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ABSTRACT

The filtered backprojection algorithm (FBP) is a standard
image reconstruction algorithm used in many imaging modal-
ities. The FBP algorithm is suited for high-frequency imag-
ing applications, that is, applications where the specimen
is much larger than the wavelengths of the incident fields.
However, when data is scarce due to limited view or dosage
considerations, or when super-resolution is required, differ-
ent techniques are needed to adequately resolve the speci-
men. We present a generalization of the filtered backpro-
jection algorithm that extends the capabilities of acoustic
imaging systems to limited aperture and wavelength res-
olution. Our principal interest is applications to acoustic
(scalar) scattering, though the methodology we develop can
be extended to general electromagnetic (vector) settings.

1. INTRODUCTION

Many innovative algorithms have appeared in recent years
for inverse scattering applications with single-, low-frequency
applications in mind. Good examples can be found in the
work of Colton and Kirsch [1], Potthast [2] and Colton and
Kress [3]. In the present work, we extend the Point Source
Method of Potthast [2] to a multifrequency framework in
order to derive a generalization of the well known filtered
backprojection (FBP) algorithm for acoustic imaging. The
difference between the generalization and conventional FBP
is the region of validity: conventional FBP works best at
high frequencies, while the generalized FBP (GFBP) is not
limited by frequency. This opens the door to super-resolution
capabilities for systems that currently rely on conventional
FBP-based image reconstruction.

2. SCATTERING MODEL

As a matter of convenience, our discussion is limited to scat-
tering of small-amplitude, time-harmonic waves from an
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impenetrable, sound-soft obstacle embedded in an isotropic
homogeneous medium. The techniques described here are
easily adapted to obstacles with Neumann and impedance
boundaries and to electromagnetic scattering. Extensions to
inhomogeneous media are a topic of current research.

The obstacle is identified by its supportΩ ⊂ Rm, m =
2 or 3 and is a bounded domain with connected, piece-
wise smooth∂Ω and the unit outward normalν. We il-
luminate this obstacle with anincident field, denoted by
vi : Rm → C , that satisfies Eq.(1) onRm. Thetotal field,
denoted byv, is the superposition of thescattered fieldvs

and the incident fieldvi. The governing equation for this
setting is the Helmholtz equation with sound-soft (Dirich-
let) boundary conditions and the Sommerfeld radiation con-
dition (

4+ κ2
)
v(x) = 0, x ∈ Ω

c ⊂ Rm, (1)

v = 0 on ∂Ω, (2)

v = vi + vs, (3)

r
m−1

2

( ∂

∂r
− iκ

)
vs(x) → 0, r = |x| → ∞, (4)

where4 denotes the Laplacian,κ ≥ 0 is thefrequencyor
wavenumberandΩ

c
:= Rm\Ω.

At large distances from the obstacleΩ, the scattered
field vs is characterized by thefar field patternv∞ : S →
C on the set of directionsS := {x ∈ Rm | |x| = 1} . We
denote the direction of a vectorx ∈ Rm by x̂ := x/|x|.

Denote the free-space fundamental solution to Eq.(1) by
Φ : Rm×Rm → C (see [Eq.(3.60) and Eq.(2.1)] [3]). Then
vs satisfies Green’s formula [3, Eq.2.5], also known as the
Integral Theorem of Kirchhoff and Helmholtz, forx ∈ Ω

c

and κ > 0. Green’s formula applied tovs, together with
Green’s Theorem applied tovi andΦ, yield the following
formalization of Huygens’s principle [3, Thm. 3.12]

vs(x) = −
∫

∂Ω

∂v(z)
∂ν(z)

Φ(x, z) ds(z), x ∈ Ω
c
. (5)

The corresponding far-field pattern is given by

v∞(x̂) = −β

∫
∂Ω

∂v(z)
∂ν(z)

e−iκx̂·z ds(z), x̂ ∈ S. (6)



whereβ is given by [3, Eq.(2.13) and Eq.(3.64)]

β =
e−i π

4

√
8πκ

, for m = 2 and β =
1

4π,
for m = 3.

(7)
Note that in two dimensions,β is a function ofκ, unlike the
three dimensional setting. We reserve special notation for
incidentplane wavesdenoted by

ui(x, η̂) := eiκx·η̂, x ∈ Rm, η̂ ∈ S. (8)

Hereη̂ ∈ S, indicates thedirection of incidence.

