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Spin-orbit coupling in heavy-metal/ferromagnet (HM/FM) bilayer 

heterostructures has attracted considerable attention because it provides an efficient 

way to manipulate the magnetization with strong current-driven spin-orbit torques 

(SOTs), which may lead to new technologies for nonvolatile magnetic memory and 

logic devices. An electric current flowing through a heavy metal generates a field-like 

spin-orbit torque (FT) and a damping-like spin-orbit torque (DT) on the magnetization 

of a neighboring ferromagnet. Two mechanisms have been proposed to explain the 

generation of SOTs: the Rashba-Edelstein effect due to interfacial spin-orbit coupling 

and the spin Hall effect in the bulk of materials with strong spin-orbit coupling (SOC). 

Much effort has been dedicated to identifying the dominant mechanism of the SOTs; 

however, the underlying mechanism for the SOC-driven phenomena remained 

unsettled. In this thesis, we develop a sensitive SOT magnetometer based on the 

magneto-optic Kerr effect (MOKE) that measures the SOTs for HM/FM bilayers over 

a wide thickness range. We observe that the DT inversely scales with the ferromagnet 

thickness, and the FT has a threshold effect that appears only when the ferromagnetic 

layer is thinner than 1 nm. Through a thickness-dependence study with an additional 

copper insertion layer at the interface, we conclude that both SHE and Rashba effect 

exist in HM/FM heterostructures.  The relative strengths of their contributions depend 

on the material system. 

We have also demonstrated that MOKE with normal incidence light can be 

used to obtain the DT and FT in HM/FM bilayers by analyzing the polar Kerr effect as 
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well as the quadratic Kerr effect. The two effects can be distinguished by properly 

selecting the polarization of the incident light. We study a series of Pt/Py bilayers to 

verify the accuracy of this method. The angular dependence of SOTs in Ta (2 

nm)/CoFeB (1 nm)/MgO (3 nm) trilayers with perpendicular magnetization is 

quantified based on polar MOKE with field calibration. A strong angular dependence 

is observed that is different from the previous experimental observations. Based on 

this strong angle dependence, we conclude there is a strong Rashba effect in this 

system. Simultaneous detection of current-driven DT and FT in HM/FM bilayers by 
measuring all three magnetization components !mx , !

my  and !mz  using a vector-

resolved MOKE technique based on quadrant detection has also been accomplished. 

The technique can be easily extended to measure SOTs in systems with perpendicular 

magnetization, as well as in systems with arbitrary magnetization direction. 
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INTRODUCTION 

1.1 Introduction to Spintronics 

The study of the magnetic properties of materials has been of interest for 

centuries. Generating, storing and processing information is one of the main reasons 

for this interest. The invention of transistors in 1947 by John Bardeen, Walter Brattain, 

and William Shockley started the evolution of modern electronic devices. They were 

awarded the Nobel Prize in Physics in 1956 for their discovery [1]. Moore's law, based 

on Gordon Moore’s prediction in the 1970s, describes how the computing power of 

silicon-based devices evolves in time and correctly predicted that the number of 

transistors in an integrated chip would double approximately every two years [2,3]. 

The demand on the capacity of computing power per unit area has increased to the 

point where it is limited by the size of the circuit elements. Alternative platforms are 

needed to increase the efficiency of memory and logic devices. 

Magnetic core memory was the earliest form of non-volatile magnetic storage 

and was composed of wires through ferrite rings [4]. An electric current was sent 

through wires to generate fields in the rings clockwise or anticlockwise to encode 

information as ones and zeros. But this technology was not scalable due to its 

mechanical structure. The advancements in the semiconductor industry together with 

the scalability problem drove core memory off the market in 1970s [4]. 

Today's conventional electronics use the electron's charge as the information 

carrier. To transmit information, the flow of charges through wires per unit time is 
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used and charges are stored in capacitors to save information [5]. For devices built on 

monitoring currents passing through electronic circuits, the trend is progressive device 

miniaturization, but decreasing wire diameter creates thermal challenges which then 

limit the amount of current sent, and as the size of capacitors decreases, charges leak 

across the capacitors. So, the challenge is to scale into the nanometer regime while 

keeping the functionality of the devices the same as before as well as doing this with 

much less energy. At these length scales, more efficient technologies are needed. As 

materials become smaller and smaller, they enter the quantum regime where their 

properties change. Another property of the electron, a quantum mechanical 

phenomenon called spin, then enters the picture. The spin degree of freedom of 

electrons can be used to store and transmit information. This field of research is called 

spintronics, and enables scaling into the nanometer regime [6]. With spintronics, it is 

possible to develop new devices and phenomena by utilizing the spin of the electron in 

addition to, or sometimes in place of, the charge of the electron. Spintronic devices 

utilize two states of spin to encode information as zeros and ones. The advantages of 

spintronic devices over conventional electronic devices are high performance and 

high-density magnetic storage, non-volatility -- meaning information is not lost even 

in the absence of power -- reduced energy consumption and increased speed of data 

processing. 

The evolution of spintronics started with the discovery of the giant 

magnetoresistance effect [7,8]. This effect was used in creating spin valve sensors in 

read heads of hard disk drives (HDD). IBM introduced HDDs with a real density of 1 

Gbit /in2 and 16.8 GB of storage in 1997 [9]. With the implementation of magnetic 

tunnel junctions (MTJs), which exhibit tunneling magnetoresistance (TMR), into read 
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heads of HDDs for the first time in 2004, the storage density of the magnetic disk 

drives increased to 80-100 Gbits/in2 [10]. With the advancement of spintronic 

technology, Seagate announced production of 1.25 Tbits/ in2 hard disk drives in 

2013 [11]. Magnetic tunnel junctions are also used in magnetic random access 

memory (MRAM) devices [12]. Second generation MRAMs use spin transfer torque 

(STT) effects to write information [13]. 

Although the technological imperative of scalability is an important motivation 

for spintronics research, interesting physics and the potential for new discoveries are 

adding to the growing interest in this area. Some examples of recent research findings 

include current-induced magnetization switching [14,15], control of domain formation 

and motion [16–19], and manipulating the dynamics of spin relaxation [20]. 

1.2  Giant Magnetoresistance and Spin Valves 

Giant magnetoresistance (GMR) is a crucial discovery of Albert Fert and Peter 

Gruenberg in 1988, and is generally accepted as the birth of spintronics [7,8]. In 2007 

they were awarded the Nobel Prize in physics for their discovery [21]. 

As current flows through a non-magnetic conductor, electrons will scatter 

independent of spin polarization, but as it flows through a magnetic material, electron 

scattering depends on spin orientation [22]. This scattering determines the resistance 

of the material. If a non-magnetic normal metal (NM) is sandwiched between two 

ferromagnetic materials (FM1 and FM2), the resistance of this structure will depend 

on the relative orientation of the ferromagnetic layers. If the magnetizations of two 

ferromagnetic layers are parallel, the resistance of this multilayer structure is lower 

than when the two layers are antiparallel. Let us first assume that the two 

ferromagnetic layers are magnetized parallel, as illustrated in Figure 1.1 (a). Current 
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sent through the FM1 layer is composed of spin up and spin down electrons. For 

electrons whose spin is parallel to the magnetization of FM1, the probability of 

scattering at FM1/NM and NM/FM2 is low, so the resistance is low for both interfaces 

(r). For electrons whose spin is antiparallel to the magnetization of the FM1, the 

electrons will scatter strongly at both interfaces and result in a higher resistance (R), so 
the total resistance is  

RP = rR r + R( )  for the parallel case. If the two ferromagnetic 

layers are antiparallel, scattering happens for both spin directions at different 
interfaces as seen in Figure 1.1 (b) and results in a total resistance of 

  
RAP = r + R( ) 2 . 

The relative magnetoresistance is defined as 

 AP P

P

R RR
R R

−Δ = .! (1.1)!

!
Figure 1.1: Giant magnetoresistance effect: A triple-layer film in which a non-

magnetic normal metal is sandwiched between two ferromagnetic metals. 
(a) FM1 parallel to FM2 → low resistance, (b) FM1 antiparallel to FM2 
→ high resistance. 

The main applications of this spin-dependent scattering effect are magnetic field 

sensors and magnetic memory elements. 
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Spin valve sensors are created based on the GMR effect [23]. In a spin valve, 

magnetization of one layer is fixed by placing an antiferromagnet next to it. At the 

interface of antiferromagnet and ferromagnet, an internal exchange coupling energy 

fixes the magnetic moment of that ferromagnetic layer. A non-magnetic conductor 

layer between the two ferromagnetic layers is thick enough to block any magnetic 

interaction between the ferromagnetic layers. The second magnetic layer, called the 

“free” layer, can change its magnetic moment in response to external magnetic fields. 

So, the resistance of this magnetic multilayer is very sensitive to the presence or 

absence of magnetic fields. IBM integrated GMR sensors in read heads of hard disk 

drives first the time in 1997, which increased the areal density of storage to 1 Gbit 

/in2 [9]. This spintronic read head is extremely sensitive to small magnetic fields, so it 

is a very efficient way to read out information quickly and reliably. 

1.3 Magnetic Tunnel Junctions 

Tedrow and Meservey did a series of experiments studying the role of spin in 

determining the tunneling current, or spin-dependent tunneling, in the 1970s [24]. This 

lead to the discovery of tunneling magnetoresistance (TMR) in magnetic tunnel 

junctions (MTJs). In MTJs, two magnetic layers are separated with a thin insulating 

material instead of a metal layer as in the case of GMR. TMR was measured in a 

structure composed of two ferromagnetic layers separated by an aluminum oxide 

layer, Al2O3, by Miyazaki and Tezuka in 1995, who found a TMR ratio of 30% at 4.2 

K and 18% at 300 K [25]. The probability of electrons tunneling through the barrier 

depends on the relative orientation of the magnetic layers. Tunneling can be explained 

by Julliere’s model [26], which makes two assumptions. The first is that the tunneling 

electrons conserve their spin during the tunneling process, which means that 
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conductance occurs on two different channels for spin up and spin down electrons. In 

ferromagnets, the ground state energy bands split, creating majority and minority 

bands for the two spin directions near the Fermi level. If two magnetic layers are 

parallel to each other, the majority spins in FM1 tunnel into majority states of the FM2 

and likewise minority spins of FM1 tunnel into minority states of FM2, as seen in 

Figure 1.2 (a), resulting in a low resistance. If the two magnetic layers are antiparallel, 

as shown in Figure 1.2 (b), the majority spins in FM1 tunnel to minority states in FM2 

and vice versa, resulting in a high resistance.  

 

 

Figure 1.2: Illustration of TMR in a MTJ comprised of two ferromagnetic layers, 
FM1 and FM2, separated by an insulating barrier I. (a) For FM1 parallel 
to FM2, spin up electrons tunnel from majority to majority band and spin 
down electrons tunnel from minority to minority band → low resistance. 
(b) For FM1 antiparallel to FM2, spin up electrons tunnel from majority 
to minority band and spin down electrons tunnel from minority to 
majority band → high resistance. 

The second assumption is that the tunneling current is proportional to the product of 

the density of states (DOS) at the Fermi level of the two ferromagnets. Based on these 
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assumptions, the conductivity of a junction for the parallel and antiparallel cases can 

be written respectively as 

! 1 2 1 2

1 2 1 2

P

AP

G N N N N
G N N N N

= ↑ ↑ + ↓ ↓

= ↑ ↓ + ↓ ↑
!,! (1.2)!

where 1N ↑  and 1N ↓  are the DOS for spin up and down electrons for FM1 and 2N ↑  

and 2N ↓  are the DOS for spin up and down electrons for FM2 [12]. The tunneling 

magnetoresistance is then defined as 

! ( )P AP

AP

G G
TMR

G
−

= !.! (1.3)!

All of the early demonstrations of MTJs were based on Al2O3 as an insulating 

barrier [27], but theoretical calculations of this TMR were difficult due to the 

amorphous nature of Al2O3. After experimental studies were done to understand which 

parameters were important to increase the TMR ratio, a TMR ratio of 70% was 

achieved with an Al2O3 barrier [28]. Theoretical calculations predicted a TMR ratio of 

1000% at room temperature (RT) with a crystalline MgO tunnel barrier [29,30]. The 

first experimental demonstration of MTJs with an MgO barrier was performed in 

2004 [31,32] and exhibited a TMR ratio of 180%, bigger than the Al2O3-based MTJs. 

Increasing the TMR ratio is essential for many device applications such as magnetic-

field sensors, as in the read head of HDD, and memory devices. In 2004, MTJs were 

implemented into read heads of HDD for the first time, achieving a storage density of 

80-100 Gbits/in2 [10]. With the advancement of nanofabrication technology, a TMR 

ratio of 500% was achieved at room temperature [33,34]. With new development 

techniques, MTJ dimensions rapidly scaled down to 100 nm together with higher 

TMR ratios, and another application of MTJs was developed, magnetic random access 

devices or MRAM [12]. In 2006, Freescale Semiconductor commercialized the first 
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MRAM [35]. MRAM is a fast, non-volatile and high-density memory device that uses 

a magnetic field generated from current through wires to manipulate the magnetization 

of a specific cell. At the nanoscale, it is difficult to efficiently control the 

magnetization, as the field generated on conducting lines decreases gradually over 

distance, resulting in the switching of unwanted cells, which then limits the scalability 

of the device. Another limitation of field-written MRAMs comes from the fact that as 

the size of the memory cell decreases, the anisotropy field required to avoid thermal 

excitations increases, due to   KV > 50− 60kBT  where K  is the anisotropy constant per 

unit volume, V  is the volume of the cell, Bk  is the Boltzmann constant, and T  is the 

temperature. Due to these limitations, a lot of research has focused on spin transfer 

torque (STT) and its gradual implementation in memory devices as spin transfer 

torque magnetic random access memory (STT-MRAM) [36]. STT-MRAMs scale 

better than field-written MRAMs since the required current for switching decreases 

with the size of the MTJ cell. Also, since the current passes only through the MTJ cell, 

selectivity of a specific cell is achieved more reliably; but a disadvantage comes along 

with this. Since a high current passes through a thin spacer, it may overheat and 

damage the cell. This drawback may be overcome through the use of spin-orbit 

coupling-based spin transfer torque [14,15]. 

1.4 Micromagnetic Modeling and the Dynamic Equation 

1.4.1 Micromagnetic Model 

In the continuum hypothesis of the micromagnetic model of magnetism, 

atomic-length-scale interactions and macroscopic magnetic behaviors, which range 

from a few nanometers to a few micrometers, are simulated at the same time, ignoring 
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any discrete effects [37]. Short-scale interactions between magnetic moments, such as 

the exchange interaction, together with long-scale interactions, such as magnetostatic 

interactions, are combined and determine the spatial distribution of magnetization in a 

material. Considering a small volume Vδ  containing a large amount of magnetic 

moments   
!
µi , which vary smoothly within this volume, the magnetization vector field, 

   
!

M !r ,t( ) , which depends on spatial coordinate ! 
!r  and time t with a constant magnitude 

sM , can be defined as 

!
   

!
M !r ,t( ) =

!
µi

i
∑
δV

!! (1.4)!

with magnetization unit vector 
   
!m =
!

M !r ,t( ) Ms . An effective field, effH , experienced 

by the magnetization inside that material should be defined such that all effects from 

different origins are taken into account. That effective field includes the exchange 

field, excH , anisotropy field, aH , magnetostatic field, msH , together with the external 

applied field, extH , i.e.  

! eff exc a ms extH H H H H= + + + !.! (1.5)!
The relation between the effective field and the total energy density, totε , is given 

by [38] 

!
   
Heff =

1
µ0 Ms

δε tot

δ !m
!.! (1.6)!

The total energy then can be written as 

! tot exc a ms ZE E E E E= + + + ,! (1.7)!

where EZ is the Zeeman energy from the applied field. Each energy term will be 

expressed in terms of the continuous slowly varying magnetization unit vector,   
!m , of 

the medium. 
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1.4.1.1 Exchange Energy 

The exchange interaction arises from a quantum mechanical phenomenon 

called the exchange force. Exchange forces originate from the overlap of the orbital 

wave functions. The wave function of indistinguishable particles either remains 

unchanged (symmetric) or changes its sign (anti-symmetric) when the two particles 

are exchanged. The presence of such symmetry indicates that there is a certain relation 

in the motion of identical particles that manifest itself as exchange energy. This 

relation results in a spin-spin interaction that couples neighboring spins and results in 

alignment of neighboring magnetic moments. The strength of the exchange interaction 

determines the Curie temperature; above which the spontaneous magnetization is lost 

and the material enters paramagnetic phase. The exchange interaction is short-range 

but the magnitude of the exchange energy density can be very strong. The product of 

the exchange energy density and volume of the unit cell gives the total exchange 

energy. Since it is a short-range interaction, the total energy arising from long-range 

interactions, such as magnetostatic energy, can exceed the exchange energy inside a 

material. Exchange coupling energy has the form  
!

   
Eij

exc = −2Jij

!
Si ⋅
!
S j ,! (1.8)!

where  is the exchange integral between the nearest neighbor atoms i  and j  and 

   
!
Si ,
!
S j  are the spin angular momenta. The expression for the exchange energy is 

derived following the formulation reported by Brown [39]: 
!

   
Eij

exc = −2Jij

!
Si ⋅
!
S j = −2 Jij

!
Si ⋅
!
S j

i, j
∑ ,! (1.9)!

where the sum is over nearest neighbors. Assuming the angle between neighboring 
spins, ijθ , is small and the amplitude of the spins are constant within the crystal, 

  
!
Si = S , 
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!
  
Eexc = −2JS 2 cosθ ij∑ = −2JS 2 1−

θ ij
2

2

⎛

⎝
⎜

⎞

⎠
⎟∑ = −2JS 2 + JS 2 θ ij

2∑ .! (1.10)!

Since   
!mi  is the unit vector of spins and 

  
!rij  is the distance between neighboring spins, 

  
θ ij =

!mj −
!mi = Δ!rj ⋅∇

!m( ) . Substituting this value in Eq. (1.10), 

!

   

Eexc = Cst + JS 2 θ ij
2∑ = Cst + JS 2 Δ!rj ⋅∇

!
m( )2

∑
Eexc = Cst + JS 2 Δ!rj ⋅∇mx( )2

+ Δ!rj ⋅∇my( )2
+ Δ!rj ⋅∇mz( )2⎡

⎣⎢
⎤
⎦⎥j

∑ .
!! (1.11)!

Summing over all spins and neglecting the constant term, the exchange energy 

becomes 

! ( ) ( ) ( )22 2
exc x y z

V

E A m m m dV⎡ ⎤= ∇ + ∇ + ∇⎢ ⎥⎣ ⎦∫ !,! (1.12)!

where  is a material-dependent exchange constant in energy per unit length, 
2JSA C
a

= , with a  the lattice parameter of a cubic structure and C  the number of 

atoms per unit cell. The isotropic nature of the exchange interaction, with no 

directional dependence, can be seen in Eq. (1.12). 

1.4.1.2 Anisotropy Energy 

Magnetic anisotropy in materials has various origins. In ferromagnets, and also 

in ferrimagnets and antiferromagnets, the magnetization tends to lie along a certain 

direction due to the crystalline structure, a phenomenon called magnetocrystalline 

anisotropy. The shape of the magnetic material also gives rise to anisotropy, called 

shape anisotropy or magnetostatic energy, which determines the demagnetizing 

energy. The surface anisotropy. or Neél surface energy is due to interface or surface 

effects that break the structural symmetry. Magnetoelastic anisotropy arising from the 

combination of magnetostriction and stress also contributes to the anisotropy energy. 
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1.4.1.2.1 Magnetocrystalline Anisotropy 

In a crystal structure, electron orbits are aligned along certain crystal 

directions. Electron orbits are coupled to electron spins, and due to this spin-orbit 

coupling, electron spins prefer certain crystal directions, which manifests as 

magnetocrystalline anisotropy. Therefore, for magnetic materials, it is easier to 

magnetize in certain symmetry directions, referred as the easy axis, than in other 

directions. Typically, to derive the energy density, first the magnetocrystalline 

anisotropy energy is expressed in a power series expansion and then the symmetry of 

the crystal is taken into account. 

In uniaxial anisotropy, there is only one easy axis. The magnetocrystalline 

energy density is expressed in terms of the angle between this easy axis and the 

magnetization, θ , as [40] 

! 2 4
0 1 2sin sinuniaxial

mc K K Kε θ θ= + + + ⋅ ⋅ ⋅.!! (1.13)!
where   K1, K2  and 3K  are the anisotropy coefficients having units of energy per 

volume. The anisotropy coefficients are temperature-dependent and at a given 

temperature their sign and magnitude determine the easy and hard directions, i.e., for 

positive (negative) K the energy is minimized by having θ  = 0° (90°). Surface 

anisotropy arises from the interface and usually creates a uniaxial easy axis along the 

surface normal, i.e., a positive anisotropy constant. An effective anisotropy constant is 
then defined as 2eff u sK K K t= +  where   Ku , Ks  are the bulk and surface 

contributions, respectively and t  is the layer thickness. 

In cubic anisotropy, there are three principle crystal axes. If the angle between 

the magnetization and principle axes are defined as ,a b  and c , then the 

magnetocrystalline energy density can be expressed in terms of directional cosines of 

these angles [40],   α1 = cos a,α 2 = cosb,α3 = cosc ,: 
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! ( )2 2 2 2 2 2 2 2 2
0 1 1 2 2 3 3 1 2 1 2 3

cubic
mc K K Kε α α α α α α α α α= + + + + + ⋅⋅⋅ .! (1.14)!

1.4.1.2.2 Shape or Magnetostatic Anisotropy 

Magnetostatic interactions are the result of interaction between individual 

magnetic moments over a long range. These interactions create a field that opposes the 

magnetization, called a demagnetizing field. Demagnetizing fields determine the 

domain structure of the magnetic material and depend on the macroscopic shape and 

size of the material. The demagnetizing field at a given point is given by the sum of 

the contributions of all magnetic moments within the magnetic volume, so it is not a 

local field. The demagnetizing field is given by  

!   
!

Hd = −Nd

!
M ,!! (1.15)!

where dN  is the demagnetizing factor. If a material is magnetized to saturation, the 

expression for the magnetostatic energy density or demagnetizing energy density 

stored in the material is given by [41] 

!
   
εms = µ0

!
Hd

0

Ms

∫ ⋅d
!

M .!! (1.16)!

1.4.1.2.3 Magnetoelastic Anisotropy 

When an external field is applied to a ferromagnetic material, it creates stress 

on the ferromagnet, and in response the dimensions of the ferromagnet change. This 

interaction between magnetization and strain in the lattice is called magnetostriction. 

At strong fields, the dimensions change in three dimensions, but at low fields the 

change occurs in two dimensions. The inverse of this effect is the generation of a 

magnetic field due to application of external mechanical stress. 
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Linear saturation magnetostriction, sλ , is strain due to the material being 

magnetized to saturation. It is expressed as [40] s l lλ = ∂  and can be positive, negative 

or zero. A positive (negative) sign corresponds to expansion (contraction). 

For an isotropic crystal with uniform stress,σ , the magnetoelastic energy 

density is given by  

!
  
εme =

3
2
λsσ sin2θ ,!! (1.17)!

where θ  is the angle between the magnetization and the stress. The sign of the stress 

σ is positive (negative) for tensile (compressive) stress. The axis of the stress is an 

easy axis if λsσ  is positive. If this product is negative, the stress axis is a hard axis and 

the plane normal to the stress axis is an easy plane of magnetization. 

1.4.1.3 Zeeman Energy 

When a ferromagnetic material is subject to an external field, a torque, 

   τ = −µ0
!m×
!
Hext , is generated, giving rise to Zeeman energy. The energy density for 

Zeeman energy is given by  

!    εZ = −µ0

!
M ⋅
!
Hext .!! (1.18)!

1.4.2 The Landau–Lifshitz–Gilbert Equation 

Understanding magnetization dynamics plays an important role in achieving 

high speed, high density magnetic storage devices. In ferromagnetic materials, the 

dynamic evolution of the magnetic moment is described by the Landau and 

Lifshitz [42] or Landau-Lifshitz-Gilbert [43] equations. The Gilbert form is preferred 

for large damping; the two equations are equivalent for small damping [44]. 

The relation between the spin of an electron and its magnetic moment is given 

by 
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!   
!
µ = −γ

!
S ,! (1.19)!

where 2B eg ge mγ µ= =h  is the gyromagnetic ratio of the free electron where g  is 

the Landé g factor, Bµ  is Bohr magneton, e  is charge of the electron and em  is the 

mass of the electron. The electron spin angular momentum operator is given by 

   

!
S = "

2
!
σ , where  

!
σ  is the Pauli operator. The Heisenberg equation of motion describes 

the time evolution of a dynamical variable, in this case the magnetic moment, as 

!
   
d
!
µ

dt
= 1

i"
!
µ, H⎡⎣ ⎤⎦ +

∂
!
µ
∂t
,! (1.20)!

whereH  is the Hamiltonian of the spin angular momentum operator and is given by 

!
   

