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ABSTRACT 

The design of efficient thermoelectric materials involves the reduction of 

thermal conductivity without degradation of electrical conductivity. While electronic 

carriers is responsible for the electrical performance of thermoelectrics, much of the 

thermal conductivity is attributable to heat conduction by thermally generated elastic 

waves called phonons. Improved scattering of phonons can be attained by introducing 

a small volume fraction of elastodynamic inhomogeneities inside a semiconductor 

matrix material in the form of embedded nanoparticles. In order to make optimal use 

of such impurities, it is necessary to understand the relationship between their shape, 

size, and elastodynamic contrast and the performance characteristics such as phonon 

scattering cross-section and the resulting thermal conductivity tensor. 

Calculating the thermal conductivity tensor from microscopic principles 

requires knowledge of the scattering cross-sections spanning all possible incident 

elastic wave orientations, polarizations and wavelengths including the transition from 

Rayleigh to geometric scattering regimes. 

In this thesis, analytical continuum mechanics is used to construct the 

scattering cross-section of incident elastic waves from embedded nanofibers where the 

waves have arbitrary orientation, polarization, and wavelength. The model is then 

incorporated using Boltzmann transport theory to predict the thermal conductivity 

tensor. The thermal model is used to study optimal methods of producing low thermal 

conductivity nanocomposites. We consider the specific case of Si0.5Ge0.5 alloy matrix 



 xi

materials as the active thermoelectric component and nanoparticle scatterers including 

Ni, Co, and Pt silicide compounds. 

The thermal conductivity tensor is studied as a function of fiber size, 

elastodynamic contrast, and the degree of orientation (aligned, random 2D, and 

random 3D) in an effort to minimize thermal conductivity for a given volume fraction 

of nanoparticles. The optimal fiber size is found to be quite small, corresponding to 

fiber diameters of only ~2nm. For the range of practical materials studied, the 

anisotropy of the thermal conductivity tensor is found to be <2 for aligned fibers. PtSi 

was found to be the most effective silicide material due to its high density and elastic 

contrast. Compared to an unnanostructured Si-Ge alloy, the addition of 3.4% volume 

fraction of PtSi is found to reduce the thermal conductivity by a factor of 9 for fully 

aligned and optimally sized fibers with heat flow perpendicular to the fiber axis. This 

is found to be more effective than an equivalent amount of PtSi utilized in the form of 

optimally sized spherical nanoparticles. In some cases like NiSi and CoSi2, we find 

two locally optimal nanofiber sizes due to the separate optima associate with each 

phonon mode. 

This thesis helps in understanding the transversely isotropic nature of thermal 

conductivity attained by embedding nanofibers in the nanocomposite. While the 

results obtained assist in choosing optimal nanofiber size and orientation for low 

thermal conductivity, a multimodal distribution of nanofiber sizes can be observed to 

be optimal. 
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Chapter 1 

THERMOELECTRICITY AND NANOCOMPOSITES 

1.1 Thermoelectric Materials and the Need for Reduced Thermal Conductivity 

Thermoelectric effects are comprised of three phenomena: the Seebeck effect, 

the Peltier effect and the Thomson effect. The Seebeck effect is the observation that a 

potential difference is developed between two junctions of a conducting material when 

a temperature difference is maintained between them at open circuit. The voltage and 

temperature gradient are related by a linear coefficient called the Seebeck coefficient. 

The Seebeck coefficient, S  is a function of composition of conducting material and 

temperature. The Peltier effect is a related phenomenon where an electric current 

moving from one material to another causes heat to be either emitted or absorbed at 

the junction between them. This effect occurs because electrons have different average 

energy levels in different materials; hence when they move from one material to 

another they must either release or absorb energy to reach the equilibrium energy state 

of the second material. The Peltier coefficient, Π , is the linear coefficient that relates 

the heat flux with the electric current. While investigating the Seebeck and Peltier 

effects, William Thomson (aka Lord Kelvin) predicted a third thermoelectric effect 

now called the Thomson effect, in which he stated that when a temperature gradient is 

maintained in a material through which an electric current is passed, heat is either 

absorbed or emitted.  While thermoelectric material convert heat to electricity, they do 

not necessarily do so efficiently. 
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The maximum possible conversion efficiency of a thermoelectric device is 

limited by the performance of the active thermoelectric material. The performance of a 

thermoelectric material is quantified by the non-dimensional thermoelectric figure-of-

merit, ZT defined as 

 
2σ

=
S T

ZT
k

 (1.1) 

Here, S  is the Seebeck coefficient, σ  is the electrical conductivity, T  is the 

absolute temperature and k  is the thermal conductivity. For optimally designed 

devices, the device efficiency monotonically increases with ZT; in refrigeration mode, 

the maximum achievable temperature difference is also an increasing function of ZT. 

S  and σ  are electronic properties of the material, while k  has both electronic 

contributions and contributions from the vibration of atomic nuclei, called “phonons,” 

to be discussed in detail shortly. It is evident from the figure-of-merit that an efficient 

thermoelectric material should be one that reduces the thermal conductivity without 

degradation of the electrical transport properties. The term, 2σS , appearing in ZT is 

called the power factor because the maximum power density and heat removal rate 

(W/m2) in power generating and refrigeration mode respectively are proportional to 

2σS . Seebeck coefficient and electrical conductivity can both be controlled by 

extrinsic carriers (“doping”), but generally have opposite doping trends: S  decreases 

approximately logarithmically with doping, while σ  increases approximately linearly 

with doping. In practice, all semiconductors have an optimal doping level for 

maximum power factor, and this doping level generally corresponds to the crossover 

to degenerate doping. 
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Thermoelectric devices can be divided into two major functional groups - 

refrigerators and power generators. The efficiency of a thermoelectric device depends 

on its functionality. 

(1) Thermoelectric refrigerator: The coefficient of performance of a refrigerator is 

calculated as: 

 φ = c

e

Q

W
 (1.2) 

where c
Q  is cooling power and e

W  is the electric power consumed for cooling. There 

are 3 ways of measuring the performance of a thermoelectric refrigerator: (a) the 

maximum coefficient-of-performance for a given temperature difference ( maxφ ), (b) 

the maximum cooling power ( maxQ ) or (c) the maximum temperature difference that 

can be obtained( max∆T ). The maxφ  and max∆T  are both limited by ZT, according to the 

expressions on the left hand side of Table 1. 

(2) Thermoelectric power generator: The efficiency of a power generator can be 

calculated as: 

 η = e

h

W

Q
 (1.3) 

where h
Q  is the heat supplied and e

W  is the power generated. There are two ways of 

measuring performance of a power generator: (a) maximum efficiency or (b) 

maximum power obtained when external load resistance is matched with the electrical 

resistance of the device. The maxη  is limited by ZT, according to the expression on the 

right hand side of Table 1. 
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Table 1: Thermoelectric Device Efficiencies1 

Refrigeration Power Generator 

max

1 /

1 1
φ

 + −
 =
 − + + 

avg h cc

h c avg

ZT T TT

T T ZT
 max

1 1

1 /
η

 + −−
 =
 + + 

avgh c

h avg c h

ZTT T

T ZT T T
 

2

max
2

σ  ∆
= − 

 

c c

c

S T T T
Q

L ZT
 

2
2

max

1

2

σ
= ∆

S
W T

L
 

2

max

1

2
∆ = cT ZT  

 

 

 

State-of-the-art materials have ZT between 1 and 2, which according to the 

table above yields a maximum device efficiency that is only ~30-40% of the Carnot 

efficiency.  Due to the low efficiency of thermoelectrics compared to grid level 

generation, thermoelectric generation applications have garnered interest mostly in 

niche sectors like space missions and waste energy harvesting2. However, 

thermoelectrics have several advantages over traditional power generation methods. 

Thermoelectric applications in refrigeration are environment friendly as they do not 

use CFC or other refrigerant gas and can function in environments that are too severe, 

too sensitive or too small for conventional refrigeration3. They are light weight, 

reliable and operate well even for low grade heat applications. Thermoelectric 

materials have applications in thermoelectric generators and localized air 

conditioning4. Thermoelectric materials have also garnered some interest in the 

semiconductor industry, for spot cooling of electronic devices3. 

1.2 Phonon Scattering by Nanoparticles 

Nanostructured thin films first attracted the interest of the scientific community 

when Hicks and Dresselhaus5 calculated an increase of ZT by a factor of 13 over bulk 
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when Bi2Te3 was used in a quantum well structure. Hsu et al.8 investigated 

AgPbmSbTe2+m and found epitaxially embedded nanostructured regions in the material 

which were rich in Ag-Sb and 2nm to 4nm in size, with the surrounding material 

depleted of Ag and Sb (i.e. just PbTe). The acoustic impedance of these AgSbTe2 

nanodots were different from the matrix and this caused a scattering of phonons which 

led to enhancement of ZT to 1.8∼ . Hsu8 found that the enhanced ZT was directly 

influenced by reduced thermal conductivity due to the scattering of phonons.  

For understanding the reason behind these improvements in thermal 

conductivity, a brief section has been included to help the reader understand 

microscopic origin of thermal conductivity. Heat conduction through any solid 

material is facilitated by electrons and/or by the oscillation of the atoms in the 

material. A metal has a large number of free electrons which can carry thermal energy. 

These free electrons are the dominant heat carriers in metals. However, not all 

materials have free electrons (or enough of them), in which case, heat can still be 

transferred through the vibration of atomic nuclei called phonons. Every atom in a 

solid material is bonded to other atoms. The vibration of any one atom thus causes 

vibration in the adjacent atoms, and so on. Thus, vibrations propagate as waves 

throughout this system of bonded atoms. When one side of the solid is hotter than the 

other, the atoms on the hotter side will statistically have larger vibrational amplitudes, 

which will be transferred toward the atoms on the colder side of the system via the 

propagation and exchange of phonons. We will consider the mathematics behind this 

in Chapter 2. 

In semiconductors, the free electron density is lower than in a metal and the 

dominant heat carriers are typically phonons. The electrons and holes carry charges, 
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while lattice vibrations (phonons) drive heat transport. Phonons have two length scales 

associated with their transport - the wavelength and the mean free path. Mean free 

path is the average distance that a phonon travels between scattering events. The mean 

free path of phonons in a semiconductor can be reduced by introducing impurities and 

this has the effect of reducing the thermal conductivity. 

There are five common phonon-scattering mechanisms depending upon the 

kind of scatterer. We will describe them qualitatively here and give a more 

quantitative description in chapter 2. 

(1) Phonon-phonon scattering - Phonon-phonon scattering can involve two processes. 

The normal process is where the total momentum of the colliding phonons is 

conserved after collision. Hence the net energy and the direction for the colliding 

phonons is conserved. But in the Umklapp process, an extra lattice wavevector 

changes the net direction of the phonon propagation after collision. This change in 

the net momentum of the phonons after collision causes a resistance to the heat 

flow. Umklapp phonon-phonon scattering is the dominant mechanism in the case 

of low-defect crystals.1 

(b) Alloy disorder scattering - An alloy whose components have widely differing 

lattice constants usually contains a large concentration of highly strained regions 

which scatter phonons effectively.9  

(c) Boundary scattering - This is the scattering of phonons from surfaces.  

(d) Phonon-electron scattering - Phonon-electron scattering is only relevant when the 

material is highly doped. This is the dominant mechanism in pure metals, although 

phonons carry little heat in metals. 

(e) Nanoparticle scattering: 
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Qualitatively, the response of an elastic wave that interacts with a nanoscale 

impurity depends upon the wavelength (λ) of the phonon and the size (a) of the 

discontinuity on which the phonon scatters.  Defining a dimensionless quantity called 

the scattering parameter, 
  ka = (2π / λ)a , there are three general regimes (1) Rayleigh 

scattering (ka<<1), (2) geometric scattering (ka>>1) and (3) Mie scattering (ka~1). In 

the Rayleigh scattering regime, were the wavelength of the phonon is much greater 

than the radius of the particle it collides with, the interaction between the wave and the 

structure is weak, albeit stronger for shorter wavelengths. There is no possibility of 

constructive/destructive interference in the diffracted waves. An example of this is the 

Rayleigh scattering of sunlight in the atmosphere: the wavelength of light is much 

greater than the size of the molecules in the atmosphere, but the molecules can still 

weakly scatter some of the shortest wavelengths of light, and this causes the blue hue 

of the sky in daytime. Geometric scattering occurs when the size of the particle is 

greater than the wavelength of the phonon (ka>>1), in which case the wave is able to 

feel the full geometry of the particle, and scatters effectively. In the intermediate 

regime called Mie scattering waves may travel through the impurity and return either 

in-phase or out-of-phase with the incident wave, leading to either constructive or 

destructive interference. In this regime the scattering effectiveness thus may oscillate 

as a function of wavelength. 

For thermoelectric applications, alloys are generally utilized because atomic 

substitution distributes mass and elastic contrast (scatterers) on the atomic level. 

However, alloy disorder and phonon-phonon scattering preferentially scatter short 

wavelength phonons while doing little to impede the transport of mid to long-

wavelength phonons (several nanometers in wavelength). In contrast, nanoparticle 
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impurities can help scatter the mid and long wavelength phonons which dominate the 

heat transfer in alloys10. If particles can be placed such that their spacing is larger than 

the mean free path of electrons, but smaller than that of bulk phonons, then it is 

possible to reduce thermal conduction by phonons without impeding the transport of 

electrons.  To do this as effectively as possible, it is imperative to understand the effect 

of elastodynamic contrast and geometry on the scattering performance of 

nanoimpurities. 

