

SECURING VXLAN-BASED OVERLAY NETWORK

USING SSH TUNNEL

by

Saravanan Ramesh

A thesis submitted to the Faculty of the University of Delaware in partial

fulfillment of the requirements for the degree of Master of Science in Electrical and

Computer Engineering

Summer 2017

© 2017 Saravanan Ramesh

All Rights Reserved

SECURING VXLAN-BASED OVERLAY NETWORK

USING SSH TUNNEL

by

Saravanan Ramesh

Approved: __

 Stephan K. Bohacek, Ph.D.

 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

 Kenneth E. Barner, Ph.D.

 Chair of the Department of Electrical and Computer Engineering

Approved: __

 Babatunde A. Ogunnaike, Ph.D.

 Dean of the College of Engineering

Approved: __

 Ann L. Ardis, Ph.D.

 Senior Vice Provost for Graduate and Professional Education

 iii

ACKNOWLEDGMENTS

It was an incredible learning experience during my master’s thesis study at

University of Delaware. I thank my advisor Dr. Stephan Bohacek from the bottom of

my heart to have believed in me and to have given me the opportunity to do this

project under his guidance. He was the best project mentor one could ask for. He gave

me complete freedom to explore, learn and apply different approaches to tackle issues

in the project and has always been patient and optimistic with my progress. He guided

me in the right direction every time I hit a wall and taught me how to approach a

problem. His constant support and encouragement was the primary reason that abled

me to finish this project successfully.

A special thanks to Dr. Chase Cotton, for being the coolest and most cheerful

professor around. He was the key person who always encouraged and gave me

opportunities to keep continuing my learning and grow my skills in the field of

security. He guided me to take the right courses since my first semester at UD and was

always available to help.

All of this wouldn’t have been possible without the support of my brother

Kishore, who gave me the courage and motivation to start my thesis and morally

supporting me throughout. Along with him, I also would like to thank my mom, dad

and sister for trusting in me and cheering me up at every stage. A huge thanks to my

friends Kartik, Fatema and Suchi for making my research life a bit easy by always

being there to help brainstorm issues along with me and providing me with important

feedback, which kept me going in the right direction.

 iv

TABLE OF CONTENTS

LIST OF FIGURES .. vii

ABSTRACT .. ix

Chapter

1 INTRODUCTION .. 1

1.1 VXLAN and Advantages of VXLAN ... 2

2 OPENFLOW .. 5

2.1 OpenFlow Messages .. 6

2.2 OpenFlow Table .. 7
2.3 Flow table Operation ... 8

2.3.1 Flow Matching ... 9
2.3.2 Table-miss: .. 9
2.3.3 Flow removal ... 10

2.4 Open vSwitch .. 11

2.4.1 Open vSwitch Key Components ... 12

2.5 Characteristics of Open vSwitch ... 13

3 VXLAN COMMUNICATION .. 15

3.1 Traditional Client Server communication ... 17
3.2 VXLAN Communication between VTEPs ... 18

4 MININET ... 20

4.1 Setting up Mininet ... 22

5 VXLAN TUNNEL CONFIGURATION ON OVERLAY NETWORK 24

5.1 Mininet Configuration at Server1 .. 25

 v

5.1.1 Changing IP Configuration for node h1 26
5.1.2 Changing IP Configuration for node h2 27

5.1.3 VXLAN tunnel set-up ... 27
5.1.4 Addition of Flow table entry ... 30

5.1.4.1 Flow entries at Server1 ... 31

5.2 Mininet Configuration at Server2 .. 34

5.2.1 Changing IP Configuration for node h1 35

5.2.2 Changing IP Configuration for node h2 36
5.2.3 VXLAN tunnel set-up ... 37
5.2.4 Addition of Flow table entry ... 39

5.2.4.1 Flow entry at Server2 ... 39

5.3 Testing VXLAN tunnel by sending ICMP .. 42

5.3.1 ICMP from 10.0.0.1 and 10.0.0.2 at Server1 42
5.3.2 ICMP from 10.0.0.3 and 10.0.0.4 at Server2 43

6 STUDY OF PACKET FLOW THROUGH UNENCRYPTED VXLAN

TUNNEL .. 44

6.1 Wireshark packet capture .. 44
6.2 Packet flow Walkthrough .. 45

7 VXLAN TUNNEL CONFIGURATION WITH SSH 48

7.1 Need for Tunnel Security .. 48

7.2 Network topology of VXLAN tunnel through SSH 49
7.3 VXLAN Configuration set-up with SSH .. 50

7.3.1 For SSH tunnel 1 from Server1 to Server2 50

7.3.2 For SSH tunnel 2 from server2 to server1 53
7.3.3 Iptables rule ... 54

8 STUDY OF VXLAN PACKET FLOW THROUGH SSH TUNNEL 56

8.1 Wireshark packet capture .. 56
8.2 Packet flow Walkthrough with SSH tunnel: ... 58

9 DISCUSSION ... 61

10 CONCLUSION .. 70

 vi

11 FUTURE DIRECTIONS .. 71

BIBLIOGRAPHY .. 73

 vii

LIST OF FIGURES

Figure 2.1: OpenFlow architecture ... 6

Figure 2.2: OpenFlow flow diagram (Image adapted from [9]) 8

Figure 3.1: VXLAN frame encapsulation (Image adapted from [3]) 16

Figure 3.2: UDP communication .. 17

Figure 3.3 VXLAN communication ... 19

Figure 4.1: Mininet Topology (Image adapted from [29]). .. 23

Figure 5.1: Overlay network set up using VXLAN ... 24

Figure 5.2: Mininet set-up at server1 ... 25

Figure 5.3: Dump command to view mininet topology components for server1 25

Figure 5.4: VM1 Ethernet configuration at server1 ... 26

Figure 5.5 VM2 Ethernet configuration at server1 .. 27

Figure 5.6: OVS bridge and port details at server1 .. 28

Figure 5.7: Addition of VTEP to OVS bridge at server1 ... 29

Figure 5.8: OpenFlow port details of bridge s1 at server1 ... 30

Figure 5.9: Flow table 0 for server1 ... 31

Figure 5.10: Flow table 1 for server1 ... 32

Figure 5.11: Mininet set-up at server2 ... 34

Figure 5.12: Dump command to view mininet topology components for server2 34

Figure 5.13: VM1 Ethernet configuration at server2 ... 35

Figure 5.14: VM2 Ethernet configuration at server2 ... 36

 viii

Figure 5.15: OVS bridge and port details at server2 .. 37

Figure 5.16: Addition of VTEP to OVS bridge at server2 ... 38

Figure 5.17: OpenFlow port details of bridge s1 at server2 ... 39

Figure 5.18: Flow table 0 for server2 ... 40

Figure 5.19: Flow table 1 for server2 ... 40

Figure 5.20: ICMP test from server1 .. 42

Figure 5.21: ICMP test from server2 .. 43

Figure 6.1: Packet capture at unsecured VXLAN tunnel ... 45

Figure 6.2: Packet flow in unsecured VXLAN tunnel (Image adapted from [3]) 46

Figure 7.1: Network topology of VXLAN tunnel through SSH 50

Figure 7.2: iptables rule at server1 ... 55

Figure 7.3: iptables rule at server2 ... 55

Figure 8.1: VXLAN packet capture for SSH tunnel 1 at server1 56

Figure 8.2: VXLAN packet capture for SSH tunnel 1 at server2 57

Figure 8.3: Packet flow in VXLAN tunnel secured by SSH (Image adapted from

[3]) ... 58

Figure 9.1: TCP through SSH tunnel ... 69

 ix

ABSTRACT

This project focuses on utilizing Virtual Extensible Local Area Network

(VXLAN), a tunneling protocol used in cloud overlay networks to address the

scalability issues in large production environments, and deploying a security measure

to uphold VXLAN data integrity against possible infiltrations or snooping that uses

data transparency as a leverage to disrupt the communication and launch attacks on the

network. Though there are security implementations for VXLAN tunnel traffic over

the IP network on physical VXLAN switches and several firewall rules to restrict

network access at the industry, there is no implementation of SSH as a secured means

for MAC over IP VXLAN communication between two different servers without the

need for external firewall or other traditional security mechanisms. The purpose of this

project is to deploy encryption mechanism over the VXLAN traffic on public internet

for a secured communication. The first step of the project is manually setting up

overlay between Open vSwitch virtual switches using VXLAN on both client and

server, and second is configuring SSH tunnel between the hosts and channeling the

VXLAN traffic through SSH. The VXLAN traffic over internet is unencrypted and

prone to data compromise. Securing VXLAN based overlay network using SSH tunnel

encrypts the data, thus protecting its integrity.

 1

Chapter 1

INTRODUCTION

With the whole world moving to the cloud for it’s personal and business needs,

cloud computing has not only grown to be the next best thing in the world of internet

but also has become a necessity for most of the users. An increase in demand for

virtualization has brought about a tremendous expansion of cloud in terms of

computing, network and storage. The overall demand for cloud computing in all its

guises is estimated to grow 18% in the year of 2017 and to be more in the following

years [1]. With such major demand for cloud virtualization, the physical infrastructure

of datacenter is required to support a higher number of virtual machines hosted on the

servers. An increase in the virtual machines on the physical server will require an

increase in the MAC address tables in the switched Ethernet network as each of the

Virtual Machine (VM) would have its own MAC address and an IP address [2]. There

can be cases where the VMs in the datacenter be grouped in a VLAN, and with huge

industries moving to cloud there might be scenarios where thousands of VM needs to

be grouped in a VLAN. There may also be cases where a part of the VLAN group is in

one datacenter and the other in a different datacenter. For instance, a company who

hosts its servers virtually at a datacenter located at New York might expand its

business in other parts of the country and might have to host that location’s VM in a

nearby datacenter. There may also be cases where a datacenter cannot accommodate

all the VMs in that region due to physical infrastructure restraint and must move some

of its VMs to a different physical server. The multi-tenant environment of the cloud

 2

helps a cloud service provider to offer elastic services to multiple customers over the

same physical infrastructure, isolating them completely from each other’s traffic. The

traditional VLAN only supports 4096 users in a group thus restricting the expansion of

cloud infrastructure [2][5][6]. So, for scenarios like mentioned above, there is a

requirement for virtualized environments to have a layer 2 network scale across the

datacenter and between datacenters.