H = −γ
!
S ⋅
!
B(t)

!
B(t) = µ0

!
Heff (t),

! (1.21)!

where 0µ  is the permeability of vacuum and 
   
!
Heff (t)  is the time-dependent effective 

magnetic field, which includes the field terms in Eq.1.5. The commutation of one 
component of the magnetic moment with this Hamiltonian is [ ] [ ], ,i i i iH S S Bµ γ γ= −  

with , ,i x y z= . Using commutation relations, Eq. (1.20) can be rewritten as  

!
  
d
!
µ

dt
= −γ
!
µ ×
!
B + ∂

!
µ
∂t
.!! (1.22)!

Neglecting the second term on the right-hand side of the equation, since  
!
µ  does not 

explicity depend on time, and using 
   
!
B(t) = µ0

!
Heff (t) , we get 

!
   
d
!
µ

dt
= −γ 0

!
µ ×
!

Heff( ) ,!! (1.23)!

with 0 0γ γµ= . Replacing the single magnetic moment with the magnetization vector 

of a volume, based on Eq. (1.4), the equation becomes 

!
   
d
!

M
dt

= −γ 0

!
M ×

!
Heff( ) ,! (1.24)!

describing the undamped precession of the magnetization under an effective field 

  
!
Heff . We can see from Eq. (1.24) that the magnitude of the magnetization vector is 
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constant and the magnetization precesses about the effective field at a constant angle, 

as illustrated in Figure 1.3(a). The precession frequency is called the Larmor 
frequency and is given by 0 2efff Hγ π= . 

To account for the fact that after a critical value of the external field, the 

magnetization aligns with the external magnetic field due to dissipation, Gilbert 

introduced a phenomenological term, preserving the magnetization magnitude, into the 

equation. The so-called Landau-Lifshitz-Gilbert (LLG) equation reads 

!
   

d
!

M
dt

= −γ 0

!
M ×

!
Heff( ) + α

Ms

!
M × d

!
M
dt

⎛
⎝⎜

⎞
⎠⎟
,! (1.25)!

where α  is the Gilbert damping constant. The damping term points towards an 

effective field reducing the precession angle, as seen in Figure 1.3(b). To get the 

equivalent Landau-Lifshitz (LL) equation,   
!

M ×  is applied to both sides of the LLG 

equation: 

 

!
   

!
M × d

!
M
dt

= −γ 0

!
M ×

!
M ×

!
Heff( )−α Ms

d
!

M
dt

!.! (1.26)!

Substituting this equation into the second term of Eq. (1.25) gives 

!
   

d
!

M
dt

= −
γ 0

1+α 2

!
M ×

!
Heff( )− α

1+α 2

γ 0

Ms

!
M ×

!
M ×

!
Heff( ) .!! (1.27)!

Defining ( )20 1Lγ γ α= +  and ( )20 1λ γ α α= +  we get, 

!
  

d
!

M
dt

= −γ L

!
M ×

!
Heff( )− λ

Ms

!
M ×

!
M ×

!
Heff( ) .!! (1.28)!!

The first term describes precession with modified gyromagnetic ratio Lγ , and the 

second term accounts for the damping with modified damping coefficient λ . 
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Figure 1.3: Illustration of magnetization precession (a) without damping (b) with 
damping. 

1.5 Spin Transfer Torque 

Spin transfer torque (STT) is the effect of spin-polarized current on the 

magnetization of a ferromagnetic body. It was discovered by Slonczewski [45] and 

Berger [46]. Switching the magnetization of nanomagnetic structures using the STT 

effect was first realized in metallic spin-valve structures [47] and then in magnetic 

tunnel junctions [48]. Spin transfer torque switching has attracted great attention due 

to its being an alternative to using a magnetic field, thus providing many exciting 

applications in magnetic storage technology. One application of the STT effect is spin 

transfer torque magnetic random access memory (STT-MRAM). STT-MRAM is a 

nonvolatile, high-density memory device with low power consumption and fast 

speed [13,49]. It has a better downsizing scalability than field-written MRAM because 

the current required for switching magnetization scales with the size of the structure. 

Also, addressing specific individual elements in a large array can be achieved more 

reliably due to current passing only through the multilayer structure. In 2016, Everspin 

announced the production of 256 Mb STT-MRAM chips [36]. Racetrack memory [50] 

is another potential memory application of spin transfer torque. 
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The mechanism of spin transfer torque can be explained for a multilayer 

structure as illustrated in Figure 1.4. The structure consists of two ferromagnetic layers 

separated by a nonmagnetic metallic spacer layer or an insulating layer as in the spin 

valve structure and MTJ, respectively. The first thin magnetic layer, called the pinned 

layer, has its magnetization fixed,  
!

M P , and the second thinner layer, called the free 

layer, has magnetization  
!

M F  that is free to rotate. The pinned magnetic layer acts as a 

spin polarizer; the electric current passing through it gets spin polarized along its 

magnetization direction. If the magnetizations of the two magnetic layers are not 

collinear, as in Figure 1.4, a spin-polarized current passes through the spacer to the 

magnetic layer and the electrons tend to align their spins with   
!

M F  due to the 

exchange interaction. During this process, the spin angular momentum component 

transverse to   
!

M F  is lost. By conservation of angular momentum, this component 

exerts a torque on the magnetic moment of the free layer, called spin transfer torque. 

 

Figure 1.4: Illustration of spin transfer torque. Electron passing through a pinned 
magnetic layer get spin polarized. By conservation of angular 
momentum, the transverse spin angular momentum is transferred to the 
free magnetic layer. 
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The effect of spin transfer torque is described by adding a torque term, 

Slonczewski-like torque, to the LLG equation: 

!
   
γ 0

!
2e

P(θ )
µ0 Mst

J
"

M F ×
"

M F ×
"

M P( )⎡⎣ ⎤⎦ ,!! (1.29)!

where ( )P θ  is the spin polarization function, which depends on the angle between the 

two magnetization directions, and t  is the thickness of the free layer. Then the 

dynamic equation for the free layer is: 

!
   

d
!

M F

dt
= −γ 0

!
M F ×

!
Heff( ) + α

Ms

!
M F ×

d
!

M F

dt
⎛
⎝⎜

⎞
⎠⎟
+ γ 0

"
2e

P(θ )
µ0 Mst

J
!

M F ×
!

M F ×
!

M P( )⎡⎣ ⎤⎦ .!(1.30)!

The direction of the double cross-product term depends on the direction of current 

flow. If the electrons are flowing from the pinned layer to the free layer, the spin 

polarization passing through the spacer to the free layer is parallel to  
!

M P  and the 

torque on the free later rotates   
!

M F  towards   
!

M P , realizing a parallel configuration of a 

spin valve or MTJ structure, as illustrated in Figure 1.5. If the electrons flow from free 

layer to pinned layer, the spin polarization passing through the spacer to the free layer 

is antiparallel to   
!

M P  and the direction of the torque on the free layer reverses, rotating 

  
!

M F  away from   
!

M P  and thus realizing an antiparallel configuration. 
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Figure 1.5: Illustration of the writing process in STT-MRAM. Reversing the current 
direction reverses the torque direction [51]. 

Depending on the current direction, the STT term can either be along the damping 

direction or antiparallel to it. If it is parallel, damping will get accelerated. If it is 

antiparallel, magnetization will either precess in an equilibrium state, which occurs 

when the energy lost through damping is equal to the energy gained from spin transfer 

torque, or switch when energy gain is greater than that lost through damping. 

If the magnetizations of the fixed and free layers are not uniform, Eq. (1.30) is 

modified by an additional term, a field-like torque, accounting for the effect of 

electrons reflected at the spacer/free layer interface: 

!

   

d
!

M F

dt
= −γ 0

!
M F ×

!
Heff( ) + α

Ms

!
M F ×

d
!

M F

dt
⎛
⎝⎜

⎞
⎠⎟
+τ F

!
M F ×

!
M P( ) +τT

!
M F × M F ×

!
M P( )( ) ,!(1.31)!

where  τ F  and  τT  are the coefficients for field-like torque and Slonczewski-like 

torque, respectively. Slonczewski-like torque (also called in-plane or adiabatic torque), 
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is in the plane defined by the magnetizations of the pinned and free layers, and the 

field-like torque (also called perpendicular or non-adiabatic torque), is perpendicular 

to that plane. 
If we rewrite Eq. (1.31) with the magnetization unit vector,

   
!m =
!

M !r ,t( ) Ms , 

and define the magnetization direction of the pinned layer,   
!

M P , as the direction of the 

injected spin  
!
σ , the equation becomes 

   

d !m
dt

= −γ 0
!m×
!

Heff( ) + α
Ms

!m× d !m
dt

⎛
⎝⎜

⎞
⎠⎟
+τ F

!m×
!
σ( ) +τT

!m× !m×
!
σ( ) .!! (1.32)!

The magnitude of the two current-induced spin transfer torques depends on the 

material and device structure. 

Recently, generating current-induced STT to manipulate magnetization in 

nonmagnetic/ferromagnetic metal (FM) bilayers [14,15,52,53] or topological insulator 

(TI)/FM bilayers [54] [55] has attracted great attention due to its high efficiency in 

magnetization switching, architectural simplicity and potential to couple with voltage-

controlled magnetic anisotropy [56]. This new mechanism of switching magnetization 

is a potential candidate for writing in next-generation MRAMs. Writing bits using this 

bilayer scheme has advantages over STT writing of an MRAM cell. In STT writing, 

the high current passes through a thin spacer, which may overheat and damage the 

cell, but this drawback is not present in spin-orbit coupling torques since current 

passes through the HM or TI layer. This way of switching can be faster and can 

require less current than STT switching. Electric current applied to a nonmagnetic, 

typically HM or TI, layer exerts a field-like torque and a Slonczewski-like torque on 

the magnetization, which arise from spin-orbit coupling. Spin-orbit coupling-based 

torques (SOTs) arise from the bulk of the HM due to the spin Hall effect and from the 

HM/FM interface due to the Rashba effect. Besides magnetization switching, the SOT 
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effect also provides a convenient tool to manipulate magnetic domains [16–19,57], 

skyrmions [58] [59], and high-frequency oscillations [60–62]. 

1.6 Spin Hall Effect and Rashba Effect 

In the ordinary Hall effect, electrons flowing through a normal metal are 

diverted by an external magnetic field   
!
B  applied perpendicular to the current direction 

due to the Lorentz force acting on the conduction electrons. The Lorentz force causes 

charges to accumulate on different sides of the metal, producing a voltage difference 

given by   VHall = RH

!
B ×
!
I , which is perpendicular to both   

!
I  and   

!
B , as seen in Figure 

1.6 (a). The anomalous Hall effect (AHE) describes the asymmetric separation of spin-

up and spin-down electrons when current passes through a ferromagnet due to intrinsic 

and extrinsic (skew scattering and side-jump) contributions [63]. 

In the spin Hall effect (SHE), when current passes through a normal metal with 

spin-orbit coupling, electrons with spin up and spin down deflect to opposite sides of 

the metal due to the spin-orbit coupling. The electrons moving through the HM 

experience an effective magnetic field in their rest frame. Coupling between the spin 

of the electron and this effective magnetic field yields a spin accumulation occurring 

at the top and bottom of the normal metal, as seen in Figure 1.6 (b). The result is a 

pure spin current with no net charge generation. The spin current is transverse to the 

charge current and the spin polarization is perpendicular to the plane defined by the 

spin current and the charge current. The normal metal is usually chosen to be a heavy 

metal (HM) such as Pt or Ta, due to their strong spin-orbit coupling. 

!   js =σ SH

!
σ ×
!
jc !! (1.33)!
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Figure 1.6: Schematics of (a) the ordinary Hall effect: in the presence of an external 
field, current passing through a normal metal creates a voltage; and (b) 
the spin Hall effect: due to spin-orbit interaction, current passing through 
a normal metal creates a spin current. 

There are two mechanisms that contribute to the SHE arising from spin-orbit 

interactions: Intrinsic SHE and extrinsic SHE. Intrinsic SHE is due to the band 

structure of the crystal. An internal spin-orbit coupling force is experienced by 

electrons moving in a crystal. This force gives rise to transverse spin-dependent 

deflection of electrons even in the absence of impurity scattering [64]. In extrinsic 

SHE, transverse deflection (skew scattering and side jump) arises from scattering of 

the electrons off impurities due to spin orbit interaction [65]. 

The SHE was first discovered by Dyakonov and Perel in 1971 [66,67]. As 

there is no voltage generation present in SHE, the spin Hall angle was first measured 

by optical means [68,69] and then by the inverse spin Hall effect [70]. The inverse 

spin Hall effect is the production of a charge current due to the spin current, hence the 

name. Nowadays, HM/FM bilayer structures are used for magnetization switching and 

are a major focus of researchers due to their high potential as a writing mechanism in 

memory devices. In HM/FM bilayers both the SHE and Rashba effects arising from 

spin-orbit interactions contribute to the generation of spin orbit torques. In SHE, a spin 
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current is generated in the HM and the HM acts like a spin injector when placed 

adjacent to the FM, as seen in Figure 1.7(a). The injected spin current induces a field-

like torque and Slonczewski-like torque on the FM due to the STT effect. 

The Rashba effect enters the picture when inversion symmetry is broken, 

which is achieved by a HM/FM interface. An electric current through the interface 

between the HM and FM layers experiences a Rashba field via the spin-orbit 

interaction under structural inversion asymmetry and induces an in-plane 

nonequilibrium spin polarization perpendicular to the current at the interface, as seen 

in Figure 1.7 (b). Through exchange-coupling and spin relaxation, the current-induced 

polarization exerts an effective field as well as a torque on the FM. 

 

Figure 1.7: (a) Charge current through HM creates spin current through spin Hall 
effect. (b) Charge current through HM/FM interface creates spin 
polarization. Both mechanisms induce an effective field and a torque on 
the FM [52]. 

In this thesis, the main concentration is on the determination of the 

mechanisms of spin-orbit coupling based SOTs for writing magnetization in next-
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generation MRAMs. We develop a sensitive current-driven spin-orbit torque 

magnetometer based on the magneto-optic Kerr effect to measure both field-like 

torque and damping-like torque. Magneto-optic Kerr effect results in changes to the 

light polarization reflected from a magnetized medium. We discuss the sample 

fabrication, characterization, experimental techniques and details of the MOKE 

technique in Chapter 2. In Chapter 3, with MOKE technique, we identify the 

contributions of the SHE and the Rashba effect to SOTs in HM/FM bilayers with in-

plane magnetic anisotropy. The detection of current-driven SOTs using polar and 

quadratic MOKE is explained in Chapter 4. The angular dependence of SOTs in 

HM/FM/Metal-Oxide trilayers with perpendicular magnetic anisotropy is 

quantitatively measured via MOKE in Chapter 5. Simultaneous detection of SOTs 

using a vector-resolved MOKE technique based on quadrant detection in HM/FM 

bilayers is presented in Chapter 6. 
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FABRICATION, CHARACTERIZATION AND EXPERIMENTAL 
TECHNIQUES 

2.1 Fabrication Techniques 

2.1.1 Magnetron Sputtering Thin Film Deposition 

Magnetron sputtering is a physical vapor deposition technique used to fabricate 

thin films with a variety of materials such as metals, alloys, insulators, and 

semiconductors  [71]. It is a commonly preferred technique due to its versatility, 

reliability and the resultant high film quality. 

The magnetron sputtering process involves ejecting atoms from a source 

material, called a target, onto a substrate such as a silicon wafer. The process begins 

with placing a substrate into a vacuum chamber that is filled with an inert gas such as 

argon. Then an electric field is applied between the target material and the substrate, 

which ionizes the inert gas atoms (Ar → Ar+ + e). A magnet behind the target provides 

a magnetic field to trap the free electrons over the target surface, which enhances the 

efficiency of ionization and thus increases the deposition rate. Collisions between 

these electrons and the inert gas atoms further increase the ionization efficiency and 

generate a plasma. The electric field accelerates the ions toward the target, which is 

negatively biased, and they bombard the atoms of the target. Atomic-size particles are 

ejected from the target material due to the collisions. By conservation of momentum, 

these particles move through the vacuum chamber and are deposited onto the substrate 

Chapter 2 



 38 

as a thin film. Most commonly used magnetron sputtering targets are in circular or 

rectangular form. A schematic of a magnetron sputtering system is given in Figure 

2.1 [72]. 

Figure 2.1:  Schematic of thin-film magnetron sputtering. Argon is ionized and 
accelerated to a target. After collision, target atoms are ejected and travel 
to the substrate where they form a thin film [72]. 
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Different types of power sources are used to sputter the atoms from the target 

material, such as direct current (DC) and radio frequency (RF) sputtering [73], and 

pulsed DC and high power impulse magnetron sputtering (HIPIMS). A DC power 

supply is used to deposit conductive materials like metals. For insulators like oxides, 

an RF power supply is used to avoid positive charge accumulation on the surface of 

the target due to collisions between the ions and the target. An alternating electric field 

with high frequency is applied to the target to neutralize the target surface. Reactive 

sputtering [74] is an alternative way of fabricating insulating thin films in which 

metallic targets are DC sputtered in the presence of reactive gasses such as nitrogen or 

oxygen. These gasses react with the target material to form a molecular compound. 

For example, a silicon target reactively sputtered with nitrogen produces silicon nitride 

film. 

Thin films used in this thesis are deposited in a custom-made magnetron 

sputtering system in Prof. Xiao’s Lab, which has seven magnetron sputtering cathodes 

and ten sample holders. A CTI cryo-pump is used to obtain high vacuum. A wedge 

technique, in which the sample holder is placed off-axis of the plasma to create a 

thickness gradient, is employed to get thin films with different thicknesses. 

2.1.2 Photolithography 

Photolithography, the formation of devices from a continuous film, is a process 

used in microfabrication [75]. It is one of the processes performed on a semiconductor 

substrate to create integrated circuits used in many electronic devices today such as 

phones, computers, and sensors. In photolithography, patterns are transferred from a 

photomask to a substrate with a light-sensitive polymer called a photoresist (PR). The 

photoresist is exposed to UV light and developed to form three-dimensional images on 
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the substrate. There are two types of PR, positive and negative, that react differently 

when exposed to the UV light. Positive PR becomes more soluble and negative PR 

becomes extremely difficult to dissolve in the photoresist developer when exposed to 

the UV light. For positive PR, the pattern on the mask will be transferred onto the 

sample, but for negative PR, the transparent area on the mask will be transferred. The 

procedures for positive and negative photolithography are illustrated in Figure 2.2. 

Figure 2.2: (a) Positive photolithography including the steps of spin coating, baking, 
UV light exposure with photomask and developing. (b) Negative 
photolithography including the steps of spin coating, baking, UV light 
exposure with photomask, baking, UV light exposure without photomask 
and developing. 

The processing steps for positive photolithography performed as part of this 

thesis research are as follows: 

1. Spin coating: Photoresist AZ1512 is dispensed onto the sample placed 

on a spinner and it is spun at 4000 rpm for 60 s to produce a uniform 

layer of PR covering the surface of the sample. The thickness of the PR 
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layer depends on the spin speeds and times, volume of the dispensed 

PR and the properties of the PR. 

2. The PR-covered sample is baked at 110oC for 60s. 

3. The PR-covered sample is aligned with the mask on a mask aligner 

(OAI Hybralign series 200) and exposed to UV light for 6 s. The 

patterns on the mask block the UV light, so only the parts of the PR 

exposed to UV light will change their properties. 

4. The sample is immersed in the developer solvent MF-319 for about 20 

s. The parts of the PR exposed to UV light became soluble in the 

developer and are removed, leaving an identical pattern of PR as the 

mask on the sample . 

Negative photolithography processing steps: 

1. Spin-coat with PR AZ5214 at 4000 rpm for 60 s. 

2. Baking at 90°C for 60 s (called soft baking). 

3. The PR-covered sample is aligned with the mask and exposed to UV 

light for 0.7 s. 

4. The PR-coated sample is baked at 110°C for 60 s (called hard baking). 

5. UV light exposure without photomask for 45 s. 

6. The sample is immersed into developer solvent AZ-300 for about 25 s. 

The parts of the PR exposed to UV light are not dissolved in the 

developer, so only the parts of the PR protected with the mask are 

washed away. 
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2.1.3 Ion Beam Etching 

Ion beam etching is a subtractive pattern transfer mechanism [76]. After 

patterns have been printed on PR-coated sample by photolithography, these patterns 

are transferred to the sample by removing the part of the film on the surface of the 

sample that was not covered by the PR. The PR resists the etching and the parts of the 

sample covered with it will be protected. Ion-beam etching can be classified into two 

categories, wet and dry etching. The dry etching process, called ion beam milling, is 

used to fabricate the samples used in this thesis. In ion beam milling, argon gas is 

pumped into the system. The bombardment of electrons emitted from a hot cathode 

filament with the argon gas generates !Ar + . An accelerating grid is used to accelerate 

the !Ar +  towards the sample. The sample is bombarded by !Ar +  to remove atoms from 

the surface of the sample that is not covered by the PR. Once the etching is complete, 

the PR is washed away using acetone, resulting in the desired pattern etched into the 

deposited layer. 

2.2 Characterization and Experimental Techniques 

2.2.1 X-ray Diffraction 

X-ray diffraction is a non-destructive analytical technique used to identify and 

characterize compound materials and thin films [77]. When X-rays interact with a 

target material, they scatter from the atoms in the target material. As the scattered X-

rays interfere, diffraction patterns reveal information about the crystalline structure of 

the material. Bragg’s Law describes the condition for constructive interference of the 

diffracted X-rays: 

! !!nλ =2dsinθ ,!! (2.1)!
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where !n  is an integer number, λ  is the X-ray wavelength, !d  is spacing between 

atomic layers in a crystal and θ  is the angle of incidence. The thickness of thin films 

can be determined by Bragg’s Law for small incidence angles, where !d  becomes the 

film thickness, and is used to calibrate the sputtering rate. 

2.2.2 Vibrating Sample Magnetometer 

The vibrating sample magnetometer (VSM) is widely used to characterize the 

magnetic properties of magnetic materials such as coercivity, remanence and 

saturation magnetization [78]. The detection mechanism of a VSM is depicted in 

Figure 2.3.  

 

Figure 2.3: The detection mechanism of a vibrating sample magnetometer: a sample 
vibrates vertically with a constant frequency and an electromagnet 
provides a horizontal magnetic field [79]. 
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The magnetic sample to be studied is attached to a sample holder that vibrates 

vertically with a constant frequency. A uniform magnetic field is applied, generated by 

an electromagnet. Pick-up coils detect the magnetic flux generated via the vibration of 

the sample. Due to Faraday’s law, the change in the magnetic flux induces an AC 

voltage. A lock-in amplifier, using the signal driving the sample as a reference, 

measures the induced voltage, which is proportional to the magnetic moment of the 

sample. A hysteresis of the sample can also be measured by sweeping the external 

magnetic field. 

2.2.3 Scanning Electron Microscope 

A scanning electron microscope (SEM) is a type of electron microscope that 

scans the surface of a sample with a focused beam of high-energy electrons to create 

images of the sample surface  [80]. Scanning the electron beam in a raster scan pattern 

generates high-resolution 2-dimentional images of a selected area. The electron-

sample interaction produces a variety of signals containing information about the 

sample’s surface topography, chemical composition and crystalline structure. The 

energy exchange between the high-energy electrons and the sample produces 

secondary electrons, backscattered electrons, diffracted backscattered electrons, 

electromagnetic radiation and heat. A specific emission can be detected with an SEM 

equipped with a specific detector. Secondary electrons detected by a secondary 

electron detector are commonly used for to gain information about the morphology 

and the topography of the sample. 



 45 

2.2.4 Electrical Transport Measurements 

Electrical transport measurements are performed by a four-point-probe set-up 

consisting of a current source (Keithley 220), a multimeter (Keithley 2001), a 

nanovoltmeter, a pair of Helmholtz coils and a power supply (BOP Kepco 20-20M). 

Control of the instruments and data collection is achieved remotely by National 

Instruments LabVIEW software. A Hall bar is used to perform current-in-plane 

transport measurements. Figure 2.4 shows a schematic representation of the four-

probe station and a typical Hall bar structure. The current, !I , is applied between 
contacts 5 and 6. A longitudinal voltage drop, !VL , is measured either between contacts 

1 and 2 (or 3 and 4). Hall voltage, !VH  is measured either between contacts 1 and 3 (or 

2 and 4). 

 

Figure 2.4: A four-probe station with Hall bar structure. Two pairs of Helmholtz 
coils, big and small, produce magnetic fields in !x  and !y  directions, 
respectively. 
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2.2.5 Magneto-Optic Kerr Effect 

2.2.5.1 Background 

Precise material characterization is essential for progress in modern 

information technology. Development of new concepts for practical applications such 

as data storage with spintronics relies on the characterization of magnetic materials 

and magnetic structures. Magneto-optic effects, interactions between magnetic fields 

and light, are used to study the properties of magnetic materials. Zeeman, Faraday, 

Voigt, Cotton-Mouton and Kerr effects are examples of magneto-optical effects. The 

microscopic origins of these effects are the spin-orbit interaction and exchange 

interaction, which depend on the optical transitions. In this work, we employ the 

magneto-optic Kerr effect to the measurement of current-induced spin-orbit torques. 

Michael Faraday discovered the magneto-optic effect by discovering the 

connection between light and magnetism in the middle of the 19th century. His first 

attempt was to find a relation between light and an external electric field but was 

unsuccessful. He then tried a magnetic field instead of an electric field and saw the 

effect of rotation of the polarization plane of the transmitted light when a beam of 

linearly polarized light passes through a glass that is subject to a magnetic field [81]. 

