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» INTRODUCTION

In many quantitative analytical techniques (such as
electrophoresis, ultracentrifugation, countercurrent dis-
tribution, column or paper éhrométography, various dis-
tillation techniques etc.) a mixture of several species
of molecules is analyzed by subjecting it to conditions
under which the several species migrate at different
rates. In situations where chemical reactions may occur
among the several species and where the extents of the
reactions are non-negligible these techniques fail in

the sense that the usual methods for numerically determining

*Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its govermnmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.
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In such situations the analytical system is ordinaril
modified so that no non-negligible resctions occur. Howe
ever, in some cases g modification of this kind mav be
either impossible or inconvenient. This paper will pre-
sent a mathematical framework which under certain circum-
stances will allow a quantitative analysis, even in the
presense of non-negligible chemical reactions amongst the
species. This framework will be applicable under the

following circumstances:

1) The non-negligible chemical reactions which
can occur are known.

2) The reactions which can occur to a non-
negligible sense are all sufficiently rapid
relative to the rates at which the migratory
processes occur, that they may be considered
to be instantaneous equilibrium reactioms.
For this purpose, a one way reaction which
is s0 rapid that it always instantaneously
exhausts the supply of at least one of its
reactants, may be considered a special case
of an equilibrium reaction.

3) A moderately powerful digital computer is
- available,

The methods described here may well be applicable to
systemé other than those of analytical chemistry. For
example, they may well apply to the analysis of certain
systems, in vivo. Howeveg, they were deQéloped with

chemical analysis in mind.
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The material presented here has been glven else-
where, in a more general form, and with a wore mathematical

orientation [1] .

The Mathematical Framework

Consider N species, Al,...,Aj,-..,Ay, of molecules,
in solution (either gaseous or liquid) and subject to any
number of migratory effects and to chemical reaction. The
following assumptions will be made:

Assumption 1: The processes take place in a long

"tube' such that the concentration of each Aj is constant
in every cross section of the tube perpendiculagr to the
tubes iongitudinal axis, That is, the concentration of
A; is a function, cy(x,t), of only the longitudinal coor-
dinate, x, along the tube, and time, t, where -®< X < o
and o < t < oo.

The cross sectional area of the tube will be allowed
to depend on both x and t. Let Q(x,t) be the area of the
cross section of the tube at x, at time, t.

Assumption 1, embodies a description of the geometry
in which the processes are to occur. Actually the methods
presented here, are applicable to a much wider class of
situations than is indicated by assumption 1 (with rather

trivial modifications in the development). For example,
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instead of s gingle dimension, x, im which the processes
take place, I could, as easily, have chosen several (as
would be necessary for certein kinds of paper chromato-
graphy) or instead of allowing x to take continous values,
1 could have restricted x to discrete values, (as would
be necessary for counter-current distribution). 1In (1]

a more general geometry is used.

Assumption 2: All the chemical reactions amongst

the Ay are either infinitely fast or infinitely slow,
relative to the migratory processes. That is, the chemical
reactions to which the Ay are subject, fall into two dis-
tinct classes:
a) Those whose reaction rates are so large
(relgtive to the migratory rates) that
they may be considered to attain equili-
brium instantaneously., It will also be
assumed that these reactions obey the mass
action law. These reactions will be
called "fast' reactions.
b) Those whose reaction rates are so small,
relative to the migratory rates, that
their effects may be neglected,
Assumption 2, unlike assumption 1, is crucial to the
developments of this paper. I1f it is not valid, the
methods of this paper will not directly apply.

Assumption 3: The laws under which the wvarious

migratory effects take place canm be expressed in terms of:
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To state assumption 3 more precisely, let Si(x,t)

x,t,cl(x,t),...,cN(x,t),

be‘the time rate of the number of molecules of A; which
cross x (in the positive direction) at time t, as a re-
sult of the totality of migratory effects. (In the
1iterature, the quantity analogous to my S is written as
presumably because § is a rate.)

Then, the assumption is, that for appropriate func=~
tions s, :

3¢y (x,t)
(1) Si(x,t) = si<%,t,c1(x,t),...,cN(x,t),——-mgf———,.

Note that, the dependence of 5; on x and t is due both

explicitly to the dependence of s; ©on X and t and impli-

citly to the dependence of s; on the cy(x,t).

