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ABSTRACT

In future mobile data traffic, increasing of global exponential mobile data traffic,

supporting more devices simultaneously and larger variety of traffic types are the

main problems that wireless communication systems face. However, the MIMO

technology cannot solve these problems well. Thus, the Massive MIMO technology,

which deploy a large excess of antennas at BSs as compared to the number of

terminal served, was proposed in 2010 by Thomas L. Marzetta.

Massive MIMO is a multi-user MIMO technology where each BS is equipped

with an array of M active antenna elements and utilizes these to communicate with K

single-antenna terminals----over the same time and frequency band.

The benefits of the Massive MIMO technology include increasing the capacity,

improving the radiated energy-efficiency, reducing latency on the air interface and

increasing the robustness both to unintended man-made interference and to intentional

jamming, etc. Nevertheless, the Massive MIMO technology also faces some

challenges and pilot contamination is one of them.

In this thesis, firstly, I will introduce the background and significance of the

Massive MIMO. Secondly, I will introduce the Massive MIMO system which will

include the comparison between TDD mode and FDD mode, the introduction for the

system model, the pilot-based channel estimation and the pilot contamination. Finally,
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I will review and simulate some methods to mitigate the pilot contamination like

Bayes channel estimation and pilot scheduling.
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Chapter 1

INTRODUCTION TOMASSIVE MIMO

1.1 BackgroundAnd Significance Of Massive MIMO

MIMO(multiple input & multiple output) use transmission diversity, spatial

multiplex and beam forming technology to exploit space resources, which can

enhance the spectral-efficiency and energy-efficiency. MIMO technology is a key to

4G. The speed of data transmission of 4G can achieve 1000 Mb/s. However, with the

popularization of intelligent terminal and the development of internet business, the

throughput of mobile data transmission in 2020 will be 100 times more than it is

now[1]. Obviously, 4G cannot satisfy the demand for this dramatic growth. Modern

mobile communication system needs to support more user equipment, higher speed of

data transmission and shorter time delay of transmission.

Thomas L. Marzetta proposed a concept: Massive MIMO in 2010[2]. It is the

extension over MIMO technology. Massive MIMO use antenna arrays with a few

hundreds antennas, simultaneously serving many tens of terminals in the same

time-frequency resource. The BS applies linear receive combining to discriminate the

signal transmitted by each terminal from the interfering signals in the up link and

precodes data for all served terminals in the down link. In order to receive accurate
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signal in the BS and create spatially multiplexed data streams for each terminal, the

BS have to estimate the channel to get CSI with pilot sequence. Figure 1.1 illustrates

the concept of a typical down-link Massive MIMO system. Since fading makes the

channel responses vary over time and frequency, the estimation and data transmission

must fit into a time/frequency block where the channel are approximately static. The

dimensions of this block are essentially given by the coherence bandwidth Bc HZ and

the coherence time Tc s,which fit Ƭ = BcTc transmission symbols. Figure 1.2 shows the

example of coherence interval. Overall, massive MIMO is an enabler for the

development of future broadband (fixed and mobile) networks which will be

energy-efficient, secure, and robust, and will use the spectrum efficiently[3].

Theoretically, with the increasing of the number of antennas in the BS,

uncorrelated interference and noise will vanish; the matched filter will be optimal and

the transmit power can be made arbitrarily small.

Economically, the antennas in the BS in Massive MIMO system are consist of

many small-antenna units and amplifiers with low power consumption. Thus, Massive

MIMO can degrade the requirements for hardware like amplifiers, etc[2].

Stably, the number of antennas in the BS is much more than the number of

terminals, which means even if several antennas cannot work in the BS the system

can still run well. The high degree of freedom of antennas can make system highly

robust and reliable[4].
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Figure 1.1: The Example Of A Down-Link Massive MIMO System.

Figure 1.2: The Example Of Coherence Interval.

1.2 Limiting Factors of Massive MIMO

1.2.1 channel reciprocity

Nowadays, the canonical Massive MIMO system operates in time-division

duplex(TDD) mode, where the up link and down link transmission take place in the

same frequency resource but separated in time[5]. The reason why Massive MIMO
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will use TDD mode will be explained later. TDD operation relies on channel

reciprocity. There appears to be a reasonable consensus that the propagation channel

itself is essentially reciprocal, unless the propagation is affected by materials with

strange magnetic properties. However, the hardware chains in the BS and terminal

transceivers may not be reciprocal between the up link and the down link. Calibration

of the hardware chains does not seem to constitute a serious problem and there are

calibration based solutions that have already been tested to some extent in practice

[6,7]. Specifically, [6]treats reciprocity calibration for a 64-antenna system in some

detail and claims a successful experimental implementation.

