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ABSTRACT

Conventional digital imaging captures the desired image information directly

on an imaging sensor. When high dimensional imaging capability is required such as

spectral imaging and spectropolarimetric imaging, inefficient sampling strategies are

usually involved, such as scanning and division of the focal plane array, resulting in

either poor real-time imaging capability or sensor resolution reduction. Compressive

sensing solves these problems via sampling of the high-dimensional image cubes below

the Nyquist sampling rate, and recovering the image signal with sparsity constraints.

In this dissertation, a newly proposed compressive spectral imaging and a compressive

spectropolarimetric imaging system are described. In particular, a novel polar-shaped

pixelated coding mask is proposed, optimized and implemented in spinning imaging

systems. Multi-snapshots are achieved through the coding mask rotation. By combin-

ing with a circular variable filter and a low-resolution monochrome sensor array, super-

resolution in both spatial and spectral dimensions is attained. Both the geometry and

the pattern of binary polar coded aperture are further optimized. A continuous imager

rotation model is developed and simulated to resolve the rotation blur. Finally, the

imaging system is tested with experimental measurements and reconstructions. On the

other hand, a compressive spectropolarimetric imager is developed based on a micro-

polarizer array, aiming at obtaining spectral linear Stokes images. Simulation shows

a blue-noise pattern of micro-polarizer distribution highly improves the polarization

reconstruction quality. A rotating double-amici prism further enables multi-snapshots.

Reconstructions of spectral Stokes images as well as the degree and angle of polarization

(DoP and AoP) images are then obtained from testbed experiments.

xviii



Chapter 1

INTRODUCTION

1.1 Spectral Imaging

Optical spectroscopy measures the intensity of light across different wavelengths.

It’s typically used for measuring the light reflection or absorption propensities of mate-

rial along the spectrum, where important information on material and molecule struc-

ture can be extracted. Conventional spectroscopy employs dispersive optical elements

for spectrum separation. The sampling on spectrum is usually performed by a line

sensor. The spectrum dispersion and line sensor resolution determines the ability of

separating neighborhood spectrum, thus determines the spectral resolution.

Spectral Imaging is a combination of two-dimensional (2D) imaging and spec-

troscopy [1]. It captures intensity images across a number of spectral channels, and for

each image point, its spectral signature is measured. Thus, spectral imaging captures

a three-dimensional (3D) image cube f(x, y, λ), where λ represents the wavelength, as

shown in Fig. 1.1. The intensity image in each spectral channel is called a spectral

band. Common RGB cameras carry three broad spectral bands in visual range, while

typical spectral imaging captures much more bands and the sensitivity spectral range

is not limited to visible or infrared (IR). Based on the spectrum resolution requirement,

spectral imaging is sometimes named as multi-spectral imaging or hyper-spectral imag-

ing. Figure 1.2 shows an example of 12 spectral image bands captured in our laboratory

using a visible monochrometer.

Spectral imaging collects a large amount of image data. Thus conventional spec-

tral imaging techniques usually involve scanning during the measuring process. Based

on the scanned image dimension, the scanning strategies are roughly categorized as
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Figure 1.1: Three-dimensional spectral image cube containing two spatial dimensions x and y, as
well as the spectral dimension λ [1].

Figure 1.2: Experimentally captured multi-spectral image bands from 440nm to 660nm.
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spectral-scanning and spatial-scanning, as shown in Fig. 1.3. Spectrum scanning usu-

ally involves switching a set of narrow-band color filters. Circular variable filters or

tunable filters are the alternatives. Tunable filter does not require mechanical move-

ment and has the advantage of user-selective spectral range and channel bandwidth.

The spectral-scanning approaches work well when a small number of spectral chan-

nels are required for a static scene. For narrow spectral bands, it raises the low-light

sensitivity requirement for the imaging sensor. The spatial-scanning spectral imaging

systems capture the entire spectrum of an image line, and perform line-by-line scan-

ning of the scene. Measuring a dynamic scene using the spatial-scanning method can

be very challenging. For static scenes, usually additional post-processing should be

involved to solve the problem of image misalignment.

Figure 1.3: Illustration of a spectral-scanning method [2] on left and a spatial-scanning approach [3]
on right for conventional spectral image bands acquisition.

The biggest disadvantage of the above scanning-based methods is the sacrifice of

the measurement speed, making the mission impossible for some real-time applications

such as live-cell spectral imaging. To solve this problem, a division of focal plane

(DoFP) strategy was proposed. The imaging sensor is divided into several regions in

order to measure multiple spectral bands simultaneously, as shown in Fig. 1.4. This

strategy, on the other hand, scarifies the sensor resolution for spectral information.

Interpolations can be employed to recover the full spatial resolution for each spectral

bands, however achieving decent recovery can be very challenging when a large number

of spectral channels are required.
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Figure 1.4: A multi-spectral sensor array where multiple spectral channels are sensed simultaneously
through the division of focal plane.

1.2 Spectral Polarization Imaging

1.2.1 Introduction to Polarization

Polarization is defined as the orientation of the electrical field of optical waves,

as shown in Fig. 1.5. It’s an important property of light but usually can not be directly

measured on an intensity sensor. Polarization carries important structure information

on object surfaces, such as the orientation and roughness [4].

Figure 1.5: Demonstration of an optical wave. The orientation of its electrical field is orthogonal to
its propagation direction. This orientation is characterized by polarization.

Polarization can be classified as linear polarization and circular polarization.

If the electrical fields of light waves have a single and time-invariant orientation, the
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light is linearly polarized. The linear polarization angle ranges from 0 to π. While

circular polarization refers to the situations where the orientations of the electrical

field rotate during the propagation. Based on the rotation direction, it’s categorized

as left-handed and right-handed circular polarization. Nature light is composed of a

uniform mixture of polarization state thus it is considered as unpolarized. Reflections

are usually partial-polarized, which is a mixture of unpolarized and polarized light.

For partial-polarized light, one can define the degree of polarization, which represents

the percentage of polarized light among all its intensity.

Mathematically, the polarization is represented with a Stokes vector containing

four Stokes parameters. The first three Stokes parameters define the state of linear

polarization: S0 is the intensity of light; S1 is the intensity difference between 0○

and 90○ polarization, while S2 measures the intensity difference between 45○ and 135○

polarization. The last Stokes parameter represents the state of circular polarization:

it’s defined as the intensity difference between the left and right-handed polarization.

Their relationships are listed below:

S0 = I0 + I90; (1.1)

S1 = I0 − I90; (1.2)

S2 = I45 − I135; (1.3)

S3 = IL − IR; (1.4)

where Iθ is the intensity of θ○ polarization. IL and IR represent the left and right handed

circular polarization, respectively. The degree of polarization (DoP) is calculated from

DoP =
√

S2
1 + S2

2 + S2
3

S0

. (1.5)
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For linear polarized light, the angle of polarization (AoP) is defined as

AoP = 1

2
arctan(S2

S1

). (1.6)

While the degree of linear polarization (DoLP) usually calculated as

DoLP =
√

S2
1 + S2

2

S0

. (1.7)

The relationship among AoP, DoP, DoLP and the Stokes parameters are demonstrated

in Fig. 1.6, where I is the light intensity, i. e. S0, and p represents the degree of

polarization. Thus Ip provides the total energy of the polarized light. In the polarized

portion of light, the orientation of the electrical field is specified through a 3D space

defined by S1, S2 and S3. In particular, the AoP and DoLP are defined in the S1-S2

plane.

Figure 1.6: The vector space demonstration of Stokes parameters, AoP and DoLP.

1.2.2 Conventional Spectral Polarization Imaging

Polarization imaging measures the Stokes vector for each pixel across the scene.

Thus four images are desired for four Stokes parameters. The most straightforward
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polarization imaging method involves the rotation of a linear polarizer [5]. After ob-

taining images for 0○, 45○, 90○ and 180○ polarization, the linear Stokes image planes can

be directly calculated from the above equations. This is considered as a polarization-

scanning approach. In the laboratory, we captured the polarization intensity images

via rotating a linear polarizer at four rotation angles: 0○, 45○, 90○ and 180○. Figure 1.7

shows the polarization intensity images as well as the calculated Stokes images. As

only linear polarization information is captured, the first three Stokes parameters are

obtained. Then the images of DoLP and AoP are computed and displayed in Fig. 1.8.

Figure 1.7: Polarization intensity images are captured via rotating a linear polarizer, shown in the
first row. The second row displays the calculated Stokes images.

In order to avoid scanning, efforts were made in designing real-time polarization

imaging systems. One such system is composed of multiple cameras, a set of polar-

ization beam-splitters and retarders [6], as shown in Fig. 1.9. Each camera is able to

capture a different Stokes image. Real-time capability is thus achieved with a tremen-

dous increase of system complexity. Figure 1.10 shows another approach for real-time

polarization imaging via the division of focal plane array, where a pixelated polarizer
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Figure 1.8: DoLP image is displayed on the left, where the brightness represents the degree of linear
polarization. AoP image is shown on the right, where false color is used for polarization angle
visualization.

Figure 1.9: One example of a real-time polarization imaging system consisting of several polarization
beam-splitters, retarders and cameras [6].
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Figure 1.10: Division of focal plane polarization imaging where a micro-polarizer array is used [4].

is usually involved to capture different polarization angle at different sensor locations.

This method is less complex but the sensor resolution is reduced in a factor of four.

A four-dimensional (4D) description of the scene can be obtained through com-

bining different polarization imaging and spectral imaging approaches. In particular,

the spectral and polarization information is simultaneously obtained through a chan-

neled spectropolarimetry [7], where a set of polarizers and retarders are applied to

modulate the Stokes vectors and the spectrum. Fourier transforms are involved to

demodulate the Stokes vector from spectrometer measurements. This method has the

potential to be transformed into imaging application; however it suffers from channel

cross-talk and a reduction of spectral resolution.

1.3 Introduction to Compressive Sensing

1.3.1 Compressive Sampling Theory

Nyquist sampling theory suggests a sampling rate at least two times of the max-

imum frequency in the signal. This rate is called Nyquist sampling rate. Based on this

theory, when sampling below Nyquist rate, it is necessary to apply a low-pass filter

to band-limit the signal [8]. Compressive sensing theory, on the other hand, suggests

one can perfectly recover the signal from samples obtained below the Nyquist sampling

rate. This is based on the assumption on the sparsity of the signal. Image signals, for
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example, are largely redundant in both intensity and color. With a proper transfor-

mation basis, such as 2D Wavelet or 2D DCT, the image signal can be represented

with the corresponding sparse coefficients. If the number of non-zero coefficients is far

less than the length of the signal, sampling strategies can be designed aiming at the

recovery of the sparse coefficients with much fewer samples.

Mathematically, a N length signal f can be represented as f = Ψθ, where Ψ

is a set of basis, and θ is the sparse representation of the original signal f . f is S

sparse if there are S number of non-zero elements in the sparse coefficients, where

S << N . Compressive sensing measures M -length sample vector (M << N) g through

a measurement matrix H. This sensing process is represented as

g = Hf = HΨθ. (1.8)

The multiplication between measurement matrix and basis A = HΨ is usually named

sensing matrix.

1.3.2 Signal Reconstruction

The reconstruction of the original signal f is then transferred into the recov-

ery of the sparse representations θ. Notice that the sensing matrix is highly under-

determined. In order to narrow down the solution set, compressive sensing takes the

sparsity as prior information. In mathematics, `0-norm counts the non-zero elements

in the signal vector, thus is a perfect measurement for sparsity. However, `0 minimiza-

tion is NP hard. Instead `1-norm is most commonly used in compressive sensing for

the sparsity measuring. Thus the inverse problem can be converted into solving a `1

regularized optimization problem,

min
θ

∣∣g −Aθ∣∣2 + τ ∣θ∣1, (1.9)

where τ is a regularization constant. After the reconstruction of θ, the original signal

f can then be recovered from f = Ψθ.
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The reconstruction quality can be quantified using Peak Signal-to-Noise Ratio

(PSNR). The PSNR of a recovered image is defined as

PSNR = 10log10(
fmax√
Emse

), (1.10)

where fmax is the maximum possible value of the elements in f . For 8-bit images, this

number is 256. Emse represents the mean square error between the original signal and

the reconstruction. A larger value of PSNR generally indicates a better reconstruction

quality.

1.3.3 Incoherence Property

Compressive sensing does not only rely on signal sparsity. The selection of

sampling strategy is also critical to the signal reconstruction quality. Coherence is

usually used to measure the condition of a sensing matrix. Mutual coherence is defined

as the largest correlation between the sensing basis and the representation basis [8].

Mathematically it’s represented as

µ(H,Ψ) =
√
N max

1<=k,j<=N
∣ < Hk,Ψj > ∣. (1.11)

Improving the incoherence in compressive sensing usually results in the increase of

reconstruction quality. In theory, perfect signal reconstruction is guaranteed when the

number of compressed measurement M satisfies

M≥Cµ2(H,Ψ)Slog(N), (1.12)

where C is a constant. Efforts can be made to achieve incoherence with careful selec-

tions of sensing basis and representation basis. Statistically, random sampling guaran-

tees the incoherence with any representation basis. Thus random sampling strategy is

commonly employed in compressive sensing architectures.
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1.3.4 Restricted Isometries

Despite of incoherence, another important factor to evaluate the condition of

the sensing matrix is so-called the restricted isometry property (RIP) [8], where the

restricted isometry constant δS is defined as the smallest number such that

(1 − δS)∣∣θ∣∣2`2≤∣∣Aθ∣∣2`2≤(1 + δS)∣∣θ∣∣
2
`2

(1.13)

holds for all S-sparse signal θ. Thus the Euclidean norm of the the sparse signal θ

is preserved after going through the linear system A. In order to successfully recover

the desired signal θ, the sensing matrix A should obey the RIP such that the signal θ

does not lie in the null space of A. This is equivalent to require that any S columns

of A should be almost orthogonal to each other.

1.4 Compressive Imaging

Natural images usually contain a large amount of redundant information: spa-

tial redundancy, color redundancy, as well as inter-frame redundancy. These redundant

information enables a number of image and video compression algorithms [9,10], that

allow images and videos to be efficiently stored, transmitted and displayed. However,

in conventional imaging pipelines, pixel-wise information of images are required before

image compression taking place. This causes a large waste of resources such as the

number of sensors, as well as the power and buffer requirement of cameras. Compres-

sive sensing has thus been applied in the imaging application to overcome the above

drawbacks. Compressive imaging aims at performing efficient image sampling. It usu-

ally employs additional optical modulation elements in the imaging system and involves

the demodulation process after sensor measurement to recover the desired image in-

formation. An efficient sampling usually benefits the image signal acquisition speed

and reduces the hardware requirements to capture high resolution or high dimensional

images. This section serves as a brief review on some of the start-of-art compressive

imaging architectures.
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1.4.1 Single-pixel Camera

Ten years ago, researchers in Rice University proposed a novel 2D imaging

system [11]: Instead of using a conventional sensor array, only a single photon detector

is used to collect compressed measurements for 2D image recovery. The key coding

element is a digital micro-mirror device (DMD). A DMD is an electronic device that

contains an array of micro-mirrors and its control circuits. The control unit is capable of

flipping each micro-mirror in two different angles, normally −12○ and 12○, in hundreds

or even thousands of Hz. Placed on the focal plane of the objective lens, a DMD

serves as a 2D binary spatial modulation device that is capable of fast alternating the

coding patterns. A lens condenser collects and integrates the spatial modulated image

signal into a single sensor. A 2D image is then recovered from a time series of sensor

collections by employing the sparsity constrain.

