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ABSTRACT

This research is a numerical investigation of second-mode stability behavior

within hypersonic boundary layers. Two-dimensional, hypersonic boundary layer sta-

bility and transition is dominated by second-mode acoustic disturbances at freestream

Mach numbers of 4 and higher as shown by Mack. However, the physical mechanisms

and amplitude based prediction of the second-mode is not fully understood which are

important for sustained and controlled hypersonic flight to become feasible. In this

research, the modeled hypersonic flow conditions corresponded to a flared cone tested

in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University, and 7 degree half

angle straight cones with various nose radii at the new AFOSR-Notre Dame Large

Mach 6 Quiet Tunnel. The methodology employed used a computational fluid dynam-

ics (CFD) solver US3D to generate a laminar, steady state solution (basic state). Then,

the basic state is fed into stability solvers. Starting with linear stability theory (LST)

which is a generalized eigenvalue solver, which also serves as the initial condition for

linear and nonlinear parabolized stability equations (PSE) to calculate the disturbance

behavior. These stability results are then compared to experimental data and direct

numerical simulations (DNS).

Two recent contributions by Kuehl (2017 and 2018) were made regarding second-

mode disturbances. The first was the reformulation of the nonlinear parabolized sta-

bility equations (NPSE) to quantify the finite bandwidth nature (wavepackets) of the

second-mode disturbances. The second was the proposed thermoacoustic interpretation

which describes the fundamental physics of second-modes as trapped acoustic waves

within an acoustic impedance well. These contributions raised new questions regarding

the applications and implications of second-mode behavior. These questions were inves-

tigated in this research for improved amplitude based modeling of second-mode physics.
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Specifically, the following objectives were achieved: wavepacket applications and im-

plications, comparisons of PSE results with experimental data and direct numerical

simulation (DNS), applications and implications of the thermoacoustic interpretation,

and exploiting this to understand and develop novel second-mode control methods.

Utilizing and improving the wavepacket formulation within NPSE led to second-

mode amplitudes between 20% to 40% on the Purdue flared cone. This is in good agree-

ment with Purdue experimental results of ∼30%. Another important implication was

the onset of spectral broadening which identifies the region where nonlinearities begin

to assert themselves. This is where the amplitude ratio of the primary disturbance di-

vided by the first harmonic begin to non-negligibly decrease when moving downstream.

As such, the wavepacket NPSE showed the onset of spectral broadening was identified

and produced good agreement to experimental results of amplitude ratio. Also, the

wavepacket NPSE had good agreement with DNS results for the primary mode and

the first harmonic. Therefore, the wavepacket NPSE is capable of improved numerical

modeling and amplitude prediction of the second-mode disturbance.

Regarding the thermoacoustic interpretation, it suggests that the second-mode

disturbance growth or suppression is tied directly to the strength of the basic state

density gradient. The interpretation was applied to identify the physical mechanism

for the downstream movement of the transition front caused by increasing the nose

radius of a cone. This was an important first step in understanding the blunt body

paradox, where once a critical nose radius (bluntness) is reached, transition jumps

forward. It was shown that if entropy disrupts the proper formation of the acoustic

impedance well by diluting the density gradient, the well becomes weakened, and the

second-mode disturbance is no longer able to resonate, thereby suppressing its growth.

Conversely, a well-defined density gradient allows acoustic disturbances to resonate

within the boundary layer inducing second-mode growth. Subsequently, a criterion

was developed based on Lees and Lin generalized inflection point criterion to quantify

when the density gradient is strong enough for second-modes to be present.

Finally, the thermoacoustic interpretation aided in describing the behavior of

xxv



second-mode amplification and damping when cooling and heating the wall of the

Purdue flared cone. It was shown that cooling and heating the wall effects the acoustic

impedance well length scale, thereby changing the resonant frequency of the second-

mode. This led to the concept of upstream cooling and downstream heating which

showed potential max N-factor damping of three compared to a non-cooled/heated

wall.

xxvi



Chapter 1

INTRODUCTION

1.1 Overview

1.1.1 Motivation

Controlled and sustained hypersonic flight remains an open problem and a U.S.

national priority. Several gaps in fundamental knowledge exist which must be addressed

before sustained flight operations can be achieved that analog the commercial aviation

industry or applications related to civil defense [1, 2]. One important, open question is

a fundamental understanding of the physical mechanisms responsible for the transition

from a laminar to a turbulent boundary layer (the “transition” problem) [2, 3]. At

high Mach numbers (ie. 10 < M < 50; relevant to atmospheric re-entry), these gaps

in knowledge take the form of aerothermodynamic heating, chemical non-equilibrium,

ablation, and more [1, 3]. Even at lower hypersonic Mach numbers (3 < M < 10),

where the compressible Navier-Stokes equations and ideal assumptions hold, these

gaps in knowledge persist [1, 3]. It is this lower hypersonic Mach number range which

is the focus of this research.

Beyond the scientific implications, a commonly used engineering example for the

benefit of sustained hypersonic flight is a non-stop flight from New York to Los Angeles.

On a typical, transonic, commercial aircraft, this flight takes about 6 hours. Whereas,

a hypersonic aircraft at Mach 5 would take only about 1 hour to make the same trip.

Clearly, such hypersonic transit would yield significant logistical benefits to commercial

air travel and cargo transportation. In addition to commercial applications, military

and civil defense applications are numerous. Another application is atmospheric re-

entry. During re-entry into the Earth’s atmosphere, or entry into another planetary
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atmosphere, a vehicle traverses through a wide range of hypersonic conditions (from

Mach ≈ 3 to 50). As such, these vehicles’ flight dynamics traverse many physical and

chemical phenomena [1, 3].

The effect of transition on aerothermal heating of a vehicle is important. Tur-

bulent boundary layers experience about 5-10 times larger heating than equivalent

laminar boundary layer [2, 3, 4]. Thus, delaying the transition from laminar to tur-

bulent flow over a vehicle results in significant reduction in thermal load. This allows

for a more efficient vehicle design by reducing the amount of heat shielding required.

The effect of transition on flight trajectory accuracy is slightly more subtle. Consider

a laminar boundary layer over a streamlined vehicle. Laminar boundary layers result

in less skin-friction drag than turbulent boundary layers. If the vehicle experiences

asymmetric transition (ie. one side of the vehicle is laminar and the other side is tur-

bulent), an asymmetric drag will result. Due to their streamlined nature, hypersonic

vehicles have limited control surface functionality. Such asymmetric drag can over-

whelm vehicle control capability, potentially resulting in loss of vehicle flight stability

and catastrophic vehicle failure [2, 5].

1.1.2 Document Organization

The next few sections describe the goal, objectives, and methodology of this re-

search. Chapter 2 provides the background and literature review of hypersonic bound-

ary layer stability as applied to second-mode disturbance analysis on the Mach 6 Pur-

due flared cone. Chapter 3 covers the hypersonic computational fluid dynamics (CFD)

research methodology for numerical stability analysis. Chapters 4 through 8 are re-

sults based on published conference papers and journal articles. Specifically, chapters

4, 5, and 6 address the first 3 objectives of this research on wavepacket analysis, and

chapters 7 and 8 address the remaining 2 objectives on thermoacoustic interpretation

and control. Chapter 9 presents a summary of the completed research objectives and

conclusions of this research. Finally, chapter 10 includes future work pertaining to the
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research objectives in this dissertation. Note, the appendix provides a brief overview

and reference of hypersonic flows.

1.2 Research Goal

Laminar to turbulent hypersonic boundary layer stability and transition (BLST)

is a rich topic with a variety of interesting open questions due to its inherent nonlinear

nature. Publications encompassing hypersonic flow and BLST phenomena with respect

to the theoretical, experimental, and numerical determinations were reviewed in this

research. It was Mack who first showed that first-mode (1 < M < 4) and second-mode

(4 < M) instabilities are the most amplified disturbances within two dimensional (or

axisymmetric) boundary layers at supersonic and hypersonic velocities respectively [6].

The ultimate goal of this research is to better understand the physical mechanisms,

evolution, and nonlinear (amplitude based) modeling/prediction of the “second-mode”

instability. Specifically, this research aims to numerically show how second-mode in-

stabilities within the boundary layer grow, decay, and interact linearly and nonlinearly

as a precursor to transition. Such understanding is necessary for the development of

transition control schemes and thereby paving the way towards sustained hypersonic

flight.

1.3 Research Objectives

1.3.1 Wavepackets

In 2017, Kuehl reformulated the nonlinear parabolized stability equations (NPSE)

to consider finite bandwidth disturbances (ie. wavepackets) and showed that such a for-

mulation improved the numerical representation of nonlinear energy transfer between

disturbances in the boundary layer [7]. This new formulation created a series of new

questions. What wavepacket bandwidths should be used? How many primary distur-

bances should be employed? In general, what are the implications of using wavepackets

to model disturbance physics on the Purdue flared cone at Purdue Boeing/AFOSR

Mach-6 Quiet Tunnel conditions? The specific research objectives for wavepackets are:
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1. Research applications and implications of modeling boundary layer disturbances

as wavepackets.

2. Conduct a comparison between the PSE wavepacket formulation and experimen-

tal data.

3. Conduct a comparison between the PSE wavepacket formulation and DNS com-

putations.

1.3.2 Thermoacoustic Resonance

Recently, a new theory describing the fundamental physics of second-modes

was proposed (Kuehl 2018) [8]. It hypothesizes that second-modes behave as trapped

acoustic waves which are resonating in an acoustic impedance well and that the funda-

mental mechanism for disturbance growth is thermoacoustic Reynolds stress. However,

the proper implications and applications of the theory remained. For instance, the the-

ory described that a thermoacoustic impedance well must be present for second-modes

to grow, and laid the groundwork for determining the strength of the well necessary to

support second-mode growth, via the generalized inflection point criterion. However,

it did not explicitly describe how to apply this criterion, particularly in the case of

competing density and velocity gradients, nor how to interpret when the second-mode

is present in such a situation. An example of when such details are particularly impor-

tant, is the case of blunt bodies. Specifically the blunt body paradox: where transition

moves downstream with increasing nose cone radii, then suddenly jumps upstream for

a critical (sufficiently large) nose radius or bluntness. Below are the two objectives

within this sub-topic, bringing the total to five objectives.

4. Research applications and implications of thermoacoustic interpretation of second-

mode instability.

5. Exploit this new interpretation to develop novel control methods, and a better

understanding of existing control schemes.
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1.4 Research Methodology Overview

Although experimental investigation in the form of flight and wind-tunnel test-

ing are the standards for discovering the physical behavior of hypersonic phenomena

and qualifying vehicle designs, these methods are not readily available for everyone. As

such, computational fluid dynamics (CFD) and numerical analysis were the primary

methods employed to conduct this research. Then, these numerical results were com-

pared with experimental and direct numerical simulations (DNS) data kindly provided

by our collaborators, and previously established theoretical findings to validate the

results. We are calling this approach the hypersonic CFD stability analysis process.

The dynamics quantified encompass the linear and weakly-to-moderate non-

linear dynamics flow regime of hypersonic boundary layer disturbances leading up to

laminar to turbulent transition. Linear stability theory (LST) and linear/nonlinear

parabolized stability equations (PSE) results were compared with direct numerical

simulations (DNS) and quiet hypersonic wind tunnel experimental measurements. In

general, this first required the generation of a steady state CFD solution (basic state)

of a hypersonic flow field. Then, the disturbance equation was solved on this basic state

by performing stability analysis. Two forms of linear stability theory were utilized: 1.

A traditional eigenvalue problem solver (standard LST); 2. A linear parabolized sta-

bility equations (LPSE) solver. In addition, a nonlinear parabolized stability equations

(NPSE) solver was employed to study the nonlinear behavior of disturbance evolution.

The particular solver used, called JoKHeR [9], was originally developed by Dr. Kuehl

and Dr. Helen Reed as part of the National Center for Hypersonic Laminar-Turbulent

Transition.

The primary geometries considered were the Purdue flared cone and the Notre

Dame cones at Mach 6. The Purdue flared cone was specifically designed with a 3 meter

radius flare to isolate second-mode dynamics, and thus exhibits second-mode driving

transition at the Purdue Quiet Tunnel conditions [10, 11]. Also, there is a large amount

of high-quality benchmark data (experimental and numerical) available for comparison.

This data is extremely valuable for physics-driven analysis [11]. The other geometry
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considered are the Notre Dame cones which are 7 degree half angle straight cones to

be fabricated and tested in the new, AFOSR-Notre Dame Large Mach 6 Quiet Tunnel.
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Chapter 2

BACKGROUND

2.1 Hypersonic Flow Background

We begin with a brief review of boundary layers in general. Next, some of the

particulars of hypersonic boundary layers are mentioned. Then, moving onto stability

and transition of boundary layers. Finally, the literature review which encompasses

hypersonic BLST theoretical, experimental, and computational is reviewed with respect

to the Mach 6 Purdue flared cone. An overview of compressible, supersonic, and

hypersonic flow aspects is not covered here, but is included in appendix A.

2.1.1 Boundary Layers

2.1.1.1 Overview

Prandtl stated that a moving fluid can be broken up into an inviscid flow region,

and a thin viscous region called a boundary layer [12, 13]. The implication of the

boundary layer is that it allows a divide and conquer approach to be taken which

greatly simplifies solving the governing equations by isolating where change to the flow

occurs with regards to viscosity, energy transfer, and chemical reactions. The viscous

boundary layer typically considered in fluid mechanics is with respect to the velocity

gradient. It will be hard to get past review if we don’t address the small scales. Starting

from the wall, where the no-slip condition imposes zero velocity of the fluid velocity in

the x-direction denoted u = u(y) where u is a function of y. The u velocity increases

until u = U∞ which is the velocity in the inviscid flow region or freestream velocity.

Next, in heat transfer a thermal boundary layer is considered, which in high-speed

flows can also become important as the temperature gets high. Lastly, in chemically
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reacting flows are occurring such as at high Mach numbers, a mass diffusion boundary

layer may also be considered.

2.1.1.2 Hypersonic Boundary Layers

There are many special phenomena which are unique to hypersonic boundary

layers. Shock boundary layer interactions are the result of secondary shocks forming

off control surfaces or at very high Mach numbers, when shock can become very close

to the body [1, 3]. Of course, acoustic instabilities exist in hypersonic boundary layers

as mentioned in chapter 1. These acoustic instabilities can be thought of as acoustic

waves propagating within the boundary layer [14]. This brings forth the idea of a

relative sonic-line which would be the height above the wall where the fluid reaches

a velocity of Mach 1 [14]. The relative sonic-line corresponds to a turning point in

the inviscid governing equations of motion. Between the wall and the turning point,

the flow exhibits oscillating solutions, while beyond the turning point the solutions are

exponentially decaying [14]. Depending on the situation, the relative sonic line may

be within, equal to or greater than the boundary layer height. The location of the

turning point affects the acoustic disturbance frequencies as the distance from the wall

will change the rate of oscillation [14]. The thermoacoustic interpretation provides

a more physical explanation for this behavior, which will be discussed in section 2.3

[8]. Particularly important for blunt nosed geometries, entropy generated by curved

shocks can impinge on the vehicle wall creating an entropy layer that interacts with

the boundary layer [3]. The entropy layer adversely affects the acoustic impedance

well, thereby altering the dynamics of acoustic waves in high-speed boundary layers

[8]. A sufficiently large nose radius can even change the fundamental type of transition

observed, the so-called “blunt body paradox” [15].

2.2 Stability and Transition

To consider the stability and transition from laminar to turbulent fluid flow,

one can take a step back, and recall Reynolds pipe flow experiment in 1883. Reynolds
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observed that the flow would transition from laminar to turbulent when (vavgD)/ν ≈
3000, where v = velocity, D = pipe diameter, and ν = kinematic viscosity. This criteria

would later be called the critical Reynolds number (Recr), by Orr and Sommerfeld, who

derived the stability equations for small disturbances in parallel flows. The general

solution form of the Orr-Sommerfeld equation is: v′ = v(y)ei(αx+βz−ωt), where x,y,z

are spatial coordinates, t is time, α and β are the wavenumbers, and ω is the angular

frequency. Later, Tollmien solved the Orr-Sommerfeld equation for a Blasius boundary

layer which defined Recr for the Blasius case. Then, Schlichting calculated the growth

rates, and showed they’re quite small which suggested the importance of viscosity to

boundary layer instabilities [16, 17]. Next, Squire showed that, for modal growth, the

3D disturbance problem can be reduced to that of an equivalent 2D problem at lower

Reynolds numbers [18]. As such, this split the problem into two parts for the onset

of instability, a laminar stability problem associated with 2D waves, and a turbulent

fluctuation stability problem associated with 3D waves. Subsequently, this led to linear

and nonlinear stability analysis, which wasn’t experimentally verified until Schubauer

and Skramstad found these 2D waves, which later were called Tollmien-Schlichting

(TS) waves, and Klebanoff et al., who showed that as TS waves grow in amplitude,

they begin to exhibit 3D or spanwise behavior [16]. As disturbance amplitude increases,

and after the spanwise (3D) wave form develops, Lambda (Λ) vortices form, which in

turn breakdown into turbulent spots. These turbulent spots are locations of isolated

turbulence pockets. These spots may re-laminarize, or continue to grow in size and

number. When the number of spots grow large enough to overlap and coalesce, the

boundary layer becomes fully turbulent. Figure 2.1 below illustrates this process, along

with showing the locations of Recr and Retr where transition/breakdown begins [12].
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Figure 2.1: Laminar to turbulent boundary layer transition diagram [12].

2.3 Literature Review

2.3.1 High-Speed Flow Transition Theory

The stability and transition scenario described in the section 2.3 provides a good

theoretical explanation for the transition phenomena based on low speed flows experi-

ence. At higher-speed, this “modal stability theory” scenario is commonly incorporated

today. The modal growth scenario for hypersonic flows, starts with small disturbances,

in the form of acoustic waves, surface roughness, temperature perturbations, and/or

pressure perturbations, that enter the boundary layer [15]. This process by which such

disturbances are mapped into the boundary layer is called receptivity. Once introduced

into the boundary layer, these small amplitude disturbances grow linearly. As growth

continues, the disturbances undergo nonlinear interactions including: harmonic gener-

ation, nonlinear modulation, saturation, and secondary instabilities, which eventually

breakdown into turbulent spots. Lastly, the spots coalesce into fully turbulent flow

[12, 15, 7]. Note that from experimental data and numerical calculations, it will be
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shown these disturbances are often identified as wavepackets and not pure harmonics.

This transition scenario is illustrated in path A of Figure 2.2 below by Reshotko [15].

This figure illustrates an important point about the transition problem: there are mul-

tiple paths/processes by which a boundary layer may transition to turbulence. The

modal growth pathway is just one of them, though arguably the most prevalent. Also,

interactions among these paths are not fully understood. Active research areas, such

as transient growth, rely on the non-orthogonality of disturbance modes which opens

the possibility for interactions between paths [15].

2.3.1.1 Instability Mechanisms

In this section, various types of instability mechanics will be reviewed to give

the reader an overview of some of the common instability mechanisms in a hypersonic

flow. The two most commonly studied instabilities in high speed flow are the first and

second Mack modes [6, 19]. These instabilities exist for two dimensional flows, but

may exhibit three dimensional structure. Generically, the form of the disturbances can

be represented by a shape function (φ) and a wave part, where (n,k) correspond to the

type of mode (disturbance) considered.

φ′ = φ(y)ei(αx+kβz−nωt) (2.1)

φ′ = φ(y)ei(αx−nωt) | β = 0 (2.2)

φ′ = φ(y)ei(αx+kβz) | n = 0 (2.3)

φ′ = φ(y)ei(αx) | β = 0, n = 0 (2.4)

Representations 2.1 through 2.4 are variations of the wave form from section

2.3. Representation 2.1 corresponds to a 3D oblique mode instability. The disturbance

is oblique in that it travels in an oblique angle relative to the flow direction. This

models a first-mode instability, which is believed to be the high-speed extension of the

viscous T-S wave [6]. At low speeds the T-S wave is 2D, but at high-speeds the wave

become oblique. Representation 2.2 with β = 0, corresponds to a 2D instability mode.

11



Figure 2.2: Modal stability theory, redrawn from Reshotko [15].

There is no more z-component to the wave, so it traverses only along the x direction.

This models a second-mode instability, which is believed to be an inviscid, acoustic

disturbance that dominates in hypersonic transition at Mach numbers greater than 4

[6]. Representation 2.3, corresponds to oblique steady disturbances which physically

manifest as vortices. These vortical modes are used to model crossflow or Gortler

12



instability [20, 21]. The flared cone is great for isolating the second-mode, but the

concave geometry induces such Gortler modes [22]. These are counter rotating insta-

bilities which are quite sensitive to surface roughnesses [22]. The last representation

(2.4) corresponds to a steady streamwise-only growing disturbance. Physically, this

models nonlinear modification to the basic flow states and is referred to as the mean

flow distortion (MFD) [23]. The MFD is the mechanism by which the perturbed flow

feeds back onto the mean flow [22, 24]. Figure 2.3 below depicts how energy flows

between the various boundary layer disturbances and mean flow.

Figure 2.3: Energy flow chart including: energy saturation, primary feeds into har-
monics, which feedback via mean flow distortion through nonlinear de-
tuning [25].

As mentioned earlier, in supersonic and low hypersonic flows (1 < M < 4) the

viscous first-mode dominates transition, whereas when M > 4 the inviscid second-mode

is the prevalent instability at work [6, 19]. Further, there are interesting differences

between first and second mode behaviors. One important difference occurs when heat-

ing the wall beneath a first-mode amplifies it, while cooling dampens it. Whereas, a

second-mode behaves in the opposite manner, heating dampens it and cooling amplifies
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it [19]. This behavior for second-modes is exploited as a novel control mechanism, and

discussed in chapter 8.

Additionally, nonlinear interactions can occur resulting in different stability and

transition mechanisms than with second-modes alone. For instance, a (1,0) mode

interacts with a (0,1) mode producing a (1,1) oblique mode [26]. Another interaction

occurs when first and second modes can interact roughly in the range of Mach 4 through

Mach 5. Instead of the normal case where only one mode dominates, both modes may

be prevalent causing a different type of instability growth [6, 19].

2.3.1.2 Thermoacoustic Interpretation of Second-Mode Waves

Up to this point, various instabilities have been mentioned, but not how they

propagate, or where their energy comes from. A recent contribution to second-mode

instability theory, the thermoacoutic interpretation was provided by Kuehl (2018) [8].

The theory posits that second-modes behave as standing waves which are resonant in

a thermoacoustic impedance well formed between the wall and the maximum density

gradient in the boundary layer. Figure 2.4 depicts phases of the second-mode oscillation

within the impedance well by plotting the: velocity variation, pressure variation, and

acoustic impedance in the wall normal direction [8].