To tackle the increase in demand for server virtualization and the requirements

pointed above, the datacenters had to find a way to allow more VMs to be a part of a

same VLAN group and also a way to communicate between VMs of the same VLAN

belonging to different datacenters via overlay network. This lead to the requirement

of tunneling mechanisms which provide an encapsulation scheme to carry the MAC

traffic from each source VM to the destination VM.

1.1 VXLAN and Advantages of VXLAN

VXLAN stands for Virtual Extensible Local Area Network which is one of the

proposed encapsulation protocols which helps tunneling of layer 2 over layer 3

infrastructure. This will help increase the scalability of cloud computing environment

while logically separating cloud applications with tenants.

VXLAN can help migrate virtual machines over long distance and play an

important role in Software-Defined-Networking (SDN) [7].

One of the major characteristics of VXLAN is that it uses larger naming space

as compared to regular VLAN. A traditional 802.1q VLAN uses 12 bit space which

would only allow 212=4096 users in a segment. This would not be enough for a large

cloud computing environment as discussed in the previous section. Whereas VXLAN

uses 24 bit space that allows for over 224=16,777,216 VXLAN identifiers, addressing

 3

the problem, where more than a million users can be a part of a same network within

the cloud [3][4].

VXLAN allows layer 2 multipath. Traditional layer 2 network uses Spanning

Tree Protocol (STP) which doesn’t allow active-active forwarding to prevent loops in

the network. STP blocks the use of the links to avoid duplicate paths in the network. A

big disadvantage of this attribute from a datacenter fabric point of view is that these

ports are very expensive to have them sitting idle unless there is a failure in the

network. Use of STP thus limits the number of VLANs that could be used, creating a

problem in this growing age of virtualization. So in the place of using STP we use

layer 3 routing in order to do Equal Cost Multipath (ECMP) to route the packets in IP,

from switch 1 to switch 2 for example, to get to the destination host [2][3].

Another advantage of VXLAN over VLAN is it removes the need to have

additional physical layer infrastructure. The forwarding table of the switch need not

grow with the increase in the number of the VMs behind the host port. Whereas in

traditional VLAN the MAC address table of the Top of Rack (ToR) switch that

connects to the servers increases in size with increase in the number of VMs being

added to the VLAN network, as all the traffic between the VMs traverse through the

switch. A regular ToR could connect 24 to 48 severs. A datacenter would consist of

enormous number of server racks, so the ToR switch would be required to maintain

the MAC address table for each of the VMs across the server racks which in turn

would put heavy load on the table capacity. In cases where the table overflows, the

switch may stop learning any further MAC addresses until idle entries age out, leading

to significant flooding of unknown destination frames. VXLAN switch does not need

to store MAC address of all the VMs in its server as it forwards frames based on the

 4

Virtual Network Interface (VNI) number of the VM. All the VMs belonging to the

same segment are associated with a VNI number and the switch on receiving the

frame forwards it to the destination as instructed by the flow table [2][3].

In addition, it also significantly restricts the scope of MAC address duplication

of VMs to exist within a VXLAN segment. Two VMs belonging to two different

VXLAN segments can have the same MAC addresses as the traffic of each segment is

isolated [4].

 5

Chapter 2

OPENFLOW

OpenFlow is the first SDN standard which originally defined the

communication interface between control and forwarding layers of the SDN

architecture. OpenFlow enabled the SDN controller to communicate directly with both

physical and virtual switches and routers in a network aiding it to successfully shape

and control the data packets to the required destination from a single point thus

achieving holistic enterprise management with a more granular security and a low

operational cost [8].

OpenFlow protocol is a standardized protocol for interacting with the

forwarding behavior of the switches from multiple vendors. This provides a way to

control the behavior of the switches throughout the network dynamically [8].

 6

Figure 2.1: OpenFlow architecture

2.1 OpenFlow Messages

The OpenFlow protocol supports three message types:

• Controller-to-switch messages are initiated by the controller and used

to directly manage and inspect the state of the switch.

• Asynchronous messages are initiated by the switch and are used to

update the controller of the network events and the changes to the

switch state.

• Symmetric messages are initiated either by the switch or the controller

and sent without solicitation.

 7

2.2 OpenFlow Table

The OpenFlow table is a data structure that resides in the high-speed data plane

of an OpenFlow switch. Its content determines the forwarding behavior and packet

handling behavior of that switch. OpenFlow table has one or more flow entries, and

each entry has a set of components as listed below [9]:

• Match fields: are used to identify which packets to perform an action

on. They consist of ingress port and packet header optionally metadata

specified by the previous port.

• Priority: is used to match precedence of the flow entry.

• Counters: are updated when packets are matched.

• Instructions: are used to modify the action set or pipeline processing.

• Timeouts: refers to the maximum amount of time or idle time before

flow is expired by the switch.

• Cookie: is the opaque data value chosen by the controller. It may be

used by the controller to filter flow statistics, flow modification and

flow deletion. Not used when processing packets.

A Flow table entry is identified by the matching fields and the priority number.

We can have muliple actions per flow table entry. The purpose of the priority column

is to resolve conflicts when multiple entries match a particular packet. In scenarios

where multiple flow table entries match a particular packet, the rule with the highest

priority is the rule that is applied to the packet. A flow entry with a priority of 0 is

considered a wildcard entry or a table-miss flow entry.

 8

It is necessary for every OpenFlow switch to have atleast one OpenFlow table.

OpenFlow pipeline of every OpenFlow switch consists of multiple flow tables (as

seen in Figure 2.1), each having multiple flow entries. In case of just one flow table

the OpenFlow pipeline is simplified. OpenFlow pipeline basically defines how the

packets are handled by the switch using flow tables [8][28].

2.3 Flow table Operation

A VM belonging to a network having OpenFlow implementation goes through

the process as depicted in figure 2.2:

Figure 2.2: OpenFlow flow diagram (Image adapted from [9])

 9

2.3.1 Flow Matching

The OpenFlow switch on receiving the packet from the associated VM first

performs a table lookup. In case of multiple flow tables, packet flow is determined

based on OpenFlow pipelining (refer figure 2.2).

At first the packet match field is extracted from the packet. This match field

might vary according to the type of packet. IP address, ingress ports and metadata are

some of the possible packet match fields considered.

Only when match field of a packet matches with the flow table entry, the

action specified is performed. In scenarios with multiple action sets per match field,

each action is performed one after the other. In cases where the packet satisfies

multiple table entries, the one with the highest priority is considered over the rest. If a

table entry has a match field as ANY, irrespective of the packet type, all possible

packet header match fields are considered a match for the flow entry, by default.

The counters of the applied flow entries must be updated for every action

performed and the packet is sent to the next nth table to repeat the same process until

the packet transmits the entire pipeline [9].

2.3.2 Table-miss:

Each flow table must have a default table-miss entry to deal with packets that

misses to match any of the flow entries. This table-miss flow entry decides the fate of

such packets. This includes forwarding it to the next flow table, sending it over to the

controller or dropping it permanently.

 A flow entry is considered a table-miss if the packet match field and priority

wildcards all the match fields in the table and is given the lowest priority. This occurs

when the entries fall outside the range of the matches provided by the flow table. Such

 10

table-miss entries are transmitted to the Controller by using the CONTROLLER

reserved port. The controller decides where to transfer the packet next. In case the

table-miss flow entry is not available in the flow table then the packet is dropped by

default [9].

2.3.3 Flow removal

The flow entries inside the OpenFlow table are removed by any one of the two

possible methods. One is by a controller request to drop the packet as unwanted or via

the switch flow expiry mechanism where the entry sits idle more than the timeout

period [9].

The controller can keep the table-miss entry for a restricted period and can

modify it as and when needed in accordance to the network requirement. The

controller may also actively remove flow entries from a table by sending

OFPFC_DELETE or OFPFC_DELETE_STRICT commands.

The removal of flow entries through the switch flow expiry mechanism is

independent of the controller rule. This occurs in accordance with the idle_timeout and

hard_timeout associated with these entries. The flow table must note the last entry

time of the packet that match the flow entry. If the next matching packet doesn’t arrive

beyond the idle_timeout period of the flow entry, then the flow entry is removed from

the table. Whereas in case of hard_timeout, irrespective of the table receiving the flow

entry matching packet or not, the entry is dropped when the hard_timeout expires

[9][10].

These are the core steps in a simple packet flow in a OpenFlow environment.

This process repeats for every packet entering the OpenFlow pipeline. The complexity

 11

of the flow model may vary depending on the type and dynamicity of the network we

implement OpenFlow on.

2.4 Open vSwitch

Open vSwitch (OVS) is an open source OpenFlow capable virtual switch that

is typically used with hypervisors to interconnect virtual machines within a host and

between different hosts across networks.

OVS ties together all the virtual machines within a host residing on a server,

which makes it critical component in many SDN deployments. Using OVS for multi-

tenant network virtualization is considered a core element of various datacenter SDN

deployments.

OVS supports many traditional switch features such as VLAN tagging and

802.1q trunking, Standard Spanning Tree Protocol, LACP, port mirroring

(SPAN/RSPAN), Flow Export (netflow, sflow, etc), tunneling (GRE, VXLAN,

IPSEC), QoS control. In addition, it is designed to support across multiple servers

such as Cisco’s Nexus 1000V and Linux-based virtualization technologies such as

KVM, VirtualBox, Xen/XenServer [11].

Open vSwitch is the first entry point for all the VMs sending traffic to the

network and is the ingress point into overlay networks running on top of physical

networks in the datacenter. OVS can also not need any assistance from a kernel

module and operate entirely in user space [11].

One important feature to be noted about OVS is that it doesn’t have a

native SDN Controller or manager, like the Virtual Supervisor Manager (VSM) in

the Cisco 1000V or vCenter in the case of VMware’s distributed switch. Open

https://www.sdxcentral.com/sdn/definitions/sdn-controllers/
https://www.sdxcentral.com/cisco/datacenter/

 12

vSwitch is meant to be controlled and managed by third party controllers and

managers like OpenDaylight, POX Controller, etc. This doesn’t make OVS

dependable on a SDN controller at all instances. OVS can be deployed on all servers

in an environment and operate with traditional MAC learning functionality [11][12].