Note that calibration of the terminal up-link and down-link chains is not required

in order to obtain the full beam forming gains of massive MIMO: if the BS equipment

is properly calibrated then the array will indeed transmit a coherent beam to the

terminal. (There will still be some mismatch within the receiver chain of the terminal

but this can be handled by transmitting pilots through the beam to the terminal; the

overhead for these supplementary pilots is very small.) Absolute calibration within the

array is not required. Instead, as proposed in [6], one of the antennas can be treated as

a reference and signals can be traded between the reference antenna and each of the

other antennas to derive a compensation factor for that antenna. It may be possible

entirely to forgo reciprocity calibration within the array; for example if the maximum

phase difference between the up-link chain and the down-link chain were less than 60

degrees then coherent beam forming would still occur (at least with MRT beam



5

forming) albeit with a possible 3 dB reduction in gain.

1.2.2 pilot contamination

Ideally every terminal in a Massive MIMO system is assigned an orthogonal

up-link pilot sequence. However the maximum number of orthogonal pilot sequences

that can exist is upper-bounded by the duration of the coherence interval divided by

the channel delay-spread. In [2], for a typical operating scenario, the maximum

number of orthogonal pilot sequences in a one millisecond coherence interval is

estimated to be about 200. It is easy to exhaust the available supply of orthogonal

pilot sequences in a multi-cellular system.

The effect of re-using pilots from one cell to another, and associated negative

consequences, is termed “pilot contamination”. More specifically, when the

service-array correlates its received pilot signal with pilot sequence associated with a

particular terminal, it actually obtains a channel estimation that is contaminated by a

linear combination of channels to the other terminals that share the same pilot

sequence. Down-link beam forming based on the contaminated channel estimation

results in interference that is directed to those terminals that share the same pilot

sequence. Similar interference is associated with up-link transmissions of data. This

directed interference grows with the number of service-antennas at the same rate as

the desired signal [2].
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Chapter 2

MASSIVE MIMO SYSTEM

2.1 TDD vs FDD operation

It is now well understood that Massive MIMO system needs to obtain

information about up- and down-link channel when trying to maximize network

throughput. In FDD mode, the links occupy the non-overlapping frequency bands that

allows simultaneous transmission and reception in the BS[8]. The down-link channel

may be estimated at the terminals using mutually orthogonal pilot transmissions from

each BS antenna. The number of required time-frequency resource blocks is therefore

proportional to M, where M is the number of antennas in the BS. Each terminal

reports the M × 1 channel vector over the up-link, consuming additional resources

proportional to M. The estimation and feedback adds latency before the BS can use

them for multiplexing the down-link data, which scales proportional to M. Therefore,

in a Massive MIMO system, FDD is generally difficult to implement.

On the contrast, in TDD mode, the up-link and down-link transmissions take

place in the same frequency resource but are separated in time. The estimation in the

up-link channel are valid for the down-link channel as well because the channels are

reciprocal, albeit with some calibration. There are several good reasons to operate in
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TDD mode. Firstly, only the BS needs to know the channels to process the

antennas coherently[5]. Secondly, the up-link estimation overhead is proportional to

the number of terminals, but independently of M thus making the protocol fully

scalable with respect to the number of service antennas. Furthermore, basic estimation

theory tells us that the estimation quality (per antenna) cannot be reduced by adding

more antennas in the BS ----in fact, the estimation quality improves with M if there is

a known correlation structure between the channel responses over the array[9].

2.2 System Model

In this thesis, we consider a system model with L time-synchronized cells

containing K single-antenna terminals each. The BS in each cell is equipped with an

M-antenna array that communicates with the terminal over the same time-frequency

interval(M≥k). Figure 2.1 shows the Massive MIMO system model in this thesis. In

ideally condition, terminals at all cells use orthogonal pilots and with the increasing of

M, uncorrelated interference and noise will vanish. The length of pilot sequences will

be K x L at least. Generally, the value of L is big and the coherence time Tc is limited.

Furthermore, the coherence time Tc will be small when terminals are in the process of

rapid movement. Thus, the length of pilot sequence is limited.

Due to the limitation of the length of pilot sequence, every cells reuse the same

orthogonal pilot sequence set in practice. Terminals at the same cell use the

orthogonal pilot sequences. The number of antennas in the BS is much more than the

number of terminals at one cell (M>>K). BS can discriminate terminals within a cell
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because of abundant degrees of freedom. Thus, we can think that there is no

interference among terminals at a cell and there is just one terminal at a cell[2].

Here, we can define Hilk = βilk1/2hilk, which denotes the M x 1 channel matrix from

the kth terminal at lth cell to the BS at ith cell.

hilk = Rilk1/2Wilk,

where Wilk represents fast fading vector and Wilk ~ CN(0,1). Wilk subjects to i.i.d. Rilk

= E{hilkhilkH} is the M x M correlation matrix of channel. βilk represents slow fading

coefficient containing pathloss and shadow fading. In this thesis, we just consider the

pathloss. Thus, βilk can be expressed as:

βilk = α/dilkγ,

where dilk represents the distance from kth terminal at lth cell to the BS at ith cell. The

unit of dilk is m. γ is the index of pathloss and α is a constant, equaling to 1 in this

thesis.