It is seen that the second-mode behaves as a quarter-wavelength standing wave which

oscillates between the wall and the maximum density gradient. The maximum den-

sity gradient is approximately at the same location as the sonic line and turning point

mentioned above. This wave form is then advected downstream as it oscillates within

the well [8]. Outside the impedance well (relative sonic line, turning point) the oscil-

latory motion of the wave changes to exponential decay [8]. The impedance well size

is related to the boundary layer height, although as the former is primarily thermal

and the latter is primarily inertial, they are not necessarily the same height, which

was shown by Koican, Hofferth, Saric, Oliviero, Perez, Kuehl, and Reed [27, 28]. Fur-

ther, Kuehl showed that second-mode resonance is driven by thermoacoustic Reynolds

stress. That is, second-mode waves derive their energy from the base flow through a
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Figure 2.4: Second-mode oscillation phases in the wall normal vs velocity variation
(dashed line), pressure variation (solid line), and acoustic impedance
(dotted line) [8].

combination thermodynamic work and the divergence of acoustic power [8], which is

manifest as thermoacoustic Reynolds stress in the inviscid Navier-Stokes equations and

the acoustic energy equation:

Dρ

Dt
= −ρ∇ · u (2.5)

ρ
Du

Dt
= −∇p (2.6)

ρ
DT

Dt
− 1

cp

DP

Dt
= 0 (2.7)

D 〈e〉
Dt

−
[〈

d

dy
(ρ̄T ′v′)

〉
+

〈
d

dy
(T̄ ρ′v′)

〉]
= 0 (2.8)

〈e〉 =
1

2
ρe
〈
u′2
〉

+
1

2ρea2

〈
p′2
〉

(2.9)

Equations 2.5-2.7 combine to produce the cycle-averaged, 1D thermoacoustic energy
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Figure 2.5: Wall normal y/δbl vs divergence of acoustic impedance plot [8].

equations (2.8), where energy is defined in 2.9. If the thermoacoustic Reynolds stress

terms are less than 0, then the disturbances will be amplified in that region [8]. LST

was computed, and shows that the unstable 285 kHz disturbance was amplified and

had a negative Reynolds stress [8]. Whereas the neutrally-stable disturbances, 235 and

345 kHz, have diminished Reyonlds stress (refer to figure 2.5 where each plot from left

to right is 235 kHz, 285 kHz, and 345 kHz) [8]. This represents the driving energy

source which sustains second-mode growth. Thus second-mode waves behave as forced

thermoacoustic resonators causing the fluid parcels to oscillate at a specific frequency

within the impedance well [8]. Additionally, fluid parcels get a net increase in internal

energy from pressure work during each oscillation [8], which appears to be a means of
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energy redistribution within the boundary layer. It is worth mentioning that a complete

energy closure, accounting for viscous dissipation, has yet to be conducted [8]. The

implications and applications of this new theory are addressed in this dissertation.

2.3.1.3 The Blunt Body Paradox

One of the many interesting open questions concerning hypersonic boundary

layer transition is the so-called “blunt body paradox.” That is, in second-mode dom-

inated transitional boundary layers (such as blunt straight cones), the laminar-to-

turbulent transition is delayed with increasing nose bluntness. However, there exists

a critical nose bluntness at which the transition front will jump forward (upstream).

The cause of this “upstream jump” is unknown and is referred to as the “blunt body

paradox” [29]. Much effort has focused on resolution of this paradox, with the bulk of

the work revolving around the so-called transient growth mechanisms, i.e. non-modal

instability [30, 31].

Reshotko and Tumin (2000) laid much of the theoretical groundwork for non-

modal stability, transient growth as a potential mechanism for the blunt body paradox

[29]. At it most fundamental level, transient growth results from the non-orthogonal

nature of boundary layer disturbances. For example, T-S waves and Squire modes

can exchange energy resulting in algebraic growth, before eventual exponential decay.

Transient growth is particularly sensitive to surface roughness, which appears to be

the primary source of receptivity in many instances [29]. Particularly interesting is

that the authors state that transition in this case usually occur in the subsonic region

behind the bow shock where stable T-S waves with a favorable pressure gradient have

been found [29].

While these dynamics have been well documented both numerically and ex-

perimentally (Marineau et al. 2014, 2015) the underlying physical mechanisms remain

elusive (for both transition delay and upstream jump) [32, 33]. The computational

study of Tufts and Kimmel (2017) verified the hypothesis of Juliano et al. (2015) that

the delay in transition (downstream movement of the transition front) is associated
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with the suppression of second-mode growth and not associated with larger transi-

tional N-factors [34, 35]. Tufts and Kimmel also documented the relationship between

the entropy layer swallowing length (Stetson 1983) and second-mode growth suppres-

sion [36]. Meaning, second-mode growth was found to be suppressed within the entropy

layer (upstream of the entropy layer swallowing length) while outside of the entropy

layer (downstream of entropy layer swallowing length) second-mode growth was found

to be unaffected by the bluntness. Thus, it seems obvious that second-mode growth

suppression is caused by entropy layer modifications to the boundary layer. However,

the physical mechanism by which such suppression occurs is not yet fully understood,

and is related to one of the research objectives in this dissertation.

2.3.2 Experimental Methods of High-Speed Instability Phenomena

The majority of experimental methods for testing hypersonic boundary layers

are flight and wind-tunnel tests. Flight tests by nature are expensive, provide limited

data, and are non-trivial to perform, but when successful provide the most useful data

of hypersonic boundary layers behavior. This is because atmospheric conditions are

very quiet, meaning the boundary layer’s stability is not adversely affected by noise

from the environment [37]. However, noise can be radiated from other parts of the

vehicle such as the engine(s) which can contaminate the test.

For hypersonic wind tunnel experiments, there are important characteristics in

order to study hypersonic flows including pros and cons. The major tradeoff of high-

speed wind tunnels compared to flight tests are much more data can be generated,

with more options for high quality data. The difficulty though, particularly with

hypersonic flows is it is very difficult to re-produce the same conditions during flight

[37, 38]. Before the advent of quiet tunnels, noise was one of the major factors which

contaminated or even tripped the boundary layer in ground tests. Quiet tunnels are

not easy to build as they must be designed to not just study, but also control transition

[38]. Consider, if the boundary layer on the tunnel wall is turbulent, then a substantial

noise would radiate off the walls, contaminating the test. This and many other design
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factors are important in quiet tunnel design and operation, and is an active area of

research [37, 38].

2.3.2.1 Purdue Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT)

As of the writing of this dissertation, some of the quiet hypersonic tunnels

are: Purdue Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT), Texas A&M’s Mach 6

Quiet Tunnel, and the recently built AFOSR-Notre Dame Large Mach 6 Quiet Tunnel.

The BAM6QT is primarily focused on in this dissertation since tests conducted in it

were compared to in this research. The Purdue Boeing/AFOSR Mach-6 Quiet Tunnel

(BAM6QT) is a quiet hypersonic wind tunnel with a 2.590 meter long nozzle which

allows for thick boundary layers to form along the wall which are less affected by

ambient noise [39]. The tunnel is a Ludwieg design with a convergent-divergent nozzle,

vacuum tank on the most downstream end, and an air pressurized driver tube on the

upstream end. A double diaphragm is broken to initiate flow from the driver tube

towards the vacuum tank, see figure 2.6 for details [11, 39].

Figure 2.6: Purdue Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) Diagram (used
with permission) [11].

The experimental second-mode instability work of Casper et al. provides a

reasonable starting point and motivation for a rigorous treatment of finite-bandwidth

(wavepacket) effects [39]. Casper et al. summarized two types of tests to experimentally
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study wavepackets and generate turbulent spots: naturally occurring and controlled

disturbances. The naturally occurring disturbances, which formed into viably measured

turbulent spots, were observed to propagate as wavepackets along the nozzle wall [39].

However, in this case it wasn’t feasible to track the origin and development of the

disturbance into a turbulent spot due to its small initial amplitude, hence the need

for a controlled disturbance initiation. The controlled disturbances were generated

from a pulsed-glow perturbations created by an electrode which produced an electric

discharge similar to that of a car spark plug. After the disturbances were created, they

were observed to travel as wavepackets downstream, where the pressure transducers

were used to measure the surface pressure fluctuations on the nozzle wall, near the

region of the turbulent spot formations [39]. Three unit Reynolds number (Re) ranges

were tested: 6.3− 6.4× 106, 8.25− 8.4× 106, and 10.6− 10.8× 106 m−1.

The flow conditions for the natural disturbance case were: Re = 10.6−10.8×106

m−1, P0 = 1031 kPa, and T0 = 415.9 K. In the streamwise direction, several pressure

fluctuation measurements along with the determined power spectral density (PSD)

were made on the nozzle wall of a wavepacket breaking down into a turbulent spot

between 2.201 m and 2.831 m [39]. Measurements were also taken in the spanwise

direction at 2.679 m. They also calculated ensemble-averaged disturbances along the

streamwise, centerline of the pressure, and power spectral densities (PSD) for each

Reynolds number tested [39]. After the disturbance generation, the wavepacket grows

linearly in amplitude as it travels downstream. Once it reaches a certain streamwise

distance: 2.679 m at Re = 6.33×106 m−1, 2.480 m at Re = 8.25×106 m−1, and between

2.378 m and 2.480 m at Re = 10.8 × 106 m−1, the wavepacket becomes nonlinear,

indicated by the appearance of a 1st harmonic (twice the frequency of the primary

mode) in the PSD data [39]. These nonlinear waves interact with each other, forcing

more harmonics, and an overall increase in the wavepacket’s amplitude. Finally, the

wavepacket breaks down to a turbulent spot. Notice, in the Re = 8.25×106 m−1 case at

2.781 m, the broadband amplitude of the disturbance in the PSD results. The overall

trend with increasing Re, is that the wavepacket growth and breakdown to turbulence
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moves upstream. This summary sheds a little more light into the modal growth scenario

by considering a wavepacket’s evolution from the linear to the nonlinear.

An example of the aforementioned wavepacket behavior can be considered by

measurements made along the 2.5 inch nose radius slender cone tested in the BAM6QT

by Dr. Brandon Chynoweth [11]. Specifically, the results under quiet tunnel conditions

by Chynoweth in figure 2.7 help to identify the weak, moderate, and strong nonlinear

regimes of the wavepacket on its way to turbulence transition. This can be seen in

the figure by identifying the number of peaks and amplitude growth. The first peak

at 91.6 cm between 110 and 120 kHz represents the primary disturbance undergoing

mostly linear growth since the harmonics are still small. Further downstream, the

second peak at roughly 220 kHz is the first harmonic. The shift from 91.6 to 99.3 cm

shows the beginning of growth of the first harmonic and very small amount of growth

for the second harmonic (roughly 330 kHz). If one focuses at 114.5 cm downstream,

there are more harmonics and much larger amplitudes for the primary and harmonics

showing very strong nonlinear growth potentially leading into breakdown. Next, figure

2.8 shows the test results under noisy tunnel conditions for very strong nonlinearities,

then, a short breakdown period potentially with turbulent spots between 101 and

112 cm, finally followed by the broadband spectrum of the disturbance at 114.5 cm

downstream.

Casper et al. also performed spanwise measurements and created contour plots

between 2.679 and 2.831 meters downstream for the varied Re cases [39]. They showed

the positive and negative pressure fluctuations with the evolution of the wavepacket

from nonlinear waves to breakdown to the arrowhead shaped turbulent spot. An inter-

esting result is that this wavepacket first breaks down in the center and then spreads in

the spanwise direction, and at hypersonic velocities, the wavepacket continues to travel

along with the turbulent spot [39]. The measured pressure drops show the second-mode

waves present just ahead and trailing the turbulent spot at Re = 8.4×106 m−1, forming

a calmed pressure region [39]. This phenomenon shows that a sudden demarcation of

breakdown and transition does not occur, and implies a more apt description could be
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Figure 2.7: Power spectral density (PSD) showing growth, nonlinearities/harmonics,
with increased harmonics amplitude likely approaching breakdown to tur-
bulence at quiet tunnel conditions on 2.5 degrees half-angle slender cone,
Re = 9.5× 106 m−1 (used with permission) [11].

analogous to a kinetic range of energy transfer marching towards an equilibrium state.

2.3.2.2 Purdue Flared Cone

The subsequent experiments conducted in BAM6QT are similar in nature, but

included a test article. Various geometries were been tested, but the main geome-

try considered in this report is the Purdue flared (compression) roughness insert cone

[10, 11] (figure 2.9. The benefit of using a flared cone is to create a more consistent

boundary layer height. Since the boundary layer δ(x) grows with downstream distance,

the flare of the cone counteracts boundary layer growth, resulting in a nearly constant
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Figure 2.8: Power spectral density (PSD) showing growth, nonlinearities/harmonics,
with increased harmonics amplitude likely approaching breakdown to tur-
bulence at noisy tunnel conditions on 2.5 degrees half-angle slender cone,
Re = 1.8× 106 m−1 (used with permission) [11].

boundary layer along the length of the cone. As the most unstable second-mode fre-

quency is tied to boundary layer height, this allows for the amplification of a particular

frequency second-mode along the entire length of the cone. This allow for the study

of natural transitions studies, without the need to force disturbance initiation [10, 11].

Additionally, this simplifies the calculations for the basic state and disturbance evo-

lution. The dimensions and features of the cone are as follows [10, 11]. The cone is

composed of three parts: nosetip, roughness insert ring, and frustrum. The nosetip is

the front-most part measuring 25.4 cm long, and has an initial, opening half angle of

1.5 degrees. The roughness insert area comes next, and is 0.635 cm long where smooth

or rough rings can swapped to initiate disturbances from discrete roughness elements.

The aft-most part is the frustrum, measuring 25.654 cm long. This brings the total

length of the cone to 51.69 cm, with a base half radius of 5.715 cm wide, and a flare
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radius of 3 meters (curved arc portion of the cone wall).

Figure 2.9: Purdue flared roughness insert cone (used with permission) [10, 11].

The research group at Purdue have extensively characterized this geometry at

Mach 6 condition using temperature sensitive paint (TSP) and PCB pressure sensors

to collect data for disturbance growth and evolution [10, 11, 40, 41]. Below are ex-

amples of a TSP image and a power spectral density (PSD) measurements on the

flared cone. This data was collected from a run at the following tunnel conditions:

Re = 9.2 × 106m−1, P0,i = 130.1psia, T0,i = 161.7psia, P0 = 121.3psia, x = 44cm.

The TSP image shows a hot-cold-hot streak pattern generated by temperature modu-

lations of the disturbance waves flowing over the cone [10]. The PSD figure shows the

root-mean-square (RMS) pressure change versus the spectrum of the disturbances at

6 downstream distances [10]. The first peak in the graph is the primary disturbance of

the second Mack mode, and is at 300 kHz with the peak amplitude at 44.1 cm down-

stream. The next peak is the first harmonic, which is double the primary disturbance

frequency at 600 kHz. The last peak frequency, triple the primary around 900 kHz

is the second harmonic. Same as the tunnel wall tests, the harmonics show nonlinear

behavior of the disturbance. Comparing the PSD plot to the TSP image, it can be seen

that disturbance amplitude grows, then decays which is consistent with the estimated

heat transfer rates as measured from the temperatures in the TSP image [10]. These

experimental result serve as the benchmark against which the numerical investigation

of chapter 4 will be compared.
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Figure 2.10: Purdue flared roughness insert cone TSP image showing hot-cold-hot
streak temperature pattern (used with permission) [10].

2.3.3 Computational Modeling of High-Speed Instability Phenomena

2.3.3.1 JoKHeR Overview

The JoHKeR Parabolized Stability Equations (PSE) package was developed by

Kuehl 2012 in collaboration with Dr. Helen Reed at Texas A&M as part of the efforts

of the National Center for Hypersonic Laminar-Turbulent Transition Research [9, 25].

The program employs a Quasi-3D, compressible, ideal gas, primitive variable formu-

lation; that is, it marches disturbances along a predefined path with the assumption

of uniformity in the perpendicular direction. The package consists of Linear Stability

Theory (LST), Linear Parabolized Stability Equations (LPSE) and Nonlinear Parabo-

lized Stability Equations (NPSE) solvers. These stability solvers have been extensively

validated against experimental, and numerical datasets [22, 25, 27, 28, 42, 43, 44, 45].

A unique feature of JoHKeR is that it employs a nonlinear wavepacket formulation for

NPSE implementation which allows for the modeling of finite bandwidth disturbances,

and thus accounts for spectral broadening and low-frequency content generation which

is important for accurate prediction of nonlinear energy exchange [7, 24, 25, 46]. The
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Figure 2.11: Purdue flared roughness insert cone PSD data (used with permission)
[10].

next several sections describe JoKHeR in more detail.

2.3.3.2 Linear Stability Theory

Linear stability theory (LST) considers a steady basic flow state, determined

from separate CFD simulations, and solves the disturbance equation (which follows

from substitution of equation 2.10 into the Navier-Stokes equations) assuming linear,

parallel flow. The disturbance is assumed to be of the form indicated by equation

2.11, substitution of which into the disturbance equations leads to the generalized

eigenvalue problem with α and ω being the streamwise wave number and the fre-

quency respectively. The resulting eigenvalues are used to determine instability and

the corresponding eigenvector represent the shape of the disturbance in the wall normal
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direction.

φ(x, y, z, t) = φ̄(y)︸︷︷︸
basic state

+φ′(x, y, z, t)︸ ︷︷ ︸
disturbance

(2.10)

φ′ = φ̂(y)ei(αx+βz−ωt) (2.11)

2.3.3.3 Parabolized Stability Equations

Originally identified by Herbert and Bertolotti (1987), during a critical review of

Gaster’s (1974) early nonparallel work, the parabolized stability equations have been

developed as an efficient and powerful tool for studying the stability of advection-

dominated laminar flows [47, 48]. Excellent introductions to the PSE method and

summary of its early development were provided by Herbert (1994,1997) [16, 49]. Dur-

ing the early stages of both linear and nonlinear development of this technique, much

was established related to basic marching procedures, curvature, normalization condi-

tions, and numerical stability of the method itself (Bertolotti 1991; Chang et al. 1991,

Joslin et al. 1992, Li and Malik 1996, and Haynes and Reed 2000) [50, 51, 52, 53, 54].

In a relatively short time, the field rapidly expanded to include complex ge-

ometries, compressible flow, and finite-rate thermodynamics (Stuckert and Reed 1994,

Chang et al. 1997, Johnson et al. 1998, Haynes and Reed 2000, Malik 2003, Chang 2004,

Johnson and Candler 2005, Li et al. 2010, Theofilis 2011, Paredes et al. 2011, Kuehl et

al. 2012, Kocian et al. 2013, and Perez et al. 2012) [9, 28, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64].

PSE is similar to the Fourier/Laplace transform in that it considers an initial-

value problem. However, the slowly varying basic state assumption is made in the

streamwise direction and a slow variable x̄ = x
Re

is introduced. Ultimately, disturbances

are assumed of the form

F [φ′] = φ̃(x̄, y)︸ ︷︷ ︸
shape

Φ(x, t)︸ ︷︷ ︸
wave
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where the wave part satisfies

∂Φ

∂x
= iα(x̄)Φ (2.12)

∂Φ

∂t
= −iωΦ, (2.13)

where Re = Ueδr
νe

is a Reynolds number based on characteristic values of edge velocity

(Ue), edge kinematic viscosity (νe), and reference boundary-layer length scale (δr).

Thus, PSE considers disturbances of the form

φ′ =

∞∫

−∞

φ̃(x̄, y, ω)︸ ︷︷ ︸
shape

A(x̄, ω)e−iωt︸ ︷︷ ︸
wave

dω (2.14)

where A(x̄, ω) = ei
∫
α(x̄,ω)dx and the dependence of the shape function (φ̃) and ampli-

tude function (A) on ω has been made explicit. The shape and amplitude functions are

essentially the Fourier transform of the disturbance. Upon expansion of the streamwise

derivatives

∂φ′

∂x
=

∞∫

−∞

(
1

Re

∂φ̃

∂x̄
+ iαφ̃

)
Ae−iωtdω

∂2φ′

∂x2
=

∞∫

−∞

(
1

Re2

∂2φ̃

∂x̄2
+

2iα

Re

∂φ̃

∂x̄
+
iφ̃

Re

∂α

∂x̄
− α2φ̃

)
Ae−iωtdω,

it is found that the second spatial derivative ∂2φ̃
∂x̄2

is of highest order and a perturbation

expansion may be consistently truncated resulting in the neglect of this term. This

leaves the disturbance equation nearly parabolized, and an efficient marching solution

may be sought [53].

JoKHeR implements a wavepacket formulation (Kuehl 2017) which appears to

better represent energy transfer between modes in a nonlinear calculation [7]. Ul-

timately, in the Quasi-3D formulation, the disturbance is discretely represented as

φ′ =
∑

k φ̃(x̄, y)kA(x̄)kW (ω)ke
−iωkt, and a frequency content for each mode is as-

sumed of the form W0 = 1
σ0
√

2π
e
− (ω−ω0)

2

2σ20 . With bandwidth of the harmonics obeying
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σi =
√
i+ 1σ0, and harmonic balancing is used to calculate nonlinear interactions.

This representation of spectral energy appears to be crucial for modeling the spectral

broadening seen in experiments. Details of this are provided in the next section.

2.3.3.4 Nonlinear PSE (NPSE) - Traditional vs Wavepacket

The recently developed, nonlinear PSE (NPSE) wavepacket formulation extends

the PSE methodology to properly account the experimentally observed wavepacket’s

nonlinear dynamics [7]. Equation 2.15 represents how nonlinear interactions (the right

hand side) force the linear disturbances (left hand side). In spectral space, nonlin-

ear interactions are represented as the convolution of the Fourier transforms of the

individual disturbance modes. The weight functions W1 and W2 contain the spectral

information and thus are central to modeling nonlinear disturbance interactions [7].

∫ ∞

−∞
φ̃0A0W0e

−iωtdω ↔ φ̃1φ̃2A1A2

∫ ∞

−∞
(W1 ? W2)e−iωtdω (2.15)

The traditional PSE formulation inherently assumes pure harmonics and thus the

weighting function take the form of delta function.

W0 = δ(ω − ω0), (2.16)

(W1 ? W2) = δ(ω − (ω1 + ω2)) (2.17)

Plugging this into equation 2.15 yields:

φ̃0A0W0e
−iω0t ↔ φ̃1φ̃2A1A2e

−i(ω1+ω2)t. (2.18)

This yields a harmonic balancing condition (ω0 = ω1 + ω2) which is important to

keep the time and frequency related terms in the exponential from averaging to 0 [7].