2.4.1 Open vSwitch Key Components

OVS mainly consists of the following components [12]:

• ovs-vswitchd, a component used for flow-based switching by

implementing the virtual switch, along with a supporting Linux kernel

module.

• ovsdb-server, a database server that holds ovs-vswitchd configuration.

• ovs-dpctl, a tool used for switch kernel module configuration.

• ovs-vsctl, a utility used for querying and updating the state of ovs-

vswitchd in the ovsdb-server.

• ovs-appctl, a utility that sends commands to running ovs-vswitchd.

Open vSwitch also provides some tools:

• ovs-ofctl, a utility for monitoring and administering OpenFlow

switches and controllers.

• ovs-pki, a utility for setting up and managing a public-key

infrastructure for OpenFlow switches.

• ovs-testcontroller, a simple OpenFlow controller that manages

multiple switches over the OpenFlow protocol.

 13

2.5 Characteristics of Open vSwitch

Because of the need to allocate VMs of the same network on different physical

servers belonging to different datacenters, hypervisors must now have the capability to

bridge traffic between VMs across different servers. Open vSwitch is used here to help

achieve layer 2 communication over layer 3. Open vSwitch is targeted at multi-server

virtualization deployments involving dynamic end-points, maintenance of logical

abstraction and sometimes integration with special purpose switching hardware, which

L2 switching is not suited for [12].

Open vSwitch has the following characteristics which makes it a good fit to

support multi-server virtualization environments [12]:

• Open vSwitch supports configuration and migration of both fast

network state and soft state of instances (VMs). Soft state involves L2

learning table entries, L3 forwarding states, ACLs, QoS policies,

configuration monitoring like Netflow, sFlow, IPFIX, etc. associated

with the instance which are also necessary to be identified and migrated

between physical servers easily. Open vSwitch not only helps migrate

associated configurations but also any live network state or the existing

state of the VMs which might be difficult to reconstruct otherwise.

• Open vSwitch mainly supports a network state database (OVSDB)

which supports remote triggers. This is specifically useful in dynamic

network scenarios where VMs are added and removed time-to-time and

are moved back and forth in time with changes in logical network

environment. Now any associated software can track various aspects of

network and can respond as and when they change.

 14

• In addition, Open vSwitch also supports OpenFlow, which allows us to

deploy innovative routing and switching protocols in our network as it

separates the data path, which still resides in the switch, and control

path, which is transferred to the controller.

• Open vSwitch includes multiple methods for maintaining logical tags

that is used to identify a VM belonging to a logical network. These

tagging rules are accessible to the remote controller and not coupled

with networking devices thus helping thousands of tagging and address

remapping rules to be configured and migrated.

• Hardware integration of Open vSwitch to chipsets is possible as Open

vSwitch’s forwarding datapath is also designed to offload packet

processing to hardware chipset, which allows it to not only control a

software virtual switch but also a hardware switch.

All these features of Open vSwitch helps it to minimize in-kernel code as much

as possible and reuse existing subsystem when required. Thus reducing the load off

the kernel and delivering better performance with better scalability [12].

 15

Chapter 3

VXLAN COMMUNICATION

Virtual machines belonging to the same network, residing on physical hosts

belonging to different datacenters need to communicate via layer 3. VXLAN plays a

major role in tunneling the source VM’s layer 2 traffic over layer 3 to the host which

has destination VM, without VMs knowledge. The VXLAN tunnel providing the

overlay network handles transportation of these packets effectively connecting VMs

on different host making them believe that they have a direct layer 2 connection to one

another [2].

VXLAN tunneling uses the Open vSwitch which has port connections to the

VMs running in the native host. The Open vSwitch connects to VXLAN gateway,

called as the Virtual Tunnel End Points (VTEP), which is the key element that

provides the encapsulation and de-encapsulation function. They are the point of entry

for the VXLAN tunnel in the host hypervisor. All the encapsulation and de-

encapsulation of the packet occur at this entry point and there is no requirement for

any separate configuration to the VMs residing in the host hypervisor [4].

VTEP associated with the OVS switch does packet encapsulation based on the

destination IP of the VM. If the virtual machine tries to communicate with another

virtual machine residing in the same host, then the VTEP doesn’t perform any kind of

encapsulation and the traffic is switched locally [18].

If one VM tries to reach another VM which belongs to the same network but

resides on a physical server in a different datacenter, for example, then all the traffic

 16

coming from the client VM is encapsulated with appropriate VXLAN header and

forwarded to the destination address referred in the OpenFlow table entry. VTEP on

the other end after receiving this packet de-encapsulates this and delivers to the

recipient VM. The VTEP decides to transfer the inner layer 2 packet frame to the

correct VM based on the unique VXLAN Network Identifier (VNI), a 24-bit address

space that helps scale virtual network in VXLAN more than the available 4096 VMs

as in traditional 802.1q VLANs [4].

For a broadcast traffic like ARP request, the local VTEP encapsulates the

packet with VXLAN header and multicasts the frame to all the hosts belonging to the

VNI. The recipient VTEP which has the destination host belonging to the same VNI,

de-encapsulates it and processes it as unicast traffic [3][4].

The VXLAN encapsulation of the packet leaving the switch to a destination

host is described in figure 3.1.

Figure 3.1: VXLAN frame encapsulation (Image adapted from [3])

 17

3.1 Traditional Client Server communication

In case of UDP transport layer multiplexing, the source node along with its IP

address assigns a random source port for its packets and sends it to the destination IP

and port “xxxx” at which the destination node is listening to for packets. On receiving

the packets, the destination node sends out a reply with its IP and port “xxxx” as

source address and the client node’s IP and port as the destination address. The

destination node takes the IP and port number of the sending node from its packet

header and uses it to send a reply to the node using it as the destination address (Refer

figure 3.2).

Figure 3.2: UDP communication

 18

3.2 VXLAN Communication between VTEPs

It is important to understand how a VXLAN communication differs from a

usual UDP communication between two nodes. In VXLAN communication both the

end nodes have a tunnel end point and have VXLAN listening port 4789 open for

packets reception. All the packets transmitted from each VTEP is destined to the

VXLAN destination port 4789 where the VTEP is listening to.

So, in a VXLAN bridged network, an UDP encapsulated packet from node 1

has a source IP of node 1 and a random port number assigned by the OS say “xxxx”

and a destination IP of node 2 and port 4789. The node 2 replies with a UDP

encapsulated packet with a source IP of node 2 and a random port number assigned by

OS say “yyyy” and the destination IP of node 1 and port 4789 (refer figure 3.3).

Thus, the destination port number remains the same 4789 for all packets

between node1 and node2. The sending and receiving port are never the same for a

node which is connected to the VXLAN tunnel.

 19

Figure 3.3 VXLAN communication

 20

Chapter 4

MININET

Mininet is a network emulation software which enables to launch a network of

virtual host, switches, and SDN controller all with a single command. The host spun

up by mininet run standard Linux network software. It supports OpenFlow for easy

and flexible routing techniques and SDN implementations at lab environments [13].

Mininet was created in first place to support research, development, testing,

debugging and other befitting tasks to perform on an experimental network in a

laboratory environment to learn about SDN and OpenFlow. It uses lightweight

virtualization to support this workflow. A user can implement any kind of network

topology, configure routing mechanisms and control traffic rate on their test

environments on a single laptop and can deploy their network in real production

network. It utilizes minimal disk space to support the user virtual network, leveraging

Linux features to launch hundreds of switches, hosts and controllers along with

gigabits of bandwidth with a single command line or an API [13].

Mininet comes as a single Linux package and is compatible with hypervisor

applications like VMware, VirtualBox, etc. Any user who wants to use mininet can

download its .iso file to install and run it on their VirtualBox or can download the

mininet application straight from their Linux distribution. For example, a user using

Ubuntu can download mininet using the command:

 sudo apt-get install mininet

 21

The following attributes makes mininet an ideal prototyping workflow for

users looking to build large virtual network with a constraint of a very limited resource

[14]:

• Flexibility: mininet defines and supports new technologies and

functionalities in its software using python libraries on a Linux

package.

• Deployable: A functionally correct prototype in mininet can be

deployed to a hardware-based network without any change of code or

configuration.

• Interactive: mininet creates an interactive environment with the defined

network such that it gives a feel of managing and running a real-time

network.

• Realistic: mininet creates real behavior networks with high degree of

confidence. There is no need for modification of any protocol stack or

application for defining a network in mininet.

• Sharable: mininet projects can be shared with peers and collaborators

where they can run and modify that experiment.

Mininet uses virtual Ethernet pair links between its hosts which is basically a

shell process and the switch. Mininet uses OpenFlow switches and connects to a

controller that resides in the host VM that mininet is running on. So mininet packages

all these things inside to give an ease of work experience to the users who can

simulate a network by a single command. For example, the command:

sudo mn --switch ovs --controller ref --topo tree,depth=2,fanout=8 --test pingall

 22

spins up a network having a tree topology of depth 2 and fanout 8 (i.e. 64 hosts

connected to 9 switches) using Open vSwitch controlled by a reference controller and

then runs a pingall test to check the connectivity between these hosts [29].

 We use mininet for the above-mentioned reasons to set up our overlay

network and add VXLAN tunnel between our client and server.

4.1 Setting up Mininet

In our setup we use Mininet on each of the hosts to spin up our simple network

topology, which consists of a Open vSwitch S1, and two hosts H1 and H2 connected

to the switch (Refer figure 4.1). This switch is the Open vSwitch which will help us

configure the VTEP port for VXLAN tunnel, and the host H1 and H2 are configured

to belong to different VXLAN segment. So H1 and H2 though reside on the same

host, can have same MAC address and local network IP, as both of their network are

independent of each other. The idea is to keep the topology as simple as possible as we

focus on setting up a VXLAN tunnel under a secured connection between the hosts

and just require two VMs communicating over the tunnel to test our secured

connection.

 23

Figure 4.1: Mininet Topology (Image adapted from [29]).

