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an outcome that is an obvious result of the notation employed by the differentistor. A 
much more serious failure is obtained by attempting to take the derivative of f(x,y(x)) 
with respect to x twice. In this case, the answer is simply incorrect; all terms that 
should be generated by diffcieiitktkg 

are missing 3s DIFF apparently does not recognize that this object is a function of x. 
We conclcde tth survey of the MACSYMA differentiator by noting that for a 

majority of the standard applications one performs, the differentiation facilities are 
adequate. They are certainly not complete, however, and there are major areas of 
interest (such m so!ving differential equations through coordinate transformations) in 
which it is nontrivial to get MACSYMA to do what should be a simple procedure. 
MAClSYhlA has no trouble differentiating “known” standard functions and performs 
quite well for very complex problems (more on this later). For “unknown” functions 
of other than the simplest arguments, however, the diflerentiation facilities are not as 
good. hbICSk%IA does nct distinguish clearly between the total derivative and partial 
derivatives of a function, nor does it really have a full sense of “position,” in that if 
two arguments are the same then the derivatives with respect to those arguments are 
indistinguishable. In some cmes, certain of thme problems can be bypassed by devious 
means, but then care niust be taken as the results may not always be correct. 

3. DIFFERENTSATION IN MAPLE 
The diff function is used to generate derivatives in MAPLE. For example, 

d iff( f( x ,Y 1 ,x ,Y ,Y 1 ; 
prod u ces 

As in MACSWkA, the arguments of f are listed explicitly; otherwise, diff will mume f 
is a simple variable. Specifying diff with more than two arguments is simply a short- 
hand notation for making nested applications of this function. This is fine if functions 

I .I 

.. 

.. ,- 
.. .. .. 
:. E 

4. 

.. .. .. 
.- 



are being diEerent!ated that have known derivatives, but if the fiinctionv are 
“unknown” to MAF’LE, this will not be so nice. One immediate observation is that 
mhed partial deriv itives will not be canonically ordered with this representation so 
that 

diE(f(x,y),x,y) - dig1f(x7y),y J); 
will not further simplify. Nor can this problem be easily overcome as one cannot 
MAPLE give information about composition properties of operators. 

Now, consider taking derivatives of “unknown” functious with non-atomic argu- 
ments. Suppose y is a function of x. Attempting 

difUf(x,y(x)),x); 

will return the form unchanged, producing the ncun form of the derivative as was tbe 
case with hlACSIW. Again, exactly like MACSYMA, WI,E will do some simple 
lexical analysis when differentiation is attempted on f(x,y(x)), so that it will return zero 
unless an attempt is made to digwentiate with respect to x (or the simple variables y 
or f). We note that in hWLE, one cannot differentiate with respect to a non-atomic 
variable (like y(x)). 

There is a mechanism in MAPLE for defining known derivatives of unknown 
functions (like the GRADEF function does in MACSkhlA). ThE3 mechanism involves 
creating a procedure defining the derivative of an “unknown” functloc and then 
assigning this procedure to a special variable which the diff function will look for each 
time it attempts to take a derivative of thls function. For example, 

‘diff/f:= proc(x,y,t) x*y*diff(x,t) + difl(y,t) end; 
will define the derivative of f(x,y) with respect to t (this declaration is equivalent to 
tbe example presented for GRQDEF). We tried to circumvcnt the lack of MAPLE’S 
application of the chain rule to the unknown function y with the declaration 

‘diff/y‘:= proc(x,t,) ’diff(y(x),x)’*dirr(;c,t) end; 
which WLE translates into 

dif f/y := proc (x, t) (‘dlff (y(args[l!) .args[l]) ’) 
*dlff (args[l] ,args[2]) end. 

Now, instead of returning the unsinplified noun form, 

diqY(x-2),x); 
yields 

2 2 
2 dlff(y(x ), x ) x 

which is correct. However, attempting to perform a second derivntive will produce the 
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message “Error, wrcng number (or type) of parameters in function di&”. This is 
caused by MAPLE attempting to evaluate the derivative of y(z2) with rt-pect to z2. 
MAPLE will refuse to allow non-atomic variables of differentiation unless diff and its 
arguments are enclosed by quotes. One can attempt to get around this problem by 
declaring (in a fresh XIAPPLE - redefining the definition of a derivative a second time did not work in our version of the program) 

‘difl/y‘:= proc(x,t) ”diff(y(x),x)”*dif€(x,t) end;. 

Thus, executing 

diff(y( x 21,~); 
will now produce 

.~ . .. .. .. ,. . .. 

.a 

.- 
’.. I, 

.. . .. 

2 2 
2 (*diff(y(x ), x )*) x t- 

and taking a second derivative will yield 
, . ‘._ 

2 2 2 2 
2 diff(dlff(y(x ), x ), x) x + 2 diff(y(x ), x ). 

.. .. .-. 
,-. :‘. Of course, one cannot take a third derivative without redefining ‘diffjy’ once again. 

MAPLE will strip off one level of quotes every the diff is applied to an expression. 
This last result shows that diff really does not know how to differentiate the derivative 
of y(z2) with respect to z2 and so our circumlocutions have not really accomplished 
more than surface changes in XIAPLiTs differentiator. We note that executing 

‘diff/r:= proc(x,y,t) “di!T(f(x,y),x)”*difT(x,t)+ 
”diff( f(x,y),y)”*diff(y,t) end; 

followed by 

di!T( f( t ,t),t); 
produces the sL!-ne kind of result that we saw with MACSYMA. 

From our discussion, oue c3n see that the MAPLE differentiator is a relatively 
unsopbkticated processor when applied to functions tkat nre “unknown” to the pack- 
age. Like MACSYMA, MAPLE does not distinguish clearly between the totnl deriva- 
tive and partial derivatives of a function. The only reason we did not get into trouble 
because of this is because MAPLE is not able to differentiate derivatives of “unknown” 
functions, producing only the unsimplificd noun fcrms. MAPLE’S reprcsentntion of 
multiple derivatives as nmted references to diff is a major trouble spot, precluding nny 
easy solation to putting mixed psrtisl derivatives into any kind of cnnonical form. 
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4. DIFFERENTJATION IN SMP 
In SMP, the function D is used to generate derivatives. For example, 

D[f[X7YI,X,Y 1YI 
-< ~ 

produces 

- I' D[f[#1,#2] ,<#la 1,~),{#2.2,~)] - -. 
The arguments of f are listed explicitly; otherwise, as was the case with hL4CSYMA 
and MAPLE, L) will assume f is a simp!e variable. The notation means the derivative 
of f with respect to its first argument once and with respect to its second argument 
twice, where the arguments we evaluated at x and y, respectively. This is mathemati- 
call? correct and the results produced by D are true partial derivatives. Trying our 
standard examples, we find that 

j 

j 
1 i 

\ r D[f[x,y[x]l ,XI 
e 

f 

produces 

I D[f [#l,y[x]] .(#1.1.~31 + D[f [x.#2j .C#2,l.y[x])l D[y[#13 ,<#1,1#~31 
t 

t 

i 

and 

+ 3[f [#l,t] ,<#l,l,tlj 
I 

D[f [t,#2] .<#2,1et)1 
I 

There is no need to make SMP deceive itself (as we tried to do with MACSYMA and 
MAPLE) in order for it to produce fully differentiated results, 

'\ 

The notation employed by SMP (both on input and output), however, is rather 
unusual. Using brackets instead of parentheses to surround thh arguments of functions 
(the SMP mangal [3] calls f a "projector" and its arguments x'and y "filters") is quite 
unnatural to most people working in science and engineering. Moreover, the output 
form of D is fairly lengthy and becomes rather unreadable for expressions containing 
many or complex partial derivatives. The SMP library does contnin two specinlizrd 
derivative formatters. Either of these formatters (contained in the SklF' library files 
XDifll'Itl and ,XDilTPR2) can simply be loaded in at some point and is supposed to 
cause all subsequent derivatives to take on a new spccific format. We found that for 
our first example, the notation did not change after we loaded in either file. However, 
the new notation did appear when we tried our second example. The notation pro- 
duced by XDifTI'R1 for 
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Iooked like 

d Y[#ll I 
I 

d #1 I 
_------ 

#1 = x 

while loading in XDifll'RS produced notation that looked like 

The first notation closely resembles the output notation used by AWALUE assign- 
ments in MACSYMA, while the second is very similar to MACSYMA's notation for 
derivatives of functions with iinplicit argumtnts. As in MCSMMA, this latter nota- 
tion for derivatives of functions with non-3omic arguments does not look so well. For 
example, 

Dk[X " 21 ,XI 
will produce 

Now, consider 

D[f[X,YI ,Y ,X,YJ 
which yields 

The derivatives with respect to y are collected together; however, the ordering of the 
arguments is not the same as for D[f[x,y],x,y,y] which was presented earlier. SMP does 
not put derivatives into a complete canonical form, so mixed partial derivatives will 
not. necessarily automatic,zlly simplify. In this respect, SMP takes a position midway 
between MACSYMA and MAPLE. The former completely canonicalizes all derivatives 
while the latter does not (and probably cannot) do any sort of derivative canonicnliza- 
tion as it is presently written. There is a function (Dcan) in the SMP library file 
SDCanon which will canonicalize mixed partial derivatives. This seems 3 rather 
clumsy process, however, and we would prefer that all derivatives be completely 
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canonicalized automatically with perhaps a flag to completely inhibit this process for 
the rare mses when mixed partial derivatives do not commute. SMP does not com- 
pletely implement either of these extremes. 

ex amp 1 e, 
One can take the "total derivative" of 3 function using the operator Dt. For 

Dtlf[X,Yll 
yields 

This operator produces results exactly comparable to that produced by MACSYMA's 
DIFF function when applied directly to f(x,y) with no other arguments (forming the 
"total differential" of f). Note that the Dt operator is a more generzl tool than 
MACS'fMA's DEL function. Dt is a true operator, while DEL is merely a place holder 
function which cannot simplify its arguments. 

Interestingly, D can take derivatives with respect to non-atomic arguments. For 
example, 

D [ g[x 21 ,x A 21 
produces 

In general, 

D!:IxI dxll 
will yield 

D[f [#l] .C#l,l,x3l ____------------- 
D [g [#I] e (#I, 1 ex)] 

Although this facility will probably not be used very often, it is nice to know that 
SMP has implemented such a capability. 

ShP, like both MACSYMA and MAPLE, also has the ability to define the 
known derivatives of unknown functions. This process is performed by making an 
assignment directly to the relevant D or Dt reference. For example, the ShP 
equivalent of the MACSYMA and MAPLE examples that we have demonstrated for 
this operation is 

D[ f [ $x,$ y] ,$XI : $x* $ y 
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This will define the derivative of f with respect to its first argument as the product of 
its two arguments, and 1 to be the derivative of f with respect to its second argument, 
The $x and $y are generic symbols and must be used rather than just x and y for the 
assignments to be defined properly (D[f[x,y],x]: x*y will be only applied when the argu- 
mmts of f are literally x and y). This mechanism can also be used to conveniently 
define the derivative of a function at a point (Le. a boundary condition). Thus, SMP 
can create the same ddhitions as MACSk?tlA's GWEF and ATVALUE functions 
by simply using its standard mechanism for assigning values to functions: in this case, 
by assigning values to the derivative operators. The only complaint is that one has to 
be careful in using the appropriate syntax (x versus $x versus $$x [$%x is a multi- 
generic symbol representing an arbitrary sequence of expressions as opposed to $x 
which just represents a single arbitrary expression]). 

SMP seems to have avoided some of the problems of its predecessors and care 
fully distinguishes total derivatives from partial derivatives. This is very important. 
The ability to make assignments directly to the derivative operaton is a nice facility. 
However, tbe notation used by SMP, although mathematically correct, is very non- 
standard. The output can becomn rather cumbersome and the current capability for 
displaying alteiii&lve notations is incomplete. SMP does not completely canonicalize 
its derivatives automatkally, resulting in the annoying need to load in and apply a 
function in order to obtain complete simplificatio~s of expressions containing mixed 
partial derivatives. 

5. DIRECT TIMING COMPARISONS 
To further compare the differentiation facilities 13 hlACSYhlA, WLE and 

SAP, %e ran several timing comparisons on the thrw codes. We chose four large but 
simpre calculations to run on the three packages, These calculations were designed to 
ex3:nine how quickly MACSkT;2fA, MAPLE and ShfP could differentiate and simplify a 
large general expression, a large pdynomial expression and a large rational expression. 

Tables i through 4 (at the end of this section) show the results of these calcula- 
tions. For each problem, we ran four calculations with hlACSYhlA, one with hWLE 
and five with S3P. Consider Table 1. We took the quantity (~-tl)~', expanded it, 
differentiated the resulting expression and then tried to factor the result (and hopefully 
get SO( z+i)"). The table shows how inany seconds each operation took under various 
conditions (we ran all these examples under Unix on a Vllx 11/780). The fint column 
displays the time MACSYMA used for the least sophisticated applications of these 
operations. We simply did an EXF'AN9, followed by a DIFF, followed by a FACTOR, 
allowing normal display of the results at each step (indicated by the label "Disp" at 
the top of the column). We theu repeated this sequence of operations, except that this 
time we supprcsscd all print out (indicated by the label "NO D"). These results are 
shown in the second column. Notice that MACSYMA took a little less time since it 
did not need to format for display the rather lengthy expressions it produced. The 
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next two columns show the results when we used RATEXPAND and RATDIFF in 
place of EXPAND and DIFF. These two functions are part of MACSYMA’s rational 
expression package. In this package, advantage is taken of a special compact form 
(called CRE - Canonical Rational Expression) that can be used to represent rational expressions. Functions that operate on expressions in CRE form are typically much 
faster than their counterparts that operate on genera! expressions. Expanded polyne 
mials turn out to be particularly ideaf fGr representing in CRE form. 

The fifth column of Table 1 shows the corresponding times for MAPLE. We 
only ran one case (using the WLE functions expand, difl and factor) since we could 
not find a way from the MAPLE manual to suppress the output of a calculation. 
hWLE is quite fast except for factoring. We note that the MAPLE manual [2] says 
that work 3n the factor function had not been completed at the time dl publication of 
the manual. 

The last five columns show results from SMP. The SMP functions for expand- 
ing, differentiating and factoring are Ex, D and Fac, respectively. SMP normally 
works with finite precision real numbers unlike hL4CSYMA and MAPLE which will 
normally use infinite precision integers. To be fair, we forced SMP to also work with 
irifinite precision integers (by wing the B function) for some of the calculations. The 
times used in applying Ex, D and Fac to B[(x+1)^50] are shown in columns 6 and 7, 
where we again displayed all results at each step in the first case and suppressed all 
the output in the second. The last three calculations allowed SW to use its normal 
finite precision arithmetic. In the first of these real number calculations (column 8), we 
forced Sh4P to display its results as integers. We did this by applying B to the results 
of each intermediate step except the last (we did not use these integer expressions for 
any calculations, but only produced them for display purposes). The times shown thus 
include the time needed to do a B[ ...I of the real number expression (which was not 
displayed). For this example, SMP lost no accuracy by using real numbers as we 
found from a few quick checks of the displayed integers. In column 9 are the results 
for the same case, except that here we jet SMP display the numbers in their normal 
format (scientific notation with 6 significant digits displayed). This made the calcula- 
tions go much faster as SMP apparently spent a fair amount of time formatting the 
integer expressions. Fac did not work on the real number expressions but did work on 
integer expressions, so the time listed for the last calculation includes the time needed 
to convert the previcus real number expression into integer format (using B once 
again). The last column in the table shows the times that were used by SMP when 
none of the results of the calculations were displayed. 

Table 2 shows the MACSYMA, kWLE and SAG’ results for performing a simi- 
lar set of calculations with (~+1)~’. The dashes in the “Factor” row under SMP indi- 
cate that SW did not complete the calculations, but instead terminated abnormally 
with a message to the effect that it had run out of memory. All three packages had 
comparab?e minimum differentiating times, while WLE was slower expanding than 
was h4ACSYMA or SMP at their fastest (of course, display time is included in the 
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MAPLE time, but the display was a simple linear output and so should not be too 
time consuming). SMP is ,onsistently slower than MACSYMA or MAPLE when work- 
ing \vith integer arithmetic. Our version of Sh4P also had a bug which caused the 
integer arithmetic in the expansion to be done only in finite precision. The coeffcient 
of z40 was correct only through the first 16 digits. This problem would have caused 
the factoring to fail in any case, even if SMP had not first run out of memory. 

The times required to expand and differentiate (cos2z+sin2z)M by the three syrn- 
bolic mathematics programs are shown in Table 3. The dmhes under the h4ACSYM.A 
“Rat” columns indicate that RATDIFF will not operate on general functions of z [like 
cos z and sin z), which is reasonable. RATDIFF was designed for taking derivativss 
of rational functions of z only. We had difficulties with the integer arithmetic in SMP 
on this problem. Unlike the previous two problems, B[(Cos[x]’2+Sin[x]’2)’50] (and 
other permutations) would not force SMP to work with integers. We finally tried 
B[2*(Cos[x]’2+Sin[x]*2)’50] asd this did work. Apparently, taking B[ ...I of an expres- 
sion will only force future integer arithmetic if the expression csntains an integer 
coefllcient (other than 0 or 1). Using this trick, we made ShW perform the expsnsion. 
We encountered a second problem when we differentiated the resulting expression. 
ShP successfully performed the differentiation, but then it refused to combine the 
resulting terms and produce zero. It was clear from the “Disp” case that all the terms 
canceled, but no matter what simplification function we tried, SMP would not collapse 
the expression to zero. It is possible that we missed something in the Sh4P refwence 
manual, but we would normally call this failure a bug (e the simplification should 
have been done automatically), and so we have starred the times to indicate that the 
final answer was incomplete. 

The final table (Table 4) shows the times that it took MACSYUA, MAPLE and 
Sh4P to differentiate the given rational expression. All of the differentiations produced 
very large expressions except for the MTDIFF cases. MACSYMA’s MTDIFF pre 
duced the very nice form consisting of the ratio of two fully expanded polynomials. 
This form was nice since it was so compact. To reduce the expressions produced by 
the other digerentiation operations into such a nice compact form would have required 
considerable simplification. Thus, the times shown for this problem do not give a com- 
plete picture of the situation. 

