be somewhat restrictive.
The result is existential, since estimating the constants in Assumption 1 may not be practical.

Theorem 1. Let T > 0 and consider the use of a receding horizon scheme RH (T,{ζk}) with each ζk ∈ (0,T ] and
∑

k
j=0 ζ j→ ∞ as k→ ∞. Then, for each x0 ∈ Γ, the resulting trajectory converges to the origin exponentially fast.

Proof. Define the continuous function

W (t;x0,urh(·)) ,
∫

∞

t
q(xrh(τ),urh(τ)) dτ .

By Proposition 3, W (t;x0,urh(·)) ≤ J∗T (xrh(t)), and since RH (T,{δk}) is suboptimal, J∗∞(xrh(t)) ≤W (t;x0,urh(·)).
Now,

∂

∂ t
W (t;x0,urh(·)) =−q(xrh(t),urh(t))≤−cq‖xrh(t)‖2 ≤−

cq

cT
J∗T (xrh(t))≤−

cq

cT
W (t;x0,urh(·)) .

2Since V (x) is finite in Ω by definition, this condition depends on how q(x,u) is defined.
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From the Comparison Lemma it follows that

W (t;x0,urh(·))≤ e−
cq
cT

tW (0;x0,urh(·))

⇒ m∞‖xrh(t)‖2 ≤ J∗∞(xrh(t))≤W (t;x0,urh(·))≤ e−
cq
cT

tJ∗T (x0)≤ cT e−
cq
cT

t‖x0‖2 ,

which implies that ‖xrh(t)‖ converges exponentially to the zero with a rate lower bounded by cq
cT

.

Thus, Proposition 3 and Assumption 1 establish stability for the receding horizon scheme. Proposition 3 is based
on Proposition 1, which relaxes sign definiteness for the derivative of the terminal cost in exchange for constraints
on switching times. Among the conditions placed for stability, the ones in Assumption 1, although reasonable, are
probably the most difficult to formally verify, whereas the conditions of Proposition 1 will be enforced by construction
in the section that follows.

In conclusion, it is noted that although the approach described in this section is motivated by the integration
of navigation functions in the receding horizon framework, the results of Section 2 suggest that the terminal cost
estimate does not need to be a navigation function. Rather, any positive definite function satisfying the requirements
of Proposition 1 can qualify as a terminal cost. Thus, Proposition 1 practically allows the use of a more general class
of potential functions, as long as the dynamics of the system can ensure the satisfaction of (4) and (5).

4 Randomized Model Predictive Control
While for linear control systems, the structure of the model admits closed form solutions and available solvers suffice
both in terms of computational speed as well as complexity, this might not necessarily be the case for nonlinear
systems, where no closed form solution is known and the search for the optimum may rely heavily on initial guess,
model size, complexity, and stability properties, as well as the presence of inequality state constraints [9].

This section offers an alternative approach to finite-time optimal control design, using randomized methods. In-
stead of numerically computing an optimal control law u∗(·) that minimizes the functional (6), the proposed method
computes probable near minimizers of the finite-horizon cost, at chosen levels of confidence. This method is based on
the VC-theory of statistical learning, specifically the approach to distribution-free learning along the lines of [2] that
uses Chernoff bounds to determine the size of an appropriately large sample. The proposed approach thus builds the
optimal control strategy on a completely different computational framework that is based on sampling, without rely-
ing on specialized nonlinear optimal control design numerical tools. This approach is motivated by the fact that the
stability analysis of the preceding section does not necessarily require the feedback controller k(x) to be truly optimal
in order to guarantee stability; rather, any feedback controller k(x) that provides a sufficient amount of decrease for
the finite horizon cost is adequate [3]. For completeness, the following proposition is stated:

Proposition 4. For a fixed T > 0, and for ζi > 0 for every i ∈ N+, let {ui(x)}∞
i=1 be a sequence of control laws

satisfying (9) for which
JT
(
xi+1,ui+1(·)

)
< JT−ζi

(
xi+1,ui(·+ζi)

)
, (12)

for all i ∈ N+. Then xui(t)→ 0 as t→ ∞.