Three main advantages exist in this single-pixel camera system: 1. It reduces

the sensor size requirement of a conventional 2D camera. The image recovery resolution

is instead determined by the DMD. The drawbacks of a 2D sensor array such as low

quantum efficiency, buffer and bandwidth limitation and sensor cross-talk can be largely

overcome. 2. The low light sensing capability. This is not only because a single

detector has more quantum efficiency than a sensor array, but also due to the fact that

the sensor measurement is a collection of light from the whole field of view. 3. The

use of a point detector provides very flexible sensing capability. Many of the existing

compressive imaging systems are indeed the conversions of this architecture. One

example is the Compressive Raman spectral imaging system proposed in [12], where

the single sensor is replaced by a Raman spectroscopy. With the additional spectral

filter, mirrors and laser illumination, Raman imaging is achieved without scanning the

scene. Another impressive conversion is the development of compressive LiDAR [13,14],

where a photon counting detector is instead applied with an additional modulated

laser source. Recently the compressive LiDAR systems draw attention to automotive

industry for the potentiality in the advanced driver-assistance systems (ADAS).
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1.4.2 Compressive Spectral Imaging

During the same time, a coded aperture compressive spectral imaging (CASSI)

system was proposed aiming at achieving real-time multi-spectral imaging capability

[15]. Different from the single-pixel camera, this imaging system applies a much simpler

and cheaper spatial modulation solution: a two-dimensional block-unblock photo-mask

named coded aperture. This fixed-patterned coded aperture is placed on the focal

plane of the objective lens, followed by a relay system and a dispersive element. The

dispersive element can be either a grating or a prism, results in an image cube shearing

along the spectrum dimension. A monochrome sensor array then integrate the coded

and sheared spectral bands into a single focal plane array (FPA) measurement. Spectral

image bands are then recovered from this single snapshot measurement via compressive

sensing reconstruction algorithms.

This imaging system has the advantage in the real-time spectral imaging capa-

bility, overcoming the conventional scanning or resolution reduction drawbacks. But

it suffers from low reconstruction image quality and low spectrum recovery accuracy.

Since then, several CASSI-based spectral imaging systems have been proposed aiming

at achieving largely improved reconstruction performance [16]. This includes the con-

struction of a DMD-based CASSI [17]. Through replacing the static coded aperture

into a DMD, the imaging system is capable of alternating its coding pattern during

different snapshot measurement of the same scene. This enables the multi-snapshot

spectral imaging system that largely improves the ill-condition measurement matrix.

Moreover, a more precise spectrum dispersion model named high-order CASSI [18] was

developed, where the continuous spectrum shearing as well as the non-linearity of dis-

persion is accounted. Followed are the proposal and optimization of a colored coded

aperture CASSI [19,20], a simplified color-sensor spectral imaging system [21], spatial

and spectrum super-resolution approaches [22,23], as well as side-information CASSI

[24]. Another state-of-art compressive spectral imaging system is a spatial-spectral

coded compressive spectral imaging system [25], where the coding mask is placed be-

tween an imaging plane and a Fourier plane to achieve simultaneous spatial-spectral
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modulation.

The above mentioned compressive imaging systems all apply dispersive elements

for spectrum modulation. The shearing blur caused by the dispersive element is a key

factor that limits the experimental reconstruction quality. There are some other opti-

cal elements that provide different spectrum modulation patterns instead of spectrum

dispersion. A circular variable filter (CVF) [26] can be an alternative which provides

continuous and different spectrum modulation along the angular position of the filter.

The CVF does not require additional attention to the precise dispersion modeling. In-

stead, a spinning or rotation is beneficial to vary the spectrum modulation across the

scene.

In this dissertation, a novel compressive spectral imaging system based on a

CVF and a novel polar coded aperture is proposed, optimized and experimentally im-

plemented. The polar shaped coded aperture and the CVF are placed on the focal

plane of the objective lens to provide a spatial-spectral modulation to the scene. A

low resolution monochrome sensor is applied to collect the compressed measurements.

The system was initially proposed for munition guidance purposes. When mounted

on a spinning munition, this imager continuously changes its spatial and spectral cod-

ing and captures a number of measurement shots during a 2π period. Spectral image

reconstruction is then performed with these compressive coded low resolution mea-

surements. In the dissertation, a detailed design and optimization of the polar coded

aperture is described. Two mathematical models are developed aiming at finding the

precise system matrix. Computer simulations as well as proof-of-concept experiments

are conducted as an evaluation of the system performance.

1.4.3 Compressive Spectral Polarization Imaging

Compressive spectral polarization imaging aims at capturing a 4D image cube

efficiently. Based on the number of Stokes parameter recovered, the 4D image cube

can be organized as two to four 3D spectral image cubes. The most straightforward

approach involves rotating a linear polarizer in a compressive spectral imaging system

15



[27]. However the rotation of a linear polarizer is actually scanning the polarization

space. For more efficient sensing, polarization scanning needs to be avoided through

the use of additional optical modulation elements. One optical element that provides

both spectral and polarization modulation can be a birefringent prism. Light with

different wavelengths and polarization states are projected into different propagation

directions after passing through a birefringent prism. Based on this, a snapshot spec-

tral polarization imaging system is proposed through the use of a coded aperture, two

birefringent prisms, a set of lenses and a monochrome sensor array [28]. This single

snapshot system achieves real-time spectral polarization imaging with the application

of compressive sensing theory. However, it can only resolve the first two Stokes parame-

ters: an irradiance term S0 and a polarization difference term S1. Another state-of-art

compressive spectral polarization imaging system applies an expensive spatial light

modulator for spatial coding. The system also involves the use of a linear polarizer,

a beam-splitter and a retarder to achieve polarization modulation [29]. This system

captures the first three Stokes parameters. However, the spectrum is only limited to

RGB bands. Moreover, the use of a collimating lens and the beam-splitter tremen-

dously increases the complexity of the hardware. This encourages the development

of a spectral polarization imaging system that is capable of capturing mulit-spectral

Stokes image planes with a simple optical layout.

In this dissertation, a novel compressive spectral polarization imaging system

is developed and implemented. Inspired by the division of focal-plane array methods,

a micro-polarizer array (MPA) is used for polarization modulation. The MPA, also

named pixelated polarizer, is an array of micro-polarizers. It provides pixel-wise po-

larization modulation to the scene. For each Stokes image plane, the MPA acts as a

block-unblock spatial coding, which is an ideal replacement of the coded aperture and

the expensive spatial light modulator. In the proposed system, this MPA is integrated

into a color sensor array. A dispersive element, such as an Amici prism, is place in

front of the integrated sensor to provide spectral modulation. The optical layout of

this system is extremely simple: an objective lens, an Amici prism and a polarization
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integrated color sensor. This system is capable of capturing first Stokes image planes

across multiple spectral channels. With a careful design of the micro-polarizer dis-

tribution, a single snapshot measurement provides decent spectral polarization image

reconstruction. The system is also flexible to capture multi-snapshots for an improved

reconstruction through prism rotation. This dissertation describes the mathematical

model of the system, the design of the micro-polarizer distribution, computer simula-

tions as well as experimental implementations.

1.4.4 Other Compressive Sensing Applications In Imaging Systems

The application of compressive sensing is not limited to the above domains. For

example, in medical imaging, research on compressive MRI can be dated back from

2007 [30]. Through a random sparse sampling on the Fourier domain, MRI images can

be captured in a much faster manner compared with traditional scanning MRI. Another

example of applying compressive sensing in medical imaging system is the coded aper-

ture x-ray computed tomography approaches [31]. By randomly blocking x-ray sources

and collecting the integrated measurements, compressive x-ray computed tomography

has a much lower x-ray radiation requirement to accomplish 3D reconstruction.

In the domain of computational photography, a research group in MIT proposed

a compressive light field camera [32], where a coded photo-mask is placed slightly in

front of the sensor. This allows the modulation and capture of different light field

with a simple modification of traditional camera. For video recording, compressive

sensing takes advantage of large redundancy among video frames. Through a fast

coded aperture movement or the implementation of a DMD, temporal super-resolution

can be easily achieved through a conventional camera with a much lower frame-rate

[33].

For high-dimensional imaging, compressive sensing also benefits the joint acqui-

sition of spectral and 3D imaging, as well as the realization of high frame-rate spectral

video. I’m lucky to be involved in the development of a 3D compressive spectral in-

tegral imaging system [34], a compressive spectral + ToF imaging system [35] and a
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compressive spectral temporal imaging system. All the three are unfortunately out of

the scope of this dissertation.

1.5 Dissertation Format

This dissertation contains five chapters. The first chapter clarifies some con-

cepts in the area of spectral imaging, spectral polarization imaging and compressive

sensing. A brief review of conventional and state-of-art spectral imaging and spectral

polarization imaging systems is also included. Chapter two describes the optical design,

mathematical modeling and computer simulations on a polar coded aperture compres-

sive spectral imaging system. Chapter three further develops the polar coded aperture

optimization algorithms as well as the experimental implementations. Chapter four

presents a compressive spectral polarization imaging system based on a pixelated po-

larizer. Mathematical modeling, computer simulations, coding pattern design as well

as optical experiments are all included.

1.6 Original Contributions

My work contributes in the development of compressive spectral imaging and
compressive spectral polarization imaging systems in the following aspects:

1. I contributed in the structure design and optimization of a polar coded aperture
for compressive sensing purposes.

2. Developed and mathematical modeled the proposed polar coded aperture spectral
imaging system.

3. Modeled the continuous rotation motion of the spinning imager to reduce the
reconstruction rotation blur.

4. Simulated the polar coded aperture spectral imager in computer programs with
different parameter settings in different noise levels.

5. Performed the polar aperture coding optimization.

6. Conducted the experimental implementation of the polar coded aperture spectral
imaging system.

7. Contributed in the optical layout design of the compressive spectral polarization
imaging system.
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8. Developed the mathematical model and reconstruction strategy for directly re-
constructing Stokes images without the recovery of intensity images.

9. Contributed in the design of micro-polarizer patterns for better reconstruction
quality.

10. Performed computer simulations and image reconstruction on the compressive
spectral polarization imaging system.

11. Conducted the experimental implementation of the compressive spectral polar-
ization imaging system.

1.7 Journal and Conference Publications

Below I list the journal and conference publications as a result of my Ph.D.
research:
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1. C. Fu, M. Don, G. R. Arce, “Optimization and Experimental Demonstration
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Trans. on Computational Imaging, 2018.

2. H. Rueda, C. Fu, D. L. Lau, G. R. Arce “Spectral-ToF Compressive Snapshot
Camera: Towards Hyperspectral+Depth Imagery”, IEEE Journal of Selected
Topics in Signal Processing, vol. 11, no. 7, 992-1003, 2017.

3 C. Fu, M. Don, G. R. Arce, “Compressive Spectral Imaging via Polar Coded
Aperture”, IEEE Trans. on Computational Imaging, vol. 3, no. 3: 408-420,
2017.
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Chapter 2

COMPRESSIVE SPECTRAL IMAGING VIA A POLAR CODED
APERTURE

In this chapter, a compressive spectral imager based on a polar coded aperture

and a continuous variable circular bandpass filter is proposed for spinning munitions.

As the imager rotates with the munition, compressive projections are sequentially

captured with embedded spatial and spectral modulation. The polar coded aperture

design is introduced, aiming at optimizing the sensing process. Both discrete and

continuous rotation models of the proposed imager are derived and used to characterize

the compressive imager. Computer simulations validate the computational models and

the reconstruction algorithm.

2.1 Introduction and Related Research Work

Imaging techniques have been introduced in guided munitions to perform pre-

cise target detection and pinpoint strike capabilities. They have many advantages

over global positioning system (GPS) driven systems, such as jamming immunity and

greater accuracy as demonstrated in many unmanned aerial vehicle (UAV) platforms

[39-40]. Typically, monochromatic imaging is used in these applications. Spectral imag-

ing, however, is capable of increasing the precision in target detection and munition

guidance by providing additional spectral information of the scene [41,42]. Spectral

imaging architectures usually involve moving filters or the application of expensive

color patterned imaging sensor arrays [43] to achieve spectral modulation. The spin-

ning nature of munitions provides an approach to modulate the spectrum via a circular

variable filter (CVF) without the need for moving parts. A CVF is a bandpass filter

whose center wavelength continuously varies with its angular position and has a history
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of being used in spectrometers, monochrometers, and spectral imagers [44-50]. When

mounted on a spinning munition, the CVF provides a continuous spectral modulation

of the target.

In addition to spectral modulation, the munition’s spin can also be leveraged

to increase the spatial resolution of the imager using compressive sensing (CS) theory.

In CS, a compressive sample is normally acquired by applying a binary code in the

spatial domain. Besides increased resolution, compressive imaging can provide faster

measurement acquisition, easy data storage and transmission, as well as reduced system

noise. Thus, a new compressive spectral imager is proposed for spinning munitions that

combines a CVF with a coded aperture.

Our design has three advantages over existing coded aperture compressive imag-

ing system design. First, in traditional coded aperture compressive imaging, a square

shaped coded photomask was initially used to provide spatial coding for a single snap-

shot. To capture additional snapshots, elaborate mechanisms are typically employed

to apply multiple codes, such as using a digital micro-mirror device (DMD) or by

shifting an aperture code with a piezoelectric actuator. These complex, expensive ar-

chitectures are not suited to munitions, however, which require a simple, inexpensive

imager. Our design solves this problem by using a polar shaped coded mask together

with the munition’s natural spin to obtain multiple snapshots without any moving

parts or complex devices. Secondly, although spatial super-resolution methods have

been proposed, traditional coded aperture compressive spectral imagers usually employ

coded apertures the same size as the focal plane array (FPA) sensors, thus limiting the

resolution of the spectral image to that of the FPA. However, this is unnecessary since

the reconstructed spatial resolution is only determined by the resolution of the coded

aperture. Instead, a low resolution FPA is applied here with less expense on munition

applications. Sufficient measurements are captured through the imager rotation with

a high-resolution coded aperture. Third, in traditional compressive spectral imagers,

one or more dispersive elements are typically applied to produce spectral separation.

However, the non-linear spectral dispersion makes the spectrum sampling non-uniform.
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A high-order model is needed to characterize the dispersion, increasing the complexity

of modeling and calibration. Our design solves this problem by using a CVF, which

has a linear spectral modulation. Combined with the polar coded aperture, the CVF

is placed on the focal plane of the objective lens, making our imager more compact

than other existing coded aperture compressive spectral imagers.

Challenges exist when developing the coded aperture design. The spatial coding

provided by conventional square shaped coded apertures requires complex rotation

transformations. Additionally, the coded aperture provides less modulation towards

its center, resulting in an inefficient sensing strategy. Different from traditional square

coded apertures in compressive imaging, we propose a polar coded aperture with a

spokes-rings structure to solve the above problems. The rotation motion is transformed

into a simple circular shifting of image pixels which provides uniform modulation.

Figure 2.1: Compressive spectral imaging architecture with a polar coded aperture and a continuous
viable circular bandpass filter. Compressed projections are captured on the FPA detector.

Figure 1 shows the proposed imaging architecture which consists of an objective

lens, a polar coded aperture, a CVF, a relay lens and a focal plane array (FPA)

detector. The polar coded aperture, combined with the continuous circular variable

bandpass filter, is placed in the image focal plane of the objective lens, providing

the spatial and spectral modulation to the scene. As the munition spins, the imager

conducts a continuous rotation. In general, the imager can also be mounted on other
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spinning equipment, or simply on an electronic controlled rotating platform to perform

compressive spectral imaging.

For guided munitions, the motion of the imager can be described in multiple

dimensions. The translation motion should be precisely acquired for characterizing the

compressive sensing reconstruction. In this research, only a two-dimensional rotation

is considered for simplicity, with the rotation speed assumed to be constant and known

a priori. For further research, the robustness of the system should also be evaluated

by calculating the tolerance of the rotation modelling error.

The main contributions of this chapter are addressed in three aspects: First, a

novel method of changing spatial coding for compressive imaging is developed by the

rotation of a polar coded aperture. The geometry design of the polar aperture is pre-

sented to optimize the image quality. Second, the CVF is introduced into compressive

spectral imaging. To our knowledge, this is the first time a CVF is applied to compres-

sive coded aperture imaging. The influence of CVF bandwidth to the reconstruction

quality is analyzed. Finally, both the discrete and continuous rotation forward models

are developed with the corresponding computer simulation results presented.

2.2 Polar Coded Aperture Compressive Spectral Imaging System

Generally compressive imaging systems collect the sensor measurement g through

a measurement matrix H. H is directly determined by the optical layout and optical

modulation patterns. A good knowledge of the measurement matrix H is critical to

an accurate reconstruction. Thus in this section, a detailed mathematical modeling is

presented.

2.2.1 Discrete Imager Rotation Sensing Model

The proposed compressive imaging architecture is displayed in Figure 2.1. A

polar coded aperture combined with a continuous variable circular bandpass filter is

applied at the image focal plane to provide spatial and spectral compressive coding.