3. INVERSE SCATTERING

In inverse scattering, we wish to reconstruct the boundary
of the scatterer,∂Ω, from measurements of the far field on
an array of receptors located onΓ, a subset of all possible
view angles onS. The central idea is to project the far field
measurements back to the surface of the scatterer, hence the
namebackprojection. There are two key ingredients to ac-
complish this. The first is the familiar Green’s formula.
The second ingredient is the superposition of plane waves
known as the Herglotz wave function.

By Green’s formula we have

vs(x) =
∫

∂Ω

{
Φ(x, y)

∂vs

∂ν
(y)− ∂Φ(x, y)

∂ν(y)
vs(y)

}
ds(y),

(9)
for x ∈ Ω

c
. In the far field, that is, as|x| → ∞, this

becomes

v∞(x̂) = β

∫
∂Ω

{
e−iκx̂·y ∂vs

∂ν
(y)− ∂e−iκx̂·y

∂ν(y)
vs(y)

}
ds(y).

(10)
TheHerglotz wave function with densityg is defined by

hg(x) =
∫

Γ

eiκx·(−ŷ)g(−ŷ)ds(ŷ) (11)

for x ∈ Rm, Γ ⊂ S. Since the related Herglotz wave op-
erator is injective with dense range [2], by appropriately
choosing the densityg, we can construct a function of the
form Eq.(11) that approximates any square integrable func-
tion arbitrarily closely on curves. The idea for construct-
ing a backprojector, then, is to usehg(x) to approximate
Φ(x, z) on ∂Ω. By Green’s Formula and Eq.(9)-(11), for
z ∈ Rm \ Ω,

vs(z) =
∫

∂Ω

{
Φ(x, z)

∂vs

∂ν
(x)− ∂Φ(x, z)

∂ν(x)
vs(x)

}
ds(x),

≈
∫

∂Ω

{
hg(x)

∂vs

∂ν
(x)− ∂hg(x)

∂ν(x)
vs(x)

}
ds(x),

=
∫

Γ

v∞(η̂)
g(−η̂)

β
ds(η̂). (12)

We thus define thebackprojector

(Agv
∞)(z, κ) :=

∫
Γ

v∞(ŷ, κ)
g(−ŷ, z, κ)

β(κ)
ds(ŷ). (13)

Here we have allowed for the possibility of polychromatic
scattering by explicitly including the dependence on the fre-
quencyκ. Then

(Agv
∞)(z, κ) ≈ vs(z, κ)

where, for fixedz ∈ Ω
c

andκ, the densityg satisfies∫
Γ

eiκx·(−ŷ)g(−ŷ, z, κ)ds(ŷ) ≈ Φ(x, z, κ)

at points on the unknown boundary of the obstacle,x ∈ ∂Ω.
The advantages and challenges of this idea are imme-

diately clear. On one hand, the backprojector maps the far
field measurementsv∞ to any point z on the exterior of
the scatterer, for all frequencies, regardless of the boundary
condition. We can then use this information to findΩ. On
the other hand, the best densityg is one that gives the best
approximation toΦ(·, z) on∂Ω, the unknown boundary.

3.1. The Point Source Method

To circumvent the problem of approximating the fundamen-
tal solution on the unknown boundary of the scatterer, we
construct densityg by translations and rotations of anap-
proximating domainΩ0. The point source method of Pot-
thast [2] is based on the following observation.

THEOREM 3.1 (POTTHAST, 1996) Let Ω0 ⊂ Rm be a
bounded domain (thedomain of approximation) with con-
nectedC2 boundary such thatΩ ⊂ Ω0. Consider scat-
tering from an incident plane waveui(·, η̂, κ) with direc-
tion of incidencêη and (almost any) frequencyκ > 0. Let
us(z, η̂, κ) denote the corresponding scattered field at an
arbitrary point z ∈ Ω

c
, and let ,Φ(·, z, κ) denote the fun-

damental solution at frequencyκ due to a point source at
z. The backprojectorAg reconstructsus(z, η̂, κ) arbitrar-
ily closely using any densityg for which the Herglotz wave
functionhg(·, z, κ) defined by Eq.(11) approximatesΦ(·, z, κ)
sufficiently accurately onΩ0.