The final results are mixed. For some problems, MACSYhL4 was the fastest 
code (when used optimally), V. hile for others, MAPLE or SMP was faster. In general, 
it was faster not to display the results of a calculation, especially if the results were 
very lengthy. This difference in times was particularly dramatic with SMP, which 
seemed to spend a considerable time formatting the output of infinite precision integer 
calculations. Factoring was very slow in MAPLE, but MAPLE always succeeded in 
our sample problems while SMP ran out of memory on one occasion, SMP does not 
appear to be able to handle as large problems as MACSYMA and MAPLE (at least for 
the versions we were given). MACSYMA and MAPLE will normally work in infinite 
precision integer arithmetic, while SMP will normally work in finite precision real 
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arithnetic (about 16 digits of accuracy on a VAX). If the user is sure that any 
integers generated in a calculation will be within the accuracy of SMP's real arithmetic 
then this is a good deal, as SMP then will generally be as fast or faster thali 
UACSYhW or WLE for operations like expansion and differentiation. Howeve;, if 
the user is not careful, he may lose accuracy unknowingly in SMP if his integers 
become too large. This can be a rather dangerous feature for an unsuspecting user 
who might be assuming that analytical solution techniques will normally be applied 
with infinite precision integer arithmetic. If the user attempts to use integer arith- 
mctic in SMP, he will Gnd that. it is often slower than the integer arithmetic in 
MACSYhIA and MPLPLE s well as more likely to have bugs in its implementation (at 
least right now). Finally. the rational expression package in MACSYMA seems to be 
quite good. MAF'LE and SMP have the nice feature that the user does not have to be 
as sophisticated as in hlACSYU4 in order to get fast differentiation, but ther, their 
differentiatom do not diflerentiate rational expressions in quite so compatt a way as 
h4ACSYhilA's MTDIFF. 

Table 1 
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A4ACSYM.A MAPLE SMP 
- 

Rat Rat 

Disp No D Disp NOD 

Diff 28 16 7 4 4 
I 

ir - 

II 
13 12 
r;[ (z-2n+l)/ n (2-24 

0. SIMILARITY SOLUTIONS OF THE HEAT' EQUATION 
The most important analytic method for solving partial differential equations k 

separation o€ variables. The next most important analytic method is no doubt the 
similarity procedure [5]. It 13 worth noting that, while separation of vaiiables works 
only for linear equations, the similarity procedcre will work for both linear and non- 
linear equations. The first part of the similarity procedure derives a similarity for- for 
the proposed solution of the given differential equation. We will not discuss this part 
of the technique here. After the similarity lnrm is found, it is substituted into the 
differential equation. It is always possible to show [when the origirial equation has two 
independent variables) that the unknown function in the similarity solution satisfies an 
ordinary differential equation. The solution of this ordinary differential equation, fal- 
lowed by a transformation back to the original variables, rwuit!i in a special solution of 
the original differential equrhion. 

We will now present an exLmple of applying the similarity technique tosoiving 
the two-dimensional heat equation. We ran this problem on both MACSYMA and 
SMP (MAPLE is not sophisticated enough right now to do these kinds of problems). 
MACSYh4A took 28 seconds to complete the solution (4 seconds of this time was spent 
loading the @DE package), while SivfP took 87 seconds performing this calculation (45 
seconds was spent here loading the ODE package). The input and output from the 
two packages for this example are shown below. I 
0.1 MACSYMA Demonstration 

To be able to do this problem in MACSYMA, it was necessary to be clever. We 
could have used our trick with GRAIDEF, but we found it more convenient to make 
use of a modification to the DIFF function that, we have made [4]. This modiscation, 
invoked by loading in a file and setting the variable FDIFF to TRC'E, allows DIFF to 

-. ........ .............................. ..__._ 



freely apply the chain ride to "unknown" functions with explicit arguments. Deriva- 
tives with respect to ai-guments are indicated by subscripts. Thus, 

DIFF(f(x,Y(x)),x); 
will now produce 

where the subscripts indicate derivatives with respect to the corresponding arguments. 
A new function, REWRITE, has also been developed, which when applied to the above 
expression by 

REWRITE( expression,f( x,y ),y( x)); 
will convert the, expression into MACSYMA's normal derivative notation [in this case, 
the result will be the same as that produced from DEPEhTDS[f,[x,y],y,x]; DIFF(f,x);). 

(cl) LOAD (dif f) $ 
/* Load in our modifications to DIFF */ 

diff.1 being loaded. 
[load dif f. 11 

(c2) fdi f f : true$ 
/* Make b??CSYMA use our version of DIFF */ 

/* This is the similarity form of the pf-oposed solution */ 
(c3) s: f (x/sqrt (t) ) /sqrt (t) ; 
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(c5) SUBST(z*qrt(t) ,x,%) ; 
/* Change to the similarity variable z = x/sqrt(t) */ 

(c6) RATSIMP (%) ; 

(c7) MULTTHRU (%. denom (lhs (%) 1 ) ; 
- f(2) - 2 f (2) - 2 f (2) = 0 1,. 1 1 

(c8) eqn: REWRITE (%. f (2) ) ; /* Rewrite the differential equation in MACSYMA's normal notation */ 

- -_~ 
(c9) LOAD (ode2) $ 
/* Load in the the ODE solver */ 

/usr/mac/share/ode2.1 being loaded. 
[load /usr/mac/share/ode2.1] 

(c10) ODE2 (eqn, f ,z) ; 
/* Now solve the ordinary differential equation */ 



34 9 

If we set k, = 0 in the previous expression and k2 = - we will obtain the 
26' 

usual fundamental solution of the heat equation. 

6.2 SMP Demonstration 
We did not need to modify SMP in order to do this calculation. There arc a few 

points to note here, though. We did not work with an equation from the start because 
some of the ShlP fiinctions seemed only to work correctly on expressions and not on 
equations. The SMP ODE package required a very special form for the differential 
equation, so it was necessary to convert our equatioo into this form before applying 
the solver. Finally, the integral that produces the error function had to be defined, 
but it was reasonabiy easy for us to set up the definition as can be seen. 

SMP 1.3.7 
Mon May 7 22:32:11 1984 

#I [I] : : s: f [x/Sqrt [t]]/Sqrt [t] 
/* This is the similarity form of tho proposed solutlon */ 

X 
f [----I 
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#I [2] : : expl: B[s.t] - D[s.x.x] /* This is the heat equation */ 

X x 

#I[3]:: e-xp2: Slexp1.x --> z*Sqrt[t]] 
/* Change to the similarity variable z = x/Sqrt[t] */ 

#I [4] :: exp3: Expumpat[2*exp2]]] 

#O [4] : -f [z] - 2D[f [#1] .(#1.2,2)] - z D[f [#1] ,{#l,l,z)] 
#I [SI : : exp4: S[exp3, f [z] --> y, \ 

D[f [z] .z] --> Dt[y.x]. \ 
C[f [z] .z.z] --> Dt[y.x.x] ,\ 
z --> x] 

/* Conver': into a form acceptable t@ the ODE solver */ 

#O [5] : -y - 2Dt[y,~,{x,l,x)] - x Dt[y,x] 
#I [6] : : eqn: exp4 = 0 /* Make the expression Into an equation for the ODE solver */ 

#G[6I: 0 = Y + 2Dt[y,x.<x,I,~)] + x Dt[y,x] 

#I[7]:: XOde 
/* Load in che ODE solver */ 
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#I [8] : : exp5: Cdesol [eqn] 
/* Now solve the ordinary differential eqyation */ 

O.D.E. Solver 

equation : 0 = y + 2Dt[y,x,<x,l,x)] + x Dt[y,x] 

1) order = 2 
2) type = linear: a[x] y"+b[x] y'+c[x] ~ f [ x ]  
3) homogeneous: f[x] = 0 
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#I[ll]:: cxp6 
/* Apply the above definition to the solution of the ODE */ 



' 2  

.. , , 

T h e  S'MP arbitrary constants #kl and #k2 correspond to the hfACSYMA arbi- ' 
trary constants %k2 and %k1/2, respectively. 

7. A PROPOSED NOTATION 
L 

I c 
E 

L- . 

r- e 

i 

I 
i r- 
-* 

W e  propose that the best form of notation for differentiation that can be used by 
a symbol manipulator is the farm used by many of the modern books on partial 
differential equations. In these books, differentiation is a linear mapping on 3 space of 
smooth functions tcr a space of smooth functions. This is meant to include vector 
valued multivariate functions. Thus, differen tiation should operate on a space of 
smooth functions which are mappings of n dimensional space into m dimensional 
space, where n and m are positive integer parameters. T h e  paper of Steiaberg and 
Roache presented at this meeting [S] discusses the extension of these ideas to infinite 
dimensional spaces. We will briefly describe the scalar valued case m = 1. T h e  other 
cases are an obvious extension of this case. 

In the scalar case, one will often need to take 3 partial derivative of B function 
y = f(2) with respect to one of the variables z;, where 2 = (z,, - ,zn) and 
I 5 i 5 n. Such a derivative is written 

8; J 
and is defined mathematically as a limit. Note that the variables f in tie expression 
y =I(?) are universally quantified; that is, any point in n-dimensional Euclidean 
space m a y  be substituted for 3. Thus, as a computation proceeds, the labels for these 
variables m a y  change, a point that gives rise to much confusion. However, w e  may 
think of zi aa being a standard default label for the i-th argument of J .  Then, w e  can 
use the notation 

a .  

I 
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with less chance of confusion. 

often not clear in an expression like 
This confusion is a result of the atuses of notation that commonly occur. It is 

=&at, the notation means exactly, either to the user or to the symbol maqipulator! Is g 
evaluated at its arguments and then differentiatd, or is g ditferentiated first and then 
evaluated at the point given by its argtmients? Also, y is treated as an independent 
variable (with the assumed meaning of the swond coordinate in z-y space) in one 
place and as the label of a dependent function in another place (as also happens with 
the commonly written defmition y = y(z)). T h e  ambiguities in this expression ma;: 
be resolved in differect. ways by different people (and different symbol manipulators). 
W e  prefer to let the user resolve ambiguities as they occur rather than the symbol 
manipulator. 

To evaluate a derivati-{e at some point, one would now write 

or in the slightly more confusing form 

T h e  fact that the arguments are centered at the fraction bar means that the 
differentiation is performed before the evaluation at ii or f. 

O n e  more thing is needed. Assume that an expression erpr is giwn that depends 
on the variables 3 in Some more or less complicated way. Then 

TotalDi$$ ( ezpr,z;) 

means thc total derivative of ezpr with respect to z; (Le. the chain rule is applied 
repeatedly in ezjr until all explicit dependencies of 2; have bcen taken care of). For 
functions with known! derivatives there is no problem, and for general functions the 
above notation is used. 

Our favorite example would appear as follows: 

Total~i$s(j(~,Y(zl),~)Z=. 

(a,! k3W) + I(%! )(w(2))1 Wl!W)l ' 
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If it is assumed that the default notation for the arguments of j is given by f(z,g) 
and for y i3 given by ~(z), then the above can be presented as 

Note that in the previous expression, y is being used as both a function name and a 
variable name. This type of confusion can only lead to disaster if all the program 
knows about is this last expression. However, this expression is only a displayed form 
of an expression where ;he confusion does not occur! 

W e  have not tried to present a complete solution to all differentiation problems. 
W e  trave merely indicated what w e  think is the best way to proceed. W e  do believe 
that this approach will wlve all of the problems that w e  know about. Note that S M P  
is the only manipulator that w e  have studied that comes close to what w e  recommend. 

8. SUMMARY 

W e  have examined most of the major general symbolic mathematics packages 
that are currently zvailable (we were unable to get a version of REDUCE running on 
our machine in time to include in this paper). None of these packages has imple- 
mented derivative operations in a completely ideal manner. All of the packages that 
w e  have examined (hMCSk’MA, MAPLE and SMP) will do an excellent job pdorming 
operations: involving derivatives up through the equivalent of about university sophe 
more level. T h e  speeds of these packages are comparable for the problems that are 
typical 3t this level. T h e  only major drawback is the functional notation used by 
SMP, which is non-standard and would probably be confusing to many university 
sophomore students. For more advanced applications, the packages start to diverge. 
W F L E  and MACSYILM do not really understand the difference between total and 
partial derivatives. This is a serious defect that it makes it quite difficult to do certain 
kinds of problems. MAZ’LE and ShlP do not readily recognize the equivalence of vari- 
ous forms of mixed partial derivatives. 

We conclude with some general remarks about eoeh cf the symbolic mathematics 
packages discussed in this paper and some considerations about what kind of deriva- 
tive notation is best for these programs. MAC‘S’YMA is a “mature” code. Its integer 
arithmetic is fast and it has many sophisticated packages. It cannot solve the heat 
equation. though, without the user modifying or tricking the code. Our modifications 
to the DIFF function were really. relatively minor, so there is no reason why 
h/rACSE’MA cannot be made generally more intelligent about diffe;entiation. This has 
just not been done, however (at least, not through the time of the last publication of 
the h;lACSYMA manual). A W L @  is not really very sophisticated yet. It is hard to do 
problems beyond the sophomore level with this package. S M P  is not 3 “mature” code. 
It has a nurnber oi bugs right now. S o m e  of its calculations involving integer arith- 
metic can be slow compared with MACSYMA and MAPLE. SI” does, however, do 



its differential calculus fairly correctly (it could solve the heat equation, for example, 
without resorting to new coding or non-obvious circumlocutions). Finally, w e  propose 
that the bmt form of notation to be used by a symbol manipulator for derivatives is 
one in which the notation is unambiguous as represented internally in the program, 
and which can be used to produce various forms of "natural" looking output for the 
user to read. In this notation, the dependent and independent variables must be care- 
fully distinguished. Also, the order of operations (differentiation versus function argu- 
ment evaluation) should always be made very clear. 
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Abstract 

An alternate top-level €or MACSYMA has been created that is 

expected to be nore natural for use in manipulating large expres- 

sions, which include derivatives. The features include a different 

default semantics using nathematical variables (i.e., variables h a c  

are not evaluated, except by explicit commands), instead of program- 

ming variables. Dependencies of variables are declared automati- 

cally when the user writes an assignment statement, thereby making 

the chain rule easier to use. Finally, a new infinite evaluatioii 

function has been written to do "bottom-up" infinite evaluation, 

which is generally more efficient. 

It is expected that these features, when combined together, 

will provide a more natural environment for a naive user with no 

previous computer algebra experience. It may also have special 

advantages for the user who has a large expression, possibly 

involving derivatives, and wishes to get quick numerical answers 

without extensive programming. 
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1. DISCUSSION 

The work was motivated by the following equations encountered by the 

author in a physics prLhlem concerning superlattices. [I] 

F: COSH(2*Kl*A)*COS(2*K2*E)+(EPS/2)*SINH(2*Kl*A)*SIN(2*K2*~~ : 
EPS: Kl/K2-KZ/K1 : 
Kl: SQRT(Z*MO*(VO-E))/HBAR : 
K2: SQRT((2*Mz/EC)*(E**2+E*EG))/HBAR ; 

DEPENDS(lF,’[Kl,K2,EPS],’EPS,’[Kl,K2],’[Kl,K2],E) : 

02: DIFF(F,E,Z),INFEVAL,DIFF ; /* assumes parameters 
such as mO were previously defined */ 

E: 1.G ; 

32, INFEVAL , DIFF ,NUMER : 

It was required to differentiate F with respect to E, twice, and then plug in 

values for all constants. Parameters such as 2*M2*EG could not be pre-com- 

puted, since the values of the parameters changed from one case to the next. 

The second derivative might be evaluated with pencil, paper, and a calculator 

in about fifteen minutes. Surprisingly, MACSYMA also takes about fifteen 

minutes of CPU time on a VAA 780, with the above brute-force evaluation using 

a top-down evaluation scheme. Alternatively, one cnuid spend a half hour or 

more programming MACSYMA to do a bottom-up evaluation for this equation, 

whereupon it would numerically evaluate the second derivative in under a 

minute. 

As part of the alternate toplevel, it was hoped to be able to automati- 

cally handle such problems in the following simple manner. 

F: COSH(2*Kl*A)*COS(2*K2*E)+(EPS/2)*SINH(2*Kl*A)*SIN(2*K2*B) : 
~ 1 :  SQRT(~*MO*(VO-E))/HBAR ; 

K2: SQRT((2*MZ/EG)*(E**2+EhEG))/HBAR : 
EPS: Kl/K2-K2/Kl ; 

DF: DIFF(F,E,Z) ; 

E: 1.0 ; 

. : .. . . . . . .  ......... . .  
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BOTTOX-UP-INFEVAL(DF); /* assumes parameters such as m0 were 
previously defined */ 

Instead of writing a separate package vith special commands, it was hoped to 

define a different semaiitics in which the above problem could be solved 

quickly, and yet in a mathematically natural way, such as one of the above. 

The first set of commands, above, was already fairly natural, but tock too 

much CPU time. Changing syntax, or providing a special-purpose package was 

felt to be more likely 'io make such an evaluation less natural. So, it was 

decided to change the semantics of MACSYMA. 

One difference in the two examples above, is that the first one will 

behave differeritly according to the order in which are listed the equations 

for F, EPS, K1, a d  K2. This was.because MACSYMA's current semantics specify 

that if a variable is bound, its value is used, but if the variable is 

unbound, its name is used as the value. (1.e.: Unbound variables are no!. eval- 

uated.) This evalua,tion scheme is reminiscenc of LISP, the language in which 

MACSYMA was written. However, with this scheme, we lose the non-procedural 

statement of problems used by many mathematicTans. The order in which the 

equations are stated affects whether values are substituted for variables, and 

hence affects ' the steps necessary for numerical evaluation. In order to 

Frevent just' this problem, people often liberally use quotes to avoid prema- 

i ture evaluation of variables. 
+,I 

It was felt that this behavior of the variables was not natural to the 

We shall refer to the type of variables currently used 

in MACSYKA as programming variables. [Z] Tht use of such variables werc 

' presumably motivated by the MACSYMA designers in analogy wi'lh LISP, and their 
implicit desire to use MACSYMA more as a math programming language than a 

Innatural language" math system. 

- wcrking mathematician. r .  
i 

I In line with the second goal of a "natural" system, we chose to consider 

t all variables as mathematical variables, by default. A mathematic21 variable 
would never be evaluated (replaced by its value), unless explicitly evaluated 

with the evaluation function "VAL()". The user has the freedom to declare 

variables to be programming variables. In the future, certain syntactic 

+ constructs may automatically determine s x h  a declaration. (For example, l'?'' 

i in COP. 1:1 THRU 10 ...;>. 
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To implement the alternate top level for MACSYMA, we wrote a routine 

called immediately after the built-in Macsyma parser. This routine puts a 

BI 3CK coriunand around the resulting LISP expression, which declares all vari- 
ables to be lccal. This has the effect of pushing their values onto a stack. 