The polar coded aperture is designed to have a ring-spoke structure as shown in Fig. 2.2.
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The aperture consists Rin inner rings and Rout outer rings. The outer rings are designed

to have a denser distribution of spokes than the inner rings. Sin and Sout are denoted

as the numbers of spokes in the inner and outer rings, respectively. The design of the

aperture geometry is further introduced in Section III.

Figure 2.2: Geometry illustration of the proposed polar coded aperture. The number of spokes in

outer rings is twice of the spokes in inner rings.

Compressed FPA projections of the coded data cube are captured as the imager

rotates. If the image rotations are generated by electronic devices, the rotation can be

controlled to have discrete angle increments, where the imager remains fixed during

one snapshot measurement. When the imager is mounted on a spinning munition,

continuous rotation motion occurs when measurements are captured. However, if the

shutter time τs of the camera is much smaller than the rotation period of the imager

τr, τs << τr, the imager can be assumed to be static during each snapshot. With this

assumption, a discrete approximation model of the imager rotation is described next.

In Section V, a continuous rotation model is further developed.

Denote the scene as a 3D data cube f(ϕ, ρ, λ), where ϕ and ρ are the spatial

polar coordinates, and λ is the spectral wavelength. The polar coded aperture is

represented as T (ϕ, ρ), while the continuous variable circular bandpass filter is modeled

as C(ϕ,λ). The center wavelengths of the polar bandpass filter continuously change
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Figure 2.3: Discretized compressive sensing phenomenon of polar imager. The qth ring of the data
cube fsrk is coded by the polar coded aperture and modulated by the continuous variable circular
bandpass filter. The modulated light is integrated in both spatial and spectral domains, captured by
the FPA sensors.

in the range of [λmin, λmax] with ϕ increasing from 0 to 2π. The bandwidth of the

bandpass filter is denoted as bw for all ϕ. Thus the transmitted wavelength range of

the continuous variable circular bandpass filter is [λmin − bw/2, λmax + bw/2]. The polar

coordinates representation of the FPA projection is written as:

gp(ϕ, ρ) = T (ϕ, ρ)∫
λmax+bw/2

λmin−bw/2
C(ϕ,λ)f(ϕ, ρ, λ)dλ. (2.1)

The physical phenomenon of this compressive sensing procedure is shown in Figure 2.3,

where the discrete form of the binary polar coded aperture is written as

tsr = ∫
(r+1)∆ρ(r)

r∆ρ(r) ∫
(s+1)∆ϕ(r)

s∆ϕ(r)
T (ϕ, ρ)ρdϕdρ, (2.2)

where s and r index the spokes and rings in the polar coded aperture, respectively.

∆ϕ(r) is the pitch of spokes in rth ring, while ∆ρ(r) represents the pitch of the rth

ring. Denote the integration region of the (s, r)th polar pixel as Ωsr, then the binary

polar coded aperture is rewritten as

tsr =∬
Ωsr

T (ϕ, ρ)ρdϕdρ. (2.3)

The discrete representation of the 3D data cube is written as

fsrk = ∫
λk+1

λk
∬

Ωsr
f(ϕ, ρ, λ)ρdϕdρdλ. (2.4)
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Similarly, the discrete form of the continuous variable circular bandpass filter is repre-

sented as

csrk = ∫
λk+1

λk
∬

Ωsr
C(ϕ,λ)ρdϕdρdλ. (2.5)

The physical phenomenon of this discrete spectral modulation is illustrated in Fig-

ure 2.4. The modulation amplitude csrk is determined by the center wavelengths and

the bandwidth of the bandpass filter. The impact of the bandpass filter bandwidth is

further discussed in Section IV.

Figure 2.4: Illustration of the spectral modulation of the filtered polar data cube. Two spectrally

adjacent polar data cube voxels are modulated in spectrum as passing through a continuous variable

circular bandpass filter pixel.

The continuous change of the center wavelength with the change of the angular

position in the circular bandpass filter enables the division of the spectral channels.

The spectrum is uniformly divided into L bands from λmin−bw/2 to λmax+bw/2, where

as defined above, [λmin, λmax] is the center wavelength range of the bandpass filter,

and bw is the filter bandwidth. The spatial and spectral modulated polar data cube is

integrated in the spectral domain. The discrete form of this polar projection is

gsr = ∬
Ωsr

T (ϕ, ρ)∫ C(ϕ,λ)f(ϕ, ρ, λ)dλρdρdϕ

= ∑
k
∬

Ωsr
T (ϕ, ρ)∫

λk+1

λk
C(ϕ,λ)f(ϕ, ρ, λ)ρdλdρdϕ

= ∑
k

tsrcsrkfsrk. (2.6)
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Denote the vector form of the data cube and the integrated coded scene as f and g1,

respectively. This sensing process in the `th snapshot can be written in matrix form as

g`1 = P`f , (2.7)

where P` represents the effect of the polar coded aperture and the continuous variable

circular bandpass filter. The vector form of the bandpass filter modulation in kth

spectral channel is represented as

c`k = [c`11k, c
`
21k, ..., c

`
12k, ..., c

`
SoutRk

]T . (2.8)

Similarly, the vector form of the polar coded aperture in the `th snapshot is given by

t` = [t`11, t
`
21, ..., t

`
12, ..., t

`
SoutR]T . (2.9)

Then the coding matrix P` is written as

P` = [diag(t` ○ c`1),diag(t` ○ c`2), ...,diag(t` ○ c`L)], (2.10)

where t`○c`k is the element-wise product of t` and c`k. Denote the total number of polar

pixels in the coded aperture as V = RinSin +RoutSout. Then P` has the dimensions of

V ×V L. In order to visualize P`, a test data cube with 2 inner rings (Rin = 2), 8 inner

spokes (Sin = 8), 1 outer rings (Rout = 1), 16 outer spokes (Sout = 16), and 2 spectral

channels (L = 2) is applied. The corresponding P` generated via Eq. (2.12) is displayed

in Figure 2.5. The gray scale values are between 0 and 1. 80% unblocked pixels are

randomly distributed in the polar coded aperture for better demonstration of the CVF

modulation c`k in P`. Each spectral band is organized from inner to outer rings, with

the spokes in each ring arranged from angles 0 to 2π. In this two band example, the

CVF acts as a low pass filter for the first spectral band, and a high pass filter for the

second spectral band. This can be observed by the spoke values of the first spectral

band falling off from 1 to 0, while the spoke values in the second spectral band increase

from 0 to 1.
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Figure 2.5: Coding matrix P` for Sin = 8, Sout = 16 Rin = 2, Rout = 1, L = 2 data cube. The entries

represent the spatial and spectral modulation factors on the polar data voxels, with 0 entries

remaining black.

2.2.2 Discussion on the Spectral Resolution

As displayed in the P` image, distinct spectral modulation c`k for each band

k enables the separation of the spectral bands. One spectral band k can always be

separated into two or more sub-bands ki when the spectral modulations c`ki are different.

It is thus possible to separate a band into two sub-bands with distinct spectral coding.

Thus, an infinite number of spectral bands could be recovered in principle. As shown

in Figure 2.6, the region R`
k = {(s, r)∣c`srk≠0} is the spatial area where the kth spectral

band is sensed by the continuous variable filter. Assume this spectral band is uniformly

divided into two sub-bands k1 and k2. Thus, denote R`
k1
= {(s, r)∣c`srk1≠0} and R`

k2
=

{(s, r)∣c`srk2≠0}. Since the bandpass wavelengths differ for different angular positions

in the spatial domain, R`
k1
≠R`

k2
when the number of spectral bands L≤Sout. Then,

there exists a polar pixel (s1, r1), such that (s1, r1) ∈ R`
k1

and (s1, r1) ∉ R`
k2

. Similarly,
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another polar pixel (s2, r2) exists, such that (s2, r2) ∈ R`
k2

and (s2, r2) ∉ R`
k1

. Therefore,

the following equations hold,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c`s1r1k1≠0

c`s1r1k2 = 0

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c`s2r2k1 = 0

c`s2r2k2≠0

, (2.11)

resulting in c`k1≠c`k2 . Thus, the two sub-bands k1 and k2 are separated.

Figure 2.6: The polar pixels in kth spectral band that can be sensed by the continuous variable filter
are concentrated in the region of R`

k. This spectral band is split into two sub-bands where the
sensed polar pixels are concentrated in two smaller regions R`

k1
and R`

k2
.

In the situations that L > Sout, R`
k1

= R`
k2

= R`
k. For any polar pixel (s3, r3)

located in the edges of R`
k1

, c`s3r3k1≠c
`
s3r3k2

. Thus c`k1≠c`k2 . The two sub-bands k1 and

k2 can still be distinguished by the imager.

However, notice from Figure 2.6 that in each single snapshot, amounts of ele-

ments in both c`k1 and c`k2 are 0, making it impossible to recover either k1 or k2 band

in the corresponding spatial area. Thus, a number of imager rotations are needed to
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modulate a certain spatial area with the whole spectrum of the bandpass filter. In

consequence, an infinite number of spectral bands could be separated with unlimited

number of shots, under the conditions that the bandpass filter ideally changes its center

wavelength continuously along the angular positions.

In addition, as discussed in Section IV, a larger number of reconstructed spec-

tral bands requires a narrower bandwidth of the bandpass filter to achieve the best

recovery performance. In Section IV. D, a 11.6nm wide bandpass filter is applied for

a successful reconstruction of 128 bands, where L = 2Sout. Narrower bandwidths are

more difficult to manufacture. Moreover, the difficulties for the spectral modulation

calibration process also increase with L > Sout. All these practical difficulties need to

be considered for the real implementation of the proposed imager.

2.2.3 Sensing Model of the Rectangular FPA sensors

The FPA detector consists of N2 rectangular sensors. Denote the Cartesian

representation of the FPA projection as gc(x, y). Then gc(ρ cosϕ, ρ sinϕ) = gp(ϕ, ρ).
The discrete FPA pixel measurement is

gmn = ∫
(n+1)∆c

n∆c
∫
(m+1)∆c

m∆c

gc(x, y)dxdy, (2.12)

where ∆c is the square FPA pixel pitch. Denote the integration region of (m,n)th pixel

as D. Then the discrete FPA measurement is

gmn = ∬
Dmn

gc(x, y)dxdy

= ∬
Dmn

gp(ϕ, ρ)ρdρdϕ. (2.13)
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With the forward model expressed in Eq. (2.3) and Eq. (2.8), the FPA measurement

is represented as

gmn = ∬
Dmn

T (ϕ, ρ)∫ C(ϕ,λ)f(ϕ, ρ, λ)dλρdρdϕ

= ∑
r
∑
s

wsrmn∫
(r+1)∆ρ(r)

r∆ρ(r) ∫
(s+1)∆ϕ(r)

s∆ϕ(r)
T (ϕ, ρ)

∫
λmax+bw/2

λmin−bw/2
C(ϕ,λ)f(ϕ, ρ, λ)ρdλdρdϕ

= ∑
r
∑
s

wsrmngsr, (2.14)

where wsrmn is the proportion of the energy in the (s, r)th polar coded aperture pixel

sensed by the (m,n)th FPA sensor, given by

wsrmn =∬
Dmn∩Ωsr

ρdρdϕ(∬
Ωsr

ρdρdϕ)−1. (2.15)

Denote the vector form of the `th shot measurements as g`. Then this polar-rectangular

transformation can be expressed in matrix form as

g` = W`g`1, (2.16)

where W` has the dimensions of N2 × V . Then W` accounts for the weights wsrmn

of the polar coded aperture sensed on N ×N FPA sensors. Thus, the (i, j)th entry of

W` is W `
ij = wpquv, where v = ⌊ i

N
⌋ indexes the number of FPA columns, and u = i − vN

counts the number of FPA rows; Similarly,

q =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⌊ j
Sin

⌋ , if j ≤ SinRin

Rin + ⌊ j−SinRin
Sout

⌋ , otherwise

(2.17)

indexes the polar coded aperture rings, and

p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j − qSin, if j ≤ SinRin

j −RinSin − (q −Rin)Sout, otherwise

(2.18)

counts the spokes of the polar coded aperture.

In order to visualize W, the same test data cube used in Figure 2.5 is applied here. The
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FPA is assumed to have 4 by 4 sensors (N2 = 42). The corresponding weight matrix

W is shown in Figure 2.7.

Figure 2.7: Weight matrix W for a Sin = 8, Sout = 16 Rin = 2, Rout = 1, L = 2 data cube and an

N2
= 42 FPA. The entries with larger values are displayed in brighter points, while the 0 entries

remain black.

2.2.4 Sensing Matrix of Discrete Rotation Model

By combining Eq. (2.8) and Eq. (2.16), the FPA measurement in `th snapshot

is

g`mn = ∑
r
∑
s
∑
k

w`srmnt
`
src

`
srkfsrk, (2.19)

Similarly, from Eq. (2.9) and Eq. (2.18), the matrix representation of the sensing

procedure is expressed as

g` = W`P`f

= H`f , (2.20)

where H` = W`P` is the sensing matrix for the `th shot. Applying the same test data

in Figure 2.5 and Figure 2.7, H` can be visualized in Figure 2.8.
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Figure 2.8: Sensing matrix H` for a Sin = 8, Sout = 16 Rin = 2, Rout = 1, L = 2 data cube and an

N2
= 42 FPA.

Let K-snapshot measurements be represented in the form of a column vector

g = [(g1)T , (g2)T , ..., (gK)T ]T . Then the sensing procedure is written as g = Hf , where

H = [(H1)T , (H2)T , ..., (HK)T ]T . The relationship between the sensing procedures in

different snapshots is further analyzed. The imager rotation motion enables multiple

snapshots measurements embedded with different spatial and spectral coding. If the

imager rotation exceed 2π, the patterns of polar coded aperture and the circular band-

pass filter repeats themselves, resulting in duplicated measurements. Thus the number

of snapshots is restricted to the coded aperture design. As will be shown in Section III,

a good geometry design of the coded aperture has fewer spokes in the inner rings than

the outer rings, i.e., Sin < Sout. Thus the maximum number of snapshots captured is

limited by the number of spokes in the polar coded aperture inner rings, K≤Sin.

Assume the polar coded aperture rotates dr pixels in the rth ring between adja-

cent snapshots acquired and assume K snapshots are taken within the rotation period

τr, then, dr is represented as

dr = ⌊Sr
K

⌋ , (2.21)

where Sr is the number of spokes in rth ring. As shown in Figure 2.9, the spatial coding

provided by the coded aperture has a circular shift in its spokes between snapshots.
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Figure 2.9: As the imager rotates, the spatial coding provided by the polar coded aperture is

circularly shifting the spokes. The imager is assumed to be static when snapshots are captured, and

dr spokes are shifted between adjacent shots.

Then the current snapshot coded aperture can be obtained from the previous

shot coded aperture as

t`sr =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t`−1
s−dr,r, if r ≤ dr

t`−1
s+Sr−dr,r, otherwise.

(2.22)

A permutation matrix M can represent this circular shift procedure, with the `th shot

coded aperture calculated as

t` = Mt`−1. (2.23)

Similarly, the spectrum modulation of each spectral band performs the same spokes

shift between snapshots. Thus the `th shot spectrum modulation is calculated as

c`k = Mc`−1
k . (2.24)

P` can be constructed by applying Eq. (2.11). Notice that the columns of W` are orga-

nized in the same fashion as the polar coded aperture structure, performing the same

permutation procedure. Then the transformation of W` between adjacent snapshots

is modelled as

(W`)T = M(W`−1)T . (2.25)
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2.2.5 Spectral Data Cube Recovery

Since the polar coded aperture pixels share the same pixel size, the desired polar

image band can be organized into rectangular matrix as shown in Fig 2.10. The inner-

ring matrix with the dimension of Sin×Rin is the matrix formulation of the inner rings

polar pixels. Similarly, the outer rings polar pixels are transformed into a Sout×Rout

rectangular matrix.

Figure 2.10: One polar image band is transformed into two rectangular matrices representing the
inner and outer rings polar image pixels.

Then a Kronecker basis Ψ = Ψ1⊗Ψ2⊗Ψ3 is applied to the matrix cubes, where

Ψ1 ⊗Ψ2 provides the basis in the spatial domain and Ψ3 is the basis in the spectral

domain. Thus the polar data cube f is represented as f = Ψθ. In the simulation,

we apply the Kronecker product of the 2D Wavelet in space and 1D discrete cosine

transform (DCT) in spectrum as the basis [51], which has been shown as an efficient

sparse basis in compressive spectral imaging. Instead of the DCT, other bases such

as the Wavelet transform along the spectral axis could be applied [52-55]. A further
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research could focus on optimizing the basis representation for polar spectral images.