Attempting to understand the relationship between embedded discontinuities 

and elastic wave scattering is not a new problem. Ying (1956)11 formulated an analytic 

approach to obtain the scattering cross-section for a plane longitudinal wave incident 

on a spherical obstacle in an isotropically elastic medium and developed explicit 

analytic expressions for scattering cross-section at long wavelength using continuum 

mechanics by applying displacement and stress boundary conditions for elastic sphere, 

rigid sphere and spherical cavity. He observed that the scattering cross-section was 

directly proportional to sixth power of radius of the sphere and inversely proportional 

to fourth power of the wavelength. In this detailed work, although Ying11 covered the 

scattering of a variety of spherical nanoparticle cases, the computations were laborious 

and regular approximations like Rayleigh approximation cannot be used for high 

frequencies. Later, Johnson (1965)12 used a computational approach on an IBM 7070 

computer to evaluate Ying’s model for arbitrary wavelength. From these 

computations, they could conclude that the scattering cross-section was very close to 

the Rayleigh approximation for 0.1<ka  and then levels off, asymptotically 

approaching a value of 2 for higher frequencies. Greater differences in the velocities 

of the compressional and shear waves caused a higher maximum cross-section at 
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1∼ka . They associated the oscillatory nature of the scattering cross-section outside 

the Rayleigh regime, to a resonance phenomenon and speculated that the maximum 

scattering would occur when the frequency of the incident wave is the close to the 

resonant frequencies of the system of matrix and discontinuities. Eisenspruch (1960)13 

formulated the analogous problem for transversely polarized waves, and gave explicit 

analytic expressions for the scattering cross-section for a void and fluid-filled cavities, 

and rigid and elastic spheres at long-wavelength. Neither Ying's nor Einspruch's model 

appears to have been implemented in the context of heat transport modeling in 

nanostructures.   

While scattering of phonons on spherical obstacles has been studied 

extensively, not much attention has been given to scattering of phonons from 

nanofibers in the context of heat transport.  That is the purpose of this thesis.  Scaling 

laws for long-wavelength phonon scattering are different and generally stronger for 

cylinders, which we hypothesize should be beneficial for TE applications.  In addition, 

elastic wave scattering models for cylindrical impurities are easier to implement 

within thermal models than the models of Ying and Einspruch for spheres.  This work 

is thus meant as a first step to understanding the role of coherent wave scattering 

effects in the Mie regime on the thermal transport properties.  Nanofiber systems are 

also interesting because they admit the possibility of anisotropic transport, a 

phenomena that has not been studied for semiconductors with embedded 

nanostructures.  The goal of this thesis is to model the thermal conductivity tensor of 

semiconductors with embedded nanofibers, and to use the model to understand 

whether there are optimal composite design parameters which would achieve low 

thermal conductivity using less filler material than existing approaches. 
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1.3 Layout 

Chapter 2 will describe how thermal transport properties are modeled using 

Boltzmann transport theory and its application to phononic thermal conduction. In 

particular, the current work focuses on fiber composites, which generally have 

anisotropic transport properties, a situation not generally encountered in introductory 

Boltzmann transport theory treatments. The treatment given in Chapter 2 will allow 

this. In order to simulate thermal conductivity from microscopic principles, the 

phonon scattering rates must be known, and in this work the principle challenge is to 

calculate the increase in phonon scattering rates due to the addition of nanofibers. 

Thus, in Chapter 3 an analytical continuum model is developed for the scattering 

cross-section of incident elastic waves on embedded cylinders. As required for use in 

Boltzmann transport theory, the model allows for arbitrary incident angle, 

polarizations and wavelength on cylindrical elastic discontinuities embedded in an 

elastic matrix material. The model is yields generally accepted results over the entire 

range of possible wavelengths, spanning from the Rayleigh scattering regime to the 

geometric scattering regime without resorting to perturbation theory. In Chapter 4, the 

scattering model is utilized in the context of Boltzmann transport theory to simulate 

the anisotropic thermal conductivity tensor for semiconductor alloy materials with 

embedded nanofibers. The thermal transport properties are studied as a function of 

nanofiber radius, fiber composition, and degree of fiber alignment, specifically for the 

case of Si-Ge alloys with embedded silicide metals. Chapter 5 provides potential areas 

for future research. 

  



 11

Chapter 2 

BOLTZMANN TRANSPORT THEORY 

Although early research by Hsu8 showed increase in the thermoelectric figure-

of-merit in nanostructured materials, Kim10 provided theoretical and experimental 

evidence for reduced thermal conductivity and corresponding enhancement of ZT by 

embedding ErAs nanoparticles in In0.53Ga0.47As alloy. Thermal conductivity 

measurements conducted using the method showed that thermal conductivity in the 

alloy sample with embedded nanoparticles are lower than that in the pure alloy 

sample. Theoretical evidence was provided by predicting thermal conductivity using 

the Callaway model which confirmed that ErAs nanoparticles scatter the mid and long 

wavelength phonons while the alloy disorder caused scattering of the short wavelength 

phonons. Mingo14 analytically predicted the existence of an optimal size of an 

embedded spherical nanoparticle that minimizes the nanocomposite's thermal 

conductivity. Mingo found that the optimal nanoparticle size was located between the 

Rayleigh and the geometric regimes, called the Mie scattering regime. However, while 

calculating the phonon-nanoparticle scattering cross-section he has only considered 

the mass mismatch between the alloy and the nanoparticle material. In this thesis, we 

have considered both mass and stiffness mismatch for calculating the phonon-

nanoparticle scattering cross-section. Zhang (2015)15 used a numerical optimization 

method called Particle Swarm Optimization algorithm to find that a broad spectrum of 

thermal phonons can be most effectively scattered by nanoparticles of neither a unique 

size nor a broad distribution of size, but one with a few distinct peaks at well-chosen 
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radii. The algorithm optimizes a multi-dimensional function by iteratively improving 

candidate solutions among a large number of variables according to a fitness function 

and thus approaching the best solution in the search space of exhaustively large 

number of possibilities. Zhang15 has used his theory of best distribution of discrete 

peaks to obtain calculated thermal conductivities of 0.89 W/(K.m) for 0.8% volume 

fraction of Ge in Si0.5Ge0.5 matrix. 

In this section, we derive the expressions for thermal conductivity of a material 

using nanoscale energy transport and Boltzmann transport theory. 

2.1 Boltzmann Transport Theory 

It can be shown that phonons are waves that are solutions of the quantum 

mechanical Schrödinger equation subject to a harmonic potential. The most important 

result of this is that phonons can only exist at a series of discrete energy levels, 

separated by energy ωℏ , where 341.054 10  J s−= × ⋅ℏ  is a universal constant called 

Planck’s constant and ω  is the frequency of vibration in rad/s. The energy of a 

phonon state is specified by the quantum number n  as, ( 1/ 2)ω= +ℏ
n

E n  where (

0,1, 2,3...=n ). The frequency of vibration is uniquely determined once the wave-

vector and polarization of the phonon is specified; the correspondence between wave-

vector and frequency is called the dispersion relation, and the procedure for 

calculating ( )ω k  is given in most undergraduate solid-state physics books16,17. A key 

result is that for small magnitudes of wavevector (wavelengths much larger than the 

distance between atoms), the correspondence is linear and the constant of 

proportionality is the speed of sound (i.e. ω =
ɶ

c k ); this is equivalent to what one 

would find for waves traveling in a continuous medium in the framework of linear 

elasticity. The situation is more complicated for short wavelength-phonons, since the 
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dispersion becomes non-linear and anisotropic even in cubic materials, and because 

there is a restriction on the shortest wavelengths that are possible. For the purposes of 

this thesis, we will treat phonon dispersion as linear and isotropic, and we will be able 

to judge the limitations of this only after determining which phonons are responsible 

for thermal transport. 

There is no restriction on the quantum number n . However, according to 

statistical thermodynamics, at thermodynamic equilibrium the value of n  will 

fluctuate with an average value given by the Bose-Einstein distribution: 

 00

1

1

ω
= =

−

ℏ

Bk T

n f

e

 (2.1) 

Boltzmann transport theory is a method of calculating what happens once the 

system is perturbed from this equilibrium. The core idea is that at non-equilibrium (i.e. 

if transport is occurring), there is a probability distribution describing the average state 

of the system for various wavevectors and polarizations (p), denoted as ( , , , )ɶɶf t x k p , 

but it will differ from the equilibrium distribution, 0f . Then, f  will not be an even 

function of ɶk , since transport requires states to be biased toward a particular 

propagation direction. Taking the time derivative of f  gives, 

 ,

,

ν

ν

∂ ∂∂ ∂ ∂   
= + +   

∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂
= + +

∂ ∂ ∂

∂
= + ∇ + ∇

∂

ℏ

ɶ
ɶ

ℏ

i i

i i

i

g i

i i

g i k

x kdf f f f

dt t t x t k

Ff f f

t x k

f F
f f

t

 (2.2) 

We have used the fact that, for phonons, the group velocity, 
,

ω
ν =ɶ

g i

i

d

dk
, is the speed 

that wave energy moves. ɶF is the external force on the phonon which is zero since no 

external force is acting on the system. The particle in this single size distribution 
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function interacts with other particles in the system. The rate of phonons entering state 

ɶ
k  at location 

ɶ
r , must be the result of scattering process that brings other carriers into 

the state. 

 
 

=  
 scattering

df df

dt dt
 (2.3) 

It is generally difficult to calculate the rate of scattering on a state-by-state basis, so 

the usual approach is to simplify the process by considering the fact that the overall 

effect of scattering is to bring all particles toward equilibrium. This idea leads to the 

Relaxation Time Approximation (RTA), where the scattering rate is  modeled as: 

 0( )

( , )τ

− 
= − 

  ɶ
scattering

f fdf

dt k p
 (2.4) 

Thus the scattering rate is proportional to the separation of each state with respect to 

thermodynamic equilibrium. Here, τ  is the relaxation time, which is the time required 

for a perturbed system to return to equilibrium. This can be shown by neglecting the 

spatial non-uniformity of the function and considering no external forces, in which 

case we get 

 0

( , )τ

−∂
= −

∂ ɶ

f ff

t k p
 (2.5) 

The solution for this equation is 

 
( )/ ( , )

0 0

τ−

== +
ɶt k p

t
f f f e  (2.6) 

Now, if the temperature in a material varies with space, but not time as typically 

occurs in heat conduction, then 0
∂

=
∂

f

t
. Let us continue with the assumption that the 

external force, 0=ɶF . Then the Boltzmann transport equation in the relaxation time 

approximation is 

 0
,

( , )
ν

τ

 −∂
= − 

∂  ɶg i

i

f ff

x k p
 (2.7) 
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If 0−f f  is small compared to 0f then 0∇ ≈ ∇f f . Then the equation above can be 

easily solved for f . 

 0
0

( , )τ ν
∂

= −
∂

ɶ g

i

i

f
f f k p

x
 (2.8) 

2.2 Thermal Conductivity 

 The heat flux in a material can be calculated using f  . 

 ,"( ) ( ) / ( ) ( )ω ν= ⋅ ⋅∑ɶ ℏ g

j k p j

all k and p

q x V f  (2.9) 

where
,( ) /ωℏ k p V  is the quantum of energy of each mode (distinct wavevector and 

polarization) per unit volume, f  is the average quantum number, and ( )ν g

j  is the 

group velocity of the phonon. Although the allowed wave-vectors are technically 

discrete, they are extremely closely spaced compared to the maximum allowable size (

/ /∆ ≈maxk k a L ) where L  is the length of the sample and a  is the lattice constant, so 

it is helpful to treat them as a continuum. Replacing the summation over k  by 

integration and by integrating across all k  coordinates we get 
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=

∑ ∫

∑ ∫
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ɶɶ ℏ
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g

j k p j

p all k

g

k p j

p all k

V
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f d k

 (2.10) 

Plugging in the solution for f , we get 

 
( )

30
, 03

1
"( ) ( , )

2
ω ν τ ν

π

 ∂
= − 

∂ 
∑ ∫

ɶ

ɶ ɶɶ ℏ
g g

j k p j i

p iall k

f
q x f k p d k

x
 (2.11) 

The integral involving 0f  must work out to be zero because there can be no transport 

at equilibrium. Physically, the gradient of 0f  is only non-zero because the temperature 

is spatially dependent. So, heat flux can be expressed as, 
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( )

30
,3
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2
ω ν τ ν

π

 ∂ ∂ 
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∂ ∂   
∑ ∫

ɶ

ɶ ɶɶ ℏ
g g

j k p j i

p iall k

f T
q x k p d k

T x
 (2.12) 

Let us represent the heat flux in spherical k-coordinates. In order to convert the 

cartesian vectors of ɶk  into spherical coordinates, we use the following substitution. 

 sin cos ; sin sin ; cosφ θ φ θ φ= = =ɶ ɶ ɶ ɶ ɶ ɶ
x r y r z rk k k k k k  (2.13) 

The Jacobian matrix for this coordinate transformation can be given as 

 
2

( , , )
sin

( , , )
φ

θ φ

∂
= −

∂

ɶ ɶ ɶ

ɶ
x y z

r

r

k k k
k

k
 (2.14) 

Therefore, a differential volume in k-space is given by 

 
3 2 sinφ θ φ=ɶ ɶ

r rd k k dk d d  (2.15) 

So, we can write equation (2.12) as 

 
( )
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0
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By comparing it to " κ
∂

= −
∂

i ij

j

T
q

x
, we can identify the thermal conductivity tensor as 
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0 0 0

1
( , ) sin
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π π

κ ω ν τ ν φ φ θ
π

∂ 
=  

∂ 
∑ ∫ ∫ ∫ ɶ ɶ ɶℏ
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ij k p j i r r

p

f
k p k d d dk

T
 (2.17) 

Note that by definition, the group velocity  where 
  
ê

j
 is the unit vector in 

direction j. For isotropic group velocity,  where 
  
ê

ρ
 is the unit vector in the 

direction of .  Expressed in cartesian coordinates  

 êρ = sin(φ)cos(θ )êx + sin(φ)sin(θ )êy + cos(φ)êz
 (2.17) 

Thus, the term 
 
v

j

g  depends on the spherical polar angles φ  and θ  as well as the value 

of j = x, y, or z. 

2.3 Relaxation Time 

As introduced in Chapter. 1, the effective phonon scattering rate experienced 

by any particular state is the result of all possible scattering mechanisms including 

anharmonic scattering, alloy/point defect scattering, boundary scattering, and 
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nanoparticle scattering. It is usually assumed that these processes act independently so 

that the total scattering rate is the sum of all the rates of the individual mechanisms. 