..ence, in the local context, the'variables appear to be unbound, and are not 

evaluated, in keeping with our ide-as on mathematical 'variables. 

-. 

Naturally, this required care'. that in certain constructs, such as X:Y;, 

the variable ic should not be declared local. Cltherwise, the value of X would 
be lost in returning to the global context. In handling such special cases, 

it was also found convenient for each MACSYMA assignment statement of the form 

%:EXPRESSION; tilped by the user, to have the alternate toplevel automatically 

declare to Hacsyma the following information. 

REMOVE (si, DEPENDS ) ; 
DEPENDS ( X I  LISTOFVARS (EXPRESSION) ) ; 

The effect of this addition is to automatically record the dependencles 

Df the varlables as they are stated, thereby allowing the chain rule to work 

automatically without explicit deciarations by the user. Since only the value 

of a variable declared local to a BLOCK statement is pushkd onto a stack, and 

not its praperties such as DEPENDS, this idea nicely complfments our implemen- 

tation qf mathematical variables. The automatic dependendies seem LO do "the 

right thing" in a h o s t  all cases of practical interest. Mdst likely, this had 

not been done for the original MACSYMA because of problems of a limited-ad- 

dress machine. On most of the current machines running MACSYMA, this is no 

I 

lo'iger a problem. 1, 
In our top lrvel, a variable, I.., can have evaluation forced by typing 

",Y" at the end of a command. Such a variable will not be included as local 

to the BLOCK command. However, there is a danger in such commands as: 
I 

DIFF(X,Y)*D~FF(Y,Z) ,Y; , 

Hence we were forced to redefine the DIFF ccrnmand to never evaluate its 

second-position argument, unless that argument was a programming variable. 
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Finally, a function that does infinite evaluations from the bottom-up was 

written. As can be seen in the first set of equations, since K2 appears 

implicitly in F four times, 2*M2/EC would be caJ.culated four times in a brute 
force approach. This overhead would become intolerable in calculating 

GIFF(F,E,2), where 2V2/EG would be evaluated about 40 times by a brute-force 

technique. 

Tests have been run, infinitely evaluating f, with the parameters set to 

bigfloat numbers. Neglecting garbage collection, the command 

F,INFEVAL,BFiOAT: required 30 CPU seconds on a VAX 780. In comparison, our 

own function BFLOhTE'JAL(F) : required 10 CPU seconds, neglecting garbage 

collection. Garbage collection times were roughly proportional, but not 

repeatable. The ability of the our BFLOAIEVAL function to correctly take 

account of arrays and derivatives has only recently been added. Tests are in 

progress to compare DF,INFEVAL,DIFF,BFLOAT: with BFLOATEVAL(DF);, where 

DF:DIFF(F,E,2). 

A comment should be made about the usefulness of the above methodology. 

Clearly, many physical models come ready-made with .their own hierarchical 

levels of equations. For such a problem, our alternate infinite evaluation is 

eminently useful. Where an expression does not explicitly contain these hier- 

archical expressions, but still contains redundant operations, s w h  as 

"2*MZ/EG+COS(Z*MZ/EG)", our infinite evaluation routine is also useful. In 

this ca.se, a form of the MACSYMA command OFTIMIZE can be used to rreate such a ,  

set of hierarchicai equations. Further, . the alternate top level should 'be 

compatihle with share 2ackages previously translated from MACSYMA-level into 

lisp code, since our technique can be viewed an' alternate parsing of the 

MACSYHA- IC. -e 1 code . 

2. SUMMARY 

It should be emphasized that with the possible 

evaluation scheme, this cop level does not bring 
exception of the infinite 
any new capabilities to 

. .  
* . *  ...... ..... ...... . .  . . .  



M ZSYMA. Ins .ad, it i expected to be easier to use for a naive user who 

does not intend to ase the full capability of HACSYMA as a programming 

language, and wishes to interact in a manner close to his own "natural 
language" mathematics. Experiments with such users are planned €or the near 

future. 

'I would like to thank Jeffrey Golden for providing invaluable insight 
into HACSYPIA and the issues surrounding PIACSYI-IA. 
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Computational Geography - 
The Habitats of the Migratory MACSYMA 

V. Ellen Golden 
MACSYMA Group 
Symbolics, Inc. 

257 Vassar Street 
Cambridge, Massachusetts 02139 

1. Introduction 

MACsyM# was written at the M.I.T. Laboratory for Computer Science (then 
called Project MAC) to run on the Incompatible Time-sharing System (ITS). 
ITS is the operating system written at MIT's PstiRtid Inteiligence Laboratory for 
the PDP-10 computer. MACSYMA '.vas written in MACLisp, a dialect of Lisp 
also written at the -4.1. Lab. Many of the facilities and features of MACLisp 
were created in response to hwCSYMA's needs. The hardware on whi.-'* 
MACSYMA was developed is a PDP-10, a machine with an addressable memory 
of a limited size. In addition, since MACSYMA was developed mad used at only 
one site (a MACSYMA was brought up on the MIT-Multics system in 1975 but 
never maintained), many features were designed with tLe PDP-lOATSfMACI,isp 
environment in mind. 
MACSYMA r e m a n 4  an ITSonly system until 1979 when Multics MACLisp was 
updated and MACSYMA was re-ported to Multics by the NIT Mathlab Group [l]. 
It was also ported to the VAX UNIX system by Professor Richard Faternas of 
U.C. Berkeley, and to the Lisp Machine and TOPS20 by the MIT Mathlab 
group. More recently it has been brought up on a 68300-based workstation by 
Professor Fateman at Berkeley. 
This paper will discuss briefly the systems to which MACSYMA has been ported. 
The various sections have begn or wll be expanded into "primers" for the various 
operating systems, following the pattern of "An Introduction to ITS for the 
MACSYMA User" [3] 

'C3Pyright (c) 1904, SYmbollCS, Inc., Cambridge, MassachuDens 
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2. Operating Systems and Their Differences 

Each operating system has its own particular features. ITS, TOPS-BO, and the 
Syrabolics 3600 for instance, arc. character-at-a-time systems, meaning that the 
operating system reads each character as it is typed. UNIX and Multics are line- 
at-a-time systems, meaning nothing happens until you type a carriage return. 
This means that MACSYMA commands may be terminated by a singie character 
(; or $) on ITS, TOPS-20, and a 3600, but must be terminated by a ; or $ 
followed by a carriage return on VAX systems and on Multics. 
File systems are also different on different operating systems. The ITS file 
system is quite primitrs. It has a single level directory scheme (no sub- 
directories) and only two rile names. Directory names and file names are limited 
to no more than six characters. MACLisp originally (in 50 called "Old UO") 
referenced files as a list, inamel name2 DSK directory). MACSYhfA file 
referencing was designed slmilarly, [namel,name2,DS~directoryl. When the 
Input/Output system of MACLisp was redesigned ("New UO"), a more flexible 
format for fi!e referencing was installed, a string format. (As well as a new list 
format which we won't go icto here.) On ITS both formats are used in 
MACSYMA, you may reference a file as [namel,name2,DSYdirectoryl or as 
["DSK:directory\;namet narn&"] (note the "\" which precedes the ";t, so that 
MACSYMA does not think the ";" is a command line terminator). U N M  and 
Multics have hierarchically structured file systems with pathnames of varying 
length. These variable length pathnames do not translate easily into the familiar 
ITS list format, but do work very well as strings, inside qwtation marks (double 
quotes), so this is the format used on con-ITS systems (with the exception of 
TOPS-20, which like ITS may upe either format). MACSYMA rommands which 
on ITS look like: 

eEno( BEGIN. GEHO. OSK, e m )  ; 
become on a UNIX system: 

demo("/usr/macsyma/demo/begii:.~em"); 

A number of MACSYMA commands were written to reference, list, and print 
files on the ITS operating system. These commands, DISKFREE, DISKUYE, 
FILELENGTH, FULLDISKUSE, LISTFILES, PRINTDISKUSE, PRINTFILE, 
QLIS'FFILES, and RENAMEFILE, will not work on other operating system 
without further work. 
Similarly, the commands BUG, MAIL, and SEND utilize the ITS electronic mdl 
facilities, and work would be required to make them work under electronic mail 
programs on cther systems. 
An operating system will impose some constraints on the Lipp system in which 
MACSYMA is embedded, also. All of the Lisps in which MACSYMA currently 
runs are designed to be as close to MACLisp as pssible or to bo upward 
compatible with MACLisp, and to provide the facilities of MACLisp upon which 
h=ACSYh.IA depends. However, operating system considerations connected with 
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the file system and the structure of interrupts and job control sometimes result 
in slight differences, which may impact dn what the user sees in MACSYhU. 

3. TOPS-20.. 

MACSYMA on the TOPS-20 IS the closest to the or;lginal ITS MACSYUA. This 
is true for two reasons. First, the hardware upon which TOPS20 runs is from 
the same family of machines. Second, the Lisp system is a MACLisp. The 
hardware being similar means that a TOPS20 hM C S Y M A ,  like the IT3 version, 
can run out of address space: the frustrating "No Core Available - You will have 
to start a new MACSYMA" message. 
The file system is different, of course. It can have a hierarchical structure, and 
filenames have three elements as well as the device and directory, e g  
PS:<directory>namel.17ame2.gcneration number. Since each pathname will have 
five elements, it is possible to translate this format to the ITS list format, and as 
a result files on T O P S 2 0  may be referenced by either list or string fcrmat, as on 
ITS. 
The following commands do not -.s-ork in TOPS-20 MACSYMA at this time: 
BUG, COMPILE, DISKFREE, DISKUSE, FILELIST, FULLDISKUSE, 
LISTFILES, BML, PRIME, PSINTDISKUSE, QLISTFILES, SEND, 
TRANSLATE, WHO, and W O R L D P L O T .  \ 

\\ 4. Multics \ 

1% 

The Multics operating system was written at MIT's Project MAC for the 
Honeywell 6180 processor. Unlike the ITS and TOPS-20 system, hlultics has 
''Virtual Addressing", which means that you are not constrmned in how much 
memory you can use. The problem of running out of core does not present 
itself, although 2 may be necessary to request a larger "process directory". The 
file system is very elaborate, wth great flexibility in organization nnd security. 
(The U. S. &r Force has called Milltics the most secure time-sharing systom 
available.)15] MACLisp wa3 ported to Multics in 1974-75 by Dnwd Moon, David 
Reed, and Alex Su,:yroff specifically to bring up MACS'X,4.I41 
The Multics cystern distinguishes between upper and lower case, wliirh means 
that macsyma and HACSYHA are two different things to the Multics monitor, and 
both of them are different from Hacsyrna. This means that care must be taken 
with file names (or "pathnames" as they are called) to type them preciselv ns 
they appear. However, MACSYMA commands mny bo typed in upper or lower 
csse and MACSYMA will translate them to lower case. 
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Because Multics is a line-at-a-time system, a carriage return is necessary after the 
; or $ which terminates a MACSYMA command, and control characters do not 
'work the 'way they do on ITS. T o  type the common MACSETMA control 
characters on Multics, hit the BREAK key on your terminal. (If you are logged 
in over a network, send the appropriate ATTENTION signal.) Then type the 
character whose control function you want and a carriage return. For example, 
to type a control-G to stop a computation, you would hit the BREAK key 
followed by Gularriage return>. 
The control structure of the Multics monitor is somewhat different from the ITS 
system. You can exit from MACSYMA to "a monitor" and do whatever you wish, 
but this will not be the saim monitor "level" at which you started. It is more 
like a chain, where you start at the Multics monitor (!::I:,. 11, start up d A C S ~ ~ .  
(link 21, exit to "monitor" (link 3). Now, how do you get back to your 

' MACSYMA? Actually, this is quite simple, but perhaps counter-intuitive to users 
who have been accustomed to ITS: you type start. 
Another way to describe it is that the structure of Multics is modeled on Dante's 
Inferno: there are 7 rings. You ,an exit via the DDTO; function in MACSYMA 
or by hitting the BREAK key twice. This gives you a "new level". If you don't 
start (or release) this level, but hit BREAK again, you will end up in another 
level, and confusion can appear to reign. start will return you to your previous 
level, and restart any processes. release will get you back to the previous level, 
-but will not necessarily cause any job to continue. release -a1 1 .  will get rid of 
everything you were doing and leave you at the point at which you logged in. 
The Multics system warns you in its "ready" message about the level or?. which it 
has currently put you. 
There are som? commands in MACSYMA which are specially designed to allow 
you to access the Multics monitor from inside MACSYMA: 

cwd("pathname"); change working directory. This takes a pnthkiame as an 
argument and sets your working directory to that pnt.hname. 

pwd( 1 ;  print working directory. This can help you if you want to 
use default directories or pathnames as much as possible but 
are not sure "where" you are. 

cline("comrtund"); 
Executes the command (which should be a Multics mordor 
command line) from insidd hWCS!'MA. E.g. cl ine( "1s") ; 
would list your current working directory. 

There are also some differences in file handling cornman&, ns n result of the 
diEerences in the hilultics file system. On the ITS system you could use a 
command like S A W  and it would choose 8 fila name for you if you did not 
specify one. Since the Multics file system is more complex, it ir necessnry for you 
to supply a pathnaiie for the SAVE commnnd. This is typed AS n string, i.0. 
inside quctation marks, and enclosed in square brarkets, thus: 

Similarly, the LOAD commsnd requires R full pathname, inside quotntion marks: 
save(["pathname"],argl, crg2, .. .,argi 1;  



load( "pathname" ) ; 

The PLOT2 package, PRIME command, and the on-line PRIMER do not work in 
Multics MACSYMA at this time. 

5. VAX UNIX 

UNTX is an operating system developed at Bell Laboratorios and enhanced by the 
University of California at Berkeley. It runs cn a number of machines. Two 
machines running UNIX which also run MACSYMA are DEC VAXes and The 
SUN Workstation. The version of MACSYMA which runs under UNlX runs in 
Frmz Lisp, which was developed at Berkeley. Franz Lisp was designed to 
provide the features which MACSYMA needs, in other words it was designed to 
be very similar to MACLisp. 
The UNIX xonitor is called the Shell. like the Multics monitor, the UM[x shell 
distinguishes beLween upper and lower case, so care must be taken to preserve 
case. Commands to MACSYMA may, however, be typed in upper or lower case 
and htACSyhlA will itself translate tl-cm into lower case. UN3X is also a linoat- 
a-time system, so ; and $ require a terminating carriage rsturn. Some control 
characters in MACSYMA similarly require a carriage return before they take 
effect, e.g. control-K. 
Many aspects of the system were patterned after hitiltics ("UhiIX" is one 
"Multics"). There is a MACSYIdA command shell(); which allow you to exlt 
from MACSYMA to a UNIX shell on a different level, as iwth hiultics. To 
return to your MACSYMA from this new shell, you type logout or control-D. 
There is also a control-2 which exits from MACSYMA to your original shell, in a 
manner similar to ITS or TOPS-20. "%" (or "%n" m e r e  n is the job number) 
will put you back in your M A C S Y M A .  jobs Will give you a list of the programs 
you have running, similor to the :LISTJ command on ITS. Each job will hnve 
its number next to its name so th3t you may refer to it w t h  the ';h commn?:d. 
On ITS each job is assigned a unique number by the system, but these numbers 
are of little importance for most MACSYMA users. On UNIX on the other hand, 
job numbers are used to refer to jobs for purpose3 of other commands. The 
numbers are assigned on a per-use; basis, md yours ~ 1 1 1 1  be 1, 2, 3... in the crder 
which you started up your jobs. Let us assume you went into an editor first, 
exited and started a MACSYMA, and then exited from it with control-2 and 
started to send some mail. If you now interrupt your mail job and t.ge ;obs, 
 yo^ will find something like t%: 

[I] - Stopped emacs 
[21 - Stopped macsyrna 
C33 + Stopped mal 1 

The "t" indicates that the mail job is the most recently used job Ithe one fkom 
which you just exited) and the one which the % command will reentor if you do 
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not follow it with a number. T o  rz-enter your biACSYhfA at this point you 
would type Ic2earriage return>. 
There is a MACSYMA command exec("command"!; which takes a U M X  monitor 
command and sends it up tc the shell f x  evaiuation. For example, exec("1s"); 
would list your directory. 
The control-characters available in U N M  MACSYMA are sightly different from 
ITS hlACSyEv24. Control-L, Control-K and ?? work (reqjlirmg a carriage return, 
as noted abve). Control-G, the ITS "Quit" chxacter, does not work. The 
"Quit" character on UMzi is Control-C. Typing Control-C to hlACSl%f.A wi:l 
enter an interrupt loop. YGU then select by means of single letter commands 
whether you wish to kll your hlACSYMA, enter a M A C S Y M A  bred. enter a 
Lisp break, or return to top-level MACSWA. Control-A which enters a 
MACSYMA break on ITS does nothing in U N M  IACYYMA. Control-Y does not 
work as it does on ITS, where it retrieves your last command line. In UNIX 
MACSSMA control-Y has a somewhat surprising result to a former 1'1's riser: it 
stops the job and returns you to top level. Fortunately. it does not hll the 
MACSYMA, you may re-enter it with %. 
The "escape" key (followed by a carriage return) enters the editor. In U N M  
M A C S Y h U  304 the default editorin UNIX MACSWA is the CTNIX V I  editor. 
The line editor available on ITS may be used but you need to load it explicitly: 

You exit from the 1'1 iditor by typing :nq. You exit from the line editor by 
typing two escapes, as crl ITS. Starting with MACSYMA SO6 the line editor will 
be the default. You will be able to use VI by loading it explicitly: 

U N M  has a display processor, EQN, which produces pholotypset output for 
mathematical expressions. You can use the MACSYMA writefr le commhnd in 
combination with several switches in MACSYMI to produce files which can be 
run through EQN to produce nice output. 
The On-line PRIMER works on the UNIX system, but it hns n special 
introdilctory script ca!led CONSOLEPRIMER which is interlded for users who r.re 
new to computers. W h e D  you have run this wript, your username is added tc R 
file which the PRIMER maintains. W h e n  the PRIMER is sturted up, the file is 
checked to see if you have seen the CONSOLEPRIMER script. If you hnve, the 
PRIMER starts with a menu of the available scripts, instrnd of making you !>Id 

9 

Wh e n  MACSYMA was ported to UNIX, it wns nccessriry to ,-cwritc this fwture 
of the PRIMER since Franz Lisp's manner of ujxlnttng files a s  somewhot 
different f;.clm MACLisp's. Sites which have vel'sions 303 or 304 of UNIX 
MACSYlMA (or 305 of EUNICE or REX MACSYMA), will find that the PRIhiER 
does not work if you start it up with 

because when it tries to update the file of who has run the PRIMER, it foils LO 

loadfile("/usr/macsyma/jpg/medit.o"); 

loadfile("/usr/marsyrna.306/ucb/rnedit"); 

through the inlrductory material again. 