Then the sensing process can be expressed in Eq. (2.2). The signal reconstruction is

then performed by solving the inverse problem of the under-determined linear system,

where θ is recovered to minimize a l1-l2 cost function. This signal recovery problem is

expressed as

θ̂ = arg min
θ

∣∣g −Aθ∣∣2 + λ∣θ∣1, (2.26)

where λ is a regularization constant. In the simulation, the gradient projection for

sparse reconstruction (GPSR) algorithm [56] is applied. In Matlab R2011b and a

computer with the Intel(R) Core(TM) i7 CPU and 6.00GB RAM, the reconstruction

algorithm takes approximate 447 seconds to recover a 16-band data cube with 1282

spatial resolution in 600 iterations. Note the reconstruction speed can be significantly

improved by performing code optimization, applying parallel computing or simply al-

ternating the reconstruction algorithm.

2.3 Polar Coded Aperture Geometry Design

The polar coded aperture rotates together with the proposed imaging system,

providing a set of block-unblock coded measurements to the detector. Thus the scene

is sampled according to the polar geometry of the rotating aperture, resulting in po-

lar shaped image pixels. The geometry design of the polar coded aperture aims at

improving the image sensing strategy.

Similar structures of polar images have been proposed with the name of “log-

polar image” in the field of computer vision [57,58]. The concept of polar pixels has also

been applied in CT [59], SPECT [60,61], Compton SPECT [62], and PET [63]. Our

design of the polar coded aperture takes the advantages of the spokes-rings structure,

as shown in Figures 2.11 (a) and (b). This structure transforms the image rotation

motion directly into a circularly shift of the polar pixels. The proposed imaging system

aims at obtaining a uniform spatial resolution across the scene. Uniformly sensing is

achieved by designing the spaces between rings, resulting in a projection where the

same pixel size is attained across the image.
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Figure 2.11: (a)-(c) show different polar aperture geometry designs with the shapes polar pixels
being analyzed: (a) and (b) show the spoke-ring aperture structure with S/R = 1 and S/R = 4,
respectively; (c) shows the inner-outer rings design. (d)-(f) are the examples of polar images with
the corresponding polar pixels geometry in (a)-(c), respectively.

Denote R and S as the number of rings and spokes, respectively. Figures 2.11

(a) and (b) show the influence of the spoke-ring ratio S/R to the image quality: Higher

density of rings leads to good image quality in the inner rings, while higher density of

spokes leads to good image quality in the outer rings. To determine the optimal spoke-

ring ratio S/R, an analysis of the pixel shape is shown in Figure 2.11 (a)-(b), where

the pixels P2 and P3 are highly unbalanced in the lengths of their rings and spokes,

resulting in a poor image quality. On the other hand, pixels P1 and P4 have similar

rings and spokes lengths, resulting in a more balanced sensing along both dimensions

which is desired in the geometry design. Denote the widths between the rings and the

spokes in (s, r)th pixel as asr and bsr, respectively, as shown in Figure 2.12, where s
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indexes the spokes and r counts the rings. The design principle is to achieve a minimum

difference between asr and bsr for each pixel. Thus, a sum of the squared differences

between asr and bsr across all s and r is calculated as a cost function, expressed as

Cost = ∑
r
∑
s

(asr − bsr)2. (2.27)

Then the cost values are computed for different S/R ratio, as displayed in Figure 2.13.

Figure 2.12: The shape of a polar pixel with rings distance asr and spokes distance bsr.

S/R = 4 provides the minimal cost value. However, since the cost function only mini-

mizes an average value, polar images with S/R = 4 still have unbalanced pixel shapes

in the inner rings as shown in Figure 2.11 (b). Instead, the aperture with S/R = 1

provides more balanced pixel shapes in the inner rings as shown in Figure 2.11 (a).

However, it suffers from unbalance pixel shapes in outer rings, resulting in a higher

value of the cost function. The aperture with a fixed ratio of S/R can not provide

good image quality in all spatial positions of the scene. Thus, a new geometry design

of the polar aperture is proposed to have an inner-outer ring structure that is shown

in Figure 2.11 (c). The new design keeps the spokes-rings structure with S/R = 4 in

the outer rings, while reducing the number of the spokes in the inner rings to improve

the overall image quality. The number of spokes in the inner rings is half of the spokes

number in the outer rings, denoted as Sin = 0.5Sout, which results in a higher density

of rings in the inner rings and a higher density of spokes in the outer rings. As shown

in Figure 2.11 (d)-(f), the image quality is improved with the new design.
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Figure 2.13: Plot of the cost function value changing with the spoke-ring ratio S/R varying from 1
to 16.

The inner-outer ring structure can be further designed by determining the inner-

total rings ratio, defined as ε = Rin/(Rin +Rout). A proper value of ε is desired such

that the cost function expressed in Eq. (2.29) is minimized. Figure 2.14 shows the

cost function value changing with the variable ε when the numbers of inner spokes

Sin are 128 and 256 respectively, with the constrain that the total number of polar

coded aperture pixels remains S2
in. The values for ε between 0.2 to 0.3 result in smaller

cost values, with the minima at ε = 0.27 for both Sin = 128 and Sin = 256 cases, with

corresponding Rin = 20 and Rin = 40, respectively.

This result is verified by showing an image quality comparison with 6, 20, and

60 inner rings (with the corresponding ε = 0.09,0.27 and 0.64), as shown in Figure 2.15.

In this comparison, the number of pixels are fixed as S2
in = 1282. With two regions on

the eyes and chest of the toy zoomed, it is clear that the image sampled by a Rin = 20

polar aperture obtains better image quality in both areas.
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Figure 2.14: Plots of the cost function value changing with the inner-total rings ratio ε ∈ [0,1] in
both 128 inner spokes and 256 inner spokes coded apertures.

Figure 2.15: Comparison of image quality with 6 (left), 20 (middle) and 60 (right) inner rings with

the polar pixel number restricted to be 1282. Better image quality with 20 inner rings is observed in

both zoomed regions.
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2.4 Computer Simulations

2.4.1 Polar Data Cube Acquisition and Measurements Simulation

To further study the proposed imaging system, computer simulations are per-

formed with a polar spectral data cube acquired in the laboratory. A wide-band Xenon

lamp is used as the light source and a visible monochromator is applied to capture spec-

tral bands on a 9.9µm CCD camera. In this way, a 256×256×16 data cube is obtained.

Then, the acquired data cube is transformed into a polar data cube with 20 inner rings

and 54 outer rings by software. The numbers of spokes are 128 and 256 in the inner

and outer rings, respectively. Fig 2.16 shows the 9 polar spectral image bands selected

from the total L = 16 bands. The center wavelengths of each spectral channel are

uniformly distributed in the range from 451nm to 661nm.

In the simulation, the polar coded aperture hasRin = 20 inner rings andRout = 54

outer rings. Sin = 128 and Sout = 256 spokes are uniformly spaced in the inner rings and

outer rings, respectively. A random binary code with 50% open is applied on the polar

coded aperture. The continuous variable circular bandpass filter is simulated with the

center wavelengths ranging from 476nm to 635nm. The bandwidth is assumed to be

80nm. Meanwhile, a N2 = 322 FPA sensor is utilized to capture the compressed pro-

jections. Then the compressive sensing ratio (CS ratio) of K snapshots measurements

is defined as

κ = KN
2

V L
, (2.28)

where V = SinRin + SoutRout.

By applying Eq. (2.21), 64 snapshots measurements are simulated, where the

CS ratio is κ = 25%. In order to show the simulation process, Figure 2.17 (a) displays

the RGB images of the spatial and spectral modulated polar data cube before being

projected on the FPA. The RGB images demonstrate the aperture coding and CVF

spectral modulation to the scene. The spatial resolution of each RGB image is 1282.

The corresponding simulated compressed projections are displayed in Figure 2.17 (b),
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Figure 2.16: 9 spectral image bands selected from the total 16 bands are displayed. The center
wavelength of each band is indicated. Two image points are selected for the spectral reconstruction
comparisons.

demonstrating the spatial and spectral integration on the low resolution monochromatic

FPA. The spatial resolution of these FPA projections is 322.
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Figure 2.17: (a) shows the RGB images of the spatial and spectral modulated polar data cube before
projected on the FPA detector. (b) shows the corresponding compressed FPA projections. 4
snapshots selected from the total 64 snapshots are displayed.

2.4.2 Reconstruction with Simulated Measurements

The reconstruction procedure applies the GPSR algorithm to solve the `1 − `2

function described in Eq. (2.28), where the representation basis utilizes a 2D Wavelet

basis and a 1D Cosine basis in the spatial and spectral domains, respectively. Peak

signal to noise ratio (PSNR) is calculated for each reconstructed spectral channel.
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Figure 2.18: 16 spectral image bands are reconstructed from 64 snapshots compressed measurements

with κ = 25% CS ratio, where 9 image bands are displayed. The average PSNR is 32dB.

Figure 2.18 shows 9 image bands selected from the reconstructed 16 spectral

bands. The average PSNR is 31.8dB. Good image quality is observed in the recon-

structed spectral bands. With a larger number of snapshots captured, more information

of the polar data cube is acquired, with a higher reconstruction accuracy expected.

Thus, simulations are performed with different numbers of snapshots applied in the
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reconstruction. The PSNRs of the reconstructions are calculated and displayed in Fig-

ure 2.19. The simulation results verify the performance improvement by increasing the

number of snapshots. Note that the maximum number of snapshots is limited by the

number of spokes in inner rings, which has a CS ratio of 50%. The spokes-rings coded

aperture structures with S/R = 1 and S/R = 4 have similar reconstruction performance

compared with the inner-outer ring coded aperture in Figure 2.19. This is not sur-

prising since the geometry design of the polar coded aperture aims at better image

quality instead of better reconstruction performance. The reconstruction quality could

be improved by further optimizing the aperture code patterns.

Figure 2.19: Average PSNRs are calculated for different polar coded aperture geometry designs with
the number of snapshots ranging from 4 to 128. The corresponding CS ratio ranges from 1.56% to
50%.

Note that a random coded aperture with 50% open can generally produce better

reconstruction in polar coded aperture compressive sensing imaging. In this simulation,

the performance decreases by 0.6dB PSNR if the transmittance is decreased to 30%.
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When the transmittance increases to 80%, a PSNR reduction of 0.8dB is observed.

The FPA resolution influences the reconstruction quality. A higher resolution FPA

performs slightly better, due to the additional spatial measurements per snapshot and

better spectral bands differentiation. For example, the reconstruction from 8 shots

in a 642 FPA is 0.6dB better than the reconstruction from 128 shots in a 162 FPA.

However, we should also point out that the reconstruction performance is determined

by all hardware configurations including the FPA resolution, the CVF bandwidth and

the coded aperture patterns. In addition, higher resolution FPAs are typically more

costly, particularly in the IR bands.

Sensor noise can also influence the reconstruction performance. Here we define

the signal-to-noise ratio (SNR) in the sensor as the ratio between the variance of the

sensor measurements and the variance of sensor noise, SNR = 10log10Var(g)/Var(n),
where n represents the noise. When Gaussian white noise resulting in 30dB, 20dB

and 10dB SNR is added to the measurements, the resulting PSNR decreases 2dB, 5dB

and 8dB, respectively. The optimal choice of the regularization parameter τ in Eq.

(2.28) tends to be larger with stronger noise, indicating that more effort is needed

in `1 minimization for a smooth image recovery. The robustness can be improved by

employing alternative optimization algorithms with noise reduction.

2.4.3 Influence of the Bandpass Filter Bandwidth

The bandwidth and the range of the center wavelengths of the continuous vari-

able bandpass filter have a great impact on the values of the spectrum modulation c`srk,

which eventually influence the sensing matrix H and the reconstruction quality. Gen-

erally, if the bandwidth of the bandpass filter is too narrow, not enough of the spectral

information is compressively sensed, causing poor reconstructions. Meanwhile, if the

bandwidth is too wide to provide distinct modulation for different spectral bands, the

proposed imager will fail in the spectral reconstruction.

To study this influence, a data cube with 128 spectral bands is applied in the

measurements simulation procedure, where the high spectral resolution results in a
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more precise simulation of the continuous variable bandpass filter. Simulations are

performed with a varying ratio γ = bw/(λmax − λmin) between the bandwidth bw and

the center wavelengths range λmax − λmin, while keeping the total transmitted wave-

length range [λ − bw/2, λ + bw/2] fixed. 8, 16 and 32 spectral bands are reconstructed

respectively. PSNRs are calculated with γ ranging from 0.02 to 1 as shown in Fig-

ure 2.20. With the extreme values of γ = 0.02 or γ = 1, poor reconstructions are

Figure 2.20: PSNRs of 8, 16 and 32 spectral bands reconstructions from 64 snapshots are displayed
with γ varying from 0.02 to 1.

acquired as expected. However, the best values of γ gradually decrease from 0.75 to

0.35 when the number of recovered spectral bands increases from 8 to 32, indicating

that a narrower bandpass filter is preferred when a higher spectral resolution is desired.

2.4.4 Hyper-Spectral Reconstruction

For further verification of the spectral reconstruction attained, simulations aim

at accurate spectral reconstruction with a large number of spectral bands. A 128 bands
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data cube is used with a spatial resolution of 322 polar pixels. The 580nm image band

is shown in Figure 2.21 (a), where two image points are selected for spectral signature

comparisons.

Figure 2.21: The original 580nm image plane (a) and its corresponding reconstruction (b) are
displayed. 40dB PSNR is achieved with κ = 25%. Two image points are selected for spectral
signature reconstruction comparisons.

With a 322 resolution FPA detector, 32 snapshots are simulated, where the CS

ratio defined in Section IV. A is κ = 25%. As discussed above, the reconstruction of a

larger number of spectral bands requires a continuous variable filter with a narrower

bandwidth. For 128 spectral bands reconstruction, a 11.6nm bandwidth is selected and

applied in the simulation, with the corresponding γ = 0.1. The reconstruction achieves

an average of 40dB PSNR, with the reconstructed 580nm image plane displayed in

Figure 2.21 (b). The reconstruction of spectral signatures in 128 bands are displayed

in Figure 2.22. The spectrum region between 571nm and 590nm containing 20 bands is

zoomed for a detailed comparison. The spectral reconstructions of both points are quite

close to the original spectral signatures, showing an accurate hyper-spectral recovery.

2.5 Continuous Imager Rotation Model

For the proposed imager to be mounted on spinning devices, a more precise

sensing model is developed by considering the continuous rotation motion. When the
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Figure 2.22: 128-band spectral reconstructions are compared with the original spectral signatures of
two image points. The reconstructions of 20 bands from 571nm to 590nm are zoomed for further
comparisons.
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continuous rotation is taken into account, the polar pixels in the data cube shears

circularly during the integration time (or the shutter time) τs, as shown in Figure 2.23.

Figure 2.23: (a) shows a data pixel entering the polar coded aperture with no transformation, when

the discrete approximation of the imager rotation is applied. (b) displays a circularly sheared data

pixel hitting two adjacent polar aperture pixels, when the continuous rotation motion of the imager

is considered.

From the figure, denote the region of the original polar pixel during the time τs

as Gsr; and denote the sheared pixel region during τs as Qsr. Then the proportions of

the (s, r)th shear data pixel entering into the polar coded aperture pixels are calculated

as

βsru = (∭
Qsr∩G(s+u)r

ρdρdϕdt)(∭
Qsr

ρdρdϕdt)−1, (2.29)

where u indexes the adjacent polar aperture pixels hit by the (s, r)th sheared data

pixel. The sum of the proportions satisfies ∑u βsru = 1 for each sheared data pixel.
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Then the discrete sensing model in Eq. (2.21) is changed to a more precise model as

g`mn = ∑
r
∑
s
∑
k

∑
u

w`srmnt
`
src

`
srkβsrufsrk, (2.30)

where the imager is assumed to rotate at a constant speed and the shutter time τs is

assumed to be constant for each snapshot. Thus, the proportions βsru are unchanged

during distinct snapshots. The sensing matrix H` in Eq. (2.22) becomes

H` = W`P`B, (2.31)

where the rotation matrix B contains the proportions βsru for each data pixel. Since

each spectral band has the same rotation procedure, B consists of L diagonal blocks.