I believe that this assumption is general emough to
embrace almost any situation of interest. (Of course,
if assumption 1, is modified, then a corresponding modi-

fication of assumption 3 will be necessary. The crucial
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fact about assumption 3 is that it does not allow S;(x,t)

to depend on time derivatives of the ci's)e For example,

if the migration is due to a combination of diffusion and

translation it allows the coefficients of diffusion

mobility for amy of the c, to depend on all of the other

Ci's and their spatial derivatives. It allows the force

At?

acN(x,t)>
s
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field causing the translation to vary with position and
time,

Consider a reaction to which the Ai are subject.
Associate with this reaction an N dimensional vector,

T = (ri,ao.,rﬁ) such that the reaction may be written:

(2) Z ry Ay 2 Z (-ry) A4
1 1

<
ri>0 ry 0

(those unfamiliar with vector analysis should re-

gard a vector as, simply an ordered sequence of numbers).

That is, if Ai does not occur in the reaction, let

r; = 0, if 4; appears on the left side of the reaction
equation, let r; be the coefficient of 4, if A; appears

on the right hand side of the reactiom equation, then

let r; be the negative of the coefficient of A;. Note,

that given the vector assoéiated with a reaction we can
immediately form the equation governing that reaction.
Note also, that if a vector r is associated with a re-
action, then the vector -r is associated with the re-
action obtained by reversing the left and right hand
sides of (2).

I will call a vector, r; a reaction vector if it is

associated with a ''fast' reaction.

Note that, for any reaction vector, r, we have the



mass balance equation:

n
(3) TI

Py
ci(x,t) =k,
1 !

3

Where k. is the mass balance constant of the reaction with
which r is associated., |

Let R be the set of all reaction vectors.
Theorem 1: R is a linear subspace of the set of all n
dimensional vectors (that is if r and r*\are members of
R, then so is r + r*; and if r is a member of R then so
is br, for any scalar b).
Proof: Let r be associéted with the fast reaction p and
r* with the fast reaction p*, Then, the reaction whose
equation is obtained by adding the equations for p and p*
will be a fast reaction and will be associated with r +
r*n Similarly the reaction obtained by multiplying both
sides of the reaction equation for ¢ by b will be a fast
reaction and will be associated with br, Q.E.D.
Theorem 2: Consider a small volume,dV , such that the
concentration of each of the A; may be considered spatially

constant within dV. Suppose that concentrations ClsccosCN

(not necessarily in equilibrium ratios) of the A; are

suddenly placed in gy and that all the fast reactions

ingtantaneously occur producing equilibrium concentrations
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Let f be a vector which is perpendicular to every
reaction vector, (twoc vectors are perpendicular if their
dot or scalar product is zero).

Then ¢
b

(4) ) £, 8¢ =0

i

Proof: For any reaction vector, r, let Ar,i denote the

change in ¢y due to the fast reaction associated with r.,
We have:

(5) Ar,i‘"‘ e, Iy, where e, is a measure of the extent
to which the reaction occurred in reaching equilibrium.

Hence:

(5) Z £, Ar,imz £, erri=erl £, vy =0
i i i

Since each Acy is the sum over all reaction vectors, r,
of the Ar,i’ equation (4) can be obtained by adding equa-
tion (5) for all reaction vectors.

Theorém 3: Let f be a vector which is perpendicular to
every reaction vector. Then, the following partial

differential equation holds:
- - . a8,.(x,t)
) ) i\
6) ) 1 3 [ob08) Qo) £ ——
i ' i
Froéxf: LetdV be the volume between x and x +dx. Note,

that the volume of dvis dxQ(x,t). The net number of

molecules of Ay which migrate into dV between t and .



t +dt is:

Sy(x,t) at - Sy(x + dx,t) 4t = - ——p— d&x at

Imagine that at time t the concentrations withim dV
are at equilibrium, and that during the interval between
t and t + dt migrations are allowed to occur but that no
chemical reactions occur until t + dt, when equilibrium

is instantaneously reattained. The number of molecules

of &, in 4V at time t + 4t just before instantaneous

reactiones occur is then:
asi(x,t)
Ci(x,t) Q(X,t) dx - . T — dx dt

and the concentrations ¢y are:

38, (x,%t)
e (%,6) Q(x,t) & - —=gx— dx dt
(7) ¢4 = UK, T + do) ax

After the reaction takes place, the concentration

ey +Acy may be expressed in the form:
aci(x,t)
cy + bey = ci(x,t) e« 3

(&) 2%
subtracting (7) from (8) 55, (%, t) ( |
e (x,t) - - : dc,(x,t
1 . TR g
A1 T QE T F aE) @(X’t v ae) - Q(x’t?}‘LQ(x,t Taey Bt T

or (ignoring higher order terms)

Aoy _? 38, (%,t)
0 ~TEe et T Gi(x,t) Q(x,t>>+~}-a§‘—~

Now apply Theorem 3 to the Acy, multiply (6) of
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Q(x,t)
e

Theorem (3) by T

and then use (9) to arrive at (6).
Q.E.D. o ”
Returning to the mass balance equation, (3), which
holds for every reaction vector, r, note that—we can write
down an infinite number of equations of this form, since
there are an infinite number of possible:reaction vectm’:s°
(For example, if r is a reaction vector then, by Theorem
i, gso is br, for all scalars, b). However, it turns out
that all of these equations are’not independent., In fact:
Theorem 4: Let r, and r* be reaction vectors, then the
mass balance equation for the reaction associated with
r + r" is obtained by multiplying corresponding sides of
the mass balance equations for the reactions associated

with r and r*.

In particular:.

(10) kr + r* = kr kp*
Furthérmbre the mass bglance equation for the reaction
associated with br is obtainable by taking the b'th
power of both sides of the mass balance equation of the
reaction associated with r.
In particular: |

(11) Kpp = Fkr)b

Proof: Theorem 4 follows from the way in which vectors
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are addéd and mﬁltiplied by scalars, and from the form of
equation (3).

Let éiﬁ R be the dimension of R (the dimension of a
linear sub-space is the maximum numbe? of linear indepen-
dent vectors in the space). Then by Theorem 4, theré are
exactly dim R independent;mass,balance equations relating

the concentrations ci(xst)o

Similarly, Theorém 3 seems to indicate that there
are an infinite number of partial differential equations
of the form, (6), relating the cj(x,t), since there are
an infinite n;mier of vectors peréendicular to every
reaction vector., However, any linear relation between

£'s, will reflect itself as a linear relation amongst the

equations of the form (6) induced by those f's. Let R,

denote the set of all Qeétors, £, which are perpendicular
to every reaction vector. We kno& from vector analysis
that R, is also a linear subspace. Let dim R, be the
dimension of Ry, There are thus only dim R; independent
partial differential equations of the form, (6). 1t is
a theorem from vector analysis that: ‘

(12) dim R + dim R; = N

ée ihus have a total of N independent simultaneous

relations amongst the cy(x,t). - dim R independenc mass
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balance equations of the form, (3), and dim R; independent

partial differential equatians,,.(é)°

The dim R equations (3) can“bé used to express dim R
of the cy(x,t)'s in terms—of the remaining (N - dim R =
dim R,), éi(x,t)'s. Note that, in general éhere is no
guarantee tﬁat we can eliminate any particular dim R of
the ci(x,t)'s: we only know that we can eliminate some
set of‘(dim R) of the ci(x,t)'s. For example if N = 4,
dim R =2 and the mass bélance equations are: (omitting
for convenience the arguments x,t) A
leslele, = Kk .

©1
2 *

1 -1 )
€y €3 ¢ =k

Cl .

Then the mass balance equations can not be used to elimin-

ate ¢y and c9 (that is to solve for ¢y and c, in terms of

cq and c4)c Although they can be used to eliminate any
other paié of the c¢'s,

It can also be shown that the question of which
dim R of the ci(x,t)”s can be eliminated does not depend
on which of the-dimﬂR independent mass balance equations
are chosen.

I can assume (if necessary by rearranging the order
of the ci(x,t)'s) that the last dim R of the ci(x,t) can

be eliminated. That is, that Cdim R, + l(xst):oooacu(xst)
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can be expressed in terms of cq(x,t),.00,%4qin R,(%,t)-
The last dim R of the ci(x,t} cén then be eliminated from
the dim R; independent simultameous partial differential
equations, of the form (6)..

I have thus far shown that the process involved can,
in effect, be expressed in terms of dim B, independent
simultaneous partial differential equationms in the quan-
tities cj(X,t);0000C440 R.J‘(x,t:)a With this system of
partial diffefential equetions we could address ourselves
to various problems,

For example:

Problem 1: Given the.functions Q(x,t) and 8y (see equa-
tion (1) in assumption (3) and gi&en the initial concen-
tratiéns cl(x,O),ooo,cdim R(x,O); to determine the c;(x,t),
that is, tohsolve the system of partial differential equa-
tions with the c, (x,0) as boundary values.