This rotation is due to the difference of the index of refraction for right circular 

polarization and left circular polarization. The absorption coefficient difference 

between the two circular polarizations causes transmitted light to become elliptically 

polarized [82]. This phenomenon is called the Faraday effect. 

The effect of the magnetic field on reflected light, rather than transmitted, was 

discovered by John Kerr in 1877. First he repeated Faraday's light-electric field 

interaction experiment and demonstrated the electro-optic effect in 1875. Then, by 
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using a horseshoe electromagnet and a paraffin flame as a light source, he found that 

the polarization plane of linearly polarized light rotates and the polarization state 

changes as it reflects from a magnetized medium [83]. As a result of this so-called 

magneto-optic Kerr effect (MOKE), the axis of polarization of linearly polarized light 
rotates (Kerr rotation angle !θK ) and a slight ellipticity is introduced (Kerr ellipticity 

! εK ). These two quantities form the complex Kerr angle ! φK =θK + iεK . The Kerr 

rotation !θK  is the rotation angle of the major polarization axis, and Kerr ellipticity ! εK  

is defined as the ratio of major to minor axes. The Kerr rotation and ellipticity give a 

measure of the magnetization of the sample and are strong in highly reflecting 

ferromagnetic surfaces such as iron, nickel, and cobalt. In addition to the material 

type, the size of the effect depends upon the saturation magnetization of the surface 

domains, the wavelength of the incident light, and the angle of incidence [84]. A 

schematic of the Faraday and Kerr effects is shown in Figure 2.5. 

The MOKE is a very useful technique and can be used in various applications. 

Some of them are: modern data storage technology in which 0s and 1s are determined 

by the polarization state of the reflected light [85], measuring the complete rotation of 

the magnetization during a hysteresis loop [86], determining the orientation of the 

magnetization vector during the reversal process in ferromagnetic films [87], detecting 

in-plane magnetization components in ferromagnetic materials [88], studying domain-

wall dynamics in magnetic nanostructures [89], directly detecting nonlinear 

ferromagnetic resonance in thin films [90] and determining the current-induced spin-

orbit torques [53,91]. The MOKE technique is commonly preferred over other 

techniques such as VSM, superconducting quantum interference device 

susceptometry, and magnetic force microscopy to obtain magnetization loops because 
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of its simplicity and capability to probe magnetization in small regions of the sample, 

and its sensitivity down to monolayer resolution [92]. 

Figure 2.5: (a) A schematic of the magneto-optic Faraday (transmission) and Kerr 
(reflection) effects. (b) Linearly polarized light (left plot) transforms into 
rotated elliptically polarized light (right plot) due to the magneto-optic 
effects. 

The magneto-optical properties of a material can be described by the 
permittivity tensor 

!
ε ij , which can be expanded in the components of the magnetization 

! 
!m  acting on the material [93]: 

! !! ε ij = ε ij
0( ) +Kijkmk +Gijklmkml +! ,! (2.2)!

where the Einstein summation convention over the !x , !y , and !z  coordinates is used. 

The dielectric tensor !!ε ij
0( )  represents the components of the permittivity tensor in the 

absence of any magnetization ! 
!m , 
!
Kijk  is the linear magneto-optic tensor and 

!
Gijkl  is 

the quadratic magneto-optic tensor, which corresponds to a second-order MOKE 

response, often referred to as quadratic MOKE [94]. The linear response can be 
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separated into terms corresponding to relative orientations of the unit vector of the 

magnetization !!m̂ , plane of incidence (!POI ) and sample plane (!SP ), with polar 

geometry corresponding to!! m̂!POI  and !!m̂⊥ SP , longitudinal to !! m̂!POI  and !! m̂! SP  

and transverse to !!m̂⊥ POI  and !! m̂! SP , as shown in Figure 2.6. 

Figure 2.6: Three principle MOKE geometries. Polar: The magnetic field vector is 
perpendicular to the sample surface and parallel to the plane of incidence. 
Longitudinal: The magnetic field vector is parallel to both the sample 
surface and the plane of incidence. Transverse: The magnetic field vector 
parallel to the sample surface but perpendicular to the plane of incidence.  

2.2.5.2 Theory of the Magneto-Optic Kerr Effect 

Classical electromagnetics with Maxwell's equations can be used to describe 

the optical and magneto-optical properties of materials. Maxwell’s equations 

describing the interaction of an electromagnetic wave with matter in cgs units are: 



 50 

! !

!! 

∇.D
!"
= 4πρ

∇.B
!"
=0

∇×E
!"
= −1

c
∂B
!"

∂t

∇×H
!"
= 4π
c
J
"
+ 1
c
∂D
!"

∂t

! (2.3)!

where electric displacement ! D
!"

 and magnetic inductance ! B
!"

 are connected to electric 

field ! E
!"

 and magnetic field ! H
!"

 by 

! ! D
!"
= εE
!"
!and!!! B

!"
= µH
!"
, ! (2.4)!

where ε  is the complex dielectric (permittivity) tensor and µ  is the magnetic 

permeability. The dielectric tensor, a !3×3  matrix with each component complex, is 

used to obtain magneto-optic properties of materials such as refractive index, 

reflection coefficient and absorption coefficient: 

!

!!

Dx
Dy

Dz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

ε xx ε xy ε xz
ε yx ε yy ε yz
ε zx ε zy ε zz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Ex
E y

Ez

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. ! (2.5)!

For isotropic crystals with cubic symmetry, all diagonal terms are equal and 

the off-diagonal terms are zero if there is no magnetic field. If an external magnetic 

field is applied in the !z -direction, the tensor has the form of [95]: 

!

!!

ε =

ε xx ε xy 0
−ε xy ε xx 0
0 0 ε zz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

!.! (2.6)!

Optical properties of materials are related to diagonal elements of the dielectric 

tensor, whereas magneto-optical properties are related to the off-diagonal elements. 
The relation between the dielectric tensor and conductivity tensor 

!
σ ij , is given 

by [96]: 
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!
!!
ε ij =δ ij +

4πi
ω

σ ij , i , j = x , y ,z( ) ! (2.7)!

where !!δ ij =1 i = j( ) , 0 i ≠ j( )  and ω  is the angular frequency. 

Jones vectors are used to describe the polarization state of the light. The 

electric field vector describing a plane wave propagating in the !z  direction is given 
by!! E
!"
= E
!"
0ei kz−ωt( )  where!! E

!"
0 = #Ex x̂ + #Ey ŷ . Ignoring the common exponential terms, the 

electric field vector can be written as [97]: 

!
! 

!
E =

"Ex
"Ey

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

"Ex e
iφx

"Ey e
iφ y

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ !.! (2.8)!

This vector, depending on the phase relations between !x  and !y  components, can 

describe linearly or circularly polarized states. Linearly polarized light can be 

decomposed into two equal-amplitude circularly polarized fields of opposite 

handedness and different phase. Light linearly polarized in the !x  direction can be 

expressed as 

!
!! 
E
!"
x = E0

1
0

⎛

⎝⎜
⎞

⎠⎟
=
E0
2
"
E+ +

"
E−( ) = E02

1
2

1
−i

⎛

⎝⎜
⎞

⎠⎟
+ 1

2
1
i

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ !! (2.9)!

where ! 
!
E+

!
E−( )  is right-circularly (left-circularly) polarized components. The two 

circular polarizations interact differently with the magnetic material. When light is 

propagating through a medium, left-circularly polarized (LCP) light will drive 

electrons to move in left-circular motion. When a magnetic field is applied, the radius 

of the circular motion will be expanded by the Lorentz force law:  
!

! 
!
F = q

!
E + !v ×

!
B( )⎡⎣ ⎤⎦ !.! (2.10)!

The opposite effect happens with right circularly polarized (RCP) light, resulting in a 

smaller radius of circular motion, as seen in Figure 2.7. The difference of the index of 
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refraction for RCP and LCP causes reflected light to rotate and the ellipticity of the 

polarization is affected by the different absorption rates of RCP and LCP [82]. 

 

Figure 2.7: Linearly polarized light decomposes into LCP and RCP. The amplitude 
and the phase of the LCP and RCP changes after reflection, resulting in a 
rotated elliptical polarization. 

The reflected polarization state can be described with the Fresnel reflection 

coefficients, which are defined as the ratio of reflected and incident electric fields: 

!
! 
!r± = r±e

iϕ± =
"
E±
ref

"
E±
in !,! (2.11) !

where ! !r±  is the complex Fresnel reflection coefficient for right (+) and left (-) 

circularly polarized light. After reflection, the direction of light propagation is 
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changed to the !−z  direction and right circular polarization is changed to left circular 

polarization and vice versa [98], so the reflected light becomes 

!! 

!
Eref = 1

2 "r−
!
E+ + "r+

!
E−

⎡⎣ ⎤⎦e
i kz−ωt( )

!
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E0
2 "r+

1
i
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⎠
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2
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i "r+ − "r−( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= E0

"r+ + "r−( )
2

1
i "r+− "r−( )
"r++ "r−( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.
!(2.12)!

Due to the non-zero y component in the reflected beam, the polarization plane 

is rotated and the linear polarization state is changed to elliptical. For a weak magneto-

optic Kerr effect that results in a small change in polarization, the complex Kerr angle 

can be written as 

!
!  
φK =θK + iεK ≈ i

!r+ − !r−( )
!r+ + !r−( ) !.! (2.13)!

Given the reflection coefficient ! !r±  expressed in terms of refractive indices and 

dielectric constants is

!! 
!r± =
!n± −1
!n± +1

=
!ε± −1
!ε± +1

 [99], we can obtain the complex Kerr angle 

as 

!
!! 
!φK = −

!ε xy
!ε xx −1( ) !ε xx

!.! (2.14)!

The complex Kerr angle can be expressed in terms of the optical conductivity using 

the relation (Eq. (2.7)) between dielectric constants and optical conductivity: 

!

!! 

!φK = −
!σ xy

!σ xx 1+ 4πi
ω
!σ xx

!! (2.15)!

 As seen in Eq. (2.14), large off-diagonal and small diagonal (low reflectivity) 

dielectric tensor elements are necessary for large Kerr angles. 
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When using the MOKE technique, reflection coefficients are described using s-

polarized (perpendicular to the incident plane ⇒  vertically polarized) and p-polarized 

(parallel to the incident plane ⇒  horizontally polarized) light. Reflected electric fields 

can be represented as 

!
!

Es
r

Ep
r

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

rss rsp
rps rpp

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Es
i

Ep
i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
!! (2.16)!

where !Es
r  and 

!
Ep
r  are reflected s-polarized and p-polarized electric fields, !Es

i and 

!
Ep
i are incident s-polarized and p-polarized electric fields, respectively and 

!!rss , rsp , rps , rpp  are the dielectric tensor depended reflection coefficients, defined as 

!!
rss =

Es
r

Es
i , rps =

Ep
r

Es
i , rpp =

Ep
r

Ep
i , rsp =

Es
r

Ep
i . When s-polarized light is incident on the 

sample, a small portion is rotated to p-polarization through MOKE, whereas when the 

incident polarization is p-polarized, a small portion is rotated to s-polarization. This 

arises from the off-diagonal terms of the reflection matrix describing the MOKE. 
Complex Kerr angles !!φKs , φKp in terms of these reflection coefficients for s and p 

polarization are 

!
!
φKs =

rps
rss
!and!

!
φKp =

rsp
rpp
.! (2.17)!

An expression for the Kerr angle can be derived following the formulation 

reported by You and Shin [100]. For light incident from a non-magnetic medium to a 

magnetized medium of arbitrary magnetization ! 
!
M  as seen in Figure 2.8, the dielectric 

tensor can be written as [101] 

!

!!

ε = ε xx

1 −iQmz iQmy

iQmz 1 −iQmx

−iQmy iQmx 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

!,! (2.18)!
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where 
!
Q = i εxy εxx  and !ε zz = ε xx  assumed for simplicity. We set the magnetic 

permeability tensor to 1 at optical frequencies [102] and !!mx ,my ,mz  are the direction 

cosines of the magnetization vector. 

 

Figure 2.8: Light is incident from medium 0 to medium 1. The angle of incidence !θ0  

and refraction !θ1  are related by Snell’s law. 

Reflection matrix elements derived by solving Maxwell’s equations for the above 

dielectric tensor [101,103] can be written as: 
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!

!!

rpp =
n1 cosθ0 −n0 cosθ1
n1 cosθ0 +n0 cosθ1

−
i2n0n1 cosθ0 sinθ1mxQ
n1 cosθ0 +n0 cosθ1

,

rsp =
in0n1 cosθ0 my sinθ1 +mz cosθ1( )Q

n1 cosθ0 +n0 cosθ1( ) n0 cosθ0 +n1 cosθ1( )cosθ1
,

rss =
n0 cosθ0 −n1 cosθ1
n0 cosθ0 +n1 cosθ1

and

rps = −
in0n1 cosθ0 my sinθ1 −mz cosθ1( )Q

n1 cosθ0 +n0 cosθ1( ) n0 cosθ0 +n1 cosθ1( )cosθ1
,

!! (2.19)!

where !!θ0 ,θ1 ,n0 ,n1  are the angle of incidence, angle of refraction, the refractive index 

of the nonmagnetic medium 0, and that of the magnetic medium 1, respectively. For 

polar MOKE with a p-polarized incoming wave, the following relation can be 
obtained by substituting the !!rpp , rsp , rss , rps  in Eq. (2.17) and setting !!mx ,mx =0 : 

!
!!
φK
p( )polar = rsp

rpp

⎛

⎝
⎜

⎞

⎠
⎟

polar

=
in0n1 cosθ0mzQ

n0 cosθ0 +n1 cosθ1( ) n1 cosθ0 −n0 cosθ1( ) !.! (2.20)!

We!can!get!then!the!expression!for!longitudinal!MOKE!by!setting!!mx ,mz =0 :!

!
!!
φK
p( )long = rsp

rpp

⎛

⎝
⎜

⎞

⎠
⎟

long

=
in0n1 cosθ0 n1 cosθ0 −n0 cosθ1( )tanθ1myQ

n0 cosθ0 +n1 cosθ1( ) !.! (2.21)!

By similar mathematical treatment, Kerr angles for s-polarized light for polar and 

longitudinal MOKE can be obtained. The derivation of these equations using 

Mathematica is given in Appendix A. As can be seen from Eq. (2.20) and Eq. (2.21), 

the polar signal is an even function whereas longitudinal MOKE is an odd function of 

the incident angle. 
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From a quantum-mechanical perspective, the magneto-optic Kerr effect is 

based on the simultaneous occurrence of the exchange interaction and spin–orbit 

coupling in a bulk ferromagnet [98,104,105]. We consider as an example a system 

where only vertical optical transitions are allowed and the selection rules 

!!Δl = ±1, Δml = ±1  for electric dipolar transitions are satisfied  [106]. The 

condition!!Δl = ±1  indicates that only transitions between s and p levels or between p 
and d levels are allowed. The condition!!Δml = ±1  corresponds to transitions by left- 

and right- circularly polarized light. Figure 2.9 shows an energy diagram for optical 
transitions from an occupied degenerate initial !!dxz ,dyz  state !! l =2,ml = ±1( )  to an 

unoccupied final !pz state !! l =1,ml =0( )  for a ferromagnet. 

Figure 2.9: Sketch of the energy levels with exchange and spin-orbit interaction in a 
bulk ferromagnet showing the electric dipole transitions for left- and 
right-circular polarization. 
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The left-hand side shows the spin-up states and the right-hand side the spin-down 
states. The energy difference !Δex between the spin-up and spin-down states is due to 

the exchange interaction. The !
dxz d yz( )  state splits into 

!!
d
ml=−1( )
↑ d

ml=+1( )
↑( )  in each spin 

state due to the spin-orbit interaction, resulting in an energy difference of !Δ so . For 

spin up, the energy of 
!!
d
ml=+1( )
↑  is higher than the energy of 

!!
d
ml=−1( )
↑ . For spin down, the 

situation is reversed. Figure 2.10 shows the energy diagram of transitions for a bulk 

paramagnet. In this case, there is no exchange interaction so there is no splitting 

between spin-up and spin-down states. Adding contributions from spin-up and spin-

down states leads to a vanishing Kerr signal. 

 

Figure 2.10: Sketch of the energy levels without exchange interaction in a bulk 
paramagnet, showing the electric dipole transitions for left- and right-
circular polarization. 
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Electric dipole transitions for right- (π+ ) and left- (π− ) circularly polarized light can 

be expressed as 
!

!
i π+ f = π+

!and!
!
i π− f = π− .! (2.22)!

For each spin state, the sum of the dipole matrix elements, π+ + π− , gives the 

diagonal component of the optical conductivity, whereas the off-diagonal components 
correspond to the difference, π+ − π−  [107]. The total conductivity is the sum of the 

conductivities for spin up and down states: 

! !
σ xx = π+

↑
+ π−

↑
+ π+

↓
+ π−

↓ !and!!!σ xy = π+

↑
− π−

↑
+ π+

↓
− π−

↓ . ! (2.23)!
If there is no spin-orbit interaction, π+

↑
= π−

↑
and π+

↓
= π−

↓
; so, the off-diagonal 

component of the conductivity cancels out for each spin state. Spin-orbit interaction is 

necessary for non-zero off-diagonal conductivity elements. If there is no exchange 

interaction, the energy difference between the spin-up and spin-down states is 

removed, so the relation between the electric dipole transitions for right- and left-

circularly polarized light becomes π+

↑
= π−

↓
 and π−

↑
= π+

↓
. Then the sum of the 

off-diagonal conductivities from the spin-up and spin-down states cancels, leading to 

zero off-diagonal conductivity elements. The diagonal component of the conductivity 

remains without the spin-orbit and exchange interactions. Hence spin-orbit 

interactions and exchange splitting are essential to the existence of the magneto-optic 

Kerr effect. 
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QUANTIFYING INTERFACE AND BULK CONTRIBUTIONS TO SPIN-
ORBIT TORQUE IN MAGNETIC BILAYERS 

Spin-orbit interactions in heavy metal/ferromagnet (HM/FM) bilayer 

heterostructures have attracted considerable attention because they provide an efficient 

way to manipulate magnetization with current-driven spin-orbit torques (SOTs). An 

electric current generates a field-like spin-orbit torque (FT) and a damping-like spin-

orbit torque (DT) on the magnetization. Two mechanisms have been proposed to 

explain the generation of SOTs: the Rashba-Edelstein effect due to interfacial spin-

orbit coupling and the spin Hall effect (SHE) arising in the bulk of materials with 

strong spin-orbit coupling (SOC). Much effort has been dedicated to identifying the 

dominant mechanism of the SOTs. However, the underlying mechanism for the SOC-

driven phenomena remains unsettled. In this chapter, we develop a sensitive SOT 

magnetometer based on the magneto-optic Kerr effect (MOKE) that measures the 

SOTs for CoFeB/Pt bilayers over a wide thickness range. We observe that the DT 

inversely scales with the ferromagnet thickness, and the FT has a threshold effect that 

appears only when the ferromagnetic layer is thinner than 1 nm. Through a thickness-

dependence study with an additional copper insertion layer at the interface, we 

conclude that the dominant mechanism for the SOC-driven phenomena in this system 

is the SHE. However, there is also a distinct interface contribution, which comes from 

the Rashba effect. 

Chapter 3 
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3.1 Introduction 

Recent advances in the electrical control of magnetism [1–8] are exciting in 

part because they may lead to new technologies for nonvolatile magnetic memory and 

logic devices [9,10]. Some of the mechanisms that are contenders to provide the 

highest- efficiency magnetic manipulation in practical device geometries involve 

current-induced torques arising from SOC, either in HM/FM bilayers [5,6,11,12] or 

topological insulator (TI)/FM bilayers [13,14]. The SOC-driven magnetization 

dynamics such as magnetization switching [6,11,15–18], high-frequency 

oscillation [19–22] domain-wall motion [8,23,24] and skyrmion manipulation [25,26] 

have been demonstrated and may find critical applications in magnetic memory and 

logic devices. Although these beneficial effects have been successfully demonstrated, 

researchers are still debating the underlying principle, as to whether the dominating 

mechanism arises from the HM/FM interface due to the Rashba effect or from the bulk 

of the HM due to the SHE. It has been theoretically predicted that both the Rashba 

effect and the SHE generate FT and DT on the magnetization, with only quantitative 

differences [27]. 

Progress in this field, both for fundamental scientific understanding and 

practical applications, requires convenient, quantitative techniques for measuring the 

strength and direction of the SOTs; techniques that can be applied to a wide range of 

material systems. At present, the workhorse methods for measuring such torques are 

based on using magnetotransport signals for detecting magnetic reorientations in 

response to an applied current. For example, second-harmonic Hall effect 

measurements [28] work well for measuring torques acting on a metallic magnetic 

layer with perpendicular magnetic anisotropy, but for magnets with in-plane 

anisotropy, the need to separate out thermally induced signals makes this technique 
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more difficult to apply [11,17,29]. Spin-torque ferromagnetic resonance (ST-FMR) [6] 

can be used for metallic magnets with either perpendicular or in-plane anisotropy, but 

for very thin magnetic layers, an artifact caused by spin pumping and the inverse spin 

Hall effect could in principle interfere with this method [30]. 

In this chapter, we develop a MOKE-based SOT magnetometer that sensitively 

detects the DT and FT. Combined with sensitive FT detection via the planar Hall 

effect (PHE) [11], we obtain the thickness dependence of DT and FT over a wide 

range of FM thicknesses. On the basis of this technique, we are also able to 

quantitatively determine the bulk and interface contributions to the overall SOI effect.  

3.2 Sample Fabrication 

The samples were deposited via magnetron sputtering. The deposition rates 

were 0.13 nm s-1 (Cu), 0.07 nm s-1 (Ti, Pt and Co40Fe40B20) in an argon pressure of 4.5 

×10-3 Torr. The resistivities of these films measured at 10 nm are, respectively,
 

!! ρCu 7.12µΩcm( )≪ ρPt 21.18µΩcm( )≪ ρCoFeB 224..96µΩcm( )≪ ρTi 1,963µΩcm( ). . 
The samples for the thickness-dependent studies are fabricated by depositing wedge-

shaped films 4 cm long. The thickness is extracted based on the position of the sample. 

Since the position control has a 2 mm error, the determination of the thickness has an 

error of 5% of the entire wedge thickness. 

The samples used for DT measurements were lithographically patterned into a 

50 µm × 50 µm square connected by two contact pads consisting of 

Ti(5)/Cu(200)/Au(50). The samples used for FT measurements were patterned into 

Hall bar structures 500 µm wide and 3 mm long. The contact pads of the Hall bars are 

capped with Ti(5)/Cu(200)/Au(50). 
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3.3 Detection of DT and FT 

Despite the different SOC origins of the interface Rashba effect and the SHE, 

the FT and DT generated from a current through the HM/FM bilayer can be described 

by the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation,!
!

! 
d !m
dt

= −γ !m×
!
Heff +α

!m× d
!m
dt

+a !m×
!
σ +b !m×

!
σ × !m( ) !,! (3.1)!

where ! 
!m  is the normalized magnetization vector, γ  is the gyromagnetic ratio, 

! 
!
Heff  is 

the total effective field including the external field ! 
!
Hex , anisotropy field ! 

!
Ha  and 

Oersted field ! 
!
hOe  generated from the current, α  is the damping coefficient,  

!
σ  is the 

spin polarization of spin current generated from charge current and is in-plane and 

orthogonal to the electric current, and !a  and !b  describe the FT and DT, respectively. 

In order to determine the magnitude of !a  and !b , it is desirable to analyze the linear 

response of the magnetization vector in a saturated magnetization state to a small 

electric current. In this case, the magnetization is uniform and the Dzyaloshinskii–

Moriya interaction can be neglected [31]. In a simplified scenario, where the 

magnetization of the FM layer is uniformly saturated in the film plane by an external 

field and an electric current is applied in the same direction, the effect from the SOC 

can be viewed as an in-plane effective field 
!!! 
!
hFT = −

a
γ
!
σ  and an out-of-plane effective 

field 
!!! 
!
hDT = −

b
γ
!
σ × !m  [11]. This results in a current-induced magnetization 

reorientation 

!

!!

Δmx =
hFT +hOe_ in
Heff

Δmy =
hDT +hOe_out
Heff +Meff

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

!! (3.2)!
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where 
s

seff
2
M
KMM ⊥−=  arises from the demagnetizing effect, sM  is the saturation 

magnetization and ⊥K  is the surface anisotropy energy density, and !!hOe_ in  and !!hOe_out  

are the in-plane and out-of-plane current-induced fields due to Ampere’s law, 

respectively. By detecting the amount of magnetization reorientation, the FT and DT 

can be determined. The derivation of current-induced magnetization reorientation is 

given in Appendix B. 