Each block has the same entries, with the dimensions of V ×V . To visualize H`, the

test data cube used in displaying Figure 2.5 and Figure 2.7 is applied here. Then the

corresponding H` in the continuous rotation model is displayed in Figure 2.24.

Figure 2.24: Sensing matrix in the continuous rotation model H` for a Sin = 8, Sout = 16 Rin = 2,

Rout = 1, L = 2 data cube and an N2
= 42 FPA.

Denote the rotation period of the imager as τr. Assuming K snapshots are

desired, the shutter time τs should have an upper bound in order to achieve the desired

number of snapshots. The acceptable value range of the shutter time is [0, τr/K]. Then

a normalized shutter time is defined as

η = Kτs
τr

, (2.32)
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where η ∈ [0,1]. In the following experiment, 64-shot measurements are simulated

by Eq. (2.32), applying the continuous rotation model. A comparison between the

reconstructions with discrete approximation model and the continuous rotation model

is desired. PSNRs are calculated in both reconstructions, as shown in Figure 2.25.

Figure 2.25: PSNR comparison between discrete rotation model reconstruction and the continuous
rotation model reconstruction. 64 continuous rotation compressed projections are simulated with the
normalized shutter time η increasing from 0 to 1.

From this experiment, A slight PSNR decrease is observed with the reconstruc-

tions by the continuous rotation model when η increases from 0 to 1; while the discrete

rotation model suffers from a PSNR decrease with an increasing η. This is because the

discrete rotation model fails to model the imager rotation during each FPA integration

period, leading to g − Hf≠0. The modelling error increases with larger value of η,

reducing reconstruction performance. A further comparison of reconstruction quality

between the two approaches is shown in Figure 2.26, where simulations with η = 0.5

are performed. The reconstructed image using the discrete rotation model shown in

Figure 2.26 (b) is blurred, with the rotation motion contained. On the other hand,
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Figure 2.26 (a) shows a sharp reconstructed image by utilizing the continuous rotation

model.

Figure 2.26: (a) shows the 4th spectral image band reconstructed by applying the continuous
rotation model, with 30.1dB PSNR; (b) displays the same spectral band recovered by utilizing the
discrete rotation model with the corresponding PSNR 23.6dB.

2.6 Conclusion

This chapter describes a compressive spectral imaging system mounted on ro-

tating equipment, such as munitions. The scene is spatially coded by a polar coded

aperture and spectrally modulated by a continuous variable circular bandpass filter.

The rotations generate various spatial and spectral modulations. Multiple compressive

coded projections are thus captured on the FPA. An inverse algorithm is then applied

to reconstruct a spatial spectral data cube. Computer simulations showed accurate

spatial and spectral reconstructions when using only a fraction of the full amount of

measurements. Design parameters, such as the aperture code geometry and CVF band-

width, were explored and optimized to enhance image quality. The imager’s versatility

as a hyper-spectral camera was demonstrated with simulations reconstructing up to 128

spectral bands. A continuous rotation model was developed and simulated, successfully

correcting for image blur observed in the discrete model. Although the application in
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guided munitions requires further research with additional practical considerations, the

computational models and the simulation results imply a promising result in the real

implementation of the proposed compressive sensing imager.
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Chapter 3

OPTIMIZATION AND EXPERIMENTAL DEMONSTRATION OF A
COMPRESSIVE POLAR CODED APERTURE SPECTRAL IMAGER

Compressive polar coded aperture spectral imaging was introduced in the pre-

vious chapter, where a circular variable filter is used for spectral modulation while a

randomly distributed polar coded aperture is the key component providing random

blocked-unblocked spatial coding to the scene. This chapter develops an optimization

framework for the polar coded aperture patterns to construct a better conditioned

measurement matrix. The designed polar coded apertures are fabricated on a photo-

mask through lithography. The experimental demonstration is then provided based on

a testbed implementation of the imaging system. It is shown that the optimized coded

apertures significantly improve the reconstruction quality in both computer simulations

and experiments.

3.1 Introduction

Coded aperture compressive spectral imaging has attracted a large amount of

attention in recent years [15,16]. Dispersive elements are typically applied for spec-

trum separation, while a square shaped block-unblock coding mask performs spatial

modulation. Multiple snapshots can be captured by employing a digital micro-mirror

device (DMD), where 50% blocked random coding patterns are typically applied [17].

The reconstruction performance of a compressive spectral imager is improved through

a careful selection of optical elements as well as optimizing the measurement matrix

in the compressive sensing process. In coded aperture spectral imagers, this leads to

coded aperture optimization [20,23,64-66].
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In the previous Chapter a polar coded aperture compressive spectral imager

was proposed. Different from conventional compressive spectral imagers, it applies a

circular variable filter (CVF) for spectral modulation. The CVF spectral response con-

tinuously changes along the angular position of the filter. When mounted on spinning

devices such as a munition, this imager sequentially captures a number of compres-

sive coded measurement shots on its low resolution sensor array during a 2π rotation.

A novel polar-shaped block-unblock coded aperture is used to perform compressive

sensing on rotating imagers. Although low resolution sensors are used, the spatial

resolution of the imager is determined by the coded aperture. While rotating, the pro-

posed imager performs a dynamic spatial and spectral modulation to the scene. This

makes it possible to perform multi-snapshot compressive sensing. Although efforts have

been made to improve the reconstruction performance by the selection of optical ele-

ments, such as varying the CVF bandwidth, the optimization of the compressive sensing

measurement matrix has not yet been considered. The previously proposed imaging

system contains a 50% random polar aperture code which is sub-optimal. Moreover,

only mathematical modeling and computer simulations were performed without any

experimental implementation.

The contribution of this chapter is twofold: First, we propose a coded aperture

optimization algorithm to construct a better conditioned measurement matrix. This

improves the reconstruction performance of the polar coded aperture spectral imaging

system. Then, a proof-of-concept optical experiment is conducted using the fabricated

polar coded apertures.

A challenge of compressive sensing reconstruction is the inverse of an ill-conditioned

sensing matrix, although sparsity constraints are applied to narrow down the solution

space. Careful design of the sensing matrix will improve reconstruction quality. The

optimization of a sensing matrix with element-wise flexibility was previously reported

in [67-70]. In compressive imaging systems, the measurement matrix is usually highly

structured, where the entries of the measurement matrix are limited to some discrete

values. This is certainty the case when a block-unblock coded aperture is contained
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in the imaging system, where the sensing matrix optimization converts into the de-

sign of binary aperture coding patterns. For these systems new optimization methods

are needed. Several multi-frame coded aperture optimization algorithms have been

proposed for different compressive spectral imaging systems [20,71,72]. These algo-

rithms take advantages of multiple snapshots where a set of independent coded aper-

ture patterns for different snapshots must be designed. In particular, complementary

multi-snapshot coding patterns are developed where each image cube voxel is sensed

exactly once during the sensing process. It is mathematically proven that this process

of uniformly sensing the three dimensional scene produces a better-conditioned sensing

matrix than using random patterns [20]. Complementary blue noise patterns are fur-

ther designed in [71,72] which aim to achieve uniform sensing across each spectral image

plane. Compared with these multi-snapshot aperture coding imaging systems, the de-

sign flexibility is further reduced in the rotating polar coded aperture design. Even

though multiple snapshots are captured, the coding patterns of different snapshots are

actually a rotated version of a static coding pattern. Furthermore, the complementary

condition does not apply in this polar coded aperture spectral imaging system due to

the large number of snapshots required. Thus in this chapter, we develop a new coded

aperture design algorithm that can accommodate the constraints placed on the struc-

ture of the sensing matrix while considering both uniform sensing and coded aperture

transmittance.

The designed aperture coding patterns are fabricated and implemented in lab-

oratory testbed experiments. The coded photo-mask is placed on the image plane of

the objective lens, and aligned to the sensor array through a relay lens. A precision

rotation stage is involved to introduce the spinning motion to the system. The spec-

trum filtering effect of a CVF filter is emulated through the use of a set of visible

bandpass filters. Spectral images are then recovered from experimental measurements

by solving the inverse problem of the calibrated sensing matrix. A comparison of the

reconstructions using random and optimized code patterns is displayed.

This Chapter is organized as follow. Section 3.2 demonstrates the optimization
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procedure on the polar aperture code. Computer simulations are followed in section

3.3 to further evaluate the performance of the optimization algorithm. Section 3.4

describes the laboratory experiments, including the alignment and calibration process,

as well as the measurement acquisition and spectral images reconstruction. Recon-

struction results from the optimized code pattern and a random pattern are compared,

demonstrating the effectiveness of the optimization algorithm.

3.2 Polar Coded Aperture Optimization

During the development of this polar coded aperture spectral imager, an anal-

ysis on the influence of the CVF filter bandwidth was performed. Specifically a higher

spectral resolution requires a sharper CVF filter. The CVF bandwidth can then be

optimized based on the expected numbers of spectral bands. To further improve the

reconstruction quality of the proposed imaging system, efforts should be made to op-

timize the design of the sensing matrix A = HΨ. Without further prior knowledge

on the scene, it’s usually difficult to define the quality of the sparsity basis Ψ. The

structure of the measurement matrix H is determined by the optical hardware. In this

imaging system, H is determined by the coded aperture structure, the aperture coding

pattern, the CVF modulation, the sensor resolution and the number of measurement

shots. Different designs on the structure of the polar coded aperture were developed,

such as the spokes-rings ratio, and inner-outer rings ratio. These parameters have

been optimized to improve the image quality. However in computer simulations, this

optimization does not affect image recovery accuracy. The reconstruction quality was

also analyzed in different sensor resolution and measurement shot settings. The de-

sign flexibility of H remains in the aperture coding pattern design, i.e, the design of

distributions of blocked and unblocked pixels in the coded aperture.

50% random binary coding patterns have been used in this polar coded aperture

spectral imaging system because they are statistically incoherent with the sparsity

basis. In practice, randomness usually generates variation in the reconstruction quality

for many compressive spectral imaging systems [23,35]. One way to solve this problem
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is through placing statistical constraints on the randomness. For example, blue noise

binary coding [73,74] is shown to perform much better than white noise binary patterns

in some compressive imaging systems [72]. The blue noise patterns tend to preserve the

high frequency information in images and the sensing process tends to be more uniform

across the scene. For multi-snapshot compressive imaging systems, complementary

binary coding usually outperforms non-complementary random coding. This was first

proved in [20], and further verified in [23,71,72]. Having complementary constraints in

the design, a set of multi-shot aperture patterns satisfy a uniformly sensing constraint:

each pixel or voxel in the scene is sensed exactly once in all collections of compressed

measurements. On the other hand complementary coding affects the transmittance of

the coded aperture since it is inversely proportional to the number of snapshots. This

may result in a significant reduction of light throughput in the imaging system for a

high number of snapshots. The polar coded aperture spectral imaging system falls

into this category: a high number of snapshots (anywhere from 16 to 128 in previous

simulations) is required for good reconstruction quality due to the spatial-spectrum

super-resolution nature of the system. This encourages us to develop a new coded

aperture design strategy that aims at uniform sensing while controlling the aperture

transmittance.

Thus in this work, two coded aperture design criteria are considered. First, the

data voxels should be uniformly sensed. Second, the FPA sensors should uniformly

sense the data cube. The summation along the columns of the measurement matrix

H represents the sensing for each data voxel. The summation along the rows of H

represents the sensing across sensors. Thus the desired cost function breaks into two

parts. The first part evaluates the non-uniformity of the sensed data voxels,

E1 =
SRL

∑
j=1

(
KN2

∑
i=1

Hij −m1)2 =
SRL

∑
j=1

(
K

∑
`

N2

∑
i=1

H`
ij −m1)2, (3.1)

where the data cube has the dimension of S×R×L. K snapshot measurements are

captured on a N×N sensor array. H`
ij is the element in the ith row and jth column of

the `th snapshot sensing matrix. Here m1 = median(∑KN2

i=1 Hi), where Hi is the ith row
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of H. The second part of the cost function measures the non-uniformity across the

sensors, expressed as

E2 =
KN2

∑
i=1

(
SRL

∑
j=1

Hij −m2)2 =
K

∑
`=1

N2

∑
i=1

(
SRL

∑
j=1

H`
ij −m2)2, (3.2)

where m2 = median(∑SRL
j=1 Hj) and Hj is the jth column of H. The cost function is then

E = E1 + τE2, where the parameter τ has its value around SRL/KN2.

We apply the direct binary search (DBS) algorithm [75,76] to solve this min-

imization problem. DBS algorithm has been proven to be an efficient algorithm in

solving binary matrix related optimization problems [71]. This iterative algorithm

scans every pixel in the coding pattern and performs toggling and swapping operations

between each binary pixel and its eight neighbors. It evaluates the changes of the

cost function for each operation and only keeps the certain operation that results in

the highest reduction of the cost function. These sequential operations guarantee the

convergence of the cost function to its local minimum. However, slow computing speed

becomes the main drawback. The cost function value, or more efficiently, the changes

of the cost function value need to be calculated for each valid toggle and swap oper-

ation. Thus the algorithm can be highly accelerated by simplifying the cost function

calculation. In the following paragraphs, a simplified cost function is derived and a

efficient DBS algorithm is proposed.

The matrix W` represents the polar-rectangular transformation. It’s entry W`
ij

represents the percentage of the jth polar pixel in coded aperture covered by ith sensor.

It’s assumed that the sensor array is large enough to sense all polar pixels. Thus the

elemental summation in each column is 1, ∑N
2

i=1 W`
i = 1. Then,

K

∑
`=1

N2

∑
i=1

H`
ij =

K

∑
`=1

N2

∑
i=1

W`
iP

`
j =

K

∑
`=1

(
N2

∑
i=1

W`
i)P`

j

=
K

∑
`=1

1P`
j =

K

∑
`=1

SR

∑
c=1

P`
cj. (3.3)

The matrix P` is a concatenation of L diagonal matrices, where L is the number of
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spectral bands. Thus,

E1 =
SRL

∑
j=1

(
K

∑
`=1

SR

∑
c=1

P`
cj −m1)2

=
L

∑
k=1

R

∑
r=1

S

∑
s=1

(
K

∑
`

t`src
`
srk −m1)2. (3.4)

Therefore, E1 can be calculated directly from the spectral filtering c`srk and the aperture

code t`sr. Matrix W` has no influence on E1. Thus the matrix multiplication W`P` is

unnecessary, simplifying the calculation.

Imager rotation occurs between each snapshot. Relative to the imager, the polar

voxels of the scene are circularly shifting between snapshots. This leads to a permuta-

tion in the columns of the measurement matrix for each snapshot. Mathematically the

`th snapshot measurement matrix H` can be calculated from permutation on column

indexes j of the (` − 1)th snapshot measurement matrix H`−1. Thus the summations

along columns of the measurement matrices in two different snapshots are the same,

i.e., ∑SRLj=1 H`
ij = ∑SRLj=1 H`−1

ij . Thus the second part of the cost function can be simplified

as

E2 = K
N2

∑
i=1

(
SRL

∑
j=1

H1
ij −m2)2 =K

N2

∑
i=1

(
SRL

∑
j=1

W1
iP

1
j −m2)2

= K
N2

∑
i=1

(W1
i (
SRL

∑
j=1

P1
j) −m2)2. (3.5)

Defining the vector p = ∑SRLj=1 P1
j , gives

E2 = K
N2

∑
i=1

(W1
ip −m2)2

= K ∣∣W1p −m2∣∣22, (3.6)

where a matrix-vector multiplication W1p replaces the calculation of the matrix mul-

tiplication W`P` K times.

Besides simplifying the cost function, the optimization algorithm itself can be

designed more efficiently for faster computation. As the DBS algorithm performs local

searches sequentially across all coded aperture pixels, only a small portion of pixels are
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affected by each local search. However, computing E1 and E2 requires operations on

all aperture pixels, resulting an inefficient computation strategy. Instead of computing

E1 and E2 for each swap and toggle operation, an efficient algorithm should compute

the updates of E1 and E2, only involving the affected pixels in the recalculation.

Figure 3.1: (a) shows the affected region by swapping and toggling operations to one pixel. The
corresponding affected columns in W1 is shown in (b).

