
Crop and Environment 3 (2024) 33–42

Version of Record at: https://doi.org/10.1016/j.crope.2023.11.001
Contents lists available at ScienceDirect

Crop and Environment

journal homepage: www.journals.elsevier.com/crop-and-environment
Original Article
Sensor-based measurements of NDVI in small grain and corn fields by
tractor, drone, and satellite platforms

Jarrod O. Miller a,*, Pinki Mondal a,b, Manan Sarupria b

a Department of Plant and Soil Sciences, University of Delaware, Newark 19716, USA
b Department of Geography and Spatial Sciences, University of Delaware, Newark 19716, USA
A R T I C L E I N F O

Keywords:
Corn
Drone
NDVI
Nitrogen
Satellite
Small grains
* Corresponding author.
E-mail address: Jarrod@udel.edu (J.O. Miller).

https://doi.org/10.1016/j.crope.2023.11.001
Received 5 July 2023; Received in revised form 11
2773-126X/© 2023 The Author(s). Published by El
license (http://creativecommons.org/licenses/by-nc
A B S T R A C T

The use of sensors for variable rate nitrogen (VRN) applications is transitioning from equipment-based to drone
and satellite technologies. However, regional algorithms, initially designed for proximal active sensors, require
evaluation for compatibility with remotely sensed reflectance and N-rate predictions. This study observed
normalized difference vegetation index (NDVI) data from six small grain and two corn fields over three years. We
employed three platforms: tractor-mounted active sensors (T-NDVI), passive multispectral drone (D-NDVI), and
satellite (S-NDVI) sensors. Averaged NDVI values were extracted from the as-applied equipment polygons. Cor-
relations between NDVI values from the three platforms were positive and strong, with D-NDVI consistently
recording the highest values, particularly in areas with lower plant biomass. This was attributed to D-NDVI's lower
soil reflectance and its ability to measure the entire biomass within equipment polygons. For small grains, sensors
spaced on equipment booms might not capture accurate biomass in poor-growing and low NDVI regions.
Regarding VRN, S-NDVI and D-NDVI occasionally aligned with T-NDVI recommendations but often suggested half
the active sensor rate. Final yields showed some correlation with landscape variables, irrespective of N appli-
cation. This finding suggests the potential use of drone or satellite imagery to provide multiple NDVI maps before
application, incorporating expected landscape responses and thereby enhancing VRN effectiveness.
1. Introduction

The decline in water quality due to nutrient pollution can be
tempered by field management techniques to reduce nutrient export
(Ator et al., 2020; Beegle, 2013). Precision nitrogen (N) management,
including the use of in-season canopy reflectance, can provide environ-
mental benefits through reduced postharvest N (Roberts et al., 2010).
Proximal canopy sensors have been used to improve N use efficiency for
field crops by estimating in-season crop needs and addressing landscape
variability (Aula et al., 2020; Cao et al., 2017; Erdle et al., 2011). Re-
ductions in N application have been performed without reducing crop
yield (Aula et al., 2020; Barker and Sawyer, 2012) while providing lower
greenhouse gas emissions (Cao et al., 2017).

Although initial work in crop sensing was performed with pas-
sive sensors, tractor-mounted active canopy sensors were developed
for variable rate N (VRN) applications (Barker and Sawyer, 2010;
Samborski et al., 2009). Active sensors have their own light source
and do not have to rely on external light sources (e.g. sunlight) to
obtain plant reflectance (Holland et al., 2012; Winterhalter et al.,
November 2023; Accepted 12 N
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2013). Light reflected from plants includes wavelengths in bands
such as green, red, and near-infrared (NIR), where healthy biomass
reflects green and NIR light while absorbing red and blue light
(Inman et al., 2005a). Indices have been developed using specific
wavelengths, such as the normalized difference vegetation index
(NDVI), to estimate plant biomass (Dellinger et al., 2008; Holland
et al., 2012; Raun et al., 2005b). NDVI can be strongly correlated to
vegetative biomass (Solie et al., 2012) but not necessarily nutrient
content alone (Benincasa et al., 2018).

To overcome issues with the NDVI relationship to N content, VRN
applications are based on algorithms that can include growing degree
days (GDD), N-enriched strips, and the number of days from planting to
improve estimations of yield potential (Franzen et al., 2016; Raun et al.,
2005b). Other adjustments to sensor-based N management include the
use of field management zones, pre-plant N, manure or legume credits,
and contributions of N from irrigation (Fassa et al., 2022; Holland and
Schepers, 2010; Thompson and Puntel, 2020). Whatever additional
variables are used in an algorithm, sensor-based indices are a consistent
component used to estimate plant N status (Franzen et al., 2016).
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Regional algorithms have been developed fromN-rate trials using sensors
in Oklahoma (Raun et al., 2005b), Virginia (Thomason et al., 2011), and
New York (Tagarakis and Ketterings, 2018).