 24

Chapter 5

VXLAN TUNNEL CONFIGURATION ON OVERLAY NETWORK

The laboratory setup used for our study consists of two Linux hosts machines,

Server1 and Server2 which represent physical servers each belonging to different

datacenters, ensuring a requirement of a router to perform a layer 3 communication

between the two hosts. This is to confer that the communication via the VXLAN

tunnel occurs through the overlay network. The laboratory virtual network that we

built is depicted in figure 5.1.

Figure 5.1: Overlay network set up using VXLAN

 25

5.1 Mininet Configuration at Server1

Now a simple command sudo mn in mininet creates the default network

topology with two hosts connected to a switch with a default controller [19].

Figure 5.2: Mininet set-up at server1

The information of all the nodes in the working topology can be viewed using

the dump command. It can be verified that two tenant VMs and a switch are created

(figure 5.3).

Figure 5.3: Dump command to view mininet topology components for server1

 26

To execute a command on a host, the host name should be mentioned first on

the mininet CLI followed by the command for that host.

Now for the ease of use, the IP address and the randomly assigned MAC

address is configured for both VM h1 and h2 to convenient addresses.

5.1.1 Changing IP Configuration for node h1

The following commands were used to assign user specified addresses for node

h1 (figure 5.4):

mininet> h1 ifconfig h1-eth0 10.0.0.1 netmask 255.0.0.0

mininet> h1 ifconfig h1-eth0 hw ether 00:00:00:00:00:01

Figure 5.4: VM1 Ethernet configuration at server1

 27

5.1.2 Changing IP Configuration for node h2

The following commands were used to assign user specified addresses for node

h2 (figure 5.5):

mininet> h2 ifconfig h2-eth0 10.0.0.2 netmask 255.0.0.0

mininet> h2 ifconfig h2-eth0 hw ether 00:00:00:00:00:02

Figure 5.5 VM2 Ethernet configuration at server1

The correct configuration of these VMs can be verified by pinging from each

host to its own modified IP.

5.1.3 VXLAN tunnel set-up

Open vSwitch with bridge s1 and its associated ports as per the mininet

topology can be viewed using the command as seen in figure 5.6:

 28

Figure 5.6: OVS bridge and port details at server1

Figure 5.6 shows that s1 has ports “s1-eth1” and “s1-eth2” which are

connected to the two hosts h1 and h2 respectively. Each of these ports has an interface

with the same name. The difference between a port and an interface is that a port can

contain multiple interfaces. You can use a port to create multiple bonds for like LACP

aggregation. Here since we are not doing any multiple bonds, we see just one interface

associated with each port.

Next the VXLAN tunnel is established between the two switches. For this

bridge s1 should be configured to add the Virtual Tunnel End Point (VTEP) to it using

the following command:

root@ubuntu:~# ovs-vsctl add-port s1 vtep -- set interface vtep type=vxlan

option:remote_ip=128.4.13.229 option:key=flow ofport_request=10

Breakdown of the command to understand what it does:

add-port s1 vtep : adds a port named “vtep” to the switch s1 (the name of the vtep port

need not necessarily be vtep and can be anything).

 29

-- set interface vtep type=vxlan : sets the interface vtep of type vxlan. If a user is

creating a GRE tunnel then they can mention it as type=gre

option:remote_ip=128.4.13.229 : Remote IP is the IP address of the other server

(server2) that this host (server1) is to be connected via the tunnel.

option:key=flow : This part is to specify the VNI number to identify each logical

tenant traffic. We give key=flow to provide overloading of the tunnel command, where

the packet flow through the VTEP is directed by the OpenFlow flow entries. We

assign these OpenFlow entries to the Open vSwith later.

ofport_request=10 : This part specifies that we want to use OpenFlow port 10 for this

VTEP port. Without this we wouldn’t know which OpenFlow port number is allocated

and would be a problem for the OpenFlow flow entries later.

Verifying from figure 5.7, the port vtep is now added to the switch s1 with type

as vxlan and the key and remote_ip options as specified.

Figure 5.7: Addition of VTEP to OVS bridge at server1

 30

Next, we can confirm that the port name VTEP is mapped to the OpenFlow

port 10 as requested using the command (seen in figure5.8):

ovs-ofctl show s1

Figure 5.8: OpenFlow port details of bridge s1 at server1

5.1.4 Addition of Flow table entry

The next step is to add flow entries to direct traffic between the tenants that

belong to the same network.

Note that the VTEPs need to have a table mapping VM MAC addresses to

virtual network end point IP addresses. There are different ways by which the VTEPs

can learn these mappings [10]:

• Manual : Configuration include manual flow entries. These are simple

and more suited for lab learning environment.

 31

• Push process : VTEPs can also learn MAC address mapping through a

push process like using a SDN controller where the controller takes

care of the traffic forwarding by pushing flow entries to the switch.

• Pull process : With pull process, the VTEPs can request flow entries

from a central directory.

We use the manual method in our laboratory setup for our VTEPs to control

VM traffic from the switch, as this is a simple network between two servers and the

key idea is to transfer encapsulated packets from server1 to server2 through the tunnel.

There is no need for a controller to control this simple traffic flow.

5.1.4.1 Flow entries at Server1

Our flow table entry on server 1 consists of two tables Table 0 and Table 1 as

shown in figure 5.9 and figure 5.10. Table 0 is used to tag flows with the VXLAN

VNIs and Table 1 is used to forward traffic.

Table 0:

Figure 5.9: Flow table 0 for server1

All the packets which are coming in from port 1 are assigned to have a tun_id

of 100, i.e. all the packets from VM h1 which is connected to port1 get a VNI number

of 100 and resubmit(,1) askes to move to table 1 after the action is taken. Similarly, for

 32

all the packets coming in from port 2 of the switch s1, VNI number 200 is assigned

and the control is then given to table1.

The last entry is the default entry. When there is no match for flow entries, its

default action is taken which is to move to Table1.

Table 1:

Figure 5.10: Flow table 1 for server1

Table 1 forwards packets to the corresponding output ports depending on the

flow match condition as follows in order of the flow entries mentioned in figure 5.10:

• If the incoming packet has a tun_id (VNI) =100 and the destination

MAC address=00:00:00:00:00:01, then forward it through the port 1.

• If the incoming packet has a tun_id (VNI) =200 and the destination

MAC address=00:00:00:00:00:02, then forward it through the port 2.

• If the incoming packet has a tun_id (VNI) =100 and the destination

MAC address=00:00:00:00:00:03, then forward it through the port 10.

• If the incoming packet has a tun_id (VNI) =200 and the destination

MAC address=00:00:00:00:00:04, then forward it through the port 10.

 33

• If the incoming packet has a tun_id (VNI) =100 and it’s an ARP

message with the destination IP address=10.0.0.1, then forward it

through the port 1.

• If the incoming packet has a tun_id (VNI) =200 and it’s an ARP

message with the destination IP address=10.0.0.2, then forward it

through the port 2.

• If the incoming packet has a tun_id (VNI) =100 and it’s an ARP

message with the destination IP address=10.0.0.3, then forward it

through the port 10.

• If the incoming packet has a tun_id (VNI) =200 and it’s an ARP

message with the destination IP address=10.0.0.4, then forward it

through the port 10.

• Default condition is to assign unmatched packets with a priority of 100

and is to be dropped.

For the ease of applying these flow entries to the switch s1, the flow table

entries are put in a file called flowtable.txt and then appended to the OVSdb using the

command:

root@ubuntu:~# ovs-ofctl add-flows s1 flowtable.txt

The flow entries in the OVSdb can be verified by the OVS dump flow

command which will dump all the flow entries stored in the OVS database:

root@ubuntu:~# ovs-ofctl dump-flows s1

 34

5.2 Mininet Configuration at Server2

Similar to server1, a default mininet topology is created using the command

sudo mn as shown in figure 5.11:

Figure 5.11: Mininet set-up at server2

The information of all the nodes in the working topology can be viewed using

the dump command to verify that two tenant VMs and a switch are created.

Figure 5.12: Dump command to view mininet topology components for server2

 35

To execute a command on a host, the host name is mentioned first on the

mininet CLI followed by the command for that host.

The IP address and the randomly assigned MAC address for VM h1 and h2 are

modified to our convenient addresses, so that packet follow up is made easy.

5.2.1 Changing IP Configuration for node h1

The following commands were used to assign user specified addresses for node

h1 (figure 5.13):

mininet> h1 ifconfig h1-eth0 10.0.0.3 netmask 255.0.0.0

mininet> h1 ifconfig h1-eth0 hw ether 00:00:00:00:00:03

Figure 5.13: VM1 Ethernet configuration at server2

 36

5.2.2 Changing IP Configuration for node h2

The following commands were used to assign user specified addresses for node

h2 (figure 5.14):

mininet> h2 ifconfig h2-eth0 10.0.0.4 netmask 255.0.0.0

mininet> h2 ifconfig h2-eth0 hw ether 00:00:00:00:00:04

Figure 5.14: VM2 Ethernet configuration at server2

The configuration of these VMs can be verified by pinging from each host to

its own new modified IP.

 37

5.2.3 VXLAN tunnel set-up

Open vSwitch with bridge s1 and its associated ports as per the mininet

topology can be viewed using the command as seen in the figure 5.15:

Figure 5.15: OVS bridge and port details at server2

Next the VXLAN tunnel between the two switches is configured. For this

bridge s1 is configured to add the VTEP to it using the command:

root@server2:~# ovs-vsctl add-port s1 vtep -- set interface vtep type=vxlan

option:remote_ip=128.4.95.66 option:key=flow ofport_request=10

 38

Verifying from figure 5.16, the port vtep is now added to the switch s1 with

type as vxlan and the key and remote_ip options as specified.

Figure 5.16: Addition of VTEP to OVS bridge at server2

 39

Next, we can confirm that the port name VTEP is mapped to the OpenFlow

port 10 as requested using the command (seen in figure5.17):

ovs-ofctl show s1

Figure 5.17: OpenFlow port details of bridge s1 at server2

5.2.4 Addition of Flow table entry

The next step is to add flow entries to direct traffic between the tenants that

belong to the same network.

5.2.4.1 Flow entry at Server2

The flow table entry table 0 and table 1 is used for the Open vSwitch on

server2, similar to server1 with a difference of the destination IP and MAC addresses

for the flow rules.