3.3.1 Detection of DT with the Polar MOKE 

It is well known that MOKE microscopy can selectively detect each 

component of the magnetization by varying the incidence angle of the laser [32]. In 

particular, when the laser is incident normal to the surface, the laser polarization is 

only sensitive to the perpendicular magnetization (polar MOKE), making it an ideal 

technique to detect the out-of-plane magnetization reorientation and hence the effect 

of DT. The experimental setup is shown in Figure 3.1 (a). 
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Figure 3.1: (a) Experimental setup for using polar MOKE to detect DT. A lock-in amplifier 
supplies an ac current through the sample along the z direction, which generates 
FT and DT that rotate the magnetization in-plane and out-of-plane from the xz 
plane, respectively. The reflected laser polarization changes with the 
magnetization of the sample because of MOKE. The change in the polarization 
is converted to a voltage signal through a series of optical components and a 
balanced detector. The voltage signal is detected by the same lock-in amplifier. 
(b) An example experimental result from Ti(1)/Co40Fe40B20(0.85)/Pt(5) with 
a 12 mA bias current and 5 mW laser power. The inset is the magnetization 
hysteresis of the same sample. 

The laser source used for the MOKE measurement is a mode-locked Ti:Sapphire laser 

working at 725 nm center wavelength. Light goes through a Glan Taylor polarizer 

with an extinction coefficient of ~  to set the polarization. For the DT 

measurement at normal incidence, a !×20  objective is used to focus the laser on the 

sample and collimate the reflected beam. The error of the incidence angle is less than 

0.1°. The reflected beam passes back through the objective and is reflected by a 70/30 

beam splitter. It goes through a half-wave plate and the vertical and horizontal 
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polarization components are split by a Wollaston prism. The intensity of the two 

components are balanced by adjusting the half-wave plate. The HM/FM bilayer is 

patterned into a 50 µm x 50 µm strip. When an alternating current Iac is applied to the 
strip, the out-of-plane magnetization ymΔ  of the FM changes based on Eq. (3.2), 

causing the polarization of the reflected laser to rotate because of the MOKE. The 

polarization components of the reflected laser are sent to a balanced detector, which 

outputs a voltage V that is proportional to the polarization rotation of the laser.  Since 

the DT and FT are both proportional to the current, V is proportional to the applied 

current Iac and can be measured by a lock-in amplifier. Figure 3.1 (b) shows an 

example result using Ti(1)/Co40Fe40B20(0.85)/Pt(5). The curve resembles the 

magnetization hysteresis of the sample, consistent with Eq. (3.2), since 

! 
!
hDT = b γ !m×

!
σ  switches sign as the magnetization switches and Meff is much greater 

than the external field applied. On the other hand, !! 
!
hOe_out  remains a constant, which 

raises the entire curve. Figure 3.2 (a) and (b) show the linear responses to the bias 

current and laser power, which rules out contributions due to thermal effects. 

 

Figure 3.2 (a) The linear bias current dependence of the MOKE response The laser power 
is kept at 5 mW with a beam radius of 2 mm, which corresponds to a power 
density of 4 ×108 W / m2. (b) The linear laser power dependence of the MOKE 
response. The bias current is kept at 10 mA, which corresponds to a current 
density of 4 × 1010 A / m2. 
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The magnitude of the DT is determined through a self-calibration method. The 

MOKE voltage at positive saturated field [ ]exHV +  and negative saturated field 

[ ]exHV −  are taken. The voltage signal corresponding to the DT and the out-of-plane 

Oersted field, which corresponds to the offset of the whole curve, can be extracted, 

respectively. 

!

!!

ΔVDT =
V +Hex⎡⎣ ⎤⎦−V −Hex⎡⎣ ⎤⎦

2

ΔVOffset =
V +Hex⎡⎣ ⎤⎦+V −Hex⎡⎣ ⎤⎦

2

!! (3.3)!

Therefore, the magnitude of the DT can be correlated with the out-of-plane Oersted 

field, which is readily solvable using Ampere’s law: 

!
!!

hDT
hOe_out

=
V +Hex⎡⎣ ⎤⎦−V −Hex⎡⎣ ⎤⎦
V +Hex⎡⎣ ⎤⎦+V −Hex⎡⎣ ⎤⎦

!.! (3.4)!

3.3.1.1 Extraction of DT from Polar MOKE 

For a magnetic thin film with width w and thickness d, where d << w, the out-

of-plane Oersted field distribution generated by an electric current flowing through the 

magnetic thin film is given by 

!
!!
hOe_out(x)=

Ic
2πw ln

w− x
x

!! (3.5)!

where Ic is the total electric current flowing through the film and [ ]wx ,0∈  is the 

position perpendicular to the current direction. In the small field limit, the 

magnetization reorientation due to the current-induced out-of-plane Oersted field is 

given as 

!

!!

Δmy_Oe(x)=
hOe_out(x)
Hex +Meff

, if 0≤ x ≤w

0, elsewhere,

⎧

⎨
⎪⎪

⎩
⎪
⎪

!! (3.6)!



 71 

where Hex is the external field and Meff is the effective magnetization. It should be 

noted that in this derivation, we consider the magnetization reorientation only due to 

the local Oersted field by neglecting the exchange coupling between the nearest 

neighbors. This is a reasonable assumption since both the magnitude and gradient of 

the magnetic field are weak and the exchange energy is estimated to be six orders 

smaller than the Zeeman energy.  

Owing to the finite size of the laser spot, the response of the Kerr rotation is 

calculated as the integration of the local magnetization reorientation weighted by the 

Gaussian function that describes the spatial distribution of the laser. 

!
!! 
ΔVOffset(x ,z)=η

1
2πr2 dx 'dz 'e

−
x−x '( )2+ z−z '( )2

r2 Δmy_Oe(x ')!∫∫ !! (3.7)!

where r is the radius of the laser spot and η describes the sensitivity of MOKE 
response: yMOKE / mV Δ=η . 

Similarly, the MOKE response due to the DT-induced magnetization 

reorientation can be derived as 

!
!! 
ΔVDT(x ,z)=η

1
2πr2 dx 'dz 'e

−
x−x '( )2+ z−z '( )2

r2
hDT(x ')
Hex +Meff

!∫∫ !,! (3.8)!

where hDT is uniform over the sample but switches sign when the magnetization 

switches. 

We perform a line scan by keeping the laser position fixed and translating the 

sample along the x-direction. The DT is determined by fitting the line scan. By 

moving the sample along the x-direction with a motion stage, the laser beam scans 

across the sample along its middle section. An example curve is shown Figure 3.3 (a) 

and (c) using Ti(1)/Co40Fe40B20(0.85)/Pt(5). 
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Figure 3.3: (a) Measured offset of the line scan ],[],[ xHVxHVV −++=Δ  (top, 
black squares) and the corresponding numerical simulation (bottom, red 
line) based on Eq. (3.7). (b) Plot of the y-axis values of the numerical 
simulation and the measured data against one another (black squares). 
The parameters in Eq. (3.7) are calibrated from a linear least-squares fit 
(red line). For this example curve, we find !!ηIc /w = 45.5±1.2µV . (c) 
Measured DT signal from line scan ],[],[ xHVxHVV −−+=Δ  (top, 
black squares) and the corresponding numerical simulation (bottom, red 
line) based on Eq. (3.8). (d) Data and simulation plotted against each 
other (black squares) and linear least-squares fit (red line), which gives 
the parameter for DT as !!ηhSOT =166±3µV . Therefore, the DT 

coefficient is determined to be 
!!
βT =

hDT
jPt

=
hDT
Ic /w

dPt =18.3±0.7nm . 
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We then numerically simulate the curves based on Eq. (3.7) and Eq. (3.8), also shown 

in Figure 3.3 (a) and (c). Here the unknown parameter is the starting position of the 

line scan, which can be obtained by aligning the experimental result and the fitting 

data. We then perform a linear regression algorithm on the experimental data and the 

corresponding simulation data to obtain the ratio between the two, as shown in Figure 

3.3 (b) and (d). The magnitude of the DT is then calculated as 

!

!! 

hDT
Ic / 2πw( ) =

ΔVDT(x ,z)/ dx 'dz 'e
−
x−x '( )2+ z−z '( )2

r2!∫∫

ΔVOffset(x ,z)/ dx 'dz 'e
−
x−x '( )2+ z−z '( )2

r2!∫∫ lnw− x '
x '

.! (3.9)!

In this example sample, the applied current is 12 mA. Since the resistivity of 

Co40Fe40B20 (hereafter CoFeB) is much greater than that of Pt, we estimate that all of 
the current flows through the Pt, giving rise to a current density !!jPt = 4.8×10

10 A/m,2 . 

We then determine the material-related DT coefficient !!βT = hDT / jPt =18.3±0.7nm . 

By assuming the DT is contributed by SHE and using the equation proposed by Ando 

et al. [33] and Liu et al. [21], 
!! 
βDT =

!
2e

σ SH
µ0MsdCoFeB

, we determine a spin Hall angle of 

0.076 ± 0.007 for Pt, which is similar to reported results. Here the parameters used are 

!!µ0Ms =1.6T  and !!dCoFeB =0.85±0.05nm . 

Figure 3.4 shows line scan curves for three samples: Ti(1)/CoFeB(0.75)/Pt(5), 

Ti(1)/CoFeB(0.95)/Cu(5), and Ti(1)/CoFeB(2)/Ta(5). The Pt(5) and Ta(5) samples 

have opposite spin Hall angle and hence opposite-sign DT line scan curves but the 

same out-of-plane Oersted field line scan curves. Cu(5) has a similar out-of-plane 

Oersted field line scan curve but a nearly 100 times weaker DT line scan curve, which 

agrees with the weak spin-orbit coupling in Cu. These results show the high sensitivity 

and universality of our MOKE technique. 
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Figure 3.4: Representative DT measurement using polar MOKE for Ti/CoFeB/Pt, 
Ti/CoFeB/Cu, and CoFeB/Ta samples. The Ti/CoFeB/Cu (inset in the 
middle panel) shows very little DT signal, two orders smaller than those 
measured in CoFeB/Pt and CoFeB/Ta. The CoFeB/Pt and CoFeB/Ta has 
opposite sign to the DT, which is consistent with the opposite spin Hall 
angles of Pt and Ta. 

The current densities through Pt, Cu, and Ta layers are, respectively, 5 × 1010
 A/m2, 8 

× 1010
 A/m2, and 8 × 1010

 A/m2. The extracted DT coefficients from these samples are 

!!βDT =20.1±0.9nm  for CoFeB/Pt, !!βDT = −0.2±0.05nm  for CoFeB/Cu, and 

!!βDT = −9.2±0.5nm  for CoFeB/Ta. 

Owing to the fine resolution of this optical method, it is also possible to 

spatially image the spin-orbit torque. As shown in Figure 3.5, two-dimensional images 

of the out-of-plane magnetization reorientation due to the DT and Oersted field can be 

obtained. Reasonable uniformity is observed near the center of the sample. 
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Figure 3.5: Two-dimensional raster scanning of the DT. (a) Image of the device 
under measurement. The imaging area is 100 µm x 100 µm with a step 
size of 5 µm, illustrated by the green dashed line. (b) 2d imaging of the 
laser reflectivity as the laser scans the region. The area with Au, Si/SiO2 
and Ti/CoFeB/Pt has different reflectivity and can therefore be 
distinguished. (c) 2d imaging of the DT by taking the difference between 
the voltage response at positive saturated field and negative saturated 
field. In the middle regime, the magnitude is relatively uniform at 160 ± 
5 µV. The smearing of the boundary is due to the finite size of the laser 
beam diameter (4 µm). (d) 2d imaging of the offset signal due to the out-
of-plane Oersted field obtained by taking the average of the voltage 
response at positive saturated field and negative saturated field. As 
expected, the magnetization reorientation due to the out-of-plane Oersted 
field points toward opposite directions at the left side and right side of the 
sample. In the middle regime of the sample (~ 30 µm vertical span), the 
distribution is reasonably uniform. 
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3.3.2 Detection of FT with Second-order Planar Hall  Effect 

We measure the magnitude of the current-induced FT using the second-order 

PHE method. As shown in Figure 3.7 (a), the Ti(1)/CoFeB(0.75)/Pt(5) sample is 

electrically detected in a Hall bar structure with in-plane magnetization orientation. A 

transverse voltage, V, arising from PHE and anomalous Hall effect (AHE), is 

measured: 

!
!!
V =VPHE +VAHE =wjΔρ

mxmz

Ms
2 +wjρ

my

Ms

!,! (3.10)!

where !w  is the Hall bar strip width, !j  is the dc current density, !Δρ and ρAHE  are the 

anisotropic and anomalous Hall resistivities, respectively, !!mx ,my ,mz  are the 

magnetizations in the !!x , y , z  direction, respectively, and !Ms  is the saturation 

magnetization. In a stationary state with saturated magnetization, the voltage 

contribution due to AHE can be neglected [11], so the detected transverse voltage is 

only due to PHE and is given by 

! !!V ≈wjΔρsinφcosφ ,! (3.11)!
where φ  is the in-plane magnetization rotation, which depends on 

!!Hext ,hI hFTand hOe( ) as 

!
!!
Δφ ≈

δφ Hex ,hI⎡⎣ ⎤⎦
δhI

dhI
dj

j !.! (3.12)!

The second-order planar Hall voltage is taken at various small transverse magnetic 

fields for the purpose of calibration, and by simultaneously reversing the bias current, 

we find ( ) ( )excalexcalcal ,,,,)( HhIVHhIVhV −−+++=Δ , where I is the applied current 

and hcal is the applied calibration field. Under the small perturbation limit, the second-

order PHE voltage VΔ  is linearly proportional to the current-induced magnetization 
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reorientation Δmx, as calculated in Eq. (3.9), and is therefore proportional to the 

transverse field, including FT, the in-plane Oersted field and the calibration field hcal, 
 

! :!!!ΔV ∝hFT +hOersted_in +hcal . !! (3.13)!

The second-order PHE voltage curves with different calibration fields are shown in 

Figure 3.6 (b). The curves have similar profile with different magnitudes. 

 

Figure 3.6: (a) Experimental setup for using the second-order PHE to detect the in-
plane magnetization reorientation and the FT. A transverse field hcal is 
applied to calibrate the response of the second order PHE voltage in order 
to quantify the FT. (b) Example measured second-order PHE curve of the 
Ti(1)/CoFeB(0.75)/Pt(5) under several calibration field strengths. The 
applied dc current is 50 mA. 

The second-order PHE voltage ∆!!is linearly proportional to the transverse field, 

which includes the effective field FT, in-plane Oersted field and calibration field hcal, 
as seen in Eq. (3.17), so the FT can be extracted by comparing !!ΔV hcal =0Am%1( )  and 

!!ΔV hcal = −270Am'1( )− ΔV hcal =270Am'1( )  using a linear regression algorithm, as 

shown in Figure 3.7 (a). Here the data at magnetic fields !<30  Gauss are not included 

in the fitting to satisfy the requirement of small angle perturbation.  
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Figure 3.7: (a) Linear regression algorithm to extract the FT. The x-axis is obtained 
by !!ΔVfitting = ΔV hcal = −270Am'1( )− ΔV hcal =270Am'1( )  and y-axis is the 

!!ΔV hcal =0Am%1( )  at the corresponding magnetic field. The positively 

saturated data and negatively saturated data are fit separately with the 
average slope taken as the ratio between the total current-induced field 
and the calibration field. The inset shows the overall curve at both 
saturated and unsaturated fields. (b) The linear bias current dependence 
of the FT indicates that the measurement is still in linear regime. 

The data at positively saturated state and negatively saturated state are fit separately 

with the slope being 
!!
hFT +hOe_in
540Am−1 =0.137±0.002 . An offset between the two linear fits 

can be observed, which corresponds to the thermal effect and anomalous Hall effect 

due to out-of-plane magnetization reorientation [11]. By assuming most of the current 

flows through Pt layer, we can calculate the FT by subtracting the in-plane Oersted 

field 
!!
hOe_in =

I
2w =50Am,1 , where !!w =500µm  is the width of the Hall bar and 

!!I =50mA . The FT of Ti(1)/CoFeB(0.75)/Pt(5) is extracted to be !24.0±1.1Am
)1  at a 

current density of !2×10
10 Am'2  through Pt. We similarly determine the FT coefficient 

!!
βFT =

hFT
jPt

=1.20±0.05nm . Figure 3.7 (b) shows the linear dependence of the FT on 
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the bias current applied, suggesting that the measurement is in the linear response 

regime. 

3.3.3 Detection of FT with Longitudinal MOKE 

MOKE can also detect the in-plane magnetization reorientation, xmΔ , with 

oblique angle incidence and therefore determine the FT, as shown in Figure 3.8 (a). 

For the FT measurement with oblique incidence, the Ti(1)/CoFeB(0.75)/Pt(5) sample 

with the Hall bar structure is used. In this case, two lenses are used to focus and 

collimate the laser. The incidence angle is set to be about 20°. 
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Figure 3.8: (a) Experimental setup for using longitudinal MOKE to detect the FT. The set-
up is identical with the polar MOKE shown in Figure 3.1 (a), except that the 
laser is obliquely incident on the sample in the xy plane. The incident angle is 
set to be about 20°. (b) Measured voltage from the lock-in amplifier when 
passing an ac current 100 mA through the sample (500 µm in width) 
(black squares, top curve). The curve is asymmetric owing to the out-of-
plane magnetization reorientation because of the DT. The calibration is 
performed by applying an ac current through a metallic wire behind the 
sample, which generates an Oersted field of !216 ±8Am

(1  that drives the 
in-plane magnetization reorientation. As shown in the lower graph (red 
circles), the curve is symmetric since the calibration field has no torque-
like term. (c) The magnetization reorientation because of the FT (top 
curve) and DT (bottom curve) can be separated by their different 
symmetries. (d) The magnitude of the FT is extracted using a linear 
regression algorithm by comparing the top curve in (c) and the 
calibration curve in (b). Only data between 50 Oe and 300 Gauss are used 
in the fitting, where the magnetization is well-saturated. (e) The extracted 
FT is linearly proportional to the bias current, suggesting that the 
measurement is still in the linear regime. 
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Owing to the nature of the oblique incidence setup, it is inevitable that signals due to 
the out-of-plane reorientation ymΔ  also contribute: yx VVV += , where xx mV Δ∝  and 

yy mV Δ∝ . However, we are able to separate Vx from Vy based on their different 

symmetries; that is, the component Vx because of the FT and in-plane Oersted field is 

symmetric at positive and negative external field, while the component Vy because of 

DT switches sign when the magnetization switches. Moreover, the Vy because of the 

out-of-plane Oersted field can be viewed as constant background for thin magnetic 

films, as can be understood from Eq. (3.2). Therefore, we extract Vx by 
( ) ( )

2
exex

x
HVHVV −++= . We also perform a calibration measurement by applying an 

ac magnetic field hcal in the x-direction. The calibration field is applied by sending an 

ac electric current (1 A) through a flat wire (1 mm wide and 1 cm long) underneath the 

sample. The distance from the sample to the wire is about 650 ± 50 mm. The radiated 

field is calculated to be !216 ±8Am
(1 . In this case, the longitudinal MOKE signal Vcal 

only corresponds to the in-plane magnetization rotation and is therefore symmetric, as 

shown in the Figure 3.8 (b). The FT can be derived from 
!!

hFT +hOersted_in
Vx

=
hcal
Vcal

 using 

linear regression, as shown in Figure 3.8 (d). In the fit, only data at saturated 

magnetization states are used. In this example fitting, the ratio between the current-

induced effective field and the calibration field is 0.74 ± 0.03, which gives rise to a 
current-induced field of !!hFT + hOe_ in =160±16Am

(1  at 100 mA applied bias current. 

After removing the !104 Am
'1  Oersted field generated by the current, we obtain 

!!hFT =56 ±16Am
'1 . 
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3.3.4 FM Layer Thickness Dependence of DT and FT 

We measure the magnitude of the DT and FT for a series of samples 

Ti(1)/CoFeB(x)/Pt(5), where x spans from nominal 0.65 nm to 5.75 nm. The addition 

of Ti is for better adhesion and continuity of the ultrathin CoFeB layer. Adding the Ti 

layer does not introduce significant SOI because of its high resistivity and low atomic 

number. As shown in Figure 3.9 (a) and its inset, the DT coefficient follows the 

1/dCoFeB dependence and monotonically increases when the CoFeB gets thinner. On 

the other hand, the thickness dependence of the FT coefficient shows a threshold 

effect that remains near zero for thick CoFeB, but increases rapidly when CoFeB is 

thinner than 1 nm. 
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Figure 3.9: (a) Measured DT coefficient of Ti(1)/CoFeB(x)/Pt(5), where x spans 
from 0.65 to 5.75 nm. The inset shows the 1/dCoFeB dependence of the DT 
coefficients. Here the error bar of the y-axis is obtained from the linear 
regression. The error bar of the x-axis is because of possible 
misalignment in fabricating the wedge-shaped sample. (b) Measured FT 
coefficient of the same series of samples as in (a). The FT remains nearly 
zero when CoFeB is thick and increases rapidly as the CoFeB becomes 
thinner than 1 nm.  The inset shows the DT and FT of 
Ti(1)/CoFeB(x)/Cu(2)/Pt(5), where the direct interface between CoFeB 
and Pt is removed. 
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Haney et al. [27] computed the dependence of FT and DT on the thickness of the FM 

based on the Boltzmann equation considering both the bulk spin Hall effect in the HM 

and the Rashba effect at the FM/HM interface. The Boltzmann model calculations 

showed that the bulk spin Hall effect results in a constant scaled DT (Fig. 6a of Haney 

et al. [27]), which corresponds to a 1/dCoFeB dependence. The calculated Rashba effect 

results in a decreasing scaled DT with decreasing FM thickness, corresponding to a 

much faster decay than the 1/dCoFeB dependence in the absolute DT. This suggests that 

our results are consistent with the SHE mechanism rather than the Rashba effect 

mechanism. In the context of the SHE, the sharp increase in the FT for very thin FMs 

may be understood by the finite spin-dephasing length of the FM. In other words, this 

result is in accordance with the spin-dephasing effect in the spin torque transfer 

process [34] [35], where the spin Hall-induced spin current undergoes a Larmor 

precession because of the exchange interaction with the local magnetization. When the 

CoFeB is thinner than a characteristic spin-dephasing length, an effective magnetic 

field can be generated on the magnetization from the spin torque transfer process. Kim 

et al. [12] have recently performed a study of the DT and FT in a Ta/CoFeB/MgO 

system with perpendicular geometry. Their result on the FT also shows a monotonic 

increase with the reduction of CoFeB thickness. However, the sign of the FT is 

opposite to what one would expect from the SHE. Their result of the DT dependence 

on the CoFeB thickness is also different from what we measured. This may indicate 

that the dominant mechanism determining spin-orbit torques is different for different 

structures. 

Although the results shown in Figure 3.9 imply that the dominant mechanism 

of spin-orbit torque in this bilayer is the bulk SHE, one has to quantify the interface 
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effect separately from the bulk effect in order to be conclusive. To this purpose, we 

further perform the same study on a series of samples of Ti(1)/ CoFeB(x)/Cu(2)/Pt(5), 

where the 2-nm Cu removes the possible CoFeB/Pt interface effect without 

significantly reducing the spin current because of its weak spin–orbit coupling. We 

estimate the effective DT and FT coefficients in Ti(1)/CoFeB(x)/Cu(2)/Pt(5) by 

assuming that all currents flow through the Pt, which overestimates the current density 

and therefore would result in reduced values compared with those of the 

Ti(1)/CoFeB(x)/Pt(5) sample. As shown in the inset of Figure 3.9 (b), similar trends of 

the DT and FT are observed, which asserts the primary contribution of the SHE to the 

DT and FT. However, the ratio of the magnitude in the DT and FT coefficients is 

different between the samples with and without Cu, implying that there may be 

subtleties at the CoFeB/Pt interface. Therefore, we performed a more systematic study 

by varying the Cu layer thickness, discussed below. 

3.3.5 Determination of the Interface Contribution 

Both the Rashba effect and the SHE can produce the DT and FT [27,36–38]. 

The difference between the two effects depends quantitatively on the Rashba 

coefficient, spin Hall angle, spin dephasing length and even the current distribution 

between the layers [27]. However, the determination of these parameters has not been 

well-established and variations in these parameters may lead to different conclusions.  

Here we treat the controversy in a different way by separating the contribution due to 

the interface from that due to nonlocal effects mediated by spin current. By inserting a 

thin Cu layer in between CoFeB and Pt, the direct interface effect is removed. 

Therefore, the DT and FT detected in the Ti(1)/CoFeB(0.7)/Cu(x)/Pt(5) samples are 

only because of nonlocal effects, where the SOI occurs in either the bulk of the Pt 
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because of the SHE or the Cu/Pt interface, and the spin current diffuses into the 

CoFeB through the almost dissipationless Cu layer. In this case, despite the different 

current distributions because of the varying thicknesses of Cu, the ratio between the 
DT and FT, !!hDT /hFT , should remain the same as long as the Cu layer is thick enough 

to isolate the direct interface effect between CoFeB and Pt. If the CoFeB/Pt interface 

makes a significant contribution to the FT and DT, one should observe a deviation of 

!!hDT /hFT  when the Cu layer is removed. The experimental data are shown in Figure 

3.10 (a). 