With the recent adoption of drones (unoccupied aerial vehicles or
UAV) in agriculture production, passive multispectral sensors are being
examined to make VRN prescriptions (Benincasa et al., 2018; Heinemann
et al., 2022; Mizuta et al., 2022; Sozzi et al., 2021; Walsh et al., 2018).
There is potential for drone or satellite NDVI to be substituted within
VRN models, but measured values may vary as passive sensors require
ample sunlight which varies with solar angles, and their NDVI can change
within a smaller range (Holland et al., 2012; Morris et al., 2018; Win-
terhalter et al., 2013). Questions also remain as to how similar drone or
satellite-based vegetation indices may be substituted into established
algorithms, particularly as algorithms were developed using active sen-
sors measured directly along crop rows (Barker and Sawyer, 2010; Morris
et al., 2018), potentially including more soil reflectance. Soil pixels can
be removed from drone images during processing (Thompson and Puntel,
2020), which could be an advantage in small grains when sensors are not
directly over the row (Morris et al., 2018). There are some known ben-
efits to passive drone-mounted sensors, where they have had better re-
lationships with wheat biomass, possibly due to the off-nadir
measurements of ground-based sensors (Heinemann et al., 2022).

Sensor resolution will also vary among the different platforms, which
may affect NDVI values or the amount of soil reflected. An active optical
sensor may measure a 0.61 � 0.61 m area (Inman et al., 2005a), while
passive sensors in satellites could range from 1 to 60 m in resolution
(Benincasa et al., 2018; Yu et al., 2021). Drone-mounted multispectral
cameras can vary in resolution based on flying height, for example, be-
tween1.29 and11.00 cmpixel�1whenflownbetween30and120mabove
ground level (Miller and Adkins, 2021). However, the NDVI measured on
small grains from different heights was not very different and was able to
differentiate between different populations (Miller and Adkins, 2021).

The finer resolution of drone imagery may also provide a better un-
derstanding of how landscape variables relate to N response and the
creation of management zones (Inman et al., 2005b; Thompson and
Puntel, 2020). For corn and small grains, there has been a strong spatial
dependence on N uptake and yield related to soil properties (Inman et al.,
2005b; Raun et al., 2005b). The spatial variability in soil properties,
including soil texture and moisture, can also have a temporal component,
as soil properties have exhibited a greater influence on growth during dry
years (Stadler et al., 2015). Temporal measurements may also be an
advantage of drone and satellite platforms, where measuring the change
in NDVI values over the growing season has been successful in relating
biomass, growth, and yield (Miller and Adkins, 2021; Raun et al., 2001).
Equipment-mounted sensors would need to be driven over the field
repeatedly to perform the same function.

For use in established algorithms, one issue comparing remote and
tractor-based sensing could be how similar NDVI values are between
platforms since specific NDVI values are used to cut off N applications at
highor lowbiomass (Thomasonetal., 2011).Theremayalsobevariation in
the NDVI of high- or low-N reference strips between platforms and sensors
(Solie et al., 2012; Thomason et al., 2011), although individual field
reference strips are designed to correct for local and annual conditions.

The objective of this study was to compare how drone and satellite
multispectral sensors may substitute for a ground-based active NDVI
sensor (Greenseeker™) using a Mid-Atlantic region algorithm for N
recommendations. \Our other objective was to observe how field maps
with different resolutions may vary in their estimations of NDVI,
leading to different recommendations for field-based VRN.

2. Materials and methods

2.1. Drone image collection

Fields were selected from a farmer cooperator in Talbot County, MD,
who adopted a Greenseeker active optical sensor for VRN application to
34
small grains and corn. VRN applications were made by the cooperator
using the algorithm designed by Virginia Tech (Thomason et al., 2011),
using NDVI from high and low N rate strips, pre-plant N, days from
planting, maximum yield, and a maximum (constrained) N rate as inputs.
The application was made with a 27 m boom with six active sensors
creating a 3.66 m length region on the boom for NDVI measurements,
where the actual area depended on the length of the field driven. For
small grain fields, communication was maintained with the cooperator to
arrange for drone flights over each field prior to an application at Zadoks
growth stage (GS) 23 and again at GS 30. A flat rate was made at GS 23,
and the VRN application was made at GS 30. Due to weather restrictions
on drone flights, including cloud cover and high winds (> 20 mph),
flights were timed for sunny days close to the application dates (Table 1).

Drone flights were performed in 2019 with a Parrot Disco Pro Ag
fixed wing drone equipped with a Parrot Sequoia multispectral camera
(Fig. 1). The Sequoia can produce images in the red (R), green (G), red
edge (RE), and NIR wavelengths. Flights in 2020 and 2021 were per-
formed with a DJI Matrice 210 equipped with a Micasense Altum mul-
tispectral camera (Seattle, WA). The Altum can take images in the R, G,
RE, and NIR bands but also includes imagery in the blue (B) wave-
lengths. Both cameras have GPS sensors that georeferenced each
captured image. The GPS unit also has a sunshine sensor, which is placed
on top of the drone and marks each image with data on lighting con-
ditions. Flights were performed at 76 m above ground level which
produced imagery with 7.16 and 3.28 cm pixel�1 resolution in the
Sequoia and Altum cameras, respectively. Image was captured at an 80%
front overlap and 75% side overlap. Images of a calibration panel to
correct for lighting conditions were taken before each flight to input into
the photogrammetric software. Each year, ground control points (GCP)
were placed prior to the flights and georeferenced (WGS84) using an
Emlid Reachþ GPS receiver with RTK corrections provided wirelessly
through Keynet.