As an example, a polar coded aperture with 8 rings and 16 spokes are organized

in a matrix T ∈ R16×8 as shown in Figure 3.1 (a). The toggling and swapping operations

to the red pixel affect its neighbors in a 3×3 region during a single snapshot. the rotation

of the polar coded aperture during multiple snapshots is transferred into the circular

shift of T along its vertical dimension. Thus, a region as large as 16×3 marked in blue

is affected during the entire measurement process. Denote this affected region as Ω.

Then the affected values in E1 is

(E1)Ω =
L

∑
k=1

∑
r,s∈Ω

(
K

∑
`

t`src
`
srk −m1)2. (3.7)

Denote (E1)′Ω as the first part of the cost function value in region Ω after one swapping

or toggling operation. Then E1 is updated as

E′
1 = E1 − (E1)Ω + (E1)′Ω. (3.8)

The calculation of E2 focuses on the computing of W1p. Note each column of W1

represents the sensing process for the corresponding aperture pixel Tsr. Thus the
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affected columns in W1 are easily picked out via the pixel region Ω, as shown in

Figure 3.1 (b). The indexes of these columns are collected in a vector u. Denote

W1
u = {W1

i ∣i ∈ u} as the matrix containing all the affected columns of W1, and pu as

the collection of the corresponding elements in p. Then the affected second part of the

cost function is

(E2)u =K ∣∣W1
upu −m2∣∣22. (3.9)

Similarly, denote (E2)′u as the corresponding update of (E2)u after one swapping or

toggling operation. Then E2 is updated as

E′
2 = E2 − (E2)u + (E2)′u. (3.10)

With the updated E′
1 and E′

2, the cost function value E′ is updated with the weighted

sum. The corresponding toggling or swapping operation is kept when E′ < E and the

cost function reaches the greatest reduction. A new iteration begins after the algorithm

operations on all coded aperture pixels. The algorithm terminates when no operation

is accepted during the previous iteration, indicating that a local minimum has been

obtained.

It should be pointed out that this optimization algorithm is sensitive to the

initial binary pattern for the following two reasons: First, the DBS is an iterative

algorithm searching for a local minimum. Secondly the median values m1 and m2 are

calculated based on the initial sensing matrix H. More specifically, the median values

are related with the transmittance of the coded aperture, where transmittance of a

binary coded aperture is defined as ∑i,j Tij/SR with a range from 0 and 1. A random

binary coded aperture with 50% open has a transmittance of 0.5. A lower transmittance

coded aperture leads to a sparser sensing matrix with smaller m1 and m2 values. This

provides us the flexibility to control the transmittance of the optimized coded aperture

by treating the transmittance of the initial coded aperture as a parameter. Thus the

optimization algorithm should be run a number of times, initialized with random coded

apertures with varying amounts of transmittance. This will result in optimized patterns
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with various levels of transmittance, which can then be downselected by measuring

simulated reconstruction performance.

3.3 Computer Simulations

A polar data cube with 16 spectral bands are used in the simulations. The coded

aperture has 20 inner rings with 128 inner spokes and 54 outer rings with 256 outer

spokes. 64 snapshot measurements are simulated by the discrete rotation model with

75% compression. The corresponding W1 and P are calculated and used for coded

aperture optimization. Figure 3.2 shows a comparison of the initial random coded

aperture with 0.12 transmittance and the code pattern after optimization, where a

white dot represents an unblock polar pixel and the black pixels are blocked.

Figure 3.2: The optimized coded aperture (right) is compared with the initial random coded
aperture (left) with 12% unblock pixels.

Note that the optimized coded aperture has the unblocked pixels more separated

than the random one, indicating that uniform sensing is achieved. This result also

aligns with other work showing that blue noise coding patterns improve reconstruction
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quality. For further verification, Figure 3.3 shows the probability distribution of image

cube voxels and sensors in the sensing process with both the initial random code and

the optimized pattern. The two sub-figures in the upper row show the histograms of

the number of sensors sensing one data voxel, while the other two histograms in the

lower row count the number of voxels sensed by one sensor. The histogram comparison

shows a significant improvement in the uniformity of both the data voxels and the

sensors after the optimization process.

Figure 3.3: Comparison of the statistics before (left column) and after (right column) optimization.
Upper row shows the histogram of the number of sensors sensing one voxel. Lower row shows the
histograms of the number of voxels sensed by a certain sensor.

To quantify the improvement of the measurement matrix, singular value de-

composition (SVD) is performed on both random and optimized measurement matri-

ces. For better comparison, the top 500 singular values are normalized and plotted in

Fig. 3.4. The singular values of the optimized measurement matrix decays much slower
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Figure 3.4: Singular values of the measurement matrices before and after optimization are plotted.
Coded aperture optimization leads to a better conditioned measurement matrix.

67



than the non-optimized one. This indicates that our polar coded aperture optimization

results in a better-conditioned measurement matrix. For these top 500 singular values,

the condition numbers are 1.24 before optimization, and 1.05 after optimization.

For further performance evaluation of the proposed coded aperture optimiza-

tion approach, reconstructions are performed from simulated measurements. To an-

alyze the influence of aperture transmittance, a set of random coded apertures with

transmittance ranging from 0.06 to 0.4 are used as the initial patterns for optimiza-

tion. Simulations are performed for all optimized code patterns with the corresponding

peak-to-noise ratio (PSNR) calculated as shown in Fig. 3.5. Based on the research in

the last chapter, 0.5 transmittance is optimal for the random codes. Thus the per-

formance of the random aperture code with 0.5 transmittance is plotted as the base

line. The PSNR of the random aperture code is the average of five repeated simula-

tions. Optimized patterns with different initial transmittance all show reconstruction

improvement compared with random patterns. The optimized coded aperture with a

0.12 initial transmittance is chosen for the best performance. Since the initial trans-

mittance determines the median values m1 and m2 in the optimization process, the

resulting transmittance of the optimized coding maintains the same as the initial one.

For this 64 snapshot simulation, the optimal transmittance suggested by complemen-

tary coding is 1/64. Notice that our new resulting transmittance 0.12 is much larger.

Random coded apertures with both 0.12 and 0.5 transmittance are compared

with the attained optimized aperture code. Figure 3.6 shows this comparison through

computing the PSNR for each spectral band. Aligned with previous research, the ran-

dom code with 0.5 transmittance outperforms the random patterns with lower trans-

mittance. The optimized aperture code achieves an average PSNR increase of 1.8dB

compared with 0.5-transmittance random coded aperture. Here we select the 6th spec-

tral band with the PSNR difference of 1.7dB to show the average improvement. Then,

the 10th spectral band is selected with 3.1dB PSNR increase to illustrate the highest

reconstruction improvement.
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Figure 3.5: Reconstruction performance of a set of optimized aperture codes with initial
transmittance ranging in [0.06,0.4]. The performance of a 50% random code is plotted as a
reference.
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Figure 3.6: Simulations with 12% unblocked random code, 50% blocked random code and the
optimized code are performed. PSNR values are computed for each reconstructed spectral image
plane. Comparisons show a significant PSNR increase when the optimized coding is used.
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Figure 3.7 shows the comparison of the 6th reconstructed spectral image plane.

Since it is visually difficult to distinguish the reconstructions, the corresponding ab-

solute error (AE) is calculated for each pixel and displayed in Fig. 3.7 (d) and (e).

Figure 3.8 further shows the comparison of the 10th band reconstruction. The absolute

errors are reduced significantly in this band.

Figure 3.7: Comparison among the original 6th spectral band in (a), the reconstructed spectral band
with random aperture code in (b) and the reconstructed image plane after optimization in (c). Their
reconstruction absolute error image planes are shown in (d) and (e), respectively.

The optimization algorithm is also evaluated by performing simulations with dif-

ferent numbers of snapshots. Table 3.1 shows the comparison of reconstruction PSNR

between the optimized code and a random code with 0.5 transmittance. Larger num-

bers of snapshots provide more flexibility to achieve uniformly sensing across the data

cube voxels, leading to better optimization results. When 128 snapshots are measured,

a 2.4dB PSNR improvement is achieved after optimization. However when less than 32
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Figure 3.8: Comparison among the original 10th spectral band in (a), the reconstructed spectral
band with random aperture code in (b) and the reconstructed image plane after optimization in (c).
Their reconstruction absolute error image planes are shown in (d) and (e), respectively.
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snapshots are used, no significant reconstruction improvement is observed. The perfor-

mance variation with different numbers of snapshots is related to the flexibility of the

aperture code design. A larger number of snapshots makes it easier for the algorithm

to find an aperture pattern that obeys the uniform sensing criteria.

Table 3.1: PSNR comparison between random aperture code and optimized code reconstruction
with different numbers of snapshots.

Number of shots Compression Random PSNR Optimized PSNR Improvement
32 87.5% 28.9dB 29.5dB 0.6dB
64 75% 31.8dB 33.5dB 1.7dB
128 50% 33.6dB 36.0dB 2.4dB

3.4 Experimental Validation

A 4inch photo-mask containing random and optimized polar coded apertures is

designed and fabricated through lithography, as shown in Fig. 3.9. Each coded pattern

is 5.0176mm by 5.0176mm containing a total of 1282 polar pixels. In the experiments,

this photo-mask is mounted on a M-VP-25XA Metric Precision Compact Linear Stage

for vertical movement control. The vertical linear stage is then mounted on a Thorlabs

LTS Long Travel Stage for horizontal movement control. A proof-of-concept experiment

is then performed in laboratory.

The spectral imaging system is built in the laboratory. A one-inch achromatic

doublet AC254-100-A-ML is used as the objective lens. Another achromatic doublet

AC254-050-A-ML is used as a relay lens. The fabricated photo-mask is placed in the

focal plane of the objective lens. The image of one coded aperture is then imaged

by a Ximea MQ042RG-CM monochrome camera with 1280 by 1024 resolution and a

pixel size of 4.8 micrometers, as shown in Fig. 3.10. The imaging system was proposed

to be mounted on spinning munitions or other rotating platforms. However in the

testbed experiments, rotating the imaging system is fairly difficult. Instead, we mount

the imaging target on a Thorlab motorized rotation stage PRM1Z8 to emulate the

system spinning as shown in Fig. 3.11. In the experiments, up to 64 rotations are

performed during a 2π period. A Ximea monochrome imaging sensor array is used to
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Figure 3.9: Designed photo-mask containing random and optimized polar coding patterns.
Microscope zoomed images of two coding patterns are displayed.
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capture the compressive measurements. Low resolution measurements are generated

through a pixel grouping process after high resolution images are captured. In the

experiments, we group every 16 by 16 sensor pixels to reduce a 512×512 captured

image to a 32×32 measurement shot. Note that this process is only for the purpose

of validating the spatial super-resolution capability of the proposed imaging system.

In practice, one can always pair the existing imaging sensor with a higher resolution

polar coded aperture for super-resolution purpose. Finally the circular variable filter

is emulated using Edmund 10nm-wide visible bandpass filters.

Figure 3.10: Polar coded aperture compressive spectral imaging system consists of an objective lens,
a polar coded aperture on a photo-mask, a CVF emulated with bandpass color filters, a relay lens
and a monochrome sensor array.

Optical alignment is critical to coded aperture imaging systems. The alignment

becomes even more important when a rotation motion is involved during measurement

collection. To address this, two electrical-controlled nano-positioners are used to alter

the coding patterns on the photo-mask, and align each pattern with the sensor array.

The rotation of the target is characterized through the measurement of the relative

position of the rotation center to the sensors. This is performed through tracing the

movement of several object points during a 2π rotation. In order to emulate the
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Figure 3.11: Target mounted on a motorized rotation stage.

spinning of the imaging system, this rotation center was aligned to the center of each

polar coding pattern.

Another critical procedure in compressive imaging systems is the calibration of

the entries of measurement matrix H. The calibration includes illuminating a white

board with monochrome illuminations in the visible range. The images of the polar

coded aperture are first captured on the sensor, then mapped back into polar pixels.

Figure 3.12 shows a comparison of the calibrated polar pattern with the ideal binary

coding. The goal of this calibration is to account for the optical misalignment, lens

distortion and vignetting compensation. The polar patterns, as well as the spectral

response of the system, are used to construct the forward matrix H for the experimental

imaging system which is required to reconstruct the spectral image cube.

The measurement acquisition process is automated through a computer. The

camera captures the encoded compressed images of the target during its 64 rotations

in a 2π period. The images are collected and sub-sampled into a set of low resolution

(32×32) measurements. Then these low resolution measurements are used to recon-

struct the spectral images through solving the inverse problem of its sensing matrix.

Figure 3.13 shows the target and 4 low resolution snapshot measurements.
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Figure 3.12: (a) The ideal binary polar pattern with 1282 polar pixels. (b) The calibrated polar
pattern from the experimental imaging system. Optical distortion and vignetting compensation is
considered by using the calibrated coding pattern in the reconstruction.

Figure 3.13: An RBG image of the imaging target is shown in the left figure. The right figures are
four low-resolution measurement images captured and down-sampled from the experimental imaging
system.
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Figure 3.14: A total 16 spectral image bands are reconstructed from 64 low resolution measurements.
The spectral range is from 500nm to 650nm. 9 of the 16 spectral bands are selected for display.
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Here we reconstruct 16 spectral bands with a 1282 pixel spatial resolution. For a

comparison, both 50% random coding and the optimized pattern are tested. Figure 3.14

shows 9 of the total 16 spectral bands reconstructed from random encoded compressed

measurements. The spectral variation of the colored hands is clearly shown and the

words “Army Research Laboratory” can be recognized in most of the bands. The

UD logo in the center can be somewhat recognized with distortion, indicating the

performance in the center pixels is less than the outer pixels. This could be a result

of the misalignment of the rotation center and inaccuracy during the mapping from

square sensor pixels to polar coding pixels.

Figure 3.15: Comparison of random (top) and optimized (bottom) reconstructions. Letters
“LABOR” are enlarged for a detailed comparison. The optimized coding pattern resolves letters
“BOR” more clearly than random coding patterns in both bands.

Figure 16 shows a comparison between two reconstructed spectral bands from

random and optimized encoded measurements. The optimized coding pattern performs

better at resolving details, such as words. In this example, the letter “B” is better
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Figure 3.16: Spectral signatures of points P1 and P2 on the target shown in Fig. 3.15 are
experimental measured through a spectrometer. The spectrometer measurements are then compared
with the reconstructions using random and optimized coded apertures. The optimized spectral
reconstructions fit the spectrometer measurements better.
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resolved. The recovery of the spectrum is compared in Fig. 3.16 where the spectral

signature of two image points P1 and P2 shown in Fig. 3.13 are selected for comparison.

The spectral recovery from the optimized coding pattern follows the spectrometer

measurements tighter. PSNR values are calculated for these two spectral signatures.

The reconstructions from random coded measurements achieve 20dB in PSNR for point

P1, and 25dB for P2. The optimized reconstruction for P1 is improved to 23dB, while

the PSNR of P2 increases to 28.5dB.

3.5 Conclusion

The optimization framework for a polar coded aperture compressive spectral

imaging system is developed through the design of the block-unblock coding pattern of a

polar coded aperture. By performing the coded aperture optimization, uniform sensing

is achieved across the image cube and the sensor array. The optimized binary coding

breaks the complementary limitations with a control of light transmittance. Computer

simulation shows the optimized coded aperture introduces a significant improvement

in the reconstruction quality. The polar coded apertures are then fabricated on a

photo-mask using lithography. A proof-of concept experiment is further conducted.

The alignment and calibration procedures are described and spectral image planes

are successfully reconstructed from experimental measurements. Better spatial and

spectrum reconstructions are achieved using the optimized polar coded aperture.
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Chapter 4

COMPRESSIVE SPECTRAL POLARIZATION IMAGING BASED ON
A PIXELATED POLARIZER

In this chapter, a compressive spectral and polarization imager based on a pix-

elized polarizer and colored patterned detector is presented. The proposed imager

captures several dispersed compressive projections with spectral and polarization cod-

ing. Stokes image planes at several wavelengths are reconstructed directly from 2D

projections. Employing a pixelized polarizer and colored patterned detector enables

compressive sensing over spatial, spectral, and polarization domains, reducing the total

number of required measurements. Polarization and color coding patterns are specially

designed to enhance PSNR in the reconstructed images. Experiments validate the ar-

chitecture and reconstruction algorithms.