Proof. Condition (12) essentially states that switching from ui to ui+1 at xi+1 improves the value of the finite horizon
cost at that state (note that for t = 0, ui(t) needs to give the control input at xi). Define the sequence of finite horizon
costs {ci}∞

i=1, with ci , JT
(
xi,ui(·)

)
, and observe that for T = ζi

ci− ci+1 = Jζi

(
xi,ui(·)

)
− Jζi

(
xi+1,ui+1(·)

)
> Jζi

(
xi,ui(·)

)
− Jζi−ζi

(
xi+1,ui(·+ζi)

)
=
∫

ζi

0
q
(
xui(τ;xi),ui(·)

)
dτ +V

(
xui(ζi;xi)

)
−V

(
xui+1(0;xi+1)

)
=
∫

ζi

0
q
(
xui(τ;xi),ui(·)

)
dτ +V (xi+1)−V (xi+1) =

∫
ζi

0
q
(
xui(τ;xi),ui(·)

)
dτ .

Condition (9) then ensures that ci− ci+1 > γ(‖xi‖) suggesting that {ci} is monotonically decreasing. In addition, it is
nonnegative by definition, and therefore converges. If that limit is assumed to be bounded away from zero (implying
that q(x,u) > 0), then ci− ci+1 → 0, while γ(‖xi‖)→ c > 0, which is a contradiction. Therefore one has to have
ci→ 0⇒ q(x,u)→ 0⇒ x→ 0.
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The working assumption made here is that each feedback control law u = k(x) can be parameterized in terms of a
set of control parameters η ∈ H. Suppose that P is a probability measure on H, and denote the underlying probability
distribution (prior) on η P(η). With the given parameterization, the cost of applying input u = k(η ; t,x) from x over
the time horizon T is rewritten as

JT (x,η) =
∫ T

0
q(xη(τ;x),uη(τ)) dτ +V (xη(T ;x)) ,

where uη(·) , k(η ; t,x) and xη(τ;x) is the trajectory resulting from the application of control law uη to the system
starting from x at τ = 0. Thus, given a state x, the finite horizon cost becomes a function of the parameter (decision)
vector η .

If the parameterization chosen is complete, in the sense that all possible feedback functions u = k(x) can be
expressed as a function of a (possibly infinite dimensional) decision vector η , then the optimal finite horizon cost from
state x can be written

J∗T (x) = inf
η∈H

JT (η)

and the optimal decision vector η∗ is such that JT (x,η) = J∗T (x).
The optimization of functional JT (x,u(η ; t)) is attempted by means of randomized algorithms. Take Ns indepen-

dent and identically distributed random samples µi, i = 1, . . . ,Ns from H according to a probability distribution P(η).
Then J◦T , mini J(ηi) can approximate J∗T [12]:

Definition 2 (Probable Near Minimum [2]). Given JT (η), δ ∈ (0,1), α ∈ (0,1), a number J◦T ∈ R is said to be a
probable near minimum of JT (η) to level α and confidence 1− δ if there exists a set H̃ ⊆ H measuring P{H̃} ≤ α

such that
P
{

inf
H

JT (η)≤ J◦T ≤ inf
H\H̃

JT (η)
}
≥ 1−δ . (13)

Parameter α (level) quantifies the set of solutions that may not be represented in the samples. For small α , the
probability of finding a solution better than J◦T is small. Confidence 1−δ expresses the probability that the solution is
not worse than the actual minimum in the set that is represented in the samples. The desired level and confidence is
achieved by adjusting the number of samples Ns:

Lemma 2 (Number of samples [12, 2]). The number of samples Ns that guarantees that J◦T is a probable near minimum
of JT (η) to level α and confidence 1−δ satisfies

Ns ≥
ln(1/δ )

ln(1/(1−α))
. (14)

Lemma 2 provides the basis for the following algorithm, which computes a probable minimizer of the finite
horizon cost through sampling. The algorithm is a version of the distribution-free randomized optimization algorithms
of [12, 2], modified to account for the additional stability constraints on the parameterized inputs. In this particular
implementation, the algorithm is simplified by setting a constant control horizon ζ .

Algorithm 1 Randomized optimization
Require: α , δ , JT (η), P(η), H, T , ζ , γ(·), θ(·), x, xη(t,x), V (x), V̇ (η ;x).
Ensure: J◦T and η◦.

1: Ns← d ln(1/δ )
ln(1/(1−α))e.