This is summarized by Matthiessen’s rule as 

 
1 1 1 1 1

τ τ τ τ τ
= + + +

u a b np

 (2.18) 

One of the most important aspects of the different mechanisms is that they have 

different scattering rates for different frequencies of phonons. τu is the relaxation time 

due to Umklapp phonon-phonon scattering. Empirically, it is given by 

 1 2 /τ ω− −= B T

u AT e  (2.19) 

where A and B are parameters specific to the material. Note that high frequency 

phonons are scattering far more quickly than low frequency phonons. 

τ a  is relaxation time due to alloy disorder scattering. Abeles has derived a 

phenomenological model for alloy scattering based on principles from continuum 

mechanics and finds that the form of the scattering rate is9 

 
4

1

3

(1 )ω
τ − −

=a

p

Fx x

v
 (2.20) 

where F is a constant for the given material system and x is the ratio of different 

elements constituting the alloy. In principle, F can be estimated from knowledge of the 

lattice constants, atomic masses, and elastic constants of the individual alloy 

components9, but it is usually treated a phenomenological constant and determined by 

fitting to experimental data; this is the approach we take. 

τb is relaxation time due to boundary scattering given by 

 
1 /τ − =b p bv L  (2.21) 

where b
L is the boundary scattering length of the alloy. This form expresses the time it 

takes a phonon to travel ballistically over a length of bL  at speed of sound 
pv . 
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We denote 
τ

np  as the relaxation time due to nanoparticle impurities. This can 

be calculated from the scattering cross-section of phonons. The scattering cross-

section of any wave is defined based on the rate at which an incident wave carrying 

energy at rate P  (units W/m2) loses energy to a single scatterer at rate Q  (units W); 

the scattering cross-section is defined as /σ = Q P . If there are many nanoparticles 

present the scattering rate for energy is given by 
1τ η σ− =NP NP pv  where ηNP  is the 

number density (units #/m3) of nanoparticles. If the size and shape of the nanoparticles 

are known, then the number density of particles can be calculated in terms of their 

volume fraction, volf  in composite material as 

 /η =NP vol NPf V  (2.22) 

where NPV  is the volume of each nanoparticle. 

 The primary difficulty in modeling thermal transport in nanocomposites is 

determining the value of the scattering cross-section, σ , using an appropriate model. 

In this thesis we wish to investigate the thermal conductivity of fiber-based 

nanocomposites for which scattering cross-sections for phonons are not generally 

available. Note that unlike spherical particles, fibers have inherently anisotropic 

scattering cross-section. To capture the anisotropic physics, it is thus required that the 

Boltzmann transport equation not be directionally averaged as has been done in most 

previous modeling efforts. Due to the lack of symmetry, evaluating the Boltzmann 

integral requires that the phonon scattering cross-section be calculated for all possible 

incident angles, polarizations, and wavelengths. 

 The next chapter is dedicated to determining the scattering cross-section for 

phonons incident on an embedded cylinder in a composite material using a continuum 

mechanics approach. 
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Chapter 3 

SCATTERING OF PHONONS BY EMBEDDED NANOCYLINDERS 

Since thermal conductivity in a semiconductor material is directly driven by 

phonons, it becomes pertinent to promote phonon scattering to reduce the thermal 

conductivity of the material. One of the methods to accomplish this, that has been 

studied extensively has been the introduction of embedded nanoparticles, thereby 

locally modifying elastodynamic properties resulting in improved phonon scattering at 

these discontinuities. 

Kim10 has derived the scattering cross-section for spherical nanoparticles from 

quantum mechanical perturbation theory. However, Kim10 found that short wavelength 

evaluation of the perturbation theory result does not reproduce the known geometric 

limit.  Concluding that this was an error due to the use of perturbation theory, he 

proposed patching the perturbation obtained Rayleigh limit together with a near-

geometric model for compressional wave scattering that was instead obtained through 

analogy with the van der Hulst solution, which is technically valid for scalar waves. 

Although Kim10 reports Mie-like oscillations near the transition from the Rayleigh to 

geometric regimes, it should be noted that the model is not exact near the transition for 

either compressional or transverse waves; additional shortcomings include (1) that 

perturbation theory prevented Kim from treating force constant contrast and density 

contrast simultaneously, and thus cross-correlations could not be taken into account.  

The unintended result of this is that materials with matched elastic impedance but 

different density would be predicted to have high scattering cross-section. (2) In the 
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Rayleigh limit, the model does not differentiate between compressional and transverse 

wave scattering cross-sections, (3) the model does not specify which “elastic constant” 

it is referring to when evaluating the cross-section, (4) the van der Hulst solution is 

only strictly valid for scalar waves, but is applied to vector waves. Kim also extended 

the calculated scattering cross-section to include the effect of a distributed range of 

nanoparticles sizes by taking the effective scattering cross-section to be a weighted 

average of the monodisperse result with the particle size distribution function. 

Mingo (2009)14 used a model for calculation of scattering cross-section for 

nanospheres by considering the mass missmatch between the matrix and fiber 

materials, while ignoring the stiffness missmatch. Such an assumption enabled him to 

simplify the scattering cross-section calculation into the following expressions: 

( )
2 4 64 / 9 /σ π= ∆

LW
M M k a  in the Rayleigh regime and 22σ π=SW a  in the geometric 

regime, where /∆M M  is the mass missmatch, k  the wave number of the phonons 

and a  is the nanosphere radius. Thermal conductivity of nanoparticle-in-alloy systems 

with silicide nanoparticles embedded in SiGe alloy were modeled using this scattering 

cross-sections. However, this model proves inefficient when there is significant 

stiffness missmatch between the materials. 

White (1958)18 has developed an analytic model for scattering of incident 

elastic waves of arbitrary incident angle and polarization from cylindrical 

discontinuities in an elastic medium, which is exactly the solution that is needed for 

the current modeling effort. White showed that the results of the model compare 

favorably to direct experimental observations of scattering phase function for normal 

incidence. However, we have found that White’s formulation contains a number of 
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errors when applied to the oblique angles of incidence needed to apply Boltzmann 

transport modeling.  

In particular, the potential functions for normal and tangential parts of the 

vector potentials used to formulate the scattered shear wave expressions were 

incorrect.  

As a result, White's expressions for displacement and stress components 

contain many non-trivial errors which we will rectify in this thesis. In particular, in 

White’s paper we have found that in Table I, following components are incorrect for 

oblique incidence: (1) the incident z-polar shear wave displacements ru  and zu , and 

incident z-polar shear wave stress components rrT , θrT  and rzT , (2) the scattered 

compressional wave stress components rrT , θrT  and rzT , the scattered shear wave 

displacements, ru , θu  and zu . In addition, White’s expressions for scattering cross-

section and mode-conversion are only valid for normal angles of incidence. For many 

applications, oblique angles of incidence are important. For example, the thermal 

conductivity of a composite material with embedded fibers is the result of 

contributions of many different phonon frequencies, polarizations, and angles of 

incidence even for composites with randomly distributed fiber orientations. The mode 

conversion efficiencies are also anticipated to change with incidence angle analogous 

with electromagnetic scattering. Apart from formulating the oblique incidence 

equations, which contained the errors discussed above, White did not present any 

results or simulations associated with oblique incidence. In addition, the wavenumber 

dependence of scattering was not investigated either for normal or oblique incidence. 

Here, we have redeveloped the analytic formulation for scattering of an 

incident elastic wave of arbitrary polarization and angle of incidence from an 
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embedded cylindrical discontinuity, and derived expressions for scattering cross-

section and mode-conversion that apply for the entire range of possible conditions. For 

the purpose of simplicity, we will be denoting the tangential shear wave as y-polar 

wave and the normal shear wave as z-polar wave. The scattering cross-section is 

calculated as a ratio of the time average energy flux generated by the scattering wave 

with the time averaged rate of work done by the incident wave. We have generated 

plots of scattering efficiency for NiSi2 material. The scattering efficiency, /σ a (where 

a is the normal area of wave incidence), is shown to be proportional to 
3

( )kr  in the 

Rayleigh scattering regime, while it attains a constant value of 2 at the geometric 

regime. An optimal value of kr  can be found in between the Rayleigh and the 

geometric regimes just as the scattering efficiency attains a constant value of 2 which 

would be ideal for efficiently reducing the thermal conductivity of the doped alloy 

material. 

3.1 Scattering Cross-section - An Analytic Approach 

In developing the analytical formulation, we follow the same general 

procedure as White. We will consider the scattering of a plane compressional or shear 

wave of a single frequency incident obliquely on an infinitely long elastic cylindrical 

discontinuity embedded in a different elastic medium. Figure 1 shows the orientation 

of the cylinder and the incident wave with coordinate axes. The general formulation 

proceeds as follows. 
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Figure 1: Cylinder orientation 

Referring to the figure above, an incident wave of a single frequency and 

polarization travels through an outer region (denoted as region 2), with propagation 

direction in the x-z plane, given by unit vector ɶa  ,which has an oblique incidence 

relative to the x-y plane. The angle between ɶa  and the x-y plane is denoted by φ , for 

incident compressional waves and or by ψ  for shear waves. The incident wave 

encounters a cylindrical scattering medium at radius 'a' from the z-axis denoted as 

region 1. This produces both a scattered wave in region 2 and excites an internal wave 

in region 1. The total wave displacement in region 2 is a combination of the incident 

and scattered waves. For continuity, both the displacements and the traction must be 

continuous at the interface between regions 1 and 2. 
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If both mediums are linearly elastic with isotropic elastic tensors, then the 

equation of motion for each material is given by 

 
2

2
( 2 ) ( ) ( )ρ λ µ µ

∂
= + ∇ ∇⋅ − ∇×∇×

∂
ɶ

ɶ ɶ

u
u u

t
 (3.1) 

Where ρ is the density of the material, and λ  and µ  are the Lamé constants. 

If the displacements are temporally sinusoidal, then any spatial portion of the 

displacement field which satisfies (3.1) can be expressed as the superposition of 

displacements derived from scalar functions ( Φ , Θ , and χ ) which satisfy Helmholtz 

equations. In particular (1) if 
2 2

( ) 0∇ + Φ =k  then ∇Φ=
ɶ
L  is a solution representing a 

longitudinal wave, (2) if 2 2( 0) =+∇ ΘSk  then ( )ˆΘ= ∇×
ɶ

M z  is a solution 

representing a transverse wave with polarization orthogonal to the plane containing the 

ɶz  axis of the cylinder and (3) if 2 2( 0) =+∇ ΘSk  then ( )ˆχ∇×∇= ×
ɶ

zN  is a solution 

representing a transverse wave with polarization parallel to the plane containing the ɶz   

axis of the cylinder. 

3.2 Incident Wave Expressions 

The displacement associated with the incident plane compressional wave is of 

the form, 

 2 2 2( cos sin )

0

φ φω +−=ɶ ɶ ik x zi tu au e e  (3.2) 

It can be easily verified from ∇Ψ=ɶu that the scalar potential function for this 

displacement can be expressed as 

 2 2 2( cos sin )0

2

φ φω +−Ψ = ik x zi tu
e e

k
 (3.3) 

where 2 2/ω=k c , where c2 is the velocity of propagation of the compressional wave 

through the region 2. The velocity of propagation for a compressional wave can be 

given by, 
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 2 2 2
2

2

2λ µ

ρ

+
=c  (3.4) 

Similarly, the vector potential functions for displacement for an incident shear wave 

can be expressed as  

 2 2( cos sin )0 ψ ψω +−Λ = IIik x zi t

II

u
e e

ik
 (3.5) 

where /ω=II IIk c , where cII is the velocity of propagation of the shear wave through 

the region 2. The velocity of propagation of a shear wave can be given by, 

 
2 2

µ

ρ
=IIc  (3.6) 

We wish to do the calculation in cylindrical coordinates. In order to write the 

( cos )ψik xe  terms in cylindrical coordinates, we can implement a substitution with 

Bessel functions, which can be derived as follows 1 

 

( cos ) ( cos cos ) ' cos )

' cos

ψ θ ψ θ

φ

= =

=

ik x ik r ik r
e e e

where k k
 (3.7) 

Let us consider the Laurent series expansion of a term 
2( 1)/2−z t t

e  which has an essential 

singularity at t=0 19 
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( 1)/2 ( )
∞

−

=−∞

= ∑z t t n

n

n

e t J z  (3.8) 

Substituting θ= it ie  and '=z k r  on the left hand side of (3.8) we get 

 
2( 1)/2 ' cosθ− =z t t ik r

e e  (3.9) 

The same substitutions on the right hand side of (3.8) leads to 

 ( )0
1

( ) ( ) ( ) ( ) θ θ
∞ ∞

−

==−∞

= + ∑ +∑ n n in in

n n
n

n

t J z J kr i J kr e e  (3.10) 

Note that the left hand side is a sum from −∞ < < ∞n , but on the RHS we exploit the 

symmetry to make the sum run from 0 < < ∞n . Using the complex definition of 

( ) ( ) / 2
−= +iz iz

cos z e e , we get 
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If we neglect the harmonic time-dependence term in the expressions (3.3) and (3.5) the 

potential functions become 
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(All terms with subscript 1 or 2 refer to the corresponding region, while the Roman 

numeral subscripts are used for shear waves and Arabic numeral subscripts are used 

for compressional waves. Note that both polarizations of shear wave are derived from 

the same potential function.) 

Note: From the above expressions, we can see that the correct expressions for the 

potential functions for shear waves mentioned in White's paper are as follows: 

Region 1: 

 tangential
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From here on we will be using the following substitutions for simplicity of expression. 