It will have interference only if terminals at different cells don’t use orthogonal

pilots. However, with the increasing of M at BS, the interference that terminals use

non-orthogonal pilots can be ignored.

lim (HilkHHilk)/M = βiwhen M tends to infinity

Now, the interference will exist only when terminals at different cells use the

same pilots.



9

Figure 2.1: Massive MIMO System Model.

2.3 up-link pilot transmission

The aim of pilot transmission is BS can acquire CSI by pilot sequences. BS can

receive accurate signals and precode signals on the down link based on the CSI. The

terminals transmit pilots to their BSs respectively. Here, we take an example of a BS

at ith cell. The received signal from the BS at ith cell can be expressed as:

Yi = 
 

L

1l

K

1k
Hilksilk+Ni,

where slk is the pilot transmitted from kth terminal at lth cell. It is the 1 x Ƭ vector and

slkslkH = Ƭ. Ni is additive white Gaussian noise received in the BS at ith cell. It is the M

x Ƭ vector. Hilk is the M x 1 channel matrix from kth terminal at lth cell to the BS at ith

cell. Thus, from the above equation, we can find that the received signal contains the

BS

...

UE UE...

M antennas

K terminals

Jth cell
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interfering signal from other cells and the noise.

2.4 pilot-based channel estimation

According to 2.3, because we can assume that each cell just has one terminal and

each terminal use the same pilots, we can simplify the Yi to:

Yi = His+


L

il

His+Ni

where s is the same pilot that each terminal use and the length of the pilot is Ƭ. ssH = Ƭ.

We let Hi be the target channel and the estimation of Hi is Ĥi.

2.4.1 LS estimation

The LS approach to channel estimation seeks to minimize the squared error

between the received pilot sequence and its noise-and-interference free version [8].

The cost function of LS is:

JLS = (Yi-sĤi)H(Yi-sĤi) .

Taking partial derivative of JLS with respect to Ĥi and let the result equals to 0:

dJLS/dĤi = 0.

Thus, we can get the LS estimator is:

GiLS = sH(ssH)-1 = sH/Ƭ.

The result of the estimation can be expressed as:

ĤiLS = YiGiLS = Hi+


L

il
Hl+NisH/Ƭ

The LS estimator has low complexity and treats the channel coefficient as a

deterministic variable to obtain a “best-fit” estimate from the observed pilot signal. It
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makes no prior assumption about the channel statistics, and due to its simple

implementation it the most common approach to channel estimation in practice.

2.4.2 MMSE estimation

The cost function of MMSE is:

JMMSE = E(Hi-Ĥi)(Hi-Ĥi)H.

Taking partial derivative of JMMSE with respect to Ĥi and let the result equals to 0:

dJMMSE/dĤi = 0.

We can get the estimator of MMSE is:

GiMMSE = (sH sR iiHH +


L

il

sH sR iiHH +σn2IƬ)-1sH sR iiHH .

Thus, the result of MMSE can be expressed as:

ĤiMMSE = YiGiMMSE

ĤiMMSE=Yi(sH sR iiHH +


L

il
sH sR iiHH +σn2IƬ)-1sH sR iiHH ,

where RXY = E{XHY} represents the covariance matrix of X and Y. When X = Y, the

matrix is autocovariance matrix.

We observe that theoretically, the MMSE estimator has significantly higher

implementation and processing complexity than the LS estimator. It requires the

knowledge of all cross-channel covariance matrices in all BSs, that must be estimated

prior to MMSE channel estimation. In practice, this imposes significant overhead and

additional latency on the system. To reduce this overhead, we can assume that the

interference from terminals located more than a few cells away to be negligible and
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not estimate the corresponding cross-channel matrices, at the cost of slightly poorer

estimator performance. In terms of processing requirements, the complexity of M x M

matrix inversion required during evaluation of MMSE estimate is proportional to the

cube of array size, and may be especially problematic for Massive MIMO system[8].

2.5 pilot contamination

the channel estimates obtained above are useful only within the coherence

interval, after which the channel must be estimated again. Moreover, the maximum

number of mutually orthogonal pilot sequences is fundamentally limited by Ƭ which

must be smaller than number of coherent time-frequency elements, Ƭ ≤ Noch. Within a

cell, the K terminals always use orthogonal pilot sequences to eliminate intra-cell

pilot interference(Ƭ ≥ K). However, depending on the value of Noch, these sequences

may have to be reused in other cells, which leads to inter-cell interference[8]. From

the equation:

Yi = 


L

1l

Hls+Ni

we observed the effect of this interference on the received pilot signal, known as the

“pilot contamination” effect. The Figure 2.2 illustrates the principle of pilot

contamination. In particular, we found that the received pilot signal is contaminated

with the transmissions from terminals at lth cell, which l ≠ i, reusing the same

sequence. The worst-case pilot contamination occurs when each cell reuses the same

set of mutually orthogonal pilot sequences.
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During the transmission of up-link data, the signal transmitted from the kth

terminal at lth cell to the BS is xlk.it is a scalar and xlkHxlk = σx2, so the signals received

at ith cell is:

Yi = Hixi+


L

il

Hlxl+Ni.