2.2. Drone image processing

All images were stitched together using Pix4D Mapper photogram-
metric software (Prilly, Switzerland), using the settings for multispectral
cameras, and incorporating both calibration photos and the GCP. The
only setting adjusted in Pix4D was to use “triangulation” to calculate the
digital surface model (DSM), which is recommended for agricultural
fields by Pix4D. The stitched NDVI orthomosaic and DSM produced by
Pix4D were incorporated into ArcGIS Pro. Mounted active optical sensor
readings were obtained from the cooperator as a polygon shapefile and
overlaid on the drone orthomosaics. As the tractor-based optical sensor
only measures NDVI, it was the only index calculated from multispectral
drone imagery.

2.3. Satellite imagery processing

This study utilized the Level 2A products from the Copernicus
Sentinel-2 mission to obtain NDVI values from satellite imagery. Devel-
oped by the European Space Agency (ESA), Sentinel-2 is a constellation
of satellites that carries a MultiSpectral Instrument (MSI) and offers high-
resolution optical images with a spatial resolution of 10–60 m and a
temporal resolution of 5 d. The MSI sensor on board Sentinel-2 provides
data in 13 bands, ranging from visible R, G, B, and NIR to shortwave
infrared. We relied on Google Earth Engine (GEE), a freely available
cloud-based platform for geospatial data processing, to acquire and
process the Sentinel-2 images used in this study. Level-2A data are an
advanced and analysis-ready rendition of the original Level-1C data.
Level-2A data are atmospherically corrected, which effectively mitigates
the impact of Earth's atmospheric constituents, notably aerosols, clouds,
and water vapor. Consequently, Level-2A data characterize surface
reflectance, quantifying the portion of solar irradiance reflected by the
earth's surface. Additionally, Level-2A data also incorporate cloud mask
information stored in the QA60 band, facilitating effective masking of



Table 1
Field names and dates for planting, tractor sensing, drone flights, and satellite imagery acquisitions.

Sensor acquisition dates

Field Planting date Satellite GS23 Drone GS23 Tractor GS30a Drone GS30 Satellite GS30

Barley19 10/02/2018 02/05/2019 NAb 04/08/2019 04/08/2019 04/06/2019
Wheat19 10/22/2018 02/05/2019 NA 04/9/2019 04/08/2019 04/06/2019
Wheat20A 10/14/2019 2/15/2020 2/21/2020 3/20/2020 3/22/2020 3/16/2020
Wheat20B 10/18/2019 2/15/2020 2/21/2020 3/20/2020 3/22/2020 3/16/2020
Barley21 10/07/2020 2/24/2021 2/17/2021 04/07/2021 04/05/2021 04/05/2021
Wheat21 10/28/2020 2/24/2021 2/17/2021 04/07/2021 04/05/2021 04/05/2021
Corn Rainfed 4/20/2020 NA NA 6/22/2020 6/26/2020 6/24/2020
Corn Irrigated 5/14/2020 NA NA 6/26/2020 6/26/2020 6/24/2020

a Corn was at six leaf (V6) growth stage.
b Not applicable.

Fig. 1. Workflow of NDVI collection and processing.
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cloud cover across the study area. We used QA60 band to include pixels
with no cloud cover.

The drone orthomosaics of all farm fields were imported as assets in
GEE. The geometrical boundaries of the orthomosaics were used to clip
the Sentinel-2 surface reflectance images to obtain data from the same
field sites. Cloud-free Sentinel-2 images acquired closest to the date of the
drone flights were used for the analysis (Table 1). The NDVI for each
individual farm field raster was calculated using the NIR and R bands
using the following equation:

NDVI¼NIR� RED
NIRþ RED
Fig. 2. Field averaged NDVI from each field compared across the tractor based (T-ND
LSD (P ¼ 0.05). Differences are compared within each sampled field and values wit
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2.4. NDVI and landscape variable extraction

The raster calculator in ArcGIS Pro was used to subtract the GS 23
small grain NDVI (drone and satellite) from the GS 30 imagery to mea-
sure temporal differences between winter and early spring growth. From
drone and satellite imagery, NDVI values were extracted using Zonal
Statistics as Table with the as-applied polygon layer as the Feature Data/
Mask. Tables were exported by the Table to Excel function. Equipment
mounted (T-NDVI), drone mounted (D-NDVI), and satellite NDVI (S-
NDVI) were matched in Excel using the as-applied polygon IDs. In Excel,
T-NDVI was subtracted from D-NDVI and S-NDVI to measure the differ-
ences between them in each polygon.

Landscape variables were derived using 1 m digital elevation models
(DEM) deriving from LiDAR provided by the state of Maryland for each
county (Imap, 2022). Average elevation was extracted using the T-NDVI
polygons from each DEM. Slope rasters were created for each field using
the Slope function in ArcGIS spatial analyst. Topographic wetness index
(TWI) was calculated using the following equation:

TWI¼ ln
a

tan b

For the TWI calculation, a represents the local upslope drainage,
whereas b is the slope in radians and is used to estimate parts of a land-
scape that may accumulate more water. For this calculation, the DEM was
resampled to a 5m resolution. Flow direction and flow accumulationwere
calculated using Spatial Analyst tools. Flow accumulation was scaled by
adding one and multiplying by the cell size. The final TWI raster had
values averaged using Zonal Statistics and the T-NDVI polygons.
VI), drone based (D-NDVI), and satellite based (S-NDVI) platforms using Tukeys
h different letters are significantly different.
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To compare the average NDVI within each polygon, T-NDVI, D-NDVI,
and S-NDVI values were compared in SAS using Proc GLM and Tukey's
Least Significant Difference (P ¼ 0.05). The SAS function Proc Corr was
used to analyze correlations among yield, NDVI values, and landscape-
derived variables..