PRIHER( ) ; 
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find the file. You can get the PRIMER to work in these versions if you start It 
by typing 

which will start it up with the menu of scripts from which to choose. This by- 
passes the CONSOLEPRIMER script, which in any case is written with the ITS 
environment in mind. Scripts are selected by ttlping the script number followed 
by a semi-colon and 8 carriage return. In MACSyh;lA 306, the problem with the 
PRIMEE ~aintaining its file has been fEed and a replacement for the 
CONSOLEPRIMER script, called franzpr imer, has been included. 
In additicn to the file referencing commands, which do not work anywhere 
except on ITS, the following commands are not available in UNM MACSYMA at 
this time: COMPILE, MAKEARRAY, PRIME, TRANSLATE, and WHO. 

primer(help1; 

Computing determinants by the SPARSE:TKUE$ 
time. 

method does not work at this 

6. VAXVMS 

There are three different VMS versions of MACSYMA: EUNICE MACSYMA, 
REX MACSYMA and NIL MACSYXILA. NIL MACSYMA was developed at MIT 
and in the "New Implementation of Lisp" (NIL). NIL MACSYMA is not mdely 
distributed at this time. EUNICE and REX MACSYMA are distributed by 
syrubolics. Both of them make use ~f the UNIX emulator EUNICE in order to 
provide the Pram Lisp environment for MACmMA to run. Those machina 
which are running a full EUNICE have the EUNICE version of MACSYMA., 
EUNICE MACSYMA works in the same way as UNIX MACSYMA, since the\ 
EUNICE emulator makes the operating system look and behave like UNM. For \ 

those machines which are not ruining EUNICE, a portion of EUNICE is \ 
compiled in with the MACS'IMA. This is the Runtime Executable portion, called 
REX. REX MACSYIU is slightly different from EUNICE and UNIX 
MACSYMA, most notably in those areas where interaction with the operating 
system is required. Pjotting is one notable area where REX MACSYMA falls 1 
short. There are plans to have the PLOT2 package working in REX U4CSYMA 
in the future, but at present only the simple character plotting package works. 
Naturally the type-setting facilities do not mst. 
VMS does not distinguish between upper and lower cape, but due to some 
interaction between Franz Lisp, REX and VMS, filenames must be typed in 
lower case in REX MACSYMA. Control-Y exits from MACSYMA, as it does on 
UNM. Here you get back to the VMS monitor, and must type 
CONTINuE<carriage retrrn>, much as on TOPS-20, to re-enter your 
MACSYMA. 



7. 3600 

The Symbolics 3600 is a large single user machine developed at 
research cornputation. It uses a dialect of Lisp called Zetdisp. 

Spbolics for 
It has 36 Bit 

words and vlrtual addressing. With its integrated editor, window system, and 
mouse, the 3600 is a complete working environment. It offers many possibilities 
for MACSYMA to improve and extend its user interface in exciting ways. 
Work is being done to take advantage of the facilities of the 3600. For instance, 
it should be possible to select a part of an expression by pointing at it with the 
mouse and then operate on it, recombine it, and continue the computation. A 
display editor for MACSYMA expressions, menus for OPTIONS and DESCRIBE, 
and expanded help facilities are all possibilities. 
The 3600 has excellent graphics capabilities which the plotting routines take 
advantage of. 

8. Plotting 

There are two plctthg packages in ITS MACSYMA, the simple character plotting 
package which works on any terminal, and the display oriented PLOT2 package. 
The simple character plotting package is not dependent on specific kinds of 
terminals or termlnal drivers and thus can be easily ported to any operating 
system. It works in all versions of MACSYMA except for the UNXX version, 
where it has been intentionally replased with commands for the UNIX plotter. 
DESGRIBE(PL0T); in UNIX gives information about how to use the UNM 
plotEing package. 
The PLOT2 pac!cage is available in 3603, UNlX and EUNICE verslons ob 
MACSYMA, and in TOPS20 versions. It is not currently available ln REX 
versions or on Multics. Multics does have its own plotting package, however, and 
some facilities have been provided in Multics MACSYMA to allow you to use the 
Multics plotting package You must first give the command setup-graphics 
terminal-type to the Multics monitor, and then set the MACSYMA vanable 
M U L T I G R A P H  to TRUE. Then the functions PLOT and PLOT3D wll use the 
Multics papkics system to produce screen plots for you. 
The worldplot command, which was written as a display hack anyway, does not 
work on any system em-ept ITS. 
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9. Share Programs 

The Share Library is extremely large and gro!:ir?g all the time. Some of the 
programs on the Share directories on the M C  machine have not been u d  in 
years, and including them in porting efforts has not seemed worth it. However, 
in most cases there is no reason that a particular program cannot be made to 
work on any of the operating systems. 
Work is proceeding on cleaning up, chechng out, and making any needed 
modifications to files on the Share directories and in future releases of 
MACSYMA they should all be included. 
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Abstract 

T h e  FFP machine being developed at the University of North Carolina is a 
small-grain multiprocessor that directly executes Backus's FFP languages. The 
language provides a number of attractive features, including semantic simplic- 
ity, the ability to express many forms of parallelism, and a powerful algebra ol 
programs. T h e  machine supports a p r O g r ~ e r s s  intuitive notions of program 
execution, is capable of executing powerful operations as machine primitives, and 
provides a rich basis for program optimization. This paper describes some of the 
important features of the language and the machine and how they m a y  affect the 
programming process. 

Introduction 

M o d e m  computing can be viewed as beginning with the introduction of the %on 
Neumann' computer architecture, which originated when technology dictated an i m p b  
mentation using vacuum tubea and relays. Although the technology used to implement 
the machines has undergone a number of revolutionary changes, our contemporary ma- 
chines remain unchanged in their basic design. Simhx'ly, our most visible languages, such 
as Pascd and Ada, evolved from FORTRAN, the first high-level language for these ma- 
chines. T h e  improvements in both languages and machines have been substantia hut far 
from satisfactory; the machines are still basically sequential, and the expressive power of 
the languages has not substantially increased. .We are near the end of the evolutionary 
development of von Neumaun machines and their languages. Satisfying the demand for 
greater computing speed as well as increased ease of programming will qu i r e  approaches 
to language and machine design that are different from those in widespread m e  today. 

What might w e  ask of a programming language? I will address only the matter of 
general purpose programming languages, those that can handle a wide variety of problems 
and do not sacrifice ease cf programming in one area to accommodate the problems in 
another. First, we wish these. languees to be suitably expressive, and hence capable of 
supporting arbitrary levels of abstraction. Second, we want them to make programming 
a mathematical activity in the sense that, although mathematical rigor ia not de riguur, 
it is neverthelesa feasible. These two requirements specify that the languages will aUow 
us to think in a natural way and will provide mathematical support for that thought. 



A final requirement is quite different in nature, and stems from the fact that programs 
represent computations, and the same result can be computed in different ways. If we 
are to be able to exploit our machines well, the language we use must allow us to control 
computations in ways that will affect the use ef resources, including time, space and the 
degree of parallelism. 

What can we ask of a machine architecture? Operationally, we simply want it to 
execute our programs correctly and quickly, but this glib answer implies a host of specihcs. 
First, the architecture should be related to the programming language in a way that allows 
(but preferably does not require) the programmer to exercise some control over allocation 
of resources. In order to satisfy the need for massive computation, the architecture should 
be capable of padlelism at a variety of levels, at least the highest of which can be controlled 
by the programmer. And finally, we would like the machine to be cheap. Cost is dearly 
technology-related, and assessing cost is complex. But we may safely assume that a low- 
cost design will make good use of the best technology available. The best technology today 
is VLSI, and using VLSI well implies the use of many copies of a small number of chip 
designs. 

The desires to increase both computational speed and ease of programming are usually 
concikred to be conflicting. Perhaps the most common approach to this pair of problem 
has been to design a machine for high performance in some limited context, hoping that 
programmability can be added on or incorporated into the design at a later stage. While 
one can always hope, the failure of so many architectural experiments because of a lack of 
programmability rather than a lack of speed should lead us to expect that a design that 
does not incorporate programmability ob initio will fail. 

A promising approach to these problems is a language-based computer architecture 
tbat supports a language capable of expressing a variety of forms of luge-scale parallelism. 
Work is presently in progress af the University of North Carolina at Chapel Hill on a 
machine design that we feel holds great promise, both because it is capable of a high 
degree of parallelism and because the machine language has many desirable properties. 
The language is the FFP (Formal F’unctional Programming) language proposed by Backus 
[BA78]. The machine is a finegrain multiprocessor proposed by Mago [MA79]. In Section 
1 of this paper we will describe informally the FP (Functional Programming) languages, 
which are essenGally ‘user-friendly’ versions of the FFP language. h Section 2 we will 
describe the FFP machine. In Section 3 we will describe the outlook for programming this 
machine. 

1. FP LANGUAGES 

There is a growing belief that programmer productivity can be improved by utiliring 
languages that support careful thought and deaign better than von Newuann languages do. 
Until recently, the most vigorous challengers to von Neamann languages were functional 
programming languages; recent developments have made logic programming languagea 

require quite different programming atylea and impose 
t 

The FFP machine proiect i8 actively investinatin& the 
contenders a .;id. These ciasses 
different comrv+~+icnal demands. 



possibility of executing logic programs on an FFP machine [SM84], but that part of the 
project is in its infancy and will not be covered here. 

Jhnctional languagcs have been around a long time; LISP is almost as old as FOR- 
TRAN [MCGO]. M a n y  functional languages have been described and impleneeted. Flavors 
of LISP abound. Newer and less established functional languages include ISWIM [BU78, 
LA791, KRC [TUSl], VAL [AD791 LCF [Gk?W79] and PP [BA78]. Each has its own set sf 
virtues and advocates. Because the FFP languages of Backus are the machine language of 
the multiprocessor w e  wish to describe, we will concern ourselves only with these languages 
and the closely-related but more easily understood FP languages. 

1-1 Description 

W e  begin by describing informally the FP languages that Backus introduced in his 
Turing Award Lecture [BA78]. These are purely functional languages in which a program 
and its input form an expression; the result, or output of the program, is the value of the 
expression. Execution of the program consists of evaluating the expression. The value of a 
program is defined by a fixed-point &notational semantics, but this d u e  corresponds to a 
operational semantics based on the rewriting (redaction) of innermost expressions. %nus, 
a program is an expression, and evaluation of the program is done by iteratively replacing 
certain innermost expressions called ndrreible ezpscssiona or reducible upplicutioons (RAs). 
Each RA consists of a function applied to an argument, and each RA is replaced with 
another expression of the same value. FP languages have the Church-Rosser property, so 
R A s  can be re-written in any order, or in pardel. Program execution terminates when 
the program expression does not contain any RAs. 

An FP language is specified by a set of atom A, a set of primitive funcliotu F, and a 
set of funcliond form G. The set A typically includea various representations of numbers 
as well as characters and boolean values. A well-formed czpnssion (wfe) is (a) an atom, 
or (b) a sequence < 21, 22. . . . 2,. >, where each Zi is a wfe, or (6) an application 
( f : 2 1, where f is a function expression and z is a wfe. A function expression is an 
element of F or CL representation of a function built from members of F, 6 and E, the set 
of well-formed expressions. Note that FP languages are ‘variablofree.’ 

A n  FP objcet is an expression that contains no applications; that is, an object contains 
no unevaluated functions. An object is either an atom or a sequence of objects. Because 
the reduction semantics evaluates innermost expressions, an RA consists of an application 
of a function expression to an object. 

The power of FP languages comes largely from the rich set of functional forms 
(program-forming operations), a parsimonious notation that expresses parallelism WOE, 
and an algebra over the set of programs. 

1.2 Features 

1.3.1 Semantics 

FP languages share with other functional languages a semantics that should faeilitate 

1 
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creation of systems to prove such properties as propam correctness and equivalence. Al- 
though FP languages are basically typeless, types can be added (FR81, GHW811. Thus, 
although little work haa been done in this area, FP languages appear to satisfy the crite- 
rion that programming environments can be built that will support program development 
in a mathematically substantial way. 

1.2.2 Parallelism 

A considerable problem in parallel computation is finding a suitable means ob express- 
ing parallelism. Language constructs that explicitly initiate and terminate execution paths 
of disparate subcomputations are at best clumsy and may add substantial overhead. hr 
more desirable is a system where parallelism is naturally expressed, especially if the mode 
of expression is one that allows the programmer to ignore efficiency considerations if he 
chooses to do so. FP language3 are particularly attractive in thia respect. Parallelism 
is expressed by 
parallelism that 
are: 
apply- to-all: 
construction: 
parallel-apply : 

functional forms, and the f o m  can be chosen to reflect those kinds of 
are available on a particular machine. Examples of these,functional f o m  

c 

(4: <Zl . 22. * - 2n>) -> < (f:21). (f:z,). . . . (f:z,)> A 
( tfl. f2. -.. fnl: 2 ) -> < (f,:z). (f 2 : d  ... (f,:2)> 
( PA<fl. fa, ... fa>: < ~ i ,  t2. ... zn>) -> 

(f1:4,(f2:22), . . . (fn:zn)> 
Note that-the availability of 'flat lists' rather than requiring that lists be deeply nested 

increwes the ease of dealkg with these functions and their arguments. 
A programmer should be ab!e to use parallelism as a convenient tool in algorithm 

specification just ;LB one uses recursion or iteration. Ideally, the resulting program could be 
executed unchanged, or, if appropriate, could be transformed into another with diffsrent 
degrees or forms of parallelism. This would require a facility that could both devise 
tri~nsformationa and compare the costa of execution of the programs. 

1.2.3 Reasoning About Programs and Rugnun 3kanmformation 
As a class, functional languages appear to provide a better basis for reasoning about 

programs and richer opportunititr, for program transformation than do von N e u m x m  
languages. There is a growing c~nsenaus that the Floyd-Hoare approach to reasoning 
about von Neumann programs, while once considered quite promiaing, is too unwieldy 
to deal with programs of a substantial size and complexity written in a sufficiently rich 
language. Experiences with functional languages such aa LCF indicate that these languages 
hold greater promise for increasing programmer productivity and for providing a facility 
for proviqg properties of importance about programs. 

FP languages provide a particularly attractive basis for thcse activities. There is a 
rich algebra of programs in which the algebraic objects are functions (either variables, 
denoting arbitrary functions, or constants, denoting specific functions) and the algebraic 
operations are the functional forma of the language. F'unctional forma such aa those chosen 
by Backus 
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[BA78] allow the programmer to think consistently about both function constructs and 
data objects. Thus, the primitive function ‘append-to-the-left’ is defined by the rewrite 
rule: 

!upndl:<z. ~ 1 . ~ 2 .  ..- yn>>) -> < 2, YI, y2, ... y,p 
but it also obeys a similar algebraic law over function variables 

a~fidloKf* e 91*g2* - * e  gn 33 = I f m  918 * e -  gn 1, 
-. . -  

where o denotes function composition and [ J denotes the functional form ‘COnstmCtion’ \ ‘  

as defined earlier in this section. 

1.2.4 Probhme 

But problems remain for functional programming languages, including FP languages. 
An overriding corrcern is that of efficient execution; we believe the machine described in 
the next section will provide the answer to thiscproblem for FP languagea. 

Following execution efficiency, the problem d gnztest concern is that of handling 
‘history-sensitivity’, or computations that necessarily involve a state. In his Timing Award 
Lecture [BA78], Backus proposed a tentative solution for PP languages which Be cded 
applicative state traneition (AST) systems. An alternative approach is to extend PP 
languages to a domain that includes streams [ITtB]. No satisfactory solution has been 
found so far, however, and the topic remains one of active research. 

Another problem is that of programming style. FP ie capable of expressing overwhelm- 
ing one-liners in the manner of APL, but its definitiod facility also malser, it both easy and 
natural to avoid such problem by writing programs in a top-down manner. Nevertheless, 
programs written in FP ark, like thoae of LISP, easier to write than to understand, and, 
with the exception of [BASlJ, the problem has not been a d d d .  

1 

I 

1.S The FFP Eangnage , 
\ 

The FFP language is siniilar to FP languages except that 
a. its syntax is more regular, and 
b. it incorporates higher-lek1 functions (that is, functions are first-class objects). 

For ease of presentation, we have described FP rather than FFP languages. An exten- 
sion of FP languages that incorporates higher-level functions has been proposed [ABP82]; 
this language, called FP1.5, is as ‘user-friendly’ aa FP languages. The FFP language usee 
a more regular syntax and is more difficult for a p r o g r m e r  to work with, but a user% FP 
or FP1.5 program can be translated into an FFP program by a straightforward procefls, 
and the resulking program executed directly on the FFP machine, which is described in 
the following section. 

2. THE FFP MACHINE 



One way of classifying multiprocessors is by the granularity of the individual proces- 
SOIS. Each processor of a large-grain multiprocessor is capable of executing a substantial 
task independently, that is, each processor is a full-fledged computer, with a powerful CPU 
and a sizeable local memory. In contrast, each processing element of a small-grain multi- 
processor is quite simple, consisting of a small (possibly bit-serial) ALU and a few dozen 
registers. Ir. a small-grain multipmcessor, the performance of all but the most trivial task 
requires the cooperation of a number of separate processing elements 

Although few small-grain multiprocessor designs have been proposed, they appear to 
Lave several potential advantages, as illustrated by the FFP machine: 
a. They can expioit VLSI well. This requires that the multipraxssor be constructed of 

many copies of a few processor types, and that the processors be arranged in a regular 
topology. The FFP machine comprises many copies of processors of only two types, 
the L-cells and the T-cells, arranged as a full binary tree. 

b. They can exploit parallelism in a wide variety of forms. The FFP can execute as many 
programs in parallel as will fit in its memory. Within each program, it can execute an 
arbitrary number of reducible applications (Rh) simultaneously. And within a single 
RA, at a sub-language level, it can simultaneously perform a number of operations 
within distinct cells, such as summing pairs of numbers or copying several expressions. 

c. They can dynamically fit the hardware to the requirements of the program during 
program execution. The FFP machine automatically reallocates its resources during 
program execution by dividing the machine into submachines of appropriate sizes. 
When a subtask becomes executable, a submachine of the proper size is formed and 
allocated to the subtask. 
The last point bears some elaboration. A large-grain system must break a problem 

up so that each subcomputation fits within a processor; thus, the problem must m m e h o w  
be fit to the rigid boundaries imposed by the hardware. This pmgrum decomposition 
problem can be difficult even for fairly regular and straightforward computations. Even 
within a given class of problems, a desirable decomposition may depend on :he sise of the 
specific problem instance. For highly dynamic problems it will be impossible to perform 
the decomposition prior to the computation, and the overhead of doing it d y a a m f d y  will 
be prohibitive. 