 ' '
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 (3.19) 

Let us express the amplitude for the incident waves by the term nK , such that 
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II
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 (3.20) 

The expression for displacements can be derived from the potential functions by using 

the following expressions 

 = ∇Ψcu for compressional wave  (3.21) 

 ˆ= −∇ × Λ −syu for y polar sheaz r wave  (3.22) 

 (1/ ) ( ( )ˆ )= ⋅ −∇×∇× Λ −sz IIu k for z polar shez ar wave  (3.23) 

Stress components expressed in cylindrical coordinates can be derived from the 

displacement components as follows, 
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 [ ( ) ( )]µ
∂ ∂

= +
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rz z rT u u
r z

 (3.26) 

The displacement and stress components for the incident waves have been given in 

Table 2. The incident displacement and stress components in this paper are different 

from those used by White18, which were clearly incorrect because they were not 

dimensionally consistent. However, his expressions would not have impacted the 
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predicted scattering cross section since this involves taking the ratio of the incident 

and scattered waves, each of which was proportional to the square of the displacement. 
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Table 2: Incident wave components 

1. Compressional Wave 
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2. y-polar Shear Wave 
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3. z-polar Shear Wave 
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3.3 Scattered Wave Expressions 

The potential functions used to generate scattered wave components must satisfy the 

Helmholtz equation. In addition, the scattered waves in region 1(inside the cylinder) 

pass through the origin and must remain finite there; this places an addition restriction 

on the allowable components. The potential functions which satisfy these conditions 

for region 1 can be expressed as: 
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The scattered waves in region 2 must be outgoing traveling waves, but the potential 

function need not be finite at the origin since the waves do not physically exist for r<a.  

Thus, in region 2 Hankel functions of the second kind are used instead of Bessel 

functions: 
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where ( ) ( ) ( )= +n n nH kr J kr iY kr is the Hankel function. Here, we are using arbitrary 

constants nA and nD for the scattered in region 2 and region 1 respectively. We have 

used two angular functions (cosine and sine) in each potential equation as both of 

these satisfy the Helmholtz equation. However, it will later become clear that the 

upper angular function denotes the potential to be used for an incident compressional 

wave and the lower angular function denotes an incident shear wave because of the 

need to match terms with the respective incident wave. 

The scattered wave displacement, V̂  can be constructed as the superposition of all 

possible compressional and shear waves. 
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where the potential functions in Eqs. (3.46), (3.47), (3.48) and (3.49) are given as 
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L̂ represents the longitudinal part of V̂ , M̂  is the part of the transverse vector field 

normal to the surface, while N̂  is the part tangential to that surface. 

Using the expressions above, it is possible to analytically obtain the 

displacements and stresses due to the scattered waves. The stress and displacements on 

the boundary of the cylinder must be matched for a self-consistent solution. This 

provides the 6 conditions (for each value of n) that will be necessary to determine the 

unknown coefficients, An, Bn, Cn, Dn, En, Fn. The derivations of these expressions are 

quite lengthy. While symbolic manipulation software (MAPLE) was employed to 

perform some of the calculation, certain simplifications, such as recursion formula’s 

for Bessel and Hankel functions were not recognized by the software and were 

performed by hand to obtain the final expressions. The non-dimensionalized results 

for stress and strain evaluated at the cylinder surface due to the scattered wave in 

region 2 are summarized in Table 4. The corresponding expressions due to scattered 

waves in region 1 can be obtained from Table 4 by making the substitutions noted in 

Table 3. 

Importantly, we have discovered that the expressions used by White for 

displacements for shear waves as well as the radial-stress component for 

compressional waves contained non-trivial errors for oblique angles of incidence. 

The refraction and reflection angles for the compressional and scattered waves in both 

regions can be related by Snell's law and used to determine the angle of the scattered 

waves from knowledge of the angle and type of incident wave: 
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Table 3: Substitutions for expressions for region 1 

Region 2 Region 1 

nH  nJ  

Subscript 2 Subscript 1 

Subscript II Subscript I 

nA  nD  

nB  nE  

nC  nF  
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Table 4: Scattered Wave Expressions 

1. Compressional Wave 
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2. y-polar Shear Wave 
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3. z-polar Shear Wave 
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Although the expressions used by White18 for displacements and stresses when waves 

are normally incident on the cylindrical discontinuity are correct, we found certain 

discrepancies in the scattered wave components in the region outside the scatterer 

when the incident wave is obliquely incident. Therefore, we have rectified the 

expressions to incorporate all angles of incidence of the incident wave. 
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3.4 Boundary Conditions 

For the most general case of an elastic scatterer in an elastic medium, at the 

boundary of the cylinder both the displacement vector u and the traction vector T, are 

continuous across the boundary. So, there are six boundary conditions that will apply 

at the surface of the cylindrical discontinuity at r=a. They can be given as follows: 

 2 1(( ) ( ) ( ) ( ) ( ) ( ) ) ( )′ ′′ ′ ′′+ + − − − = −
ij ij II ij II ij ij I ij I scattered ij incident

T T T T T T T  (3.71) 
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 (3.72) 

Here, unprimed terms are for compressional waves, single primed are for y-polar shear 

waves and double primed terms are for z-polar shear waves. Further simplification can 

be made in the special cases of cylindrical voids or completely rigid cylinders. For a 

void scatterer, at the boundary the total traction vectors T must be zero at the boundary 

but there is no restriction on the total displacement. So, there are three boundary 

conditions that will apply at the surface of the cylindrical discontinuity at r=a. They 

can be given as follows: 
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For a rigid scatterer, at the boundary the total displacement vector u is zero 

(considering a cylinder immobilized externally) at the boundary and there is no 

restriction on the traction vector. So, there are three boundary conditions that will 

apply at the surface of the cylindrical discontinuity at r=a. They can be given as 

follows: 
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The solutions of these equations give us the ratio of scattered wave amplitudes to 

incident wave amplitudes, ', ' 'n n nA B and C , where 
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3.5 Cross-section Calculation 

From the displacement and stress components, we can calculate the energy 

flux in both incident as well as scattered waves. The time-averaged energy flux 

passing through a surface, A, can be calculated as: 20 
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where the outer bracket denotes a time-averaging of the flux. Σij
 and 

ijS  are the stress 

and displacement components in their harmonic form. Up until now displacement and 

stress have been treated as complex quantities, but for calculation of energy fluxes, we 

are interested in real displacements leading to real stresses. To utilize our results, we 
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If we substitute the displacement and stress terms with known dependencies,  
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The sinusoidal terms vanish upon taking the time average and we are left with 
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Let us consider the incident wave in Cartesian coordinates for ease of calculation. The 

area associated with an infinitely extended plane wave is not defined, but we can still 

do the calculation on a per-unit-area basis to obtain an incident energy flux with units 

W/m2. If we consider the time-averaged intensity of the incident compressional plane 

wave, it can be expressed as follows9: 
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For an incident compressional wave, displacement is only in the x-direction, 
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From these expressions we can derive that, for an incident compressional wave, 
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Similarly, for an incident y-polar shear wave, using  
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we get, for an incident y-polar shear wave, 
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Similarly, for an incident z-polar shear wave, 
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For the scattered wave, the energy flux leaving a cylindrical control volume of radius 

b can be given as, 
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Let us substitute the values for the displacements, stresses and their complex conjugate 

components from Table 4. We can also use the following asymptotic expressions for 

Hankel functions considering → ∞x to simplify the expression. 
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From these, we can derive the expressions for the energy flux of the scattered waves 

(units of W/m) 

1. Scattered compressional wave 
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If we consider a cylindrical discontinuity with a control volume of infinitely large 

radius b, the expression will simplify to 
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2. Scattered y-polar Shear Wave (considering a cylindrical discontinuity with a control 

volume of infinitely large radius b) 
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3. Scattered z-polar Shear Wave (considering a cylindrical discontinuity with a control 

volume of infinitely large radius b) 
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The scattering cross-section associated with each scattered component can be 

calculated as follows: 

 /=cs cs cQ P W  (3.104) 

where csP is the energy flux generated by a scattered shear wave when compressional 

wave is incident on the scatterer and cW  is the work done by the incident 

compressional wave. The same expression can be used to calculate the scattering 

cross-sections for each combination of compressional and shear waves. From this 

expression, we get, 
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These are the expressions for calculating the scattering cross-section for a cylindrical 

elastic scatterer when a compressional or shear wave is obliquely incident on it. Note 

that these are equivalent to the results given by White only for normal incidence where 

2 0ψ = .  

3.6 Results and Discussion 

Scattering efficiency plots have been calculated for a NiSi2 cylindrical 

nanoparticle discontinuity embedded in a Si0.5Ge0.5 matrix for size parameters ranging 

from the Rayleigh regime up to the geometric regime. The elastic properties for these 

materials along with their sources have been detailed below: 

Table 5: Elastic Properties of Si, Ge and NiSi2 (The numbers in round brackets in 

the top right corner denote sources of data) 

Parameters Silicon21 Germanium22 NiSi2
23 

C11 (GPa) 166 126 199 

C44 (Gpa) 79.6 44 53 

Density (kg/m3) 2329 (24) 5323 (24) 4803 (25) 
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Fig. 2a, 2b, and 2c show the scattering efficiency, / 2Q a  for incident 

compressional, y-polar, and z-polar elastic waves respectively plotted as a function of 

the non-dimensional incident wavenumber ranging from the Rayleigh regime to the 

geometric regime. In each plot the total scattering cross-section is given (black) and 

the relative contributions of scattering into particular modes is shown 

(compressional=blue, y-polar = green, z-polar = red). For each figure, the angular 

dependence is also given.  Normal incidence is given in Fig. 3a, 3b, 3c. 

3.6.1 Scattering efficiency v/s size parameter 

Figure 2a shows that incident compressional waves are scattered mostly into 

other compressional waves. It can be noticed that in all cases the scattering efficiency 

has a slope proportional to (ka)3 (indicated in figure 2a) in the Rayleigh region 

(ka<<1). The scattering efficiency can be seen to approach the value of 2 (indicated in 

figure 2b) in the geometric regime when the elastic waves of all polarizations are 

normally incident on the cylinder surface. But as the angle of the incidence increases, 

the scattering efficiency can be seen to fall below 2. This can be verified by comparing 

the values with the figures 3a, 3b and 3c where the scattering efficiency is shown for 

varying angle of incidence. These figures show that the maximum scattering 

efficiency can be achieved when the nanoparticles are aligned perpendicular to the 

direction of the incident wave. The relation stated by White, 2/ /=sc cs iiQ Q c c is found 

to be satisfied as well. A distinct curve in the 2b and 2c figures is the scattered 

compressional wave which shows a certain degree of instability in the case of 

scattered compressive wave when the angle of incidence of the shear wave is 45 deg, 

while the curve is completely absent in the case of angle of incidence for shear waves 

being 60 deg. But that can be associated to the fact that at those of angles of incident 



 43

shear waves, the scattered compressive waves is nearing their angle of internal 

reflection or past it. In the latter case, we may see the development of evanescent 

waves, which do not play a role in heat transfer, so have not been taken into 

consideration for the scattering cross-section calculations in this work. 

These cross-section calculations, have improved our understanding about the 

scattering of phonons. From these results, we can decide the orientation of the 

cylindrical discontinuity that would enable us to attain maximum phonon scattering 

and thus reduced thermal conductivity.  



 44

 

Figure 2a: Scattering efficiency for incident compressional wave incident at various 

incidence angles. The increasing z-polar shear wave cross-section can be 

seen as the angle of incidence increases (Legend description provided on 

Page 42) 

  

(ka)3 
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Figure 2b Scattering efficiency for incident y-polar shear wave incident at various 

incidence angles. The decreasing compressional wave cross-section can 

be seen as the angle of incidence increases, which completely disappears 

at 60 deg because of total external reflection (Legend description 

provided on Page 42) 

  

2 
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Figure 2c: Scattering efficiency for incident z-polar shear wave incident at various 

incidence angles. The decreasing compressional wave cross-section can 

be seen as the angle of incidence increases, which completely disappears 

at 60 deg because of total external reflection (Legend description 

provided on Page 42) 
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3.6.2 Scattering efficiency v/s angle of incidence 

 

Figure 3a: Scattering efficiency for incident compressional wave with a variety of 

size parameters ranging from the Rayleigh regime to the start of the 

geometric regime. In the Rayleigh regime, it can be seen that the 

scattering due to scattered z-polar shear waves for angles greater than 45 

deg is significant 
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Figure 3b: Scattering efficiency for incident y-polar shear wave with a variety of 

size parameters ranging from the Rayleigh regime to the start of the 

geometric regime. Unlike the compressional wave, scattering due to 

scattered y-polar shear waves are dominant scattering mode at all 

incidence angles. This is mainly because, with varying incidence angles, 

the amplitude of the scattered compressional waves get transferred to z-

polar shear waves due to the cylinder orientation 

  



 49

 

Figure 3c: Scattering efficiency for incident z-polar shear wave with a variety of 

size parameters ranging from the Rayleigh regime to the start of the 

geometric regime. 
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Chapter 4 

THERMAL CONDUCTION IN SEMICONDUCTORS WITH EMBEDDED 

NANOFIBERS 

In Chapter 2, the basic procedure for calculating the thermal conductivity of a 

material from microscopic principles, Boltzmann transport theory, was given. The 

formulation was general enough to simulate anisotropic conduction if the directional 

dependence of the scattering rate was known. Chapter 3 was devoted to calculating the 

directional dependence of the scattering rate for nanofibers embedded in a host 

material. Now that we have established the underlying principles, we will make 

detailed calculations of the anisotropic thermal conductivity tensor for some 

representative cases.  

As far as we know, there has not been any previous effort to compare the 

thermal conductivities obtained by a variety of nanoparticle shapes and nanofiber 

orientations. By modeling the thermal conductivity of embedded nanofibers in the 

aligned, 2D random and 3D random orientations and providing a comparison with the 

case of embedded nanospheres, we intend to find the optimum shape and nanofiber 

orientation and optimal fiber radius to obtain the greatest reduction in thermal 

conductivity of the semiconductor. We expect to get lower thermal conductivities for 

embedded nanofibers, because of their transversely isotropic nature. By modeling the 

thermal conductivities in two orthogonal directions, we can deduce anisotropy in each 

case. Mingo [Mingo (2010)] has neglected the effects of elasticity in his model for 

calculating the thermal conductivity of nanospheres. By including the stiffness 
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properties in our model, we aim to illustrate the effects of both mass and stiffness 

mismatch between the matrix and fiber materials which promote the reduction of 

thermal conductivity, Through his model, Zhang15 has predicted the necessity of a 

bimodal distribution of nanospheres to be more effective at reducing thermal 

conductivity than a single size. We will attempt to provide a justification for this 

observation.  