 

Figure 3.10: (a) Measured FT and DT coefficients in Ti(0.7)/CoFeB(0.7)/Cu(x)/Pt(5). 
The FT coefficient shows an increase with very thin copper insertion and 
then decreases as the copper layer gets thicker, while the DT coefficient 
shows a monotonic decay with increasing copper layer thickness. (b) The 
ratio between the FT and DT coefficients manifests two regimes as 
highlighted in the graph. In the green regime, where copper is thick 
enough to remove the interface effect between CoFeB and Pt, the 

!!βFT /βDT  values are near 0.2. In the red regime, where copper is too thin 

to form continuous film, the !!βFT /βDT  is lower suggesting that there 
exists an interface effect that produces a FT and DT based on a different 
mechanism from the effect of the nonlocal spin current. 
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The FT increases slightly with the insertion of a very thin Cu layer and reduces with 

increasing Cu thickness, while the DT exhibits a monotonic decay with Cu thickness. 

The overall reduction of the FT and DT is mainly because the Cu partially shorts the 

current through Pt. Another possible effect is that the Cu/CoFeB interface may have a 

different spin mixing conductance than the Pt/CoFeB interface, resulting in a different 

spin transfer torque efficiency [39,40]. Despite the significant reduction in both FT 

and DT, the ratio between the two remains near 0.2 when the Cu is thicker than 0.75 

nm, as shown in Fig. 3.10 (b). This suggests that both the FT and DT have the same 

origin of nonlocal spin current. However, when the Cu is thinner than 0.75 nm, this 

ratio is lower than 0.2, indicating the existence of an interface effect. This interface 

effect may arise from the Rashba effect. Since the Rashba effect tends to produce a 

much larger effective field than torque, it is reasonable to estimate that the DT arises 

mostly from the SHE. Therefore, the pure spin Hall-induced effective field is 
estimated from the DT to be !!βFT _ spinHall = βDT _ spinHall ×0.2= 4.4nm  assuming the same 

FT/DT ratio as samples with Cu inserted. The Rashba field contribution with no Cu 
insertion is then estimated to be !!βFT _Rashba = βFT −βFT _ spinHall = −2.4nm . 

We similarly perform a FT measurement study on the 

Ti(1)/Ni80Fe20(1.5)/Cu(0-5)/Pt(5) system. Although the magnitude of the FT is 

comparable to that of the Ti(1)/ CoFeB(0.7)/Cu(0–5)//Pt(5), we observe monotonic 

decay of the FT with Cu insertion that differs from the samples using CoFeB. We 

speculate a correlation between the interface SOI and possible hybridization between 

Co and Pt [41]. In other words, the hybridization between Ni (or Fe) and Pt might be 

much weaker than that between Co and Pt so that no distinct interface effect is 

observed in Ni80Fe20/Pt samples. It should be pointed out that the Rashba effect is not 
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the only explanation for the reduction in the FT with direct contact of CoFeB and Pt. 

Another possible reason is the proximity effect [42], in which the interface of the Pt 

may become magnetic and effectively increase the thickness of the FM layer. 

Consequently, both the FT and DT decrease. Since the FT decreases more rapidly than 

the DT as the FM thickness increases, the ratio between the two decreases when the 

proximity effect effectively increases the thickness of the FM layer. 

3.3.6 Summary 

In Pt/CoFeB bilayers we show that the DT has 1/d dependence on the FM layer 

thickness and the FT has a threshold effect that appears only when the ferromagnetic 

layer is thinner than 1 nm. The fact that both DT and FT persist even with the insertion 

of a copper layer indicates that the spin Hall effect contributes to both the DT and FT. 

However, there is an important interface effect at the Pt/CoFeB interface that 

contributes additional DT and FT. This implies that another way to harness the spin–

orbit coupling-induced magnetization switching is by engineering the interface. It 

should be emphasized that, although the spin Hall effect dominates the Pt/CoFeB 

system under this study, other systems with stronger interface SOI may be more 

influenced by the Rashba effect. The development of the spin-orbit torque 

magnetometer together with the Cu insertion method to isolate the interface allows 

quantitative determination of bulk and interface contributions in various systems. 
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ALL-OPTICAL VECTOR-RESOLVED MEASUREMENT OF SPIN-ORBIT-
INDUCED TORQUES USING BOTH POLAR AND QUADRATIC 

MAGNETO-OPTIC KERR EFFECTS 

In this chapter, we demonstrate that the MOKE with normal incidence light 

can be used to obtain quantitative optical measurements of both components of spin-

orbit-induced torque (both the DT and FT) in HM/FM bilayers. This is achieved by 

analyzing the polar Kerr effect as well as the quadratic Kerr effect. The two effects 

can be distinguished by properly selecting the polarization of the incident light. We 

use this all-optical technique to determine the SOTs generated by a series of 

Pt/Permalloy (Ni81Fe19 = Py) samples, finding values in excellent agreement with 

spin-torque ferromagnetic resonance (ST-FMR) measurements. 

4.1 Introduction 

The MOKE has been widely used for studying spin accumulation and 

magnetization in thin films [1–3]. In the previous chapter, we showed that 

conventional polar MOKE with normal light incidence can be used to accurately 

measure the DT component of the current-induced magnetic reorientation, and we 

have also shown that the longitudinal MOKE with oblique-angle light incidence can 

be used for measuring the FT component. Thus to measure both FT and DT 

components using polar and longitudinal MOKE requires measurements at both 

normal and oblique-angle light incidence. Recently, Montazeri et al. demonstrated the 

existence of a quadratic MOKE response with normal light incidence [4]. In this 

Chapter 4 
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chapter, we present a technique to measure and separate the polar and quadratic 

MOKE responses with normally incident light to detect DT and FT. We study a series 

of Pt/Py bilayers to verify the accuracy of this method. 

4.2 Sample Fabrication 

We demonstrate MOKE-based spin-torque magnetometry using in-plane 

magnetized substrate/Pt(6nm)/Py(dPy) bilayers, with dPy ranging from 2 to 10 nm. The 

bilayers were grown at room temperature on c-axis epi-ready sapphire substrates in a 

magnetron sputtering system with a base pressure of !2×10−9 Torr. After deposition of 

the Py, 2 nm of Al was deposited and oxidized to form a protective barrier. For the 
sample of Pt (6 nm)/Py (8 nm), !!µ0Ms =0.87T  as measured by vibrating sampling 

magnetometry, !!µ0Hanis =0.23mT , and !!µ0Hanis⊥ = 40mT  as extracted from 

ferromagnetic resonance. 

4.3 Determination of Polar and Quadratic MOKE signals 

The MOKE can be described as arising from a magnetization-dependent 

permittivity tensor, which can be expressed as a Taylor series in the components of the 

magnetization unit vector, ! 
!m  [5] 

! !! ε ij
!m( ) = ε ij(0) +Kijkmk +Gijklmkml +" !! (4.1)!

where the Einstein summation convention over the x, y, and z coordinates is used. The 
dielectric tensor !!ε ij

0( )  represents the components of the permittivity tensor in the 

absence of magnetization ! 
!m . When light interacts with a magnetic material, the light 

polarization will change depending on the magnetization orientation. The second term 

on the right side of Eq. (4.1) generates the first-order MOKE that encompasses the 

well-known polar, longitudinal, and transverse MOKE responses [6]. The third term 
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on the right side of Eq. (4.1) leads to a second-order MOKE response, which is often 

referred to as quadratic MOKE [7]. This term is in general not negligible. 

For the case of normally incident light with linear polarization, the rotation of 

the polarization angle due to the magnetization can be written as [8] 
! !! Ψ(m)=α polarmz +βquadraticmxmy +! !! (4.2)!

where the z direction is perpendicular to the magnetic film plane, the x direction is 
parallel to the plane of the incident polarization, and !

α polar  and !
βquadratic  are the 

coefficients for the polar MOKE and quadratic MOKE responses, respectively. If we 
define θ  and φ   as the polar and azimuthal angles of the magnetization and !

φpol  as the 

angle of the plane of polarization, then Eq. (4.2) can be rewritten as  

!
!!
Ψ(m)=α polar cosθ +

1
2βquadratic sin

2θ sin 2 φ −φpol( )⎡
⎣

⎤
⎦ !! (4.3)!

As seen in Eq. (4.3), the polar MOKE response does not depend on the polarization 

direction, while the quadratic MOKE depends on the polarization angle as 

!!∝sin 2 φ −φpol( )⎡
⎣

⎤
⎦ . Therefore, by controlling the polarization of the incident light, one 

can conveniently separate the two signals that are proportional to !mz  and !
mxmy  and 

thus measure the current-induced magnetization rotation that results in changes to any 

of the magnetization components. Polar MOKE can be distinguished from the 

quadratic MOKE by tuning the angle of polarization of the light. If circularly 

polarized incident light is used, the polar MOKE component yields no polarization 

change, while the quadratic MOKE changes the polarization from circular to slightly 

elliptical. 

As we have shown in Chapter 3, to first order for an in-plane-magnetized 

sample, the current-induced DT (changing θ ) and FT (changing φ ) is written as  
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!

!!

Δθ =
hDT +hOe_out

Hex +Hanis −Hanis⊥ +Ms

Δφ =
hFT +hOe_in
Hex +Hanis

⎧

⎨

⎪
⎪

⎩

⎪
⎪

!! (4.4)!

where !Hanis  is the in-plane anisotropy field (assumed to be in the x direction), !Hanis⊥  is 

any out-of-plane anisotropy field due to interface or crystalline anisotropy, and !Ms  is 

the saturation magnetization. For an ordinary transition-metal ferromagnet like Py, the 

in-plane anisotropy is negligible, and Ms is much larger than any of the other field 

terms. So, the change in the polar MOKE signal ∝Δθ( )  should be approximately 

independent of applied field for ! Hex ≪Ms  while the current-induced change in the 

quadratic MOKE signal ∝Δφ( ) should scale approximately as !!1 Hex . 

Our MOKE measurements of the current-induced magnetization reorientation 

are conducted using the experimental geometry shown in Figure 4.1. We analyze the 

Kerr rotations of the light polarization using the optical bridge apparatus with a mode-

locked Ti:Sapphire laser working at 780 nm center wavelength. We use a half wave 

plate (labeled HWP-1) and a quarter-wave plate (labeled QWP-1) to compensate a 

slight birefringence of the beam splitter and ensure that the light is initially linearly 

polarized along the x-axis when incident onto HWP-2 or QWP-2. To allow 

measurements in which linearly polarized light is incident on the bilayer and the 

polarization angle of the light can be adjusted relative to the sample magnetization, we 

rotate the light polarization by rotating the principle axis of a half wave plate (HWP-2) 

with respect to the x-axis. A !×20  objective focuses the laser to a beam spot close to 

the center of the sample with a radius of approximately !!2µm . 
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Figure 4.1: Experimental set-up for the optical detection of SOTs. For detecting the current-
induced DT, we use a half wave plate, HWP-2, before the sample. This is 
replaced by a quarter wave plate, QWP-2, for detecting the current-induced FT. 

The total polarization rotation before and after the HWP-2 can be derived 

using the method of Jones calculus, where the polarization is described by a vector 

while transmission through wave plates and reflection from the magnetic samples are 

described by a matrix as shown in Table 4.1. We apply an in-plane AC current, 

!!Iac cosωt , at 1013 Hz with !!Iac =10mA  and define the x-axis as the direction of 

current flow, with z perpendicular to the sample plane. We initially align the 
magnetization along the x direction using an external field !Hex . 
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 Initial 
Polarization  

Half Wave 
Plate 
 

Quarter Wave 
Plate 
 

Magnetic sample 

 
Jones 
Matrices/
Vectors 

  
 ⎥

⎦

⎤
⎢
⎣

⎡
=
0
1

0P  
  

⎥
⎦

⎤
⎢
⎣

⎡
−

=
10
01

HWM  
  

⎥
⎦

⎤
⎢
⎣

⎡
−

=
i

M
0

01
QW

 MK = ξ
1+

βQuadratic

2
−αPolarmz

αPolarmz 1−
βQuadratic

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

Table  4.1: List of Jones matrices/vectors used in this calculation. The initial 
polarization is set along the x-axis. The Jones matrices M in the table for 
half wave plate, quarter wave plate and magnetic sample are assuming 
the principle axis (fast axis of the wave plate or in-plane magnetization 
direction of the magnetic sample) is along the x-axis. The matrices with 
arbitrary principle axis can be deduced as [ ] [ ]θθ −MRR , where 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

θθ
θθ

θ
cossin
sincos

][R  and θ  is the relative angle between the principle axis 

and the x-axis. The factor ξ  in the Jones Matrix for the magnetic sample 
captures the reflection loss, which does not affect the polarization 
change. 

When HWP-2 is used, the light polarization at different points of the set-up marked as 

!!I , II , III , IV  is calculated as: 

!I - The polarization is initially aligned in the x direction. 
!!
P1 =

1
0

⎡

⎣
⎢

⎤

⎦
⎥.  

!II - Upon transmitting through the HWP-2, the polarization is rotated by an 
angle!!φpol =2φHW , where !φHW  is the relative angle between the principle axis of the half 

wave plate and the x direction. P2 = R φHW[ ]MHWR −φHW[ ]P1 =
cos2φHW
sin2φHW

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. 

!III - After the light is reflected from the magnetic material, the polarization changes to 

!
φpol +ΨKerr  due to the polar and quadratic 

MOKE:
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!!
P3 = R ϕ⎡⎣ ⎤⎦MKR −ϕ⎡⎣ ⎤⎦P2 = ξ

cos2ϕHW

sin2ϕHW

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+αPolarmz

−sin2ϕHW

cos2ϕHW

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+
βQuadratic
2

cos 2ϕ −2ϕHW( )
sin 2ϕ −2ϕHW( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

 

!IV - The polarization of the reflected beam is rotated to ︎ !−ΨKerr  away from initial 

polarization after passing through the half wave plate HWP-2. 

!!

P4 = R ϕHW⎡⎣ ⎤⎦MHWR −ϕHW⎡⎣ ⎤⎦P3 = ξ
1
0

⎡

⎣
⎢

⎤

⎦
⎥+

1
2 βQuadratic cos 4ϕHW −2ϕ( )

−αPolarmz + 12 βQuadratic sin 4ϕHW −2ϕ( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪
⎪

⎫

⎬
⎪

⎭
⎪
⎪

.

!
Therefore the total polarization angle rotation is 

! !!−αPolarmz + 12 βQuadratic sin 4ϕHW −2ϕM( ) !.! (4.5)!

Since we study small current-induced rotations of the magnetic moment about an 

initial state with !ϕ =0,θ =π 2  by differentiating Eq. (4.5) and substituting 

φHW = φpol / 2 , we can derive 

! !!−ΔΨ = −αPolarΔθ +βQuadratic cos2φpolΔφ !.! (4.6)!
For !! φpol = 45

!  the contribution from the quadratic MOKE vanishes. The principle axis 

of the analyzing wave plate HWP-3 is set to be 22.5° from the x-axis. As a result, after 

passing through HWP-3, the light can be described by 

!!

R π
8

⎡

⎣
⎢

⎤

⎦
⎥MHWR −π8

⎡

⎣
⎢

⎤

⎦
⎥ξ

1+ 12 βQuadratic cos 4ϕHW −2ϕM( )
−αPolar cosθM + 12 βQuadratic sin 4ϕHW −2ϕM( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

ξ
2

1+ 12 βQuadratic cos 4ϕHW −2ϕM( )−αPolar cosθM + 12 βQuadratic sin 4ϕHW −2ϕM( )
1+ 12 βQuadratic cos 4ϕHW −2ϕM( )+αPolar cosθM − 12 βQuadratic sin 4ϕHW −2ϕM( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

Ex '
Ey '

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
.

 

The changes in the Kerr rotation angle are measured by using a polarizing beam 

splitter to separate the s- and p-components of the light and then analyzing the power 
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difference by a balanced detector. A lock-in amplifier locked to the frequency of the 

applied current records current-induced changes in the Kerr rotation. The voltage 

output from the balanced detector is proportional to 

!

!!

Ex '
2
− Ey '

2

= ξ2[1+ 12 βQuadratic cos 4ϕHW −2ϕM( )]×[−αPolar cosθM + 12 βQuadratic sin 4ϕHW −2ϕM( )].
!(4.7)!

By differentiating Eq. (4.7), we determine the AC voltage output from the balanced 

detector to be VLock-in = ξ
2ΔΨ . On the other hand, when one of the inputs of the 

balanced detector is blocked, the DC component of the voltage output is 

 

2/2DC ξ=V . 

Therefore, the current-induced polarization rotation is extracted as ΔΨ = VLock−in
2VDC

. 

To measure the FT, we substitute the HWP-2 with a QWP-2 with its principle 

axis set at 45º from the x-axis to generate circularly polarized light incident upon the 

bilayer. The light polarization at different points of the set-up marked as !!I , II , III , IV  is 

calculated as: 

!I - The polarization is initially aligned in the x direction. 
!!
P1 =

1
0

⎡

⎣
⎢

⎤

⎦
⎥.  

!II - After the quarter wave plate QWP-2, the polarization becomes circularly 

polarized. 
!!
P2 = R π /4⎡⎣ ⎤⎦MQWR −π /4⎡⎣ ⎤⎦P1 =

1− i
2

1
i

⎡

⎣
⎢

⎤

⎦
⎥.  

!III - Upon reflection from the magnetic material, the magnetization becomes 

elliptically polarized, due to the quadratic MOKE. 

!!
P3 = R ϕ⎡⎣ ⎤⎦MKR −ϕ⎡⎣ ⎤⎦P2 =

1− i
2 ξ (1− iαPolarmz ) 1

i
⎡

⎣
⎢

⎤

⎦
⎥+

βQuadratic(cosϕ + isinϕ)2
2

1
−i

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  

!IV - After passing through QWP-2 again, the polarization is rotated to the y direction 

with a perturbation due to the quadratic MOKE. 
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P4 = R π / 4[ ]MQWR −π / 4[ ]P3 = ξ 0
1

⎡

⎣
⎢

⎤

⎦
⎥ +

βQuadratic
sin2φ − icos2φ

2
iαPolarmz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
.  

Therefore the total polarization angle rotation is 

!
!!
π
2 −βQuadratic

sin2ϕ − icos2ϕ
2 . !! (4.8)!

By differentiating this polarization rotation near 0M =φ , we can derive 

! !ΔΨ = −βQuadraticΔφ !.! (4.9)!

Out-of-plane magnetization does not give rise to polarization change to the circularly 

polarized light. Therefore, only the quadratic MOKE effect should contribute a signal 

in this geometry, with no contribution from the polar MOKE. Following the same 

process, it can be derived that the current-induced polarization rotation for light with 

circular polarization incident on the bilayer follows ΔΨ = −VLock−in
2VDC

. 

4.4 Experimental Results of DT and FT with Polar and Quadratic MOKE 

For a sample with the layer structure wafer/Pt(6 nm)/Py(8 nm)/ AlOx the 

current-induced Kerr response as a function of swept magnetic field for different 
values of !

φpol  is shown in Figure 4.2. By Eq. (4.6), we expect the contribution from 

the quadratic MOKE to be zero. We observe a simple step-like change in the current-
induced Kerr signal near !!Hex =0 , with the signal approximately independent of !Hex  

on either side of the step. This is the behavior expected from the polar Kerr signal by 
itself, with the step near !!Hex =0  due to reversal of the magnetization and with the 

weak magnetic-field dependence away from the step consistent with Eq. (4.4) for 

! Hex ≪Ms . As the polarization angle is rotated so that !
φpol  differs from ! 45! , the form 

of the magnetic-field dependence of the current-induced Kerr signal changes 

dramatically, evolving from a simple step to the superposition of a step with an 
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additional component that is approximately inversely proportional to !Hex . This is the 

signature of a significant quadratic MOKE signal in addition to the polar MOKE, with 

the current-induced magnetization rotation within the sample plane providing the 

!!1 Hex  dependence according to Eq. (4.4). 

 

Figure 4.2: Current-induced polar MOKE response with three different incident laser 
polarizations. 

The current-induced torque in a Pt/Py bilayer contains contributions from both 

the Oersted field (with both an approximately uniform in-plane component together 

with out-of-plane components near the edges of the sample) and SOTs. The out-of-

plane components due to the Oersted field and DT can be distinguished based on 
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different symmetries with respect to reversing the magnetization; the Oersted field will 

not change upon magnetization reversal while the DT should invert, as we have shown 

in Chapter 3. For DT component isolation, we have employed the same self-

calibration method described in Chapter 3. To isolate the out-of- plane Oersted field, 

we therefore plot the symmetric combination of polar Kerr signals, 

!
ΔΨ +mx( )+ΔΨ −mx( ) , and to isolate the DT, we plot the antisymmetric combination, 

!
ΔΨ +mx( )− ΔΨ −mx( )  as seen in Figure 4.3, which is measured with linearly 

polarized light at !! φpol = 45
! . As expected, we find that the out-of-plane Oersted field is 

antisymmetric about the center of the wire, and the DT is approximately constant 

across the wire width. Comparison of the measured out-of-plane Oersted field with a 

finite-element calculation of the Oersted field in a thin-film sample of finite width 

allows an accurate calibration of the DT field measured by the polar Kerr response. 

The polar MOKE coefficient Polarα  is extracted from the polar MOKE data 

shown in Figure 4.3. The line scan Δψ (+mx ) + Δψ (−mx )  is due to the out-of-plane 

Oersted field, !!hOe_out , such that 
!!
Δψ +mx( )+Δψ −mx( ) = 2αPolar hOe_out

Hext +Hanis +MS −Hanis⊥
, where 

Oez,h  is the average field in the region illuminated by the laser.  The out-of-plane 

Oersted field can be calculated following Ampere’s Law, 
!!
hOe_out =

I
2πw ln

y '
w− y ' , 

where w is the width of the strip. Through fitting the data as shown in Figure 4.3, we 

can extract Polarα  to be ( ) 3108.08.5 −×±  based on which we extract a value for the out-

of-plane spin-orbit equivalent field of !!µ0hDT =0.068±0.010mT  at a 10 mA current 

bias through the !!50µm  strip. Using a simple parallel circuit model to account for the 

different resistivities of Pt and Py, we estimate that approximately 42% of the current 
flows through Pt, yielding a current density in the Pt of !!jPt =1.4×10

10 A m2 . If we 
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assume all of the DT is due to the SHE in the Pt layer, we determine a spin Hall angle 

!!θPt =0.082±0.012 . 

 

Figure 4.3: Separation of the out-of-plane field due to the Oersted field and the DT 
by the spatial symmetry and dependence on the magnetization 
orientation. 

Figure 4.4 shows the Kerr signal as a function of swept applied field,!Hex , at ! 0!  

and circular polarizations. When circularly polarized light is incident, the step-like 

component seen in the polar MOKE signal vanishes, leaving only a signal proportional 
to !!1 Hex  away from !!Hex =0  which is consistent with the expectation that only Δφ  

contributes to the quadratic MOKE signal. 
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Figure 4.4: Current-induced Kerr response with circularly polarized light and 
! 0! linearly polarized light. The former only contains a quadratic MOKE 
response (!!1 Hex -like) while the latter is a superposition of a quadratic 
MOKE response and a polar MOKE response (which has a step-like 
dependence on !Hex ). 

We can calibrate the effective in-plane field produced by the current in the 

bilayer in the same way we do the calibration for longitudinal measurements in 

Chapter 3. Calibration can be done using a metal strip fabricated on a printed circuit 

board attached to the back of the sample to apply a known oscillating in-plane external 

magnetic field and measuring the quadratic MOKE signal due to this external field. 
The MOKE signal measured with the calibration field !!hCal =0.08±0.008mT  applied 
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along the y direction is used to extract Quadraticβ . In this case, the magnetization will 

reorient in the x-y plane, 
!!
Δϕ =

hCal
Hex +Hanis

, following Eq. (4.4). Hence the measured 

MOKE response can be deduced from Eq. (4.5) as 
!!
ΔΨCal = βQuadratic

hCal
Hex +Hanis

. Using 

this expression, we fit the quadratic MOKE response measured under the calibration 
field, shown in Figure 4.6, and obtain !βQuadratic = 1.1±0.1( )×10−4 . For the 

Pt(6nm)/Py(8nm) sample with 10mA current bias, the equivalent field in-plane field 
produced by the current in the bilayer is !!hFT =0.10±0.01mT . The uncertainty here 

arises mainly from inaccuracies in knowing the magnitude of the calibration field at 

the sample. 

 

Figure 4.5: MOKE data when the calibration field is applied. The red curve is the fit 

using 
!!
ΔΨ = βQuadratic

hCal
Hex +Hanis

. 
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4.4.1 Laser Polarization Angle Dependence of MOKE 

We have performed a laser-polarization-angle-dependent MOKE study to 

verify the angular dependence of the Kerr coefficients assumed in Eq. (4.6). Within 

linear response, the current-induced Kerr rotation in general should be described as 
! ΔΨ = a(φpol )Δθ + b(φpol )Δφ !! (4.10)!

where a(φpol )  and b(φpol )  are the MOKE coefficients that may depend on the 

polarization angle while Δθ  and Δφ  are the current-induced polar and azimuthal 

angle changes, which are independent of the polarization. Using Eq. (4.4) and the 
fields !hDT  and !hFT  derived in Section 1.4 when passing 10 mA current through the 50 

µm sample strip, we extract!Δθ =77±11!µrad  and 
!!
Δϕ = 1.1±0.1( )×10−4 0.1mT

µ0Hex
. 