To model wavepackets (ie. disturbances with finite bandwidths), a Gaussian weight

function is defined instead:
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W0 = S0e
− (ω−ω0)

2

2σ20 , (2.19)

(W1 ? W2) = S1,2e
− (ω−(ω1+ω2))

2

2(σ21+σ
2
2) . (2.20)

Where: S0 = 1√
2πσ2

0

and S1,2 = 1√
2π(σ2

1+σ2
2)

are the nonlinear coupling coefficients.

When these new weight functions are substituted into equation 2.15 producing,

φ̃0A0S0e
−iω0t

∫ ∞

−∞
e
− (δω)2

2σ20 e−iδωtd(δω)↔ φ̃1A1φ̃2A2S1,2e
−i(ω1+ω2)t

∫ ∞

−∞
e
− (δω)2

2(σ21+σ
2
2) e−iδωtd(δω).

(2.21)

an additional requirement to the harmonic balancing condition is found. A bandwidth

condition appears which captures the energy transfer between the modes denoted by

σ2
0 = σ2

1 +σ2
2 [7]. Consider figure 2.11 which again consists of pressure sensor data from

a hypersonic flow experiment, it is trivial to see a finite bandwidth treatment more

closely represents these disturbances than a pure harmonic delta function.

This finite nature of the disturbance is exactly what the wavepacket formulation

seeks to capture. When the primary disturbance is convolved with itself, a wider,

Gaussian disturbance, is produced; the first harmonic. When this first harmonic is

fed back onto the primary disturbance, some of the energy is projected back into the

primary disturbance, while some is projected onto the side lobes. This is the nonlinear

mechanism responsible for so-called spectral broadening, a widening of the spectrum

as at the onset of nonlinearity. Figure 2.12 is an illustration of this overall process, and

figure 2.13 shows the details of the convolution.

2.3.3.5 Wavepacket PSE Results on the Purdue Flared Cone

Comparisons between the discrete versus Gaussian NPSE formulations for second-

modes are shown in figures 2.14 and 2.15 [7]. A steady state, Mach 6 solution for flow

around the Purdue flared cone, corresponding to a Re = 10.283× 106 m−1 as similarly

tested by Chynoweth (2015) in the BAM6QT, was generated in the CFD solver GASP

[41]. The NPSE calculations were initialized with LST eigenmodes at 285 kHz for the
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Figure 2.12: Primary disturbance graphic with side lobes and nonlinear feedback [7].

primary disturbance, and side-lobes at 265 and 305 kHz. The cone’s geometry and flow

conditions were: length = 0.49 m, base diameter = 0.11684 m, nose radius = 0.001 m,

radius of curvature = 3 m, AoA = 0 Freestream: M = 6, T∞ = 52.8 K, P∞ = 610.775

Pa, Re = 10.283× 106 m−1, Isothermal wall boundary condition: Twall = 300 K.

In figure 2.14 Kuehl showed the comparisons of discrete versus wavepacket NPSE

formulation. All three plots show root mean square of the disturbance amplitudes

versus the streamwise distance. Further, the top plot is a discrete mode at 285 kHz,

and compares nonlinear saturation to the linear results. The middle plot considers

3 discrete modes at 285 kHz (primary mode), 265 and 305 kHz (side lobe modes)

which all grow and nonlinearly saturate, but there is no spectral broadening. This is

as expected because the delta function does not capture the transfer of energy among

modes. The bottom plot shows the results for the wavepacket formulation for the same

3 modes. This time, there is a higher saturation amplitude of the primary mode, and
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Figure 2.13: Convolution example of primary disturbance, nonlinear feedback onto
side lobes, and corresponding to spectral broadening [7, 65].

significant growth of the side lobe frequencies. This is spectral broadening. Next,

in figure 2.15 a comparison of the discrete and wavepackets formulations disturbance

velocity and pressure amplitudes and experiments were performed. The results showed

two important findings: first that the wavepacket formulation more accurately captures

nonlinear energy, and second, the wavepacket formulation improves upon amplitude

prediction when compared with experimental data.

Benefits of the Parabolized Stability Equations (PSE) include a lower compu-

tational cost as compared to direct numerical simulations (DNS), the ability to isolate

and probe specific physical mechanisms of the flow and the technique is broadly appli-

cable (low-speed aerodynamic designs, swept wings, pipe flows, geophysical flows, jet

wakes, etc.) An excellent review of the PSE method is provided by Herbert [16].
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Figure 2.14: Comparison results of the NPSE run on Purdue flared cone at M = 6.
The root mean square of the disturbance amplitude vs the streamwise
distance. The top plot is the single mode case, the middle is the 3 mode
delta function case, and the bottom is the 3 mode wavepacket case [7].

2.3.3.6 DNS

Direct numerical simulation (DNS) can provide accurate solutions to the N-S

equations assuming good convergence. However, the computational cost can be high,

convergence is not trivial for complex geometries, and the physical mechanisms of

transition can be obscured [16]. DNS does provide much insight into the experimental

results of transition, and a good numerical benchmark. DNS is usually employed by

requiring very fine computational meshes in a two pass solution scheme [26]. The first

pass is the laminar, undisturbed, steady state solution (basic state). The second step

takes as an input the basic state, then performs a higher order stability and transition

solution generation. To disturb the basic state, blowing or suction is usually imposed

at an upstream location on the geometry. Then the higher order, compressible Navier-

Stokes equations are solved [26]. The DNS results for the disturbance evolution are then

compared against experimental or other numerical results for verifications/validation.
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Figure 2.15: Comparison results of the NPSE run on Purdue flared cone at M = 6.
Left: The root mean square (RMS) of the disturbance velocity vs the
streamwise distance comparing Gaussian and delta functions. Middle:
RMS disturbance pressure vs the streamwise distance comparing Gaus-
sian and delta functions. Right: RMS disturbance pressure vs Reynolds
number comparing Gaussian NPSE and experimental results [7].
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Chapter 3

METHODOLOGY

3.1 Overview

Computational stability analysis of fluid flow around a geometry is generically

broken into 6 steps:

1. Geometry

2. Meshing

3. Solving

4. Visualization

5. Data Extraction

6. Analysis.

First, the desired geometry is created in a computer aided design (CAD) pro-

gram. Second, this geometry is imported into a gridding / meshing software package.

Third, the grid / mesh is imported into the computational fluid dynamics (CFD) soft-

ware package, (US3D is used in this research) and a basic state solution is generated.

Fourth, the basic state solution is visualized for initial validation. Fifth, pertinent

data is extracted from the basic state solution and more carefully validated. At this

point, the typical CFD process is essentially complete. For example, one could take

this solution and use it to create a test plan for a preliminary vehicle design. In this

dissertation, the sixth and final step is to import the basic state solution into a nu-

merical stability program (linear stability theory, parabolized stability equations, or

direct numerical simulation). This step also indirectly validates the basic state solu-

tion [44], and produces the stability analysis results which can then be compared to the

theory, experimental data, flight data, and even other numerical stability results. The
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following sections will show an example case of the aforementioned numerical analysis

methodology.

3.2 CFD Basic State Generation Process

3.2.1 Geometry

Solidworks is used to create the CAD models for the geometries to be tested.

Figures 3.1 and 3.2 show the Purdue flared roughness insert cone half body at two

different stages of the modeling. The dimensions are the same as mentioned in chapter

2, with an initial half angle of 1.5 degrees, the total length is 516.89mm, the half base

is 57.15mm, and the nose-tip radius is 0.15mm [10]. The flared curvature of the cone

has a reference radius of 3m.

Figure 3.1: Solidworks CAD model with dimensions shown
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Figure 3.2: Solidworks CAD model final

3.2.2 Meshing

To create the computational domain (grid or mesh), the gridding / meshing

software Pointwise is used. The Solidworks model is imported into Pointwise, where

grid points are applied along the top edge, starting from the leading edge of the nose,

to the trailing edge at the end of the cone. Then, quadrilateral points are extruded

normal to the wall, a sufficiently high amount in order to create the 2D computational

domain. In our case “sufficiently high” means outside the shock into the undisturbed

free-stream. This required estimating the shock angle and the height above the wall

of the cone, and is done using the θ-β-Mach diagram. At Mach 6, for a nominally

sharp nosed, streamlined body, a weak oblique shock would form. We follow the

path for the average angle of the cone to get the angle of the shock. Then estimate

the height of the shock, add some additional grid points beyond our estimate shock

location for computational padding. One does not want to go too high above the shock

as this is computationally wasteful, but too low and the shock will not be captured

within the computational domain. To help keep the grid point count lower, and to be

more computationally efficient, the normal extrusion has a higher fidelity (much larger

number of grid points) close to the wall, and a growth rate is added so the number

of grid points become sparser with each layer above the wall. This is easily seen in
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the figure 3.4 where the grid resolution is so fine near the wall, that one cannot even

see the individual points, but close to the top boundary, the grid is distinguishable.

Boundary layer stability calculations require extremely well resolved boundary layers,

so it is common to cluster 150 or more grid points within the wall normal direction of

the boundary layer. Such grid clustering not only saves memory, but also on the shear

number of calculations required for each cell, greatly reducing computational time.

Again, it is important to remember that sparse grids can provide basic state solutions

that “look good”, but closer inspection to determine if the necessary physical processes

are properly resolved is always necessary.

After the normal extrusion process is complete, the next step is to extrude

rotationally since this is a cone. Since the experiments performed on this cone were

nominally at an angle of attack (AoA) of 0 degrees, we do not need to create the entire

cone computational domain in the azimuthal direction (ie. 360 degrees of rotation

around the cone). A one degree “slice”, axisymmetric domain rotational extrusion

in the azimuthal direction is sufficient, with appropriately set boundary conditions.

This simplification saves orders of magnitude of extraneous grid points. Looking at an

iso view in figure 3.5, it can be seen the mesh has been rotationally extruded in the

azimuthal direction by 1 degree creating a 3D domain not a 2D plane.

Now that the mesh has been made, the boundary conditions can be specified.

This specification happens twice, once with the mesh, and again within the solver.

Figure 3.5 illustrates the boundary condition and their locations. We set the “inflow”

where flow enters the domain and the freestream flow conditions such as velocity,

temperature, and density will be specified. The inflow runs from the leading edge of

the nose, all the way up to the very top of the domain. “Outflow” is set where the flow

leaves the domain. “Wall” condition is set where the no slip condition is imposed at

the body’s surface(s). The last boundary condition for this case is to set “symmetry”

conditions on both of the two length-wise sides of the domain.
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Figure 3.3: Pointwise mesh: 1.25 million quadrilateral grid points

Figure 3.4: Zoom in of mesh at nose tip
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Figure 3.5: Iso view of mesh

3.2.3 Solving

US3D is a CFD software package specifically designed for high-speed flows

[66, 67, 68]. Many general purpose CFD packages already exist and provide great

first order approximations, however, such packages tend to either struggle at hyper-

sonic flow conditions through excessive numerical viscosity, neglected physical aspects

of hypersonic flows, or insufficiently robust convergence schemes. US3D uses the finite

volume method (FVM) to calculate fluxes across cells [66, 67, 68]. This is different

than the finite difference method which calculates the differences of the partial dif-

ferential equations it is solving. The FVM performs numerical integration sharing

more of a connection with its finite element analysis (FEA) roots and control volume

analysis. Moreover, US3D incorporates high-order solving schemes, multiple viscosity

and gas properties, and other physical aspects (chemical reacting multi-species gases,

turbulence closure models, etc.) which help to create accurate solutions. US3D first

pre-processes the mesh created in Pointwise. Then, the input deck which includes all

of the fluid, flow, and numerical properties and settings for solver, must be prepared.
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This includes such inputs as: gas species, boundary conditions, inviscid or viscous flow,

freestream velocity, density, temperature, wall temperature, wall heat transfer method

(ie. isothermal or adiabatic), and number of iterations. An example of free-stream

input conditions, from the BAM6QT, are listed in tables 3.1 and 3.2.

Table 3.1: BAM6QT example experimental setup conditions [10].

P0,i [kPa] T0,i [K] P0 [kPa] Re× 106/m γair
8.9676 434.85 8.361 9.2 1.4

Table 3.2: Calculated US3D freestream and wall initial conditions calculated from
tunnel conditions.

Run Case Boundary ρ [kg/m3] T [K] u [m/s]
Base Inflow 0.0355 51.9799 867.1092

At this unit Reynolds number, initial stagnation temperature and pressure, total

pressure, and the fact that the tunnel operates at around Mach 6 for plain air, it is

permissible to assume an ideal gas and use the isentropic chain, shown in equations 3.1

and 3.2, to calculate the freestream temperature [10]. Once the freestream temperature

is determined, the freestream pressure and density are calculated from equation 3.1 and

the ideal gas law: equation A.6. Lastly, the speed of sound for tunnel conditions can

be calculated from equation A.15 which when used with the Mach number in equation

A.14 produces the freestream velocity. These inflow conditions can now be inputted

into the input deck.

P0

P
=

(
ρ0

ρ

)γ
=

(
T0

T

) γ
γ−1

(3.1)

T0

T
= 1 +

γ − 1

2
M2 (3.2)
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The wall boundary conditions are usually either isothermal or adiabatic and an

initial wall temperature is set. With these initial and boundary conditions set, the

major aspects of the input deck are ready to run, an example excerpt is shown below.

[CFD_SOLVER]

!-----------------------------------------------------------------------

! nstop ires nplot iconr impl kmax kmaxo

600000 0 1000 0 1 4 4

!

! ivisc ivib ichem itrb ibase idiss_g

13 0 0 0 0 1

!

! ivmod ikmod idmod ikv icfl dtfix

2 -999 1 1 1 0.0d0

!

! iorder iuem ikve kbl iman

2 3 1 60 100

!

! npfac npvol

0 0

!

! cfl epsj wdis

1.0d00 0.3 0.005d-2

!-----------------------------------------------------------------------

[/CFD_SOLVER]

[GAS_SPECIES]

Air

[/GAS_SPECIES]

[MANAGE]

!-----------------------------------------------------------------------

4

500 1.0d0

700 2.5d0

1000 5.0d0

...

100100 5.0d0 20

101500 1.0d1 20

103000 5.0d1 20

140000 1.0d2 20

160000 2.5d2 20

180000 5.0d2 20

200000 1.0d3 20
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220000 2.0d3 20

250000 1.0d3 24

275000 2.0d3 24

300000 1.0d3 24

!-----------------------------------------------------------------------

[/MANAGE]

[CFD_BCS]

!-----------------------------------------------------------------------

! Boundary condition section

! Mach 6.0

! zone bcn igrow name [parameters] ...

! ---- ---- ----- -------- ------------

4 7 0 "bottom"

5 10 0 "inlet" 3.550d-2 51.9799d0 51.9799d0 867.1092

6 36 0 "outlet"

7 7 0 "top"

8 3 400 "wall" 2 300.0d0

done

!

! Required mass fractions

! -----------------------

"inlet" 1.000000

!

! Required direction cosines

! --------------------------

"inlet" 1.000000 0.000000 0.000000

!

!-----------------------------------------------------------------------

[/CFD_BCS]

Once the input deck has been setup, the US3D solver is run for the set number of

iterations. The goal is to get the solution to converge a quickly as possible, to the

smallest level of residuals (numerical error) possible. There is not a rigorous conver-

gence criteria for every flow, grid, and geometry, but the rule of thumb which gets

passed by word of mouth is an error on the order of 10−4 is loosely converged, 10−5

is moderately converged, and 10−6 is strongly converged. Again, the determining fac-

tor for convergence depends on the application. With stability analysis, a converged

solution is the solution for which stability results no longer change with refinement.

Below is a snippet of the first and last 10 iterations of a solution run. The convergence
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variable columns in order are: iteration, residual, simulation time, timestep, and CFL

number.

iter residual time timestep CFL

1 4.502457478E+07 1.423865887E-11 1.423865887E-11 1.000E+00

2 4.495474168E+07 2.847613514E-11 1.423747627E-11 1.000E+00

3 4.489408445E+07 4.271242906E-11 1.423629391E-11 1.000E+00

4 4.483938367E+07 5.694754085E-11 1.423511179E-11 1.000E+00

5 4.478930851E+07 7.118147077E-11 1.423392992E-11 1.000E+00

6 4.474291898E+07 8.541421904E-11 1.423274828E-11 1.000E+00

7 4.469960590E+07 9.964578592E-11 1.423156688E-11 1.000E+00

8 4.465897250E+07 1.138761716E-10 1.423038572E-11 1.000E+00

9 4.462069121E+07 1.281053764E-10 1.422920480E-11 1.000E+00

10 4.458451945E+07 1.423334006E-10 1.422802412E-11 1.000E+00

...

599990 2.199365007E-06 6.294345982E-03 1.260698179E-08 1.000E+03

599991 2.194666894E-06 6.294358589E-03 1.260698179E-08 1.000E+03

599992 2.208751332E-06 6.294371196E-03 1.260698179E-08 1.000E+03

599993 2.234233412E-06 6.294383803E-03 1.260698179E-08 1.000E+03

599994 2.237404708E-06 6.294396410E-03 1.260698179E-08 1.000E+03

599995 2.241673047E-06 6.294409017E-03 1.260698179E-08 1.000E+03

599996 2.234666960E-06 6.294421624E-03 1.260698179E-08 1.000E+03

599997 2.210507348E-06 6.294434231E-03 1.260698179E-08 1.000E+03

599998 2.206189000E-06 6.294446838E-03 1.260698179E-08 1.000E+03

599999 2.211048990E-06 6.294459445E-03 1.260698179E-08 1.000E+03

600000 2.198688019E-06 6.294472052E-03 1.260698179E-08 1.000E+03

The first 3 columns are apparent, so let us focus on the last two: timestep and

CFL. The timestep is the ∆t of the simulation. The CFL number or Courant-Friedrichs-

Lewy condition number is defined by equation 3.3. The CFL number is a necessary

condition for convergence, but not a sufficient one. Also, this is one of the main

control knobs in US3D that affects the convergence rate, which also in turn controls

the timestep. In general, a bigger CFL number speeds up the solver convergence rate,

but can cause instability and even divergence if too large. Conversely, too low of a

CFL dramatically extends the computational time required to converge the solution to
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a sufficiently low residual level.

CFL = ∆t
n∑

i=0

∆Vi
∆Xi

(3.3)

Once the solution is converged, the solution is post-processed in US3D to extract and

convert the desired flow data into a format which can be loaded into a visualization

software such as Tecplot.

3.2.4 Visualization

3.2.4.1 Axisymmetric Case @ 0 AoA

The first qualify control applied to basic state solutions generated in US3D, is

visualization. In this dissertation, Tecplot is used for visualization.

Figure 3.6: u velocity contour plot of Mach 6 Purdue flared cone.
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Figure 3.7: CFD Residuals contour plot of Mach 6 Purdue flared cone.

Figures 3.6 and 3.7 are results from the basic state calculations of the flared cone at

Mach 6. Shown are contour plots of the flow velocity (u) in the x-direction and the

spatial residuals or numerical error, respectively. From such visualization, errors in the

basic state calculations can be identified and trouble shot. Here, the velocity field looks

reasonable (grid captures shock, boundary layer resolved, no apparent discontinuities,

etc.), and the spatial residuals are quite low (an order of magnitude less than or equal

to 10−7), which indicates a well converged solution.

The next 5 figures (3.8, 3.9, 3.10, 3.11, 3.12) show an example of a solution

which is not physical/correct. This example was of a straight cone, 7 degree half angle

at Mach 6. The Mach contour plot looks good, with a reasonable looking shock which

is well developed and contained within the grid. The u velocity contour plot, upon first

glance, also look fine. However, upon closer inspection, when zooming into the nose,
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the velocity does not look quite right. The problem is that the flow is reversed in front

of the nose, which is indicative of an incorrect solution. When visualizing the spatial

residuals, the order of magnitude is as high as 104 in front of the nose and within the

entire shock region the resuduals are unacceptably large. This example illustrates that

the visualization step is important during the CFD process, and at this point, it would

be necessary to troubleshoot the solver conditions and possibly the grid, then re-run

the solver. In this particular case, the grid was carefully analyzed, and was found

to insufficiently resolve the nose region. This is because an insufficient amount and

inadequate spacing of wall normal points was specified in the mesh.

Figure 3.8: Mach number contour plot of straight cone at Mach 6.
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Figure 3.9: Zoom in of nose re-
gion of contour plot
over straight cone at
Mach 6 - flow veloc-
ity in x-direction.

Figure 3.10: Contour plot over straight cone
at Mach 6 - flow velocity in x-
direction.

Figure 3.11: Zoom in of nose re-
gion of contour plot
over straight cone
at Mach 6 - spatial
residuals.

Figure 3.12: Contour plot over straight cone
at Mach 6 - spatial residuals.
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1. Desired x location for each slice 
2. Rotation values for each slice 

These can be done directly in Tecplot, 
or by using a macro (.mcr) 

US3D Solver

input.inp

grid.h5

conn.h5

US3D PostProcessor

grid.h5

conn.h5

Tecplot

post.scr 

solution.dat/.plt

data.h5

Stability Analysis Prep

data_extraction python
scripts perform the below: 

1. Data Parsing

2. Rotation of u & v ->
tangential & wall normal
velocities

Stability Analysis

LST

LPSE

NPSE

No

Are data slices orthogonal to the
wall?

{pseslice1.dat 
pseslice2.dat 

... 
psesliceN.dat}

allslices.dat

Data Extraction

Yes

Figure 3.13: Data extraction process - Starting from the US3D solver output, to the
data file slices for input into the stability solvers.

3.2.5 Data Extraction

After visualization, the data is extracted, validated, and then analyzed. The

first thing to understand is that data extraction is a process, not a single operation.

This process is illustrated in figure 3.13, and is described further in this section. The

data needed for LST are: x,y spatial locations, u,v,w velocity components, density,
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and temperature. The data needs to be extracted at many different locations in wall-

normal slices and then rotated in the wall-normal and wall-parallel directions. Scripts

were written coupling Python, Matlab, and Tecplot macros to automate this process.

For 2D, straight cones (constant half angle), this is a fairly straightforward calculation

using the cone’s half angle. However, for varying wall half angle, or non-constant wall

vectors, this calculation is much more intensive.

In principle, data extraction is straight forward, however, when the geometry

even has one varying angle in one direction, it can become more complex. Again,

consider the Purdue flared cone with its changing wall contour. Most software packages

have built-in features to extract planes or profiles of data at various locations. However

in practice, and particularly when interfacing between multiple software packages, it is

strongly recommended to carefully check the extracted data. It was found to be useful,

to first extract straight profiles along the y-axis (perpendicular to the flow direction) to

create a reference set of actual computational data, to create a reference, and to check

for off-sets between expected (analytical calculations) and actual data positions. This

is important if we recall, a model is generated in Solidworks, which is imported into

Pointwise to generate a grid. That grid is imported into US3D to generate a flow field

solution. That solution is imported into Tecplot for visualization, and data extraction

along with any additional data parsing and preparation before finally being imported

into the stability solver. This opens multiple opportunities for roundoff or truncation

errors.