4.1 Introduction

Spectral imaging involves the sensing of a large amount of spatial information

across a multitude of wavelengths. Spectral sensors enable the estimation of the phys-

ical properties of targets and the distribution of material components across the scene

[77]. In addition, polarimetric imaging provides information about the surface features

of targets, such as roughness and orientation [2]. Together, spectral polarization imag-

ing (SPI) is achieved by measuring polarization images across the spectral wavelengths

with applications in classification [78], remote sensing [2], and biomedical diagnosis

[79].

The major challenge in SPI is the acquisition of the hyper-dimensional imag-

ing data across spatial, spectral and polarization dimensions. Typical spectral and

polarization imagers capture sequential measurements, such as scanning the scene in
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each dimension [77], or switching colored filters [80] and rotating polarizers [81]. The

long acquisition time and mechanical switching increase the acquisition noise and limit

performance in a dynamic scene. Alternatively, division of focal plane (DoFP) [82-84]

schemes are widely used in both spectral imaging and polarimetric imaging. In spectral

imaging, colored mosaic focal plane array (FPA) detectors are used to capture the spe-

cific spectral wavelengths in each pixel [85]. In polarimetric imaging, micropolarizer

arrays are used to acquire pixelated polarization intensity [86,87]. In DoFP meth-

ods, the spatial resolution is reduced in order to obtain both spectral and polarization

signatures [88].

Compressive sensing, on the other hand, overcomes the resolution limitation of

DoFP schemes by fully utilizing the FPA resolution. By using compressive sensing, far

fewer samples are needed and consequently the sensing speed is increased significantly.

The hyper-dimensional data cube can then be reconstructed from the compressive

projections.

A single-pixel polarimetric imaging spectrometer was proposed recently, en-

abling acquisition of spatial, spectral and polarization information of the scene from

compressive measurements [27]. This architecture utilizes a DMD as a spatial light

modulator. A spectral polarization analysis is achieved by combining a rotating polar-

izer with a spectrometer. However, compressive sensing is only applied in the spatial

domain, whereas full spectral and polarization information is obtained. Besides, thou-

sands of sequential measurements are needed for decent reconstructions. As discussed

in Chapter 1, other existing compressive spectral polarization imaging systems suffers

from either low spectral resolution or insufficient polarization resolution [28,29].

In this chapter, a new compressive spectral polarization imaging architecture is

presented. The proposed architecture, consisting of a rotating prism, a pixelized polar-

izer and colored detector, obtains spatial, spectral and polarization information of the

scene from just a few compressive measurements. As described in Chapter 1, the po-

larization is mathematically represented by Stokes parameters, and we acquire Stokes
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parameter images of the scene in multiple spectral channels. Utilizing an FPA detec-

tor, compressive sensing in the spatial, spectral and polarization domains is achieved,

with reduced acquisition time. Furthermore, a rotating prism combined with a static

polarization and color patterned detector enables new spectral and polarization coding

in each snapshot, resulting in more efficient sensing strategies than the DMD-based

coded aperture compressive sensing cameras.

In the proposed architecture illustrated in Fig. 4.1, the scene is first dispersed

by the prism along its wavelength components. The wavelength dispersed scene is then

encoded by polarization and colored patterns and finally integrated on the detector.

In this way, a single 2D compressed measurement shot embodies spatial, spectral and

polarization information. Multiple snapshots are captured by rotating the dispersive

element if more accuracy in the polarization signatures is needed.

From the compressive measurements, a hyper-dimensional image cube is re-

covered by applying compressive sensing theory. This new architecture combines the

advantages of DoFP with compressive measurements and reconstruction. The use of

the polarized and colored FPA avoids switching colored filters or rotating linear polar-

izers during the measurement process, thus reducing the acquisition time. Compressive

sensing theory guarantees the full utilization of the patterned FPA resolution. As we

will show, the polarized and colored patterns are specially designed to improve the

reconstruction accuracy. Laboratory measurements with an optical system are used to

validate the proposed imager and algorithms to reconstruct spectral and polarization

information of the scene.

This chapter is organized as follows: In Section 2, the mathematical model of the

compressive sensing architecture is presented. In Section 3, code design is introduced

followed by a reconstruction comparison from simulated measurements in Section 4.

Multi-shot acquisition via prism rotation is described in Section 5. Finally, testbed

experiments are presented in Section 6.
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Figure 4.1: Proposed compressive spectral polarization imaging system consisting of an objective
lens, a colored detector with micropolarizer array aligned, and a prism. Multi-snapshots are achieved
by prism rotation.

4.2 Spectral Polarization Compressive Sensing System

The proposed spectral polarization compressive imaging architecture is shown

in Fig. 4.1. The scene is represented as polarization intensity cubes with four angles of

polarization (0○, 45○, 90○ and 135○). A micropolarizer array [89] is a filter array com-

posed of small aperture polarizers. Each micropolarizer consists of wire grid structures

at one of the four angular orientations, as shown in Fig. 4.2. The colored filter FPA

employs recent thin film coating technology, that encodes the scene in the spectral

domain. While the use of a dispersive element further increases the spectral resolution.

We denote the scene as a 4D data cube f(x, y, λ, θ), where x and y represent

the two spatial dimensions, λ is the spectral wavelength, and θ represents the angles

of linear polarization. After dispersion by the prism along its spectral dimension, the

4D data cube is represented as

f1(x, y, λ, θ) = ∬ δ(x′ − (x − dx(λ)),y′ − y)

f(x, y, λ, θ)dx′dy′, (4.1)

where dx(λ) is the dispersion distance along the x coordinate and δ denotes the Dirac

delta function. After dispersion by the prism, the optical field is coded by the mi-

cropolarizer array and the colored filter array before being integrated at the FPA. The
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Figure 4.2: A micropolarizer array consisting of four angles of polarization is aligned to the colored
detector with the same pixel pitch.

coded dispersed data cube prior to the FPA is represented as

f2(x, y, λ, θ) = U(x, y, θ)T (x, y, λ)f1(x, y, λ, θ), (4.2)

where T (x, y, λ) is the spectral coding provided by the colored (lowpass, highpass,

bandpass) filter array; and U(x, y, θ) is the polarization coding of the micropolarizer

array. The micropolarizer array shares the same pixel size as both the colored filter

array and the FPA. Ideally, both the T and U functions are binary, representing either

blocking or unblocking a voxel in the 4D datacube. In practice, a calibration process

is applied to account for the non-ideal optical elements.

Finally, the dispersed and coded scene is integrated on the FPA, forming a 2D

projection g(x, y) given by

g(x, y) = ∬ T (x, y, λ)U(x, y, θ)f1(x, y, λ, θ)dλdθ

= ∬ T (x, y, λ)U(x, y, θ)

f0(x − dx(λ), y, λ, θ)dλdθ. (4.3)

The linear polarization information is fully represented by the first three Stokes pa-

rameters, which are obtained by sensing four linear polarization intensities. In the

proposed sensing model, the scene is viewed as four linear polarization intensity cubes
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indexed by c = 0,1,2,3 indicating cubes with four polarization angles: θ0 = 0○, θ1 = 45○,

θ2 = 90○ and θ3 = 135○, respectively. Thus, the discrete 4D datacube is given by

fijkc = ∫
λk+1

λk
∫
(j+1)∆

j∆
∫
(i+1)∆

i∆
f0(x, y, λ, θc)dxdydλ,

where i and j index the pixels in x and y coordinates, ∆ is the pixel pitch of the FPA,

and k = 1,2, ..., L indexes the L spectral channels. The number of spectral channels

is determined by the dispersive element [18]. It follows that the (m,n)th pixel on the

FPA detector is given by

gmn = ∫
(n+1)∆

n∆
∫
(m+1)∆

m∆
g(x, y)dxdy

= ∫
(n+1)∆

n∆
∫
(m+1)∆

m∆
∬ T (x, y, λ)U(x, y, θ)

f0(x − dx(λ), y, λ, θ)dλdθdxdy. (4.4)

Since the micro-polarizer array shares the same pixel size with the colored detector,

the micro-polarizer array is discretized in terms of the PFA pixel pitch ∆, yielding

umnc = ∫
(n+1)∆

n∆
∫
(m+1)∆

m∆
U(x, y, θc)dxdy. (4.5)

Similarly, the colored filter array is discretized as

tmnk = ∫
λk+1

λk
∫
(n+1)∆

n∆
∫
(m+1)∆

m∆
T (x, y, λ)dxdydλ. (4.6)

With the discrete representations in Eq. 4.5 and Eq. 4.6, the (m,n)th pixel on the

FPA in Eq. 4.4 is then expressed as

gmn =
3

∑
c=0

L−1

∑
k=0
∫

λk+1

λk
∫
(n+1)∆

n∆
∫
(m+1)∆

m∆
T (x, y, λ)

U(x, y, θc)f0(x − dx(λ), y, λ, θc)dxdydλ

=
3

∑
c=0

L−1

∑
k=0

tmnkumncfm−k,n,k,c. (4.7)

Now let the measurement in Eq. 4.7 be vectorized in g. Similarly, let the cth linear

polarization cube be vectorized in fc. Then, the proposed imager output can be written

as

g = [H0,H1,H2,H3][fT0 , fT1 , fT2 , fT3 ]T

= Hf , (4.8)

87



where Hc is the measurement matrix of the cth polarization cube, which is determined

by the polarized and colored array. The vector form of the polarizer array in the kth

channel is

ukc = [u0,k,c, ..., u0,1+k,c, ..., uN−1,N−1+k,c]T . (4.9)

Similarly, the vector form of the color array in the kth channel is given by

tk = [t0,k,k, ..., t0,1+k,k, ..., tN−1,N−1+k,k]T . (4.10)

It follows that the measurement matrix Hc can be written as

Hc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(u0
c ○ t0) 0N×N2 ⋯ 0N(L−1)×N2

diag(u1
c ○ t1)⋯

⋱
0N(L−1)×N2 0N(L−2)×N2 ⋯diag(uL−1

c ○ tL−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.11)

where ukc ○ tk is the element-wise product of ukc and tk. For each polarization intensity

cube, the spectral coding tk is the same. However, for each spectral channel, the

polarization coding ukc changes with the spectral channel index k.

In order to visualize the matrix H, consider a data cube having a spatial resolu-

tion of 6 by 6 (N = 6) and 3 spectral channels (L = 3). The polarized and colored array

is assumed to be ideal (containing only 0’s and 1’s). An example of the sensing matrix

H is displayed in Fig. 4.3. The white points represent 1’s, while 0 entries remain black.

To show the effect of the micropolarizer array on the matrix H, the colored filters are

assumed to be allpass filters.

88



Figure 4.3: Illustrative example of the sensing matrix H = [H0,H1,H2,H3] for N = 6, L = 3. To

show the influence of the micro-polarizer array uk
c , tk is assumed to be an all ones vector for each

channel.

The relationship between the Stokes parameters and linear polarization inten-

sities is explored in [90,91], where it is established that the intensity of light with the

first three Stokes parameters, S0 to S2, after passing through a θ○ linear polarizer is

given by

Iθ =
1

2
S0 +

1

2
cos(2θ)S1 +

1

2
sin(2θ)S2. (4.12)

We denote each Stokes parameter cube as sp(x, y, λ), where p = 0,1,2 indexes the first

three Stokes parameter cubes. Discretizing as before, each parameter cube can be
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written

sijkp = ∫
λk+1

λk
∫
(j+1)∆

j∆
∫
(i+1)∆

i∆
sp(x, y, λ)dxdydλ, (4.13)

where ∆ is the pixel pitch of the FPA. With the vector representation of the first three

Stokes parameter cubes s, the vector representation of the cth polarization intensity

cube can be expressed as a linear transformation of s given by

fc = Ecs, (4.14)

where the N2 × 3N2 matrix Ec consists of three diagonal block matrices,

Ec = [diag(1

2
), diag(1

2
cos2θc), diag(

1

2
sin2θc)]. (4.15)

The four values of θc are indexed via c = 0, ...,3. Hence, the vectorized data cube f is

represented by

f = Es, (4.16)

where the matrix E = [ET
0 ,E

T
1 ,E

T
2 ,E

T
3 ]T . Accordingly, the sensing process in Eq. 4.8

can be rewritten as

g = Hf = HEs = Gs, (4.17)

where G = HE represents the sensing process from the Stokes parameter cube directly

to a single measurement shot. Unlike the binary matrix H, the entries of G are 1
2 , 0

or −1
2 . Figure 4.4 shows the ideal matrix G corresponding to the matrix H displayed

in Fig. 4.3. In the figure, the value of 1
2 is displayed in white; −1

2 is displayed in

green; and the black background has the value of 0. Negative values occur when a 90○

micropolarizer senses the second Stokes parameter cube. For 135○ micropolarizers, the

corresponding negative values occur when sensing the third Stokes parameter cube.

Due to the azimuth angles of the polarizer, the intensity (S0) reduces by half.
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Figure 4.4: Illustrative example of matrix G = [S0,S1,S2] for N = 6, L = 3. The corresponding H

matrix is taken from Figure 3. White points have the values of 1
2
; green points have the values of

−
1
2
; Black points are zero-valued entries.

To exploit the sparsity of the data cube, each Stokes parameter cube is rep-

resented by a three dimensional Kronecker basis Ψ = Ψ1 ⊗ Ψ2 ⊗ Ψ3, where Ψ1 ⊗ Ψ2

provides the basis in the spatial domain and Ψ3 is the basis in the spectral domain
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[18]. In this case s = Ψθ, thus the sensing process can be expressed as

g = Gs = GΨθ = Aθ, (4.18)

where A = GΨ is the composite sensing matrix of the system. The signal is recovered

by solving the inverse problem of the underdetermined linear system, that consists of

recovering θ, such that the mixed l1-l2 cost function is minimized. The reconstruction

problem is given by

θ̂ = arg min
θ

∣∣y −Aθ∣∣2 + τ ∣θ∣1, (4.19)

where τ is a regularization constant.

4.3 Design of The Micropolarizer and The Colored Filter Array

In a conventional compressive sensing scheme, random entries would be used

to form the micropolarizer and colored filter array patterns. However, random binary

codes tend to form clusters as shown in Fig. 4.5, which have a negative impact on

reconstruction from limited shots.

Figure 4.5: (a) A random code forms clusters. (b) The designed code reduces the clusters and

achieves a more uniform sensing across the FPA.

Consider the realization of a random micropolarizer code in Fig. 4.5(a). Note

that the circled area contains a high non-zero density of the micropolarizers, while,

in the square area, no information for this polarization angle is sensed. It follows

that poor reconstruction of the corresponding Stokes parameters is expected in the

92



squared area. This is typical of random realizations, and motivates the use of better

code designs. As an alternative, we employ a criterion for coded pattern design that

reduces the filter clusters in order to achieve a more uniform sensing across the FPA. In

particular, we apply blue noise pattern synthesis [73,74] to design a binary coded array

with even density in all parts of the array; an example is shown in Fig. 4.5(b). Four

complementary matrices, one for each polarization angle, are designed simultaneously

by selecting four blue noise patterns satisfying the constraint ∑3
c=0 umnc = 1. This

constraint aligns each PFA pixel (m,n) with a single micro-polarizer. With the same

motivation, and using the same design procedure, the spatial distribution of the color

filters is also represented with a set of complementary binary matrices.

4.4 Reconstruction Using Designed Coded Apertures

To study the proposed compressive sensing system, a 4D test data cube contain-

ing 4 polarization intensity cubes was obtained experimentally. In each polarization

intensity cube, 8 spectral channels (500mn, 510mn, 530mn, 550mn, 580mn, 600mn,

620mn and 640mn), with 256 by 256 spatial resolution, are included. The test data

cube was captured by switching eight bandpass filters combined with four azimuth

angles (0○, 45○, 90○ and 135○) of a linear polarizer (LPVISB100-MP2). Unpolarized il-

lumination is applied. The polarization intensity image planes in four spectral channels

are shown in Fig. 4.6, displaying a toy character covered by three pieces of polarizer

film.

The linear polarization information is readily obtained using Eq. 1.1 to Eq. 1.3.

The Stokes parameter imaging bands over four wavelengths are displayed in Fig. 4.7.

The second and third Stokes parameters together represent the state of linear polar-

ization. Note how the S1 and S2 image planes differ in the sunglasses, chest patterns

and legs of the toy. With this 4D test data cube, the snapshot measurement can be

simulated using Eq. 4.7 without additional noise. Assume the data cube has N2 spa-

tial resolution, L spectral channels and P = 3 Stokes parameters. The compressive

sensing (CS) ratio is defined as κ = KNm/PN2L with K snapshots captured, and
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Figure 4.6: Test linear polarization intensity image planes in four spectral channels.