2.1 Construction 

The FFP machine is a small-grain multiprocessor consisting of a full binary tree of 
processors (cells) with connections between adjacent leaf cella. The cells are of two basic 
types. The leaf cells (or L-cells) contain the program text, which is re-writtes dynamically 
among the leaves during execution aa dictated by the reduction semantics. The non-leaf 
tree cells (or T-cells) serve as communication and computation nodes. All the L c e b  are 
identical, and all the T-cella are identical except those at one particular level that serve aa 
I/O ports. 

This network is a eingle computer that can be divided into a number of submachinea, 
where each submachine consists of a contiguous segment of Lcella and a binary tree (not 
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necessarily full) of T-cells above it. Because of the regularity of the inrerconnections, such 
a network is arbitrarily expansible. Moreover, processing power is evenly distributed over 
the tree, and the processing power of a network is proportional to its size. Depending 
on the way the machine is divided, a particular T-cell may participate in up to three 
distinct computations, but never more. It's role in each computation is limited, so the 
computational requirements of the T-cells are quite modest. Both L and T-ceUs are 
small; it is expected they will contain about 10 thousand transistors. 

The ezecution cycle of the machine consists of three steps: 

a. In the partitioning phase, the machine is divided into submachines and apprc;viate 
information is brought into the L-cells. The division into submachines is d m e  by 
locating (on the basis of syntax) every reducible applicztisn (RA) that resides in the 
array of L-cells. The L-cells that contain an RA and a tree of T-cells above them are 
allocated to the subcomputatioo of re-writing the RA. The RA consists ot a function 
and an argument; the information that must be brought into the machine to re-write 
the RA consists of the microprograms for the functions being executed. Each L-cell of 
the subtree that contains an RA receives a segnent of a microprogram. The particular 
microprogram segment received by an Lcell ie determined by (i) the function being 
applied in the RA, and (ii) the syntactic position in the RA of the symbol contained 
in that Lcell. 

b. In the, ezccufion phase, the L-cells execute their microprograms. This may include 
sending information into and receiving information from the T-network. bformation 
packets flowing tbrough the T-network are processed according to the fixed program ob 
the ?-cells. Execution within an RA may continue until the computation is finished, 
or until it cannot proceed further because more resources (in particular, Lcella) are 
needed, or until the computation is suspended by the initiation of storage management. 

c. In the sforugc rrrujurqement phase, additional space is provided where needed to re- 
write the current RAs. This ia done by shifting symbols in the Larray to the left and 
right to provide empty Gcells in the required positions. Storage management is the 
only resource allocation done by the machine. 

Note that when execution of an RA is suspended, the state of the partially-completed 
computation is recorded in the Lcella. These Lcella then participate in storage man- 
agement, partitioning of the machine takes place, and the computation resumes. Thus a 
computation that 3pans several machine cycles may be m w d  from one place to another 
in the machine, each time making use of a different submachine. 

Each FFP function can be put in one of three classes according to the kind of support 
that is necessary for the evaluation of an RA in which the function appeam aa operator: 

a. In the simplest case, tEe various Lcella of the RLL need not comrnunicate with each 
other, and the RA can be rewritten without addE:ional L-cells. Exaples include the 
selector functions that select one element from a squence operand, the fad function, 
and such functions as epndl and upndr. All RAs with function operatom from this 
class can be re-written in a single machine cycle. 
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b. Other functions require that information be communicated among the L-cells of an 
RA, but require no additional space. (Except for storage management, all commu- 
nication among L-cells taka place through the T-network.) Examples of this class 
include slimming the entries of a seqiaence of numbers, computing the dot product of 
two vectors, sorting the elements o€ au array of atoms, and computing the transpose 
of a matrix of atoms. In some cases, such as the addition of the entries of a sequence 
of numbers, information is combined aa it is sent up into the T-network and these 
operations can be done in a single machine cycle regardless of the operand size. Other 
operations of this class, such as matrix transpose, require the information to remain 
distinct; the number of machine cycles required for these operations is a function of 
the operand size. 

c. Finally, some functions require additional space, either to hold intermediate computa- 
tions or the final result of the re-writing. Examples include the function double, which 
changes an operand x into the pair <x.x> , the distnbutc-~r~m-thc-left function: 

and many others. For these functions, the first machine cycle is devoted to determining 
how much storage is needed, and where. Succeeding machine cycles accomplish the 
actual re-writing of the RA. 

(distZ : c 2 c y1, y2. ... yn >>I -> CCz,y1>, CZ.yl>. ... <z*y,>> 

3. PROGRAMMING THE FFP MACHINE 

Programming well implies both a good programming style and a good use of computing 
resources. I will nst address the matter of a good style of functional programming, but I 
would like to say a few words about using resources well. 

It goet without saying that we need L machine model if we are to judge that a ?re 
gram uses resources well, otherwise there is precious little we can say. Furthermore, if a 
programmer is to use resources well, he must have a conceptual model of the machine that 
coincides fairly closely to the actual machine, and the language constructs should be easily 
iuterpreted in terms of the conceptual model. 

The programmer contemplating FFP program executicn thinkr quik naturally of a 
process ihat iteratively finds all the RAs in a current program wcpreaeion and simultane- 
ously rewrites them, thus producing a new program expression. Execution of a program 
on the FFP machine follows this model to some extent; the program expression resides in 
the L-array and RAs in the program expression are rewritten ad they are created. The 
model is accurate if one takes into account that the time tahen to rewrite an RA can vary 
greatly. The actual time to rewrite an Rh can be affected both by the operator and the 
operand. 

The FFP machine is unusual among parallel prcmssora in that suficiently regular 
progtanis can be traced and their time and space requirements predicted. Analysis is not 
possible for all programs; just aa with von Neumann machines, unpredictable prograna 
must be run or simulated. But matrix multiplication [MSK], associative search [SWSl] 
and partial differential equations IMP821 are some of the applications arc= for which 
algorithms have been proposed and detailed predictions made for machine performance. 



3.1 Emciency 

T h e  work WE have done in algorithm design and analysis indicate that this machine 
can ta programmed at a variety of levele of sophistication. If one cb~oses, one caIi write 
straighticrward programs, using parallelism if it is convenient. In this category I would 
place the first matrix multiplication algorithm given in Backus’s Turing Award lecture; 
the algorithm is brief, easily understood and highly parallel. But careful analysis shows 
that less highly parallel algorithms perform better OB the FFP machine. Backw’s (first) 
algorithm does all the pairwise multiplication of matrix entries at the same time. In order 
to do so, it requires 9(n3) space for two n x n matrices, and hence, because of storage 
management, 43(n3) time. A moie modest dgcrithm (but somewhat more complex) can be 
written that p e r f o m  the matrix multiplication in n steps, each step using a row of the first 
matrix and the entire second matrix to obtain a row of the result matrix. This algorithm, 
quite accessible to a careful programmer and requiring no extraordinary functions in the 
FP language, gives an 9(n”) algorithm in both time and space. 

But the potential rewards of careful programming of the FFP machine don’t stop 
there. Because the microcode for each operation is not part of the machine design, the 
ambitious programmer can devise his own FP operations by writing !be microcode that 
will allow the machine to execute the operations as machine primitives. A number ob 
specialized primitive operations can be devised that aid in matrix multiplicstion. h fact, 
the multiplication of square matrices of atoms can be made a primitive operation, although 
one that still requires e(na) time and s;~;lia. Using a primitive operation for matrix 
multiplication m a y  not in fact be the best thing to do, since complex primitives usually 
have large segments of microcode that must be sent to the L-cells and then moved during 
storage management, slowing down machine operation. M y  intention here is not to give 
any final answera . . . we don’t know them yet . . . but to point out that the FFP machine 
can be programmed at a variety of levels, with increaaing rewards (of lowered execution 
cost) at each level. 

3.2 Program Opthisation 

Mu c h  work has been done on optimization of functional programs IDA821 and some on 
FP proglams in particular [WA82], but there h;rs been no work BO far on this problem for 
the FFP machine. I think the area is quite promising, and I’ll give two simple illustrative 
examples. 

Automatic program optimization refers to changing code to increase the execution 
speed or lower the space required. Contemporary optimizers use techniques, largely ad 
hoc, that affect the program only locally, e.g., by detecting common subexpresaions or by 
removing unnecessary assignments from loops. Automatic optimization for FP programs 
using the algebra of programs has much greater potential. 

Algebraic laws could simply be used to replace code in programs and subprograms 
with more efficient descriptions of the same functions. But, the same technique allows 
optimization over subroutine boundaries, For example, if a program definition has a sub- 
expression of the form 



380 

f o g  

where f and g are defined aa 
f = h o [1,3] 
g = [3,4,6] o r 

then we can replace f o g by h o (3,6] o t, thus reducing copying costs. 
A more sophisticated optimization could be done by describing how costs are affected 

by operanci size and type so that the optimizer could choose the least expensive program 
expression for a particular situation. Thus, some matrix primitive machine operations 
require the nperand matrix have only a t o m  as entries; these are the operations of choice 
if they can be used. Similarly, applying thc law 

Ij1.f~. ... .fn9 0 g = tfl 0 g,fi 0 9. ... .fa o 91 

gives two descriptions of the same function; the left description is efficient if the size 
of the value of g is small compared to the its argument, but if the reverse is tme, this 
may not be the case. In parlicular, if the storage required can be reduced by optimizing 
each of the fi o g independently, then tbe right side may be less costly. A sufficiently 
sophisticated optimizer could choose correctly between these forms at compile time if 
adequate information was available. Even when compile-time optimization is not possible, 
the information gained about an RA operand during partitioning may make execution 
time optimization feasible €or some programs. 

i 1 s=ary 

The FFP machine is a small-grain highly parallel multiprocessor that directly executes 
a functional language. A suitably designed programming environment for the language 
is feasible, and could provide the basis for developing programs quickly as well as for ',, transforming them into more efficient programs. Both manual optimization techniques, 

\ such as devising new machine primitives, and automatic techniques based on the algebra 
\ of programs, are available. This paper described some of the important features of the 
' language and the machine and how they may influence programming. 
I 
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ABSTRACT 

Recent mathematical work using SCRATCHPAD is discussed. This uork 

is contrasted with the research procedures of S. Ramanujan (1887-1920). 
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Ramanujan and SCRATCHPAD 

by 
(1) George E. Andrews 

1. Introduction. During the past two years SCRATCHPm[lS], [15] has been fully 

implemented at the Pennsylvania State University on a field test for IBN. 

Also during this time I have continued work on Ramanujan's "Lost" Notebook 

[SI, [6]. 

I hope to elucidate here. 

These two projects are intertwined in very important ways that 

In Section 2 we provide a sample of results for which SCRATCHPAD was 

instrumental in the discovery. Some of these discoveries are closely allied 

with Ramznu:an's "Lost" Sotebook, and this naturally leads us to our dis- 

cussion of Ramanujan's type of research and discovery which we discuss in 

Section 3. In Section 4 we provide a short discussion of some of the many 

important results that have stemmed from Ramanujan's incredible empirical 

methods. In Section 5 we choose another of Ramanujan's problems and illustrate 

further aspects of SCRATCHPAD in handling such problems. 

2. Achievements with SCRATCHPAD at Penn State. Let us begin with a 

solution of the Lusztig-Xacdonald-Wall conjectures. This is a prototype 

of SCRATCHPAD at its best in doing problems of the type Ramanujan would have 

considered. 

(1) 
Partially supported by NSF grant HCS8201733 and a fellowship from the 
Guggenheim Foundation. 



In considering the conjugacy classes of the orthogonal and symplectic 

groups over finite fields of characteristic 2, each of Lusztig, Xacdonald 

arid Wall was led to consider the following conjecture [4]: Let 

= X,,(a,b,q) = b, = X-l(a,b,q) = a,X and for positive subscripts 
x-P 0 

2n+l 
'2n+1 a '2n + q 'Zn-1 

(2.2) I 7  

i 

Then numerical evidence and significant possible theoretical consequences made 

the following likely 

and 

(2.4) 

i 
a 

My first proof of these conjectures [4] was a very "heavy" exercise 

that made extensive studies of the limiting functions of (2.3) and (?.e). 

However a "nice and natural" treatment is afforded by the following exrrcise 

in SCIZATCHPAQ: 

First it is a simple matter to define these polynomials in SCRATCHPAD: 
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x - 1  
-1 

x = 1  
0 

.X<~*N+~*X<~*N***(~*~X+~)*XQ*N-~>, N IN (0.1,. . .) 

2x + 1 
X = X  + Q  X WHEN a-2x + 1 6 x IN (0.1, ...) 
a 2x ?x - 1 

.X~*N+2~X~*N+lrtQ**~N+l)*(l+Q**(N+l))*(XQ*N~XQ*N-l>). N IN (0.1.. . .> 

X 
a 

x + l  x + l  
X + Q  (1 + Q )(X + x 1 
2x + 1 2x 2x - 1 
WHEN a=2x + 2 6 x IN (0.1. ...) 

Next we would like to stack these up against the well-known Gaussian 

L 

polynomials or q-binomial coefficients [3; Ch. 31. Olrr motivation lies in 

the fact that the Gaussian polynomials form the builoing blocks for all 

of the resclts in this area of machematics [3; Ch. 31. 

the X in terns of the Gaussian polynomials GP(n.m) we suspect will 

be well on the road to knocking off the L-M-W conjectures. 

If we can represent 

n 
-. . ,  

:. [ 
i .t 
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The following SCRATCWAD output clearly exhiblts certalr. Important facts 

about Xn(f,l,q): 

x : 1  
0 

X : Q + 1  
i 

'i 
2 

X .'Q + 3 Q + l  
2 

i 

4 3  2 
X : Q  + Q  + 2 Q  + 3 Q t l  
3 

6 5 4 3 2 
X : 2 Q  + 4 Q  + 5 Q  + 5 Q  + 4 Q  + 3 Q + 1  
4 

7 6 5 4 3 2 9 8  
X : Q  + Q  + 2 Q  + 5 Q  + 5 Q  + 5 Q  + 5 Q  + 4 Q  + ? ( ? + l  
5 

' '..._ . I I i .' 

.. 

i '  

t . .  
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L c 
.c 

6 x 

12 11 10 9 8 7 6 5 4 24 + 44 + 64 + 9Q + 1lQ + 144 + 134 + llQ + llQ 
+ 

3 2 
74 + '.Q + 34 + 1 

I -c 
X 
7 

1 L. 
14 13 12 11 10 9 8 16 15 

Q + Q + 24 + 5Q + 74 + 9Q + 114 + 134 + 144 
6 5 4 3 2 

lsQ + 134 + 1lQ + 1lQ + 74 + 44 + 34 + 1 
i + 7  

i 

X 
8 

E 
, i  
i 

i 

. I-- L 

L 

c . 

f I 

20 19 18 17 16 15 14 13 
24 + 44 + 8Q + 1OQ + 154 + 214 + 264 + 314 

+ 
12 11 10 9 3 7 6 5 

354 + 374 + 374 + 354 + 324 + 274 + 214 + 174 
+ 

4 3 2 
134 + 74 + 44- + 34 + 1 

X 
9 I 

~ 

23 22 21 20 19 18 25 24 
4 + Q + 29 + 5Q + 7Q + 114 + 1SQ + 194 

244 + 304 + 344 + 37Q + 424 + 424 + 414 

+ 
17 16 15 14 i3 12 11 

10 9 8 7 6 5 4 3 2 
+ 

40(1 > 36Q + 324 + 279 + 214 + 174 + 134 + 74 + 4Q 
+ 

34 + 1 
i 

, -  .,/ ' 
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X 
10 

27 26 25 24 23 30 29 28 
24 + 44 + 64 + lOQ + 164 + 254 + 334 +.44Q 

- 
22 21 20 19 18 17 I -  -16 + 

574 + 694- + 8lQ + 91Q + 1014 + l08Q + 1100' 

12 11 10 9 
+ 

14 13 15 
1104 + 1094 + 1024 + 924 + 814 + 704 + 604 

6 5 4 3 2 
+ 

8 7 
46q + 354 + 274 + 194 + 134 + 74 + 44 + 34 + 1 

2 111 particular, we note that the degree of XZnWl (l*l*q) is n = Now 

2 
GP(2n,n) is also known to be of degree n . Thus we might look at: 

. .  . .  

0 

24 
6 5 A 3 2 

24 + 24 + 24 + 24 + 24 .+ .24 

9 8 7 6 5 4 13 12 11 10 
24 + 24 + 44 + 4Q + 6Q + 64 + 8Q + 64 + 64 + 60 

+ 
3 2 

44 + 24 + 24 

L I- 
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. .  
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22 21 20 19 18 17 16 15 24 + 24 + 44 + 64 + 8Q + lw + 144 + 164 

184 + 224 + 224 -+ 224 + 22Q + 204 + 184 + 164 

129 + 104 + 84 + 44 + 24 + 24 

+ 
9 a 7 14 13 12 11 10 

6 5 4 3 2 
-5 

This last sequence of polynomials, after we factor out 2q, is of 

degree n2 - 4 as is GP(2a,n-2). Thus we are naturally led to exasine 

.X<2*N-l>-GP (2*N,N) -2*Q*GP (2*rJ ,N-2) FOR N IN (2,3,4,5) 

0 

This 
2 n -  

..- . -_ .- - .  

0 i ,L 

.. L 

-. I .  4 
,' <-* .: 

1.::. 

.- ::. 