 40

Table 0:

Figure 5.18: Flow table 0 for server2

The table 0 in figure 5.18 is the same as table 0 of server1, where we assign

VNI number 100 to all the packets flowing in from port 1 of the switch s1 and a VNI

number of 200 to all packets flowing in from port 2 of the switch s1, during UDP

encapsulation.

The last entry is the default entry. Where if there is no match for flow entries,

this default action is taken which is to move to Table1.

Table 1:

Figure 5.19: Flow table 1 for server2

 41

The table 1 forwards packets to the corresponding output ports depending on

the flow match condition as follows in order of the flow entries mentioned in figure

5.19 :

• If the incoming packet has a tun_id (VNI) =100 and the destination MAC

address=00:00:00:00:00:03, then forward it through the port 1.

• If the incoming packet has a tun_id (VNI) =200 and the destination MAC

address=00:00:00:00:00:04, then forward it through the port 2.

• If the incoming packet has a tun_id (VNI) =100 and the destination MAC

address=00:00:00:00:00:01, then forward it through the port 10.

• If the incoming packet has a tun_id (VNI) =200 and the destination MAC

address=00:00:00:00:00:02, then forward it through the port 10.

• If the incoming packet has a tun_id (VNI) =100 and it’s an ARP message with

the destination IP address=10.0.0.3, then forward it through the port 1.

• If the incoming packet has a tun_id (VNI) =200 and it’s an ARP message with

the destination IP address=10.0.0.4, then forward it through the port 2.

• If the incoming packet has a tun_id (VNI) =100 and it’s an ARP message with

the destination IP address=10.0.0.1, then forward it through the port 10.

• If the incoming packet has a tun_id (VNI) =200 and it’s an ARP message with

the destination IP address=10.0.0.2, then forward it through the port 10.

• Default condition is to assign unmatched packets with a priority of 100 and is

to be dropped.

For the ease of applying these flow entries to the switch s1, we put them in a

file called flowtable.txt and append it to the OVSdb using the command:

root@server2:~# ovs-ofctl add-flows s1 flowtable.txt

 42

5.3 Testing VXLAN tunnel by sending ICMP

Now since both server1 and server2 are connected via VXLAN tunnel, VMs

having same VNI residing in different servers can communicate with each other

through this VXLAN based overlay network as though they are having a layer 2

communication.

5.3.1 ICMP from 10.0.0.1 and 10.0.0.2 at Server1

Figure 5.20 shows a successful ping communication from VM 10.0.0.1 to VM

10.0.0.3 where both VMs belong to VNI 100 and from VM 10.0.0.2 to VM 10.0.0.4

where both VMs belong to VNI 200.

Figure 5.20: ICMP test from server1

 43

5.3.2 ICMP from 10.0.0.3 and 10.0.0.4 at Server2

Figure 5.21 shows a successful ping communication from VM 10.0.0.3 to VM

10.0.0.1 where both VMs belong to VNI 100 and from VM 10.0.0.4 to VM 10.0.0.2

where both VMs belong to VNI 200.

Figure 5.21: ICMP test from server2

 44

Chapter 6

STUDY OF PACKET FLOW THROUGH UNENCRYPTED VXLAN TUNNEL

6.1 Wireshark packet capture

On capturing the packets on Wireshark, we would see UDP packets flowing

out of the Ethernet having source address of server1 and destination address of server2

with port 4789. This is the UDP encapsulated packet by the server1’s VTEP. The

Wireshark doesn’t know that these are VXLAN packets and thus doesn’t show details

of the layer2 payload being tunneled. To add VXLAN packet type to Wireshark:

• Right click on one of the packets and select “Decode As”.

• In the Decode As dialogue box, add Field as UDP port and value as 4789

which is the default VXLAN listening port for our tunnel.

• Finally set the Current Field to VXLAN and click OK.

Once decoded Wireshark will now display the VXLAN headers (marked by

red box in figure 6.1) along with the underneath layer 2 packet that has been

encapsulated by the VTEP (marked by green box in figure 6.1).

 45

Figure 6.1: Packet capture at unsecured VXLAN tunnel

6.2 Packet flow Walkthrough

To understand the flow of an ICMP packet between two VMs belonging to the

same network, we consider the communication between VM h1 with IP address

10.0.0.1 and MAC address 00:00:00:00:00:01 at the server1 (128.4.95.66) and VM h3

with IP address 10.0.0.3 and MAC address 00:00:00:00:00:03 at the server2

(128.4.13.229). Note here server1 and server2 belong to different subnet.

 46

Figure 6.2: Packet flow in unsecured VXLAN tunnel (Image adapted from [3])

With reference to figure 6.2, the packet flow of VXLAN packet can be

explained step by step as following:

• At server1 (128.4.95.66), the ICMP packet from h1 with source MAC

00:00:00:00:00:01 and destination MAC 00:00:00:00:00:03 reaches VTEP.

• The VTEP at server1 on seeing the destination MAC address of the ICMP

packet, acts on the packet based on the flow table entries. In our case all

packets to MAC address 00:00:00:00:00:03 should be forwarded to server2 IP

address. So the VTEP encapsulates this layer 2 ICMP packet with a UDP

header with source IP 128.4.95.66 and a random source port 60971 assigned by

 47

the OS and the destination IP 128.4.13.229 and destination port 4789 with the

VNI number 100 to which both h1 and h3 belong.

• The layer 2 packet gets transmitted over layer 3 to reach server2 in which VM

h3 resides.

• At server2 (128.4.13.229), the VTEP gateway at port 4789 receives the

incoming VXLAN UDP packets and de-encapsulates them to get the

underneath layer 2 ICMP packet. Depending on the VNI number in the UDP

header (100 in this case), the VTEP at server2 forwards the de-encapsulated

layer 2 packet to the correct VM 10.0.0.3

• The VM 10.0.0.3 on receiving the ICMP message from 10.0.0.1, sends out an

ICMP reply to VM with source MAC 00:00:00:00:00:03 and destination MAC

00:00:00:00:00:01.

• The VTEP at server2 on receiving this layer 2 packet encapsulates it with a

UDP header with source IP 128.4.13.229 and a random source port 57641

assigned by the OS and destination IP 128.4.95.66 and destination port 4789

with the VNI number 100 as per the flow table entry.

• This layer 2 ICMP reply then gets transmitted over layer 3 to reach server1.

• At server1 (128.4.95.66), the VTEP gateway at port 4789 receives this

incoming VXLAN UDP packet and de-encapsulates the packet to get the

underneath layer 2 ICMP reply. Looking at the VNI number in the UDP

header, the VTEP at server1 forwards the layer 2 packet to the correct VM

10.0.0.1

 48

Chapter 7

VXLAN TUNNEL CONFIGURATION WITH SSH

7.1 Need for Tunnel Security

VXLAN does not define security on the overlay. There is no mechanism

defined in IETF draft [2] to provide Confidentiality, Integrity and Authenticity (CIA)

for VXLAN packets. This lack of security is also there for a layer 2 communication.

But in case of Ethernet, for an attack to be injected, the attacker must be attached to

the data link. This attack surface is minimal here as the only potential threat would be

from within the datacenter and the network within the datacenter is usually physically

secure. Traditional layer 2 attacks can also be mitigated by limiting the management

and administrative scope of deploying and managing VMs in a VXLAN environment

[16].

This attack surface is significantly increased on utilizing a MAC-in-IP scheme

like VXLAN. In case of a typical VXLAN packet flow scenario as per figure 6.1, we

see that the UDP packets over layer 3 are unencrypted and the underneath layer 2

packet can be viewed by anyone using packet capture application like Wireshark.

Since the VTEP on the network are accessible by IP, traffic can be directed towards

them with an inner Ethernet frame as though a legitimate server in the datacenter sent

the packet thus allowing the attacker to impersonate that server and gain control over

the server communication.

 49

Open access to VXLAN UDP unencrypted packets can possibly lead to all

kinds of attacks which can compromise the integrity and authenticity of the VXLAN

tunnel communication [25].

Our target is to make this VXLAN overlay communication secure across

datacenters, using any of the easy encryption methods that is commonly used and can

be implemented in a lab environment. We chose SSH tunnel encapsulation technique

for this purpose to see if it can successfully encapsulate VXLAN packets leaving the

VTEP.

VXLAN is a tunneling communication technique between hosts for a layer 2

over layer 3. Creating a secure SSH tunnel over this tunnel could be challenging given

the fact that SSH works by default on TCP ports and VXLAN is UDP based. Also

considering the UDP encapsulation method and the de-encapsulation behavior of the

VTEP, certain aspects of packet forwarding mechanism might have to be configured

to make the communication compatible with SSH.

7.2 Network topology of VXLAN tunnel through SSH

Adding a single SSH network between both the servers wouldn’t result in a

secured communication as in usual case. As we know that VXLAN tunnel uses

separate source and destination ports at each node, we need to create two SSH

networks between server1 and server2, one for packets from server1 VTEP destined to

server2 VTEP and the other SSH tunnel for packets originating from server2 VTEP

and destined to server1 VTEP.

To add a SSH tunnel over the VXLAN tunnel, we install OpenSSH client and

OpenSSH server on both server1 and server2 having VMs h1 and h3 respectively as

 50

both servers create a SSH tunnel for packets originating at their end. The figure 7.1

depicts the network topology used in this study for VXLAN tunnel through SSH.

Figure 7.1: Network topology of VXLAN tunnel through SSH

7.3 VXLAN Configuration set-up with SSH

SSH by default is configured to run over TCP and it encrypts and forwards

TCP packets. Since VXLAN tunnel does UDP encapsulation of layer 2 packets, we

must tunnel VXLAN UDP packets through SSH tunnel using UDP to TCP forwarding

mechanism [17]. The following are the step by step procedure we follow to do so:

7.3.1 For SSH tunnel 1 from Server1 to Server2

STEP 1: Open a TCP forward port with SSH connection:

root@ubuntu:~# ssh -fL 1337:localhost:1337 user2@128.4.13.229 -N

-L: Enables SSH local TCP port forward

 51

-f: Enables SSH to fork into background

-N: Enables SSH to run no command

The above command will allow TCP connections on the local port 1337 of

server1 to be forwarded to port 1337 of server2 through secure channel which is

forked into the background with no option to run command. The -fN option is required

as we require the SSH tunnel only to forward packets to the other end and not gain

shell access of the other server to execute commands through that secured connection.