It is M x 1 vector and Ni is the white Gaussian noise received at ith cell. Ni subjects to

CN(0,σn2). If we use MF detector, we can get the detected signal is:

ĤiHYi = ĤiH(Hixi+


L

il
Hlxl+Ni),

where ĤiH is the conjugate transposition of estimated channel. If we use the LS

estimator, we could get:

ĤiHYi = (Hi+


L

il

Hl+Nis*(sTs*)-1)H(Hixi+


L

il

Hlxl+Ni).

Thus, the available signal power is:

‖(Hi+


L

il
Hl+Nis*(sTs*)-1)HHixi‖F2.

According to E{sHs} = σs2, the average available signal power is:

Pu = {‖(Hi+


L

il

Hl+Nis*(sTs*)-1)HHixi‖F2}

=E{|(HiHHixi+


L

il
HlHiHxi+(Nis*(sTs*)-1)H)Hixi|2}

=E{|(Riixi+


L

il

HlHiHxi+(Nis*(sTs*)-1)H)Hixi|2},

Where Rii is the covariance matrix of the channel. Because there is only one antenna
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at the terminal, the Rii is actually a scalar:

Rii = E{HiHHi} = Mβii.

The power of HiHHl is E{|HiHHl|} and Hl is not related to Hi, so:

E{


L

il

HlHiHxi} = 0.

And E{|Nis*(sTs*)-1)H)Hixi|2} = (σn2σx2/Ƭσs2)Mβii.

So, we can get the Pu:

Pu = M2βii2σx2+Mσx2βii


L

il
βli+(σn2σx2/Ƭσs2)Mβii.

where σx2 is the variance of up-link data signals, σs2 is the variance of up-link pilot

signals and σn2 is the variance of noise. βli is the large-scale fading between terminals

at lth cell to the BS at ith cell. In the Massive MIMO system, the number of antenna at

BS is big. We can think M2>>M. Thus, Pu can be approximately expressed as:

Pu M2βii2σx2.

Similarly, we can get the approximate interfering power is:

Pi M2σx2


L

il

βli2.

The average power of noise is:

Pn σn2(Mβii+M


L

il
βli+σn2/σs2).

So, we can get the statistical average of SINR of the BS at ith cell:

SINRiUL = Pu/(Pi+Pn)M2βii2σx2/(M2σx2


L

il

βli2+σn2(Mβii+M


L

il

βli+σn2/σs2))
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Thus, according to the analysis above, we can conclude that with the increasing of the

number of M, SINR will increase a little. However, when M tends to infinite, SINR

will not change with the M.

Figure 2.2: The Example Of Pilot Contamination.

2.6 the results of simulation

In this section, firstly, I will prove that the interference that terminals use

non-orthogonal pilots can be ignored with the increasing of M at BS. In this

simulation, we assume that channel from terminal i and terminal j to the same base

station are Hi and Hj, where Hi and Hj are subject to complex Gaussian distribution.

Other parameters of this simulation are showed in Table 2.1.

BS

UE

UE

BS

ith cell

jth cell
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Table 2.1: The parameters of simulations

parameter value
the number of cells (L) 2
diameter of cell 1000m
the number of terminals at each cell (K) 1
coefficient of slow fading of the target
terminal (β1)

1

coefficient of slow fading of the
interfering terminal (β2)

0.1

length of the pilot sequence (Ƭ) 20
SNR 10dB

The Figure 2.3shows the results of simulation:
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Figure 2.3: the simulation of progressive orthogonality of two channels

Form the figure 2.3 the curve represents the equation lim (HilkHHilk)/M = βi. From
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the parameters of simulation we can know that βi = 1. We can see that the channels are

progressive orthogonal.

And then, I will simulate the effect of the number of antennas at BS on pilot

contamination. I assume the terminals at different cells will use the same pilot

sequence and in this situation the pilot contamination will be the heaviest. In the

simulation, I will use LS estimation and the standard of evaluation will be MSE of

estimated channel. The parameters have been shown in Table 2.1.

The figure 2.4 shows the result of simulation:
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Figure 2.4: effect of number of antennas on pilot contamination with LS estimation

Form the figure 2.4, I can find that when the number of antennas at BS is few,
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increasing the number of antennas at BS will help system mitigate the pilot

contamination. However, after the number of antennas at BS equals to 60, increasing

numbers of antennas will be helpless to mitigate pilot contamination.
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Chapter3

METHODS TOMITIGATE PILOT CONTAMINATION

3.1 Bayes channel estimation

3.1.1 signal model

We consider a setup with L cells. At each cell, BS has M antennas. All these cells

reuse the frequency resources. There is no interference between terminals at each cell.