.--*:. .I 
C t :  
,I f 
-:. . .  . , /* 

24 
C.. ;.:.:.: ,I 8 

11 10 9 8 7 6 5 4 13 12 
24 + 24 + 24 + 29 + 24 + 24 + 24 + 24 4- 24 + 24 

. .. 4 . .  last sequence of polynomials, after wc factor out 

16 as is GP(2nBn-4). Thus we are naturally led to examine 

2q , is of degree .* . 
, .. 
1.:':. .'. , 4 
I.- @ .* 

+- 

.GP<2*N-l>-GP(2*N,N) -2*Q*GP(2*N,N-2)-2*Q**/b*GP(2*NsN-4) FOR N IN (4,5) 

a 

0 

c 
1 

i' 



It requires no great leap cf a Ramanujan's imagination 

(2.5) 

to guess that 

Similar formulas for Xzn(lyl,q), XZn(O,lYq) and X2n+l(0,1,q) are to be 

found in exactly the same way [7]. 

conjectures is 90% won. 

and a simple limit argument leads from (2.5) :o (2.3). 

this and many other results are given in [7]. 

From here the battle with the L-M-W 

Standard techniques allow one to establish (2.5), 

All the details of 

Agzin let me emphasize: the above example is SCRATCHPAD operating at 

its best. 

way; however, even his calculating skill would not have allowed him the eases 
accuracy and speed of the above procedure. 

Ramanujan might have approached the L-M-W conjectures in this 

Let us now turn to a problen of great interest to Ramanujan himself. 

It is, in fact, a problem which either he did not solve or he did not record 

in such a way that anyone is aware of his solution. A few months before 

he disd in 1920, Ramanujan wrote to G. H. Hardy that he had extended the 

classical theta functions to a larger class which he called "mock theta 

functions'' [ 271. Among thein he listed a set of "third order mock theta 

functions", e. g . 

2 
0. n 

(2.6) f!q) = 1 + c 2 -  

(1+q)2(1+q2)2. I .(l+q") nil 

G. N. Watson [27] subsequently provided the key to the study of 

namely, he proved 

f(q); 

* .  . 
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(2.8) 

/ 

Watson was unaware that Ramanujan had recorded (2.7) in the "Lost" Xotebook 

[5]. Raqanujan also described "fifth order mock thetd functions," e.g. 

(2.9) 

2 n 0. 

fo(q) * 1 + 2 - 2 n . 
nil (l+q)(lrq )...(l+q ) 

However an analog of (2.7) for 

Notebook, and Watson readily admits his inability to find such a formtila [271. 

Now the classical theory of q-hypergeometric serjes shows us that if 

fo(q) appears novhsre in Ramanujan's "Lost" 

n(n-I.) /2 
(2.10) An - (-l)"(lSr;")q BO 

("?'I 
1 (-lIn-jq n+j-1 )...(l-q n- j+2 n 

+ (l-q2n) c (1-q *-j+1) (1-q 

then 

n= 1 



by (2.10) and (2.11) using SCRATCHPAD, Bn If we define An in terms Q €  

then for 

(2.13) 

(4) A : 1 
0 

3 
(6) A : -+ 

Q + I  

6 

(7) A : 
' Q + 1  

10 - 44 
(8) A : 4 

-.Q - 1 
15 

(9) A : 
' Q + 1  

, . . . -  . .  
. .  

.I . 

I . .  - 
. .. . .  

.. . 

. .  
. . .  I 
:. . ., I 1 
. .  
I . -. 
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. .. . .. . '. 
IYI 



. ,  
. .  

_. 4’ 

394 

We can easily guess from the first few examples that (2.8) must be 

true. Let us now move TO (2.9). 

.A*> FCR N IN (0,1,2,3,4) 

A : l  
0 

7 6 5  4 3 
A : Q  - 2 4  - Q  + 2 Q  + 2 Q  
2 I 
- 

1 
11 8 6 I 15 14 12 

. s : q  - 2 4  - Q  + 4 4  - 2 4  - 2 4  
3 

26 25 22 21 18 3 13 10 
A : Q  - 2 9  + Q  + 2 @  - 2 4  - 2 4  +2Q\ + 2 Q  
4 

\, .A<* FOR N IN (5,6,7,8,9,10) 
, 

A 
5 

40 39 36’ 35 34 31 26 24 
Q - 2 4  + 2 Q  - Q  + 2 Q  - 4 4  + 2 Q  + 2 Q  

+ 19 15 - 24 - 2Q 



I t  

3 9 5  
I 
I 

A - 6 

57 58 53 51 50 48 47 42 
Q - 2 4  + 2 Q  - Q  + 2 Q  - 2 4  - 2 4  + 2 Q  

+ 
41 35 32 26 21 

24 - 24 - 24 + 24 + 24 

x 
7 

77 76 73 70 69 68 46 
Q - 24 + %Q - Q + 24 - 24 - 24 + 4Q6' 

+ 
54 52 45 41 34 28 - 24 - 24 + 24 + 24 - 24 - 24 

A 
8 

100 99 96 92 88 84 83 76 
Q - 2 4  + 2 Q  - Q  -24 + 2 Q  + 2 Q  - 2 4  

+ 
75 67 44 56 51 43 36 - 24 -+ 24 + 24 - 2Q - 24 + 24 +24 

A 
9 

126 125 122 117 116 113 110 
Q - 24 + 24 - 34 + 24 - 24 9 20 

+ 
188 101 92 90 83. 77 68 62 

24 - 44 + 24 + 24 - 24 - 24 + 24 + 24 
+ 

53 4s - 24 - 2Q 

i- 

I 

I t 

f 

t 
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Surely an examination of the firs: few values of A reveals nearly n 

nothing. 

is 0; 4egree n(3n+1)/2. 

However the sequence Xo,Xi, ..., X9 reveds first that prcbably An 

Furthermore a look at the firs: few terms of A.8 and Aq suggests 

-1 -4 -9 (1-2q + 2q - 2q + ...) n (3n+l) / 2 
An * q 

-q n(3n-1) 12 (a-zq-l + 2q-4 - 2q-9 + . . .I. 

Once this is observed only a little tidying up leads us to 

(2.14) An - q (-1) j -j’ 
n 

j=-n 
n(3n+1)/2 

n-1 2 n(3n-1)/2 (-l)jq-j 
-9 

j =-n+l 

results renimiscent of D. Shanks’ results on tancated theta series [24! [25]. 

Once we see that (2.14) is highly probable, it only requires the application 

of the techniques presented in [8] and some classicai results to prove (2.14). 

This then establishes that 

1 2 
4m+2 OI - m(5m+l)-j 

c (-1)J q2 (1-q 1. 1 (2.15) fo(q) 
j a-m n (l-qn) & I j /  

n=l 

a result definitely missed by Watson 1281 and quite probably missed by 

Ramanu j an. 



c 

K. 
i-  
h- 

'. Ramanujan's Methods. The work described in Section 3 has led us to 

Ramanujan, the selz-taught Indian genius. 

fame and tragically short life has been chronicled by Hardy 13.61, Ranganathan 

[22], Newman [19] and others. We are most interested here in descriptions of 

his methods of discovery. 

p. xxxv] 9n Ramanujan's abilities: 

The romantic :ale of his rise to 

We begin with a paragraph by G. H. Hardy [21; 

"It was his insight into algebraical formulae, transfor- 
mations of irfinite series, and so forth, that was most amazing. 
On this side most certainly I have never met his equal, and I 
can compare him onP3 with Euler or Jacobi. 
than the majority of modern mathematicians, by induction from 
numerical examples; all of his congruence prapetties of partf- 
tion§* for examples were discovered in this way. But with his 
memory, his patience, and his power of calculation, he combined 
a power of generalisation, a feeling for form, and a capacity 
for rapid modification of his hypotheses, that were often really 
startling, and made him, in his own peculiar field, without a 
rival in his day." 

He worked, far more 

Subsequently in discussing his previous comments, Hardy [16; p. 141 goes 

on to say: 

"I do not think now that this extremely strong language 
is extravagant. 
are finished, and that Ramanujan ought to have been born 100 
years ago; hut he was by far the greatest formalist of his time. 
There have been a good many more important, and I suppose one 
must say greater, mathematicians than Ramanujail during the last 
fifty years, but not one who could stand up to him on his own 
ground. 
give any mathematician in the world fifteen." 

It is possible that the great days nf formulae 

Playing the game of which h ~ ,  knew the rules, he could 

Fortunately for ut', the scrappy fragments of Ramanujan's last tortured 

year in India (wben he was dying) provide us some true images of the genius 

at work. In my article [5] on &he "Lost" iqotebook, I included two photostats 

from this remarkable document. The secmd page (which resembles perhaps 60% 

i. 397 
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Fig. 1. Power series computations and comparisons 
from Ramanujan 's "Lost" Notedook. 
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Fig. 2. A page of formulas from Ramanujan's "Lost" Notebook. 
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of the "Lost" Notebook presents finished formulas without proof. The first 

page shows numerous fragments of infinite series; surely this is Ramanujan 

as SCRATCHPAD. By the comparison, modification, and recomparison of these 

fragments, Ramanujan produced the numerous formulas making up this notebook. 

Occasionally he was led astray. For example, in one place he asserts 

- I 1 - x + x3 - x6 + ... = 
2 l + x + x  

3 4  1 + *+_x 
5 6  l + x  + x  

1 + ... 

This formula (at least the one implied) is false [6; $41 although both 
6 sides agree as power series up through x . 

4. The Significance of Ramanujan's Work. Befora we examine further how 

SCUTCHP.0 aids us in other problems coasfdered by Ramanujan, we present a 

short-hccount of the importance J f  some of Ramanujan's achievements. 

While Ramanujan's life, machematical education and nathematical methods 

are eccentric by modern day standards (indeed he forms the subject of a boak- 

length psychoanalytic study [lS]), nonetheless, his recearch has formed the 

birckground for many recent projects. We cite a few. 

4.1. Ramanujan's introduction of the function z(n) defined by 

and his numerous conjectures abaut T(n) (all discovered from the mpirical 
b' .... . 
1.' 

1 

. . 



approach touched upon in Section 2) led to many important studies by eminent 

mathematicians such as E. Hecke and L. J. Mordell. His final conjecture on 

this topic: 

(4.2) 

was proved by P. Deligne 1123 in his work that won him a Fields Medal.. 

4-2. Ramanujan's empirical studies sf divisibility properties of 

p(n) defined by 

(4.3) 

led to extensive work on modular forms. Finally in 1967 A. 0. L. Atkin [9] 

settled the last of Ramanujan's conjectures in this area. I I 
4.3.1 In the 1960's when huge numerical computations were becoming 

I 

feasible on machines, 
\ 

unlikely f bymula 

D. Shanks and J. W. Wrench [26] utilized the most 

for actually computing n to 100000 digits. This formula is one of those 

found by Ramanujan. 

4.4. R. J. Baxter won the BoItzmarrn Xedal in statistical mechanics in 

His solution 1981 for his solution of the hard hexagon model [lo; Ch. 141. 

relies in an absolutely critical way @a the RJgers-Ramanujan identities 

[3; Ch. VII]': 
i ... .'. i 



r 2 
0 

1 
(4.5) 1 + nil c & (1-q)(l-q )...(l-q n 1 = n-0 n (1-q 5n+l I(1-q 5n+4 1 

9 
2 n + n  1 

0 

5n+2 (4.6) 1 + Z = R 
n=l (1-q)(l-q 2 )...(l-q n ) n-0 (1-q )(1-q5n+3) 

Again we have formulas arising from Ramanujan's incredible empirical work. 

4.5. The Rogers-Ramanujan identities ana their extensions have formed an 

extensive field of mathematical research 111, [2], [3; Ch. VIII, ill]. This 

research has not only been of interest to classical analysts. Besides its 

surprising appearance in 

vided new questions (and some answers) in problems in algebraic-transcen- 

dental number theory [231 and bijective combinatorics (131. 

atomic physics alluded to above, it has also pro- 

There are a number of other areas of mathematics that have been heavily 

affected by Ramanujan's work. I chose the above examples because they high- 

light the discoveries Ramanujan made when acting as though he possessed a 

variation of SCRATCHPAD. 

5. SCRATCHPAD and the Rogers-hanufan identities. As we demonstrated in .- 

Section 2, SCRATCHPAD can be used by humble followers of Ramanujan to solve 

problems that left even Ramanujan puzzled. 

at its best in competition with Ramanujan. 

However Section 2 showed SCRATCHPAD 

Some applications require more 

~ adroitners. 

Let us take as a prototypical example the Rogers-Ramanujan identities 

tiiemselves. For a time around 1915 they were viewed as a major unsolved 

problem posed by Ramanujan (actually the then little-known L. J. Rogers 

had already proved them). 

Combinatory Aiialysis. Vol. 11, Section VIIS Chapter 111, [171: 

Here are the first two paragraphs of P. A. MacMahon's, 

. .  



"Hr. aamanujan of Trinity College, Cambridge, has suggesied 
a large number of formulae which have applications to the parti- 
tion of numbers. Two of the most interesting of these concern 
partitions whose parts have a definits relation to the modulus 
five. Theorem 1 gives the relation 

9 
+ ... X 

4 

2 4- 
X x 

I+-+- 2 A - x  (1-x) (I-x ) (1-x) (1-x ) (1-x3) 

2 i 
9 ... X 

+ 2 i (1-x) (1-x ) . * . (1-x ) 

1 
5mcl) ... (1-x) (1-x6) ( l-xll) .e . (1- 

3. 

where on the right-hand side the exponents of 
given by the congruences 

x are the numbers 
2 1 mod 5, P 4 riod 5. 

i 
! 

-. 

.. 

I r -  

,a .L 
. i  

This most remarkable theorem has been verified as far as 
by actual expansion so that there is --_ 1 1 the coefficient of 

been established.'' 

xa9 - -  practically no reason to doubt its truth; but it has not yet - .a 
I 

.. I . .  

Clearly MacYahon has checked this formula as far as 89 x by hand a 
. .  ..  

a Let us do this in SCRATCHPAD. 
. .  

We must first get everything into polynomials. In particular, since 

3 1 .) 1 + x + IC2 + x +..., (5.1) 1-x 

we may truncate the geometric series and approximate 

.... .. 
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4 0 4  

e 

J 
FLOOR( --- ) 

n- 1 
IC K*J --- --- 

Pn(2'X,4 = I I > z x  
I I --- 
J=O K=O 

:. I . '  

. a .  .-. . - .  

.-. - 

. .  
.. .. . 
. .  
.. .-. I 

--. Y 
. .  

.-a 
" .  
-: 
1 .  .. . 
. .  
. .  
c- - 
:a . 

.. 

. .  Thus the first 100 terms of the left side of (5.5) are given by 
. .  

.ASYMP(Q) - 100 

. SUM~~-O;S>(Q**(N**2)*P~>(Q, Q,100-N**2)) 

687479" + 63843~'~ + 59239~'~ + 54979Qg6 + 50974~'~ 

47276~'~ + 438O2qg3 + 4 0 5 9 4 ~ ~ ~  + 37582~" + 3 4 8 0 6 ~ ~ ~  
+ 

+ 
3 2 1 9 6 ~ ) ~ ~  + 29796Q88 + 2 7 5 4 0 ~ ~ ~  + 25466q86 + 235199 85 

+ 
2 1 7 3 2 ~ ~ ~  + 2 ~ 1 0 5 0 9 ~ ~  + 18:12Q82 + 17O66Q8l + 15742QBo 

+ - -  
.. . .  . -  . .  

I... - . ... . .  
14498~~' + 13363~~' + 1 2 2 9 4 q ~ ~  + 1 1 3 2 2 ~ ~ ~  + 1 0 4 0 6 ~ ~ ~  + 9 5 7 3 ~ ~ ~  

8790973 + 8080Q72 + 7409Q7' + 68049" + 6233Q6' + 5717Q68 

6 2  5231167 + 4794Q66 + 4 3 8 0 ~ ~ ~  + 4 0 1 0 ~ ~ ~  + 3 6 5 9 ~ ~ ~  + 33454 

3O49Q6l + 2785Q60 + 2533~~' + 2 3 1 1 ~ ~ ~  + 2iOOg57 + 1 9 1 3 ~ ~ ~  

- + .. 
*. 

a. 
0 .  

%y.' I-. 

,'.:.*. - .  

+ c -  

. .  
e-.'.'. 
*.- + 
-.* 

. .  + 

+ 
961Q4' + 871q48 + 

465q42 + 415Q4' + 
+ 

+ 
2 1 1 ~ ~ ~  + 189Q34 + 

+ 

783Q47 + 7 0 9 ~ ~ ~  + 637945 + 575Q45 + 5 1 5 ~ ~ ~  

374Q40 + 333Q3' + 299~'~ + 266Q37 + 239Q36 

167Q33 + 1 4 9 ~ ~ ~  + 131Q31 + 117Q30 + 1024 29 

91Q28 + 79927 + 70Q26 + 61Q25 + 54Q24 + 4 6 ~ ~ ~  + $1~'' + 3 5 ~ ~ 1  
+ .. . 

-I. 



31Q20 + 26Q19 + 23QI8 + 19~‘~ + 17QI6 + 1 4 ~ ~ ~  + 12Q14 + 
+ 

7 6 5 4 3  
+ 7Qll + 6Q10 + 5Q9 + 4Q8 + 3Q + 34 .+ 24 + 24 + Q 

+ 
QL + Q -- 1 

The first 100 terms of the right side of (4.5)are then given by 

95 

4 7 2 7 6 ~ ’ ~  + 4 3 8 0 2 ~ ’ ~  + 4 0 5 9 4 ~ ’ ~  + 375824’’ + 34806~” 

3 2 1 9 6 ~ ~ ’  + 29796Q88 + 2 7 5 4 0 ~ ~ ~  + 25466Qg6 + 23519~” 

2 1 7 3 2 ~ ~ ~  + 2 0 0 5 0 ~ ~ ~  + 18512Qa2 + 17O66Qs1 + 15742Q80 

14498Q7’ + 1 3 3 6 3 ~ ’ ~  + 1.22940~~ + 1 1 3 2 2 ~ ~ ~  + 1 0 4 0 6 ~ ~ ~  + 9573Q74 

8 7 9 0 ~ ~ ~  + 8080Q7‘ + 7 4 0 9 ~ ~ ’  + 6804Q’’ + 6233Q6’ + 5717C)68 

5231Q67 + 4794Q66 + 4380q6’ + 4010Q64 + 3659Q63 + 3345462 

68747Qg9 + 63843Qg8 + 5 9 2 3 9 ~ ’ ~  + 54979Qg6 + 509744 
+ 

+ 

+ 

+ 

+ 

+ 

+ 
3o4gq6‘ + 2 7 8 5 ~ ~ ’  + 2 5 3 3 ~ ~ ’  + 2311Q58 + 2100QS7 + 1913Q56 

1 7 3 5 ~ ~ ~  + 1 5 7 9 ~ ~ ~  + 1 4 2 9 ~ ~ ~  + 1 2 9 9 ~ ~ ~  + 117405‘ + 1O65Q5O 

961q4’ + 871Q4’ + 783Q47 + 7 0 9 ~ ~ ~  + 637Q4’ + 575Q44 + 5 1 5 ~ ~ ~  

+ 

4- 

+ 
4 6 5 ~ ~ ~  + 4 1 5 ~ ~ ’  A. 374Q4‘ + 333Q39 + 299Q3’ + 266Q37 + 239Q36 

+ 
211035 + 189Q34 + 167Q33 + 1 4 9 ~ ~ ~  + 1 3 1 ~ ~ ’  + 1l7Q3O + 102Q2’ 

485 

I . c  
+ J  i 
I 0. 