STEP 2: Setting up TCP to UDP forwarding using socat on the server2:

root@server2:~# socat -T10 TCP4-LISTEN:1337,fork UDP4:localhost:4789

The above command creates the socat on server2 to forward all packets

arriving at TCP port 1337 to local UDP port 4789 at which the VXLAN service is

running.

STEP 3: Create iptables rules to redirect all VLXAN packets originating at

server1 to localhost:1111 [21]][22][23]:

root@ubuntu:~# iptables -t nat -A OUTPUT -p udp -d 128.4.13.229 –dport 4789 -j

DNAT –to-destination 127.0.0.1:1111

The above rule modifies all the packets having destination address

128.4.13.229:4789 to have destination address 127.0.0.1:1111, so that the packets are

redirected to UDP local port 1111 from which it can be forwarded to the destination

through the SSH tunnel.

 52

The purpose of using a local port here is to have a known UDP port where the

socat can listen to VXLAN packets and forward them to local SSH port. Direct

forwarding of UDP packets to a TCP port is not possible without having a port-

forwarding mechanism like netcat or socat.

STEP 4: Create iptables rules at server2 to modify source address of all the

packets with destination port 4789 to original source address of the VXLAN

packet [22][23]:

root@server2:~# iptables -t nat -A POSTROUTING -p udp -d 127.0.0.1 --dport 4789

-j SNAT --to-source 128.4.89.72:38000-45000

The main idea behind doing this is due to the nature of the VTEP. The VTEP

sends the packet to VM only if the source IP is the IP to which it is bridged to and port

be in range of 38000-45000 (from which VTEP usually selects its source port). If the

source IP of packet at 4789 is “127.0.0.1:locally generated random port”, it doesn't

forward it to VM and discards it as it doesn’t recognize the source address 127.0.0.1

The above iptables rule makes sure that all the VXLAN packets before

reaching the VTEP are modified to have the original source IP and is assigned a

random port number from the given range which is typically used by OS to select a

source port in a typical VXLAN communication.

STEP 5: Setting up UDP to TCP forwarding using socat on server1 [24][30]:

root@server1:~# sudo socat UDP4-LISTEN:1111,fork TCP4:localhost:1337

The above command sets up the socat on server1 to listen at local UDP port

1111 and forward all received packets at that port to the local TCP port 1337 from

 53

which SSH connection is established to server2. Port 1111 is used here to receive all

VXLAN packets generated at server1 which are to be transmitted to server2, and

transmit them through the SSH tunnel.

7.3.2 For SSH tunnel 2 from server2 to server1

STEP 1: Open a TCP forward port with SSH connection:

root@server2:~# ssh -fL 2323:localhost:2323 mininet@128.4.95.66 -N

The above command will allow TCP connections on the local port 2323 of

server2 to be forwarded to port 2323 of server1 through secure channel which is

forked into the background with no option to run command.

STEP 2: Setting up TCP to UDP forwarding using socat on the server1:

root@ubuntu:~# socat -T10 TCP4-LISTEN:2323,fork UDP4:localhost:4789

The above command creates the socat on server2 to forward all packets

arriving at TCP port 2323 to local UDP port 4789 at which the VTEP is listening for

VXLAN packets.

STEP 3: Create iptables rules to redirect all VLXAN packets originating at

server2 to localhost:1111

root@server2:~# iptables -t nat -A OUTPUT -p udp -d 128.4.95.66 –dport 4789 -j

DNAT –to-destination 127.0.0.1:1111

The above rule modifies all the packets having destination address

128.4.95.66:4789 to have destination address 127.0.0.1:1111, so that all VXLAN

 54

packets are redirected to UDP local port 1111, from which it can be forwarded to the

destination through the SSH tunnel.

STEP 4: Create iptables rules at server1 to modify source address of all the

packets with destination port 4789 to original source address of the VXLAN

packet:

root@ubuntu:~# iptables -t nat -A POSTROUTING -p udp -d 127.0.0.1 --dport 4789 -

j SNAT --to-source 128.4.95.66:46000-56000

The above iptables rule modifies all the packets destined to port 4789 to have

the original source IP and is assigned a random port number from the given range

which is typically used by OS to select a source port in a typical VXLAN

communication.

STEP 5: Setting up UDP to TCP forwarding using socat on server2:

root@server1:~# sudo socat UDP4-LISTEN:1111,fork TCP4:localhost:2323

The above command sets up the socat on server1 to listen at local UDP port

1111 and forward all received packets at that port to the local TCP port 2323 from

which SSH connection is established to server2. Port 1111 is used here to receive all

VXLAN packets generated at server2 and transmit them through the SSH tunnel.

7.3.3 Iptables rule

After adding above iptables rule on both the servers, they can be viewed and

verified (refer figure 7.2 and figure 7.3) using the command:

iptables -t nat -L

 55

Figure 7.2: iptables rule at server1

Figure 7.3: iptables rule at server2

 56

Chapter 8

STUDY OF VXLAN PACKET FLOW THROUGH SSH TUNNEL

8.1 Wireshark packet capture

An ICMP communication between VM 10.0.0.1 at server1 to VM 10.0.0.3 at

server2 is performed successfully after configuring SSH over VXLAN tunnel. The

packet capture for this communication is shown in figure 8.1 and figure 8.2 below.

Figure 8.1: VXLAN packet capture for SSH tunnel 1 at server1

 57

Figure 8.2: VXLAN packet capture for SSH tunnel 1 at server2

As opposed to traditional VXLAN communication where packets leaving

Ethernet are unencrypted, the packets flowing through the SSH tunnel is encrypted

and secured completely. Any outside intruder using a packet sniffer on this

communication would not be able to see the type of packet transmitted within the SSH

tunnel. Both the integrity of VXLAN UDP encapsulation header and the underlying

layer 2 packet from the VM is protected at the overlay network from any potential

threat.

 58

8.2 Packet flow Walkthrough with SSH tunnel:

To understand the flow of packets between two VMs belonging to the same

network, we consider the communication between VM h1 with IP address 10.0.0.1

and MAC address 00:00:00:00:00:01 at the server1 (128.4.95.66) and VM h3 with IP

address 10.0.0.3 and MAC address 00:00:00:00:00:03 at the server2 (128.4.13.229).

Note here server1 and server2 belong to different subnet and each server is connected

to the other using a separate SSH tunnel. Here are the step by step process of how the

packet flows from VM 10.0.0.3 to the VM 10.0.0.1 on sending a ping message from

10.0.0.3 to 10.0.0.1 as per figure 8.3:

Figure 8.3: Packet flow in VXLAN tunnel secured by SSH (Image adapted from [3])

 59

• At server1, the VM h1 sends out an ICMP packet with source MAC

00:00:00:00:00:01 and destination MAC 00:00:00:00:00:03 which reaches the

VTEP.

• VTEP looks at the flow table entries for a flow match. In this case it finds a

match which asks packets to destination MAC address 00:00:00:00:00:03 be

transmitted through output 1, which is the VTEP port that connects the

VXLAN bridge to the server2. The VTEP encapsulates this packet with a UDP

header with source address 128.4.95.66:46699 and destination address

128.4.13.229:4789 and VNI 100 as per the flow table.

• Since we have the iptables rule to redirect all packets destined to port 4789 to

UDP local port 1111, all the VXLAN packets now reach its modified

destination.

• The socat which is listening at port 1111 forwards these packets to localhost

TCP port 1337 from which SSH tunnel is established to port 1337 of server2.

• The packets reaching 1337 of server2 is forwarded by the socat to UDP port

4789 at which the VTEP is listening. The packets being forwarded have source

address 127.0.0.1:1337 and destination address 127.0.0.1:4789

• These packets before reaching VTEP are modified by the POSTROUTING

iptables rule to have source IP address of 128.4.95.66 and a random port from

the range of 35000-45000.

• The VTEP recognizes these VXLAN packets, de-encapsulates them and

forwards them out of port 1 of switch s1 to VM 10.0.0.3 as per flow table

entries.

 60

• The layer 2 packet reaching 10.0.0.3 has source IP 10.0.0.1 and destination IP

10.0.0.3. The VM 10.0.0.3 then sends a ping response back to 10.0.0.1, which

on reaching VTEP is UDP encapsulated with source address 128.4.13.229:

58290 and destination address 128.4.95.66:4789 adding VNI number 100.

• At the server2, we have similar iptables rule as server1 to redirect packets

flowing to destination port 4789 to localhost port 1111. So all the VXLAN

packets are now redirected to this new address.

• The socat listening at this port then forwards it to TCP port 2323 from which

server2 has established a SSH tunnel to port 2323 of server1.

• The packets reaching port 2323 of server1 would again be forwarded to

localhost UDP port 4789 by the socat function.

• The packets that are being forwarded from port 1337 would have source

address of 127.0.0.1:1337 and destination address of 127.0.0.1:4789

• The POSTROUTING iptables rule at server1 then modifies all the packets

destined to localhost UDP port 4789, to have a source address of server2

128.4.13.229 and assign a random source port from the range 46000-56000.

• The VTEP recognizes these VXLAN packets, de-encapsulates them and

forwards them out of port 1 of switch s1 to VM 10.0.0.1 as per flow table

entries. The layer 2 packets from VM 10.0.0.3 now reaches back VM 10.0.0.1

successfully.

 61

Chapter 9

DISCUSSION

VXLAN provides mechanisms used on overlay networks to aggregate and

tunnel multiple layer 2 networks across a layer 3 infrastructure, to make them look like

a part of the same layer 2 network even though they are physically placed on different

servers on different subnet. VXLAN technology is mainly used to address the

scalability issues associated with large cloud computing environments, where it uses

24 -bit segment ID known as Virtual Network Identifier (VNI) which enables upto 16

million VXLAN segments to be a part of the same administrative domain.

The security measures of VXLAN communication over layer 3 network has

not been addressed in VXLAN documentation and requires outside traditional security

mechanisms to authenticate and optionally encrypt VXLAN packets. Implementation

of a simpler and commonly used security mechanism like SSH encryption to protect

VXLAN data integrity has not been tried till date. The goal of the study is to find a

way to incorporate the SSH tunneling feature over the VXLAN tunnel to secure all

communication through that tunnel.