In particular, we will present the process involved for estimating the scattering 

parameters for the relaxation time calculations for the specific case of Si1-xGex and 

present the thermal conductivity results for a variety of silicide nanoparticles. This 

case is chosen both because Si1-xGex is a traditional high temperature thermoelectric 

material, and because Mingo has previously modeled this system for the case of 

embedded spherical particles which facilitates comparison.14  

4.1 Elastic Properties and Fitting Parameters for Si0.5Ge0.5 

The basic properties of Si0.5Ge0.5 used for our calculations are: 

Table 6: Basic properties of Si0.5Ge0.5 used for our calculations (The numbers in 

round brackets on the right top corner are the sources of the data) 

Properties Silicon 21 Germanium 22 

C11 (GPa) 166 126 

C44 (GPa) 79.6 44 

Density (kg/m3) 2329 (24) 5323 (24) 

maxω  [longitudinal](THz) 77 (26) 44.8 (27) 

maxω  [transverse](THz) 28 (26) 15 (27) 
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4.1.1 Maximum frequency of phonons 

While continuum theory places no constraints on the maximum frequency of 

elastic waves, the discretization of the lattice leads to a minimum wavelength and an 

associated maximum frequency. In a one dimensional chain the minimum wavelength 

is two lattice constants. More generally, the maximum wavenumber occurs at the edge 

of the Brillouin zone. The phonon dispersion relations experimentally calculated by 

Dolling (1963)26 for silicon and by Weber (1977)27 in the [100] direction at 300K were 

used to determine the maximum frequency of phonons for the integral in Eqn (2.17)

.The integrals are done over wavenumber rather than frequency. Since for the rest of 

the calculation we assume linear dispersion, we calculate the corresponding maximum 

wavevector as /ω=p p p

max maxk v  where p is the index that denotes the polarization. 

4.1.2 Temperature fitting for material parameters related to Umklapp 

scattering 

The calculation of Umklapp scattering time, 1 2 /τ ω− −= B T

u AT e  contains two 

unknown scattering parameters, A and B. In order to find these parameters, thermal 

conductivity vs. temperature curves for Silicon and Germanium were fit individually 

to the recommended experimental values suggested by Touloukian (1977)28 in the 

Thermophysical Properties of Matter data series in the temperature range 100-1000K, 

where umklapp scattering is the dominate resistive mechanism. The fit was obtained 

by minimizing the sum of the square of the residuals using MATLAB’s built-in 

fminsearch command. After the fitting process, the calculated parameters A and B the 

individual materials were found to be: 
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Table 7: Fitting for material parameters related to Umklapp scattering 

Parameter Silicon Germanium 

A (s/K) 1.407-19 2.7005-19 

B (K) 140.0177 64.7034 

 

 

 

Figure 4: Plot used to find the temperature fitting parameters 
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To calculate the scattering rates at intermediate alloy compositions we used an 

compositionally weighted average of the individual scattering rates. 

4.1.3 Alloy disorder scattering 

According to Abeles, the alloy disorder scattering time is given in the form, 

1 4 3(1 ) /τ ω− = −a pFx x v , where we consider the constant F is an unknown parameter 

related to the mass, bonding, and strain contrast. F was found by fitting experimentally 

obtained thermal conductivity vs alloy composition curves. Note that this step also 

requires accurate modeling of Umklapp scattering rates for which the results of 4.1.2 

were used. Experimental results have been obtained from literature29. The calculated 

value of F was estimated to be 4.9e-30 m3. 

4.2 Elastic Properties of Silicide Nanoparticle Impurities 

In order to compare results with Mingo, we have considered several possible 

silicides as the embedded nanoparticle. Silicides are potential candidates for Si1-xGex 

nanocomposites because they are metallic, commonly used in the semiconductor 

industry, and in some cases can be epitaxially grown from pure starting materials by 

annealing. The silicides that we consider here are NiSi2, NiSi, CoSi2 and PtSi, for 

which structure, density, and elastic constants are available from literature and are 

summarized below. The difficulty involved in considering additional materials is 

minimal, so long as the elastic constants and density can be obtained. For exotic 

compounds such as silicides, elastic constants in particular are difficult to obtain from 

experiment and are often estimated from Density Functional theory (DFT) instead. 
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Table 8: Basic Properties of the silicides (The numbers in round brackets on the 

right top corner are the sources of the data) 

Property NiSi2 NiSi CoSi2 PtSi 

C11(GPa) 199 (23) 285 (30) 228 (32) 298.2 (34) 

C44(GPa) 53 (23) 64.7034 (30) 83 (32) 100.1 (34) 

Density(kg/m3) 4803 (25) 5860 (31) 4940 (33) 12378 (35) 

 

 

4.3 Thermal Conductivity Plots 

Thermal conductivity calculations have been carried out at 300K for a 

nanofiber impurity of volume fraction of 3.4% embedded in the Si0.5Ge0.5 alloy matrix, 

again chosen to facilitate easy comparison with related calculations on nanospheres in 

literature14. We envision that there are three most likely geometries in which 

nanofibers could be manufactured into alloy  composites in analogy with traditional 

fiber reinforced composited: 

 

1. Aligned: When all the nanofibers are oriented along in one direction, the 

orientation of which can be defined using the spherical coordinate angles, θ

and ψ  (θ  is ill-defined for 0ψ = , but by symmetry the scattering cross-

section and thus the thermal conductivity cannot depend on the value of θ  in 

that case). For simplicity, we calculate the thermal conductivity tensor using 
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the case 0ψ =  with the understanding that the thermal conductivity for any 

other (aligned) orientation can then be obtained using a tensor rotation. 

 ' TR Rκ κ=
ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

 (3.111) 

where R
ɶɶ

 denotes the combined rotation matrix 

 

cos sin 0

sin cos 0

0 0 1

1 0 0

0 cos sin

0 sin cos

z x
R R R

θ θ

θ θ θ θ

θ θ

−   
 = = − 
 

 
 
  

ɶɶ
 (3.112) 

which would transform the z-axis unit vector to co-alignment with the desired 

cylinder orientation using two rotations about the x and z axis, respectively. 

By symmetry, the thermal conductivity tensor for the 0ψ =  case must be 

transversely isotropic, meaning κ κ κ⊥= ≡xx yy
, κ κ≡

�zz
, and all off-diagonal 

components are zero. We have numerically verified that our simulations obey 

this symmetry requirement. 

 

2. 2D Random: When the nanofibers lie on one plane but are distributed with a 

random orientation within that plane (in this case, the xy plane). In this case, 

each fiber has a unique value of / 2ψ π=  but can take on any random value of

θ . There are multiple methods possible for calculating the thermal properties 

when there are statistically distributed scattering cross-sectional properties.  

Kim36 has studied the effect of polydispersity of spherical nanoparticles on 

thermal conductivity and performed the calculation by assuming that the 

effective scattering cross-section in a material was the weighted average of the 

scattering cross-sections. We feel that this may be inaccurate because a phonon 

at any particular location will only scatter with one particular orientation of 

cylinder (which will be associated with one particular thermal conductivity), 
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not an average. We take the inhomogeneity in orientation into account by 

taking the weighted average thermal conductivity tensor over all orientations, 

rather than the weighted average of the scattering cross-section. Thus, 

 

2

0

1
'( , / 2)

2
eff d

π

κ κ θ φ π θ
π

= =∫ɶ ɶɶ ɶ
 (3.113) 

The integration is accomplished by Gaussian quadrature. This has the added 

computational advantage that we only need to calculate the thermal 

conductivity tensor once, an important advantage since the simulation 

necessarily already involves 3-dimensional integration over an integrand which 

itself contains an “infinite” sum as part of the scattering cross-section solution.  

We have attempted to compare the two averaging techniques but the 

computation time for the scattering-cross section approach has proven too long 

for practical purposes. 

By symmetry the resulting thermal conductivity tensor for a 2D mat of 

embedded fibers must be transversely isotropic and the through-plane value 

must be equal to κ⊥  from case 1. 

3. 3D Random: When the nanofiber orientation can take on random values for θ

and ψ , such that they are randomly oriented in a 3D space. Thus, the thermal 

conductivity tensor in this case is calculated as 

 

2

0 0

1
'( , ) sin

4

π π

κ κ θ ψ ψ ψ θ
π

= ∫ ∫ɶ ɶɶ ɶ
eff d d   (3.114) 

which we again perform by 2D Gaussian quadrature. By symmetry the result 

must be isotropic. 
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4. Spherical Nanoparticle scattering:  For the purposes of comparison, we have 

included simulations of spherical nanoparticle scattering, using the form of the 

scattering cross-section given by Mingo 

 

( )
2 4 6

2

1 1 1

4 / 9 / ( 1)

2 ( 1)

LW

SW

eff LW SW

M M ka

a ka

k aσ π

σ π

σ σ σ− − −

= ∆ <<

= >>

= +

 (3.115) 

and using identical volume fractions to calculate the total scattering rates.  

There are a several important effects not included by this model:  (1) the model 

does not include any physical effects due to elastic constant mismatch between 

particle and matrix, in contrast to our cylinder model.  (2) the model does not 

include any information about wave interference.  (3) it is not clear which 

incident phonon modes this is valid for(presumably only compressional) (4) it 

is not valid in the regime in between the Rayleigh and geometric limits ( 1≈ka  

). Despite these major limitations, the model is simple to apply and is expected 

to at least provide approximate trends for comparison.   

Figures 5-8 show thermal conductivity tensor simulations for the cases of 

Si0.5Ge0.5 embedded with NiSi2 (Fig. 5), NiSi (Fig. 6), CoSi2 (Fig.7), and PtSi (Fig. 8) 

nanofibers and nanoparticles.  In all cases, the volume fraction of nanoparticles is held 

at 3.4%. In the case of nanospheres, our result is in good agreement with Mingo14. 
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4.4 Results 

 

Figure 5: Thermal conductivity of SiGe alloy nanocomposite with NiSi2 nanofiber 

impurities embedded in it. Spherical thermal conductivity calculated 

from [Mingo(2009)]14 
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Figure 6: Thermal conductivity of SiGe alloy nanocomposite with NiSi nanofiber 

impurities embedded in it. Spherical thermal conductivity calculated 

from [Mingo(2009)]14 
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Figure 7: Thermal conductivity of SiGe alloy nanocomposite with CoSi2 nanofiber 

impurities embedded in it. Spherical thermal conductivity calculated 

from [Mingo(2009)]14 
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Figure 8: Thermal conductivity of SiGe alloy nanocomposite with PtSi nanofiber 

impurities embedded in it. Spherical thermal conductivity calculated 

from [Mingo(2009)]14 
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Some general observations can be made. In all cases, the thermal conductivity 

is significantly reduced below the room temperature bulk (isotropic) thermal 

conductivity of Si0.5Ge0.5 (8.1 W/m-K).  As initially observed by Mingo, we find an 

optimal size for spherical nanoparticles in the several nanometer size range.   

The behavior of the embedded cylinders is much more complex. In each case, 

we find at least one optimal nanocylinder radius, but in some cases we find what 

appear to be two optimal operating points. For example in the case of embedded NiSi 

nanofiber (Fig. 6), the thermal conductivity has a weak double minima, which has the 

effect of broadening the range of optimal conditions. In other cases, there is not a 

double minima, but inflection points are still present that indicate rapid oscillations of 

scattering rate (Fig. 5 and 7).   
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Figure 9: Thermal Conductivity ( xxk ) of NiSi nanofiber embedded composite 

contributed by each incident wave polarization 
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Figure 10: Thermal Conductivity ( zzk )of NiSi nanofiber embedded composite 

contributed by each incident wave polarization 

A mechanism that might explain such a double minimum is that there may be 

different optimal sizes which separately minimize conduction by compressional and 

transverse waves.  The plots in Fig. 5-8 show only the total, so it is conceivable if 

optimized separately, these would give different minima that when summed give the 

appearance of a double optima. This might be consistent with a very recent 

observation by Zhang15, that show that a bimodal distribution of nanospheres may 

have lower thermal conductivity than a single size.  We have investigated this by 
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decomposing the thermal conductivity in the Boltzmann integral into the contribution 

from each polarization for NiSi nanofiber. The results are given in Fig. 9 & 10. 

Neither Zhang15 nor Mingo14 give a separate treatment of the scattering by 

compressional and transverse waves (they use the same scattering cross-section for 

both modes). In figures 9 & 10, the thermal conductivities are segregated on the basis 

of the polarization of the incident wave from which the heat flux originates. It is 

clearly evident that the optimal nanoparticle radii for the compressional and shear 

waves are located at different values. Thus, an overlap of the thermal conductivity 

results, which causes the double optima in the overall thermal conductivity. This 

bodes well with the results obtained by Zhang15 who observed multiple optima of 

nanosphere radius for yielding minimum thermal conductivity. (2) An alternate 

explanation could be that coherent oscillations in the scattering cross-section lead to 

this behavior. When the non-dimensional scattering parameter 1≳ka , the scattering 

cross-section oscillates rapidly through a series of constructive and destructive 

interference events. This could potentially cause local minima and maxima thermal 

conductivity in a material that only has a single sized particle (i.e. monodispersed).  

Note that this physics is completely absent in the recent paper by Zhang15 because 

their model does not consider phonon coherence. This might seems like an unlikely 

explanation since heat is conducted by a broadband range of phonons and coherence 

behavior should at least be masked by the fact that some phonons would 

constructively interfere while others would destructively interfere. However, if the 

frequency range of phonons contributing to transport were sufficiently narrow, and 

scattering efficiency oscillation are large enough then it may be possible to observe 
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oscillations via the thermal conductivity. In fact, we do see such oscillation in the 

polarization and decomposed thermal conductivities (Fig 9-10) 

We find that the highest performance candidate material studied was PtSi, due 

to its unusually high mass density and stiffness. 3.4% vol PtSi is predicted to achieve 

up to a 10-fold reduction in thermal conductivity.  The optimal configuration is for 

aligned cylinders where the temperature gradient/heat flow is applied perpendicular to 

the axis of the cylinders.  The optimal fiber radius is predicted to be ~1nm, several 

nanometers smaller than the predicted optimal radius of a spherical nanoparticle.  