We briefly sketch a method for constructing the density
g. In this short space it is not possible to fully detail the
numerical realization of the point source method. Interested
readers are referred to [4] and references therein.

PROPOSITION3.2 LetΩ0 ⊂ Rm \ {0} with connectedC2

boundary. Consider

min
∥∥∥Φ(·, 0, κ)− hg(·, 0, κ)

∥∥∥2

L2(∂Ω0)
+ α0

∥∥∥g(·, 0, κ)
∥∥∥2

L2(S)

+α̃0

∥∥∥(1−X−Γ)g(·, 0, κ)
∥∥∥2

L2(S)
(14)



over g(·, 0, κ) ∈ L2(S). This problem has a unique solution
g∗(·, 0, κ).

Moreover, the optimal solution to the problem

min
∥∥∥Φ(·, z, κ)− hg(·, z, κ)

∥∥∥2

L2(∂(Ω0+z))
+ α0

∥∥∥g(·, z, κ)
∥∥∥2

L2(S)

+α̃0

∥∥∥(1−X−Γ)g(·, z, κ)
∥∥∥2

L2(S)
(15)

over g(·, z, κ) ∈ L2(S) is given by

g∗(x̂, z, κ) = e−iκz·x̂g∗(x̂, 0, κ), x̂ ∈ S. (16)

According to this theorem, one strategy for constructing a
densityg∗ is to solve the optimization problem Eq.(14) at
each frequency for the optimal density at the origing∗(·, 0, κ).
The solution to this problem can be written in closed form
as the solution to the normal equations. The optimal density
at arbitrary pointsz is then obtained by Eq.(16), which is
just a phase shift ofg∗(·, 0, κ).

Using this density, the backprojection operator given by
Eq.(13) corresponding to these translated domains can be
written in terms of the generating densityg∗(·, 0) as

(Ãg∗u
∞)(z, η̂, κ) :=∫

Γ

u∞(ŷ, η̂, κ)
g∗(−ŷ, 0, κ)

β
e−iκz·(−ŷ) ds(ŷ), (17)

for z ∈ Rm. The pointsz satisfying the hypotheses of
Theorem 3.1 depend on the geometry of the approximating
domainΩ0 and that of the scattererΩ.

4. PHYSICAL OPTICS AND FILTERED
BACKPROJECTION

In this section, we derive conventional filtered backprojec-
tion as an approximation of the multifrequency extension
of Eq.(17). In [5] it was shown that the solutionϕ to the
integral equation

1
2(2π)m/2

∫
Ω

c
u(z, η̂, κ)eiκŷ·zϕ(z) dz

= −u∞(−ŷ, η̂, κ)
βκ2

(18)

is given by

ϕ(z) = − 1
2(2π)m/2

4×(∫
R
κm−3

∫
S
u(z, η̂, κ)e−iκŷ·z u∞(−ŷ, η̂, κ)

βκ2
ds(η̂) dκ

)
(19)

whereu(z, η̂, κ) = ui(z, η̂, κ) + us(z, η̂, κ). It is apparent
from Eq.(18) and Eq.(19) thatϕ andu∞ are a transform
pair.

To gain some insight into the nature of this transform,
recall the commonly employed physical optics approxima-
tion (also known as the weak scattering or Born approxima-
tion in inhomogeneous media scattering),

u(z, η̂, κ) ≈ ui(z, η̂, κ) where ui(z, η̂, κ) = eiκz·η̂.

Using this approximation in Eq.(18) and Eq.(19) yields

ϕ(z) ≈ − 1
2(2π)m/2

×∫
R

∫
S

u∞(−ŷ, η̂, κ)
βκ2

e−iκ(ŷ+η̂)·zds(η̂) |κ|m−1dκ (20)

and

1
2(2π)m/2

∫
Ω

c
eiκz·(ŷ+η̂)ϕ(z) dz ≈ −u∞(−ŷ, η̂, κ)

βκ2
.

(21)
Note that Eq.(20) is a Fourier transform in polar coordi-
nates. Thus,−u∞(−ŷ,η̂,κ)

βκ2 andϕ are a (weighted) Fourier

transform pair on the physical domainΩ
c
.