Nm = (N + L − 1)N is the number of measurements in one snapshot. For a single-

snapshot measurement in this case, the CS ratio is κ = 4.3%.

Notice that, without applying a DoFP strategy, 32 snapshots are required in-

cluding 4 rotations of a linear polarizer, combined with changing color filters 8 times,

in order to obtain the 4D information of the scene. The polarization and color pat-

terned detector, taking full advantage of the DoFP strategy, enables the acquisition

of the same 4D information with a single snapshot. Note also that the DoFP, with-

out applying compressive sensing, suffers from a resolution limitation. With an N2
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Figure 4.7: Ground truth of S0, S1 and S2 image planes. Each Stokes parameter image plane is
displayed in four of eight spectral channels: 500mn, 530mn, 580mn and 620mn.

pixel detector, the spatial resolution is reduced to N2/32 pixels for 4 × 8 spectral po-

larization image planes. With compressive sensing applied, the proposed imager can

recover the 4D data cube with N2 spatial resolution for each image plane, achieving

full resolution. To exploit the sparsity of the scene, a 2D-Wavelet basis is applied in
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Figure 4.8: S0, S1 and S2 image planes reconstructed with single simulated shot random codes are
displayed in four of eight spectral channels. The CS ratio is κ = 4.3%. The average PSNRs for each
Stokes image plane are also indicated.

the spatial domain, and the Cosine basis is used in the spectral domain for each Stokes

image cube. The Stokes image planes in 8 spectral channels are reconstructed from

the simulated measurement by solving Eq. 4.19 using the GPSR algorithm. PSNR
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Figure 4.9: S0, S1 and S2 image planes reconstructed with a single simulated shot with designed
codes are displayed in four spectral channels. The CS ratio is κ = 4.3%. The average PSNRs for each
Stokes image plane are indicated.

values of the reconstruction is calculated by comparing the image planes with the

ground truth. Comparing with random compressive sensing codes, a 5 dB PSNR gain
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is achieved using the blue noise code design. To visualize the reconstruction quality,

the reconstructed Stokes image planes in 4 spectral channels are displayed in Fig. 4.8

and Fig. 4.9 for random and blue noise coded apertures, respectively. The results show

significant improvement of reconstruction image quality with fewer artifacts.

4.5 Prism Rotation for Multi-shot Acquisition

The proposed compressive sensing imager has the ability to perform as a single-

snapshot imager, with no moving parts. However, a single-snapshot compressive sens-

ing imager typically suffers from an ill conditioned sensing matrix. Compressive sensing

schemes typically rely on multiple snapshots to obtain satisfactory reconstruction qual-

ity, where each snapshot utilizes independent random coding [92]. Proposed multi-shot

architectures involve moving elements, such as switching coded masks or applying a

DMD. In our system new coding of the data cube is produced with prism rotation.

With a single snapshot, the prism is fixed such that only horizontal dispersion occurs.

Defining the single snapshot prism angle as 0○, vertical dispersion is achieved by rotat-

ing the prism to 90○ or 270○. Experimentally, prism rotation was achieved by applying

a precision cage rotation mount with micrometer drive (Thorlabs CRM1P). A new

snapshot is taken with each prism rotation. In principle, the prism can be rotated to

any angle such that any number of snapshots can be taken. In our experiments, the

prism rotation is restricted to four angles: 0○, 90○, 180○ and 270○.

With each rotation, spectral image planes are projected to different locations on

the detector such that the same image plane is coded by different spectral polarization

patterns, as shown in Fig. 4.10.

Computer simulations were performed with the multi-snapshot architecture.

Four snapshots were simulated with a CS ratio of κ = 17%. Reconstructions using the

four snapshots with blue noise codes are displayed in Fig. 4.11. Compared with single

snapshot reconstruction, a gain of 8dB in PSNR is observed when 4 snapshots are used

in the reconstruction, demonstrating a significant performance gain.
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Figure 4.10: A spectral image plane is projected onto four different FPA locations, corresponding to
the four prism rotation angles. This induces four different coding patterns.

As a comparison, an alternative method of generating 4-shot measurements is to

replace the pixelated polarizer by a rotating linear polarizer in the imaging architecture,

keeping the prism fixed. This 4-shot architecture also achieves a CS ratio of κ = 17%

when 8 spectral channels are reconstructed. However, this rotating polarizer approach

suffers from a fixed number of snapshots. It will fail to measure all three Stokes

parameters with fewer than four snapshots, and it is unnecessary to capture more

than four snapshots with duplicate information. Furthermore, during each snapshot

measurement, a fixed spectral coding is applied with the same spatial and spectral

information captured.

With the proposed prism rotation approach, one can select a proper number of

snapshots with CS ratio ranging from κ = 4.3% to κ = 17%. With each new snapshot
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Figure 4.11: S0, S1 and S2 image planes reconstructed from 4 simulated snapshots are displayed in
four spectral channels. The CS ratio is κ = 17%. The average PSNRs for each Stokes image plane
are indicated.

acquired, new spectral and polarization information is always obtained, significantly

enhancing the spectral and polarization reconstruction quality.
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4.6 Laboratory Experiments

4.6.1 Hardware Implementation and Calibration

In this section we describe a laboratory implementation and test of the pro-

posed imaging system. The optical setup is shown in Fig. 4.12. Integrated CMOS

polarization imaging sensors [93] and CCD polarization imaging sensors [94] have been

extensively proposed in the literature, and DoFP polarimetry has been widely applied

in polarization imaging [82,84,85]. An integrated spectral-polarization imaging sensor

has also been proposed for spectral-polarization imaging [83]. For the initial experi-

ments reported here, a relay optical system was constructed.

Figure 4.12: Laboratory implementation of the proposed architecture. Coded projections are

acquired on a CCD camera.

A visible achromatic lens with 100 mm focal length (Thorlabs AC254-100-A-ML)

is used for the objective lens. A custom double Amici prism with center wavelength

550nm is mounted on a rotating plate. A Moxtek periodic micropolarizer array with

7.4um pixel size is placed in the focal plane. A 50mm focal length lens is used to relay

the micropolarizer array to a CCD camera (Imperx b2021) with 7.4um pixel size. A

set of bandpass filters are used to capture several color filtered measurements on the

FPA. To implement a random colored array, we randomly sampled the colored filter

FPA measurements. Four snapshots are captured, one for each prism rotation angle.

The CS ratios are κ = 4.3%,8.6%,13%,17% for K = 1,2,3,4 snapshots, respectively.

Calibration was performed to estimate the measurement matrix H accurately.

First, we consider calibration of the prism rotation. The prism rotation axis differs
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slightly from the center of the optical path, resulting in small shifts in the projection

for different snapshots. This distance is measured by illuminating the target with

550nm monochromatic light, corresponding to the center wavelength of the Amici

prism. Thus, no dispersion occurs during each rotation. The offsets are then calculated

from the projection locations on the FPA.

Second, the spectral response of the imager needs to be measured in order to

have an accurate spectrum reconstruction. The spectral responses of the bandpass

filters used in the experiments were measured using a point spectrometer (Ocean Op-

tics USB2000+). Similarly, the spectral responses of the CCD camera and the linear

polarizer (used in first two experiments) are also taken into consideration. The vector

representation tk in Eq. 4.10 is modified with the spectral response of the imaging

system, that then changes the values in matrix Hc expressed in Eq. 4.11.

Third, calibration of the periodic micro-polarizer array is needed for the Stokes

parameter reconstruction. The misalignment between the micro-polarizer array and the

FPA detector was measured by adding a linear polarizer in front of a white target. The

linear polarizer, combined with the micro-polarizer array, produces periodic patterns

on the FPA. Multiple periodic patterns are captured with several rotations of the

linear polarizer. Misalignment between the micro-polarizer array and the camera is

then acquired by calculating the proportions of 0○, 45○, 90○ and 135○ linear polarization

intensities in each FPA pixel. The vector representation ukc in Eq. 4.9 is then modified.

Gray scale coding is obtained rather than the ideal binary coding. Finally, the matrix

Hc in Eq. 4.15 is modified based on the spectral and polarization calibration in order

to match the experimental sensing process.

4.6.2 Experimental Results

Three experiments are presented to verify the capability of the proposed imager.

In the first experiment, a linear polarizer is fixed after the target, constructing a linear

polarized scene. This experiment aims at verifying the ability to recover the spectral

information and the linear polarization angle contained in the scene. The ability to
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reconstruct Stokes parameter images with various polarization angles is further verified

in the second experiment, where a linear polarizer is placed after the target with variant

azimuth angles. Finally, a third experiment is performed without a linear polarizer in

the optical setup, aiming at recovering a scene with large fields of uniform, strong

polarization.

During the first experiment, the linear polarizer is fixed at 0○ azimuth angle.

Four snapshots are captured with 0○, 90○, 180○ and 270○ prism rotations, respectively.

The reconstructions of S0 images in 8 spectral bands from 505nm to 650nm are dis-

played in Fig. 4.13 (b)-(i). Clear images in all 8 spectral channels are recovered.

Given the target is 0○ linear polarized, then theoretically, the intensity of the S1

images and S0 images should be identical, and the intensity of S2 images should be 0

in all the spectral bands. This is experimentally verified in Fig. 4.14.

The spectral performance of the proposed architecture is tested by comparing

the reconstructed spectral signatures to the reference measurement from a point spec-

trometer (Ocean Optics USB2000+). In this experiment, spectral signatures of two

selected points (P1 and P2) from the scene (shown in Fig. 4.13 (a)) are compared and

displayed in Fig. 4.15.
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Figure 4.13: (a): The target is captured by an RGB camera. Two points P1 and P2 are selected for

spectral signature comparison. (b)-(i): Reconstructed S0 image planes are displayed at all 8 spectral

wavelengths from 505nm to 650nm.

As the number of snapshots increases, better spectral reconstruction is expected.

With three or four snapshots, the imager can provide higher accuracy. Small errors

sources arise in characterizing the sensing matrix and the point spectrometer measure-

ment noise. We demonstrate that the overall calibration error can be reduced as the

number of shots increases.

The second experiment aims at validating the ability of the proposed imager

to recover Stokes images of the object with different polarization angles. As such,

the azimuth angles of the linear polarizer are changed. The intensities of S1 and S2

images follow the change with the azimuth angle of the linear polarizer. For instance,
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Figure 4.14: Reconstructed S1 image planes at 8 spectral wavelengths and the average
reconstruction of S2 image plane. The S1 image planes have the same intensities as reconstructed S0

images because in this experiment the target is 0○ polarized. Also, as expected, the average S2
image plane has zero intensity.

the S1 image has 0 intensity with a 45○ polarized target, while the corresponding S2

image reaches its highest intensity. Similarly, the S1 image has a negative and strong

intensity when the target is 90○ polarized, and 0 intensity should be observed in the

corresponding S2 image. The S1 and S2 images in 620nm are displayed in Figs. 4.16

and 4.17, respectively. The intensities of the reconstructed S1 and S2 images follow the

expected changes described above.

In the third experiment, a scene containing large fields of uniform, strong po-

larization is captured. As shown in Fig. 4.18 (a), the scene contains a toy combined
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Figure 4.15: Spectral reconstructions of two selected points are compared with a spectrometer
measurement.

with three pieces of polarizer film: One is cut into a sword shape, held in the right

hand of the toy. The other two cover the eyes and legs of the toy, respectively. The

reconstructed S0 image planes for 8 spectral channels are displayed in Fig. 4.18 (b)-(i).

Reduced intensity is observed in the areas covered by the polarizer films. Those areas

become apparent in the reconstructed S1 image planes shown in Fig. 4.19. In partic-

ular, the polarizer film covering the eyes of the toy shows high positive intensity in
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Figure 4.16: Reconstructed S1 image planes at 600nm are shown for different polarization angles.
The intensity of S1 images changes with the azimuth angle of the linear polarizer.

Figure 4.17: Reconstructed S2 image planes at 600nm are shown for different polarization angles.
The intensity of S2 images changes with the azimuth angle of the linear polarizer.
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Figure 4.18: (a): The target is captured by an RGB camera. (b)-(i): Reconstructed S0 image planes
are displayed at all 8 spectral wavelengths from 505nm to 650nm.

S1 image planes, while the polarizer film covering the legs introduces strong negative

intensities. The sword shaped polarizer film has strong negative intensity in S2 image

planes displayed in Fig. 4.20 (a)-(h). Fig. 4.20 (i) shows the angle of polarization cal-

culated at 625nm. The angle information is displayed in pseudo color. The polarizer

films covering the eyes and legs of the toy have an average of 5○ and 94○ linear po-

larization, respectively. The sword shaped polarizer film has an average of 122○ linear

polarization.

108



Figure 4.19: Reconstructed S1 image planes at 8 spectral wavelengths are displayed. The polarizer
film covering the eyes of the toy has strong positive S1 components. Strong negative S1 is observed
with the polarizer film covering the legs of the toy.

4.7 Conclusion

A spectral polarization compressive imaging system was designed, analyzed, and

experimentally tested. The image scene with spatial, spectral and polarization infor-

mation is projected onto the FPA, producing several 2D compressive coded projections.

A detailed mathematical model of the imager was presented, and an `1 regularized opti-

mization algorithm was applied for reconstruction that takes advantage of sparsity. The

polarizer and colored coding are designed with blue noise spatial patterns to enhance
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Figure 4.20: (a)-(h): Reconstructed S2 image planes at 8 spectral wavelengths are displayed. The
sword shaped polarizer film has strong negative S2 components. (i): AoP image represented by
pseudo color is computed at 625nm.

information capture and image reconstruction. Comparison between conventional com-

pressive sensing random projections and blue noise code designs, demonstrates the

advantages of the coding approach, resulting in better image reconstruction. Prism ro-

tations are used to obtain multiple measurement shots, which change the spectral and

polarization coding of the scene for every snapshot. Reconstructions are significantly

enhanced as more snapshots are added. A set of laboratory experiments demonstrate

successful reconstructions in spatial, spectral and polarization domains.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this dissertation, the development of a polar coded aperture compressive spec-

tral imaging system and a pixelated-polarizer based compressive spectral polarization

imaging system is described. Different from conventional high-dimensional imaging

system where scanning and DoFP approaches are largely used, the newly proposed

compressive high-dimensional imaging systems are capable of obtaining the full image

cube from a few modulated 2D projections without performing scanning or sacrificing

sensor resolution.

In the development of a polar coded aperture compressive spectral imager, a

polar shaped coded aperture is designed and fabricated with spokes-rings structure.

This polar coded aperture is placed on the focal plane of an objective lens, together

with a circular variable filter. A low-resolution sensor integrates the modulated scene

into 2D measurements. When mounted on spinning devices, this imager captures mul-

tiple measurement shots during a 2π rotation. Mathematical models are developed to

characterize the spatial-spectral modulation process and continuous rotation motion.

The aperture coding patterns are further optimized for reconstruction quality improve-

ment. Computer simulations with two proposed mathematical models are performed.

Reconstructions are compared between optimized and non-optimized coding patterns.

A proof-of-concept experiment is conducted for further evaluations on the performance

of the described imager.

Future research work on this spectral imager is twofold: 1. Efforts should be

made on the development of robust modeling and image reconstruction methods re-

garding the rotation of the imager. 2. More accurate calibration procedures are nec-

essary for better solutions on the coded aperture and rotation center misalignment
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phenomenon.

In the dissertation, a novel compressive spectral polarization imaging system is

developed. An integrated polarized color sensor combines with an double-Amici prism

providing a 4D spatial, spectral and polarization modulation. A mathematical forward

model is developed aiming at the direct recovery of Stokes spectral image planes. Linear

polarization states are better reconstructed with well-designed blue noise polarization

coding patterns. Multi-snapshots are enabled through the prism rotation. Computer

simulations and a set of experiments are conducted, further validating the proposed

imaging system.

Micro-polarizer array with blue noise distribution outperforms the random cod-

ing with 4dB difference in PSNR during a single snapshot comparison. Future work

may include the fabrication of this blue-noise polarization pattern for additional ex-

perimental implementation. Full-Stokes snapshot spectral polarization imaging can

be further developed by involving additional phase retarders in the proposed imaging

system.
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