From the extracted y-axis data, rotation angles are calculated. These rotation

angles are checked for being sufficiently perpendicular to the geometry’s wall. Then this

information is transformed into Tecplot rotation values, and fed-back into a Tecplot

macro which extracts the wall normal data. Tecplot outputs a raw data file which is

processed using in-house developed Python scripts to create individual data slice files of

each desired streamwise location, at which x,y,u,v,T,ρ data are saved into a directory.

For example, In the case of the flared cone, there were 451 files (slices) spanning 50mm

to 500mm downstream in 1mm increments.
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3.2.6 Validation

Validation of basic state solutions is vital part of the stability process, with

availability of benchmarks being pivotal. Unless one is solving a brand new geometry

or flow situation, there likely exists a prior created CFD solution, experimental data

set, or analytic approximation. Verification can be as simple as checking to see that the

Mach number of the flow field matches between your solution and the benchmark’s, to

extracting data from the benchmark and comparing boundary layer profiles, slice by

slice, to performing multiple stability analyses looking for changes in the basic states’

stability behavior. Secondary verification can also be achieve by comparing quanti-

ties derived from the basic state solution. For instance, it is common in stability and

transition research to consider comparison of the bandwidth of instabilities between

computations and experiment to serve as verification of a numerical basic state cal-

culations [44]. Of course, as researchers blaze new territory, verification is not always

possible. In such cases, research must rely on CFD best practices. Of particular im-

portance in such cases are grid sensitivity studies. Multiple basic states are calculated

with increasing grid resolution. As the grid is refined, if the change in the resultant

solution becomes negligible, then one can state the grid is sufficiently resolved from this

perspective given the computational variables at hand (ie. geometry, flow conditions,

numerical scheme, etc...). Time permitting and driven by complexity and sensitivity

requirements, all or a subset of the aforementioned validation techniques should be

employed.

It should also be noted that this is not an exhaustive list of methods and best

practices for creating basic states. This is the methodology which has shown to work

sufficiently well for performing linear and parabolized stability analysis on streamlined

bodies such as cones and wedges. Results of some basic states will be shown in the

next section. There are many factors which include: fluid properties, flow properties,

geometry, computational parameters, and phenomena to be studied. Each with their

own complexities which must be addressed depending on the situation.
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3.3 Computational Stability Analysis

The numerical solver employed in this research for performing linear stability

(LST), linear parabolized stability equations (LPSE), and nonlinear parabolized sta-

bility equations (NPSE) is called JoKHeR which was developed by Dr. Joseph Kuehl

and Dr. Helen Reed, at Texas A&M University, as part of the National Center for

Hypersonic Laminar-Turbulent Transition Research [9]. An overview of the process

for using the JoKHeR solver for numerical stability analysis will be described in this

section.

3.3.1 LST

LST is solely performed in Matlab. First, the data slice files need to be imported

into Matlab. This is done by the get data script. This script takes as input, the data

slices, the height above the wall just below the shock (shock cut off), and outputs

a Matlab matrix file with this data in a format the LST solver can accept. Next,

flow parameters, metric coefficients, and a grid need to be set up for the LST finite

difference scheme. This step is performed by the build dual.m script. The basic state

data matrix file is inputted into build dual.m which interpolates it onto a grid. The

pertinent parameters shown below are required to be updated: gas type, in the case

of this research it is air, the shock cut off point specified, the number of points past

the N1 neutral point (Nx) (note: the neutral point is where the disturbance becomes

unstable), the number of points above the wall (Ny), and the desired x location to

analyze (xloc). Also, when performing LST, this desired x location is spanned in the

streamwise direction, or for PSE preparation, it is a location just before the mode

becomes unstable.

szy = 350; % Shock wave data cut off point

xloc = 35 % Desired location to run LST on

Nx = 300; % Number location beyond N1

Ny = 250; % Number of points in wall normal

%Gas parameters: ie. Air

R_gas = 287.0580D0; %Gas Parameter for Air

mu_ref = 1.716D0*10^(-5); %Gas Parameter for Air
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gamma = 1.40D0; %Gas Parameter for Air

After, build dual.m has been set and ran, the generalized eigenvalue problem

for real and imaginary parts of α as mentioned in section 2.3.3.2 can be solved by the

Matlab script LST traj.m. The key point for running LST traj is to set the desired

frequency (ie. 300 kHz), then after it has completed, to check the eigenvalue spectrum

for a stable or unstable mode, then check its shape function or eigenmode matches the

expected shape function for a second-mode. Examples are shown below. To investigate

the eigenvalue spectrum, the following plot command is ran, then one zooms into the

right-hand plane near the origin.

plot(real(diag(val)),imag(diag(val)),’k.’)

Figures 3.14 through show an example of the spectrum, zooming into the region where

the second-mode is found, and locating the eigenvalue which will end up being a second-

mode. In figure 3.16 the second-mode is indicated by the selected value with the X:

value corresponding to the real part of α, and Y: corresponding to the imaginary part

of α.

Next, the below command is used for plotting the u component of the eigenvector

or shape function.

plot(abs(vecu(:,index)),y_out,’k.-’)

This shape function in figure 3.17 is indeed the second-mode looked for, whereas fig-

ure shows an example of a shape function which is not a second-mode which should

be skipped over. For LST alone, the −αi amplitude, x location, Reynolds number,

frequency, non-dimensional frequency, and mode number would be saved.

This process is repeated by spanning various frequencies, and continuing to move down-

stream creating a region where eigenmodes are stable or unstable. The stable versus

unstable region forms the linear stability diagram (“banana plot”) [69]. An example of

one where LST was performed on a straight cone at Mach 10 by Sakakeeny is shown

in figure 3.19 [69].
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Figure 3.14: Eigenvalue spectrum plot 1.

3.3.2 LPSE

For LPSE and NPSE there are some differences when running LST. The first

is that one does not span the streamwise locations of the cone like with LST. Instead,

PSE integrates spatially downstream, so one performs the LST procedure until an

unstable eigenmode is found. Then, keeping the frequency constant, one re-runs LST

moving upstream until a barely stable second-mode is found. This stable second-mode’s

parameters are saved which will correspond to the initial conditions for PSE. In detail,

the following are saved for the initial conditions: mode index, eigenvectors for u, v, w,

temperature, density, and phase by running the Matlab script IC traj.m.

After the desired initial mode has been saved from LST, we begin the LPSE.

Running the LSPE and NPSE JoKHeR programs are similar, so the procedure will

be described in general for LPSE, then the nonlinear aspects will be covered in the

next section. JoKHeR is written in Fortran 95, supports thread level parallelism via
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Figure 3.15: Eigenvalue spectrum plot zoomed in.

OpenMP, and is supported in Unix based systems. The buildlinear Gaus.f95 source

code file contains the discretized, linear PSE equations for mass, momentum, and en-

ergy to be solved which are passed into JoKHeR. The JoKHeR MASTER Lin.f95 file

takes in the same Nx, Ny, and frequency values from LST. The Act Nm and Nm pa-

rameters are set for the number of modes, which in the case of LPSE, is just one mode,

its complex conjugate, and the mean flow distortion. Next, the desired initial ampli-

tude is inputted. Then, buildlinear Gaus.f95 and JoKHeR are compiled and linked

using a Fortran compiler, and the program is ran. The program iterates performing

Newton’s method, integrating downstream. Very briefly summarizing, JoKHeR per-

forms the following. An initial guess of the real (r) and imaginary (i) parts of ∆αr,i

are made. Next, the system of equations is solved with α(j + 1) = α(j) + ∆αr and

α(j + 1) = α(j) + ∆αi. Then, normalization conditions are applied to determine the

error sensitivity matrix. The matrix and the associated error is used to solve for the
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Figure 3.16: Eigenvalue spectrum zoomed in with eigenmode selected showing real
and imaginary parts of α.

∆αr,i, and is repeated until the error is below a predefined tolerance. Finally, the pro-

gram steps to the next streamwise location. This whole process is repeated until the

last streamwise location is reached, or the solution diverges. In general, LPSE should

march until the end, NPSE tends to diverge before the end because the amplitudes

reach such large values. An example of a completed LPSE run is below.

converged = 0 1 299

NL Iteration = 1

NL Converge error = 1 1

NL U Value = 0.0000000000000000 NaN

NL V Value = 0.0000000000000000 NaN

NL T Value = 0.0000000000000000 NaN

NL rho Value = 0.0000000000000000 NaN

rlx = 1.0000000000000000

err = ( 2.7807773173970513E-014, -9.4225944897356837E-014) ( NaN, NaN) ( 2.7807773173970513E-014, 9.4225944897356837E-014)

converged = 0 1 299

D error D alpha i r

NaN
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Figure 3.17: Proper shape function of eigenvector/eigenmode for the second-mode.

NaN

NaN

NaN

New Dalpha_r = 0.0000000000000000 NaN

New Dalpha_i = 0.0000000000000000 NaN

Max (1,0) = 82068038.727231905

CPU Time = 439.667 seconds.

User Time = 232.805 seconds.

Armanis-MacBook-Pro:300khz_test2 revmac$

Once the LPSE has converged, the results are plotted as N-factors (denoted N):

N = ln

(
A

A0

)
= −

∫ x

x0

αidx (3.4)

where A is the amplitude at its respective streamwise location, and A0 is the initial am-

plitude at the N1 neutral point [70]. An example is shown in figure 3.20. The growth

rate shows how the disturbance grows linearly downstream. Since it is a log scale,
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Figure 3.18: Incorrect/non-physical shape function example of eigenvec-
tor/eigenmode for the second-mode.

small N-factor increases, correspond to order of magnitude differences in the distur-

bance amplitude. If the disturbance decays as it traverses downstream, this means the

disturbance is stable at its respective frequency, and does not contribute much overall

to transition. Otherwise, a growing N-factor corresponds to an unstable frequency,

with the largest N-factor(s) contributing the most to second-mode instability. Then,

the LPSE process is repeated by spanning many frequencies, plotting their N-factors to

see which modes grow the most. The results can then be compared to the experimental

or other computational results.

3.3.3 NPSE

The NPSE setup is similar to LPSE, however, LST is first ran on multiple modes

(frequencies) to create multiple initial conditions to be input into NPSE which are sum-

marily saved using IC multi.m. In addition to LPSE equations for mass, momentum,
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Figure 3.19: Mach 10 straight cone LST results: plot of frequency (ω) vs streamwise
x location (used with permission) [69].

and energy defined in buildlinear Gaus.f95, NPSE JoKHeR has the quadratic and cubic

nonlinear terms specified in files: buildquad Gaus.f95 and buildcubic Gaus.f95. These

are passed into JoKHeR MASTER Gaus.f95, along specifying the desired number of

primary modes, harmonics, their complex conjugates, and the mean flow distortion.

Next, all the frequencies are specified and the initial amplitudes, see table 3.3 for a 3-

mode case example. For the initial amplitudes, the primary disturbance is set based on

an amplitude which will grow sufficiently large downstream, yet not too high initially,

otherwise it will cause the NPSE to diverge when calculating. Then, the harmonics are

set as powers of the primary disturbance initial amplitude (ie. 1st harmonic is the pri-

mary’s amplitude squared, the 2nd harmonic is the primary’s amplitude cubed). Lastly,
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Figure 3.20: Example LPSE run results: N-factor vs x location along Purdue flared
cone.

JoKHeR MASTER Gaus.f95, buildlinear Gaus.f95, buildquad Gaus.f95, and buildcu-

bic Gaus.f95 are all compiled, linked, then the program is ran (commands listed below).

1. Compiling the build source code files

1a. Required for both LPSE or NPSE:

gfortran -c buildlinear_Gaus.f95

1.2 Only required for compiling NPSE:

gfortran -c buildquad_Gaus.f95

gfortran -c buildcubic_Gaus.f95

2. Compile and link with JoKHeR main source code

2a. Linux/UNIX:

gfortran -fopenmp JoKHeR_MASTER_Gaus.f95 -o pse buildlinear_Gaus.o ...

buildquad_Gaus.o buildcubic_Gaus.o

2b. Mac OS X:

gfortran -fopenmp JoKHeR_MASTER_Gaus.f95 -o pse buildlinear_Gaus.o ...

buildquad_Gaus.o buildcubic_Gaus.o -framework Accelerate
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3. Running LPSE or NPSE and redirecting output to a file:

./pse <frequency> >> <pse_output_file.txt> &

Table 3.3: 3-mode frequencies and initial amplitudes example

Primary Low Frequency High Frequency Initial Amplitude
Mode [kHz] Side Lobe [kHz] Side Lobe [kHz] Amplitude

300 270 330 1.0× 10−7

600 540 660 1.0× 10−14

900 810 990 1.0× 10−21

Figure 3.21: Example NPSE run results: root mean square (RMS) of disturbance
pressure vs x location along Purdue flared cone for 3 primary modes,
1st and 2nd harmonics, and mean flow distortion.

Again, divergence of the solution for NPSE is common, due to the large distur-

bance growth or stronger nonlinearities. As such, a sufficiently far downstream march

is required, and is compared to the streamwise disturbances measured from experi-

ments. If the NPSE reaches these experimental distances, this divergence before the
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last data slice is acceptable, otherwise, the input parameters, the initial conditions,

or even the source code must be edited to a more stable setup. Figure 3.21 shows an

example result of the amplitude growth in root mean square of disturbance pressure vs

streamwise location. This plot tells us how the primary disturbance, harmonics, and

mean flow distortion grow and interact. Important disturbance aspects are identified:

such as growth of the primary mode, side lobes, harmonics, spectral broadening for

the wavepacket formulation NPSE (traditional delta function NPSE will not have this

interaction), and amplitudes, or labeled as missing and changes would be made in order

to better quantify the flow’s disturbance growth behavior.

The PSE results are compared to experimental and/or DNS results, the input

parameters are changed (ie. initial amplitude, side lobe bandwidth, number of modes,

or harmonics), then re-ran and compared again. This is an iterative process, where

additional physical phenomena, frequency bandwidths, disturbance mode types or in-

teractions such as: oblique or k-type are tested and refined in the PSE in order to

test and push its abilities further to quantify second-mode disturbances physical mech-

anisms to understand linear and nonlinear behavior, growth, interactions leading to

instability and transition within the hypersonic boundary layer.

3.4 Resources

3.4.1 Computational

Since this dissertation is primarily computational research, the required re-

sources are: a sufficiently powerful compute cluster to generate basic states flow fields,

and computer workstations running a flavor of Linux, Unix, or Mac OS X with suf-

ficient power to run LST and PSE. Experimental and DNS results were provided by

collaborators.

3.4.2 University Collaborations

Experimental data and results from Purdue University’s BAM6QT were pro-

vided by: Dr. Steven Schneider and Dr. Brandon Chynoweth. DNS results and data
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were provided by: Dr. Carlo Scalo and Victor Sousa also of Purdue. Additional re-

search collaborations were with: Dr. Herman Fasel and Christoph Hader of University

of Arizona, Dr. Thomas Juliano of Notre Dame University, and Dr. Bradley Wheaton

of Johns Hopkins University Applied Physics Laboratory are also acknowledged here.

3.4.3 Funding

This research was funded under the Air Force Office of Scientific Research

(AFOSR) Grant# FA9550-15-1-0129.
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Chapter 4

A MECHANISM FOR SPECTRAL BROADENING AND
IMPLICATIONS FOR SATURATION AMPLITUDE ESTIMATES

The “wavepacket” formulation of the Nonlinear Parabolized Stability Equations

(NPSE) [7] is applied to identify the mechanisms responsible for spectral broaden-

ing which is observed in hypersonic boundary layers. It has been suggested that the

presence of low frequency “noise” is responsible for spectral broadening. The results

presented here suggest that spectral broadening is a consequence of finite bandwidth

frequency content, and a mismatch of spectral bandwidth between primary and first

harmonic disturbances, not the presence of low frequency “noise”. Indeed, our results

suggest that low frequency noise is a consequence of the spectral broadening, not a

driver of spectral broadening.

4.1 Basic State - Flared Cone

The Purdue flared cone geometry at Mach 6 is considered. A basic state (steady

state) CFD solution was generated in US3D for each of the 4 cases listed in the table

4.2. The ‘base’ case corresponds to the experimental conditions run by Dr. Chynoweth

[10]. The other three cases were perturbations about the basic state of +/- 10% to

the Reynolds number (by increasing the flow velocity), and a 10.8 × 106 Re case by

increasing the freestream density [46].

Table 4.1: BAM6QT Experimental Tunnel Conditions For Run 825 [10].

P0,i [kPa] T0,i [K] P0 [kPa] Re× 10−6/m γair
8.9676 434.85 8.361 9.2 1.4
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Table 4.2: US3D Run Conditions for Base and Basic State Perturbation Cases [46].

Run Case Boundary ρ [kg/m3] T [K] u [m/s]
Base Inflow 0.0355 51.9799 867.1092

Re +10% Inflow 0.0355 51.9799 953.8201
Re -10% Inflow 0.0355 51.9799 780.3983

Re/m = 10.8× 106 Inflow 0.0417 51.6448 864.3102
All Above Wall N/A 300 N/A

The Mach contour plot of the basic state result is shown in figure 4.1. This contour

was compared to the flared cone results by Fasel et al. [26]. Though not a quantitative

comparison, the Mach contours showed good agreement and stability analysis was

conducted.

4.2 Results

4.2.1 LST

A preliminary LST analysis was performed to determine the frequency range of

the Mack mode disturbances and for the initial conditions of the PSE analysis. The LST

results can be seen in figure 4.3. This preliminary LST was performed at the spatial

location of 150mm downstream from the nose tip. The most unstable frequency was

285 kHz with an unstable bandwidth of roughly 100 kHz. This bandwidth is consistent

with experimental results [41, 46, 71].

4.2.2 LPSE

With the LST results in hand, they were used to guide the linear PSE (LPSE)

calculations. Selected frequencies starting at 285kHz were performed, then tested at

higher and lower frequencies. For quantifying disturbance growth from LPSE, the

N-factor is calculated: N = ln(A/A0) where A is the amplitude and A0 is the initial

amplitude. The N-factors were calculated for each frequency, and the results are shown

in figures 4.4 and 4.5 below. Recall that the LPSE is integrating spatially downstream
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Figure 4.1: Mach contour plot of basic state solution of flared cone generated using
US3D [46].

along the cone from 50mm to 500mm. The base case (Re-9.2) shows the N-factor with

the greatest contribution of disturbance at frequencies of 270kHz to 275kHz. This

shows the LST was a good first pass, and the LPSE homes in on which disturbances

grow largest as they run their course.

Due to uncertainty prevalent in attempting to match computational results to

numerical results, an LPSE sensitivity study was performed. Experimental data showed

that the largest disturbance frequency should have been closer to 300kHz, not 270

kHz [10, 46]. The Re+10% and Re 10.8 cases show 295kHz as the most amplified, with

290kHz and 300kHz spanning it, but the Re 10.8 case had 300kHz N-factor almost as

high as the 295kHz frequency. Lastly, the Re-10% case shows 250kHz to 255kHz as the
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Figure 4.2: Contour plot of basic state solution benchmark (used with permission)
[26].

Figure 4.3: Linear Stability Theory (LST) results of the base case at 150mm down-
stream [46].
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Figure 4.4: LPSE Results N-Factors vs streamwise distance cases: upper-left base,
upper-right Re+10%, lower-left Re-10%, lower-right Re 10.8 (closest
largest N-factor frequencies to experiments) [46].

most amplified. The trend of higher frequency with higher unit Reynolds number is

consistent with standard theory that higher Reynolds numbers yield narrower boundary

layers and thus higher frequency Mack modes [46]. However, the sensitivity of the most

unstable frequencies is quite high [46]. Note that the experimental results, base case

with Re 9.2, observe unstable Mack mode frequencies of approximately 300kHz. The

LPSE calculations ran at the Re 10.8 case achieved sufficiently close frequency Mack

modes. It was stated by the Purdue group that part of this discrepancy was caused by

the test article not being exactly at an angle of attack of 0 degrees, along with potential
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Figure 4.5: A zoom in of the LPSE results cases: upper-left base, upper-right
Re+10%, lower-left Re-10%, lower-right Re 10.8 [46].

pressure concerns found within the BAM6QT tunnel at the time [46]. Furthermore,

numerical investigations have inherent simplifications which can cause this Reynolds

number to differ in order to achieve the same disturbance frequencies. Subsequently,

the Re 10.8 case was chosen to investigate further for nonlinear analysis since it more

closely matched the experimental results.

4.2.3 NPSE

Nonlinear (NPSE) calculations were carried out on the Re 10.8 basic state so-

lution for the primary Mack mode frequency of 300kHz. The intent is to illustrate

the effect of the new formulation on spectral broadening and disturbance amplitude

69



[46]. Two cases were considered: First, discrete mode (traditional delta function NPSE

where W (ω) = δ(ω − ω0)) representation of 300kHz, 250Kz, 350kHz and 50kHz Mack

modes, plus harmonics, and second, Gaussian wave packet representation of 300kHz,

250Kz, 350kHz and 50kHz Mack modes, plus harmonics [46]. All disturbances were

initialized with LST eigenfunctions and given initial amplitudes of 2.5× 10−8 (normal-

ized temperature disturbance based), just upstream of the 300kHz neutral point [46].

The 300kHz mode represents the primary disturbance wave packet, and the 250kHz

and 350kHz disturbances represent the “side lobes” which along with their finite band-

widths, account for spectral broadening [46]. The 50kHz disturbance represents low

frequency content or “noise” at a particular frequency as one might find inside a wind

tunnel. It has been suggested that low frequency content is the cause of spectral broad-

ening, via coupling with the primary mode [46]. Here, we address the mechanism of

spectral broadening directly through comparison of the discrete and wavepacket cases

[46]. Shown on the left-hand side of figure 4.6 is the discrete case, and on the right-

hand side is the wavepacket case. Figure 4.7 shows the wavepacket case again, but with

initial disturbance amplitudes of 5 × 10−8 for the primary disturbance and side lobes

and 5×10−7 for the 50kHz low frequency content. In figure 4.8 the sum of the primary

and side lobes RMS streamwise velocity disturbance amplitudes are compared to the

primary disturbance alone for the wavepacket case. The left side shows calculations

with an initial amplitude of 2.5 × 10−8 (normalized temperature disturbance based),

and the right side shows a 5× 10−8 initial amplitude calculation.