.’. i i 
. .  . - ,  . .  
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6. Conclusion. The power of computer algebra in handliag many 

mathematics problems has been amply demonstrated in many important 

articles, e.g. [20], [29]. We have tried here to show that much of 

the work of Ramanujan is facilitated through the use of a computer- 

algebra language like SCRATCHPAD. Indeed one feels at times in 

studying Rananujan's work that he was a humanverslon of such a 

language. 

I close with the anecdotal recounting of a 

and an Indian acquaintance given in Ramanujan: 

[22; pp. 25-26]: 

cunversation between Ramanujan 

The Man and the Mathematician 
-I_-- 

"Sandow: Ramanju, they all call you a genius. 

Ramanujan: What! Ne a genius! Look at my elbow, it will tell you a 

story. 

Satdow: 

Ramanujan: 

What is all this Ramanju? Why is it so rough and black? 

My elbow has become rough and black in making a genius 

of me! Night and day T do calculation on slate. It is too slow too look 

for a rag to wipe it out with. 

with my elbow." 

I wipe out the slate almost every few Einrttes 



. . .  . .  . _. . e . .  . . .  .- . . .  . . . .  
. .  ~. 407 -4 

References 

1. H. L. alder, Partition identities - from Euler to the present, 
her. Math. klonthly, 76 (1969), 733-746. 

2. G. E. Andrews, A general theory of identities of the Rogers- 
Bamnujan type- Bull. Amer. Math. Sac., 80 (1974), 1033-1052. 

3. G. E. Aidrews, The Theory of Partitions, Encyclopedia of Mathematics 
and Its Applications, Vol. 11, Addison-Wesley, Reading, 1976. 

4. G. E. Andrews, Partitions, q-serles and the Lusztig-Macdonald-Wall 
conjectures, 1nver.t. Math., 4 (1977), 91-102. 

5. G. E. Andrews, An introduction 20 Ramanujan's "Lost" notebook, 
Amer. Math. Monthly, 86 (1979), 89-108. 

6. G. 'E. Andre.de. Ramanujan's "lost" notebook: 111. The Rogers- 
Ramanujan continued fraction, Advances in Math., 41 f1981), 186-208. 

7. G, E. Andrews, On the Wall polynomials and the L-M-W conjectures, 
Australian J. Math., izo appear). 

8. C. E. Andrews, Yultiple series Rogers-Ramanujan type identities, 
Pacific J. Math., (to apTear). 

9. A. 0. L. Atkin, Tsoof of a conjecture of Ramanujan, Glasgow Math. 
J., 8 (1967), 14-32. 

10. R. J. Baxter, Exactly Solved Models in Stztistital Mechanics, 
Academic Press, New York, 1982. 

11. D. M. Bressoud, Analytic and combinatorial generalizations of the 
Rogers-Ramanujan identities, Memoirs of the Amer. Mayh. SOC., 24 (1980), 
No. 227. 

12. P. Deligne, La Conjecture de Weil. I, I.H.E.S., 43 (19741, 273-307. 

13. A. Garsia and S. Milne, A Rog?rs-Ramanujan bijection, J. Coabinatoriai 
Theory (A), 31 (1981). 289-339. 

14. J. H. Griesmer, R. D. Jenks, D. Y. Y. Yun, SCRATCHPAD User's Manual, 
I.B.M. Thomas J. Watson Research Center, Yorktown Heights, N. Y., June, 1975. 

15. J. H. Griesmer, R. D. Jenks, D. Y. Y. Yun, A set of SCRArCHPAD examples, 
IBM Thomas J. Watson Research Center, Yorktown Beights, N. Y., April, 1976. 

16. G. H. Hardy, Ramanujan, Cambridge University Press, London and New 
York, 1948 (reprinted: Chelsea, New York). 

17 * P A. Madahon, Combinatory Analysis, Vol. 11, Cambridge University 
Press, London and New York, 1916 (reprinted: Chelsea, New York, 1960). 

. _  . . 
. .  

' a  
. . .  

* *  

. .  
4.- 

L I.. ...... _ . .  . - .  . ;-. .... . .-. _-. , 
. . . .  
. . -  . '. . * _ I  
. .'. . - -  - -  .... . .  
. .  . . -  . . .  

k L  _ A I _ +  - 8 ... 
, .  : : . .... : 
.... 

. . .  . . . .  
a ,  . .  

. . _  . .  
. .' . 
. . .  ..... -. 

- %? . .  
'0. 
. . ,. . .  

CLI 

..9 
, . . - .  - -  f.. ...... 
, .-*-:.-. 
.*- ..' .* 

*,-.. 1- - 
- .., . 
..:'..-I.. 
...... 
.- * .\ 
rc.-w 
YI - 
. .  
. *  .: .' . ... . .  

*. 

.*.'. 
. .  . .  
:.. 
.. . .  . .  ... 
: .* 
.. ..- 

w- 
. .  . .  . . .  .. . .  ..... ........ 

-.tam. :.*, 
..**:.:;*. 
;: ..- .;_. , .  . -  .... 
-e --: 
. .  

http://Andre.de


408 

I 

18. A. Nandy, Alternative Sciences, Creativity and Authenticity in Two 
Indian Scientists, Allied Publishers, New Delhi, 1980. 

19. J. R. Newman, The World c f  Mathematics, Vol. I., Simon and Schuster, 
New York, 1956. 

20. R. Pavelle, M. Rothstein and J. Fitch, Computer algebra, Scientific 
American, 245 (1981), No. 6, 136-152. 

21. S. Ramanujan, Collected Papers, Cambridge University Press, London, 
1927 (reprinted: Chelsea, New York, 1962). 

22. S. R. Ranganathan, Ramanujan, The Man and the Mathematician, Asia 
Publishing House, Bombay, 1967. 

23. L. B. Richmond and G. Szekezes, Some formuias related to dilogarithms, 
the zeta function and the Andrews-Gordon identities, J. Australian Math. Soe. 
(4), 31 (1981), 362-373. 

24. D. Shanks, 
Math. SOC., 2 (1951), 747-749. 

A short proof of an identity of Euler, Proc. Mer. 

25. D. Shanks, Two theoreas of Gauss, Proc.. J. Math., 8 (1958).609-612. 

26. D. Shanks and 3. W. Wrench Jr., Calculation of n to 100000 
decimals, Math. of Comp., 16 (1962), 76-79. 

27. G. N. Watson, The final problem: an account of the mock theta - functions, 3. London Math. Soc., 11 (1936), 55-80, 

28. G. N. Watson, The mock theta functions, If, Proc. London Math. SOC. 
(2) , 42 (1937), 272-304. 

29. D. Y. Y. Yun and D. R. Stoutemyer, Symbolic Mathematical Computa- 
tion Encyclopedia of Computer Science and Technology, Val. 15 Supplement, 
Marcel Dekker, New York, 1980, 235-310. 

THE PENNSYLVANIA STATE UNIVERSITY 
UNIVERSITY PARK, PENN,ILVANIA 168G2 

. -.. _- -. *..-.-. . .---_- - - . - . I  _-.-. - .-.-. 



. . .  

The New SCRATCHPAD Language and System for Computer Algebra 

Richard D. Jenks 

Computer Algebra Group 
Mathematical Sciences Department 

PBPI Research Center 
Yorktown Heights, New York 10598 

I ; I,' 

i 
I .  

: , 

409 

During the past seven years, IBEl Research has been engaged in the design 
of a new implementation of the computer algebra system SCRATCHPAD. This 
system represents a new generation of computer algebra systems with a 
general-purpose programming language having generic opnrations and 
extensible, parameterized, and dynamically constructible abstract 
datatypes. 

The system provides a single high-level language with an interpreter and 
compiler. This language can be used both by the naive user for convenient 
interactive mathematical calculations and by the advanced user for the 
efficient implementation of algorithms. Although especially designed for 
computer algebra, the language provides data abstraction and hiding 
mechanisms which generalize those found in such languages as CLli and Ada. 

The system is semantically built on three concepts: categories, domains, 
and packages. Categories (e.g. Group, Ring, Set) name a set of operations 
together with corresponding attributes (such as "commutative") that the 
operations are asserted to have. Domains (e.g. Integer, Matrix, 
BalancedBinaryTree) provide a set of functions which implement 
categorical operations so as to satisfy the required attributes. Packages 
are clusters of functions, generally parameterized by categories and/or 
domains (e.g., a package for solving any system of multivariate polynomial 
equations over a field by computing a Grobner Basis). As a consequence, 
the new SCRATCHPAD system will provide facilities similar to old 
SCRATCHPAD except that those for this system will be very much more pen- 
era1 (for example, it will have a package for integrating rational func- 
tions over any field of characteristic zero). In addition, users sf the 
new system may construct and compute with any algebraically meaningful 
domain (such as l'matrices of polynomials in x,y with integer coefficients 
extended by the square root of S", or, in general, matrices over any 
ring). 

Another advantage of the new system is its extensibility. In previous 
SCRATCHPAD, top-level user code was interpreted and therefore ran sig- 
nificantly slower than built-in system code. Extensions could otherwise 
be made only by system experts descending into LISP; unfortunately, these 
extensions were exceedingly susceptible to error due to a preponderance 
of system-wide global variables. In new SCRATCHPAD, all system-&fined 
categories, domains, and packages are accessible for user enhancement, 
modification, and re-compilation. Since the same language is used both 
by users and system designers alike, no performance penalty is paid for 
usex extension. Algebra code is written in modular components with no 
global-variable interdependencies. Components are linked together at 

! 

i 

i 

r 
I 

'-:! 



run-time with suitable checking for algebraic consistency as specified 
by the language (for exasple, it is not possible to create a matrix over 
a coefficient domain which is not a ring; also, an attempt to compute the 
determinant of a matrix using an algorithm for which multiplication had 
been declared to be commutative will be signaled as a semantic error if 
multiplication in the coefficient ring of the matrix is non-commutative). 

Currently implemented domains are: number domains: short integers and 
bignums, floats and bigfloats, rational numbers, gaussians (integers, 
complex numbers), algebraic numbers, integers mod p, factored integers, 
and integer Eubdomains (positive-integers, non-negative-integers, even- 
integers, etc.); other atomic domains: strings, symbols, and general 
expressions; data structures: lists, vectors, records, unions, and 
balanced-binary-trees; polynomial domains: univzriate (sparseldense in 
exponents/coefficients, named/unnamed variables), multivariate 
(sparse/dense in coefficients, named/unnamed variables); matrices: gen- 
eral, rectangular, and square; gaussians and quaternions over any ring; 
algebraic functions; integral basis; direct products of any domain; and, 
fractions (quotient-fields and general localizations). 

Currently implemented algebraic packages include those for: 
factorization of integers; factorization of polynomials: univariate over 
finite field, univariate/multivariate over integers (using a generalized 
Hensel lifting package); rational function integration; real and complex 
root finding; and, solution of linear and polynomial equations. A full 
implementation of integrdtion (transcendental and algebraic cases) and 
multivariate power series is expected to be completed this year. 

The interactive interface for new SCRATCHPAD bears strong resemblance to 
its predecessor. Users can use the system as a symbolic desk calculator, 
write rewrite-rules, and compose functions interactively, generally 
without type declarations. Essentially, 

interactive langtiage = programming language - restrictions 
of mandatory type-declarations. The notion of "map" resembles a similar 
concept in SMP and is used to represent rewrite-rules, finite/infinite 
sequences, and function definitions at top level. System commands provide 
for various iteractive utilities such as reading/writing of input/output 
files, editing, tracing, querying interactive databases, and on-line 
documentation. User input/output is stored on a user's history file for 
later retrieval. An "undo" command enables interactive backtracking in 
history to a previous point in the interactive conversation. 

SCRATCHPAD is an experimental program in a research stags of development. 
It is expected to become available to a limited number of users for test 
and evaluation by agreement with IBM Research over CSNET in Fall 1984. 
The system was initially demonstrated at the April 1984 conference at M U  
entitled "Computer Algebra as a Tool for Research in Mathematics and 
Physics". A booklet of exam>les and a language primer handed out at this 
meeting can be obtained by writing to the author. 
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The design of the new SCRATCHPAD system is the product of many people, 
notably the author, James H. Davenport (Univ. of Bath), Barry M. Trager 
(IBM Research), David Y. Y. Yun (SMU), more recently, Victor S. Miller 
(IBM Research), and involved consultations early-on with David Barton (U. 
of Cal., Berkeley) and James W. Thatcher (IBM Research). Those respon- 
sible for its implementation include many of the sbove, Scott C. Morrison 
(U. of Cal., Berkeley), Christine J. Sundaresan (IBM Research), Robert 
S. Sutor (IBM Research), Josh Cohen (Yale University), Patrizia Gianni 
(Univ. of Pisa) , and Michael Rothstein (Kent State University). 
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ABSTRACT 

The objective of this paper is to ilustrate that symbol nianipulation systems can 
readily hafidle many of the typical symbolic calculations arising in the formulation of 
problems in kinematics and mechanical systems. 

The paper consists of two parts. First, w e  discuss the use of MACSYMA in con- 
nection with the algebraic manipulations involved in transferring a body from one po- 
sition to another in space, with particular reference to Kodrigues and Euler parameters 
and successive rotations, and an example involving quaternions. Second, w e  indicate 
how MACSYMA can be used to set up dynamical equations for the Stanford rnanipu- 
lator arm, and a spacecraft problem. 

INTRODUCTION 
Kinematics is a basic tool for the analysis of rnechanisrns and mechanical systems. 

Until recent!y, the most c o m m o n  approach has been to use vectors and Euler angles. 
More recently, other approaches have been gaining in popularity because of comput- 
ers. W e  illustrate by several examples that these approaches are particularly amenable 
to symbolic manipulation. The immediate objective is limited, namely io indicate that 
several methods of representing rotations including Rodrigues and Euler parameters, 
and quaternions can be handled by MACSYMA by a unified approach that would 
seem to have some elements of novelty. But also it should be clear that our examples 
suggest a different approach to dynamical problems such as those considered by 
Branets and Shmyglevskiy I31 using quaternions and Dimentberg [41 using the screw 
calculus. The nearest connected account of the type of approach w e  have in mind is 
the mss. I121 by Nikravesh et al., but a systematic use of computer symbolic manipu- 
Lation would certainly affect the detailed treatment. This is the first part of the paper. 

It is clear that the complexity of mechanical systems is increasing to the point 
where symbol manipulation must play an important part in their formulation and solu- 
tion. W e  illustrate by two dynamical examples, one involving a robot arm, the other a 
spacecraft problem. The main teason for choosing these particular examples is that 
the equations have been formulated and published in quite a detailed form already. 
By ccmparing our treatment with those already publishzd, the reader will be able to 
make a judgment for himself concerning the usefulness of MACSYMA, and also how 
thinking in terms of symbol manipulation does change one's approach to the formula- 



tion of the equations. W e  give the MACSYMA programs in detail in Appendices in 
order to encourage users of other systems to do the same. 

KINEMATICS EXAMPLES 

1. The Representation of Rotation by Orthogonal Matrices 
W e  remind the reader of some standard results. W e  work in terms of matrices 

(this can be converted into vector interpretations as appropriate) using lower case for 
column matrices and upper case for rectangular matrices with more than one column. 

A rotation of a body with a fixed point by an angle 6 around an axis defined by 
the unit column matrix n = [nl,n2,n31T transfers a point r =  [x,y,zIT into a point r'= 
[X'J',~']~ by (cf. Bottema and Roth [l] p. 59) r' = Ar where (see Figure 1) 

(1) A = [ C O S ~ I  + (1 - CCS$!~~G~ + si!$N! , 

(2) 1 0 -n3 

-nz nl 0 

(Note that N corresponds to the vector n x r, and I is the identity matrix). 

Figure 1. Rotation of a body with a fixed point. 

The matrix A is orthogonal. W e  discuss three different ways of proving this using 

. .  

t 
*' , 

4 L  

M A C S Y M A :  -4  ~ 

i The simplest snd most direct way is to express (1: in component form and. 
simply check by brute force that ATA - I. . F  

* !  

Alternatively w e  could use MACSYMA interactively as follows. It is easily 
checked that -I 

(3) 
W e  use MACSYMA to form ATA , will give nine terms involving nTN, nnTnnT, 

: j 
nTn = I, NT = -N, nTN - 0, N n  = 0, Nz = nnI-1 

* -  r 
.* j . . * L  . I- N2 etc., and w e  use SL'BST to simplify and finally derive A ~ A  - 1. 

W e  can use TELLSIMP to build the rules (3) into MACSYMA. Then 
MACSYMA program can be written to produce the result 1 for A'A. 

. . . _  . . -  . . . . .  . .  

. I- t 
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Method a) is ciearly simplest. Method c) is surprisingly tricky in MACSYMA be- 
cause in addition to (3) w e  have to distinguish between scalars and matrices, and set 
proper switches. For verifying that AAT- I, the simplest method is to use a) not e), 
but for more complicated problems. method d soon produces alzehraic expressions of 
ho:refi&xs wm~!e>r.Ity. -4s ~r&!e% size hcreases, method c) will become preferable. 
In this paper, w e  have used the component form but; further developments may re- 
quire the more abstract approach. 
2. Rodrigues Parameters 

W e  introduce these by stating the result that any 3 x 3 orthogonal matrix A can be 
expressed in the following product form by the Cayley-Klein decomposition which 
says that these exists a skew-symmetric 3 x 3 matrix 8 such (cf. Bottema and 
Roth ill, p. 10): 

(4) 
This tells us immediately that B = (A - I)(A + 1I-l. MACSYMA gives us directly 
(Appendix I): 

(5) 

A = (1 - B)-l (I + E) 

1 
2 b, = n, tan - 4 i = 1,2.3 

T h e  b, (i = 1,2,3) are the Rodrigues parameters. 

cf.. (Bottema and Roth [11 p. 148): 
W e  first express A in terms of the Rodrigues parameters. W e  find (Appendix I1 

- 
(6) 

where A = 1 + bf + b] + b]. Using the notation A - lo,,], it  IS clear from this result that: 
I 1 + b: - bf - b] Z(b1b2 - b3) 2(blb3 + b2) 

A = [ 2(b*bl + b3) 1 - b: + b$ - bf 2(b2b, - bl) 
A 2(b3bl - bl) Z(b3b2 + bl) 1 - b( - bf + bj 

bl = (a32 - a d / d  
b2 = (a13 - ajl)/d (7) 
b3 9 1 ~  (ajj - al2)/d 

With - 1 + a l l  + aZ2 + a33. Having established the necessary background, w e  derive 
typical basic results by means of M A C S Y M A .  The reader should compare our deriva- 
tion with those of, for example, Bottema and Roth [I], Gibbs 151, and 
Dime ri t berg 141. 