The variablêy in Eq.(20) is arbitrary, thus we can change
variables on the inner integral to obtain an equivalent inte-
gral ∫

S

u∞(−η̂, x̂, κ)
βκ2

e−iκ(x̂+η̂)·zds(x̂).

By a standard reciprocity relation,

u∞(−η̂, x̂, κ) = u∞(−x̂, η̂, κ). (22)

This, together with another change of variables (x̂ = −ŷ)
yields the filtered backprojection operator that is recurrent
in computed tomography applications:

ϕ(z) ≈ 1
2(2π)m/2

×∫
R

∫
S
u∞(ŷ, η̂, κ)

e−iκ(η̂−ŷ)·z

βκ2
ds(ŷ) |κ|m−1dκ. (23)

Comparing the inner integral of Eq.(23) with Eq.(13), it is
apparent that Eq.(23) is a superposition of backprojection
operatorsAg over all frequencies. Indeed, we can write the
above expression more compactly as

ϕ(z) ≈
∫

R
(Ãegu∞)(z, η̂, κ) |κ|m−1dκ (24)

where

(Ãegu∞)(z, η̂, κ) :=
∫

S
u∞(ŷ, η̂, κ)

e−iκz·(η̂−ŷ)

2(2π)m/2βκ2
ds(ŷ)

≈ us(z, η̂, κ) (25)

for the density, orfilter

g̃(ŷ, z, κ, η̂) =
βe−iκz·(η̂+ŷ)

2(2π)m/2βκ2
. (26)
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Fig. 1. Full aperture, (Γ = S sampled at128 points) re-
constructions for three different regimes: I.a.-b.1 incident
field, and 16 wavenumbers evenly spaced on the interval
[0, 6]; II.a.-b. 4 incident fields evenly spaced on the inter-
val [0, 2π], and4 wavenumbers evenly spaced on the in-
terval [0, 6]; III.a.-b. 16 incident fields evenly spaced on
the interval[0, 2π], and1 wavenumber,κ = 2. The opti-
mized density Eq.(16) was used in reconstruction (a) and
the physical optics approximation density Eq.(26) was used
in reconstruction (b)

This filter is dependent on the incident directionη̂. Note
that the apertureΓ in this derivation is the entire sphereS.
This is an artifact of the use of the eigenfunction expansion
theorem that was used to derive Eq.(19) (see [5]), but the
theory is not limited to this setting.

5. NUMERICAL RESULTS

Reconstructions using generalized filtered backprojection are
accomplished in the following series of steps.

ALGORITHM 5.1 (GENERALIZED FBP) :

Step 1: (Generating densityg∗(ŷ, 0, κ)): Set up the gen-
erating approximation domainΩ0 and, at each fre-
quencyκk, solve the minimization problem Eq.(14) or

Eq.(15) for the generating densityg∗(−ŷl, 0, κk) cor-
responding to the far field measurementsu∞(ŷl, η̂, κk)
(l, k ∈ N).

Step 2: (Backprojection) At pointszi ∈ G (i ∈ N), the
computational grid, calculate the approximation to
the scattered fieldus

∗(zi, η̂j , κk) for each direction
η̂j , (j ∈ N) and each frequencyκk, (k ∈ N).

Step 3: (Integration) Add the modulus squared of all ap-
proximated total fields, that is, for eachzi compute
f(zi) defined by

f(zi) =
K∑

k=1

J∑
j=1

∣∣∣us
∗(zi, η̂j , κk) + ui(zi, η̂j , κk)

∣∣∣2.
(27)

For our simulations we use a kite-shaped sound-soft ob-
stacle used in [3, Section 3.5] and incident waves with wave-
length on the order of magnitude of the obstacle. Recon-
structions with the point source method are shown with den-
sities g∗ calculated via the optimization problem Eq.(16).
In each, the regularization parameterα = 10−8 and the
penalty parameter̃α = ∞. These reconstructions are com-
pared to reconstructions using using the physical optics den-
sity g̃ (see Eq.(26)) in Step 2. of Algorithm 5.1, rather than
g∗. In each of the experiments, the same number of data
points is used, that is, the number of far field measurements
times the number of incident fields times the number of fre-
quencies used is always equal to2048.
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