3. Results

3.1. Comparisons of NDVI measured by sensors mounted on tractors,
drones, or satellites

The highest small grain NDVI for all platforms was Barley21, while
the lowest was Wheat19 (Fig. 2). Based on individual platforms, D-NDVI
Fig. 3. Regression equations and Pearson correlation coefficients (r) between tractor
Wheat19 (A), Barley19 (B), Wheat20A (C), Wheat20B (D), Barley21 (E), Wheat21 (
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had the highest value across all fields. Field averaged D-NDVI ranged
from 0.08 to 0.39 units higher than T-NDVI and S-NDVI, with the largest
difference between the drone and tractor in the rainfed corn field. The
rainfed corn field also had the largest standard deviation for T-NDVI. For
the irrigated corn field, D-NDVI was only 0.1 units higher than T-NDVI,
while S-NDVI ranged from 0.08 to 0.10 units lower than D-NDVI in both
corn fields.

The T-NDVI was only the lowest in five out of the seven fields
sampled (Fig. 2). For the eighth field, which was irrigated corn, the
measurements were similar between the T-NDVI and S-NDVI. The
rainfed corn field also produced the highest difference between the T-
NDVI and S-NDVI (0.31), while all other measurements ranged from
0.02 to 0.07.
based (T-NDVI) and drone based (D-NDVI) or satellite based (S-NDVI) NDVI for
F), rainfed corn (G), and irrigated corn (H).



Table 3
Pearson correlation coefficients between NDVI and field characteristics. NDVI
were tractor based (T-NDVI), drone based (D-NDVI), and satellite based (S-NDVI)
and field characteristics included elevation, slope, and topographic wetness
index (TWI).

Elevation Slope TWI Elevation Slope TWI

Barley19 Wheat19
T-NDVI �0.34 �0.51 0.46 NSa �0.18 NS
D-NDVI �0.31 �0.55 0.45 �0.22 �0.20 NS
S-NDVI �0.26 �0.26 0.20 �0.26 �0.26 0.20

Wheat20A Wheat20B
T-NDVI �0.30 �0.10 0.13 0.16 NS NS
D-NDVI �0.29 �0.18 0.18 0.19 NS NS
S-NDVI �0.31 �0.15 0.18 0.32 NS 0.28

Barley21 Wheat21
T-NDVI 0.21 �0.16 NS �0.25 NS 0.16
D-NDVI 0.24 �0.27 NS �0.26 NS 0.13
S-NDVI NS �0.17 NS �0.36 NS 0.14

Corn Rainfed Corn Irrigated
T-NDVI 0.21 �0.16 NS NS NS NS
D-NDVI �0.18 NS NS NS �0.16 �0.09
S-NDVI �0.21 NS NS NS NS NS

a No significant difference at P ¼ 0.05.
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3.2. Relationships between T-NDVI, D-NDVI, and S-NDVI

When both D-NDVI and S-NDVI were regressed against T-NDVI, the
relationships varied among fields (Fig. 3). The D-NDVI values were
consistently higher than the S-NDVI values across all points sampled,
with the largest difference in the slope of the relationship in Wheat20A
and Wheat21. For small grain fields, except for Wheat19 the correlation
coefficient values were greater for relationships with D-NDVI, with the
largest difference in Barley19. Based on the slopes and intercepts of some
of the regressions, larger discrepancies in T-NDVI and D-NDVI often
occurred at lower values, with D-NDVI being 0.2 units higher at lower
ranges (NDVI ranged from 0.30 to 0.40).

For small grains, correlations between D-NDVI and T-NDVI were
consistently strong positive based on GS 30 with r ranging from 0.63 to
0.82 (Fig. 3), while correlation coefficient between S-NDVI and T-NDVI
ranging from 0.47 to 0.79. For corn fields, the rainfed field had a lower
correlation between D-NDVI and T-NDVI (r ¼ 0.60) than the irrigated
field (r ¼ 0.74), but D-NDVI and S-NDVI had stronger relationships (r
values ranged from 0.84 to 0.88).

3.3. Estimating N-rates between T-NDVI, D-NDVI, and S-NDVI
measurements

Using the regression equations, T-NDVI values for target NDVI (0.50),
low reference NDVI (0.30), and high reference NDVI (0.80) were used to
estimate the same values for both D-NDVI and S-NDVI (Table 2). The
largest discrepancy was often in the low reference strip values, with D-
NDVI up to 0.39 units higher in Barley19 but only 0.10 units higher in
Barley21. S-NDVI estimates were much closer to the T-NDVI low refer-
ence values, being only 0.04–0.16 units higher for small grains. The high
NDVI reference strips were sometimes lower for S-NDVI but always
higher for D-NDVI. For the corn fields, larger discrepancies in NDVI were
observed in the rainfed than in the irrigated corn fields.