2: η̃ ← /0
3: repeat
4: Generate Ns−|η̃ | i.i.d. samples ηi from H according to P(η)
5: η̃+←{ηi |V (xη(ζ ,x))−V (x)≤ γ(‖x‖) ∧ maxt∈[0,ζ ] |V̇ (ηi;xη(t,x))| ≤ θ(‖x‖)

ζ
}

6: η̃ ← η̃ ∪ η̃+

7: until |η̃ |= Ns
8: J◦T ←minη̃ JT (ηi)
9: η◦← argminη̃ JT (ηi)
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Minimizing the functional JT (x,u) within the receding horizon scheme is therefore achieved by parameterizing
the set of feedback control laws, sampling the subset of the parameter space to obtain a sufficient number of samples
consistent with the stability constraints of Proposition 1 (step 5), and evaluating an admissible probable near minimizer
u◦(η ;x).

The algorithm will halt at step 3 if the stability constraints cannot be satisfied with a sufficient number of sample
parameters. Alternatively, one can set an upper bound on the total number of samples drawn, and have the algorithm
report its solution with a confidence that is accordingly reduced. Increasing δ reduces Ns and consequently the number
of iterations in the loop of step 3. This is the main mechanism the algorithm provides to trade-off performance for
computational speed.

5 Numerical Implementation and Testing
The proposed control synthesis methodology is implemented numerically, for a spherical, two-dimensional workspace
including a single rectangular obstacle. The boundary of the workspace is defined by that of a ball, centered at
configuration (−3,3)T and having a radius of 5: Ω , {q ∈ R2 | ‖q− (−3,3)T‖ ≤ 5}. The destination configuration
is set at qd = (−4,3)T . (To conform with the assumptions of Proposition 1, one can consider a change of coordinates
placing the new origin at (−4,3)T .) While moving within this workspace, it is assumed that the robot needs to
communicate wirelessly with a radio base station, located at position (−4,5), and the degradation of the radio signal
due to shadowing by the obstacle needs to be taken into account during navigation. A navigation function ϕ(q) is
constructed (Fig. 2).

-10 -8 -6 -4 -2 0 2
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(a) Contour plot of the navigation function on a spherical
workspace with a rectangular obstacle. The destination configu-
ration is slightly off-center. The position of the radio base station is
marked close to the bottom left hand corner of the obstacle.
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(b) Detail of the potential field behind the obstacle. There is a sad-
dle point close to the obstacle boundary, but no local minimum in
the neighborhood.

Figure 2: The navigation function used in the numerical implementation example.

The system tested is one with simple dynamics in the form of a single integrator q̇ = u, where q = (x,y)T and u ∈
R2. To parameterize the input, we use a basis of Legendre polynomials with five elements p̂0(t), . . . , p̂4(t) (Fig. 3(a)).
The basis polynomials are scaled in time to have a domain t ∈ [0,T ] where T = 10 seconds is set to be the prediction
horizon (Fig. 3(b)). A uniform control horizon of ζ = 5 seconds is selected. Relatively large control horizons are
possible since the system does not run entirely open-loop during this time as indicated in (15), although (4) introduces
a trade-off between the selected control horizon and the range of admissible inputs through (16). On the other hand, ζ

should be comparable to the time scale of the basis functions, otherwise the selection of the admissible inputs becomes
very conservative, making the method inefficient.
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A linear combination of the scaled Legendre polynomials define a time-varying perturbation on the direction of
the potential field. A control input is thus parameterized through a set of five coefficients η = (η(0), . . . ,η(4)) in polar
coordinates, and the input sample includes the nominal negated gradient:

u0(q) =−∇qϕ(q)

ui(t,q) =

(
‖∇ϕ(q)‖,arg

(
−∇ϕ(q)+

π

2

4

∑
i=0

η
(i) pi(t)

))
i = 1, . . . ,Ns , (15)

where arg(·) denotes the angle of its vector argument.
For the randomized algorithm a confidence δ = 0.1 and a level α = 0.1 is selected. This yields a sample size of

Ns = 22. To generate a random sample for the control inputs in the form (15), a collection of Ns sets of parameters η

are uniformly sampled from the set [− 3
5 , 3

5 ], the size of which can either be determined empirically or analytically in
order to keep the generated perturbation on the nominal direction within certain bounds with given probability. (For
example, sampling from [− 1

5 , 1
5 ] keeps all angle perturbations within the [−π

2 , π

2 ] interval.)