Every cell have one terminal. Actually, every cell are equivalent. We can set the lth cell

as the target cell and the pilot sequence sl with Ƭ length:

sl = [sl1 sl2 ... slƬ].

The pilot sequences satisfy the equation |slslH|= Ƭ. Because pilot sequences are

orthogonal we can get |slsjH|= 0. We can express the channel matrix from terminal at jth

cell to the target cell as hj, which is a M x 1 vector. Thus, during the transmission of

pilot signal on up link, received pilot signals by BS at the target cell can be denoted:

Yl = hlsl + 


L

lj

hjsj + Nl, (1)

Where “l” is the target cell, hl is the local channel matrix and hj is the channel matrix

from other cells to the target cell. Nl is the white Gaussian noise received by lth cell,

which is the M x Ƭ vector.



20

We can denote the hl:

hl = Rl1/2hwl

Rl = E{hlhlH}.

Where Rl is the M x M covariance matrix of channel and hwl is a M x 1 vector which

express the small-scale fading from the terminal to the BS.(hwl ~ CN(0,1))

From the equation (1), we can know that the first item of the equation is the

expected signal by the target cell and the second item is the overlap of the pilot

sequences transmitted from other cells. If other cell use pilot sequences which are not

orthogonal to the target cell’s, it will cause pilot contamination.

We can simplify the equation(1):

Yl = [h1 h2 ... hL]



















L

2

1

s
...
s
s

+ Nl,

Furthermore, we can express the component of the equation above as:

h =



















L

2

1

h
...
h
h

,

Where h is a ML x 1 vector. Similarly, Yl and Nl can be denoted by y = vec(Yl), n =

vec(Nl), which are MƬ x 1 vectors.

Also, we can define a matrix:

S = [s1T IM s2T IM ... sLT IM],

where IM is a M x M identity matrix and S is a MƬ x MLmatrix.  denote Kronecker
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product. Thus, we can get the received signal at lth BS is:

Y = Sh + n.

3.1.2 theory of estimation

To get the accurate estimation, Bayes channel estimation maximum a posterior

[9]with known prior distribution information of to be estimated variables. Here, we

can express the target channel and interference channel of Bayes estimation at the lth

cell as:

hBay = (h1, h2, ..., hL)Bay = argmax p(h1, h2, ..., hL|Y).

According to Bayes theorem, the conditional probability of h1, h2, ..., hL can be

expressed as:

p(h1, h2, ..., hL|Y) = p(h1, h2, ..., hL)p(Y|h1, h2, ..., hL)/p(Y)

P(Y) = 1 because Y can be known in the BS. Thus, the equation above can be

equivalent to:

p(h1, h2, ..., hL|Y) = p(h1, h2, ..., hL)p(Y|h1, h2, ..., hL).

In this model, we can assume that there is a long distance among terminals at

each cell. Thus, we can think the channels between each terminal and BS are

independent. The jointly probability density distribution function is:

P(h1, h2, ..., hL) = p(h1)p(h2)...p(hL),

where hl subject to Rayleigh fading, hl ~ CN(0,Rl). Now, we can get the PDF of hl and

jointly PDF of all channels are:

p(hl) = exp(-hlHRl-1hl)/{piM(detRl)M} and
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p(h1, h2, ..., hL) = exp(-


L

1l

-hlHRl-1hl)/{piML(detR1 detR2 ... detRL)M}.

We can define two diagonal matrix: R = diag(R1 R2 ... RL)





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
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
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2

1

R000
0O00
00R0
000R

and

Ṝ = R-1= diag(R1-1 R2-1 ... RL-1) =



















L

2

1

R/1000
0O00
00R/10
000R/1

.

We also need to define a scalar:

B = piML(detR1 detR2 ... detRL)M = piMLdetR.

From above, we can rewrite :

p(h) = exp(-hHṜh)/B

After the transmission of pilot signal S, the probability of y received in the BS is:

p(y|S,h) = exp{-(y-Sh)H(y-Sh)/σn2}/(piσn2)ML

Thus, we can conclude that:

p(h|y) = p(h1 h2 ... hL|Y)=exp(-(hHṜh+(y-Sh)H(y-Sh))/σn2)/AB,

where A is a scalar and is equal to (piσn2)ML. σn2 is the average power of noise received

in the target BS. According to Maximum A Posterior(MAP) criterion[10], we can

denote the Bayes estimation as:

hBay = argmax(p(h|y)).