4.3 Discussion

The emphasis of this study was to peer into and apply the physical mechanisms

which drive spectral broadening. Figures 4.6 and 4.7 show that the presence of low

frequency noise does not provide a link between the primary disturbance and side lobes

in the discrete (delta) mode formulation [46]. Thus, the discrete formulation does not

result in spectral broadening, however, the wavepacket formulation does [46]. Consis-

tent with Kuehl (2017), it is found that the mechanism driving spectral broadening is
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Figure 4.6: NPSE simulations of a Mach 6 Purdue flared-cone. Shown are maximum
streamwise velocity disturbance amplitudes for a discrete mode case (left)
and the wave packet formulation (right). Initial amplitudes are set to
2.5 × 10−8 for the primary disturbance, side lobes and for the 50kHz
“noise” [46].
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Figure 4.7: NPSE simulations of a Mach 6 Purdue flared-cone. Shown are maximum
streamwise velocity disturbance amplitudes for the wave packet formula-
tion (right) with initial amplitude of 5×10−8 for the primary disturbance
and side lobes and 5× 10−7 for the 50kHz “noise” [46].

71



Streamwise Distance (m)
0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48

M
ax

im
um

 |u
'|

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
RMS(u') total
RMS(u') Primary

Streamwise Distance (m)
0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48

M
ax

im
um

 |u
'|

0.05

0.1

0.15

0.2

0.25
RMS(u') total
RMS(u') Primary

Figure 4.8: NPSE simulations of a Mach 6 Purdue flared-cone. Shown is the sum of
primary and side lobe RMS streamwise velocity disturbance amplitudes
compared to the primary disturbance alone, for the wave packet case.
The left panel shows calculation with an initial amplitude of 2.5 × 10−8

(normalized temperature disturbance based) and the right panel shows a
5× 10−8 initial amplitude calculation [46].

a mismatch in frequency bandwidth between primary disturbances and first harmon-

ics, and therefore the traditional delta function approach cannot account for spectral

broadening in its current form [7]. Therefore, there is a primary + complex conjugate

first harmonic quadratic coupling that projects energy directly onto the side lobes [46].

Moreover, the low frequency content (“noise”) is observed to grow, but only after spec-

tral broadening has begun [46]. Even when the low frequency “noise” is given an order

of magnitude larger initial amplitude, it does not grow until after the harmonic has

been excited, see figure 4.7 [46]. Therefore, a scenario for spectral broadening that is

consistent with experimental observations and theory, is [46]:

1. Finite bandwidth primary disturbances are initiated in the boundary layer and

grow linearly.

2. As the primary disturbance amplitude increases, harmonics are generated with
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wider spectral content (
√

2σ0), indicating nonlinear growth.

3. Following the growth of the harmonics, nonlinear feedback between the primary

disturbance and first harmonics (due to frequency bandwidth mismatch) drives

slide lobe growth, ie. spectral broadening.

4. Once spectral broadening occurs, the side lobe and primary disturbance interac-

tions drive the low frequency disturbances.

The affect of spectral broadening on disturbance amplitude prediction is il-

lustrated in figure 4.8 [46]. It should be remembered that disturbance amplitude is

calculated by integrating over the spectrum (approximated here by summing individ-

ual disturbance RMS amplitudes). While the primary mode saturates and detunes,

the spectrum broadens, then, this broadening results in continued total disturbance

growth [25, 46]. Such growth is important for nonlinear amplitude based transition

and accurate disturbance amplitude predictions. Note, the approach adopted in this

manuscript is idealized by targeting specific disturbance interactions to study spectral

broadening mechanisms [46].
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Chapter 5

A HISTORY AND PROGRESS OF RESEARCH ON
BOUNDARY-LAYER TRANSITION ON A MACH 6 FLARED CONE

5.1 Introduction

This chapter represents two published review papers: one is the NATO paper

published in the AIAA SciTech 2018 conference, and the other published in the Journal

of Spacecraft and Rockets (JSR). This was a collaborative work on the Mach 6 Purdue

flared cone conducted by researchers from Purdue University, University of Arizona,

Notre Dame, John Hopkins Applied Physics Lab, and Baylor University / University

of Delaware. A synergistic approach among experiment (section 5.2.1), DNS (section

5.2.2), and stability analysis was used to further understand the laminar-turbulent

boundary layer transition on the flared cone. For the sake of brevity, the updated

collaborative contributions from the conference and journal articles will be presented

together in section 5.2, and the contributions from our research group will be presented

in sections 5.3 and 5.4.

5.2 Collaborator Results Summary

5.2.1 Collaborator Experiments on Purdue Flared Cone [42, 43]

This section represents results and contributions by collaborators: Chynoweth,

Schneider, Juliano, and Wheaton [42, 43]. The range of unit Reynolds numbers between

7.3×106/m and 12×106/m were tested of the flared cone with a smooth wall which were

performed by Chynoweth. These experiments focused on two different aspects of the

second-mode instability. First, the natural breakdown was studied to quantify as many

aspects as possible of the non-linear growth, breakdown, and transition to turbulence

of the second-mode wave on a smooth wall [42, 43]. The goal of the other set of
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experiments was to produce roughness elements which interact with the second-mode

instability rather than tripping the boundary layer to control the observed heating

pattern. It was found that when a roughness interacts with the instability, the second-

mode is still the dominant transition mechanism [42, 43].

Figure 5.1 show the TSP results of the experiments. Also, the model was rolled

by 30◦ between the tests. “The streamwise streaks of heating rolled by the same

angle, showing that the vortices were body fixed” [42, 43]. When the asymmetric

circumferential formation of the streamwise streaks was first observed, the cause was

unknown [42, 43]. Willems (2015) showed that a small angle of attack (AoA) could

lead to non-uniform transition on a 3◦ half-angle cone in a way that looked similar to

the flared cone tests [42, 43, 72]. Willems used a specialized angle-of-attack adapter

to make micro-adjustments to the pitch and yaw of the cone [42, 43]. As such, an

adjustable angle-of-attack adapter was fabricated for the flared cone too.

Figure 5.1: (Left) Streamwise heat transfer profile before alignment with the streaks
of heating. (Right) Streamwise temperature profile aligned with the
streaks of heating (used with permission). [42, 43].

Figure 5.1(a) is a TSP image of the flared cone prior to adjustment at a unit

Re of 9.7× 106 /m. The streamwise streaks began almost 5 cm further on the bottom

than on the top portion of the cone [42, 43]. Next, the model was pitched downward

by roughly 0.1◦, and yawed less than 0.1◦ towards the camera [42, 43]. The frequencies

of the peak second-mode wave measured by 4 PCB pressure sensors spaced 90◦ apart
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at a streamwise distance of 39.0 cm from the nosetip [42, 43]. Once the sensors were

measured to have similar frequencies, meaning each was less than 2% off from the mean,

the model was deemed properly aligned to the incoming flow. Figure 5.1(b) shows that

the beginning of the streaks happens more uniformly around the circumference starting

near 39 cm from the nosetip [42, 43].

Increasing Re∞ caused the heating pattern to move upstream on the surface

of the model, and the frequency of the second-mode instability also increased as the

boundary-layer thinned, but the main features of the growth and breakdown of the

second-mode instability remained similar. For all experimental cases with a smooth

wall, a second-mode wave was measured growing in the streamwise direction [42, 43].

Figure 5.2 (left) shows results of a typical power spectral density (PSD) of the second-

mode growth and breakdown. During this process, the second-mode bandwidth broad-

ens. On average, a maximum second-mode fluctuation magnitude of about 30% was

measured prior to the decrease in the pressure fluctuations as breakdown occurred

[42, 43]. After the second-mode wave broke down, the pressure fluctuations dropped to

less than 10% of the mean surface pressure through the aft end of the model [42, 43].

PSE calculations in section 5.3 seek to explain the underlying physics which appear to

be responsible for this broadening.

Figure 5.2 (right) compares the location of the second-mode pressure features

with an average heat-transfer profile extracted along streamlines through the streaks

of heating at a Re∞ ≈ 11 × 106/m. This is similar to the conditions to the direct

numerical simulation (DNS) of fundamental breakdown on the flared cone performed

by Hader at the University of Arizona [42, 43]. The maximum pressure fluctuations

and heat transfer both occur within a laminar boundary layer. Once breakdown begins

and the heating rate decreases, the first increase in intermittency occurs indicating that

transition to turbulence has begun [42, 43]. Around 5 cm downstream from where the

first increase in intermittency occurred, an almost fully turbulent boundary layer is

measured and heating rates have increased to similar values as the upstream set of

streaks. Lastly, the azimuthal wavenumber was found to be 78 for both the upstream
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Figure 5.2: (Left) PSDs in the streamwise direction showing the non-linear growth
of the second-mode instability. (Right) Streamwise heat transfer profile
aligned with the streaks of heating (used with permission) [42, 43].

and downstream sets of streaks [42, 43].

5.2.2 Collaborator DNS Analysis [42, 43]

This section represents results and contributions by collaborators: Hader and

Fasel [42, 43]. High-quality direct numerical simulations (DNS) were conducted to

investigate the underlying behavior of the streak pattern observed the cone’s surface.

For DNS analysis, the mode is defined as: (n,m) is used for shorthand notation of

(n·fprimary,m·kc,domain), where fprimary is the primary instability or wave frequency and

kc,domain is the azimuthal domain wave number [42, 43]. The primary wave frequency is

chosen as the frequency leading to the highest N-factors in the linear regime. For break-

down simulations only, a spanwise section of the cone is considered in the azimuthal

direction.

A “controlled” set of disturbances were introduced into the computational do-

main through a blowing and suction slot in the wall [42, 43]. Therefore, these simu-

lations are referred to as controlled breakdown simulations, as opposed to the natural
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Figure 5.3: N-Factors plotted on frequency vs streamwise location, M = 6, P0 =
965.27kPa, T0 = 420K (used with permission) [42, 43].

breakdown observed in the BAM6QT experiments. Furthermore, previous simula-

tions have shown that the fundamental breakdown is a surmised to be a route to

transition [42, 43]. This type of breakdown is initiated by forcing a large amplitude,

two-dimensional primary wave, mode (1,0), and a small amplitude, three-dimensional

secondary wave, mode (1,1), with the same frequency (fprimary) as the primary wave

[42, 43]. So, in order to initiate a controlled breakdown DNS, the primary wave fre-

quency and the azimuthal wave number of the secondary wave have to be determined

apriori [42, 43].

The primary wave frequency is determined by mapping out the primary instabil-

ities using short duration pulse simulations. Next, experimental results corresponding

to: p0 = 965.27kPa, T0 = 420K were used for the controlled breakdown simulation

[42, 43]. Then, N-factors for these conditions, are shown in figure 5.3 on the right hand

side where the maximum N-factor is at 300kHz [42, 43]. The azimuthal wave num-

ber of the secondary wave was chosen based on a parametric study of the secondary
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instabilities [42, 43]. Hader & Fasel 2017 showed that for BAM6QT conditions, the

fundamental resonance is stronger compared to the subharmonic resonance [73]. In or-

der to determine the azimuthal wave number (kc) leading to the strongest fundamental

resonance onset, low resolution, azimuthal direction DNS were carried out.

Figure 5.4: (Left) Wall pressure disturbance amplitude and phase speed develop-
ment for a fundamental resonance scenario. (Right) Spatial growth rate
of the secondary disturbance wave in downstream direction for varying
azimuthal wave numbers (kc) for the fundamental resonance onset (used
with permission) [42, 43].

In order to understand wave resonance consider the following. When the primary

wave resonates, it grows exponentially until it reaches a sufficiently large amplitude,

then it saturates as shown in figure 5.4 (left) [42, 43]. Next, phase-speed locking oc-

curs between the primary and the secondary waves which causes the secondary ones

to deviate from their linear behavior. In controlled breakdown simulations, the non-

linear breakdown of the disturbance waves that are dominant in the resonance onset is

captured by the azimuthal wave number of the most amplified secondary disturbance

wave.

Next, fundamental resonance onset calculations were conducted for the range of

azimuthal wave numbers: kc = 5 to kc = 200 with ∆kc = 5 [42, 43]. As such, the spatial

growth rate and the wave angle are shown in figure 5.4 (right), with strong resonance

observed at distance of 0.3m corresponding to the strongest fundamental resonance

at azimuthal wave numbers of kc ≈ 80. This wave number will shift to larger values
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moving downstream for which the resonance onset is at its strongest. Nonetheless, the

secondary wave angle remains nearly constant at ψ ≈ 45◦. Thus, the parameters for

DNS were as follows: frequency: f = 300kHz was chosen for primary and secondary

waves, the azimuthal wave number of kc = 80 for the secondary wave. Continuing, the

grid points used were: nx = 4750 in the streamwise, ny = 350 in the wall normal, and

nz = 95 in azimuthal directions [42, 43].

Figure 5.5: (a) Time-averaged Stanton number on the surface of the cone surface and
location markers indicating data extraction locations for further analysis.
(b) Zoom-in of “primary” streaks including overshoot for the turbulence
estimation of the Stanton number at ≈ 0.3941m. (used with permission)
[42, 43].

Next, the time-averaged Stanton number results were determined to show the

heating streaks. 5.5 through 5.7 [42, 43]. At first, the Stanton number on the cone’s

surface is mostly uniform just before the appearance of the primary streaks. This is

the numerical analogy to the hot-cold-hot streak pattern observed in the experiments

[42, 43]. A relatively small variation of the azimuthal Stanton number was observed

until the primary streaks appeared. Then, the primary streaks disappeared and the

Stanton number became uniform again in azimuthal direction before the flow began to

break down and a secondary streak pattern appeared, see figure 5.5(a). The secondary
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streaks are weaker than the primary streaks, consequently, the peak surface heating of

the secondary streaks where breakdown occurs, was much smaller than the upstream

primary streak region [42, 43]. In figure 5.5(b) a zoom-in of the primary streaks are

shown in the upper half, and in the lower half the time-averaged streamwise develop-

ment of the Stanton number. Curves depicting a laminar and a turbulent estimate

are included per White (2006) [12]. Before the primary streaks appear, the curves for

the Stanton number develop for different azimuthal locations. Further, the azimuthally

averaged Stanton number is nearly idential. Once the primary streaks begin to appear,

the curves diverge from one another, yet converge again further downstream when the

streaks disappear. This behavior indicates that the appearance, disappearance, and

reappearance of the streaks is linked to three-dimensional modes [42, 43].

Figure 5.6: (a) Stanton number coefficient vs streamwise distance along cone. (b)
Stanton number coefficient vs azimuthal angle around cone (used with
permission) [42, 43].

Figure 5.6 shows the downstream development of the time-averaged Stanton

number, with the variations of the normalized azimuthal direction are shown period-

ically [42, 43]. The data for ϕ = 0 radians shows a very high peak at ≈ 0.39m, and

a smaller peak at ≈ 0.5m downstream, and for ϕ = π/80 radians does not peak as

high as the 0 radian case. Furthermore, the secondary streak location at 0.5m does not

have as high of a Staton number as the primary streak location. In figure 5.7, cross-

sections of the primary (figure 5.7(a)) and secondary (figure 5.7(b)) streaks locations
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Figure 5.7: (a) Time averaged temperature, Stanton number on the surface of the
cone, and streamlines contour plot at 0.3941m downstream. (b) At
0.4699m downstream (used with permission) [42, 43].

are shown [42, 43]. Seen were counter-rotating vortices which pulled cooler air from

the freestream and trapped it next to the wall between the vortices heating it up right

above the streak location. Subsequently, it was shown by Hader and Fasel that when

these vortices detach from the wall, the primary streaks fade where the cold region is,

and the Stanton number returns to the laminar amounts [74]. Then, the disturbance

nonlinearities reattached the streamwise vortices, and the streaks reappear, hence the

hot-cold-hot streak pattern observed [42, 43].

5.2.3 Collaborator Comparison of Experiments and DNS [42, 43]

This section represents results and contributions by collaborators: Chynoweth,

Schneider, Juliano, Wheaton, Hader and Fasel. The aforementioned experimental and

DNS results were compared in order to better understand the hot-cold-hot streak for-

mation on the flared cone. Figure 5.8 shows an overlay of the time-averaged Sta-

ton number DNS (Re = 10.8 × 106/m) and the TSP image from the experiment

(Re = 11.0 × 106/m) with good qualitative comparison [42, 43]. Moreover, the DNS

produced 80 streaks, and an extrapolated count of 78 streaks were found from the

experiment. Figure 5.9 shows quantitative comparisons of the DNS and experimental

results. The left hand side figure shows Stanton number vs streamwise distance. The
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Figure 5.8: Stanton number of DNS compared to experimental TSP results of streaks
(used with permission) [43].

DNS starts to deviate from the experiment at roughy 30cm, and has the very high over-

shoot at roughly 39cm, whereas the experiment does not have such an overshoot. After

the overshoot, the DNS trend drops to levels much closer to the experimental data.

The right hand figure shows pressure fluctuation vs streamwise distance. Again, there

is a high overshoot in the DNS compared to the experiments, and the trend matches

again starting about 40cm downstream. The reason for the overshoots is that in order

to force the DNS to transition, the controlled disturbance is forced as described in the

earlier section which is fundamentally different than the natural transition process in

the experiment [42, 43].

5.3 Stability Analysis Results - NATO AIAA SciTech 2018 [42]

5.3.1 Comparison of Experiments and NPSE

As noted by Kuehl (2017), the wave packet formulation accounts for proper

re-distribution of energy between finite-bandwidth disturbances that the traditional
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Figure 5.9: (Left) Stanton number vs streamwise distance, DNS vs experimental
results; (Right) Pressure fluctuation differences vs streamwise distance,
DNS vs experimental results (used with permission) [43].

PSE approach does not [7, 42]. The redistribution of energy onto the side-lobes re-

sults in larger total disturbance amplitudes than those predicted by traditional PSE

[42]. Figure 5.10 shows calculations for 2-D second-modes initialized with amplitudes

of 1× 10−6 (upper), 1× 10−7 (middle) and 1× 10−8 (lower) based on normalized tem-

perature disturbance amplitude [42]. Unlike experiment and to a lesser extent in DNS

analysis, PSE is an approximate method in which assumptions are made with the in-

tent to isolate and study specific physical processes [42]. In this case, the wave packet

methodology has been utilized to account for energy redistribution into side-lobes, to

model spectral broadening [42]. In the traditional PSE case, the 275 and 325 kHz

side-lobes are trivially amplified [42]. However, notice that due to the wave packet

energy redistribution, those side-lobes grow to significant amplitude [42]. These side-

lobes model the spectral broadening observed in experiment [42]. Spectral broadening

is found to begin between 0.38 - 0.4m downstream from the cone tip in the 1 × 10−6

case, between 0.41 - 0.44m in the 1 × 10−7 and between 0.44 - 0.47m in the 1 × 10−8

case [42].

The experimental results suggest spectral broadening begins between 0.4 - 0.44m
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Figure 5.10: NPSE calculations of second-mode growth on the Purdue flared cone
for initial disturbance amplitudes of 1× 10−6 (upper), 1× 10−7 middle
and 1× 10−8 (lower).

downstream of the cone tip, which appears consistent with initial disturbance ampli-

tude of 1 × 10−7 or slightly larger [10, 42]. Figure 5.11 provides a closer look at this

case. The left panels show non-dimensional RMS streamwise velocity and pressure

disturbances for individual PSE modes, while the right panels show total amplitude of

the primary 300 kHz mode plus the side-lobes. The primary mode reaches around 16%

(4% pressure) amplitude based on disturbance streamwise velocity with side-lobes near

15% and 7% (4% and 1% pressure), resulting in a total disturbance amplitude of 38%

(9% pressure). The trends in these results appear to be roughly consistent with the

experimental results: First, weak spectral broadening is initiated around 0.41m. Next,

averaged heat flux (or skin friction coefficient), which is associated with the mean flow
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distortion mode peaks and then begins to decay (in this case around 0.44m). Finally,

side-lobes reach amplitudes comparable with the primary disturbance.
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Figure 5.11: NPSE calculations of second-mode growth on the Purdue flared cone
for initial disturbance amplitude of 1×10−7. Plotted in the left column
are disturbance mode RMS amplitudes of streamwise velocity (top) and
pressure (bottom). The right column shows total disturbance amplitude
of the primary mode plus both side-lobes.

The agreement between these PSE trends and experimental results is encourag-

ing and suggest PSE is a viable tool for studying the nonlinear pre-transitional zone.

However, PSE is an approximate method and at the current level of approximation un-

certainly remains. Most notably in the total disturbance amplitude estimates. Based

on Chynoweth (2015), the PSE estimates are roughly 50% of the experimental values

[10, 42]. The results of Kuehl et al. (2014) suggest the total disturbance amplitude will

be sensitive to number of modes utilized to represent the disturbance and preliminary

results suggest sensitivity to the choice of side-lobe frequencies [24]. However, resolu-

tion of this inconsistency will require further research, however in the present case, it
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is likely that the neglect of vortical and oblique disturbances has affected the energy

transfer associated with the K-type breakdown. In the traditional PSE case, inclusion

of oblique and vortical disturbances is straight forward, however, in the wave packet

formulation their inclusion has not yet been achieved but is ongoing research. Evidence

for the importance of vortical disturbances, beyond the K-type energy transfer, was

provided by Kuehl and Parades [22, 42]. It was shown that vortical modes distort the

mean flow and fundamentally alter the second-mode behavior from 1-D disturbances

to fully 2-D by modifying the acoustic waveguide in which the second-modes travel.
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Figure 5.12: NPSE calculations of second-mode growth on the Purdue flared cone
for initial disturbance amplitude of 1× 10−7 with the inclusion of a low
frequency disturbance.

Figure 5.12 illustrates a PSE calculation that includes a low frequency distur-

bance corresponding to the difference between the primary disturbance frequency and

the side-lobe frequencies. Again, it is observed that after the spectrum broadens (after

side-lobes emerge), that the low frequency disturbance experiences significant growth.

In this case, the low frequency disturbance exceeds 2% amplitude. In fact, these result
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suggest the opposite: that low frequency content is the result of the spectral broadening

which precedes the transition to turbulence.

5.4 Stability Analysis Results - AIAA Journal of Spacecraft and Rockets

[43]

5.4.1 Comparison of Experiments and NPSE

The results as published in this article were an improvement upon the conference

publication results. Similar to figure 5.10, figure 5.15 shows the results of another PSE

run, but with 270 and 330 kHz side-lobes, and a between initial amplitude case of

5 × 10−7. Spectral broadening is now indicated by the shaded region enclosed by the

vertical dashed lines, and is found to begin between 0.4 - 0.42m downstream from the

cone tip in the 1× 10−6 case, between 0.42 - 0.44m in the 5× 10−7, and between 0.44

- 0.46m in the 1× 10−7 case [43].