-1.0 -0.5 0.5 1.0
t

-1.0

-0.5

0.5

1.0

(a) Graphs of the Legendre polynomials used as basis for the pa-
rameterized family of input functions.

2 4 6 8 10
t

-1.0

-0.5

0.5

1.0

SHpiHtLL

(b) Ten different parameterizations using the Legendre polynomial
basis, scaled to take values in the (0,T) interval, where T is the
prediction horizon.

Figure 3: A Legendre polynomial basis is chosen to parameterize the control inputs. Each input candidate is a pertur-
bation over the (nominal) direction of the potential field as indicated in (15).

The system is initialized at location q0 = (0.3,6)T , which corresponds to a configuration where the rectangular
obstacle obscures the line of sight both to the destination configuration and the radio base station (Fig. 2). At this
configuration, the navigation function assumes the value of ϕ(q0) = 0. A class-K∞ function θ lower bounds ϕ(q)
within Ω. Condition (4) of Proposition 1 is enforced by regulating the input of (15) for t ∈ (τi,τi+1] as follows

u(t,q) =

(∣∣V(t,q;q(τi)
)∣∣ ,arg

(
−∇ϕ(q)+

π

2

4

∑
i=0

η
(i) pi(t)

))
,

where

V (t,q;q(τi)) , min

{
θ(‖q(τi)−qd‖)

ζ
,sign

(∣∣∣∣∣ 4

∑
i=0

η
(i) pi(t)

∣∣∣∣∣− π

2

)
‖∇ϕ(q)‖

}
, (16)

and ζ denotes the control horizon. The construction in (16) compares the magnitude of the gradient ‖∇ϕ‖ to the
class-K∞ function θ(·)

ζ
, and caps the magnitude of the input vector to the latter if the input sends the system to higher

levels of ϕ(q). To eliminate the possibility of collision (reaching the boundary of the free space), it suffices to have

θ(‖q0−qd‖) < 1−ϕ(q0) , (17)

and for the particular choice of initial conditions, an appropriate selection for θ(·) that satisfies both the requirements of
Proposition 1 and (17) is θ(‖q−qd‖) = 0.004‖q−qd‖2. For the examples presented a class K∞ function γ(r) = 10−6r2

is used.
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The finite-horizon cost functional is defined as

JT (q,u) =
∫ T

0
{c1‖u(τ)‖2 + c2‖x(τ)‖2 + c3 C

(
x(τ)

)
} dτ +ϕ(x) , (18)

where c1, c2, and c3 are positive constants, and C(x) quantifies the cost of communication between the robot and the
radio base station. This cost is expressed as a integral of a function β (x) that captures the obstacle shape (Fig. 4) over
the line that connects the robot to the base station,

C(x) =
∫ 1

0
β
(
(1−χ)x+ χxr

)
dχ ,

where xr denotes the position of the base station. As shown in Fig. 4, the function is constructed in such a way so that
if there is line of sight, the shadowing cost is zero. For this implementation, c1 = c2 = 10−5, and c3 = 0.1.
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Figure 4: Graph of function β that expresses the shape of the obstacle which introduces shadowing effects on the radio
signal.

Figure 5 illustrates an output of the randomized receding horizon scheme in the form of a path from the chosen
initial condition. Figure 5(a) depicts a partial path from initial configuration to goal, with the intention of comparing
mid-way the performance of the randomized receding horizon scheme to that of the standard steepest descent in terms
of convergence speed. Identifying the initial and goal configurations in Fig. 5(a), as (0.3,6) and (−4,3), respectively,
the figure shows that at the end of the fifth step, the randomized receding horizon scheme brings the robot closer to
the destination than steepest descent. Toward the end of the simulation time frame, when a line of sight with the radio
base station has been established and no obstacle is in the way, the finite-time probable near optimal inputs coincide
with the negated potential function gradient.

Figure 6 shows the evolution of the incremental and terminal cost with time, along the probable near optimal
path drawn by the solid curve in Fig. 5(a). It is shown that the terminal cost is allowed to increase temporarily if
the candidate solution shows promise in a longer horizon. This issue is explored in more detail in Fig. 7 and in the
paragraph that follows.

A local minimum is artificially introduced in function ϕ(q) used (18), so that it is no more a navigation function.
The local minimum is created at location (−1.5,4). In the simulation run that uses the modified potential function, the
objective is to test the ability of the randomized receding horizon scheme to work around local minima, based on the
relaxed conditions on the evolution of the terminal cost imposed in Proposition 1. The results are presented in Fig. 7,
where it is shown that the strategy is capable of finding an alternative route to avoid the minimum.