These values were used in the Virginia Tech algorithm to estimate po-
tential N rates (Table 2), whichwere 101 kg ha�1 for small grainfields, 213
kg ha�1 for rainfed corn fields, and 297 kg ha�1 for the irrigated corn field
for T-NDVI. The D-NDVI was able to predict the same N rate for Wheat19,
Barley21, and Wheat21. The S-NDVI rates were similar for two different
fields (Barley19 and Wheat20A) and predicted the same as D-NDVI for
Barley21. Otherwise, the rates were 45–82% of the suggested T-NDVI rates
for small grains for both D-NDVI and S-NDVI. For the rainfed corn field,
D-NDVI and S-NDVImade recommendations thatwere 64%and 69%of the
T-NDVI rate, respectively. For irrigated corn, the S-NDVI estimated about
79% of the irrigated corn rate, while D-NDVI was much closer at 96%.

3.4. Relationships between landscape variables and measured NDVI

For T-NDVI, elevation had no relationships in irrigated corn fields and
mixed relationships with small grains (Table 3). The strongest relation-
ship was for Barley19, which was r ¼ �0.34. Where it was significant,
Table 2
Estimated NDVI values using the relationship between tractor based (T-NDVI), drone b
0.50), low reference strip (T-NDVI¼ 0.30), and high reference strip (T-NDIV¼ 0.80) an
kg ha�1 for rainfed corn, and 297 kg ha�1 for irrigated corn).

Target NDVI Low NDVI

Field D-NDVI S-NDVI D-NDVI S-N

Barley19 0.79 0.58 0.69 0.4
Wheat19 0.68 0.52 0.55 0.4
Wheat20A 0.75 0.48 0.49 0.3
Wheat20B 0.79 0.49 0.67 0.3
Barley21 0.65 0.61 0.40 0.4
Wheat21 0.67 0.55 0.47 0.4
Corn Rainfed 0.82 0.72 0.72 0.6
Corn Irrigated 0.66 0.59 0.52 0.4

a The value 0.99 is used where estimates were over 1.0.
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slope had consistently negative relationships with T-NDVI, with the
strongest relationship also in field Barley19. TWI had very low re-
lationships with T-NDVI, but they were positive where presented, also
with the strongest relationship in field Barley19.

The D-NDVI and S-NDVI mirrored the relationships observed above,
with Wheat20B and Barley21 having the only positive relationships be-
tween NDVI and elevation (Table 3). Where significant, slope was related
to lower NDVI in drone and satellite-based measurements, and field
Barley19 had the strongest negative correlation. More fields had signif-
icant positive correlations between S-NDVI and TWI than those based on
drones or tractors, although they were all weak (r ranged from 0.14 to
0.28).

Drone imagery and contours reveal where TWI may have more in-
fluence, with depressions in Wheat19, Wheat20A, and the irrigated corn
field all collecting moisture. For the irrigated corn field (Fig. 4H) and
Wheat20A (Fig. 4C), these depressions were in upland locations, while
the Wheat19 (Fig. 4A) field had depressions at lower elevations where
winter saturation killed the small grain crop.

Drainage also played a role in crop growth due to slopes, as steeper
slopes (evident where there were closer contours) in Barley19 (Fig. 4A)
and Wheat20A (Fig. 4C) reduced growth. The very low NDVI values
observed in the rainfed corn field (Fig. 4G) were at the edges of the field
and along drainage ditches. This was the same field sampled for Barley21
(Fig. 4E), where the drainage ditch also reduced small grain growth.

Due to the spacing of active sensors on the spryer boom, some of the
very low T-NDVI (NDVI < 0.1) readings were along the field edges.
ased (D-NDVI), and satellite based (S-NDVI) for the target application (T-NDVI ¼
d resulting N recommendation (tractor based¼ 101 kg ha�1 for small grains, 213

High NDVI N rate (kg ha�1)

DVI D-NDVI S-NDVI D-NDVI S-NDVI

6 0.94 0.76 57 101
3 0.87 0.64 101 45
4 0.99a 0.68 83 101
9 0.97 0.63 56 45
1 0.99a 0.91 101 101
3 0.97 0.72 101 81
5 0.95 0.83 136 147
5 0.89 0.78 284 234



Fig. 4. Drone-derived NDVI overlain by 0.2 m elevation contours for the Wheat19 (A), Barley19 (B), Wheat20A (C), Wheat20B (D), Barley21 (E), Wheat21 (F), rainfed
corn (G), and irrigated corn (H).
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Since the application equipment had automatic section control, over-
lapping polygons, or those along depressions lacking in growth
(Wheat19), recorded a larger area than their applied N. However, D-
NDVI and S-NDVI measurements were only extracted from the as-
applied polygons.
38
3.5. Relationships between yield and NDVI or landscape variables

Where presented, yield had positive relationships with all S-NDVI
measurements (Table 4). The strongest relationship (r ¼ 0.81) was for D-
NDVI at GS30 in Wheat20A. The weakest relationship was S-NDVI for



Table 4
Pearson correlation coefficients between yield and tractor-based NDVI (T-NDVI), drone-based NDVI (D-NDVI) satellite-based NDVI (S-NDVI), elevation, slope, and
topographic wetness index (TWI) for each field where it was collected.