The primary step of the study is to configure a VXLAN tunnel between two

VMs sitting on different datacenters but belonging to same domain. We take two

Ubuntu servers for this purpose which would host VMs that are configured to be a part

of the same network. The first approach was to follow the guidelines for VXLAN

installation on Ubuntu machine provided by Open vSwitch installation resources

 62

[26][27], which provides steps to install Open vSwitch on both the servers and

manually setup OVS bridge s1 and add the Ethernet port to the bridge so that all the

traffic out of the server is passed through the bridge. The bridge s1 is also given two

additional vports to which the two VMs would be connected to. KVM is used to spin

up the VMs whose network interfaces are added to the vports. Next, the flow table

entries to direct the packet flow to the correct output port is added to each of the

bridge on both sides. The two Ubuntu servers have reachability to each other over

public internet which was verified by sending ICMP messages to each other. The

VTEP on each server knows how to forward the packets depending on the layer 2

destination MAC address. Ideally the layer 2 packet from the VM in the server after

encapsulation by the VTEP should be transmitted over layer 3 network to the other

server where its VTEP is listening at port 4789 for VXLAN packets. But on practical

implementation in this study, this does not occur. The VXLAN packets do not reach

port 4789 of the other server. The reason behind this behavior could not be justified

strongly due to lack of resources on the issue. It can only be speculated to be due to a

missed VTEP configuration at the server ends, because the VMs belonging to the

same network domain and residing on the same server could communicate with each

other. So the OVS bridge does effectively route traffic based on the flow entries to the

correct output port. But in case of the VM which belong to the same network domain

and reside in different server, the VTEP doesn’t receive the VXLAN packets.

Mininet on the other hand provided a quick and easy means to simulate a

network topology consisting of a controller and a OVS switch with hosts attached to

its port. Mininet was developed to aid laboratory research on SDN and to understand

and explore OpenFlow better. It uses Open vSwitch in its topology and all the network

 63

configuration that we require in our study is provided on mininet. Hence, mininet was

used to create OVS switch along with VM hosts on each of the server to implement

the VXLAN tunnel.

The use of mininet on Ubuntu servers having public address, for

implementation of VXLAN tunnel, was successful as the two VMs on either server

belonging to the same network could communicate with each other. We could see

VXLAN packets being transmitted and received at the VTEP using the Wireshark

packet capture.

The important section of this study comes at this stage where we try to

incorporate an encryption mechanism to protect the integrity of the VXLAN packets

over public internet. Options like IPsec and similar encryption mechanism require

additional hardware resources like router and switch which needs to be configured to

implement encryption and authentication mechanisms to the transmitting packets. The

idea is to look for an encryption option that can be implemented right at the server

rather than configuring routers. SSH tunneling is one such mechanism that fits this

requirement and it’s easy to implement on the host machines and requires no

additional network configuration. It is easy to implement at industry level too than just

laboratory environments. Hence, we tried SSH mechanism on our VXLAN tunnel to

see if it can successfully transport VXLAN packets through secured network to the

destination.

SSH local port forwarding is used to create a secure connection between a

local TCP port at server1 and at server2. The validity of this secure connection was

tested on a TCP service since SSH works on TCP port by default. So, a http web

server is launched at server2, which listens at port 8080 using the command:

 64

echo "Hello, World" > index.html

nohup busybox httpd -f -p 8080 &

A SSH local forward connection is made from server1 TCP port 1234 to

server2 port 8080. Now on opening the browser on server1 to http://127.0.0.1:1234

displays the web page “Hello World”. This proves that SSH local port forwarding

works for TCP. Now this same SSH tunnel is used for UDP application where a txt

file is transmitted to the other server using socat. After creating the SSH tunnel

between the servers, socat is opened on UDP port 5656 which forwards packets to

SSH port 1337 which inturn tunnels to port 1337 of the other server. The socat on the

other server forwards the packet received at 1337 to its local UDP port 8989. The txt

file on forwarding to UDP port 5656 is received at server2 UDP port 8989

successfully. This proves the usefulness of SSH tunnel for UDP packet forwarding.

Since VXLAN uses UDP encapsulation, this technique should work for VXLAN

tunneling too.

Setting up SSH tunnel over VXLAN tunnel required two separate SSH port

forwarding, one from server1 to server2 and the other from server2 to server1 as

described in the chapter 6. Socat is used here to facilitate the UDP to TCP port

forwarding to the SSH port. We use iptables rule to redirect all VXLAN packets with

destination address of the other server to reach localhost port at which socat is

listening. One method of doing it was to assign different destination ports to the

VTEPs on both the servers, like server1 VTEP be listening to VXLAN packets on port

7654 and server2 VTEP be listening to VXLAN packets on port 4789. By doing this,

we can set iptables rule to individually access packets destined to go to the other

VTEP port 7654 to be redirected to localhost:1111, also setting similar rule on server2

 65

where packets destined for port 7654 be redirected to localhost:1111 where socat is

listening and not interrupt the packets coming to 4789. This method traditionally

works on any other service like HTTP or SMTP since they are a client server

application, where the service is up at the server and the service request is done from

client side. Changing the destination port is effective as the listening port at the server

side is altered and now, the request must be made to the new port from client side. But

this doesn’t work for VXLAN application since VXLAN service is running on both

the hosts involved in the tunnel where the VTEP listens to VXLAN packets on both

ends. We cannot set different VXLAN destination port for VTEP on each side since

VXLAN communicates on one destination port on both side of the tunnel. It has the

default port of 4789 but it can be changed using the command option:

$ ovs-vsctl add-port br0 vxlan1 -- set interface vxlan1 type=vxlan \

options:remote_ip=192.168.1.2 options:key=flow options:dst_port=8472

Changing this port cause the VTEP at one server to listen to VXLAN packets

at port 8472 and transmit packets to port 8472 of the other server through the tunnel. If

both tunnel end VTEPs are configured to have different destination ports, each one

would transmit packets to different destination ports at which the destination server is

not listening to for VXLAN packets. Ultimately those packets are dropped and

communication fails. Hence, it is mandatory that the VTEPs on both end of the

VXLAN tunnel be listening at the same port.

The other idea was to keep the destination port of VXLAN unmodified and

redirect all packets having destination IP of server2 to localhost:1111 where socat is

listening. This iptables rule works well and all the VXLAN packets destined to the

other server now reaches socat at port 1111 which forwards them to SSH port 1337

 66

which inturn securely tunnels to port 1337 of server2. The socat at server2 forwards

the incoming packets to UDP port 4789 to reach the VTEP. This internal forwarding

of packets keeps modifying the source and destination address of the packet at each

transmission. The result of this has a VXLAN packet reaching the destination VTEP

with source address of 127.0.1:1337 and destination address 127.0.0.1:4789. Though

technically the packet reaches port 4789, the VTEP fails to recognize these packets as

they no more preserve the original source address and it could be a packet from any

other source which is not a part of the VXLAN tunnel. Hence, the VTEP drops this

packet in the name of damaged VXLAN packet and doesn’t de-encapsulate them

further and nor does they send a response packet to the other server.

VTEP on receiving VXLAN packets verifies both the source IP to match the

address to which it is tunneled to via Ethernet output. The OS selects a random source

port for VXLAN from a range around 35000 to 55000. We verify this by running

VXLAN communication over different periods of time and observing the source port

number for the packets. For every new tunnel setup, the OS chooses a separate source

port for its VXLAN packets. This behavior of VTEP for verifying source address was

also tested by first altering just the destination port of the VXLAN packets reaching

the destination VTEP using the following command [22].

root@ubuntu:~# iptables -t nat -A POSTROUTING -p udp -d 127.0.0.1 --dport 4789 -

j SNAT --to-source 127.0.0.1:46000

This means that all packets with destination 127.0.0.1:4789 and source

127.0.0.1:1337 would be changed to have source address 127.0.0.1:46000 (a random

port number from the range used for VXLAN). The VTEP fails to identify the packets

and de-encapsulation fails to occur in this case. On another scenario, only the source

 67

IP of the VXLAN packet reaching VTEP was changed to have the original server IP

without altering the source port as shown below.

root@ubuntu:~# iptables -t nat -A POSTROUTING -p udp -d 127.0.0.1 --dport 4789 -

j SNAT --to-source 128.4.95.66

 So the packets reaching the VTEP of server2 would have source IP of server1

(128.4.95.66) and port 1337 (since the packet was forwarded by socat from the SSH

port). Even in this case, the VTEP fails to recognize the packet. Then on the next

scenario, on keeping the original source IP and port of the packet for VTEP intact as in

the command shown below, it is observed that the packet de-encapsulation occurs and

a layer 2 response is sent back from inner VM which is encapsulated by the VTEP and

transmitted back again.

root@ubuntu:~# iptables -t nat -A POSTROUTING -p udp -d 127.0.0.1 --dport 4789 -

j SNAT --to-source 128.4.95.66:46000

Now as this technique works perfectly, we make iptables rule on both server to

make the necessary alterations to the VXLAN packets reaching VTEP for it to

recognize as a legit packet and send a response back. We use a simple ICMP

communication on this tunnel setup to test its efficiency. On sending a ping from VM

10.0.0.1 on server1 to VM 10.0.0.3 on server2, a destination unreachable error is still

found. On analyzing the packet capture, it is seen that using a random source port

works with ARP broadcast that the VM sends prior to ICMP message to receive MAC

address of VM 10.0.0.3. The VM 10.0.0.3 responds with a ARP reply, but the ICMP

message send by 10.0.0.1 after receiving ARP reply is dropped by VTEP at server2.