Therefore, a(φpol )  and b(φpol )  can be extracted from the MOKE data measured at 

different polarizations, like shown in Figure 4.2, through linear regression. The 
extracted data, shown in Figure 4.6, reveals that indeed a(φpol )  is nearly independent 

with polarization and b(φpol )  has a cosine dependence on the polarization, which 

confirms Eq. (4.6). 
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Figure 4.6: MOKE coefficients plotted as a function of laser polarization. The red 
curve in the bottom panel is a sinusoidal fit to pol2cos φ . 

It is worth mentioning that the magnitude of Polarα  is almost two orders of 

magnitude greater than Quadraticβ , which is perhaps not surprising given that the polar 

MOKE is a first-order process and the quadratic MOKE is second-order. Nevertheless, 

because the out-of-plane magnetization reorientation Δθ  is strongly suppressed by the 

demagnetization effect, the measured quadratic MOKE signal can still exceed the 

polar MOKE response in our thin-film bilayer samples. 

4.5 Experimental Detection of DT and FT with ST-FMR 

ST-FMR measurement can be used to determine the DT and FT in FM/HM 

bilayers. ST-FMR is performed by following the procedures described in Ref. [9]: a 

microwave current is applied to the sample through a coplanar waveguide structure to 
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excite the magnetic precession and a magnetic resonance signal is detected via a 

rectified DC voltage. The magnitude of the symmetric part of the resonance allows a 

determination of the DT, and the anti-symmetric part yields the FT. The microwave 

current flowing through the sample is calibrated from a microwave reflection 

measurement. 

4.6 Comparison of Experimental Data on DT and FT by MOKE and ST-FMR  

To further verify the accuracy of our MOKE-based spin-torque magnetometer, 

we measured samples with varying Py thickness: wafer/Pt(6 nm)/Py(dPy)/AlOx, with 

dPy = 2–10 nm, and compared the results to ST-FMR performed on the same samples. 

We plot in Figure 4.7 the measured !hDT  and !hFT  determined by both MOKE and ST-

FMR as a function of dPy. These measured fields are normalized by the total surface 

current density (Itot/w), where w is the width of the sample. The two measurement 

techniques are in excellent quantitative agreement for both components. The strengths 

of both components of the equivalent field decrease as a function of increasing dPy in 

part because this corresponds to a decrease in the current density flowing in the Pt 

layer; however, the dependences on dPy are different for the two components. This is 

as expected due to the physical differences between the antidamping spin Hall torque 

that acts at the interface of the magnetic layer and the in-plane Oersted field that acts 

throughout the thickness of the magnetic layer. 
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Figure 4.7: (a) The equivalent current-generated fields corresponding to the 
damping-like component !hDT  and the in-plane effective-field-like 

component !hFT
 normalized by the total current per unit lateral width in 

the bilayer. The uncertainties for the MOKE technique mostly arise from 
the fitting, while the uncertainties for the ST-FMR are mainly due to the 
determination of the microwave current. Excellent agreement is found 
between the MOKE and ST-FMR techniques. 

In Figure 4.8, we take the measurements of the DT from Figure 4.7 and replot 
them in the form of a surface torque per unit area (!!τ AD ,SO /A= hDTµ0γMsdPy ) 

normalized by the current density flowing just in the Pt layer, estimated from a simple 

parallel circuit model taking into account the different average resistivities of the Pt 

and Py layers. Over most of the range of Py thickness, the torque is independent of 
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dPy, as expected for the surface torque due to the SHE arising from the Pt layer. The 

corresponding average spin Hall angle is !0.075±0.010 . There may be a small 

decrease in the strength of the torque for the 2 nm Pt layer, which is interesting in that 

it could hint at a decreased efficiency in the absorption of the incoming spin current 

for a very thin Py layer. 

 

Figure 4.8: !!τ AD ,SO /A normalized by the estimated current per unit sample width in 
the Pt layer. 

In Figure 4.9, we replot the data for the !hFT  taken from Figure 4.7, but the 

normalized versus the estimated current per unit lateral sample width flowing just in 

the Pt layer rather than the total current. For a pure Oersted field, the value should be 
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0.5, independent of Py thickness. We find that the measured equivalent field is indeed 

independent of dPy, but the magnitude is somewhat larger than expected from a pure 

Oersted field. This discrepancy could be due to an inaccuracy in our simple parallel 

circuit model for estimating the current in the Pt (we neglect surface scattering, for 

example) or to the existence of a spin-orbit-induced effective field with an unexpected 

dependence on dPy. 

 

Figure 4.9: The !hFT normalized by the estimated current per unit sample width in the Pt 
layer. 

4.7 Summary 

We have demonstrated a convenient all-optical MOKE technique that can 

separately measure the DT and FT components of the current-induced SOT via polar 
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MOKE and quadratic MOKE, respectively, with both measurements performed using 

normally incident light. We find excellent agreement between the results of this 

technique and ST-FMR measurements for a series of Pt/Py bilayers with different Py 

thicknesses. We anticipate that MOKE magnetometry will be useful for rapid 

characterization of current-induced torques acting on a very wide range of materials. 
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QUANTIFYING THE ANGULAR DEPENDENCE OF SPIN-ORBIT 
TORQUES IN HM/FM/METAL-OXIDE TRILAYERS WITH 

PERPENDICULAR MAGNETIC ANISOTROPY 

In this chapter, we develop a scheme to quantify the angular dependence of 

spin-orbit torques (SOTs) based on the polar MOKE with field calibration. Theoretical 

calculations predict no dependence of the SOTs on the out-of-plane angle of 

magnetization due to SHE, but the Rashba effect induces a nontrivial angular 

dependence of the SOTs. Quantitative measurements with adiabatic harmonic Hall 

technique have observed the angular dependence in Ta/CoFeB/MgO or Pt/Co/AlOx 

with perpendicular magnetic anisotropy. However, this method is complicated because 

the signal consists of both anomalous and planar Hall contributions. In addition, the 

fitting of the measurement data is sensitive to the fitting parameters, particularly to the 

perpendicular anisotropy, in a certain angle region (40–70°). To avoid this uncertainty, 

we precisely determine the SOTs and their angle dependence on the magnetization 

orientation via polar MOKE measurements. We observe a strong angular dependence 

that is different from the previous experimental observations. Based on this strong 

dependence, we conclude that a Rashba effect at the same interface, that is responsible 

for the perpendicular magnetic anisotropy, is the dominant mechanism for the current-

driven SOTs in this system. 

Chapter 5 
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5.1 Introduction 

In-plane current in HM/FM/ metal-oxide (MOx) trilayers generates SOTs that 

enable an efficient method to control the magnetization of FM layer. Although it has 

been pointed out that the damping-like torque (DT) and field-like torque (FT) are 

dominated by the SHE and the Rashba effect, respectively [1–3], each torque contains 

the contributions from both the SHE and the Rashba effect [4–7] The SOTs in 

HM/FM bilayers with in-plane magnetic anisotropy have been extensively 

investigated. The DT is usually found to be larger than the FT [8–10], indicating the 

SHE is strong in the bilayers with in-plane anisotropy. We have identified the 

contributions of the SHE and the Rashba effect to SOTs in Pt/CoFeB bilayers by 

inserting a copper layer to minimize the Rashba effect in Chapter 3. However, the 

same scheme cannot be applied to Ta/CoFeB/MgO trilayers with perpendicular 

magnetic anisotropy (PMA) since it will dramatically affect the PMA [11–15]. 

Different from the in-plane bilayers, the Ta/CoFeB/MgO trilayers with PMA show a 

strong Rashba effect, owing to the interfacial symmetry-breaking and hybridization of 

electronic states at the Ta/CoFeB and CoFeB/MgO interfaces [16,17]. The ratio 

between FT and DT are detected to be 2 [16], 3 [17], 6 [18,19], and up to 8 (this 

study), which is significantly affected by the modification of the interfaces through 

thermal annealing [20]. The Rashba-induced SOTs are closely related to the 

PMA [20], while the mechanism needs further theoretical investigation. 

One promising method to distinguish between SHE- and Rashba-driven SOTs 

is through the dependence of SOTs on the angular direction of the magnetization. 

Theories based on the bulk SHE combined with the Boltzmann transport equation [5] 

suggest both FT and DT are independent on the rotation of magnetization normal to 

the film plane. On the other hand, a model with the Rashba spin-orbit coupling with 
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comparable strength to the exchange coupling [21] predicts a strong angular 

dependence in the SOTs. The angular dependence of SOTs has a critical impact on the 

magnetization dynamics and hence is important to understand for optimizing spin-

orbit spintronics devices. 

In this chapter, we determine the angular dependence of SOTs in Ta (2 

nm)/CoFeB (1 nm)/MgO (3 nm) trilayers with adiabatic harmonic Hall and polar 

MOKE. We show that the harmonic Hall technique employed in the previous 

studies [16–18] is inaccurate in determining the angular dependence of SOTs, 

particularly in the medium polar angle region (! θ = 40−70! ), because the fitting of the 

measurement curves is very sensitive to the fitting parameters like perpendicular 

anisotropy. In MOKE measurements, we implement a field-calibration method to 

accurately quantify the SOTs at various polar angles of magnetization. The obtained 

nontrivial angular dependence of the SOTs is distinct from the previous experimental 

observations. The results suggest that the Rashba effect is the dominant contribution to 

SOTs in Ta/CoFeB/MgO structures. 

5.2 Sample Fabrication and the Optimization of PMA in Ta/CoFeB/MgO 
Trilayers 

The trilayer samples composed of Ta/ Co40Fe40B20/ MgO were grown on a 

thermally oxidized Si wafer by magnetron sputtering. The base pressure of the vacuum 

chamber is 3×10-8 Torr, and the H2O partial pressure is 3×10-9 Torr. Ta and CoFeB 

layers were deposited by dc sputtering at a rate of 1 Å/s. MgO was deposited from a 

MgO target by RF sputtering at a rate of 0.04 Å/s. The argon pressures during the 

deposition were 3 mTorr for Ta and CoFeB deposition and 1.1 mTorr during MgO 

deposition. Then a 7-nm SiO2 was grown as the capping layer to protect the MgO 
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layer from degradation during the following annealing and fabrication process. For the 

harmonic Hall voltage measurements, the thin films were lithographically patterned 

into Hall bars 500 µm wide and 3 mm long. The samples used for MOKE 

measurements were patterned into 30 µm × 30 µm squares. The contact pads consist 

of Ta (5)/Cu (200)/Au (50). 

The interfacial PMA in Ta/CoFeB/MgO trilayers arises from the hybridization 

between the ferromagnetic atoms (Co and Fe) and the oxygen atoms in MgO [15]. A 

more recent study suggests that bottom metallic layers like Ta also significantly 

influence the perpendicular anisotropy [22]. Moreover, the annealing treatments are 

necessary for the development of PMA and tunneling magnetoresistance in the 

perpendicular magnetic tunnel junction. With the rapid thermal annealing technique 

Wang et al. [14] have achieved over 100% TMR. Here, we adopt a similar thermal 

treatment at 340°C for 3 min. 
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Figure 5.1: The anomalous Hall effect hysteresis loops of three groups of samples: 
(a) Ta (x)/CoFeB (1.2)/MgO (3), (b) Ta (2)/CoFeB (y)/MgO (3), and (c) 
Ta (2)/CoFeB (1.2)/ MgO (z). 

We investigate the influence of the thickness of an individual layer on the 

development of PMA. Three sets of samples were fabricated. Each set of samples has 

the same structure, but with thickness variation in one of the three layers. The 

structures are Ta (x)/CoFeB (1.2)/MgO (3), Ta (2)/CoFeB (y)/MgO (3), and Ta 

(2)/CoFeB (1.2)/ MgO (z). The PMA of each sample is investigated via anomalous 

Hall effect measurements (AHE), where the Hall voltage is detected as the magnetic 

field is swept in the direction normal to the film plane. As shown in Figure 5.1, the 
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square-shaped hysteresis loop indicates good PMA. Summarizing all results, we 

obtain the required thickness ranges for PMA, which are tTa > 1 nm, 1.5nm > tCoFeB > 

0.8 nm, and tMgO > 1.1 nm. We, therefore, choose the structure of Ta (2)/ CoFeB (1)/ 

MgO (3) to measure SOTs. 

5.3 Magnetization Reorientation due to the SOTs in Multilayer Thin Films with 
PMA 

The SOTs rotate the magnetization from its equilibrium orientation. As shown 
in Figure 5.2, !θ0  and !φ0  are the polar and azimuthal angle of the magnetization in the 

FM layer in the equilibrium direction. We also define the polar and azimuthal angle of 
the magnetic field as !θH and !φH . The in-plane current generates effective fields 

!!ΔHx ,y ,z  of SOTs, leading to modulation of the magnetization angle (Δθ  and Δφ ). To 

determine the current-induced SOTs, we derive the relation between the SOTs and the 

change of magnetization angle. 

 

Figure 5.2: The sample structure of a trilayer system with PMA and the current 
induced DT and FT. 
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The magnetic energy of the system can be written as 
! !! E = −KP cos2θ −KI sin2φsin2θ −

!
M. !H !,! (5.1)!

where !KP  is the effective out-of-plane anisotropy energy, including demagnetizing 

energy and perpendicular surface anisotropy !K⊥ , and !K I  is the in-plane uniaxial 

anisotropy energy. In a magnetic thin film, !KP can be expressed as 
!!
KP = K⊥ −

1
2Ms

2 . 

The corresponding effective out-of-plane and in-plane anisotropy fields can be written 

as 
!!
HP =

2KP

Ms

and 
!!
HI =

2KI

Ms

. To find the equilibrium magnetization directions 

! θ0 , φ0( ) , one can solve the equations 

!
!!
∂E
∂θ θ=θ0 ,φ=φ0

=0 !,! (5.2)!

!
!!
∂E
∂φ θ=θ0 ,φ=φ0

=0. !! (5.3)!

The small perturbations (Δθ  and Δφ ) to the magnetization direction are given by 

!
!
Δθ = ∂θ

∂Hx

ΔHx +
∂θ
∂Hy

ΔHy +
∂θ
∂Hz

ΔHz !,! (5.4)!

!
!
Δφ = ∂φ

∂Hx

ΔHx +
∂φ
∂Hy

ΔHy +
∂φ
∂Hz

ΔHz !.! (5.5)!

We assume that the external magnetic field is much larger than the in-plane uniaxial 
anisotropy, so that !!φ0 =φH . We further assume the direction of the external magnetic 

field is along either the x or y-axis. Eqs. (5.4) and (5.5) under small angle 

approximation can be expressed as [23] 

!
!!
Δθ =

cosθ0 ΔHx cosφH +ΔHy sinφH( )− sinθ0ΔHz

HP −HI sin2φH( )cos2θ0 +Hcos θH −θ0( ) !,! (5.6)!

!
!!
Δφ =

−ΔHx sinφH +ΔHy cosφH
−HI sinθ0 cos2φH +HsinθH

!.! (5.7)!
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Equations (5.6) and (5.7) can be further simplified in the particular field and magnetic 

anisotropy configurations. Below, we discuss two scenarios that will be used in the 
measurements. The DT field ! 

!
hDT = −b

!
σ × !m γ  is always normal to the magnetization 

and the FT field ! 
!
hFT = −a

!
σ γ  does not depend on the magnetization. One can separate 

the DT and FT based on their symmetries with respect to the magnetization. 

5.3.1 External Magnetic Field Parallel to the Current 

As illustrated in Figure 5.3, in the configuration where the external magnetic 

field is parallel to the current, we apply both the external magnetic field and in-plane 

current along the x-axis, leading to spin-polarization  
!σ  in the y direction. We call this 

set up the ! H ! I  configuration. The effective field arising from DT and FT cause the 

magnetization to deviate from its equilibrium direction. In addition to the SOTs, the 
current generates an Oersted field, ! 

!
hOe , along the y direction. One can write the 

current-induced effective fields as 

!

!!

ΔHx = −hDT cosθ0
ΔHy = hFT +hOe
ΔHz = hDT sinθ0

!! (5.8)!

In this geometry, the external magnetic field is applied in the x-z plane, so 

!! φ0 =φH =0
! ,θH ≈90! . 
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Figure 5.3: A sketch of DT and FT in the ! H ! I  configuration for multilayer thin 
films with PMA. 

Then by substituting Eq. (5.8) into Eqs. (5.6) and (5.7), we obtain the modulation of 

the magnetization angle as 

!
!!
Δθ = −

hDT
HP cos2θ0 +Hsinθ0

!,! (5.9)!

!
!!
Δφ =

hFT +hOe
H −HI sinθ0

!.! (5.10)!

From this it is clear that DT changes the polar angle of the magnetization and FT 

changes the azimuthal angle of the magnetization. 

5.3.2 External Magnetic Field Perpendicular to the Current 

In the second geometry, the!H ⊥ I configuration, depicted in Figure 5.4, we 

apply the magnetic field along the y-axis so that the magnetization rotates in the y-z 
plane, so !! φ0 =φH = 90

! ,θH ≈90! . 
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Figure 5.4: A sketch of DT and FT in the !H ⊥ I  configuration for multilayer thin 
films with PMA. 

The in-plane current along the x-axis creates the same spin polarization  
!σ as the 

previous configuration. Therefore, the y-component of the current-induced effective 

field stays the same. The effective field due to the DT is in the x-direction. One can 

write the current-induced effective fields as 

!
!!

ΔHx = −hDT ,
ΔHy = hFT +hOe .

!! (5.11)!

By substituting Eq. (5.11) into Eqs. (5.6) and (5.7), we obtain the expressions of 

magnetization change as 

!
!!
Δθ =

hFT +hOe( )cosθ0
HP −HI( )cos2θ0 +Hsinθ0

!,! (5.12)!

!
!!
Δφ =

hDT
H +HI sinθ0

!.! (5.13)!
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In this scenario, the modulation of the polar angleΔθ  is proportional to the FT and 

Oersted field, and the modulation of the azimuthal angle Δφ  depends on the DT. 

5.4 Detection of DT and FT with the Adiabatic Harmonic Hall Technique in 
Ta/CoFeB/MgO trilayers with PMA 

The effective fields of SOTs alter the magnetization angle, resulting in a 

change of the Hall signal. The Hall voltage consists of the AHE and planar Hall (PHE) 

contributions. The detected signal was mostly attributed to AHE because AHE 

response is usually much larger than PHE in typical ferromagnetic metals and their 

alloys [8,17,18]. 
In the experiment, a sinusoidal ac current !Iac  with the frequency of 323.4 Hz is 

applied to the Hall bar along the x-axis. The amplitude of !Iac  is 5.7 mA. The resistivity 

of CoFeB and Ta thin film at 1 nm are 246 and 256 !µΩcm , respectively. Assuming 

the bilayer can be modeled as a parallel circuit, the electric current density in Ta is 

0.38 × 106 A cm−2. The current causes small oscillations of the magnetization through 

SOTs and the Oersted field, leading to first- and second-order harmonic Hall voltages 

detected by a lock-in amplifier. The dc AHE signal is related to the polar angle of 

magnetization as 
!!
VA =

1
2ΔRAIcosθ  and the dc PHE signal is given by 

!!
VP =

1
2ΔRPIsin

2θ sin2φ . When the azimuthal angle !φ0  is ! 0!  or ! 90! , the expressions of 

the harmonic Hall voltages are 

!
!!
Vω = 12ΔRAIac ,FM cosθ0 !! (5.14)!

!
!!
V2ω = 12Iac ,FM sinθ0 ΔRAΔθ ± 12ΔRP sinθ0Δφ

⎛
⎝⎜

⎞
⎠⎟
!,! (5.15)!
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where !!Iac ,FM  is the ac current in the FM layer that is equal to 1.9 mA, and the sign in 

Eq. (5.15) is negative when ! φ0 =0
!  and positive when ! φ0 = 90

! . The AHE voltage 

dominates the Hall signal. 
In order to separately determine !hDT  and !hFT , we performed the Hall 

measurements in the two configurations described above. The magnetic field is 
applied in the film plane with a small tilting angle (!! θH =85

! ) to avoid the formation of 

domain walls. We plot the first- and second-order Harmonic response as a function of 

the external field in Figures 5.5 (a) and (b). The magnetic switching does not vary with 

applied field, indicating a single domain state. It is important to note that domain 

structures could be created at high polar angles. Structures of sub-100-nm dimensions 

would  enable the validatation of the single-domain assumption. 
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Figure 5.5: (a) First-order harmonic loops under different applied fields; (b) second-
harmonic loops under the ! H ! I  and !H ⊥ I  geometries.  

In the ! H ! I  configuration, the modulation of polar angle Δθ  is proportional to 

!hDT , expressed in Eq. (5.9). Therefore, the second-harmonic signal is mostly attributed 

to damping-like torque. The first-order Hall voltage reduces with the increase of 

magnetic field. The plot of the DC polar MOKE signal as a function of the external 
magnetic field is shown in Figure 5.6. The equilibrium polar angle !θ0  of 

magnetization at each magnetic field is obtained from the first-harmonic Hall response 
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by Eq. (5.14). From Eqs. (5.9) and (5.15), we obtain the expression of second-

harmonic voltage as 

!
!!
V2ω = 14ΔRAIac ,FM

sinθ0hDT
HP cos2θ0 +Hsinθ0

− 12ΔRPIac ,FM
sin2θ0 hFT +hOe( )
H −HI sinθ0

!.! (5.16)!

 

!
Figure 5.6: DC polar MOKE signal as a function of the external magnetic field. 

Figure 5.7(a) shows the fitting of the second-harmonic data from Eq. (5.16) 
with parameters of !!hDT =1.2 Oe , !!hFT =2.9 Oe , !!HP =2070 Oe  and !!HI =50 Oe . Here, 

the effective perpendicular field !HP  is determined as the magnetic field at which the 

magnetization saturates along the film plane, as seen in the first-order harmonic loop 

in Figure 5.5(a). 
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Figure 5.7: The fitting of second-harmonic curves under (a) ! H ! I and (c) !H ⊥ I  
geometries. The fitted values are !!hDT =1.2 Oe  and !!hFT =2.9 Oe . 
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Similarly, in the !H ⊥ I  configuration, we derive the second-harmonic response 

expressed as  

!
!!
V2ω = 14ΔRAIac ,FM

sinθ0 cosθ0 hFT +hOe( )
HP cos2θ0 +Hsinθ0

− 12ΔRPIac ,FM
sin2θ0hDT
H −HI sinθ0

!.! (5.17)!

The AHE voltage is dominated by field-like torque. We fit the second-

harmonic curve in Figure 5.7(b) using Eq. (5.17) with the same parameters as in 

Figure 5.7(a). We neglect the current-induced Oersted field in both situations because 

it is much smaller than the SOT fields. The in-plane Oersted field is calculated from 
Ampere’s law as !!hOe = I 2w =0.04 Oe , where !!w =500µm  is the width of the Hall bar 

and the current in Ta is !!I =3.8mA . We then calculate the coefficients of the SOTs as 

!!hDT jTa =3.16Oe/106 Acm+2  and !!hFT jTa =7.63Oe/106 Acm,2 . Assuming !hDT  is only 

caused by the SHE, we calculate the spin Hall angle at the perpendicular state as 

!! θSH =2eMst hDT /!jTa =0.09 , where !e  is the electron charge, !!Ms =106 A/m  is the 

saturation magnetization of CoFeB, and the thickness of CoFeB !t = 1 nm. 

We extract the angular dependence by fitting the second-harmonic Hall data. 

The damping-like torque increases with polar angle and becomes a maximum when 

the magnetization is in the film plane due to the angular dependence of Rashba-
induced SOTs. The values of !hDT  and !hFT  have been held constant in the fitting, i.e., 

no dependence on the magnetization direction. The deviations between the 

experimental and theoretical curves in Figures 5.7 (a) and (b) indicate the angular 
dependence of !hDT  and !hFT  [18]. By solving Eqs. (5.16) and (5.17) with known values 

of !!V2ω ,ΔRA ,ΔRP , Iac ,FM ,θ0 ,HP  and !HI , we calculate the effective fields due to SOTs at 

each polar angle !θ0 . It is important to note that the dependence of !hDT  and !hFT  on the 

azimuthal angle !φ0  is neglected, which might cause some additional errors [24]. As 
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shown in Figures 5.8(a) and (b), both !hDT  and !hFT  increase with the polar angle and 

reach the maximum magnitude when the magnetization is in the film plane. 

 

Figure 5.8: (a) The coefficient of damping-like torque and (b) field-like torque as a 
function of the polar angle of ! 

!m . 
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The profile of the SOTs between 40◦ and 70◦ owes to the uncertainty of the 

calculation. The fitting curves do not vary much in the low- and high-field regions 

corresponding to different effective anisotropy fields HP, shown in Figure 5.9, 

suggesting the harmonic Hall measurements are accurate. However, the fitting results 

are sensitive to the effective anisotropy field near the peak, where the polar angle of 
the magnetization is between 40◦ and 70◦. A small uncertainty in the value of !HP  leads 

to a significant error in the calculation. As shown in Figure 5.9, a less than 5% change 
(90 Oe) in !HP  leads to a large variation of the fitting curves in both configurations. In 

conclusion, the harmonic Hall technique may not be an accurate method to study the 

angular dependence of SOTs. In the next part, we will demonstrate a proper 

measurement scheme with the MOKE technique and field calibration. 