Field T-NDVI D-NDVI
GS23a

D-NDVI
GS30

S-NDVI
GS23

S-NDVI
GS30

Elevation Slope TWI

Barley19 0.49 NSb 0.41 0.45 0.40 �0.17 �0.34 0.16
Wheat19 0.28 NS 0.32 0.24 0.43 �0.17 �0.15 0.17
Wheat20A 0.68 0.74 0.81 0.73 0.77 �0.43 �0.25 0.37
Barley21 0.65 0.70 0.72 0.72 0.63 NS �0.21 0.19
Corn Rainfed 0.31 NS 0.35 NS 0.27 NS �0.21 0.23
Corn Irrigated 0.47 NS 0.49 NS 0.44 0.14 NS �0.27

a small grain growth stage 23 and 30, corn six leaf vegetative stage.
b No significant difference at P = 0.05.
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rainfed corn field at GS30. There were only two fields to compare GS23
small grain D-NDVI to yield, and both were fairly strong. Two additional
fields could be evaluated for satellite at GS30, and they had much weaker
relationships, similar to those observed in April (GS23).

Relationships between yield and landscape variables were negative
for slope, although not very strong and similar to those seen for NDVI
(Table 4). Field Barley19 had the strongest negative relationship between
yield and slope (r ¼ �0.34). Relationships for yield with elevation were
mixed, with fields having no relationship and positive or negative re-
lationships. The strongest negative relationship between yield and
elevation was for Wheat20A (r ¼ �0.43), which also had consistent
negative relationships with NDVI and elevation across all platforms. This
could have been due to the drier winter. The irrigated corn field also had
a weak positive relationship between yield and elevation.

The TWI had mostly weak positive relationships with yield, even
where slope had negative relationships. The strongest positive relation-
ship for TWI and yield was Wheat20A (r ¼ 0.37). The only negative
relationship for TWI and yield was in the irrigated corn field, which may
have been due to strong late summer storms that caused lodging in the
field. This field also had a weak positive relationship between elevation
and yield.

4. Discussion

4.1. Relationships between tractor, drone, and satellite NDVI

Our findings indicated that D-NDVI and T-NDVI were strongly and
positively correlated, which could support D-NDVI being substituted for
previously developed algorithms. However, the D-NDVI measurements
were often much higher (up to 0.38 units) than the T-NDVI measure-
ments. The S-NDVI was also always lower than D-NDVI and higher than
T-NDVI in three fields (Fig. 1). While it was also suggested that D-NDVI
could pick up soil background (Morris et al., 2018), the higher average
values observed in our study did not align with this prior finding. This
was particularly notable since T-NDVI had the lowest NDVI recorded in
four out of eight fields. In another study comparing drones to a handheld
active sensor, Duan et al. (2017) observed drone measurements to be 0.2
units higher, suggesting that this was due to reduced soil interference in
coarser drone imagery. Soil signals also did not have a large effect on
drone readings in other studies of small grains and N rates, where
ground-based sensors might receive more off-nadir signals from stems
(Heinemann et al., 2022). While our D-NDVI measurements had some
values above 0.9 at GS30, other studies have not observed those values
until heading (Guan et al., 2019; Miller and Adkins, 2021), which is
another reason why high N strips are important in separating field and
sensor variability.

Based on our results, it becomes evident that both soil reflectance and
low biomass contributed to the reduction in T-NDVI. This reduction
occurred because of the limited spatial coverage of the active sensors,
which missed some field variability (Fig. 3). Tractor-mounted sensors,
due to their proximity to the crop, offered high individual resolution
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(0.61 m) and worked effectively when placed directly over the rows.
However, accurately mapping small grain fields, especially those
broadcast on the surface and tilled into the soil, would require more
sensors. In contrast, drone imagery demonstrated a superior capacity to
cover small grain fields, particularly when fewer sensors may bemounted
on the equipment. These findings underscore the importance of field-
based rather than plot-based calibrations. In field conditions, spatial
variability may not align with more idealized plot conditions, as high-
lighted in the study by Colaço and Bramley (2018). Another issue with
tractor-mounted sensors was the inclusion of NDVI measurements not
used in application rates. This issue occurred in cases where the
as-applied polygons represented smaller field edges or overlaps. At the
same time, NDVI measurements were averaged over all active sensors. In
regions of the field where biomass was consistent, T-NDVI was similar to
D-NDVI, but where drainage ditches might be included, T-NDVI would be
lower. This could support using aerial imagery to provide maps prior to
application with the appropriate NDVI measurements. In this case, the
T-NDVI may underestimate N application along field edges and overlaps.

Alternatively, S-NDVI was much closer to T-NDVI in value, potentially
due to the coarser resolution of satellite imagery producing similar av-
erages to the active tractor-mounted sensors. Nevertheless, it was
important to consider whether algorithms were created by scanning rows
and whether tractor-mounted sensors correctly measure small grain
fields, which could indicate that S-NDVI was also less accurate in map-
ping field biomass.
4.2. Incorporation into algorithms

Due to the calibration from the reference strips, drone and satellite
imagery were occasionally successful at predicting a similar rate to T-
NDVI (Table 2). This appears to occur where at least less separation
occurred between the low N and target (application zone) NDVI but al-
ways performed better when the high NDVI was at least 0.20 units higher
than the target. However, in other estimates, both the drone and satellite
rates were half of the active sensor platform rate and would have under-
fertilized that region of the field. In these fields, D-NDVI would measure
higher NDVI in low biomass regions of the field, causing it to underes-
timate the amount of N needed.