Because A and B are scalar, the equation above can be equivalent to:

hbay = argmax exp(-(hHṜh+(y-Sh)H(y-Sh))/σn2)/AB
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=argmin (hHṜh+(y-Sh)H(y-Sh))/σn2) = argmin (Q(h)),

where Q(h) = hHṜh+(y-Sh)H(y-Sh))/σn2. To get the result of Bayes estimation, we

need to calculate the dQ(h)/dh:

dQ(h)/dh = d(hHṜh+(y-Sh)H(y-Sh))/σn2)/dh

= Ṝh - SHy/σn2 + SHSh/σn2.

Let the equation above equals to 0. We can get the result of Bayes estimation:

hBay = (SHS + σn2Ṝ)-1SHy = TSHy,

where T equals to (SHS + σn2Ṝ)-1. When we calculate T, we need to operate matrix

inversion twice. To avoid the irreversible condition, we can transform T to:

T = (SHS + σn2Ṝ)-1 = (σn2IML + RSHS)-1R.

Finally, we can get the result of Bayes estimation:

hBay = (σn2IML + RSHS)-1RSHy.

3.1.3 the calculation of covariance matrix

From 3.1.2, we can find that the key to get the result of Bayes estimation is the

calculation of covariance matrix. Covariance matrix of channel refers to

angles-of-arrival and multipath transmission of signal.

1. Multipath transmission

Because of the reflection and scattering, signals transmitted from terminals will

have multipath to get to BS. Here we assume that antennas at BS will use Uniform

Linear Array(ULA) and the interval among each antennas is longer than half

wavelength. We set signals have P independent paths to get to BS. The
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angle-of-arrival of each path is Ɵlp. Thus, we can get the channel vector from

terminals to the target BS at lth cell:

hl = (1/P)1/2


P

1p

a(Ɵlp)αlp,

where αlp ~ CN(0,σl2) and represents fading coefficient of hl, which is independent

with p and only dependent on pathloss βl:

βl = α/dlγ

where dl (m)represents the distance between terminals and the target BS. γ represents

the pathloss index and α equals to 1.

Here we can simplify Ɵlp to Ɵ, which will not affect on the results. Thus, angle

region vector a(Ɵ)can be expressed as[11]:

a(Ɵ) =























))cos()/D)1M((pi2jexp(
O

))cos()/D(pi2j(pxe
1

,

where M is the number of antennas at BS. D is the interval among each adjacent

antennas.  is the wavelength. D ≤  /2.

2. Angle-of-arrival and covariance matrix

The information of angle distribution of multipath signals transmitted from

terminals to BS is covariance matrix of channel. It contains average angle-of-arrival

and angle spread value of multipath signals. Different location of terminals will have

an effect on average angle-of-arrival and angle spread value.

The channel between terminals and mth antenna can be denoted:
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hm = β1/2/P1/2(


P

1p

)j)cos()1m)(/D(pi2jexp( pp  ),

where p represents the angle of pth path to mth antenna and p represents the phase of

pth path. Note that p is uniform distribution over [-pi, pi) and phases of each path are

independent. Generally, there are two conditions of distribution of angle-of-arrival of

signals: uniform distribution and normal distribution.

A. Uniform distribution

We assume that angle-of-arrival region subjects to uniform distribution and the

average value is Ɵ’. Angle region spread is Ɵ∆. Thus, we can get the PDF of

angle-of-arrival is:

f(Ɵ) = 1/2Ɵ∆, Ɵ[Ɵ’-Ɵ∆, Ɵ’+Ɵ∆].

Therefore, we can get the component of covariance at mth row and nth column:

Rm,n = β/2Ɵ∆ 





-
))'cos()nm)(/D(pi2jexp( ,

where  is the wavelength of signal and D is the interval among adjacent antennas at

BS.

When angle-of-arrival region subject to uniform distribution, if the

angle-of-arrival region of target terminal and interfering terminal are misaligned, the

target signal and interfering signal are orthogonal over angle region. Thus, we can

discriminate target signal from interfering signal by Bayes estimation so that the

results of channel estimation will be more exact.

B. Normal distribution
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We assume that angle-of-arrival region subjects to normal distribution. The

average value of angle is Ɵ’ and variance is σƟ2. Thus, we can get the PDF of

angle-of-arrival is:

f(Ɵ) = 1/(2pi)1/2σƟe-(Ɵ-Ɵ’)2/2σƟ2.

So, the component of covariance at mth row and nth column is:

Rm,n = E{hmhnH}

Rm,n= (β/(2*pi)1/2σƟ) )2/)'cos()/D)(nm(pi2jexp(
-

22



 .

When the angle-of-arrival region subjects to normal distribution, two arbitrary

angle-of-arrival regions will always be overlapped theoretically because the range is

(  , -  ). However, the variance of angle-of-arrival has an effect on the value of

angle-of-arrival. Thus, it will be difficult to discriminate target signal from interfering

signal by Bayes estimation.