Problem 2: Given the functions Q(x,t) and 8; and certain

information about the ci(x,t) to determine the ci(xaﬂ)o

That is, to solve the syétem of partial differential
equations given more complex boundary values. This is,

in fact, the problem which occurs in quantitative analysis.
Problem 3: Given Q(x,t) end certain information about the

ci(x,t)'s to determine the functions s, that is, to

determine the laws under which the migration occurs.
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The most straightforward of these problems is problem

All three problems are of practical importance, various
numerical techniques are available for all 3 problems. In
this exposition, only problem 1 will be considered. The
pumerical techniques used in problem 1 will be applicable
to more complex problems. In our exposition we shall
barely indicate ome possible numerical attack.

Solution to problem:

Let fﬂl)gogo,fgj),ooo,fgp), be a set of P independent

members of R,;, Then, the system of P partial differential

equations takes the form: (see (6))
(13) Z fi(“%g (c;(x,8) alx,t)) =
i

() a8 (x t)
}f """s*——’"‘ for 1 EJsP

1f we carry out the differentiation on the left of

(13), we obtain:

_ e, (x,t) Hgs;:,tz
(12‘_) Z‘ f (J) _f_j_-%ig_____ = k7 Z fi(j)ci(x’t)
i

i T TQlx,¢t)
”"S(X;t)
- TQT"'T Z e, () 2207 eor 15530
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We also have, as a result of solving the mass balance
equations for the first P of the ci(x,t)'s:

(15) ci(x,t) = 8, (}1(x,t),...,cP(x,t2) for P+ 1 <1 <N

By the partial differentiation of the equations (14)

we can express

aci(x,t) dc,(x,t)
5T for P+ 1 21 <N in terms of cy(x,t) and ——nr

for 1 < i < P.

If this is done, note that the result is linear in the
aci(x,t) -

If we then use (l) to e¥pre§s the S (x,t) in terums

of x,t, the ci(x t) and ”“g;f“"" carry out the indicated
differentiation of the si(x,t) (in practice this indicated
differentiation would, perhaps, only be done numerically -
but;_the exposition is simplified if it is assumed that
the indicated differentiation is actually carried out)
and eliminate:

%ci(x,t) ?gci(x,t)

e, (x,t) ,—x S for P+1515V,

the system (14) becomes:

Yoy (x,t)

(16) j y, —Hp— = By for 15

i

1 PVGm
BA
g

where the aj g for 1 £ 1, J £ P are known functions of the

Ci(xa t) ’



aci(xgt) "
’3331(0) ""“'ST.:""—“‘“ = Bj(cac'nc ) for 1 é j é
1

(16)
1

i~

where C denotes cl(x,t),oao,cy(x,t),

dc.{x,t de(Xx,t
C' denotes __ii_i_),,,,,__fi_i“l and
ax ox
a%c (x,t) 3% (x,t)
C" denotes ~——£§~_—~ ,...,—-—£?~——~ s
ax le) 4

and where the ajai and B 4 are known functions.
The basic computational procedure to be used in the
numerical solution of (16) involves extending the knowledge
of the ci(x9t0) for a fixed tgs tO a knowledge of the
ci(x,te +4 t), ci(x,ZAt),ci(x,SAt)cooaetc. At chosen
sméll enough so tﬁat the ci(x,t) for t a multiple of AL
will adequately describe the c,(x,t).
Thus, assume that the ci(x;to)rare known for all x
and for a fixed t,. The C, C' and C" can be computed by
numerical differentiation with respect to x, and? j,i(c)

and%fj(cac'ac") can be numerically evaluated, thus,

numerically determining all the elements in the system,

dcy(x,t)
(16), except the But (16) is now a system
. . iV T o
of linear algebraic equatioms in the unknown ————
a3t

which can be numerically solved by standard methods,

P



We then have:
de,(x,t.)
¢, (x,t, +At) = cigxgto) +AC iat 0

The above computational process, even in the simplest
gituations, is such that it could only be undertaken by
means of a high speed digital computer.

The process that has been described is also somewhat
simpler than one which will actually be employed. The
exposition has been designed only to indicate the basic

ideas involved,

&
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