From a modeling point of view, these small sizes may not be consistent with our 

scattering model.  In particular, the atomic nuclei of most crystalline materials are only 

separated by ~0.2-0.3nm, so the assumption that we are dealing with a continuum is 

questionable.  We will comment further on this point in the following chapter. 

To our knowledge this is the first attempt anywhere to calculate the anisotropic 

ratio of the thermal conductivity tensor due to anisotropic nanoparticle scattering. The 

case of aligned PtSi nanofibers yields the most dramatic anisotropic ratio ( /η κ κ⊥≡
�

), 

but even in this extreme case we find that the anisotropic ratio is rather low, 1.3η ≈ . 

In the 2D random case, the lowest thermal conductivity remains the same as in the 

completely aligned case, it is not necessary to align the fibers to achieve the lowest 

possible thermal conductivity. However in the other transport directions the 

conductivity will not be as low. In 3D the anistropic ratio is zero (as required by 

symmetry). In the Rayleigh limit, it is not obvious that the anisotropic ratio must be 

1η <  for aligned fibers since the compressional waves actually have a higher 

scattering cross-section when traveling parallel to the nanofiber. However, the 

transverse waves do have lower scattering cross-section in that direction and it is those 
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that dominate transport; the net effect is an anisotropic ratio that is always 1η > , even 

for cylinder radii below the optimum.  

The question of what determines whether nanospheres outperform 

nanocylinders remains open. Fig. 5-8 shows that a comparison between the two types 

of scatterers yields conflicting results. In the best case scenario for nanofibers (PtSi, 

Fig. 8), optimally sized nanofibers outperform an optimal nanosphere configuration by 

~30%.  In the case of NiSi2, the performance is about the same (Fig. 5).  In the cases 

of NiSi (Fig. 6) and CoSi2 (Fig. 7), nanospheres are much better than nanofibers. Since 

the densities of the materials are not so different from one another (with the exception 

of PtSi), it is not clear what causes such variation between material combinations. We 

postulate that elastic constant contrast might play an important role in scattering.  In 

any case, the results would indicate that there is more than one single material 

property which drives thermal conductivity. Again, we should note that the 

nanospherical model does not include any physics related to elastic contrast or 

polarization dependence, and thus the nanosphere results may appear smoother with 

respect to the material choice than they would be if modeled more rigorously. We 

have attempted full elastic modeling of spheres13, but we have found some 

inconsistencies within existing literature which will require significant effort to correct 

and currently prevent us from employing an accurate model. 

To understand the relevance of density and stiffness contrasts to scattering, we 

studied the change in the scattering efficiency as a function of density and stiffness 

contrasts. The scattering efficiency (Q/2r) is a dimensionless quantification of 

scattering which makes it dependent on the size parameter (kr) rather than just the 

radius of the nanofiber (r). Since the density and stiffness contrasts are relevant in the 
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Rayleigh regime, this model has been prepared at kr=0.001. In the Rayleigh regime, 

the scattering efficiency (Q/(2r)) scales as (kr)3. The proportionality depends on the 

density and stiffness contrasts. To determine the effect of density and stiffness 

contrast, we therefore have prepared contour plots of the quantity (Q/(2r)) / (kr)3 in the 

Rayleigh regime. We define stiffness contrast [ΔC11=(C11)np-(C11)a] as the difference 

between the stiffness of the nanoclyinder material ((C11)np) and the alloy material 

((C11)a). We have considered the ratio between C11 and C44 as a constant. Similarly, 

we define density contrast (Δρ=ρnp-ρa) as the difference between the stiffness of the 

nanoclyinder material (ρnp) and the alloy material (ρa). 
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Figure 11a:  Normalized scattering efficiency when a compressional wave is incident 

on a nanocylinder at 0 deg angle of incidence. Note: C11 and C44 for the 

nanocylinder material is taken as the same as alloy matrix material at 

ΔC11/(C11)a=0 and both are varied proportional to change in ΔC11 for the 

purposes of this graph 
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Figure 11b:  Normalized scattering efficiency when a y-polar shear wave is incident 

on a nanocylinder at 0 deg angle of incidence. Note: C11 and C44 for the 

nanocylinder material is taken as the same as alloy matrix material at 

ΔC11/(C11)a=0 and both are varied proportional to change in ΔC11 for the 

purposes of this graph 
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Figure 11c:  Normalized scattering efficiency when a z-polar shear wave is incident on 

a nanocylinder at 0 deg angle of incidence. Note: C11 and C44 for the 

nanocylinder material is taken as the same as alloy matrix material at 

ΔC11/(C11)a=0 and both are varied proportional to change in ΔC11 for the 

purposes of this graph 
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The scattering efficiency as a function of density and stiffness contrast was 

also analyzed for nanofiber oriented obliquely (45 deg) to the direction of the incident 

wave. These results have been presented in the following figures 12a, 12b and 12c. 

 

Figure 12a:  Normalized scattering efficiency when a compressional wave is incident 

on a nanocylinder at 45 deg angle of incidence. Note: C11 and C44 for the 

nanocylinder material is taken as the same as alloy matrix material at 

ΔC11/(C11)a=0 and both are varied proportional to change in ΔC11 for the 

purposes of this graph 
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Figure 12b:  Normalized scattering efficiency when a y-polar shear wave is incident 

on a nanocylinder at 45 deg angle of incidence. Note: C11 and C44 for the 

nanocylinder material is taken as the same as alloy matrix material at 

ΔC11/(C11)a=0 and both are varied proportional to change in ΔC11 for the 

purposes of this graph 
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Figure 12c:  Normalized scattering efficiency when a z-polar shear wave is incident on 

a nanocylinder at 45 deg angle of incidence. Note: C11 and C44 for the 

nanocylinder material is taken as the same as alloy matrix material at 

ΔC11/(C11)a=0 and both are varied proportional to change in ΔC11 for the 

purposes of this graph 

Figures 12a, 12b and 12c show an interaction effect between density and 

stiffness contrast on scattering cross-section, i.e.: change in one factor has an effect on 

the other. In fact when the angle of incidence is oblique (or the cylinder orientation is 

oblique) the rate of increase in the scattering cross-section can be achieved by varying 

both density and stiffness contrast of the nanoparticle impurity along the a-b line 
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shown in Figures 12a and 12c. From this, we can conclude that scattering cross-

section of nanofibers in the Rayleigh regime is dependent on the density contrast, 

stiffness contrast and their interaction effect. Further, for some materials scattering 

efficiency may actually increase, if the nanofibers are obliquely aligned as opposed to 

aligned perpendicular to the direction of incident waves, depending upon their 

stiffness and density contrast. Note that in this case, we have considered the ratio 

between C11 and C44 is a constant. It remains to be seen how the scattering cross-

section changes when the stiffness contrasts for C11 and C44 vary independent of each 

other. 
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Figure 13: Thermal conductivity of PtSi (nanofibers of radius 0.89nm, 2 nm and 

5nm) embedded nanocomposite in the fiber and matrix direction for a 

decreases with an increase in volume fraction. 

One important variable that contributes to reducing thermal conductivity is the 

volume fraction of the nanoparticle impurities. As observed in Fig 13, at small volume 

fractions, it seems fairly obvious that adding more volume fraction will lead to lower 

thermal conductivity, because the higher volume fraction will increase the number of 

scatterers and thus the scattering rate. However, there are obvious limitations to this 
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logic: (1) A higher density of impurities may be detrimental to the electron mobility 

and reduce the electrical conductivity; it is not currently clear what upper limit this 

imposes on the current system, and this is likely to be material system dependent as 

well as doping level dependent. (2) At sufficiently large volume fractions the 

nanoimpurities cannot simply be thought of as scatterers, but will become active 

conductors of heat themselves. PtSi for example has a bulk electrical resistivity of ~30 

μΩ-cm, which can be translated via the Wiedemann Franz law into an electronic 

contribution to thermal conductivity of κ ~25 W/m-K.  However, at the nanoscale the 

effective conductivity of metal would be much smaller due to boundary scattering, and 

the presence of Schottky barriers makes it difficult to estimate the critical volume 

fraction that would cause this cross-over in behavior. 

This research was aimed to finding an optimal embedded nanofiber radius for 

reduced thermal conductivity in a nanocomposite. To that purpose, the scattering of 

phonons on a nanocylinder elastic inclusion was studied. Early research by White18, 

seemed to have certain discrepancies that have been fixed and the model was 

improved to include angular orientation of the cylinders. The analytic continuum 

model provides an insight into the optimal orientation and radius of nanofiber to 

improve its scattering efficiency. 

The thermal conductivity model developed from Boltzmann transport theory 

uses this phonon scattering model. The results of this study show that the optimal 

nanoparticle shape and size are distinctly dependent on the mass and stiffness contrast 

between the matrix and fiber materials. There is clear evidence to show that 

perpendicularly aligned nanofibers have a distinct advantage over other orientations in 
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thermal conductivity reduction. The observations further confirm that a bimodal 

dispersion of nanofiber sizes will enable better reduction in thermal conductivity. 

Although from a manufacturing point of view, these small nanofiber sizes 

seem impractical, the model developed provide an insight into the necessary 

parameters required to reduce thermal conductivity in nanocomposites. 
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Chapter 5 

FUTURE WORK 

The results obtained in this research can be further improved upon by finding 

the optimal size of nanoparticles for a wide range of temperatures and volume 

fractions. Higher operating temperatures would reduce the thermal conductivity of the 

nanocomposite and result in a wide minima, which would mean that a smaller volume 

fraction of nanofibers would be required to achieve the same thermal conductivity 

reduction. Whereas, if the temperature is maintained as the same and the volume 

fraction is increased, the optimal size of the nanoparticle can be expected to increase. 

The reason is that, the same size and higher number of nanoparticles would mean that 

the distance between the nanoparticles become much smaller than the mean free path 

of the long wavelength phonons which are effective heat carriers in semiconductors. 

These phonons will be more effectively scattered by maintaining the distance between 

the nanoparticle and increasing their size. However, increasing the volume fraction 

can also adversely affect the electron mobility. As discussed by Mingo14, the 

scattering of electrons are mainly caused by alloy scattering and nanoparticle 

scattering. The nanoparticle scattering rate, given by 1 /τ σ υ− =e e e V , where σ
e
 is the 

electron scattering cross-section which is directly influenced by the nanoparticle size, 

υ
e
 is the electron velocity and V  is the volume containing one nanoparticle. So, size 

and number of nanoparticles play a vital role in electron scattering. However, Mingo 

calculated that the electron mean free path will not be affected in the case of SiGe if 

the volume fraction is maintained lower than / 30<
vol

f a nm  for spheres. A similar 
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analysis for nanofibers will aid in obtaining an optimal nanofiber radius without 

affecting the electron mobility in the nanocomposite. 

 In his paper, Zhang (2015)15 used an optimization algorithm to find the 

bimodal distribution of nanosphere sizes. As discussed earlier, this bimodal 

distribution is most probably related to the dual optimal nanofiber sizes caused due to 

different wave polarizations Such an optimization analysis can be carried out for 

nanofibers as well. Since nanofibers are transversely isotropic, there might be as many 

as six different nanoparticle sizes that might reduce the thermal conductivity. 

 Just as we have included the mass and stiffness missmatch for 

analyzing the scattering of both compressional and shear waves on a cylindrical 

obstacle, a similar analysis can be carried out for a spherical obstacle. Ying11 analyzed 

scattering of a plane longitudinal wave by a spherical obstacle, but we found certain 

discrepancies in the expressions for the scattering cross-section. An analysis of the 

same can be used to formulate expressions for the thermal conductivity of 

nanocomposite with embedded nanospheres and thus calculate the optimal nanopshere 

radius for reducing thermal conductivity. The results can also be compared with 

Mingo14 and Zhang15 to assess the effects of the stiffness missmatch in thermal 

conductivity. 
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Appendix 

THERMAL CONDUCTIVITY CODE 

clearall 

PropertiesForSiGe 

T = 300; 

a = logspace(log10(1e-10),log10(1e-7),200);                          

MatParams.eta_NP = 0; 

 

fori = 1:length(a); 

MatParams.a_NP = a(i); 

disp(a(i)); 

MatParams.eta_NP = MatParams.VolFrac_NP/(pi*MatParams.a_NP^2); %maintains 

constant Volume Fraction 

 

    [ktot_align, ktot_inplane, ktot_random] = Get_Kappa_Avg(T,MatParams);                      

kappa_xx_align(i) = ktot_align(1,1); 

kappa_yy_align(i) = ktot_align(2,2); 

kappa_zz_align(i) = ktot_align(3,3); 

kappa_xx_inplane(i) = ktot_inplane(1,1); 

kappa_yy_inplane(i) = ktot_inplane(2,2); 

kappa_zz_inplane(i) = ktot_inplane(3,3); 

kappa_xx_random(i) = ktot_random(1,1); 

kappa_yy_random(i) = ktot_random(2,2); 

kappa_zz_random(i) = ktot_random(3,3); 

end 

 

figure; 

loglog(a(1:length(a)),kappa_xx_align,'b-',a(1:length(a)),kappa_yy_align,'g-

',a(1:length(a)),kappa_zz_align,'r-','LineWidth',2); 

xlabel('a'); 

ylabel('kappa tensor') 

legend('kappa_{xx} (perp)','kappa_yy (normal)','kappa_{zz} (parallel)') 

title('Aligned') 

 

figure; 

loglog(a(1:length(a)),kappa_xx_inplane,'b-',a(1:length(a)),kappa_yy_inplane,'g-

',a(1:length(a)),kappa_zz_inplane,'r-','LineWidth',2); 
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xlabel('a'); 

ylabel('kappa tensor') 

legend('kappa_{xx} (perp)','kappa_yy (normal)','kappa_{zz} (parallel)') 

title('Random Inplane') 