Over-fertilization is a concern in fields where D-NDVI and S-NDVI
measurements are used. While N-rich strips can help with corrections,
certain algorithms rely on NDVI cutoffs to guide N application decisions.
For example, based on results from active sensors, some algorithms
suggested limiting N application for NDVI values ranging from 0.2 to 0.3
(Solie et al., 2012; Thomason et al., 2011). However, as indicated in
Table 2, D-NDVI and, to a lesser extent, S-NDVI might estimate higher
values in specific parts of the field. Ensuring the accuracy of NDVI
measurements in different field sections is crucial to avoid inappropriate
N management. There are also upper limits built into algorithms, which
may not take into account higher drone readings (Raun et al., 2005b;
Thomason et al., 2011). Observations in Oklahoma have also noted a
minimum response to N when NDVI was measured above 0.73, which
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changed based on the reference strip (Raun et al., 2005a). On the other
hand, many of these algorithms were based on scanning rows, i.e. the
canopy (Morris et al., 2018), and the better ground coverage performed
by drone measurements might still perform well within these algorithms.
Other options to improve comparisons between passive and active sen-
sors could include normalizing NDVI measurements to improve re-
sponses (Morris et al., 2018; Winterhalter et al., 2013).

One contributing factor to these discrepancies is the influence of plant
distance on active sensor readings, an effect that can vary depending on
plant vigor (Kipp et al., 2012). It is well known that poor plant stands can
lead to underestimations of crop requirements, as noted in the case of corn
(Franzen et al., 2016). To mitigate these issues, the use of drone imagery
becomes valuable, as it allows for the separation of rows and the esti-
mation of tiller and stand counts (Miller and Adkins, 2021). While D-NDVI
alone may not always align with prior calibration values, its accuracy can
be enhanced through the ability to perform stand counts and other spatial
analyses. The use of the coefficient of variation has also been shown to
correlate well with plant population (Raun et al., 2005a) and could be
quickly calculated from field-wide drone (or satellite) imagery. Passive
sensors such as thosemounted on drones or satellites may be able to detect
N along the entire canopy (Winterhalter et al., 2013), as opposed to active
tractor-mounted sensors. This may explain some of the differences
observed at higher biomass, although the prior study had used passive
sensors just above the plant canopy (Winterhalter et al., 2013).

Satellite-based NDVI has a coarser spatial resolution than D-NDVI but
also covers the entire field, which may explain why the range in NDVI
was similar to that of T-NDVI. However, it did not appear to improve the
chances of similar N rates (Table 2), although it has already been shown
to have high enough resolution to be profitable for N application (Sozzi
et al., 2021). Compared to farmer applied rates, satellite measurements of
high N-reference strips have also achieved greater economic return
(Mizuta et al., 2022), and satellites have not reached a plateau in NDVI as
drones have (Benincasa et al., 2018).

4.3. How management, weather, and field characteristics may affect NDVI
relationships

Prior studies examining plot-based comparisons may not be an ac-
curate measure of field and annual climate variability (Colaço and
Bramley, 2018). Weather may control both planting timing and seasonal
growth, particularly for small grains. Some fields were not planted in the
same fall window and accumulated less GDD before VR application, and
differences in NDVI between platforms appear to increase with accu-
mulated GDD. Rainfall also affected overall plant growth and varied each
winter for small grains. The driest winter (2019–2020) corresponded to
lower average NDVI in the field with higher elevations and steeper slopes
(Wheat20A), as indicated by negative correlations with elevation and
slope (Table 3). The Wheat20A field also had a weak positive correlation
with TWI, indicating the importance of parts of the field that can accu-
mulate water during drier winters. This is evident in Fig. 4C, where the
Wheat20A field had several upland depressions where water could
gather and higher NDVI was evident. The other small grain field observed
during 2019–2020 (Wheat20B) had the lowest elevation recorded for all
fields and one of the only positive relationships between NDVI and
elevation observed. The only other field with this relationship (Barley21)
had higher elevations and gentler slopes but also a lower TWI range.
However, visual drone imagery revealed a drainage pattern across the
field where reduced growth was occurring (Fig. 4E), so that higher ele-
vations may provide more stable slopes for plant growth (Fig. 3).

Excess winter rainfall might also reduce small grain growth, which
was evident in the imagery for field Wheat19, where the farmer per-
formed 0N application in depressional Delmarva Bays (Fig. 4A). The
removal of lower elevation depressions from T-NDVI might explain why
there was no relationship with elevation, although it was present for D-
NDVI and S-NDVI. The other field flown that season, Barley19, had
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strong negative relationships with both elevation and slope (Fig. 4B).
While Barley19 had a similar range in slope to Wheat19, the elevation
contours revealed longer regions of steeper slopes with lower NDVI
values. Overall, slope had stronger negative relationships with NDVI
across all platforms, which indicates the difficulty in growing small
grains on Delmarva. Even in a year with more moisture, slopes on
Barley19 may have caused more runoff and reduced growth, as evi-
denced by the reliance on TWI for higher NDVI. During the 2018–2019,
depressions in Wheat19 suffered crop failure due to excess water accu-
mulation, whereas an adjacent field (Barley19) exhibited higher NDVI in
areas with moisture collection and lower NDVI in regions prone to
erosion and runoff. The Barley21 field had gentler slopes, and the sta-
bility appeared to lead to more consistent NDVI, while the gullies cutting
across the field had lower NDVI (Fig. 4E). Where corn was planted in this
field in 2020 (Fig. 4A), there was more variability in NDVI along these
slopes, but the wider gully still had the lowest NDVI. Alternatively, the
irrigated corn field had a range of slopes, ditches, and depressions but a
more consistent NDVI map, indicating how reducing the limitations of
moisture produced a more even stand across the field. This suggests the
need for better management of Delmarva, which would include land-
scape variables (management zones), irrigation, and weather for VR
applications.