 132 

 

Figure 5.9: The fitting curves of second-harmonic voltage with different values of 
perpendicular anisotropy field !HP  in (a) the ! H ! I and (b) the !H ⊥ I  
configurations. 

5.5 Detection of DT and FT with MOKE in Ta/CoFeB/MgO trilayers with PMA 

As we have shown in Chapter 4, the MOKE with normal incidence light 

polarized linearly at 45° has only polar contribution [25]. The two measurement 
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geometries described above can be used to determine both the DT and FT using only 

polar MOKE. 

In the ! H ! I  configuration, where the external magnetic field is applied in the 

x-z plane and !! φ0 =φH =0
! ,θH ≈90! , the relation between the current-induced SOT 

fields and the modulation of the magnetization has been shown in Eqs. (5.9) and 
(5.10). According to Eq. (5.9), the polar angle Δθ  is proportional to !hDT  and since we 

use normal incident light with 45° linear polarization with respect to the x-axis, the 

signal only depends on the polar angle as 
! !!ΔV ∝α polar sinθ0Δθ !.! (5.18)!

Therefore, we derive the polar MOKE response from Eqs. (5.9) and (5.14) as 

!
!!
ΔV ∝α polar

sinθ0hDT
HP cos2θ0 +Hsinθ0

!.! (5.19)!

The MOKE configuration used in the measurements is depicted in Figure 5.10. 

The Ta/CoFeB/MgO trilayer is patterned into a 30 µm × 30 µm square with two 

contact pads. A long conducting strip consisting of Ta (5 nm)/Cu (200 nm)/Au (50 

nm) is fabricated in parallel with the sample for the purpose of field calibration. The 

width of the strip w = 30 µm, and the distance d between the strip and sample is 100 

µm. We apply linearly polarized light at the center of the sample film and a sinusoidal 

in-plane AC current at 1013 Hz either in the sample (1 mA) or in the conducting strip 

(100 mA). The Kerr rotation of the polarization due to the magnetization reorientation 

is analyzed by using the optical bridge apparatus that was explained in Chapter 3 [10]. 
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Figure 5.10: Measurement of DT and FT with the MOKE technique. Calibration is 
done by sending an AC current through a calibration wire that applies an 
out-of-plane magnetic field on the sample. 

The signal is calibrated with a known field by passing current through the calibration 

wire. An out-of-plane magnetic field is generated on the sample that is analogous to 

the effect of SOT fields. The magnitude of the calibration field is given 
by!!Hcal = I 2πd . A 100 mA the AC current causes a !1.53±0.13Oe  magnetic field, 

where the error is due to the finite width of the calibration strip. Magnetization 

reorientation due to this calibration field is given as 

!
!!
Δθ = −

sinθ0 Hcal

HP cos2θ0 +Hsinθ0
!.! (5.20)!

Thus the polar MOKE response with current in the calibration wire is written as 

!
!!
ΔVcal ∝α polar

sin2θ0Hcal

HP cos2θ0 +Hsinθ0
!.! (5.21)!

Comparing Eq. (5.19) and (5.21), we obtain the DT effective field as 

!
!!
hDT =

ΔV
ΔVcal

Hcal sinθ0 !.! (5.22)!
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Figure 5.10 shows the plot of the polar MOKE signal corresponding to the DT (black 

curve) and the calibration field (red curve) as a function of the external magnetic field 

in the ! H ! I  configuration. The MOKE single only depends on the DT field 

! 
!
hDT = −b

!
σ × !m γ  ; therefore, as we can see from Figure 5.11, the response due to DT 

changes sign with the external magnetic field while the calibration signal is symmetric 

since it does not change sign with the external field. 

 

Figure 5.11: The MOKE response with 1 mA current (1.1 × 106 A/cm2 current density 
in Ta) applied in the sample (black) and 1.53 Oe calibration field (red) 
under the ! H ! I  configuration. 

For the !H ⊥ I  configuration, where the external magnetic field is applied in the 
y-z plane and !! φ0 =φH = 90

! ,θH ≈90! , the relation between the current-induced SOT 

fields and the modulation of the magnetization was shown in Eqs. (5.12) and (5.13). 
According to Eq. (5.12) the polar angle Δθ  is proportional to !hFT  and !hOe . We have 

neglected !hOe  in the calculation since it is one order smaller than !hFT due to Ta being 
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very resistive. With the same derivation process, we obtain the formula in the !H ⊥ I  
configuration to calculate the FT effective field !hFT  as 

!
!!
hFT =

ΔV
ΔVcal

Hcal tanθ0 !.! (5.23)!

Figure 5.12 shows the plot of the polar MOKE signal corresponding to the FT (black 

curve) and the calibration field (red curve) as a function of the external magnetic field 

in the !H ⊥ I  configuration. The MOKE signal only depends on the DT field 

! 
!
hFT = −a

!
σ γ . Therefore, the curves corresponding to the FT field as well as the 

calibration field are symmetric with respect to the external magnetic field. 

 

Figure 5.12: The MOKE response with 1 mA current (1.1× 106 A/cm2 current density 
in Ta) applied in the sample (black) and 1.53 Oe calibration field (red) 
under the !H ⊥ I configuration. 

In each situation, we first apply current through the sample to detect the 

MOKE response !ΔV  induced by SOT effective fields. Then, we apply the current in 
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the calibration wire to measure the calibration signal !ΔVcal . From the dc MOKE, we 

determine the equilibrium angle!θ0  at each magnetic field as 

!
!!
cosθ0 =

Vdc
Vdc θ0 =0( ) ! (5.24)!

Using data obtained from Figures 5.11 and 5.12, we calculate !hDT  and !hFT  

from Eq. (5.22) and Eq. (5.23) respectively. Because the MOKE technique with 

calibration field does not require the fitting of the measurement curve, the 

measurement scheme we develop here is more accurate in determining the angular 

dependence of SOTs than the harmonic Hall technique. 
The SOT coefficients normalized to the current density in Ta, !hDT jTa  and 

!hFT jTa , are plotted versus polar angle in Figure 5.12(a) and (b), respectively. The DC 

polar MOKE measurement is used to extract the polar angle as a function of external 
magnetic field. The ratio of !hFT hDT is around 8 in this study on PMA films, 

suggesting a strong Rashba effect. The ratio in the Pt/CoFeB bilayer [10] with in-plane 

anisotropy is much smaller, so in that case the SOTs are mostly attributed to the SHE. 

Both the DT and FT show non-trivial significant angular dependence. The SOTs are at 
a maximum near ! θ0 = 90

! . A simple theoretical calculation based on the 2D free-

electron model with Rashba spin-orbit coupling also predicts similar trends in the 

angular dependence [21]. Based on the nontrivial angular dependence and magnitude 

of the SOTs, we believe the Rashba effect is the predominant mechanism in 

Ta/CoFeB/MgO trilayer structures. However, there are discrepancies between 

experimental results and theoretical predictions. In the 20–30◦ angle region, the SOTs 

are not monotonically increasing with the polar angle of magnetization. In addition, 

the magnitude and the increasing rate of SOTs after 60° are not reproduced in the 
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theoretical modeling. Our results suggest that the current theoretical model is not 

sufficient to describe the entire angular dependence of SOTs in this system. 

 

Figure 5.13: The calculated coefficient of damping-like torque (a) and field-like 
torque (b) as a function of the magnetization angle. Both DT and FT 
reach the maximum near ! θ0 = 90

! ,when the magnetization lies in the film 
plane. 

5.6 Summary 

We performed MOKE measurements on Ta/CoFeB/MgO trilayers in order to 

quantify SOTs and also derived an algorithm to extract the angle dependence of SOTs. 

The second-harmonic Hall measurement technique is widely employed to quantify 

SOTs. We have shown that this technique is sensitive to the fitting parameters. A 

small change in the fitting parameters leads to a significant error in the determined 

SOTs for certain polar-angle regions. With the MOKE technique, we eliminate the 

fitting procedure by implementing a field calibration to accurately measure the SOTs. 

The field-like torque for this sample has a larger magnitude than the damping-like 

torque. Both damping-like and field-like torques reach a maximum when the 

magnetization lies in the film plane, as expected from a theoretical model with 
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interfacial Rashba spin-orbit interaction. However, the measured SOTs show a 

complex dependence on the polar angle of the magnetization. Further theoretical 

efforts are required to fully understand the mechanism of the SOTs. Accurate 

measurements of the angular dependence of the SOTs are also valuable to the study of 

magnetization dynamics induced by SOTs. Experiments as a function of layer 

thickness will be necessary to complete the study, and will require the quantification 

of the conductivity and other interfacial effects [26] at the ultrathin region. 
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VECTOR-RESOLVED MAGNETO-OPTIC KERR EFFECT 
MEASUREMENTS OF SPIN-ORBIT TORQUE 

In this chapter, we demonstrate simultaneous detection of current-driven DT 
and FT in HM/FM bilayers by measuring all three magnetization components !mx , !

my  

and !mz , using a vector-resolved MOKE technique based on quadrant detection. We 

investigate the magnitude and direction of SOTs in a series of Pt/Py samples, finding 

good agreement with results obtained via polar and quadratic magneto-optic Kerr 

effect measurements without quadrant detection as described in Chapter 4. 

6.1 Introduction 

We have shown that normal incidence light can measure both current-induced 

out-of-plane magnetization reorientation by polar MOKE measurements as done in 

Chapter 3 [1] and in-plane magnetization reorientation by second-order (quadratic) 

MOKE measurements as done in Chapter 4 [2] using a balanced detector. Such 

MOKE techniques do not suffer from electrical artifacts, and for high-sensitivity 

measurements potential optical artifacts such as reflectivity changes can be separated 

from the MOKE signal harmonically [3]. 

In ferromagnetic thin films, there have been several studies to determine the 

magnetization components vectorially [4,5]. For example, Ding et al. proposed a 

method to distinguish the pure longitudinal and polar Kerr contributions via two 

separate measurements interchanging the positions of a light source and a detector [6]. 

Yang et al. showed the detection of three magnetization components by changing the 

Chapter 6 
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different relative orientations of the optical devices: polarizer, modulator, and 

analyzer [7]. As an alternative that does not require changing the position of optical 

elements or data analysis to separate overlapping signals from different vector 

components, Keatley et al. used a scanning Kerr microscope equipped with a compact 

optical quadrant bridge polarimeter to measure in-plane vector hysteresis loops [8]. 

Here we present vector-resolved MOKE measurements of SOT based on an 

optical quadrant bridge detector for first-order detection of current-induced DT and FT 

in HM/FM bilayers over a wide range of thicknesses. With this vector-resolved 

MOKE technique, where normal incidence is converted to various incident angles 

with the help of an objective lens, one can separate the MOKE effects that are linear 

and quadratic in the magnetization and determine all three components of the 

magnetization vector. Thus, we can measure both DT and FT components 

simultaneously without the need to measure quadratic MOKE. We apply this method 
to measure DT and FT for a series of Pt/Py !! Ni81Fe10 = Py( )  samples as a 

demonstration of the implementation of the proposed technique. We compare our 

results with measurements made in Chapter 4 using polar and quadratic MOKE 

without quadrant detection. 

6.2 Separation of MOKE signals 

As we have discussed before, the magneto-optical properties of a material can 
be described by the permittivity tensor, !

ε ij , which can be expanded in the components 

of the magnetization ! 
!m  acting on the material: 

! !! ε ij = ε ij
(0) +Kijkmk +Gijklmkml +! !! (6.1)!

where the Einstein summation convention over the x, y, and z coordinates is used. The  
dielectric tensor !

Kijk  is the linear magneto-optic tensor, and !
Gijkl  is the quadratic 
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magneto-optic tensor. The linear response can be separated into terms corresponding 

to relative orientations of the unit vector of the magnetization !!m̂ , plane of incidence 

(POI) and sample plane (SP), with polar geometry corresponding to 

!! m̂!POI and m̂⊥ SP , longitudinal to !! m̂!POI and m̂! SP  and transverse to 

!! m̂⊥ POI and m̂! SP  as seen in Figure 6.1. The Kerr rotation and ellipticity give a 

measure of the magnetization of the sample. Longitudinal and polar MOKE alter the 

polarization of the incident light from plane to elliptically polarized with the major 

axis rotated (Kerr ellipticity and rotation, respectively) [9]. Transverse MOKE does 

not result in a change of the polarization of the incident light. It involves a change in 

reflectivity for p-polarized light [10]. In this study, by using appropriate polarization 

conditions the transverse component is avoided. 

 

Figure 6.1: Polar, longitudinal, and transverse MOKE geometries for a sample with 
magnetization m. 
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Since the Kerr effect exists for any arbitrary direction of the magnetization, for 
oblique incidence the detected MOKE signal !

Ψ m( )  from a sample with magnetization 

! 
!m  can be written as (assuming the transverse component is suppressed): 

! !! Ψ(m)=α polarmz +γ longitudinalmy +δ longitudinalmx +βquadraticmxmy +! !! (6.2)!

where the z direction is perpendicular to the magnetic film plane (see Figure 6.1), the y 

direction is parallel to the plane of the incident polarization, and 

!!α polar ,γ longitudinal ,δ longitudinal , and!
βquadratic  are the coefficients for the polar, longitudinal, 

and quadratic MOKE responses, respectively. 

It has been demonstrated that polar and longitudinal signals can be separated 

by measuring the Kerr signal in two reversed geometries [11], as the polar signal does 

not change sign if the angle of incidence is reversed from +θ  to −θ  but the 

longitudinal signal does change sign. That is, polar MOKE is an even function 

whereas longitudinal MOKE is an odd function of the incident angle. Quadratic 

MOKE is also an even function of the incident angle as shown in ref [12]. Thus, light 

incident at −θ  (e.g. travelling from ray III to ray II in Figure 6.2) has the same sign 

for polar and quadratic signals but opposite sign for longitudinal signals as light 

incident at +θ  (e.g. travelling from ray II to ray III in Figure 6.2). 
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Figure 6.2: Geometry of the optical quadrant bridge detection system. A 40× 
objective focuses light transmitted to and collimates light reflected from 
the sample. The reflected light is detected in spatial quadrants a, b, c, and 
d. By adding and subtracting signals from appropriate quadrants, one can 
isolate the in-plane MOKE response from the out-of-plane MOKE 
response. 

Using the even and odd dependence on the incident angle we are able to separate 

polar, longitudinal, and quadratic MOKE responses. Using a microscope objective 

with high numerical aperture (NA = 0.65 in our set-up), we focus light across a wide 

range of incident angles from perpendicular to the sample plane to oblique (up to 

approximately 40o) [8]. The light reflected from the sample is measured in four 

quadrants, as shown in Figure 6.2. By taking sums or differences of the four quadrants 

we obtain the contributions from the polar, longitudinal, and quadratic responses, with 
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the longitudinal contribution antisymmetric with incident angle. Thus, the response for 
angles of incidence θ  with inward +θ( )  and outward −θ( )  propagation can be 

represented as 
! !θK

±θ =θK
P ±θK

L +θK
Q ,! (6.3)!

where !θK
±θ  are the Kerr rotations for the respective angles of incidence, and !θK

P , !θK
L , 

and !θK
Q  are the rotations for the polar, longitudinal, and quadratic magneto-optic Kerr 

effects, respectively. The quadrant detector allows us to either sum or subtract the 
inward (!θK

+θ ) and outward (!θK
−θ ) signals to obtain the desired Kerr rotations. By taking 

the sum of both inward (!θK
+θ ) and outward (!θK

−θ ) signals, one obtains twice the sum of 

the polar and quadratic Kerr rotations: 
! !!θK

+ +θK
− =2 θK

P +θK
Q( ) .! (6.4)!

Since we add the signals from the two halves together, which corresponds to the signal 

measured at normal incidence, this signal does not have contributions from 

longitudinal or transverse MOKE. Measurement at 45 degree polarization can be 

performed to cancel the quadratic contribution, which enables us to determine the 

polar contribution, and in turn the DT term. Details of the methodology for separating 

polar and quadratic responses is explained in Chapter 4 [2]. By taking the difference of 
both inward (!!θK

+θ = ray II ) and outward (!!θK
−θ = ray III ) signals, one obtains twice the 

longitudinal Kerr rotation: 
! !!θK

+ −θK
− =2θKL .! (6.5)!

 This allows determination of one in-plane magnetization component, !
my . For the 

longitudinal measurements, the incident light is p-polarized, but we take the difference 

of signals related to rays II and III in Figure 6.2, which corresponds to s-polarized 

light; thus, no transverse MOKE signal is measured. The other in-plane magnetization 
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component, !mx , can be gathered by subtracting the right (ray I) and the left (ray IV) 

halves of the beam. To suppress the transverse component for rays I and IV, the 

incoming polarization is changed from p- to s-polarization. The Kerr rotation from the 

FT term and other in-plane longitudinal components can be measured in this way. In 

principle, a magnetization term proportional to !x!z may generate a hysteresis-like 

signal in the longitudinal configuration due to the out-of-plane Oersted field, but this 

term is anticipated to be less than two orders of magnitude smaller than the first-order 

signal and the measured signals do not indicate any substantial contribution from this 

term. 

6.3 Measurement Setup and Determination of DT and FT with Vector-Resolved 
MOKE 

A diagram of our vector-resolved MOKE setup is shown in Figure 6.3. 

Collimated light from a 100 mW diode laser at 785nm center wavelength goes through 

a Glan Taylor polarizer with an extinction coefficient of ~!10−4  to set the polarization. 

The angle of polarization is controlled with a half-wave plate (HWP-2) before being 

focused by a microscope objective of numerical aperture 0.65 on the sample. The 

reflected beam passes back through the objective and HWP-2 and is reflected by a 

90/10 beam splitter. It goes through another half-wave plate (HWP-3) and the vertical 

and horizontal polarization components are split by a Wollaston prism. The intensity 

of the two components are balanced by adjusting HWP-3. The polarization 

components are detected by two quadrant photodiode detectors whose outputs are the 

sums or differences of various halves of the beams. The outputs of the detectors are 

subtracted from each other to achieve common mode rejection and doubling of the 

signal and then amplified. The signal is measured by a lock-in amplifier locked to the 
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frequency of the ac current driving the sample. Some useful tips in setting up the 

MOKE magnetometer is given in Appendix C. We have used the same set of samples 
we used in Chapter 4, namely in-plane magnetized substrate/Pt(6 nm)/Py (!

dPy ) 

bilayers, with !
dPy  ranging from 2 to 10 nm to verify the accuracy of this method by 

comparing results found by two different methods. 

 

Figure 6.3: Experimental setup for the optical detection of spin-orbit torques. HWP: 
half-wave plate, QWP: quarter-wave plate. 

We apply an in-plane ac current, !!Iac cosωt , at 1733 Hz with !!Iac =20mA  along the x-

axis to the sample. An external magnetic field !Hext  is applied along the x-axis to align 
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the magnetization. The current-induced FT and DT rotate the magnetization within the 
sample plane (changing !φM ) and perpendicular to the plane (changing !θM ), 

respectively. Examples of experimental results from 50 µm x 50 µm Py(8)/Pt(6) with 

a 20 mA bias current and 1 mW laser power are shown in Figure 6.4(a) and (b). The 

current-induced spin-orbit torque signals obtained by the MOKE measurements 

exhibit the expected linear dependence on the applied current density [1]. Figure 
6.4(a) shows the raw data for the Py(8)/Pt(6) polar term ( )zm obtained using light at 45 

degree polarization and taking the sum of all quadrants. The change in the polar 
MOKE signal (! ΔθM ∝

!σ × !m ) switches sign as the magnetization switches and is 

independent of extH away from zero field since ! Hext ≪Ms . Figure 6.4 (b) shows the 

current-induced change in the longitudinal MOKE signal ( )ym at 0 degree 

polarization (at which polarization the transverse component is suppressed) exhibits a 

1 extH dependence (proportional to! ΔφM ∝
!
σ ). 

 

Figure 6.4: The current-induced (a) polar and (b) longitudinal response as a function 
of swept magnetic field extH in Py(8)/Pt(6) bilayers. The red lines are 

least-squares fits to a step function and to ~!!1 Hext  for the polar and 
longitudinal responses, respectively. 
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The magnitude of the DT is determined through the self-calibration method 

explained in Chapter 3. Using a simple parallel circuit model to account for the 

different resistivities of Pt and Py, we estimate that approximately 42% of the current 

flows through the Pt, yielding a current density in Pt 10 22.8 10Ptj A m= × . Note that 

the parallel circuit model does not take into account the potential for non-uniform 

conductance and thus may lead to overestimation of the current in the nonmagnetic 

layer [13]. A line scan is performed by keeping the laser position fixed and translating 

the sample along the y direction. The difference between lock-in voltages at positive 

saturation field and negative saturation field are taken for the DT signal and the 

summation of the lock-in voltages at positive saturation field and negative saturation 

field are taken for the out-of-plane Oersted field for each position, as seen in Figure 

6.5. By fitting the lines scans using quadrant detectors for the DT signal and out-of-

plane Oersted field, we extract the DT coefficient
  
βT =

hDT

jPt

= 6.970 ± 0.050 nm . The 

effective spin Hall angle is defined as the ratio of the out-of-plane spin current to the 

in-plane charge current and is given by 0
2

SH T s Py
e M dθ β µ⎛ ⎞= ⎜ ⎟⎝ ⎠h

. Since the spin-orbit 

torques consist of two components – DT and FT – two spin Hall torque efficiencies 

are calculated. Assuming that the DT arises from the spin Hall effect and using the 

equation 0
2

SH T s Py
e M dθ β µ⎛ ⎞= ⎜ ⎟⎝ ⎠h

, we determine an effective spin Hall angle for DT, 

0.086 0.007DTθ = ±  from vector-resolved MOKE for Pt, which is the same as that 

obtained with polar and quadratic MOKE without quadrant detection 

  θDT = 0.086 ± 0.004  [2]. Here the parameters used are 
  
µ0 MsdPy = 4.080 T.nm.  
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Figure 6.5: (a) Line scan result for Py(4)/Pt(6) with balanced detector. Out-of-plane 
equivalent spin-orbit field detected by subtracting signals taken at 
positive and negative saturation field. Fit function (red line) is calculated 
as the integration of the SOT-induced magnetization reorientation!
weighted by the Gaussian function that describes the spatial distribution 
of the laser.!(b) Out-of-plane Oersted field detected by addition of signals 
taken at positive and negative saturation field. The fit function for the 
Oersted field (red line) is similarly calculated as the integration of the 
local magnetization reorientation weighted by the Gaussian function that 
describes the spatial distribution of the laser. (c), (d) Line scan results for 
Py(4)/Pt(6) with quadrant detectors. 

To determine the magnitude of the FT we perform a calibration by passing an 

ac current (500 mA) only through a metallic wire (1 mm wide and 1 cm long) behind 

the sample that drives in-plane magnetization reorientation due to Ampere’s law. 

Since this current is not passing through the sample, it does not contribute to spin orbit 
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torques. This ac current generates an Oersted field of 70.700 ± 2.940 A/m. The 

distance from the sample to the wire is about 1.050 ± 0.050 mm. The magnitude of the 

FT is extracted using a linear regression algorithm by comparing the FT signal curve 

and the calibration curve shown in Figure 6.6 (a) for Py(8)/Pt(6). In this example 

fitting, the ratio between the signals corresponding to the current-induced effective 

field and the calibration field is 2.490 ± 0.070, which corresponds to a current-induced 

field of 176.080 ± 5.310 A/m. After removing the 83.800 A/m Oersted field generated 

by the current in the sample, we obtain hFT = 92.280 ± 5.310 A/m, which gives an 

effective spin Hall angle of 0.054 0.003FTθ = ± . As seen in Figure 6.6 (b), we also 

measure the change in the other in-plane magnetization component, !mx , which is 

negligibly small, as expected.  

 

Figure 6.6: Measured voltage from the lock-in amplifier as a function of the external 
magnetic field for Py(8)/Pt(6) when passing an ac current (20 mA) 
through the sample (black squares) and an ac current (500 mA) through a 
wire underneath the sample (red circles). (b) Comparison of signals in 
two longitudinal configurations !

my  (black squares) and xm (red circles). 
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To further verify the accuracy of this method, we have extracted the effective 

spin Hall angle from FT and DT measurements for permalloy thicknesses dPy from 2-

10 nm and compared the results with quadratic MOKE and polar MOKE obtained 

without quadrant detection, respectively. As seen in Figure 6.7(a) and (b) the spin Hall 

angles determined from the longitudinal and polar measurements with quadrant 

detection agree well with the angles determined from quadratic and polar MOKE 

measurements without quadrant detection, respectively. 

 

Figure 6.7: (a) Effective FT spin Hall angle measured via longitudinal with quadrant 
detection (black squares) and quadratic (red circles) MOKE vs. 
permalloy thickness dPy. (b) Effective DT spin Hall angle measured with 
polar MOKE with quadrant detection (black squares) and polar MOKE 
without quadrant detection (red circles) vs. permalloy thickness dPy. 