 

figure; 

loglog(a(1:length(a)),kappa_xx_random,'b-',a(1:length(a)),kappa_yy_random,'g-

',a(1:length(a)),kappa_zz_random,'r-','LineWidth',2); 

xlabel('a'); 

ylabel('kappa tensor') 

legend('kappa_{xx} (perp)','kappa_yy (normal)','kappa_{zz} (parallel)') 

title('Random') 

 

timestamp = datestr(clock,30); 

save(strcat('Results_k_vs_a_',timestamp,'.mat')) 
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%PropertiesforSiGe 

% Build Materials Properties of a Matrix / NP system 

% Matrix Properties 

%Silicon 

MatParams.Si_vs = [8442.3 5846.2 5846.2]; 

MatParams.Si_omega_max = [77 28 28]*1e12;%from ioffe/Dolling(1963) 

Si_A = 1.407e-19; 

Si_B = 140.0177; 

Si_F = 1; 

Si_rho = 2329; 

 

%Germanium 

MatParams.Ge_vs = [4865.3 3566.3 3566.3]; 

MatParams.Ge_omega_max = [44.8 15 15]*1e12;%rad/s from ioffe/Weber (1977) 

Ge_A = 2.7005e-19; 

Ge_B = 64.7034; 

Ge_F = 1; 

Ge_rho = 5323; 

 

%% Alloy Property Testing code % These can be used while testing for A,B& K 

properties for materials that make up the alloy 

% MatParams.xalloy = 0.0; %alloy percentage                                                                   

% MatParams.vs = [4865.3 3566.3 3566.3]; %sound speeds                                                             

% % MatParams.A = Si_A; %Anharmonic scattering terms                                                         

%change back to correct ones 

% % MatParams.B = Si_B; %Anharmonic scattering terms                                                             

%change back to correct ones 

% MatParams.A = Ge_A; 

% MatParams.B = Ge_B; 

% MatParams.F = 2e-30; %alloy scattering 

% MatParams.Lb = 300e-6; %boundary scattering / film thickness 

% MatParams.rho = 2329; %density  

 

%% Alloy Code 

%Alloy Properties 

MatParams.xalloy = 0.5; %alloy percentage ,x: perc Ge in alloy                                                                 

MatParams.vs = MatParams.xalloy.*MatParams.Ge_vs+(1-

MatParams.xalloy).*MatParams.Si_vs; %sound speeds 

MatParams.omega_max = MatParams.xalloy.*MatParams.Ge_omega_max+(1-

MatParams.xalloy).*MatParams.Si_omega_max; %max frequency 

MatParams.kmax = MatParams.omega_max./MatParams.vs; 

MatParams.A_Si = Si_A; %Anharmonic scattering terms                                                         

%change back to correct ones 
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MatParams.B_Si = Si_B; %Anharmonic scattering terms                                                             

%change back to correct ones 

MatParams.A_Ge = Ge_A; 

MatParams.B_Ge = Ge_B; 

MatParams.F = 4.9e-30; %alloy scattering 

MatParams.Lb = 300e-6; %boundary scattering / film thickness 

MatParams.rho = MatParams.xalloy*Ge_rho+(1-MatParams.xalloy)*Si_rho; %density                            

 

%% Nanoparticle Properties NiSi 

MatParams.a_NP = 10e-9; %nanocylinder radius 

MatParams.vs_NP_Material = [6436.8, 3321.9, 3321.9]; %nanocylinder sound speeds 

MatParams.rho_NP_Material = 4803; %nanocylinder density 

MatParams.VolFrac_NP = 0.034; %volume fraction of nanocylinders                                             

%change back to 0.05 

MatParams.eta_NP = MatParams.VolFrac_NP/(pi*MatParams.a_NP^2); %number 

density (#/m2) of nanocylinders. 
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function [k_avg1, k_avg2, k_avg3] = Get_Kappa_Avg(T,MatParams) 

 

%% Completely aligned 

ktot = get_kappa_ij(T,MatParams);        k_avg1 = ktot;              

 

%% Random Inplane 

phi_cyl = pi/2; 

[theta_points,w] = lgwt_V4(10,0,2*pi); 

k_avg2 = zeros(3,3); 

for n = 1:length(w) 

theta_cyl = theta_points(n); 

th =theta_cyl ; 

ph = phi_cyl; 

Ry=[cos(ph) 0 sin(ph);0 1 0;-sin(ph) 0 cos(ph)];  

Rz = [cos(th) -sin(th) 0;sin(th) cos(th) 0; 0 0 1]; 

Rnet = Rz*Ry; 

k_inc2 = (Rnet)*ktot*(Rnet'); 

k_avg2 = k_inc2.*w(n)./(2*pi) + k_avg2; 

end 

 

%% Random 

[theta_points,w1] = lgwt_V4(4,0,2*pi); 

[phi_points,w2] = lgwt_V4(4,0,pi); 

k_avg3 = zeros(3,3); 

for n1 = 1:length(w1) 

theta_cyl = theta_points(n1); 

k_halfavg3 = zeros(3,3); 

for n2 = 1:length(w2) 

phi_cyl = phi_points(n2); 

th =theta_cyl ; 

ph = phi_cyl; 

Ry=[cos(ph) 0 sin(ph);0 1 0;-sin(ph) 0 cos(ph)];  

Rz = [cos(th) -sin(th) 0;sin(th) cos(th) 0; 0 0 1]; 

Rnet = Rz*Ry; 

k_inc3 = (Rnet)*ktot*(Rnet'); 

k_halfavg3 = k_inc3.*sin(ph)*w2(n2)./2 + k_halfavg3; 

end 

k_avg3 = k_halfavg3.*w1(n1)./(2*pi) + k_avg3; 

end 

end  
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functionktot = get_kappa_ij(T,MatParams) 

ifnargin==0 

PropertiesForSiGe 

T = 300; 

end 

i = 3; 

j = 3; 

ktot = zeros(3,3); 

fori = 1:3 

 j=i; 

%fprintf('%i \t %i\n',i,j)               

for p = 1:3  %all polarizations 

%             fprintf('%i \t %i \t %i\n',i,j,p)        %change back if needed 

integrand = @(k,theta,phi) (k.^2.*abs(sin(phi))); 

kmax = MatParams.kmax(p); 

k_p(p)=integral3(@(k,theta,phi) 

thermal_integrand(k,theta,phi,p,T,i,j,MatParams),0,kmax,0,2*pi,0,pi,'method','tiled','R

elTol',1,'AbsTol',1e-4); 

end 

ktot(i,j) = sum(k_p); 

%         sum(k_p)                              %change back if needed 

end 
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function result = thermal_integrand(k,theta,phi,p,T,i,j,MatParams) 

hbar = 1.05457173e-34; 

kb = 1.3806488e-23; 

prefactor = 1/(2*pi)^3; 

c = MatParams.vs; 

%c = [8000,4000,4000]; 

cp = c(p); 

omega = cp*k; 

 

ifi == 1 

vg_i = cp.*sin(phi).*cos(theta); 

elseifi==2 

vg_i = cp*sin(phi).*sin(theta); 

elseifi==3 

vg_i = cp*cos(phi); 

end 

if j == 1 

vg_j = cp.*sin(phi).*cos(theta); 

elseif j==2 

vg_j = cp*sin(phi).*sin(theta); 

elseif j==3 

vg_j = cp*cos(phi); 

end 

 

vgi_vgj = vg_i.*vg_j; 

tau = 1./Get_TauInv_4kij(k,theta,phi,p,T,MatParams); %10e-9/cp;%./sin(phi); 

x = hbar.*omega/(kb*T); 

f = 1./(exp(x)-1); 

 

dfdT = f.*(f+1).*x/T; 

hbaromega_dfdT = hbar.*omega.*dfdT; 

zero_logic = (x==0); %if omega = 0 

hbaromega_dfdT(zero_logic) = kb; 

dV = (k.^2.*abs(sin(phi))); 

result = prefactor.*hbaromega_dfdT.*vgi_vgj.*tau.*dV; 
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functionTauInv_tot = Get_TauInv_4kij(k,theta,phi,p,T,MatParams) 

 

%% 

ifnargin<5 

T = 300; 

end 

ifnargin<6 %if MatParams not provided in function call 

%then we need to input something...lets use properties for Si 

MatParams.vs = [3970 2770 2770]; 

MatParams.A=876e-021; %Anharmonic scattering terms 

MatParams.B=85.6; %Anharmonic scattering terms 

MatParams.F = 2e-30;  

MatParams.Lb = 300e-6; 

MatParams.xalloy = 0; 

end 

 

%% Unpackage the necessary materials parameters (stored as an object): 

vs=MatParams.vs; %Sound velocity vector [vL vT1 vT2] 

 

%phonon-phonon scattering parameters:  tau^(1) = A*T*omega^2*exp(-B/T) 

Si_A=MatParams.A_Si;  

Si_B=MatParams.B_Si;  

Ge_A=MatParams.A_Ge; 

Ge_B=MatParams.B_Ge; 

 

% phonon-impurity scattering tau^(1) = F*(1-x)*x*omega^4/vs^3;  

F=MatParams.F; 

xalloy = MatParams.xalloy; 

 

%phonon-boundary scattering tau^(1) = vs*Lb; 

Lb=MatParams.Lb; %Boundary Scattering Length 

 

%phonon-np scattering:->  complicated function of (k, theta, phi, p) 

%% Calculate the scattering times 

omega = vs(p)*k; 

TauInv_phph_Si = Si_A*T.*(omega.^2)*exp(-Si_B/T); 

TauInv_phph_Ge = Ge_A*T.*(omega.^2)*exp(-Ge_B/T); 

TauInv_phph = xalloy.*TauInv_phph_Ge+(1-xalloy).*TauInv_phph_Si; 

TauInv_alloy = F*xalloy*(1-xalloy)*(omega.^4)/(vs(p)^3); 

TauInv_boundary = vs(p)/Lb; 

TauInv_np = Get_TauInv_NP(k,phi,theta,p,MatParams); 

TauInv_tot = TauInv_phph + TauInv_alloy + TauInv_boundary + TauInv_np; 

end 
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functionTauInv_NP = Get_TauInv_NP(k,phi,theta,p,MatParams) 

 

eta_NP = MatParams.eta_NP; 

ifeta_NP==0 

TauInv_NP = zeros(size(k)); 

return 

end 

vs = MatParams.vs; 

 

%% Completely aligned 

phi_cyl = 0; 

theta_cyl = 0; 

Psi = Get_Psi(phi,theta,phi_cyl,theta_cyl); 

sigma_avg = GetSigmaCyl_Parallel(k,p,Psi,MatParams); 

 

TauInv_NP = eta_NP*vs(p).*sigma_avg; 

 

end 
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function sigma = GetSigmaCyl_Parallel(k,p,Psi,MatParams, relerr_tol) 

% this is for the whole thing in 2D (i.e. the wave travels in the plane 

% perpendicular to the axis of the cylinder) 

 

ifnargin<5 

relerr_tol = 1e-8; 

end 

 

%unpack some things 

a = MatParams.a_NP; 

vs=MatParams.vs; 

rho_1 = MatParams.rho_NP_Material; 

vs_NP = MatParams.vs_NP_Material; 

cL_1 = vs_NP(1); 

cT_1 = vs_NP(2); 

 

rho_2 = MatParams.rho; 

cL_2 = vs(1); 

cT_2 = vs(2); 

 

w = warning('off','MATLAB:nearlySingularMatrix'); 

w = warning('off','MATLAB:illConditionedMatrix'); 

w = warning('off','MATLAB:SingularMatrix'); 

 

% % ErSb<---legacy code 

% rho_1 = 17050*1000; 

% cL_1 = 3.2837e+003; 

% cT_1 = 1.4196e+003; 

 

% In0.5Ga0.5Sb <----legacy code 

% rho_2 = 5500; 

% cL_2 = 4.2895e+003; 

% cT_2 = 2.9970e+003; 

 

C11_1 = cL_1^2*rho_1; 

C44_1 = cT_1^2*rho_1; 

mu_1 = C44_1; 

lambda_1 = C11_1 - 2*mu_1; 

 

C11_2 = cL_2^2*rho_2; 

C44_2 = cT_2^2*rho_2; 

mu_2 = C44_2; 

lambda_2 = C11_2 - 2*mu_2; 
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if p==1 

wtype = 'c'; 

    phi_2 = Psi; % for longitudinal 

    psi_2 = 0; % for transverse 

elseif p==2 

wtype = 's_axial'; 

    phi_2 = 0; % for longitudinal 

    psi_2 = Psi; % for transverse 

elseif p==3 

wtype = 's_perp'; 

    phi_2 = 0; % for longitudinal 

    psi_2 = Psi; % for transverse 

else 

fprintf('p is not between 1 and 3...not a valid polarization \n') 

end 

 

[phi_1_mat,psi_1_mat,phi_2_mat,psi_2_mat]=get_angles(wtype,cL_1,cT_1,cL_2,cT_

2,phi_2,psi_2); 

ifstrcmp(wtype,'c') 

phi_mat = phi_2_mat; 

else 

phi_mat = psi_2_mat; 

end 

phi_1 = phi_1_mat(:); 

psi_1 = psi_1_mat(:); 

phi_2 = phi_2_mat(:); 

psi_2 = psi_2_mat(:); 

phi = phi_mat(:); 

 

omega_mat = vs(p)*k; 

omega_vect = omega_mat(:); 

 

QC= zeros(1,length(omega_vect)); 

QS1 = QC; 

QS2 = QC; 

Qtot = QC; 

kvect = k(:); 

 

parfornomega = 1:length(omega_vect) 

w = warning('off','MATLAB:nearlySingularMatrix'); 

w = warning('off','MATLAB:illConditionedMatrix'); 

w = warning('off','MATLAB:SingularMatrix'); 
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omega = omega_vect(nomega); 

counter_omega = nomega; 

if omega~=0 

 

%omega = 1e12; 

k_1  = omega/cL_1; 

k_2  = omega/cL_2; 

k_I  = omega/cT_1; 

k_II = omega/cT_2; 

%    a = 5e-9; 