3.1.4 the results of simulation

In this simulation, I assume that different cells will use the same pilot sequence. I

will focus on the performance of Bayes estimation and compare it against the

performance of LS estimation to check whether Bayes estimation can be more

effective than LS estimation to mitigate pilot contamination. Table 3.1 shows the

parameters of simulation:
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Table 3.1: The parameters of simulation about the performance of Bayes estimation

parameter value
the number of cells (L) 2
radius of cell 1000m
the number of terminals at each cell (K) 1
Index of path fading (γ) 3.8
the number of multipath (P) 30
intervals between antennas (D)  /2
length of pilot sequence (Ƭ) 20
SNR 10db
location of terminals uniform distribution

Figure 3.1 shows the result of simulation:
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Figure 3.1: The performance of Bayes estimation

In this simulation, the angle-of-arrival is subject to uniform distribution. The
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average value of angle-of-arrival of the terminal at 1cell is 0 and the value at 2 cell is

pi/3. Angle region spreads are all pi/12. Thus, the angle region of these two terminals

are orthogonal.

From the figure 3.1, I can find that when pilot contamination exists, the

performance of Bayes estimation is better than LS estimation(the performance of LS

estimation has been simulated in section2.6). Because Bayes estimation can

distinguish the target channel and the interference channel according to the

angle-of-arrival, path loss and the information of noise. Additional, the

angle-of-arrival is not overlapping. Thus, the performance of Bayes estimation is

better than LS estimation and it will be helpful to mitigate the pilot contamination.

And then, when the number of antennas at BS is few, increasing the number of

antennas at BS will be helpful to mitigate the pilot contamination. However, after the

number of antennas at BS is 10, the effect of number of antennas at BS is almost

vanished.

3.2 pilot scheduling

3.2.1 system model

Pilot scheduling solve the problem that how to allocate pilot for terminals

reasonably. The goal of scheduling pilot is minimizing the channel estimation error so

that we can mitigate pilot contamination. We will propose some pilot scheduling

algorithms including method of exhaustion and degradation based greedy algorithm.

Here, we consider a setup with L time-synchronized cells. BSs have M antennas
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and there are K single-antenna terminals at each cell (M>>K). The system operate

TDD mode so that BS can utilize the estimation from up link to acquire CSI of down

link. We assume to use fast fading channel model. hijk represents the M x 1 channel

vector from kth terminal at jth cell to the BS at ith cell. The channel vector subjects to

normal distribution with the average value 0 and M x M covariance matrix Rijk. To

simplify symbol, Hij can be represented as the M x K channel matrix from K terminals

at jth cell to the BS at ith cell.

We let p represent SNR of pilot sequences and assume the transmission power of

each pilot sequence is same. T represents the length of the pilot sequence. Thus, the

pilot signal received at ith cell can be represented as:

Yi= p1/2


L

1j

HijDj+Ni

It is a M x T vector. K x T vector Dj represents the pilot signals transmitted from K

terminals at jth cell. Ni ~ CN(0,1).

If every cells use the same pilot sequences and received signals will be operated

simple matched filter processing, we can get DjHDj = I because of the orthogonal pilot.

Thus, we can get the estimation:

Ĥii = Yi(1/p1/2)DjH =


L

1j
Hij + (1/p1/2)Ňi,

where Ňi = NiDiH. The equation above is same with the result estimated by LS.

3.2.2 scheduling model

In this system, L cells use the same pilot. However, the pilot scheduling will has
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an effect on the result of channel estimation. Based on this reason, we let Dj = PjD. D

is a T x T channel vector containing many orthogonal pilot sequences. Scheduling

matrix Pj is a K x T matrix vector and the value of elements in this matrix is 0 or 1. Pj

represents the status of allocated pilots by terminals at jth cell. PjPjT = IK.

Yi = p1/2


L

1j

HijPjD+Ni.

Thus, the result estimated by LS can be written as:

ĤiiLS = Yi(1/p1/2)DHPiT = Hii +


L

ij
HijPjPiT +(1/p1/2)Ňi.

Through the observation of the above equation, we can find that the result of channel

estimation is dependent on the scheduling matrix Pj. We let Кj represent the kth

terminal at ith cell(i,k) and  (i,k) represent the pilots allocated for kth terminal at ith

cell.

If we have known the second order statistics Rijk, we can use Bayes estimator to

get the result of estimation:

ĤiiBay = (σn2IML + RiSHS)-1RiSHVec(p1/2


L

1j

HijPjD+Ni).

From the equation above, covariance matrix Ri contains the information of the target

channel and interfering channel.  (i,k) will have an effect on the interfering channel

part. We can observe that the result of channel estimation will be dependent on  (i,k).

Thus, it is significant to study pilot scheduling for improve the accuracy of result of

channel estimation.
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In this paper, we define a normalized mean square error of channel estimation as

effectiveness function:

Θ = 
T

1

K

K



jK

1j

U
MSEI(Ukj,Kj),

where К = {К1, К2, ..., Кj,..., КT} represents the pilot set containing all pilot sequences

used by terminals. jKU represents the set containing terminals who use the pilot Кj

and jKU represents the number of terminals in set jKU .