6.4 Summary 

We have demonstrated a convenient vector-resolved MOKE technique that can 

simultaneously measure the current-induced damping-like and field-like torques using 

normally incident light. We find quantitative agreement between the results of this 

technique and quadratic and polar MOKE measurements done without quadrant 

detection for a series of Pt/Py bilayers with different Py thicknesses. The technique 
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can be easily extended to measure spin-orbit torques in systems with perpendicular 

magnetization, as well as in systems with arbitrary magnetization direction. We 

anticipate this technique will be useful for further studies of current-induced 

magnetization reorientation in a variety of materials. 
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CONCLUSIONS 

The main concentration of this thesis is on the determination of the 

mechanisms of spin-orbit coupling based spin-orbit torques (SOTs) in heavy 

metal/ferromagnet bilayer heterostructures. An electric current generates a field-like 

spin-orbit torque (FT) and a damping-like spin-orbit torque (DT) on the 

magnetization. Based on the magneto-optic Kerr effect (MOKE), we develop a 

sensitive current-driven spin-orbit torque magnetometer to measure both FT and DT. 

The angular dependence of SOTs in heavy metal/ferromagnet/metal-oxide trilayers 

with perpendicular magnetic anisotropy is also quantitatively measured with MOKE. 

In Chapter 3, we develop a MOKE-based SOT magnetometer to obtain the 

thickness dependence of DT and FT over a wide range of FM thicknesses in CoFeB/Pt 

bilayers with in-plane magnetic anisotropy. We observe that the DT inversely scales 

with the ferromagnet thickness, and the FT has a threshold effect that appears only 

when the ferromagnetic layer is thinner than 1 nm. Through a thickness-dependence 

study with an additional copper insertion layer at the interface, we identify the 

contributions of the spin Hall effect (SHE) and the Rashba effect to SOTs and we 

conclude that the dominant mechanism for the spin-orbit coupling-driven phenomena 

in this system is the SHE. However, there is also a distinct interface contribution, 

which comes from the Rashba effect. 

In Chapter 4, we demonstrate that by using polar and quadratic MOKE with 

normal incidence light, current-driven SOTs can be detected in heavy 

Chapter 7 
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metal/ferromagnet bilayers. The results of this technique and ST-FMR measurements 

for a series of Pt/Py bilayers with different Py thicknesses agree well. 

In Chapter 5, we develop a scheme to quantify the angular dependence of 

SOTs in heavy metal/ferromagnet/metal-oxide trilayers with perpendicular magnetic 

anisotropy based on the polar MOKE with field calibration.. We show that the 

harmonic Hall technique employed in the previous studies is inaccurate in determining 

the angular dependence of SOTs, particularly in the medium polar angle region 

(! θ = 40−70! ), because the fitting of the measurement curves is very sensitive to the 

fitting parameters like perpendicular anisotropy. The field-like torque for this sample 

has a larger magnitude than the damping-like torque. Both damping-like and field-like 

torques reach a maximum when the magnetization lies in the film plane. We observe a 

strong angular dependence that is different from the previous experimental 

observations. Based on this strong dependence, we conclude that a Rashba effect at the 

same interface is the dominant mechanism for the current-driven SOTs in this system. 

Accurate measurements of the angular dependence of the SOTs are valuable to 

the study of magnetization dynamics induced by SOTs and crucial for optimizing 

spin-torque switching in STT-MRAM. Experiments as a function of layer thickness 

will be necessary to complete the study, and will require the quantification of the 

conductivity and other interfacial effects at the ultrathin region. 

In Chapter 6, simultaneous detection of SOTs by measuring all three 
magnetization components !mx , !

my  and !mz using a vector-resolved MOKE technique 

based on quadrant detection in Pt/Py bilayers over a wide range of thicknesses is 

presented. We compare our results with measurements using polar and quadratic 

MOKE without quadrant detection and find quantitative agreement between them. 
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The development of the spin-orbit torque magnetometer together with the Cu 

insertion method to isolate the interface allows quantitative determination of bulk and 

interface contributions in various systems. The angle dependence of DT and FT needs 

to be performed for further understanding of bulk and interface contributions. The 

vector-resolved MOKE technique can be easily extended to measure spin-orbit torques 

in systems with perpendicular magnetization, as well as in systems with arbitrary 

magnetization direction. We anticipate that MOKE magnetometry will be useful for 

rapid characterization of current-induced torques acting on a very wide range of 

materials. 
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SIGNAL OUTPUT CALCULATED USING MODIFIED REFLECTIVITIES 
FOR A MAGNETIC MATERIAL AND JONES MATRICES FOR OPTICAL 

ELEMENTS 

(* definition of parameters: 
θ0 is the angle between the incoming beam and the surface 
normal 
θ1 is the complex refractive in the magnetic material, 
determined by Snell's law 
x and y are in the plane of the sample, z is out of plane 
rij is the ratio of the incident j-polarized electric 
field and the reflected i-polarized electric field, i, j 
= s, p 
n0 is the index of refraction of vacuum 
n1 is the index of refraction of the magnetic material 
*) 
Clear[n0,n1,Q] 
(* define various fixed parameters *) 
n0=1; (* index of refraction of vacuum *) 
n1=n; 
(*n1=nr+ ini; (* index of refraction of magnetic material 
*) 
Q=Qr+ iQi; (* magneto-optic constant of magnetic material 
*)*) 
 
(* define magnetization *) 
u:={0,0,mz}; (* unit vector of magnetization, here not 
normalized *) 
 
(* reflection coefficients based on magnetic material 
based on the formulae in Appl. Phys. Lett. 69 (9) 1315 
(1996) *) 
Clear[θ0,θ1] 
rss[θ0_,θ1_]:=(n0 Cos[θ0]-n1 Cos[θ1])/(n0 Cos[θ0]+n1 
Cos[θ1]) 
rpp[θ0_,θ1_]:=(n1 Cos[θ0]-n0 Cos[θ1])/(n1 Cos[θ0]+n0 
Cos[θ1])-(2 i Q n1 n0 Cos[θ0] Sin[θ1] u[[1]])/(n1 

Appendix A 
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Cos[θ0]+n0 Cos[θ1]) 
rps[θ0_,θ1_]:=-((i Q n0 n1 Cos[θ0] (Sin[θ1] u[[2]]-
Cos[θ1] u[[3]]))/(Cos[θ1] (n0 Cos[θ1]+n1 Cos[θ0]) (n1 
Cos[θ1]+n0 Cos[θ0]))) 
rsp[θ0_,θ1_]:=(i Q n0 n1 Cos[θ0] (Sin[θ1] u[[2]]+Cos[θ1] 
u[[3]]))/(Cos[θ1] (n0 Cos[θ1]+n1 Cos[θ0]) (n1 Cos[θ1]+n0 
Cos[θ0])) 
 
(* Jones matrices *) 
Clear[p,s,θ,in] 
in[p_,s_]:=(1/Norm[{p,s}]){{p},{s}} (* input polarization 
*) 
rot[θ_]:={{Cos[θ], Sin[θ]},{-Sin[θ],Cos[θ]}}(* rotation 
matrix *) 
pol[θ_]:=Transpose[rot[θ]].{{1,0},{0,0}}.rot[θ] (* 
polarizer *) 
hwp[θ_]:=Transpose[rot[θ]].{{1,0},{0,-1}}.rot[θ] (* HWP 
*) 
MOKE[θ0_,θ1_]:={{rpp[θ0,θ1],rps[θ0,θ1]},{rsp[θ0,θ1],rss[θ
0,θ1]}} (* MOKE *) 
field[z_]:=ComplexExpand[Abs[z]]  (* function to 
determine electric field of component z *) 
(* 
(* relation between θ0 (incident angle) and θ1 (refracted 
angle) Snell's Law from Appl. Phys. Lett. 69 (9) (1996) 
*) 
θ1=ArcSin[n0/n1Sin[θ0]]; 
*) 
 
Print["input p = 0, s = 1, hwp.MOKE.in"] 
Clear[out,intp, ints,ϕ,ϕ2] 
p=0; s=1; (* input polarization components *) 
θ0=0; θ1=0; (* polar MOKE *) 
in[p,s] 
MOKE[θ0,θ1].in[p,s]  
out[ϕ_,θ0_,θ1_]:=hwp[ϕ].MOKE[θ0,θ1].in[p,s] ; (* output 
polarization *) 
intp[ϕ_,θ0_,θ1_]:=field[out[ϕ,θ0,θ1][[1]]]2 
ints[ϕ_,θ0_,θ1_]:=field[out[ϕ,θ0,θ1][[2]]]2 
o1=out[ϕ,θ0,θ1] 
 
Print["input p = 1, s = 0, hwp.MOKE.in"] 
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Clear[out,intp, ints] 
p=1; s=0; (* input polarization components *) 
θ0=0; θ1=0;(* polar MOKE *) 
in[p,s] 
out[ϕ_,θ0_,θ1_]:=hwp[ϕ].MOKE[θ0,θ1].in[p,s]; (* output 
polarization *) 
intp[ϕ_,θ0_,θ1_]:=field[out[ϕ,θ0,θ1][[1]]]2 
ints[ϕ_,θ0_,θ1_]:=field[out[ϕ,θ0,θ1][[2]]]2 
o2=out[ϕ,θ0,θ1] 
 
Print["Now add HWP between BS and sample to change 
polarization"] 
 
(* Add HWP between BS and sample *) 
 
Print["input p = 0, s = 1, hwp(π/2).hwp(π/2).in"] 
Clear[out,intp, ints,ϕ,ϕ2] 
p=a; s=b; (* input polarization components *) 
θ0=0; θ1=0;(* polar MOKE *) 
ϕ2=π/2; 
hwp[ϕ2] 
in[p,s] 
hwp[ϕ2].in[p,s] 
out[ϕ_,θ0_,θ1_]=hwp[ϕ2].hwp[ϕ2].in[p,s]; (* output 
polarization *) 
intp[ϕ_,θ0_,θ1_]:=field[out[ϕ,θ0,θ1][[1]]]2 
ints[ϕ_,θ0_,θ1_]:=field[out[ϕ,θ0,θ1][[2]]]2 
o2=out[ϕ,θ0,θ1] 
 
Print["input p = 0, s = 1, hwp.hwp(π/2).MOKE.hwp(π/2).in"] 
Clear[out,intp, ints,ϕ,ϕ2] 
p=0; s=1; (* input polarization components *) 
θ0=0; θ1=0; (* polar MOKE *) 
ϕ2=π/2; 
in[p,s] 
hwp[ϕ2].in[p,s] 
MOKE[θ0,θ1].hwp[ϕ2].in[p,s]  
hwp[ϕ2] 
hwp[ϕ2].MOKE[θ0,θ1].hwp[ϕ2].in[p,s]  
out1[ϕ_,θ0_,θ1_]=Simplify[hwp[ϕ].hwp[-
ϕ2].MOKE[θ0,θ1].hwp[ϕ2].in[p,s] ];(* output polarization 
*) 
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o1=out1[ϕ,θ0,θ1] 
intp1[ϕ_,θ0_,θ1_]:=field[out1[ϕ,θ0,θ1][[1]]]2 
ints1[ϕ_,θ0_,θ1_]:=field[out1[ϕ,θ0,θ1][[2]]]2 
o1=Simplify[intp1[ϕ,θ0,θ1]-ints1[ϕ,θ0,θ1]] 
 
Print["input p = 0, s = 1, hwp.hwp(π/2).MOKE.hwp(π/2).in"] 
Clear[out,intp, ints,ϕ,ϕ2] 
p=0; s=1; (* input polarization components *) 
θ0=0; θ1=0;(* polar MOKE *) 
ϕ2=π/2; 
in[p,s] 
Simplify[hwp[ϕ2].in[p,s]] 
out[ϕ_,θ0_,θ1_]=Simplify[hwp[ϕ].hwp[-
ϕ2].MOKE[θ0,θ1].hwp[ϕ2].in[p,s]]; (* output polarization 
*) 
intp[ϕ_,θ0_,θ1_]=field[out[ϕ,θ0,θ1][[1]]]2 
ints[ϕ_,θ0_,θ1_]=field[out[ϕ,θ0,θ1][[2]]]2 
Simplify[intp[ϕ,θ0,θ1]-ints[ϕ,θ0,θ1]] 
 
Print["input p = 0, s = 1, hwp.hwp(π/4).MOKE.hwp(π/4).in"] 
Clear[out,intp, ints,ϕ,ϕ2] 
p=0; s=1; (* input polarization components *) 
θ0=0; θ1=0;(* polar MOKE *) 
ϕ2=π/4; 
in[p,s] 
Simplify[hwp[ϕ2].in[p,s]] 
out[ϕ_,θ0_,θ1_]=Simplify[hwp[ϕ].hwp[-
ϕ2].MOKE[θ0,θ1].hwp[ϕ2].in[p,s]]; (* output polarization 
*) 
intp[ϕ_,θ0_,θ1_]=field[out[ϕ,θ0,θ1][[1]]]2 
ints[ϕ_,θ0_,θ1_]=field[out[ϕ,θ0,θ1][[2]]]2 
Simplify[intp[ϕ,θ0,θ1]-ints[ϕ,θ0,θ1]] 
 
Print["input p = 0, s = 1, hwp.hwp(π/8).MOKE.hwp(π/8).in"] 
Clear[out,intp, ints,ϕ,ϕ2] 
p=0; s=1; (* input polarization components *) 
θ0=0; θ1=0;(* polar MOKE *) 
ϕ2=π/8; 
in[p,s] 
Simplify[hwp[ϕ2].in[p,s]] 
out[ϕ_,θ0_,θ1_]=Simplify[hwp[ϕ].hwp[-
ϕ2].MOKE[θ0,θ1].hwp[ϕ2].in[p,s]]; (* output polarization 
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*) 
intp[ϕ_,θ0_,θ1_]=field[out[ϕ,θ0,θ1][[1]]]2 
ints[ϕ_,θ0_,θ1_]=field[out[ϕ,θ0,θ1][[2]]]2 
Simplify[intp[ϕ,θ0,θ1]-ints[ϕ,θ0,θ1]] 

 

 



 165 

CURRENT-INDUCED MAGNETIZATION REORIENTATION 

The magnetization dynamics driven by spin-orbit interaction follows the 

generalized Landau-Lifshitz-Gilbert equation. 

!
! 
d !m
dt

= −γ !m×
!
Heff +α

!m× d
!m
dt

+a !m×
!
σ +b !m×

!
σ × !m( ) !! (B.1)!

where ! 
!m  is the normalized magnetization vector, γ  is the gyromagnetic ratio, 

! 
!
Heff  is 

the total effective field including the external field ! 
!
Hex , anisotropy field ! 

!
Ha  and 

Oersted field ! 
!
hOe  generated from the current, α  is the damping coefficient,  

!
σ  is the 

spin polarization of spin current generated from charge current and is in-plane and 

orthogonal to the electric current, and !a  and !b  describe the field-like torque (FT) and 

damping-like torque (DT) induced from spin-orbit interaction, respectively. A 

schematic illustration of the magnetization reorientation is given in Figure B.1. For a 

stationary solution, the time varying term in Eq. (B.1) vanishes, leading to 
! !! −

!m×
!
Heff −a γ

!
σ( )+b γ !m×

!
σ × !m( ) =0 !! (B.2)!

Here 
! 
−a γ

!
σ( )  is the effective field of FT and 

! 
−b γ

!
σ × !m( )( )  is the effective field of 

DT due to SOC. The SOC-induced effective fields of FT and DT are much weaker 

than the applied external field. The magnetization reorientation due to the SOI can be 

considered as a perturbation to the magnetization that is aligned by the total effective 

field. It is convenient to consider the contribution of the DT term separately as a 

perturbation. Without the DT term, Eq. (B.2) has a trivial stationary solution that the 
magnetization !! 

!m0 is aligned parallel to the total effective field 
! 
!
Heff −a γ

!
σ . When the 
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DT term is considered, one can write the magnetization reorientation as !! 
!m= !m0 +Δ

!m , 

where!! 
!m .Δ !m→0  under the first order approximation. There will also be a change to 

the total effective field due to the anisotropy and demagnetizing field 

!! Δ
!
Ha = ΔHax ,ΔHay ,ΔHaz{ } . This leads to 

!! −
!m0 +Δ

!m( )× !Heff +Δ
!
Ha −a γ

!
σ( )+b γ !m0 +Δ

!m( )× !σ × !m0 +Δ
!m( )( )⎡

⎣
⎤
⎦ =0 !(B.3)!

!
!! 

− !m0 +Δ
!m( )× !Heff −a γ

!
σ( )⎡

⎣
⎤
⎦−

!m0 +Δ
!m( )× Δ !Ha

⎡⎣ ⎤⎦

+b γ !m0 +Δ
!m( )× !σ × !m0 +Δ

!m( )( )⎡
⎣

⎤
⎦ =0.

! (B.4)!

 

Figure B.1: Schematic of the magnetization orientation in a stationary state under an 
external magnetic field ! 

!
Hex , anisotropy field ! 

!
Ha , demagnetizing field 

! 
!
Hd , Oersted field ! 

!
hOe  and the effective fields of FT 

! 
−a γ

!
σ( )and DT 

! 
−b γ

!
σ × !m( )( ) . 

We can change the coordinates by rotating by an angle φ  such that !! 
!m0  and 

! 
!
Heff −a γ

!
σ  are in the !+z  direction as seen in Figure B.1. In this case, since 

!! 
!m0 "

!
Heff −a γ

!
σ( ) , so !! −

!m0 ×
!
Heff −a γ

!
σ( )⎡

⎣
⎤
⎦ =0 . Then Eq. (B.4) becomes 
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!

!! 

−Δ !m×
!
Heff − a

γ
!
σ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
− !m0 × Δ

!
Ha( )− Δ !m× Δ

!
Ha( )

+ b
γ
!m0 ×

!
σ × !m0( )( )+ b

γ
Δ !m×

!
σ × !m0( )( )

+ b
γ
!m0 ×

!
σ ×Δ !m( )( )+ b

γ
Δ !m×

!
σ ×Δ !m( )( ) =0.

! (B.5)!

Eq. (B.5) can be reconstructed by neglecting second order and higher order terms as 
! !! −Δ

!m×
!
Heff −a γ

!
σ( )− !m0 × Δ

!
Ha +b γ !m0 ×

!
σ × !m0( ) =0 .! (B.6)!

! 
!
σ = −1 0 0( )  is rotated by an angle φ  and becomes 

! 
!
σ = −cosφ 0 sinφ( )After defining 

! 
H =
!
Heff −a γ

!
σ , we can expand Eq. (B.6) 

into 

!

!! 

− Δmx Δmy Δmz( )× !H − !m0 × ΔHax ΔHay ΔHaz( )
+b γ !m0 × −cosφ 0 sinφ( )× !m0( ) =0. ! (B.7)!

The x component of this equation gives  

!
!!
HΔmy − ΔHay = b

γ
cosφ !! (B.8)!

and the y component is 
! !!−HΔmx +ΔHax =0 .! (B.9)!

Eq. (B.9) is independent of the torque term, which has a trivial solution of !!Δmx =0 . 

Considering a perpendicular surface anisotropy and demagnetizing field in the y-

direction, 
!
ΔHay  can be written as 

!!
ΔHay =

2K⊥

Ms

−Ms

⎛

⎝⎜
⎞

⎠⎟
Δmy , where !K⊥  is the effective 

surface anisotropy energy. Therefore, the solution to the Eq. (B.8) is 

!
!!
Δmy =

b γ cosφ
H +Ms −2K⊥ Ms

.! (B.10)!
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This solution can be understood in a simple picture, in which the torque term can be 

viewed as an effective field in the direction of ! 
!
σ × !m , which is orthogonal to the film 

plane. Driven by this field, magnetization will tilt out of plane. 

The derivation from Eq. (B.2) to Eq. (B.10) is done by neglecting the second 

order and higher order terms. Here we take more precaution in the derivation by 

keeping the second order term and neglecting the third order and higher order terms. 

Therefore, Eq. (B.6) can be rewritten as 

!

!! 

−Δ !m×
!
H( )− !m0 × Δ

!
Ha( )− Δ !m× Δ

!
Ha( )

+ b
γ
!m0 ×

!
σ × !m0( )( )

+ b
γ

Δ !m×
!
σ × !m0( )( )

+ b
γ
!m0 ×

!
σ ×Δ !m( )( ) =0.

!! (B.11)!

If we write out ! Δ
!m  and ! Δ

!
Ha , we get 

!

!! 

− Δmx Δmy Δmz( )× !H⎡
⎣⎢

⎤
⎦⎥
− !m0 × ΔHax ΔHay ΔHaz( )⎛
⎝

⎞
⎠

− Δmx Δmy Δmz( )× ΔHax ΔHay ΔHaz( )⎛
⎝

⎞
⎠

+ b
γ
!m0 × −cosφ 0 sinφ( )× !m0( )⎛

⎝
⎞
⎠

+ b
γ

Δmx Δmy Δmz( )× −cosφ 0 sinφ( )× !m0( )⎛
⎝

⎞
⎠

+ b
γ
!m0 × −cosφ 0 sinφ( )× Δmx Δmy Δmz( )⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
=0.

!! (B.12)!

After doing cross product multiplications and gathering x, y and z terms, we get 

!

!!

HΔmy − ΔHay = −
b
γ
cosφ

ΔHax − ΔmxH = − b
γ
Δmy sinφ

ΔHayΔmx − ΔHaxΔmy =
b
γ
Δmx cosφ

!! (B.13)!
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The first and third equations in Eq. (B.13) lead to similar result as shown in equation 
(B.10). The in-plane magnetization reorientation !Δmx  can be derived from the second 

equation in Eq. (B.13): 

!
!!
Δmx =

−b γ
2Kax Ms −H

sinφΔmy ,! (B.14)!

where !!2Kax Ms = ΔHax Δmx  in a uniaxial anisotropy system. It can be understood 

from Eq. (B.14) that in most of cases when!! b γ ≪ H −2Kax Ms  then 

! 
Δmx ≪Δmy When !! 2Kax Ms !H  is satisfied, !Δmx  may be larger than 

!
Δmy , indicating 

that the DT can also induce a sizable magnetization in-plane reorientation in this 

special situation. However, we note that the major difference between the FT induced 

!Δmx !and the DT induced !Δmx !as described by Eq. (B.14) is that the latter is 

quadratically proportional to the applied current. Therefore, by taking the second order 

transverse voltage in the experimental measurement, the contribution of DT to the in-

plane magnetization reorientation is removed. Moreover, we align the easy axis of the 
sample along the external field direction to minimize the !!2Kax Ms !term in Eq. (B.14). 

We also align the current along the external field direction and carry out the analysis 

in the saturated regime in order to minimize !sinφ  in Eq. (B.14). Based on the 

discussion above, we conclude that in our detection method, the first-order 

contribution of the DT to the in-plane magnetization is to tilt the magnetization out of 

the plane. Its effect on the in-plane magnetization reorientation is negligible. The in-

plane magnetization reorientation that is linearly dependant on the applied current is 

attributed to the current-induced FT due to the SOI and the Oersted field. 

The derivation above is based on the assumption that the current induced spin- 

orbit effective torque is small compared with the torque produced by the external 

magnetic field. Here we show the validity of this assumption. In a sample of 
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Ni80Fe20(2)/Pt(5), when applying a current of 50 mA through the 1 mm wide Hall 

bar, the current density through Pt is no more than !10
10 A/m2 . Assuming �the spin Hall 

angle of Pt is about 0.07, the DT term can be calculated as 

!! 
b
γ
= h
4πe

jcσ SH

µ0Msd
!115 A/m . This is equivalent to a perpendicular magnetic field with 

magnitude of 115 A/m applied to the film. The same current generates an Oersted field 

of 25 A/m. In the extraction of the current-induced effective field of FT, we consider 

an external magnetic field region between 2.4 kA/m and 12 kA/m, where the 

magnetization is well saturated. The out-of-plane magnetization reorientation angle θ  

can then be calculated to be: 

!! 

b
γ Hex +Meff( ) !0.015

"  where !!µ0Meff =0.55 T  is 

determined by the anomalous Hall effect measurement. The in-plane magnetization 

reorientation angle is estimated to be 
!! 
φ =

hI
Hex

=0.6!  with the current induced effective 

field !!hI =25 A/m  and 
!! 
φ =

hI
Hex

=1.7!with !!hI =72.8 A/m !under a !2.4 kA/m  external 

magnetic field in the z- direction. Therefore, it is reasonable to treat the current-

induced magnetization reorientation as a small perturbation. 
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USEFUL TIPS FOR MOKE MEASUREMENT SETUP 

When designing a MOKE setup there are several points to be careful about. 

First would be the polarization state of the light. One needs to make sure that light on 

the sample is pure in the desired polarization. We achieve this by placing a half wave-

plate and a quarter wave-plate in the optical path before the sample. The second 

important thing is to know where the beam hits on the sample. We use white light 

collimated that with the laser to obtain an optical image of the sample and the laser 

beam. That way by moving the sample with a 2D motion stage, we know where the 

beam hits the sample. Uniformity of the magnetic field is another important aspect. 

When placing the sample in the magnetic field, the position of the sample with respect 

to the magnet needs to be aligned carefully. Since the objective used and magnet is 

very close in the setup, a nonmagnetic objective is preferred. Optical alignment plays 

an important role in getting a good signal-to-noise ratio in MOKE measurements, 

especially in vector-resolved MOKE measurements. Light needs to pass in the middle 

of the optical elements and needs to be focused on the sample and collimated. For 

quadrant detection, mechanical stability of the quadrant detectors is also very 

important. 
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