 

x_1 = k_1*a; %internal compression wave 

x_2 = k_2*a; %external 

x_I = k_I*a; 

x_II = k_II*a; 

Ka = k_2*a*sin(phi_2(nomega)); 

 

x_1_p = x_1*cos(phi_1(nomega)); 

x_2_p = x_2*cos(phi_2(nomega)); 

x_I_p = x_I*cos(psi_1(nomega)); 

x_II_p = x_II*cos(psi_2(nomega)); 

 

 

counter = 0; 

        AA = zeros(1,200); 

        BB = AA; 

        CC = AA; 

        DD = AA; 

        EE = AA; 

        FF = AA; 

relerr=Inf; 

Qtot_temp = 0; 

        A = zeros(6,6); 

        b = zeros(6,1); 

while (relerr>relerr_tol) 

            n = counter; 

counter = counter +1; 

            [Trr_inc,Trt_inc,Trz_inc,ur_inc,ut_inc,uz_inc] = 

incident_calc_full(n,wtype,phi(nomega),x_1,x_2,x_I,x_II,mu_1,lambda_1,mu_2,lamb

da_2,omega,rho_2,k_2,k_II,a); 

 

pm_mem = pm(wtype); 
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            bh_x2p = besselh(n,x_2_p); %reused multiple times 

bh_xIIp = besselh(n,x_II_p); 

            bhp_x2p = besselh_prime(n,x_2_p); 

bhp_xIIp = besselh_prime(n,x_II_p); 

            bhdp_x2p = besselh_doubleprime(n,x_2_p); 

bhdp_xIIp = besselh_doubleprime(n,x_II_p); 

 

            bj_x1p = besselj(n,x_1_p); 

bj_xIp = besselj(n,x_I_p); 

            bjp_x1p = besselj_prime(n,x_1_p); 

bjp_xIp = besselj_prime(n,x_I_p); 

            bjdp_x1p = besselj_doubleprime(n,x_1_p); 

bjdp_xIp = besselj_doubleprime(n,x_I_p); 

 

A(1,1) = -2*x_2_p^2*(bhdp_x2p - (x_2/x_2_p)^2*(lambda_2/(2*mu_2))*bh_x2p); % 

An, Trr (external) 

A(1,2) = pm_mem*2*n*(x_II_p*bhp_xIIp-bh_xIIp); % Bn, Trr (external) 

A(1,3) = 2i*Ka./x_II.*(x_II_p).^2.*bhdp_xIIp; % Cn, Trr (external) 

A(1,4) = -mu_1/mu_2 * (-2)*x_1_p^2*(bjdp_x1p - 

(x_1/x_1_p)^2*(lambda_1/(2*mu_1))*bj_x1p); % Dn, -Trr (internal) 

A(1,5) = -mu_1/mu_2*(pm_mem*2*n*(x_I_p*bjp_xIp-bj_xIp)); %En, -Trr (internal) 

A(1,6) = -mu_1/mu_2*2i*Ka./x_I.*(x_I_p).^2.*bjdp_xIp; % Fn, -Trr (internal) 

 

A(2,1) = pm_mem*2*n*(x_2_p*bhp_x2p-bh_x2p); %An 

A(2,2) = -x_II_p^2*(2*bhdp_xIIp + bh_xIIp); 

A(2,3) = -pm_mem*2i*Ka./x_II.*n.*(x_II_p.*bhp_xIIp-bh_xIIp); % 

A(2,4) = -mu_1/mu_2*(pm_mem*2*n*(x_1_p*bjp_x1p-bj_x1p)); 

A(2,5) = -mu_1/mu_2*(-x_I_p^2*(2*bjdp_xIp + bj_xIp)); 

A(2,6) = -mu_1/mu_2.*(-pm_mem*2i*Ka./x_I.*n.*(x_I_p.*bjp_xIp-bj_xIp)); 

 

A(3,1) =              -2i*Ka*(x_2_p).*bhp_x2p; 

A(3,2) =             pm_mem*1i*Ka.*n.*bh_xIIp; 

A(3,3) =             2*x_II_p^3/x_II*(1-0.5*(x_II/x_II_p)^2)*bhp_xIIp; 

A(3,4) = -mu_1/mu_2*(-2i*Ka*(x_1_p).*bjp_x1p); 

A(3,5) = -mu_1/mu_2*(pm_mem*1i*Ka.*n.*bj_xIp); 

A(3,6) = -mu_1/mu_2*(2*x_I_p^3/x_I*(1-0.5*(x_I/x_I_p)^2)*bjp_xIp); 

 

A(4,1) = -x_2_p.*bhp_x2p; 

A(4,2) = pm_mem*n*bh_xIIp; 

A(4,3) = 1i*Ka.*x_II_p/x_II*bhp_xIIp; 

A(4,4) =  x_1_p.*bjp_x1p; 

A(4,5) = -pm_mem*n*bj_xIp; 

A(4,6) = -1i*Ka.*x_I_p/x_I*bjp_xIp; 
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A(5,1) = pm_mem*n*bh_x2p; 

A(5,2) = -x_II_p.*bhp_xIIp; 

A(5,3) = -pm_mem*1i*(Ka./x_II).*n.*bh_xIIp; 

A(5,4) = -pm_mem*n*bj_x1p; 

A(5,5) = x_I_p.*bjp_xIp; 

A(5,6) = pm_mem*1i*(Ka./x_I).*n.*bj_xIp; 

 

A(6,1) = -1i*Ka.*bh_x2p; % ** 

A(6,2) = 0; 

A(6,3) = x_II_p^2/x_II.*bh_xIIp; %** 

A(6,4) = 1i*Ka.*bj_x1p; 

A(6,5) = 0; 

A(6,6) = -x_I_p^2/x_I.*bj_xIp; 

 

%         figure(1) 

%         spy(A) 

%        nnz(A) 

b(1,1) = -Trr_inc; 

b(2,1) = -Trt_inc; 

b(3,1) = -Trz_inc; 

b(4,1) = -ur_inc; 

b(5,1) = -ut_inc; 

b(6,1) = -uz_inc; 

 

sol = A\b; 

 

AA(counter) = sol(1); 

BB(counter) = sol(2); 

CC(counter) = sol(3); 

DD(counter) = sol(4); 

EE(counter) = sol(5); 

FF(counter) = sol(6); 

 

QC(nomega)   = 2*kvect(nomega)*(abs(AA(1))^2+(AA(:))'*AA(:)); 

ifimag(phi_2(nomega))~=0 

QC(nomega)=0; 

end 

            QS1(nomega)  = 

2*kvect(nomega)*cos(psi_2(nomega))^2*(abs(BB(1))^2+(BB(:))'*BB(:)); 

            QS2(nomega)  = 

2*kvect(nomega)*cos(psi_2(nomega))^2*(abs(CC(1))^2+(CC(:))'*CC(:)); 

Qtot(nomega) = QC(nomega) + QS1(nomega) + QS2(nomega); 
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relerr = abs(Qtot(nomega) - Qtot_temp)/Qtot_temp; 

 

Qtot_temp = Qtot(nomega); 

end 

 

AA(isnan(AA))=0; 

BB(isnan(BB))=0; 

CC(isnan(CC))=0; 

else 

QC(nomega)   = 0; 

QS1(nomega)  = 0; 

QS2(nomega)  = 0; 

end 

end 

%Qtot = QC + QS1 + QS2; 

%%repackage result from vector -> matrix 

    [n,m]=size(k); 

sigma = reshape(Qtot,n,m);    

end 
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function 

[phi_1,psi_1,phi_2,psi_2]=get_angles(wtype,cL_1,cT_1,cL_2,cT_2,phi_2,psi_2) 

 

ifstrcmp(wtype,'c') 

    psi_2 = asin(cT_2/cL_2*sin(phi_2)); 

    phi_1 = asin(cL_1/cL_2*sin(phi_2)); 

    psi_1 = asin(cT_1/cL_2*sin(phi_2)); 

elseif or(strcmp(wtype,'s_axial'),strcmp(wtype,'s_perp')) 

    phi_2 = asin(cL_2/cT_2*sin(psi_2)); 

    phi_1 = asin(cL_1/cT_2*sin(psi_2)); 

    psi_1 = asin(cT_1/cT_2*sin(psi_2)); 

else 

fprintf('error:  to choose between +/- sign, need character assignment:\n') 

fprintf('options:  c (compression), s_axial (shear, axially aligned), s_perp (shear,perp 

to axis)\n') 

return 

end 
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function [Trr_inc,Trt_inc,Trz_inc,ur_inc,ut_inc,uz_inc] = 

incident_calc_full(n,wtype,phi,x_1,x_2,x_I,x_II,mu_1,lambda_1,mu_2,lambda_2,ome

ga,rho_2,k_2,k_II,a) 

%UNTITLED12 Summary of this function goes here 

%   Detailed explanation goes here 

 

Cphi = cos(phi); 

Sphi = sin(phi); 

x_2_p = x_2*Cphi; 

x_II_p = x_II*Cphi; 

k2 = x_2/a; 

kII= x_II/a; 

 

C1 = lambda_2/(2*mu_2); 

if n == 0 

en = 1; 

else 

en = 2; 

end 

 

 

ifstrcmp(wtype,'c') 

Ka = x_2*sin(phi); 

bj = besselj(n,x_2_p); 

bjp = besselj_prime(n,x_2_p); 

Trr_inc = -2*x_2_p^2*(besselj_doubleprime(n,x_2_p)-(x_2/x_2_p)^2*C1*bj);  

Trt_inc = 2*n*(x_2_p.*bjp- bj); 

Trz_inc = -2i*x_2_p*Ka*bjp; 

ur_inc = -x_2_p*bjp; 

ut_inc = n*bj; 

uz_inc = -1i*Ka*bj; 

%f = en*1i^n/(rho_2*omega^2); 

    f = en*1i^n/(1i*k2); 

elseifstrcmp(wtype,'s_perp') 

Ka = x_II*sin(phi); 

bj = besselj(n,x_II_p); 

bjp = besselj_prime(n,x_II_p); 

Trr_inc = 2i*(x_II_p).^2*Sphi*besselj_doubleprime(n,x_II_p); 

Trt_inc = 2i*Sphi*n*(x_II_p.*bjp-bj); 

Trz_inc = 2*x_II_p^3/x_II*(1-0.5*(x_II/x_II_p)^2)*bjp; 

ur_inc = 1i*Ka*x_II_p/x_II*bjp; 

ut_inc = 1i*n*Ka/x_II*bj; 

uz_inc = x_II_p^2/x_II*bj; 



 103

%f = en*1i^n/(rho_2*omega^2); 

    f = en*1i^n/(1i*kII); 

elseifstrcmp(wtype,'s_axial') 

Ka = x_II*sin(phi); 

bj = besselj(n,x_II_p); 

bjp = besselj_prime(n,x_II_p); 

Trr_inc = -2*n*(x_II_p.*bjp-bj); 

Trt_inc = -(x_II_p).^2.*(2*besselj_doubleprime(n,x_II_p)+bj); 

Trz_inc = -1i*Ka*n*bj; 

ur_inc = -n*bj; 

ut_inc = -x_II_p.*bjp; 

uz_inc = 0; 

    f = en*1i^n/(1i*kII); 

%f = en*1i^n/(rho_2*omega^2); 

else 

fprintf('error:  to choose between +/- sign, need character assignment:\n') 

fprintf('options:  c (compression), s_axial (shear, axially aligned), s_perp (shear,perp 

to axis)\n') 

return 

end 

 

Trr_inc = Trr_inc* f; 

Trt_inc = Trt_inc* f; 

Trz_inc = Trz_inc* f; 

ur_inc = ur_inc* f; 

ut_inc = ut_inc* f; 

uz_inc = uz_inc* f; 

end 
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function f = pm(wtype) 

 

ifstrcmp(wtype,'c') 

    f = 1; 

elseif or(strcmp(wtype,'s_axial'),strcmp(wtype,'s_perp')) 

    f = -1; 

else 

fprintf('error:  to choose between +/- sign, need character assignment:\n') 

fprintf('options:  c (compression), s_axial (shear, axially aligned), s_perp (shear,perp 

to axis)\n') 

return 

end 
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function [x,w]=lgwt_V4(N,a,b) 

% lgwt.m 

% 

% This script is for computing definite integrals using Legendre-Gauss  

% Quadrature. Computes the Legendre-Gauss nodes and weights  on an interval 

% [a,b] with truncation order N 

% 

% Suppose you have a continuous function f(x) which is defined on [a,b] 

% which you can evaluate at any x in [a,b]. Simply evaluate it at all of 

% the values contained in the x vector to obtain a vector f. Then compute 

% the definite integral using sum(f.*w); 

% 

% Written by Greg von Winckel - 02/25/2004 

N=N-1; 

N1=N+1; N2=N+2; 

 

xu=linspace(-1,1,N1)'; 

 

% Initial guess 

y=cos((2*(0:N)'+1)*pi/(2*N+2))+(0.27/N1)*sin(pi*xu*N/N2); 

 

% Legendre-Gauss Vandermonde Matrix 

L=zeros(N1,N2); 

 

% Derivative of LGVM 

Lp=zeros(N1,N2); 

 

% Compute the zeros of the N+1 Legendre Polynomial 

% using the recursion relation and the Newton-Raphson method 

 

y0=2; 

 

% Iterate until new points are uniformly within epsilon of old points 

while max(abs(y-y0))>eps 

 

 

L(:,1)=1; 

Lp(:,1)=0; 

 

L(:,2)=y; 

Lp(:,2)=1; 

 

for k=2:N1 



 106

        L(:,k+1)=( (2*k-1)*y.*L(:,k)-(k-1)*L(:,k-1) )/k; 

end 

 

Lp=(N2)*( L(:,N1)-y.*L(:,N2) )./(1-y.^2);    

 

    y0=y; 

    y=y0-L(:,N2)./Lp; 

 

end 

 

% Linear map from[-1,1] to [a,b] 

x=(a*(1-y)+b*(1+y))/2;       

 

% Compute the weights 

w=(b-a)./((1-y.^2).*Lp.^2)*(N2/N1)^2; 

 

 

 