The principle of scheduling pilot is minimizing the sum of mean square error of

the target channel estimation(or we can say minimize the effectiveness function) by

using the prior information of covariance matrix and noise of all cells. Thus,

considering the scheduling matrix is Pj, the best allocation of pilot can be expressed

as:

Min { 
T

1

K

K



jK

1j

U
MSEI(Ukj,Kj)}.

3.2.3 algorithm of pilot scheduling

3.2.3.1 random pilot scheduling

Random pilot scheduling[9] is simple to operate. It does not need to consider the

correlation of spatial information of received signals at BS through up-link

transmission. When system operate the data transmission, system pick a terminal from

each interfering cell randomly. And then, system make this terminal and the terminals

from the target cell as a group and allocate the same pilot sequences to this group at

the next data transmission.
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This kind of pilot scheduling is easy to realize and will not add complexity of

system. However, when the system has pilot contamination, the random pilot

scheduling will be effected heavily.

3.2.3.2 degradation based greedy algorithm

This algorithm is based on a degradation method proposed by C.Hellings[12].

During every iterations, one group has been allocated with pilot sequences and

another one hasn’t which we could call it free group. When system operate the

initialization, terminals at a cell will be allocated with pilot sequences While terminals

at other cells will be free. And then, system will allocate pilot sequences for the

terminals at the rest (L-1) cells.

We will take an example of ith cell:

The first step: calculating the best pilot of every terminals.

System will calculate the effectiveness of every allocated pilots for terminals at

ith cell. The pilot that will have a minimum effectiveness will be defined as the best

pilot of terminal.

The second step: calculating the second best pilot and degradation of every

terminals.

System will calculate the effectiveness when terminals are allocated with pilots

besides the best pilot. The pilot besides the best pilot that will have a minimum

effectiveness will be defined as the second best pilot. And then, system needs to

calculate the degradation of effectiveness function of terminals allocated the best pilot
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and the second best pilot respectively.

The third step: we define the terminal that has a maximum degradation as the

most sensitive terminal. System need to allocate this terminal with the best pilot.

The forth step: repeating the first step to the third step until all terminals are

allocated with pilots.

In order to calculate the effectiveness of allocated pilot  (i,k), we define Uik

represents the terminal set that use this pilot and the instantaneous value of  (i,k) is:

Θ’ik = 


jK

1j

U
MSEI(Ukj,Kj),

where Kj =  (i,k). We define F represents the set that the terminals haven’t been

allocated with pilots. At every cells, for every terminals that haven’t been allocated

with pilots, we have (i,k)F. We define Pi represents the pilots that can be used at ith

cell. Thus, we can express the best pilot as:

pik* = argmin Θ’ik(К1,...,Кp {(i,k)},...,КT),

where pPi.

When terminals are allocated with the best pilot and the second best pilot, the

degradation can be expressed as:

dik = Θ’ik(К1,...,Кp {(i,k)},...,КT)-argmin Θ’ik(К1,...,Кp {(i,k)},...,КT),

where p Pi and p pik*.

We define the terminals (i*,k*)that have maximum degradation is the most

sensitive terminal:
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(i*,k*) = argmax dik,

where (i,k)F.

Thus, the terminal (i*,k*) will be allocated with the best pilot:

Кpi*k**Кpi*k** {(i*,k*)}.

We need to remove the terminal (i*,k*) from the set Pi*:

Pi*Pi*\{p*i*k*}.

We also need to remove the terminal (i*,k*) from the set F:

FF\(i*,k*).

Repeating these steps until the set F become a empty set.

3.2.4 the results of simulation

In this section, I will simulate the effect of pilot scheduling by degradation based

greedy algorithm on the mitigation of pilot contamination and I will focus on the

comparison between the performance of system by Bayes estimation with pilot

scheduling and without pilot scheduling. Additionally, I will simulate the effect of the

number of antennas at BS on the performance of mitigation of pilot contamination by

degradation based greedy algorithm. Table 3.2 shows the parameters of this

simulation:
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Table 3.2: The Parameters Of Simulation About The Performance Of System With
Pilot Scheduling Based On Greedy Algorithm.

parameter value
the number of cells (L) 2
radius of cell 1000m
the number of terminals at each cell (K) 10
Index of path fading (γ) 3.8
the number of multipath (P) 30
interval between antennas (D)  /2
length of pilot sequences (Ƭ) 20
SNR 10db
location of terminals uniform distribution

Figure 3.2 shows the result of simulation:
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Figure 3.2: The Comparison Between The Performance Of System By Bayes
Estimation With Pilot Scheduling And Without Pilot Scheduling.

From the figure 3.2, I can find that the performance of system by Bayes
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estimation with pilot scheduling is better than that without pilot scheduling. However,

after the number of antennas is 15, increasing the number of antennas at BS will be

helpless for mitigation of pilot contamination.
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