Peak disturbance amplitudes of approximately 30% based on normalized pres-

sure experimental results were found as shown in figure 5.14 as shared by Purdue

[11, 43]. This is consistent with the NPSE calculated amplitudes which reached into

the 20-40% range for those initial amplitude cases that exhibit a similar onset of spectral

broadening (figure 5.16, left panel). Another useful comparison between the experi-

mental and numerical data is to consider the amplitude ratio between the primary

disturbances (primary mode and side lobes) and the first harmonics of those modes

(i.e. primary/harmonic). Similar to the consideration of spectral broadening onset, this

comparison provides information regarding the proper distribution of energy between

modes in the numerical scheme.

Figure 5.13 and table 5.1 from streamwise locations of roughly 36.5 to 39 cm

indicate an estimate for the onset of spectral broadening experimentally [11]. The

experimental results also suggest spectral broadening begins between 0.4 to 0.41.5 m

downstream of the cone tip, which appears consistent with initial disturbance ampli-

tudes between 1 × 10−6 and 5 × 10−7 [11]. By calculating from experimental data
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Figure 5.13: Power spectral density (PSD) of Purdue flared cone showing growth
frequency range nonlinearities/harmonics, and spectral broadening and
onset locations at Re = 11× 106 m−1 (used with permission) [11].

shared by Schneider and Chynoweth (see table 5.1) the primary to first harmonic am-

plitude ratios of approximately mid to low 20s prior to the onset of spectral broadening,

dropping to mid to low teens during spectral broadening and entering the single digits

shortly afterwards. As seen in figure 5.16 (right panel), the NPSE calculations recover

similar amplitude ratio trends.

The agreement between these PSE trends (disturbance amplitude, onset of spec-

tral broadening and primary to harmonic amplitude ratio) and experimental results is

encouraging and suggest that PSE is a viable tool for studying the nonlinear pre-

transitional zone. However, PSE is an approximate method and at the current level

89



Figure 5.14: Second-mode peak amplitudes and intermittency estimated at roughly
Re = 11× 106 m−1 (used with permission) [11].

Table 5.1: Primary Divided by 1st Harmonic Amplitude Ratio Re-tabulated by Ex-
perimental Data Shared by Schneider and Chynoweth from Purdue.

Sensor Distance [cm] Primary / 1st Harmonic Amplitude Ratio
34 9.7

35.3 7.7
36.5 22.1
37.8 17.5
39.0 13.1
40.3 7.8
41.5 6.8
42.8 7.2

90



Figure 5.15: NPSE calculations of second-mode growth on the Purdue flared cone
for initial disturbance amplitudes of 1× 10−6 (upper), 5× 10−7 middle
and 1 × 10−7 (lower). The grey shaded region indicates the onset of
spectral broadening.

of approximation uncertainty remains. The results of Kuehl et al. suggest the total

disturbance amplitude will be sensitive to the number of modes utilized to represent

the disturbance and preliminary results suggest sensitivity to both the number of side-

lobes and their chosen frequency distribution [24]. This can be seen in figure 5.17

where different distributions of side-lobes are considered. Notice that despite the total

disturbance amplitude being the same in each case, variations in both amplitude and

distribution remain. The resolution of these uncertainties will require further research,

however in the present case, it is likely that the neglect of vortical and oblique distur-

bances has the most significant effect on numerical-experimental comparison via the

energy transfer associated with the K-type breakdown scenario. In the traditional PSE

case, inclusion of oblique and vortical disturbances is straight forward. In the wave

packet formulation, their inclusion is ongoing research. In addition, evidence for the
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Figure 5.16: NPSE calculations for 1×10−6, 5×10−7 and 1×10−7 initial disturbance
amplitudes. Left: Total primary disturbance amplitude (primary plus
side-lobes). Right: Primary to first harmonic amplitude ratio. Grey
shaded region indicates the onset of spectral broadening.

importance of vortical disturbances beyond the K-type energy transfer was provided

by Kuehl and Parades [22]. It was shown that vortical modes distort the mean flow

and fundamentally alter the second-mode behavior from 1-D disturbances to fully 2-D

by modifying the acoustic waveguide in which the second-modes travel. This result

is consistent with the recent thermoacoustic interpretation of second-mode instability

provided by Kuehl [8].

Similar to the Scitech results, figure 5.18 illustrates a PSE calculation that

includes a low-frequency disturbance. These results again suggest that the emergence

of low-frequency content in boundary layer transition measurements is not a result of
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Figure 5.17: NPSE calculated disturbance spectrum at three different locations span-
ning the onset of spectral broadening for initial disturbance amplitude
of 5× 10−7. Left: 3 modes separated by 30kHz. Middle: 5 modes sepa-
rated by 15kHz. Right: 7 modes separated by 10kHz. Total disturbance
amplitude (primary plus side-lobes) is the same in each case.

“tunnel noise”, but instead are a fundamental consequence of finite-bandwidth primary

mode disturbances and spectral broadening, which precedes transition.
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Figure 5.18: NPSE calculations of second-mode growth on the Purdue flared cone
for initial disturbance amplitude of 1 × 10−7 with the inclusion of a
low-frequency disturbance.
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Chapter 6

NONLINEAR DYNAMICS OF SECOND MODE WAVES ON A
HYPERSONIC FLARED CONE

6.1 Introduction & DNS Basic State [45]

In collaboration with Victor Sousa and Dr. Carlo Scalo of Purdue, this chapter

presents a comparison of acoustic DNS results they calculated using CFDSU at Purdue,

and the JoKHeR PSE solver at University of Delaware. Again, the Purdue flared cone

is considered at Re/m = 10.8× 106. The details are listed in table 6.1. CFDSU solves

the Navier-Stokes equations using a sixth-order compact finite difference scheme [45]. A

basic state solution is generated with no perturbations, see figure 6.1. Then the DNS is

fed this basic state with a perturbation, which is generated by wall suction or blowing,

and the evolution of the perturbation is calculated with CFDSU. A comparison of

velocity and temperature profiles are shown in figure 6.2 from the basic state solution

generated by US3D and the high order solution by CFDSU.

Table 6.1: US3D Run Conditions for Basic State [45].

Run Case Boundary ρ∞ [kg/m3] T∞ [K] u∞ [m/s] Twall [K]
Re/m = 10.8× 106 Inflow 0.0417 51.6448 864.3102 300

6.2 Results [45]

6.2.1 NPSE and DNS Comparison

We compared the results obtained in the DNS simulations with NPSE calcula-

tions as shown in figure 6.3. The DNS was initialized with disturbance pulse amplitude
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Figure 6.1: Flared cone geometry and computational domain contour plot (used with
permission) [45].
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Figure 6.2: Boundary layer profiles height above the wall (y) vs temperature dif-
ference and streamwise velocity at different streamwise locations along
the cone surface for the precursor and high order calculations. The solid
line is US3D, and the symbols are from CFDSU simulations (used with
permission) [45].
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of 1.0× 10−6 m/s for 1.67 µs. The results show that for all grids simulated, the growth

rate of the primary frequency is in good agreement [45]. As the grid is refined, the

estimated growth rates for the higher harmonics also start to exhibit agreement with

NPSE trends. In order to capture the growth rates of the 900 kHz mode, a grid

resolution of at least nx = 9216 and ny = 640 was required [45]. However, there is dis-

agreement in the spatial region where harmonics become important, and in the region

where saturation of the wave occurs. This is consistent with the fact that disturbances

of higher frequencies need more points to be accurately resolved with a minimum nu-

merical dissipation, and is therefore the expectation that increasing the grid resolution

would produce closer matching of the results. Finally, It is worth noting that the noise

floor decreases monotonically as the grid was refined.
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Figure 6.3: Comparison of the DNS and nonlinear PSE results (used with permission)
[45].

6.3 Collaborators Results On Spectral Broadening [45]

This section represents results and contributions by collaborators: Sousa and

Scalo [45]. The DNS was run again with an initial amplitude of 1 × 10−4 m/s. This

was to test the moderately to highly nonlinear disturbance evolution region [45]. Fig-

ure 6.4 shows the PSD results of this case. Notice the presence of strong harmonic
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amplitudes, which indicates how reliant upon nonlinear effects this disturbance is [45].

Figure 6.5 shows the disturbance amplitudes vs frequency at 3 different streamwise

locations. Both figures show spectral broadening as a consequence of the nonlinearities

[45]. Lastly, Sousa and Scalo show a simulated Schlieren of the rope waves within

this highly nonlinear disturbance region in figures 6.6 and 6.7. These rope waves ap-

pear in experimental Schlieren images, and are comparable. Note, the wavelength is

roughly twice the boundary layer thickness, which is consistent with experimental re-

sults [45, 75]. Figure 6.7 shows the rope waves transformed into streamwise and wall

normal components.
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Figure 6.4: Amplitude spectrum of the pressure disturbance at the wall caused by
advection with an initial amplitude of 1.0 × 10−4 m/s on a flared cone
(used with permission) [45].
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Figure 6.5: Disturbance pressure amplitude vs frequency for various streamwise po-
sitions with amplitude of 1.0× 10−4 m/s (used with permission) [45].
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Figure 6.6: Numerical Schlieren showing “rope waves” caused by non-linear interac-
tions between second-mode waves of high amplitude (used with permis-
sion) [45].

Figure 6.7: “Rope waves” at boundary layer edge towards the end of the computa-
tional domain as transformed into physical coordinates (used with per-
mission) [45].
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Chapter 7

ON THE MECHANISM BY WHICH NOSE BLUNTNESS
SUPPRESSES SECOND-MODE INSTABILITY

7.1 Introduction

Recalling from section 2.3.1.3, we return to the “blunt body paradox” described

by Reshotko and Tumin (2000) [29]. In this chapter, the laminar-to-turbulent transition

delay with increasing nose bluntness is addressed. Specifically, the physical mechanism

by which nose bluntness alters second-mode growth is addressed before attempting

to understand the entire “blunt body paradox”. This work represent a first step in

towards understanding the critical nose bluntness at which the transition front jumps

forward, which is a subject of future work. We know that the delay in transition is

associated with the suppression of second-mode growth, and not associated with larger

transitional N-factors as shown by Tufts and Kimmel (2017) and Juliano et al. (2015))

[34, 35]. This is because Stetson showed second-mode growth is suppressed within

the entropy layer swallowing length, while outside of the entropy layer, second-mode

growth was found to be unaffected by the bluntness [36] .

Further, recall that second-mode instabilities behave as resonant thermoacous-

tic waves trapped in an acoustic impedance well [8]. Figure 7.1 illustrates such trap-

ping. Several phases of wall normal velocity disturbance (v′, red line) and pressure

disturbance (p′, blue line) are shown for a second-mode oscillating within an acous-

tic impedance well (green line), where homogeneous acoustic impedance is given as

the square root of basic state density field (
√
ρ̄). Note, acoustic impedance in the

figure has been shifted for clarity. It is clearly seen that the second-mode wave is con-

tained within the acoustic impedance well formed between the density gradient and

the vehicle wall. Further, by adopting a Lagrangian frame of reference for the inviscid
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acoustic energy equation, Kuehl was able to show (with the rather limiting inviscid

and 1D restrictions) that this resonance is driven by thermoacoustic Reynolds stresses(〈
d
dy

(ρ̄T ′v′)
〉

and
〈
d
dy

(
T̄ ρ′v′

)〉)
, where 〈〉 represent cycle averaging, over-bar indi-

cates basic state quantities, prime indicates disturbance quantities, and y is the wall

normal direction. Here this new theory will be applied to the blunt nose problem

to understand the physical mechanism by which nose bluntness is able to suppress

second-mode growth.

Figure 7.1: An example of second-mode wall normal velocity (v′, red) and pressure
(p′, blue) disturbances at different phases of oscillation. Modes are calcu-
lated at 1.1m from the sharp nose tip, where the most unstable second-
mode is approximately 130kHz. Superimposed on the background is the
acoustic impedance (

√
ρ̄, green) which has been shifted for clarity.
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7.2 Basic State

Following the protocol established by Stetson (1983, and later Marineau et al.

2014), 7 degree half-angle, straight cone geometries of different nose bluntnesses are

considered [36, 32]. The cone walls were modeled as a single, smooth body. The

nominally sharp nose cone has a length along its axis of 1.6m, which is used as the ref-

erence length for the remaining cones. With a 7 degree half-angle, the base half-width

is 196.45mm which was held constant in each case. The nose radii considered are:

0.15mm (sharp), 3.556mm, 5mm, 9.525mm, 12.7mm, and 25.4mm (figure 7.2). Steady,

laminar basic state solutions were obtained with US3D. US3D is a CFD software pack-

age specifically designed for high-speed flows which uses the finite volume method to

solve the compressible Navier-Stokes equations. Moreover, US3D incorporates high

order solving schemes, various viscosity and gas properties, and other physical aspects

which help to create high accuracy solutions [66, 67, 68].

Our hypersonic CFD process consists of: creating the geometry in Solidworks,

meshing in Pointwise, running US3D to produce the steady state solutions (basic

states), and visualizing the flow field in Tecplot. The wall normal data of the ba-

sic state was extracted using a combination of Tecplot and in-house developed scripts.

The mesh dimensions are as follows, 1600 streamwise points, one degree rotation in

the azimuthal direction, and test-driven convergence to determined the number of

wall normal points (shown in table 7.1). The flow conditions are representative of the

AFOSR-Notre Dame Large Mach 6 Quiet Tunnel conditions at a unit Reynolds number

of 11.0× 106 [76].

In US3D, the inputs and boundary conditions for the freestream and the isother-

mal wall were calculated by using the isentropic flow relations and unit Reynolds num-

ber. The inflow conditions and wall temperature are listed in table 7.2. The other

boundary conditions were defined as an outflow at the downstream end of the domain,

and symmetry conditions on both azimuthal sides. Additional settings included non-

reacting, laminar, viscous flow. Using CFL ramping, the calculation was run until a
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converged, and a steady state solution was reached [44]. Figure 7.3 shows Mach con-

tour plots of the flow field for each nose bluntness. In each plot, a bow shock is present

at the nose of each cone which shifts to an oblique shock sufficiently downstream of

the nose region.

Figure 7.2: Schematic of cone geometries illustrating nose bluntness variations.

Table 7.1: Test Models

Rn (mm) Rn (in) Wall Normal Points
0.15 0.006 781
3.556 0.14 681
5.0 0.197 681
9.525 0.25 961
12.7 0.5 1061
25.4 1.0 2716

7.3 Results

As discussed above, it has been well established that the presence of a strong

entropy layer suppresses second-mode growth. In figure 7.4, the entropy layer for
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Table 7.2: Test Conditions

Re/m ρ∞ [kg/m3] T∞ [K] u∞ [m/s] Twall [K]
11.0× 106 0.0432 53.0488 875.9795 300

US3D inflow free-stream conditions for Re/m = 11.0× 106, corresponding to
AFOSR-Notre Dame Large Mach 6 Quiet Tunnel conditions.

Figure 7.3: Mach contours for: Upper left: 0.15mm (sharp nose). Upper right:
3.556mm nose. Middle left: 5mm nose. Middle right: 9.525mm nose.
Lower left: 12.7mm nose. Lower right: 25.4mm nose.
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Figure 7.4: Entropy contours [J/K], s = cvln
(

p
p∞

)
+ cpln

(
ρ∞
ρ

)
, for: Upper left:

0.15mm nose. Upper right: 3.556mm nose. Middle left: 5mm nose.
Middle right: 9.525mm nose. Lower left: 12.7mm nose. Lower right:
25.4mm nose.

each case can be seen and it is clear that little or no entropy layer is present for the

sharpest-nose cases (0.15mm), a small entropy layer is formed for the 3.556mm case

that is swallowed after 0.3m, a slightly stronger entropy layer is formed for the 5mm

nose bluntness that is swallowed around 0.5m, a robust entropy layer is formed for the

9.525mm case that is swallowed near 1.1m, and for the two bluntest-cases (12.7mm

and 25.4mm) a strong entropy layer is not swallowed on the body for the cone. These

results agree well with LPSE calculations (figure 7.5, left column). In those regions
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with no (or a weak) entropy layer, the boundary layer is susceptible to second-mode

instability. In those regions with a robust entropy layer, second-mode instability is

significantly diminished or not present at all. Our calculations are consistent with

the expectation that modal growth is not present within the entropy layer, though an

exhaustive search of oblique mode was not conducted. This is consistent with the idea

that some form of non-modal growth is responsible for the blunt body paradox.

Recalling from chapter 2, the thermoacoustic interpretation of second-mode

dynamics posits that second-modes behave as thermoacoustic resonators in a ther-

moacoustic impedance well [8]. The acoustic impedance of a homogenous medium is

proportional to the square root of the basic state density (
√
ρ̄). Figure 7.5 (right col-

umn) shows profiles of acoustic impedance at different locations along the cone for the

various nose bluntnesses considered. For the sharpest-nose case (0.15mm), we observe

a well-defined acoustic impedance well with a sharp gradient in impedance (density) at

all locations along the cone. Comparing the impedance profiles with the stability cal-

culations (figure 7.5), we notice that when moving downstream the acoustic impedance

well widens (peak density gradient is further from the wall) and correspondingly the

most unstable second-mode frequency decreases. This behavior is consistent with the

thermoacoustic resonance interpretation. Next, consider the intermediate bluntness

case (5mm) (figure 7.5 middle row). In this case, we observe that the entropy layer has

modified the acoustic impedance well for the first few streamwise locations. Comparing

with the corresponding stability results, we see that second-mode growth is suppressed

at these ‘modified’ streamwise locations, but growth resumes once the modification has

“died out” (i.e. the entropy layer has been swallowed). Finally, it is observed that for

yet larger nose radii, the entropy layer extends over the entire length of the cone and

significantly alters the acoustic impedance well. Considering the associated stability

results, it is observed that second-mode growth is significantly suppressed along the

length of the 9.525mm and 12.7mm cones. Again, these results are consistent with the

thermoacoustic interpretation, which posits that the second-mode instability relies on

the existence of a well-defined acoustic impedance well in which it can resonate. If this
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well is interfered with, for example modified by an entropy layer or some other form

of disturbance, Kuehl and Paredes 2016 showed similar effects with small amplitude

Görtler modes on a flared cone), then the resonance is interfered with and subsequently

the second-mode dynamics are altered [22].

At this point, a final question remains: How much modification to the impedance

well is required to ‘detune’/destroy the second-mode resonance? To address this ques-

tion, we return to the classic inflection point criteria that: (ρU ′)′ must change sign

(Lees and Lin 1946). Note from hereon, ′ denotes wall normal derivative (d/dy). We

can determine an estimate for the strength of the acoustic impedance gradient required

for second-mode growth by expanding (ρU ′)′ = ρU ′′ + ρ′U ′. The condition that (ρU ′)′

must change signs leads to ρ′U ′ = −ρU ′′, at the generalized inflection point zero cross-

ing. It is clear from figure 7.6 (left column) that the generalized inflection point criteria

is satisfied in all cases and that to satisfy the criteria, the ρU ′′ term must be balanced

by a combination of density or velocity gradients. For the criterion to be dominated

by velocity gradients, we defined Û ′ = −ρU ′′

ρ′
. For the criterion to be dominated by

density gradients, we define ρ̂′ = −ρU ′′

U ′
.

Figure 7.6 show profiles of the generalized inflection point, (ρU ′)′, and compo-

nents (ρU ′′, ρ′U ′ ), and the basic state density and velocity gradients (ρ̄′, Ū ′) along with

‖Û ′‖, ‖ρ̂′‖, respectively, at five different streamwise locations which span the entropy

swallowing length for the 5mm nose bluntness case. Note that despite the generalized

inflection point criteria being satisfied at all locations (and that at the generalized

inflection point criteria zero crossing we find ‖Û ′‖ = Ū ′ and ‖ρ̂′‖ = ρ̄′), those stream-

wise locations upstream of approximately 0.5m do not exhibit second-mode instability,

while those locations downstream do. It is also observed that for those streamwise lo-

cations upstream of approximately 0.5m (i.e. within the entropy layer), the generalized

inflection point criteria is satisfied based on the strength of the basic state velocity

gradients. This means that within the entropy swallowing length the criterion is indi-

cating that velocity gradients are dominant, or ‖Û ′‖ > ‖ρ̂′‖ at the zero crossing, where
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second-mode suppression is observed. Whereas, at those locations downstream of ap-

proximately 0.5m (i.e. downstream of the entropy swallowing length), the generalized

inflection point criteria is satisfied based on the strength of the basic state density

gradients, or ‖ρ̂′‖ > ‖Û ′‖ at the zero crossing, where second-mode growth is observed.

More specifically, consider in figure 7.6 the right column. For the 0.11m upstream

location (top image), at the zero point crossing of the generalized inflection point we

observe that ‖Û ′‖ = Ū ′ is much greater than ‖ρ̂′‖ = ρ̄′. With each step further down-

stream (successive figures down the column), we see that ‖Û ′‖ = Ū ′ becomes smaller,

while ‖ρ̂′‖ = ρ̄′ gets larger, until they swap places, and ‖ρ̂′‖ = ρ̄′ dominates at a suffi-

ciently downstream position. This implies that second-mode growth is suppressed by

the entropy layer ‘detuning’/destroying the basic state density gradient.

Therefore, we find that nose bluntness suppresses second-mode growth via en-

tropy layer modulation of the basic state density gradients, which is consistent with the

thermoacoustic resonance interpretation of second-modes. In other words, the entropy

layer destroys the thermoacoustic impedance well required to sustain thermoacoustic

resonance.