6 Conclusions and Outlook
Lyapunov-based conditions for asymptotic stability of switching nonlinear systems can be relaxed, so that the Lyapunov-
like function need not have a negative semi-definite derivative, as long as one can guarantee that the function will have
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(a) The solid curve represents the path produced by the randomized
receding horizon scheme, while the dashed curve shows the path
corresponding to steepest descent. Note how the receding horizon
path curves to the bottom-left to reduce the communication shad-
owing effect from the obstacle.
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(b) An example of candidate paths resulting from different input
samples. Different paths are shown in dashed curves. The steep-
est decent path is shown with the solid curve and for the prediction
horizon selected, terminates close to (−0.175,5.1). The probable
near optimal one is highlighted with the thick solid line, and con-
tinues beyond the selected frame.

Figure 5: Randomized receding horizon robot navigation paths. Even though the receding horizon path is longer,
and despite penalizing motion speed, the receding horizon path still reaches the destination faster than the steepest
descent. The trajectories in 5(b) are from a different simulation run compared to the ones in 5(a). In 5(a), the robot
briefly increases its potential along its probable near optimal trajectory before it reduces it again, whereas in 5(b) the
probable near optimal trajectory found monotonically reduces the potential function.
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(a) Evolution of terminal cost (shown in solid curve) and incremen-
tal cost (shown in dashed curve) along a solution of the receding
horizon scheme over time. The simulation period covers five steps,
each with a control horizon of five seconds. Note the brief increase
on the terminal cost close to the fifth simulation second, shown in
detail in Fig. 6(b)
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(b) The terminal cost, expressed by the value of the navigation
function, temporarily increases along the probable near optimal tra-
jectory, consistently with the requirements of Proposition 1. This
brief increase may be a result of a sample input that yielded signifi-
cantly better performance compared to other candidate solutions in
the sample set.

Figure 6: Behavior of the incremental and terminal costs defined in (18), along the randomized receding horizon
trajectory shown in Fig. 5(a).

significantly decreased between switching times. In some sense, this may be equivalent to looking at the sampled data
system at switching times, and applying a Lyapunov-type argument for the sampled data system. This approach over-
comes a technical limitation to using a navigation function as a control Lyapunov function in nonlinear systems with
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(a) Oups! pitfall. In this simulation run of four steps, there is a
local minimum at which the steepest descent solution shown with
the dashed curve gets trapped. The randomized receding horizon
solution circumvents the minimum and continues toward the goal,
bending to the right trying to simultaneously decrease the shadow-
ing effect of the obstacle.
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(b) Terminal and incremental cost evolution along the randomized reced-
ing horizon path of Fig. 7(a). At the beginning of the fourth simulation
step, the algorithm decides to increase the terminal cost temporarily, so
that the local minimum is circumvented.

Figure 7: The relaxed conditions of a receding horizon scheme based on Proposition 1 allow the use of terminal
costs that cannot qualify as control Lyapunov functions, even for cases of the later with negative semidefinite time
derivatives. This potential function has a local minimum at (−1.5,4), yet the robot under the randomized receding
horizon strategy circumvents it on its way to destination.

switching dynamics, and it also allows this class of functions to be used as terminal costs in receding horizon schemes.
When coupled with a receding horizon scheme, these terminal cost functions do not need to be navigation functions,
and it is suggested that a more general class of positive definite potential functions can qualify for use in a receding
horizon mobile robot navigation control strategy. Finally, the finite horizon optimal control design that is part of the
receding horizon scheme can be implemented using a class of randomized algorithms based on Chernoff bounds. The
use of this type of statistical learning algorithms can demonstrate how the combination of a receding horizon scheme
with a potential function on the robot’s workspace can be successfully used to circumvent the problem of local minima
associated with typical potential functions, which are not constructed within the navigation function framework.

One of the remaining challenges ongoing research is targeting is handling uncertainty, both at the level of the
system dynamics, and at that of environment. It is anticipated that the requirements of statistical learning theory
associated with the P-dimension of the objective function will present difficulties related to inability to ensure uniform
convergence of an empirical mean, and may necessitate the reformulation of Algorithm 1.
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