The only consistent factor among landscape characteristics and
measured NDVI was the variability across the fields. Even though the
slope was consistently negative, the relationship was either weak or not
significant in most fields, while elevation sometimes boosted NDVI, and
at other times, it reduced it. The use of both high N reference strips with
management zones and weather conditions could improve N manage-
ment for Delmarva sensor-based N applications (Tagarakis and Ketter-
ings, 2018; Thompson and Puntel, 2020).

4.4. How management, weather, and field characteristics may affect yield
relationships

Yield had positive relationships with NDVI across all platforms and
fields, which is expected, as NDVI is a proxy for biomass (Raun et al.,
2001). However, these NDVI measurements were made prior to repro-
ductive stages and VRN application. For small grains and corn, vegetation
indices typically have their strongest relationship at the beginning of
reproductive stages (Miller et al., 2022; Naser et al., 2020). Stronger
relationships prior to reproductive stages might indicate that spring
management had little effect, and earlier season stress had already
reduced yield potential (Table 4). There were some fields, such as the
Wheat19 and the rainfed corn field, which had weaker relationships
between yield and NDVI when NDVI was measured at sidedress. How-
ever, the small grain fields (Wheat20A and Barley21) and the irrigated
corn field all had stronger relationships at sidedress, with Wheat20A
having an r of 0.81 between yield and D-NDVI at GS30.

The Wheat20A field also had high correlations between T-NDVI and
S-NDVI (r ranged from 0.72 to 0.74) during the winter (GS23) months by
both drone and satellite, indicating that little change in yield potential
occurred after that point. This was compared to fields Wheat19 and
Barley19, with r values of 0.24 and 0.45 by satellite, respectively. For
Wheat20A, it appeared that the N application did very little to change
yield, and landscape variables might have been more important,
although we did not have NDVI measurements following sidedress
application to compare. However, the stronger relationships beween D-
NDVI or S-NDVI with yield at GS23might explain whyWheat20A had the
strongest negative relationship between elevation and yield and the
strongest positive relationship with TWI (Table 4). In that field, wheat
growth was probably related to soil moisture content, which had been
drier that winter. These conditions were probably more limiting than N
and were supported by the need for algorithms to be adapted for weather
conditions (Tagarakis and Ketterings, 2018). The Barley21 field also had
higher correlations between yield and NDVI in both GS23 and GS30 but
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may have been related to the slopes or drainage regions that limited
growth, since elevation increased biomass based on NDVI measurements
but had no relationship to yield. We do not have enough information to
confirm whether growth was limited at planting or later in the season, as
rainfall in the region was similar to that in the first year of the study.
However, prior studies in calibration strips and active sensors observed
that N applied before GS30 should catch up with low N issues (Raun
et al., 2008), which suggested that these fields might have had other
limiting factors that sensor-based N application could not correct. Under
irrigated conditions, small grains have weaker correlations between yield
and NDVI (Naser et al., 2020). Drone and satellite imagery may provide
similar information when observing field and weather conditions, with
limiting or excessive moisture providing the field variability necessary to
decide management practices.

5. Conclusions

Relationships among T-NDVI, D-NDVI, and S-NDVI were positively
correlated and had a moderately strong linear regression. Even though
they were correlated, D-NDVI measurements were always higher than
T-NDVI and S-NDVI. The higher NDVI measurements obtained from the
drone helped explain its capability to predict lower N rates compared to
T-NDVI, and this trend was sometimes observed in S-NDVI as well. This
phenomenon was influenced by soil reflectance and was further com-
pounded by the fact that the T-NDVI sensors did not achieve complete
ground coverage. This implies that S-NDVI and D-NDVI may provide
better estimates of field variability. Studies of N-rate vs. drone imagery
may provide better calibrations for algorithms, as well as include
landscape factors for management. The D-NDVI and S-NDVI helped
reveal how landscape variables contributed to both yield and N-rate
differences, further suggesting that algorithms needed adjustments
based on longer plot lengths that included greater field variability. A
major benefit of using drone or satellite imagery was the ability to
obtain measurements easily over the entire growing season, as opposed
to only running a tractor-based sensor on the day of application. Mul-
tiple measurements allowed NDVI to be used to map different weather
and soil conditions that could better predict the response to any VR
applications.
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GDD growing degree days
GS23 growth stage 23
GS30 growth stage 30
NDRE normalized difference red edge
NDVI normalized difference vegetation index
TWI topographic wetness index
VR variable rate
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