7.4 Discussion

The mechanism by which nose bluntness suppresses second-mode instability has

been investigated by studying 7 degree half-angle straight cones with nose bluntnesses of

0.15mm, 3.556mm, 5mm, 9.525mm, 12.7mm and 25.4mm at tunnel conditions relevant

to the AFOSR-Notre Dame Large Mach 6 Quiet Tunnel. As expected, our results are

consistent with previous studies which find that within the entropy layer, second-mode

instability is suppressed. However, here we have explicitly shown that the physical

mechanism by which this suppression is achieved is via entropy layer modulation of

the basic state density gradient. This is consistent with the thermoacoustic resonance

interpretation of second-mode dynamics, i.e. second-mode waves behave as resonant

thermoacoustic waves trapped in a thermoacoustic impedance well formed between

strong basic state density gradient and the vehicle wall. We have shown that the
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entropy layer weakens the basic state density gradient sufficiently enough to destroy

this resonance, and thus stabilize the second-mode waves. Furthermore, we provided a

metric for determining when a second-mode instability will be present by considering

the generalized inflection point criteria: (ρU ′)′ = ρU ′′ + ρ′U ′, noting that at the zero

point crossing: ‖Û ′‖ = Ū ′ and ‖ρ̂′‖ = ρ̄′. Specifically, second-mode instability is

present when at the generalized inflection point zero crossing: ‖ρ̂′‖ > ‖Û ′‖, and is

suppressed when at the generalized inflection point zero crossing: ‖Û ′‖ > ‖ρ̂′‖. That

is, when basic state density gradients dominate the generalized inflection point criteria,

second-mode instability is present (i.e. the acoustic impedance well is strong enough to

support resonance), and when basic state velocity gradient dominates the generalized

inflection point criteria, second-mode growth is suppressed.
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Figure 7.5: Shown starting from top to bottom nose radii of: 0.15mm, 3.556mm,
5mm, 9.525mm, and 12.7mm. Left column: N-factors. Right column:
acoustic impedance profiles (

√
ρ̄) at various streamwise locations.
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Figure 7.6: Shown are results for 5mm nose bluntness at various streamwise locations.
Left column: generalized inflection point criteria. Right column: density
and velocity gradients (ρ̄′, Ū ′, ‖ρ̂′‖, ‖Û ′‖).
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Chapter 8

IMPLICATIONS OF LOCAL WALL TEMPERATURE VARIATIONS
ON SECOND-MODE INSTABILITY

8.1 Introduction

In this chapter, wall temperature variations were numerically tested using LST

and linear PSE along the Purdue flared cone at Mach 6 BAM6QT conditions. The pur-

pose of this research was to determine the viability of localized temperature controlled

regions to control second-mode instability. Such temperature variation could be gener-

ated by thermocouples or, perhaps, through choosing vehicle materials with different

degrees of thermal conductivity or insulation. It is generally understood that wall

heating suppresses second-mode growth, while wall cooling enhances growth. Cooling

and heating affect the acoustic impedance well by altering the density gradient and

thereby altering disturbance growth.

This also leads to a potential physical explanation for the results of Fong et

al. (2015) in which sufficiently large 2D surface roughness were capable of suppressing

second-mode growth [77]. It is also known that changes in the vehicle wall temperature

can alter the second-mode dynamics [19]. In general, evidence shows that wall cooling

dampens first-mode disturbances, while heating the wall dampens second-mode dis-

turbances [19]. However, to the author’s knowledge, the affect of 2D heating/cooling

bands (similar to the 2D roughness of Fong) on second-mode instability have not been

investigated [77].

In this chapter, heated/cooled wall temperature segments, denoted as “heat

strips” or “cool strips”, are numerically analyzed to study their effect on second-mode

instability. Also, in the context of the thermoacoustic resonance interpretation, the
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physical mechanism through which such strips modify second-mode dynamics is ad-

dress. Such heat/cool strips may serve as potential active or passive controls strategies

for second-mode instability. The result of this study may also prove insightful for hy-

personic vehicle designers concerning material selection via natural thermal properties

of various materials.

8.2 Basic States

The Purdue flared cone geometry was used once again for the various basic

states which were generated. The flow conditions are representative of the Purdue

Boeing/AFOSR Mach-6 Quiet Tunnel (BAM6QT) conditions at a unit Reynolds num-

ber of 10.8 × 106 [11, 38, 40, 41, 46]. This corresponds to a maximum second mode

disturbance frequency occurring at roughly 300kHz which is consist with experimental

and DNS results [42, 43, 45, 46]. In US3D, the inputs and boundary conditions for the

freestream and the isothermal wall were calculated by using the isentropic flow rela-

tions and unit Reynolds number (equations, 8.1). The inflow conditions for the base

case are listed in table 1, and the corresponding wall temperatures for each basic state

ran are listed in table 2. Additional boundary conditions include an outflow at the

downstream end of the cone, and symmetry conditions on both azimuthal sides. The

settings included non-reacting, laminar, viscous flow at the inflow boundary. Using

CFL ramping, the simulation was ran until a converged, and a steady state solution

was reached [44]. Figure 4.2 shows a Mach contour plot of the flow field for the Base

case. A weak, oblique shock is visible towards the middle of the plot, becoming more

pronounced moving further downstream which again is consistent with the results of

Fasel et al. (2015) [26].

P0

P
=

(
ρ0

ρ

)γ
=

(
T0

T

) γ
γ−1

T0

T
= 1 +

γ − 1

2
M2 (8.1)
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Boundary BAM6QT Re/m US3D Re/m ρ∞ [kg/m3] T∞ [K] u∞ [m/s] Mach

Inflow 11.0× 106 10.8× 106 0.0355 51.9799 867.1092 6

Table 1: US3D Free-stream conditions corresponding to second-mode 300kHz

disturbance matching of Purdue BAM6QT conditions.
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Table 8.1: Table 2: US3D wall boundary conditions for Re/m = 10.8× 106.

Case Twall [K] Cooled/Heated Region(s)
BASE 300 Entire Wall

BASE350 350 Entire Wall
BASE250 250 Entire Wall
HS35015 350 0.15m - 0.20m
HS35020 350 0.20m - 0.25m
HS35025 350 0.25m - 0.30m
HS35030 350 0.30m - 0.35m
HS35035 350 0.35m - 0.40m
HS35040 350 0.40m - 0.45m
HS35045 350 0.45m - 0.50m
CS35005 250 0.05m - 0.10m
CS35010 250 0.10m - 0.15m
CS35015 250 0.15m - 0.20m
CS35020 250 0.20m - 0.25m
CS35025 250 0.25m - 0.30m
CS35030 250 0.30m - 0.35m
CS35035 250 0.35m - 0.40m
CS35040 250 0.40m - 0.45m

HS350V10 350 0.10m width
HS350V15 350 0.15m width
HS350V20 350 0.20m width
CS250V10 250 0.10m width
CS250V15 250 0.15m width
CS250V20 250 0.20m width
CHCHALF 250 & 350 0m - 0.25m & 0.25m - 0.517m
CHC0550 250 & 350 0m - 0.05m & 0.05m - 0.517m
CHC1050 250 & 350 0m - 0.10m & 0.10m - 0.517m
CHC1550 250 & 350 0m - 0.15m & 0.15m - 0.517m
CHC2050 250 & 350 0m - 0.20m & 0.20m - 0.517m

CHCOPT1010 250 & 350 0.05m - 0.15m & 0.25m - 0.35m
CHCOPT1015 250 & 350 0.05m - 0.15m & 0.25m - 0.40m
CHCOPT1020 250 & 350 0.05m - 0.15m & 0.25m - 0.45m
CHCOPT1515 250 & 350 0.05m - 0.20m & 0.25m - 0.40m
CHCOPT1520 250 & 350 0.05m - 0.20m & 0.25m - 0.45m
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8.3 Results

It is well known that wall heating or cooling will affect second-mode growth

[6]. Figure 8.1 shows the affect of varying wall temperature (uniform over the entire

body) from 250K to 300K (our base case) to 350K on growth of a 300kHz second-

mode. Notice that wall cooling enhances second-mode amplification, while wall heating

reduces second-mode amplification, as expected. However, it is observed that a region

encompassing the N1 neutral point (where instability begins), that these effects are

reversed. That is, near the N1 neutral point, wall cooling locally reduces second-mode

growth while wall heating amplifies second-mode growth. This is in agreement with

Zhao et al (2018) which showed that placing a heating strip upstream or a cooling strip

downstream of the synchronization point respectively would amplify second-modes [78].

This behavior can be understood by considering the stability diagram (figure

8.2) for the 300K wall temperature case. The affect of wall heating is to expand the

thermal boundary layer (details shown later) and thus, based on the thermoacoustic

interpretation, shifts the stability diagram downward towards lower frequencies. This

would have the affect on the 300kHz mode to initially amplify the instability, relative to

the base 300K wall temperature case, near the front of the cone, but ultimately reduce

the overall disturbance growth. The opposite happens for wall cooling. However,

when one particular frequency is detuned (amplitude reduced), another frequency could

become tuned (amplitude increased). This effect is shown in the two lower panels of

figure 8.1 where 25kHz variations (about the most amplified 300kHz case) were tested.

The 275kHz test (bottom left plot) shows that heating the wall at this frequency

increased N-factors to higher than the base case. In the bottom right plot, 325kHz was

tested, and now cooling the wall resulted in significantly higher N-factors.

8.3.1 Heat/Cool Strip Streamwise Location Variation

To better understand the tuning/detuning of different frequencies by wall heat-

ing/cooling, additional frequencies were tested to determine the new largest N-factor

frequency for heated and cooled walls respectively. Figure 8.3 shows the results. The
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Figure 8.1: LPSE N-factor results - Total wall temperature varied (Twall) tests,
300kHz (top), 275kHz (bottom left), 325kHz (bottom right).

largest N-factors (just above 23) for the cooled wall occurred at 310kHz. Whereas, the

largest N-factors for the heated wall occurred at 285kHz, but were slightly lower than

the base case at just below 18.5. Note, at 275kHz the highest N-factors achieved, above

the base case, for a heated wall were just below 18. It is also noteworthy that neither

the 275kHz nor the 285kHz cases have N-factors which reach higher than the 300kHz

base case (N-factor of 20.5). However, the 310kHz and even the 325kHz cooled wall

118



50 100 150 200 250 300 350 400
Streamwise Position (mm)

100

150

200

250

300

350

400

450

500

F
re

qu
en

cy
 (

kH
z)

0

0.005

0.01

0.015

0.02

0.025

Figure 8.2: LST Stability Diagram.

Figure 8.3: LPSE N-factor results - Total wall temperature varied (Twall) tests, N-
factor frequency 285kHz (left), 310kHz (right).
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case achieved N-factors above 20.5, so this test provided a good guide for performing

the optimization tests which will be discussed later on.

Figure 8.4: LPSE N-factor results - Heated wall varied spatial 5cm strip length tests,
0.05m - 0.5m (top), 0.05m - 0.25m section (bottom left), 0.4m - 0.5m
section (bottom right).

To understand the spatial sensitivity of second-mode growth to localized wall

heating, a series of tests were ran in which a 5cm heat strip was placed at different

locations along the cone (figure 8.4). It is observed that the optimal location for such
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Figure 8.5: LPSE N-factor results - Cooled wall varied spatial 5cm strip length tests,
0.05m - 0.5m (top), 0.05m - 0.25m section (bottom left), 0.4m - 0.5m
section (bottom right).

a heat strip to control second-mode growth, is between 0.25 and 0.30 meters from the

nose tip. This results in an N-factor reduction of approximately 0.75 (a 50% reduction

in amplitude). With the optimal location for localized wall heating identified, we will

now consider the optimal location for wall cooling. A region of localized wall cooling

was spatially varied, similarly to the heated wall region spatial variation case, and the
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corresponding stability results are shown in Figure 8.5. The strongest initial dampening

occurred for the cooled wall strip located at 0.05 - 0.10 meters and the location which

resulted in the lowest overall N-factors was 0.10 - 0.15 meters.

The initial wall heating/cooling results (figures 8.1, 8.3, 8.4, and 8.5) indicate

that wall cooling will be more effective closer to the N1 neutral point’s location than

where wall heating was found to be optimal. These results showed that the down-

stream amplification can be avoided where cooling is performed sufficiently upstream,

compared to the total cooled wall cases. This is also in agreement with results from

Zhao et al. which showed that an efficient way to stabilize growth is to cool upstream

or heat downstream [78]. These results also led us to believe, perhaps a combination of

upstream cooling and downstream heating may lead to improved disturbance damping

compared to cooling and heating alone. Figure 8.6 shows the LPSE N-factors when a

cool strip has been placed in front of the heat strip. Using the optimal cooling and

heating locations determine from the spatial variations, the cool-heat strip combo was

found to be most effective. It is found that the optimal locations of ±50K tempera-

ture variation strips result in a reduction of N-factor by about 1 (ie. almost a 3-fold

reduction in disturbance amplitude). While this is not a particularly large amplitude

reduction, it does confirm that passive wall heating/cooling can be employed to modify

second-mode growth. More important than the amplitude reduction found in this pre-

liminary study, is an understanding of how wall heating/cooling achieves second-mode

control.

8.3.2 Physical Control Mechanism

To understand the affect of wall heating/cooling on second-mode growth, we

again refer to the thermoacoustic resonance interpretation provided by Kuehl [8]. Re-

call, this interpretation posits that second-modes behave as resonant thermoacoustic

instabilities oscillating in a thermoacoustic impedance well. The particular frequency

(or frequency bandwidth) that resonates is determined by the height associated with
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Figure 8.6: LPSE N-factor results - 5cm strip length upstream cooled, downstream
heated wall combination tests.

the acoustic impedance well. The larger the height, the lower the frequency, and vice-

versa. Physically, because it takes a sound wave longer to traverse a longer distance.

The affect of localized wall heating/cooling is shown in figure 8.7. Profiles are shown of

acoustic impedance (
√
ρ̄) and streamwise velocity difference from the basic flow states.

It is seen that wall cooling has the affect to decrease the impedance well height, while

heating has the affect to increase the height. These trends are consistent with the prior

explanation of ‘tuning’ or ‘detuning’ of a particular frequency second-mode. Moreover,

it can be seen that just after cooling or heating, the density and velocity plots begin

to re-normalize to the base case similarly to the results of Zhao et al. [78].

8.3.3 Heat/Cool Strip Length Variation

The aforementioned results provided motivation to conduct further study of

heat/cool strip control potential, particularly as the results in figure 8.1 suggest this to

be possible. The next step in these efforts was to vary the length of localized cooling
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Figure 8.7: Top: Cooled wall impedance (
√
ρ̄) and velocity profiles. Top: Heated

wall impedance (
√
ρ̄) and velocity profiles.
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and heating. Figure 8.8 shows the results of varying the length of the strips. The

results show that the overall trend of increasing the length of the temperature varied

region dampens the second-mode growth with one exception, the 200mm length cooled

strip. This is because the length of the cooled strip extended into the region where the

previous results show wall heating should be applied to dampen second-mode growth.

A range of frequencies were tested to see how lengthening the strips would alter the

most amplified/suppressed frequency by tuning/detuning the boundary layer. All three

heated lengths only slightly increased N-factors at 275kHz. At 285kHz all cases were

dampened from the base. At 310kHz the cooled lengths of 150mm slightly increased,

200mm increased, while at 325kHz all cooled lengths increased N-factors. However,

these N-factors are still substantially lower than the 300kHz case, and extending the

length of the upstream cooled wall is acceptable so long as one does not insert too long

of a cooled strip.

Figure 8.8: LPSE N-factor results - Varied strip length tests at 300kHz, ’x-loc’ is the
streamwise x location the beginning of the strip was placed, ’len’ is the
length of the strip.
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Figure 8.9: LPSE N-factor results - Varied strip lengths tests at 275kHz (top left),
285kHz (top right), 310kHz (bottom left), and 325kHz (bottom right),
’x-loc’ is the streamwise x location the beginning of the strip was placed,
’len’ is the length of the strip.

8.3.4 Ideal Heating and Cooling Combinations

Thus far, it has been shown that the location, length and combination of heated

and cooled wall temperature strips can be utilized to suppress second-mode growth.

The best case (‘ideal’ or ‘limiting’ case) for second-mode damping would be to cool

the entire upstream portion of the wall and heat the downstream portion. This led

to testing “half & half” heating/cooling combination variations where the first part of

the wall is cooled to a certain streamwise distance, then heated thereafter until the

end of the cone. To determine the optimal location at which cooling should transition
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to heating, a systematic test was conducted. The results of this test are shown in

figures 8.10 and 8.11. Figure 8.10 considers the 300kHz second-mode (most unstable

in the base case) and shows second-mode damping for all cases. However, this half-

cooled and half-heated combination (cooled 0-0.25m; heated 0.25m-end of cone) was

not found to be optimal, particularly when a range of frequencies is considered. When

comparing figures 8.10 and 8.11, it was found that the optimal case for 300kHz second-

mode damping (cooling to 0.15m and heating beyond, resulting in an N-factor of about

16.5) was not optimal for the 285kHz second-mode (resulting in an N-factor of about

18). The reason for this behavior is that in addition to a reduction of second-mode

N-factors, there is also a shifting in the spectrum of the most unstable frequency. That

is, the primary 300kHz second-mode may no longer be the most unstable, and one

must consider a range of frequencies to determine the ideal case.

Figure 8.10: LPSE N-factor results - Full length Twall variations for limiting (ideal)
case of cool/heat wall combinations at 300kHz.

To account for the shifting in the spectrum, a range of frequencies from 250kHz
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Figure 8.11: LPSE N-factor results - Full length Twall variations for limiting (ideal)
case of cool/heat wall combinations at 275kHz (top left), 285kHz (top
right), 310kHz (bottom left), and 325kHz (bottom left).

to 340kHz was considered for each of the ‘half & half’ cases and max N-factors are

shown in figure 8.12 . The ’ideal’ case was found to cool until 0.2m, then heat the

rest of the cone. Notice that the trend as the cooling region is lengthened: The overall

maximum N-factor reduces while the frequency of the most unstable disturbance shifts

to higher frequencies. Also note there is a weak trend of the spectrum to broaden.

This behavior can be understood by returning to figure 8.2. The effect of cooling is to

shift the stability diagram towards higher frequencies (by reducing the length scale of

the thermoacoustic impedance well), while the affect of heating is to shift the stabil-

ity diagram to lower frequencies (by reducing the length scale of the thermoacoustic

impedance well). Thus, the combined effect on the stability diagram is an effective
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Figure 8.12: LPSE N-factor results - Ideal cases cool/heat wall combination localized
strips spectrum plot.

clockwise rotation about the 0.2m, 300kHz point. Each individual frequency distur-

bance has a smaller streamwise distance over which it is resonant (ie growing), which

accounts for the N-factor reduction. However, a larger bandwidth of frequencies is

excited, which accounts for the broadening of the spectrum.

8.3.5 Practical Heating and Cooling Combinations

The previous test provided a benchmark for a limiting or ideal case, essentially

showing us “the theoretical best one can do with cool/heat combinations given this

situation”. However, the practicality of heating/cooling an entire geometry is not likely

feasible. Therefore, we now consider a more feasible case of combinations of localized

cooling and heating strips. N-factors were calculated at 300kHz (figure 8.13) and

275, 285, 310, 325kHz (figure 8.14) for finite length cooling and heating strips. Using

the above results as a guide, strip lengths of 0.1 - 0.15m were considered. 300kHz
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disturbance N-factors were found to decreased by as much 3. Interestingly, the N-

factors at the other tested frequencies all decreased from base case as well, though not

quite as dramatically.

Figure 8.13: LPSE N-factor results - Optimal cases cool/heat wall combination lo-
calized strips.

The spectrum of disturbances spanning frequencies from 250kHz to 340kHz was

again considered to determine maximum growth. Figure 8.15 shows a maximum N-

factor comparison for different length strip combinations. It was found that the optimal

case was that in which the wall was cooled from 0.05m - 0.2m, then heated from 0.25m

- 0.45m. This case had a maximum N-factor of 18, which is 3 lower than the base case,

and corresponds to more than an order of magnitude damping of second-mode growth,

relative to the base case.

Figure 8.16 provides an overall summary of our result. Maximum N-factors for

the base, entire cooled wall, entire heated wall, ideal cooled until 0.15m and 0.2m,

and the more feasible, optimal cases were all plotted. As expected, heating the entire
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Figure 8.14: LPSE N-factor results - Optimal cases cool/heat wall combination lo-
calized strips.

wall suppressed second-mode growth and shifted the most unstable disturbances to

lower frequencies. This can be physically understood as an increase in the thermoa-

coustic impedance well length scale. Note that wall heating is often associated with

enhanced first-mode instability, though here we have not conducted a first-mode anal-

ysis. Similarly, cooling the entire wall enhanced second-mode growth and shifted the

most unstable disturbances to higher frequencies. This can be physically understood

as a decrease in the thermoacoustic impedance well length scale.

It is extremely interesting to observe that the effect of combined cooling (over

the upstream portion of the cone) and heating (over the downstream portion of the

cone) provides a stronger level of second-mode control than heating only. This can be
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Figure 8.15: LPSE N-factor results - Optimal cases cool/heat wall combination lo-
calized strips spectrum plot.

understood by returning to figure 8.2. The affect of cooling is to shift the stability

diagram towards higher frequencies, while the affect of heating is to shift the stability

diagram to lower frequencies. Thus the combined effect on the stability diagram is

an effective clockwise rotation. Each individual frequency disturbance has a smaller

streamwise distance over which it is resonant (ie growing), which accounts for the N-

factor reduction. Furthermore, we note that the ‘ideal’ case of cooling or heating over

the entire length of the cone is impractical. However, we see that similar results to the

‘ideal’ case can be achieved using finite length (localized) cooling and heating strips.

This ‘optimal’ case of finite length strips provides a level of second-mode damping

which surpasses heating of the entire wall and only slightly less effective the the ideal

case. Finally, we conjecture that the localized heating and cooling strips will be less

susceptible to first-mode instability. This conjecture is the subject of on-going work,

and is based on the idea that the heating effects are restricted to a smaller region of
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Figure 8.16: LPSE Max N-factor vs frequency spectrum plot comparing: base case
with no cooling/heating, entire wall cooled, entire wall heated, the ideal
(limiting) cases, and the optimal (feasible) case

the flow, thus any first-mode enhancement would be similarly mitigated.

8.3.6 Findings

The aforementioned results provided a motivation for the use of active thermo-

couple or passive material selection methods to dampen second-mode growth. Recap-

ping, there are several important implications of the presented results, as well as some

new directions for future investigation.

1. If wall cooling or heating is performed alone, then one might dampen the dis-

turbance at a specific frequency, but excite greater growth at another frequency.

These results show that a combination of upstream cooling and downstream

heating mitigates this effect.
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2. That cooling on the upstream portion of the cone dampens second-mode growth

and heating on the upstream portion of the cone amplifies growth, and vice versa.

3. Wall cooling and heating physically affect second-mode growth through modifi-

cation of the acoustic impedance well.

4. The combination of upstream cooling and downstream heating can be interpreted

as a clockwise rotation of the stability diagram.

5. Downstream heating has an overall greater damping effect than upstream cooling.

6. Once past the localized region of heating or cooling, the velocity and density

gradients relax to the undisturbed basic state behavior.

7. It was shown that a finite length combination of cooling and heating strips can

lower max N-factors to similar levels as entire length wall temperature alterations,

but in a more feasible manner.

8. Further investigation is needed to study the effect of localized heating and cooling

on first-mode instability.