The reason behind this behavior is found to be the usage of same source port for the

VXLAN packet for both ARP and ICMP messages. It is later learnt that during

 68

VXLAN tunnel communication, the VTEP at source end uses a random OS generated

port number for each of the protocol messages. Which means that on sending an ICMP

message on a traditional VXLAN tunnel without SSH, the source port for VXLAN

packet having ARP request is different from source port for VXLAN packet having

the ICMP message. The solution to the error found in the previous case is fixed by

assigning different random source port numbers for the VXLAN packets reaching

VTEP. This would differentiate the packets containing ARP exchange and the ICMP

exchange. This is achieved by using the command option [22]:

root@ubuntu:~# iptables -t nat -A POSTROUTING -p udp -d 127.0.0.1 --dport 4789 -

j SNAT --to-source 128.4.95.66:46000-56000

On applying this rule on both sides on the tunnel, a successful ICMP reply for

VM 10.0.0.1 from 10.0.0.3 is seen. This proves our study on VTEP behavior true and

to prove the usability of the proposed configuration with other protocols, we test it

next with a TCP communication between the two VMs. For this, a HTTP server at

10.0.0.3 with a test index page “Hello there” is created using the command:

echo "Hello there" > index.html

nohup busybox httpd -f -p 1234 &

A http get request is made from VM 10.0.0.1 to 10.0.0.3 to display the web

page content on the shell using the command [31]:

wget -O – http://10.0.0.3:1234

A successful display of index page content is achieved on the shell and the

packet capture shows the transmission of VXLAN packets through the SSH tunnel as

seen in figure 9.1 below.

 69

Figure 9.1: TCP through SSH tunnel

This proves the validity of the SSH tunnel configuration for most of the

communication protocols. Irrespective of the type of layer 2 packet, VTEP transmits it

through the SSH tunnel after UDP encapsulation.

The security technique discussed in this study requires usage of additional

UDP port to run socat which may make these ports vulnerable to possible open port

exploitations, but this is not considered a major security threat and usage of proper

firewall rules and packet filters would help eliminate this danger.

 70

Chapter 10

CONCLUSION

VLXAN is becoming the new interest in the datacenter these days owing to its

focus on the network infrastructure and its ability to allow 16 million logical segments

which is needed to cope up with the increase in demand for server virtualization.

VXLAN can be implemented in the network using hardware switches like Nexus 9000

as used by Cisco or can be virtually implemented using VMware NSX and Open

vSwitch. Securing the VXLAN communication over layer 3 is one major concern as

VXLAN doesn’t provide data protectivity. There are several security mechanisms to

uphold data integrity. The purpose of the study is to explore the usability of one such

simple security mechanism SSH over VXLAN tunnel and test its effectiveness in

encrypting messages so that the need for extensive firewall devices can be saved.

The new proposed network configuration uses Open vSwitch for OpenFlow

implementation and a pair of VM each belonging to servers that are on different

network. The SSH tunnel is configured without altering the VXLAN tunnel

configuration and the tunnel is tested by sending layer 2 packets between the VMs.

The VXLAN packets transmitted through this network is secured by the SSH tunnel

and the integrity of the packet is preserved. The operation of the VXLAN layer 2 over

layer 3 is also maintained effectively. This successful study now provides one new and

easy way for secure VXLAN communication.

 71

Chapter 11

FUTURE DIRECTIONS

The topology used in this study is restricted only to a one to one

communication network between two VMs using a VXLAN tunnel. So, manual

configuration of a SSH tunnel over the VXLAN tunnel doesn’t seem to be a tedious

task. However, in cases of a more complex topology where many VXLAN tunnels are

configured between multiple servers in different datacenters, creating multiple SSH

tunnels between the physical servers would be tedious and difficult to manage. Hence,

to help the practical implementation of this security mechanism at industry level, a

user interface application that could automate the creation of SSH tunnel in the

background along with addition of appropriate iptables rule to redirect those VXLAN

packets through that SSH tunnel, upon giving the source and destination address for

the VXLAN tunnel as input to the interface would be of great use. As there are typical

user interface application like Putty, development of an application to set up a SSH

tunnel between VTEPs of the source and destination machines would ease the work of

configuring every network setup manually. It will also provide a faster way to create

and manage secure VXLAN communications between the servers, without having to

consider human errors during manual multiple network configuration.

Creation of UDP to SSH TCP port forwarding, redirection of VXLAN packets

through SSH tunnel and modification of source address of packets reaching

destination VTEP to the original address are all essential aspects that must be taken

into consideration while building this tool. The tool must be able to let the user view

 72

and control the various SSH tunnel encapsulating each VXLAN tunnel and terminate

the tunnel whenever they need. This could make the use of the tunnel securing process

more convenient to handle and manage the network better.

 73

BIBLIOGRAPHY

1. Growth of Cloud demand http://fortune.com/2017/02/22/cloud-growth-

forecast-gartner/

2. VXLAN IETF draft https://tools.ietf.org/html/rfc7348

3. VXLAN CISCO overview

http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-

series-switches/white-paper-c11-729383.html

4. Arista VXLAN white paper

https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VX

LAN_White_Paper.pdf

5. Introduction to VXLAN http://www.therandomsecurityguy.com/vxlan/

6. VXLAN: A framework for overlaying virtualized layer 2 networks over

layer 3 networks http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-

vxlan-07

7. Software Defined Networking

https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-

software-defined-networking-sdn/

8. OpenFlow overview https://www.sdxcentral.com/sdn/definitions/what-is-

openflow/

9. Openflow Switch specification

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf

10. OpenFlow white paper http://archive.openflow.org/documents/openflow-

wp-latest.pdf

11. Open vSwitch overview https://www.sdxcentral.com/cloud/open-

source/definitions/what-is-open-vswitch/

12. Open vSwitch documentation http://docs.openvswitch.org/en/latest/

http://fortune.com/2017/02/22/cloud-growth-forecast-gartner/
http://fortune.com/2017/02/22/cloud-growth-forecast-gartner/
https://tools.ietf.org/html/rfc7348
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729383.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729383.html
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/Arista_Networks_VXLAN_White_Paper.pdf
http://www.therandomsecurityguy.com/vxlan/
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07
http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-07
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/sdn/definitions/what-the-definition-of-software-defined-networking-sdn/
https://www.sdxcentral.com/sdn/definitions/what-is-openflow/
https://www.sdxcentral.com/sdn/definitions/what-is-openflow/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
http://archive.openflow.org/documents/openflow-wp-latest.pdf
http://archive.openflow.org/documents/openflow-wp-latest.pdf
https://www.sdxcentral.com/cloud/open-source/definitions/what-is-open-vswitch/
https://www.sdxcentral.com/cloud/open-source/definitions/what-is-open-vswitch/
http://docs.openvswitch.org/en/latest/

 74

13. Mininet overview http://mininet.org/overview/

14. Lantz, B., Heller, B., & McKeown, N. (2010, October). A network in a

laptop: rapid prototyping for software-defined networks. In Proceedings of

the 9th ACM SIGCOMM Workshop on Hot Topics in Networks (p. 19).

ACM.

15. Mininet sample workflow http://mininet.org/sample-workflow/

16. VXLAN does not define Security on overlay

https://www.packetmischief.ca/2013/12/03/five-functional-facts-about-

vxlan/

17. UDP in SSH tunneling http://zarb.org/~gc/html/udp-in-ssh-tunneling.html

18. VXLAN Tunnel End Points

http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/in

terfaces/6_x/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11/b_C

isco_n3k_Interfaces_Configuration_Guide_602_U11_chapter_01000.html

19. Mininet topology configuration http://mininet.org/walkthrough/

20. Setting up VXLAN tunnel http://networkstatic.net/setting-overlays-open-

vswitch/

21. Local port forwarding using iptables

https://stackoverflow.com/questions/28170004/how-to-do-local-port-

forwarding-with-iptables

22. Framing iptable rules

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO-6.html

23. Viewing Iptable rules

https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-

iptables-firewall-rules

24. Socat implementation

https://superuser.com/questions/53103/udp-traffic-through-ssh-tunnel

25. Reyes, G. P., Dammers, M., & Kastanja, M. (2014). Security assessment

on a VXLAN-based network (Doctoral dissertation, Master’s thesis,

University of Amsterdam, Amsterdam).

26. VXLAN setup
http://blog.arunsriraman.com/2017/02/how-to-setting-up-gre-or-vxlan-tunnel.html

http://mininet.org/overview/
http://mininet.org/sample-workflow/
https://www.packetmischief.ca/2013/12/03/five-functional-facts-about-vxlan/
https://www.packetmischief.ca/2013/12/03/five-functional-facts-about-vxlan/
http://zarb.org/~gc/html/udp-in-ssh-tunneling.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/interfaces/6_x/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11_chapter_01000.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/interfaces/6_x/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11_chapter_01000.html
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/interfaces/6_x/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11/b_Cisco_n3k_Interfaces_Configuration_Guide_602_U11_chapter_01000.html
http://mininet.org/walkthrough/
http://networkstatic.net/setting-overlays-open-vswitch/
http://networkstatic.net/setting-overlays-open-vswitch/
https://stackoverflow.com/questions/28170004/how-to-do-local-port-forwarding-with-iptables
https://stackoverflow.com/questions/28170004/how-to-do-local-port-forwarding-with-iptables
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO-6.html
https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-iptables-firewall-rules
https://www.digitalocean.com/community/tutorials/how-to-list-and-delete-iptables-firewall-rules
https://superuser.com/questions/53103/udp-traffic-through-ssh-tunnel
http://blog.arunsriraman.com/2017/02/how-to-setting-up-gre-or-vxlan-tunnel.html

 75

27. Open vSwitch cheat sheet

http://therandomsecurityguy.com/openvswitch-cheat-sheet/

28. Nakagawa, Y., Hyoudou, K., & Shimizu, T. (2012, August). A

management method of IP multicast in overlay networks using openflow.

In Proceedings of the first workshop on Hot topics in software defined

networks (pp. 91-96). ACM.

29. Keti, F., & Askar, S. (2015, February). Emulation of Software Defined

Networks Using Mininet in Different Simulation Environments.

In Intelligent Systems, Modelling and Simulation (ISMS), 2015 6th

International Conference on (pp. 205-210). IEEE.

30. Socat overview
http://www.dest-unreach.org/socat/doc/socat.html

31. Display web page content on shell

https://www.cyberciti.biz/faq/unix-linux-get-the-contents-of-a-webpage-in-

a-terminal/

http://therandomsecurityguy.com/openvswitch-cheat-sheet/
http://www.dest-unreach.org/socat/doc/socat.html
https://www.cyberciti.biz/faq/unix-linux-get-the-contents-of-a-webpage-in-a-terminal/
https://www.cyberciti.biz/faq/unix-linux-get-the-contents-of-a-webpage-in-a-terminal/