9. Further investigation is needed to quantify the influence of localized wall cool-

ing/heating on the non-linear behavior of second-mode waves, particularly con-

cerning finite-bandwidth effects, side-lobe generation, and spectral broadening.
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Chapter 9

SUMMARY

9.1 Discussion

9.1.1 Research Applications and Implications of Wavepackets

The contributions fulfilling this objective are manifold. Recall, wavepackets

represent the finite bandwidth nature of second-mode disturbances compared to tra-

ditional delta functions in nonlinear analysis resulting in the following implications.

First, a more consistent scenario for spectral broadening utilizing wavepackets was

shown, capturing the nonlinear dynamics of boundary layer disturbance growth more

accurately. Second, spectral broadening is driven by the nonlinear energy feedback of

the harmonics onto the primary disturbance inducing side lobe growth. Third, that low

frequency disturbance content (ie. low frequency noise), is a consequence of spectral

broadening, not the cause of it [42, 43, 46].

9.1.2 PSE and Experimental Data Comparison

Comparison of experiments and NPSE were completed [42, 43]. These compar-

isons were important not only for disturbance amplitude comparison, but also for the

modeling the onset streamwise location of spectral broadening. Encapsulated within

comparing the NPSE to experimental data, iterative improvements were made to the

JoKHeR. This included automations and updates to the code for LST, LPSE, and

NPSE. Additionally, NPSE was updated to support improved wavepacket formula-

tions and testing. The first was using: 3 primary disturbances (1 primary frequency

with 2 side lobe frequencies), a first harmonic + 2 side lobes, and a second harmonic

+ 2 side lobes. This is instead of only: 1 primary disturbance + side lobes, and a first

harmonic with no side lobes. Second was testing side lobe bandwidths to determine
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which produced better results when comparing to experimental data. Third was test-

ing the sensitivity of overall disturbance growth to disturbance initial conditions. The

initial amplitude not only affects the spectral broadening onset location, but also the

amplitude ratio of the primary disturbance divided by the first harmonic. Fourth, was

increasing the number of modes from 3 to 5 to 7 to 9. For instance, the tested frequen-

cies for the 5 mode case were: 300, 285, 315, 270, 330khz, with 5 mode first and second

harmonics included. Once these improvements were made, the total disturbance am-

plitudes calculated with the NPSE were between 20-40%, which is a consistent range

when compared with the approximate 30% total disturbance amplitude measured in

experiments with similar spectral broadening onset.

A couple of side notes are also worth mentioning. Since it was found that

increasing the number of modes from 3 to 5 to 7 improved the PSE results, it can

be surmised that it is logical to try more modes. However, it was also found in this

case that adding modes beyond 9 makes the calculation take substantially longer, is

less stable, and protrudes into diminishing returns for capturing the physics. Along

the way, several low frequency content (noise) frequencies were tested. These included:

25, 30, 50, 100, and 150khz, all of which only growing after spectral broadening had

set in, and not before. This continues to show evidence that low frequency noise

does not cause spectral broadening. Finally, spectral broadening is an indication that

nonlinearities are asserting themselves in the disturbance flow field. In other words,

the streamwise region where spectral broadening occurs, implies linear models, or even

nonlinear models which do not include the finite bandwidths of disturbances, will miss

some of the flow physics and disturbance amplitude.

9.1.3 PSE and DNS Comparison

The NPSE results were also compared to collaborators’ DNS results and overall

good agreement was found [45]. In other words, the NPSE solver has been validated

against both experimental and numerical results. Therefore, assuming properly defined:

initial conditions, number of modes, and side lobe bandwidth, the wavepacket NPSE
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formulation will sufficiently capture weak to moderate nonlinear disturbance physics

for second-mode amplitude growth.

9.1.4 Applications and Implications of the Thermoacoustic Interpretation

Regarding Second-mode Instability

The contributions with respect to the thermoacoustic interpretation are as fol-

lows. Recall, the blunt body paradox, which considers the downstream movement of

transition with increased nose bluntness, then jumps upstream at a critical nose radius.

The downstream movement mechanism of the transition front was quantified in this re-

search by testing 7 degree half angle straight cones at AFOSR-Notre Dame Large Mach

6 Quiet Tunnel conditions. First, entropy contour plots of each cone showed substan-

tial entropy layer increases with larger nose bluntness, as expected. The entropy layer

swallowing length was consistent with the results that second-modes were suppressed

in this region (Stetson 1983, Juliano 2015, and Tufts and Kimmel 2017). Then, apply-

ing the thermoacoustic interpretation, it was verified using LPSE and density gradient

results that the second-modes were indeed being suppressed within the entropy layer

swallowing length and present afterwards. Further, a criterion was developed to quan-

tify this behavior using the generalized inflection point criterion (ρU ′)′ = ρU ′′ + ρ′U ′

(Lees and Lin 1946) to estimate the required density gradient strength for second-mode

resonance to occur. Considering the zero point crossing or: ‖Û ′‖ = Ū ′ and ‖ρ̂′‖ = ρ̄′.

That is, second-mode instability was present when analyzing the data at the zero point

crossing ‖ρ̂′‖ > ‖Û ′‖, and suppressed otherwise, such that: ρ̂′ = −ρU ′′

U ′
and Û ′ = −ρU ′′

ρ′
.

This identified the physical mechanism of second-mode suppression by nose bluntness:

entropy layer modification of the acoustic impedance well. In the future work chapter,

the transition front upstream movement research is suggested.
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9.1.5 Utilize the Thermoacoustic Interpretation to Develop a New Control

Method

The last objective was fulfilled by the contribution of applying the thermoa-

coustic interpretation to study a novel method for controlling second-mode growth via

wall heating and cooling. It was shown that the best method applies a combination of

upstream wall cooling and downstream wall heating. Furthermore, the mechanisms for

this damping behavior were identified, which is a new contribution to the field. Cooling

the wall disturbs the thermoacoustic impedance well by decreasing the density gradi-

ent height scale tuning higher frequencies, and heating increases the density gradient

height scale, tuning lower frequencies. This can be interpreted as a clockwise rotation

of the stability diagram, which then presents a smaller streamwise cross-section over

which disturbance amplitude grows. Thereby, lowering total disturbance growth. Fi-

nally, it was shown that clever placement of the cooling and heating strips can produce

similar levels of second-mode damping to an ideal case of total wall cooling/heating in

combination than even total wall heating.

9.2 Research Summary

In summary, the goal of this research was to better understand the physical

mechanisms governing second-mode instability, such that they may be appropriately

modeled numerically for improved amplitude based prediction of hypersonic boundary

layer stability and transition. The aforementioned published results completed all 5

research objectives, which have been reprinted and abbreviated below. Objectives 1

through 3 were achieved by four published contributions summarized in chapters 4, 5,

and 6 [42, 43, 45]. Objectives 4 and 5 were achieved by two published contributions

summarized in chapters 7 and 8 [79, 80].

9.2.1 Wavepackets

1. Research Applications and Implications

2. PSE and Experimental Data Comparison

138



3. PSE and DNS Comparison

9.2.2 Thermoacoustic Interpretation

4. Applications and Implications of the Thermoacoustic Interpretation Regarding

Second-mode Instability

5. Utilize the Thermoacoustic Interpretation to Develop a New Control Method
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Chapter 10

FUTURE WORK

In this chapter suggested future work is presented. There are many directions

which can be taken in hypersonic boundary layer stability and transition. So, only the

major extensions of the completed topics covered in this dissertation will be proposed.

10.1 Adjoint Methods

10.1.1 The Blunt Body Paradox

In chapter 7, it was mentioned that the downstream transition movement mech-

anism was quantified for the blunt body paradox. The next step is to determine the

upstream transition movement upon reaching a sufficiently large nose radius (critical

bluntness). A compressible adjoint (left eigenvalue problem) solver may be able to use

the results from this research, and backward solve to determine the mechanisms for

the upstream transition jump.

10.1.2 Initial Condition Amplitude Determination for Nonlinear Parabo-

lized Stability Equations

As was shown in chapter 5, instability behavior has significant sensitivity to

disturbance amplitude initial conditions, which is consistent with nonlinear dynamics

theory [81]. In this research many disturbance amplitude initial conditions had to be

hard coded and tested while performing NPSE. An adjoint solver study may be able

to determine proper initial conditions to be used. This data could then be inputted

into future NPSE runs for more accurate and/or faster nonlinear analyses.
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10.1.3 Angle of Attack Analysis

Kuehl, Perez, and Reed (2012) showed NPSE results on a 7 degree, half-angle

straight yawed cone, at a 6 degree angle of attack at Mach 6 [9, 82]. Consider figure

10.1 which plots wall normal direction y versus non-dimensional density ρ/ρ∞. It can

be seen, that there is similar behavior to the Notre Dame cones from chapter 7 where

increased nose bluntness caused a shift in the impedance well. This may be another

application opportunity for the thermoacoustic interpretation. The first step would be

to plot the square root of density of similar yawed cone data in figure 10.1 to verify the

shifting behavior. Next, the cone’s angle of attack could be varied to detect shifts in

the thermoacoustic impedance well. The purpose of this process would be to determine

how the impedance well shifts with increasing angle of attack until a critical angle of

attack where transition would jump upstream analogous to the blunt body paradox is

potentially reached.

Figure 10.1: 7 degree half angle straight yawed cone at a 6 degree angle of attack at
Mach 6. Plot is wall normal (y) vs ρ/ρ∞ at various streamwise locations
[9, 82]
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10.2 Acoustic Impedance Well Shifts

It has been observed that second-mode frequency shifts as the disturbance moves

downstream. This shift is caused by asymmetry from the pitch or yaw of the test article,

from the geometry varying in height, and/or the boundary layer growing in height.

This changes the relative the thermoacoustic impedance well height too. As such, a

variable frequency NPSE is suggested to study this phenomenon. There appears to

be a relation among the disturbance frequency shift, currently being referred to as the

frequency divergence angle. As another part of this, the thermoacoustic interpretation

may have implications towards this shifting frequency, and applying it to the PSE may

further improve amplitude predictions.

10.3 First-Mode Control Using Wall Temperature Strips

As was mentioned in chapters 2 and 8, first-modes behave oppositely to second-

modes with respect to wall heating and cooling. As such, wall heating tends to be

discouraged, since although it may dampen second-modes, it amplifies first-modes.

This is of particular concern at Mach numbers below 4. However, the novel control

method in this research performs upstream cooling. Since cooling dampens first-modes,

the cool/heat strip combination may mitigate the wall heating alone shortcoming. This

is the subject of on-going work.

10.4 Wall Temperature Strips Data Comparison

A comparison of experiments and/or DNS would be very beneficial to verify the

results from this research of the cool/heat strips. Additionally, a full nonlinear analysis

would also help to verify that nonlinear growth is delayed, and the determination of

any potential changes to the onset of spectral broadening.
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10.5 Instability Interactions

10.5.1 Additional Instabilities and Interactions NPSE Implementation

Hot-cold-hot streaks were shown in the experimental and DNS collaborator re-

sults in the Mach 6 flared cone review paper summarized in chapter 5. Including

oblique modes, Gortler modes, and K-type interactions into the wavepacket formu-

lation of NPSE, may be able to capture this phenomenon, when compared to the

aforementioned data.

10.5.2 First-Second-Mode Interaction

Finally, this research focused on second-mode instabilities. Since the Mach

number studied was 6, this was a reasonable assumption since Mack showed in general

second-modes tend to dominate above Mach 4 [19]. However, there may be an inter-

action of the first and second-mode between Mach 4 and 6 which could cause different

instability behavior. This is also the subject of on-going work.
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Appendix A

HIGH-SPEED FLUID DYNAMICS OVERVIEW

A.1 Governing Equations of Fluid Mechanics

The purpose of this appendix is to provide the reader with a brief overview or

reference to high-speed flow and the related equations in the context of hypersonic flow

[1]. Further, this is from the perspective that if the reader is already familiar with these

topics, then the reader can jump immediately into chapter 2, otherwise, this may be

a good starting point before proceeding. The approach taken in this appendix is with

increasing Mach number, common simplifications made to the governing equations can

no longer be applied (ie. the simplified Navier-Stokes equations to solve Couette flow

has a closed form solution). This is because as Mach number increases more physics

must be considered. We start with the governing equations of motion and state for

compressible flow.

A.1.1 Conservation of Mass

Continuity [1]:
∂ρ

∂t
+∇ · (ρV) = 0 (A.1)

A.1.2 Conservation of Momentum

x-Momentum [1]:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

(A.2)

y-Momentum [1]:

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

(A.3)
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z-Momentum [1]:

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

(A.4)

A.1.3 Conservation of Energy

Energy [1]:

ρ

(
DE0

Dt

)
= ρq̇ +∇ · (k∇T )−∇ · (pV) (A.5)

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

Where: E0 = E + 1
2
V 2 is denoted as total energy.

A.1.4 Equations of State

Ideal Gas Law [1]:

p = ρRT (A.6)

Enthalpy [1]:

h = CpT (A.7)

A.1.5 Other

Shear Stresses [1]:

τxy = τyx =

(
µ
∂v

∂x
+
∂u

∂y

)
(A.8)

τyz = τzy =

(
µ
∂w

∂y
+
∂v

∂z

)
(A.9)

τzx = τxz =

(
µ
∂u

∂z
+
∂w

∂x

)
(A.10)

Normal Viscous Stresses [1]:

τxx = λ(∇ ·V) + 2µ
∂u

∂x
(A.11)
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τyy = λ(∇ ·V) + 2µ
∂v

∂y
(A.12)

τzz = λ(∇ ·V) + 2µ
∂w

∂z
(A.13)

Mach Number [1]:

M =
V

a
(A.14)

Speed of Sound [1]:

a =
√
γRT (A.15)

Ratio of Specific Heats [1]:

γ =
Cp
Cv

(A.16)

Gas Constant Specific Heat Relation [1]:

R = Cp − Cv (A.17)

Reynolds Number [1]:

Rex =
ρV x

µ
(A.18)

Prandtl Number [1]:

Pr =
µCp
k

(A.19)

A.1.6 Inviscid Flow Characteristics

In the most general case, a closed form solution of equations A.1 through A.5 has

not yet been determined to date [12]. However, in practical applications, assumptions

are made which do yield solutions and much insight. Some of the common explicit as-

sumptions are negligible viscosity (inviscid flow) or viscosity is only important within

a thin region near the body’s surface (boundary layer), negligible body forces, con-

stant density, 1D or 2D only flow field dependence (symmetry), and irrotationality.

Some of the more implied assumptions in fluid mechanics are negligible heat transfer

(isothermal), no heat generation, and no chemical reactions / chemical equilibrium (no
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mass transfer). These assumptions allow one to omit negligible terms and simplify the

equations to simpler PDEs, or even ODEs which can be solved.

These assumptions work great for a wide range of fluid applications. However,

for high-speed flows, as the fluid increases, these assumptions start to break down.

Fortunately, they do not all stop applying at once. In the next section viscosity will

be addressed, for now, let’s consider the bulk, inviscid flow region, as we march up

the Mach number. For instance, consider the figure below where as the Mach number

is increased, the fluid exhibits different behaviors which will be addressed in turn

[1, 83, 84].

Additional aspects for a highly, increasing Mach number can be seen in figure A.2

below. This figure illustrated how certain assumptions may cause errors in calculations,

or miss some of the physics and even chemistry of the flow. For this research, we will

focus on the more classical nature regarding fluid mechanics for hypersonic flows at

Mach 6 though.

A.1.6.1 Subsonic Flow - Incompressible vs Compressible Flow

At around Mach 0.3, the compressibility of air starts to become a concern,

so density can no longer be considered constant. This subsonic and transonic com-

pressible flow region is where commercial aircraft spend much of their time flying in.

Incompressibility can be viewed as the first assumption which does not carry over to

hypersonic flow.

A.1.6.2 Supersonic Flows

The transonic range is when the global, freestream Mach number range is be-

tween 0.8 < M < 1.0, and may have a local region where M > 1. Transonic flow

has a wide variety of open questions, but these are beyond the scope of this paper. As

such, next we move up to supersonic flow where the freestream Mach number is greater

than 1. An important aspect of sonic flow (M = 1), is that this is the velocity which

an acoustic wave, can propagate within a fluid medium. Also, it corresponds to the
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Figure A.1: Walking up the Mach number various flow regimes [83].

limit where information (the molecular forces of the fluid) can communicate to each

other. This explains the elliptic terms in the Navier-Stokes equations, and why the

computational domain depends on upstream fluid mass, momentum, and energy, not

just downstream. Once the flow goes supersonic, the fluid in that region can no longer

communicate upstream. As we’ll see later, this is taken advantage of in parabolized

equations, because a marching scheme can be taken advantage of. For instance, one
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Figure A.2: Hypersonic flow phenomena [83].

may ask, if an air molecule cannot “talk” to the molecule behind it, how does the flow

know to change its movement or behavior accordingly when an object is in its path,

such as an airfoil or a wedge? This phenomenon is handled via shock waves.

A.1.6.3 Shock Waves

Physically, a shock wave is a region of very large gradients of fluid properties

(ie. density, temperature, pressure, velocity, and entropy). Mathematically, it is a

discontinuity of the flow field’s parameters [1]. Intuitively, the dilemma of a supersonic

flow which needs to slow down or speed up due to an object’s presence or significant

pressure change is “handled” by nature through shocks and expansion waves.
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There are two main types of shock waves, normal shocks and oblique shocks. A

normal shock is shock wave which forms normal to the flow’s direction [83, 84]. Some

examples are the region along the pathline directly perpendicular to a body such as

the nose of an aircraft, an adverse pressure gradient such as a blast wave, or inside a

rocket nozzle where the ambient pressure is much higher than the nozzle exit pressure.

A supersonically traveling fluid always slows to subsonic speeds after passing through

a normal shock [83, 84]. An oblique shock, (an obliquely angled shock), changes the

fluid’s velocity, by changing its direction and magnitude, but it does not necessarily

slow it to subsonic velocities [83, 84]. These oblique shocks form in front of streamlined

bodies which compress the flow such as a wing, wedge, cone, or in the obliquely angled

region of a bow shock [83, 84]. There are two types of oblique shocks: strong and

weak. Strong shocks are usually characterized by larger shock angles, slowing the flow

to subsonic velocities, and being detached from the object [83, 84]. Whereas weak

shocks are often attached, have smaller angles, and do not necessarily slow the fluid

to subsonic velocities [83, 84]. The θ-β-Mach diagram shows (see figure A.3) is one

tool which shows the relation amongst the object’s inclination angle θ, the shock angle

β, and the Mach number [83, 84]. The top half is for strong shocks, and the bottom

half is for weak shocks. Lastly, bow shocks are essentially a combination of a normal

and an oblique shock formed in external flows around a sufficiently blunt body (ie. a

re-entry capsule). Figure A.1c shows an example of a bow shock in front of an airfoil.

There are not any pertinent instances of expansion waves in this research, but

it is noting that expansion waves are the opposite deflection angle of a supersonic flow

to a shock wave. For instance, when a supersonic flow moves entirely past the trailing

edge of sharp wing at a positive angle of attack (AoA), the flow expands, which turns

the flow back to the direction and accelerates it to freestream conditions [13, 83, 84].

A.1.6.4 Flow Regions

The brief review of supersonic flow and shock waves above provides a basis for

understanding the inviscid supersonic flow region. It is important to remember, that
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Figure A.3: θ - β - Mach Diagram, depicting the relationship amongst the body
turn angle, shock angle, and the freestream Mach number. Also, the
determining Mach number for when the oblique shock is weak or strong
[83, 84, 85].

this “divide and conquer” perspective is quite powerful for analyzing high-speed flows,

it should not be performed in a vacuum. One needs to remember the whole picture,

let’s consider an example. A jet fighter is flying at Mach 2. The freestream passes

through an oblique shock as it nears the wing, slowing the velocity to M < 2 and

turning it parallel to the wing’s AoA. Next, move closer to the wing measuring the

fluid’s velocity. One would measure the fluid is slower as we get closer to the wing’s

surface, at some point reaching a subsonic velocity until reaching a velocity of 0 at the

wing’s surface by the no-slip condition. Viscosity is the cause for this velocity gradient,

the same as in incompressible flow cases [12]. However, unlike the incompressible case,
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the aforementioned phenomena must be considered. The key takeaway is that high-

speed flows are very much a coupled system, and the separation of flow regions can

become blurred.

A.1.6.5 Hypersonic Flows

From one perspective, hypersonic flows are simply supersonic flows, where even

less simplifications are applicable. Although in general hypersonic flows are usually

described as Mach 5 and greater, in the stability sense, low hypersonic flows are often

described as starting as low as Mach 3 [1, 38, 83, 84]. For higher hypersonic flows, they

are often described as roughly Mach 10 or 15 and higher, depending on gas density

and geometry where chemical reactions can begin to occur spontaneously due to the

fluid’s high speed (Note: This should not be confused with a combustion situation,

where chemical reactions occur independent of the flow velocity) [3].

A.1.7 Viscous Flows Characteristics

A.1.7.1 Explicit Solution Cases and Limitations

The previous section discussed the general characteristics and the inviscid flow

region with increasing fluid velocity. Now we add viscosity back into the problem. It

is well known that the aforementioned Navier-Stokes (N-S) equations describe the full

characteristics of fluid flow including viscosity, however, their nonlinear and elliptic

nature make solving them explicitly a bit of a chore to say the least [86]. As such,

there do exist some explicit solutions to quantify fluid flow (ie. Couette and Poiseulle

flows), or by breaking the problem up into an inviscid region and a thin viscous region

(Boundary Layer Theory) [12, 13]. More often than not though, experimental and

numerical methods are used to capture the physical mechanisms and behavior of fluids.
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A.1.8 High-Speed & High-Temperature Effects

A.1.8.1 Translation, Rotational, Vibrational Excitations

So far, as we have marched up the Mach number, several assumptions have

been removed, and with viscosity added back in, the full Navier-Stokes equations ap-

ply. As the Mach number continues to rise, viscous flows produce large shear and

normal stresses which in turn produces more heat on the object. If air which is mostly

comprised of N2 and O2 is considered, the gas molecules first undergo translational

excitation, then rotational excitation, and finally vibrational excitation as the temper-

ature rises above 600K [1]. Various statistical mechanics and kinetic theory of gases

are incorporated to capture these effects.

A.1.8.2 Chemical Reactions

Once the air temperature reaches about 2500K, the oxygen begins to dissociated

[1, 84]. Now, chemical reactions must also be considered, and the conservation of

mass equation becomes multiple equations for mass transfer, one for each chemical

compounds or species. If the velocity keeps rising, nitrogen begins to dissociate, adding

even more equations [1, 84]. Lastly, at around 9000K the air begins to ionize, and can

even form cold plasmas [1, 3]. These phenomena are quite important for re-entry

vehicles structures, heat dissipation, and even communications as they travel through

the atmosphere at hypersonic speeds between 10 < M < 50 [1].
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