Consiber the result of first rotating a body round an axis n ty angle 4, then around 
a second axis n' by an angle 4'. Euler's theorem tells us that the result is equivalent to 
a rotation by some angle 6'' round some axis n". In matrices, if the matrices 
corresponding to the& three rotations are A, A', A" and w e  start with il point r, this is 
first transformed into r'= A r, and then r' is transformed into r" = A'r'. W e  also have 
d' - A"r SO that 

A" - A'A 
The Podrigues parameters corresponding to n", 4" are given by (7) where a,, are the 

.._ 

-- a 

. .  

1 .  



elements of A". But these are given in terms of the first two rotations by the the 
corresponding elemnts of A'A .These matrix relations are carried out by MACSYMA in 
Appendix 111, giving the result: 

. .  I 

b + b' - B'b 
I - bTb' b" -- 

where B is related to b as N was to n in (2). 
Note that this is a straightforward derivation that would be laborious to carry out 

by hand, as compared with derivations carried-out in the literature that depend on 
-. 

special methods. I '  

- .  --. -. ! 
. .  
. r  

3. Euler Parameters 
Instead of using Rodtigues parameter b,, it is often convenient to use Euler param- 

(9) 
eters C, related to b, by (Bottema and Roth [11 p. 150) 

b;= CJCO . Cd + c: + cf + cj = I 
The relation (5) then gives 

Although it would seem that the Euler parzmeters are straightforv ard homogene- 
ous Sorrns of the Rodrigues parameters, it turns out that some relations are, expressed 

O n e  example is the Euler parameter analog of (8) for two successive rothons. To 

I much more simply in terms of the Euler parameters. I 

derive this, substitute b = Jco , b' - c'/cO in (8) which gives: 1 

' ( 1 1 )  
'\ 

co'c + q,c' - cc 
Cgq)' - cTc' b" 

l 

W h e n  this is written out in detail w e  find that by introducing I 
' (12) c,;' - CD(C0 - CI'CI - c2'q - c:'q 

CI" = C,'Cg + C0)CI - q'c2 + C2'Q I 

cz" - CZ'C" + C,'CI + C0)CZ - CI'E) 
c.?" - CJ'C0 - CZ'CI + CI'Q + C(,'C3 

equation (11) can be written in the simple form 
b' - CI'/COI$ (13) 

In Appendix IV w e  check by MACSYMA that if 0,; + ctc - 1, (c,,')? + (c'j'c - 1, then 
(c,,")~ + (c")~c = 1, which is a well-known result due to Eulers. This result and (12) -. f 
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10 -c1 -c? -c3- 

c2 

'CI 

rean that c~,cI".c~',c3" are the Eulers parameters corresponding to the total rotation. 
In the literature, the result (12) is often derived via quarternions (e.g. Bottema 

and Roth [l], p. 150). It is of some interest to express this approach in the present 
context of Euler parameters and matrices which can be done without mentioning 
quaternions explicitly. Introduce 7 and r defined as follows: 

(14) 

If 7'~' are the corresponding matrices with E' in place of c, and similarly for y",r", 
w e  define the product 7'7 by (compare the remark following (2)): 

which says exact!y the same as (12). W e  first note that if w e  define 
y - l  = [C~,-C~.-C~,-C~] then yy-l = y-ly = [1,0,0,OIT. It can be verified (e.g. by the 
MACSYMA program in Appendix VI that introducing p = ir~.r,,rz,rJ~, r - [r,,rz,r31T and 
p'.r' correspondingly, then if w e  form ypy-l, and denote the result by pl, item 

i 7 -jll , r-1:; c3 co -cI 

co -c1 -q -c3 

co -c3 cz 

c3 1 1 E3 -c2 CI co 

Y'Y - r'7 y " = 

[$I = I 1 O A  "]I 4 
Where A is precisely the matrix that appeared in (lo), Le., ypy-I represents a rota- 

tion. This is our version of the standard quaternion theorem on rotatio?, derived of 
course from a completely different point of view (cf. Brand [21, p. 417). A second ro- 
tation would give p"- y'p'(y')-I, and combining the rotations leads to p"- 
~'yp(y')-'y-~, i.e., if 7'' represents the combined rotation then 7"- 7'7, which is identi- 
cal with (12). 

Still another way of obtaining (12) is suggestsd by the discussion of Cayley-Klein 
parameters in Bottema and Roth ((11 p. 5291, namely that a result corresponding to 
equation (9.8) in that reference should hold for Euler parameters. W e  introduce the 
no tat ions: 

. 
y z -x 
2 - y ;  0 

* q -  0 x y  z 

v = col + s 
v -  I =  c,,I - s 

Y z o - x  
z - Y x  0 

-x 0 z -Y 
0 X Y  2 

The MACSYMA program in Appendix VI does the following. We form VqV-I and 

I .  ... 
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equate this to Q. This gives 16 equations. However, it is easily checked by MACSY- 
M A  that, in fact, there are only three independent relations involving x.y,z and X,Y.Z 
which can be written in the form 

Aq- Q 
where A is exactly the A given in (10). The implication of this, in connection with re- 
peated rotations, is that if q corresponds to r and Q to r' defined in zhe second para- 
graph of Section 2 and the corresponding V is denoted by V, then 

- 
L 

c -- 
..8 

...' 

VrV-' = r' 

Similarly, the second rotation gives V'r'V'-' = r" and the rotation from the initial posi- 
tion to the final position gives V"rV"-' - r". Eliminating r' w e  have V"r(V"1-I = 
v'vrv-lv'-l so that finally 

V" V'V (14) 

and this is precisely equation (12). 
4. A n  Example Involving Dual Quaternions 

The discussion in the last two sections was concerned with the rotation of a body 
with a fixed point and involved only three independent parameters. The general mo- 
tion of a body involves displacement, as well as rotation, and requires six independent 
parameters. Rather than extending the methods of the last two sections, w e  illustrate 
how MACSYMA deals with a rather different approach to kinematics, namely via 
quaternions, by considering a calculation in a classic paper by Yang and Freudenstein 
([141, 1964) dealing with a spatial four-bar mechanism. 

In Figure 2, M A  and NB are two nonparallel and nonintersecting lines. MN is the 
c o m m o n  perpendicular. Let a,b denote unit vectors in the direction of MA, NB 
respectively, and let rd.rb denote the vectors OM, 0%. W e  introduce the quaternions 

i 

. .  . .  .~ . .  . -  . . .. . .  . .  

. .. & -  .- . - ._- 
I 

I 

i = a + c(r,xa) , b - b + c(rbxb) 
where Q is a symbol with the property that c* - 0. Note that this implies, for example, 
that if i = 61 4- cs then 

(IS) 
As discussed by Yang et al. [141, the relative shift between i and b can be expressed 

sin6 - sine + ascos~ , cosi - cod - cssine 
as 

b=Qli, i-60 
where Q is a dual quaternion (see [141, (22, 23)). Successive application of farmulae 
of this type gives rise tG d loop closure equation for the mechanism of the form: 

(16) A(il)sini4 + B(il)cosi4 = C(iI) 
where 

A(;!) - sin; IzsinE,4sin61 

i 

,. 
t 
L -  
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G41 = a41 + ec~4l , e4 - e4 + es4 
It is then clear that (15) can be reduced to the form 

P + EQ= R + rS 

where P, Q, R, and S are independent of E. It is required to find the explicit form of P, 
Q, R, and S. To calculate this by hand is extremely laborious, but straightforward in 
MACSYMA. The program is given in Appendix VII. 

Figure 2. Relative position of two line vectors. 

TWO EXAMPLES IN DYNAMICS 
5. Equations of Motion for the Staraford Manipulator Arm 

There are a number of ways to set up dgnamical equations for robo: manipulator 
arms (see Paul [131). Kane-Levimon [91 have given an example of settirig up dynam- 
ical equations for the Stanford manipulator. Oiir objective is lo reproduce these equa- 
tions from an algorithmic point of view, wit,hout having to do by hand the kind of ex- 
tensive manipulation given in that paper. The method can help us to s::t up similar 
sets of equit:ions for any manipulator automatically. thereby reducing the labor. We 
also show that MACSY MA can simplify the Kane-Levinson end-result, reducing the 
numbers of arithmetic operations required to complete numerical results. 

W e  consider the Stanfold nianipulator arm (Paul [131), a six-element, six-degree- 
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of-freedom manipulator. A schema ic representation of this arm is gi\*en in Figure 3, 
from Kane-Levinson [SI, where nore details can be found. The six bodies are desig- 
nated A, .... F. Body A can be rotated about a vertical axis fixed in space. A supports 
B which can be rotated about a horizontal axis ffxed relative to A. The figure should 
now be self-explanatory, the joint connecting B and C being translational, and the 
remaining joints rotational. 

c*L-- c 

Figure 3. A schematic representation of Stanford manipulator arm. 

4,. ... q,, are generalized coordinates characterizing the instantaneous canfiguration 
For the plilne - qs are zero. 

We choose coordinate axes as follows. nl, n2, n,, are unit vectors fixed in space as 

of the b,rms, the first five being rotational and q6 translational. 
configuration of the zrms as diiiwii in Figurc 3, it IS assumed that ql, 

4 1 9  
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indicated in Figure 3, n,, n2, lying in the plane of the paper. a!, a2, a3 are unit vectors 
fixed iri the arm A which coincide with nl, n2, n3 when the arm is in the configuration 
of Figure 3. Similcrly, b,, b2, b3 are unit vectors attached to the arm €3 and similarly 
for C, D, E, and F. 

W e  give a mathematical description of an algorithm fw setting up the dynamical 
equations. This is essentially the algorithm described by Kane-Levinson [91, but orga- 
nized in a somewhat different way in order to facilitate implementation on MACSY- 
MA. The stages and details of the MACSYMA program which are in Appendix VIII, 
parallel the mathematical description that follows: 
stage I: .Set up angular velocities: 

Rotations about XJ,Z axes can be described by orthogorl,! r=.dLiices of simple form 
as discussed in detail by Paul [13], Chapter 1. For instance, rotation by an angle 8 
about the x-axis involves ([lSl, p. 15) 

Let RI, ... R5 denote matrices corresponding to rotations ol, ..., e5 about axes, y,x.y,x,y 
respectively in the local coordinates fixed relative to arms A, B, C, D, E, F. Let ql, 
...- q5 denote angular velocities around y,x,y,x,y axes respectively. These are vector 
quantities represented by matrices that w e  denote by wI, ..., w5. For instance, wI -= 
lO,q,.Ol etc. Similarly, for the linear velocity q6. 

Next introduce wA, ..., w", the angular velocities of A, ..., F in our Newtonian 
frame of reference, but with components expressed in the local coordinate frame of 
reference. For example: 

(17) 
i 
1 I wI) - [u,.u2,u,l means: w" = u,dl, + ud2 + u3& 

The algorithm for computing w4, ..., wF is given by: I 

0'' = wlRl '\ 

\ 

I 

If these formulae are used as :hey stand, the expression for dF in terms Gf 4, will be 
complicated. The compiexity can be reduced ushg a method due to Kane- 
Levinson [91. The U, that occur in (16) can be expressed in terms of Q,, il2. 4, us fol- 
lows 
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u2 = q, cosq2 + q 3  

uj = -4, sinq? ~ 0 ~ ~ 7 3  + 42 sinq! 

u, = q, i = 5,6,7 

Stage 2 Set up linear velocities: 
In stage 1, the angular velocities were always expressed in local coordinates 

corresponding to the arm being considered. This is not necessarily the case for the 
way in which Kane-Levinson [91 formulate the linear velocities (see paragraph 
preceeding (28) in the paper). Because w e  wish our results to he comparable to those 
in (91, w e  state the formulae w e  use, which will lead to results that are the same as 
those in equations (28-43) in [91. (Note that the stars in the following refer to the 
velocities of the centers of mass of the corresponding arms.) 

VA' = 0 

yB' = ~4 x RB 

"(-* = W c  x R' + ;;To 

"1'' = oB Y R" + 

The expressions for VI * ,  VI' correspond to those in equation (40) and (42) in the 
Kane-Levinson paper [9]. The exact form w e  use can be found from the expressions 
for VE and VF in the M A C S Y M A  program given in Appendix VIII. 

The remaining stages are relatively strsightforward. 
Stage 3: Find the partial angular velocities. 
Stage 4: Find the partial linear velocities. 

mentation in Appenclx VI11 is self-explanatory. 
Stage 5: Find the angular accelerations. 
Stage 6; Find the linear accelerations. 

linear velocities as given in the MACSYMA program in Appendix VIII. 
Stage 7: Define moments of inertia. 
We next have to consider forces. 

These are explained in the Kane-Levinson paper [91 and the MACSYMA imple- 

These are obtained by simple differentiation of the corresponding angular and 

Stage 8: Define torques. 
Stage R Set up generalized forces. 
Stage 10: Set up active forces. 
Srage II: Set up Kane's equations. 

These steps are straightforward; the MACSYMA program is given in appendix. 
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Finslly, Figure 4 gives a comparison of some numerical resu!ts obtained from 
MACSYMA and Kane-Levinson f91. 
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-0. -26 1 

Figure 4a. Comparison of numerical results for a. TS  obtained by MACSYMA and 
Reference 9. 
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Figure 4b. Comparison of numerical results for T J  and 73  obtained by MACSYMA 
and Reference 9. i 
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- :, D- It is of some interesi to compare the mathematical equations in the Kane-Levinson I 
i paper with the corresponding MACSYMA expressions. For example, consider: 

- . . . . . . 

Kane-Levinson [91 MACSYMA 
(underlined quantities are vectors) 

(#)A= . (13) WA: EXPAND(W1.Wl) - 91a2 
- wA 3 WA , 4.32 3 WI.WI c 
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Introduce 

(8) Here wA, ill, i2 are vectors; 
WA, W1.Rl are matrices 

(15) 

(16) W B :  EXPAND 
((WA+W2).R2) 

ZlO - ZhUi + z7u3 Zl, - ZSUl + z9u3 
O n e  point here is that because Kane-Levinson [91 are carrying out the algebra by 

hand, it is convenient for them to introduce intermediate symbols Z1, Z2 - . going up 
to zIgh, 2nd similarly, 36 X’s and 31 W’s. MACSYMA has no difficulty in generating 
the end result in explicit form. These end results are no more complex than the com- 
plexity of the equhiion given in [91. At thc time of writing this paper a preliminary 
number count on additions and multiplication, for X,,, the coefficients of equations of 
motion, obtained by MACSYMA, as compared to those in [91, shows a r9duction by 
approximately a factor of two. 

In conclusion, w e  note that Paul [131 sets up the dynamical equation of the Stan- 
ford manipulator arm using the Lagrangian equation approach. See also [61. So m e  
applications of the Lagrange method using MACSYMA are discussed in [91. 

Various methods of setting up dynamical equations that could be carried out by 
MP.CSYMA are illustrated in C81. 
5. A Spacecraft Problem 

Levinson 11 11 has described in detail an application of the symbolic language FOR- 
MAC to formulate the spacecraft problem shown in Figure 5, consisting of two rigid 
bodies with a c o m m o n  axis of rotation b. (See also 1101, pp.279-285). 

The equations are given in complete detail in Ref. [111, and translated into 
MACSYMA in Appendix IX. In the example in the last section, w e  wrote the 
MACSYMA program in terms of matrices. In Appendix IX, the present example is 
written in terms of vectors, by writing BLOCK functions to perform the dot and cross 
products. To illustrate the comparison of the vector equation with the corresponding 
MACSYMA expressions: 

Equations from Ref. 11 11 MACSYMA 
I 2 -  cosq b2 + sinq l73 (1) R [2l:COS (Q)*B[21 +SIN(Q)*B[31; 
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W e  discuss only one other correspondence. Equation (27) in Ref. ill] is 

81 

I /  I /  

t F R  

€3 

b2 / - 
Figure 5. T w o  rigid bodies with a common axis of rotation. 

The complete set of equations given in Ref. 1111 is generated by Appendix IX. 
The reader should compare the corresvonding FBRMAC program given in Levin- 
son [Ill. 

CONCLUDING REMARKS 
It should be clear from the examples given that symbolic manipulation by compur- 

er can carry out many of the laborious and routine calculations involved in the analy- 
sis of mechanical systems. But, potentially even more importmt. is the influence that 
symbolic manipulation is likely to have on the methods used to formuiaie picbkms. 
The reader should compare, for example, the algorithmic approach w e  have adopted 
to the Stanford manipulator arm problem with the approach in [9]. A s  znothpr exam- 
ple, if symbolic manipulation methods are used, this will influence whether w e  formu- 
late problems in terms of Euler angles, Euler parameters, Rodrigues parameters, or 
quaternions, etc. In addition, one can visualize the production of standard utilize 
MACSYMA software - e.g., a standaid package written in MACSYMA to produce 
equations corresponding to those of Kanze-Levinson 191 for any given combination of 
rotating and sliding joints. 
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APPENDIX I 

/*PROVE T H E  IDENTITY OF EQUATICN 5 'I 
I' TRICINOMFTRIC SIMPLIFICATION "/ 
MATCIIDECLAKEIA.TRUE1: 
TELLSIMPISIN( AI'2.I-COSlAJ~ZJ. 
I' DEFINC CROSS PRODUCT MATRIX O R  4LTERNATING TENSOR -I 
ALT~N~.=M~~TRIXllI~.-~l3.l~.N~Z.l~i.lNll.l~,O.-N~l.l~~ 
I-Nl2.II.NII.II.OIl. 
N.MATRIXtlNII.IN21.IN31): 
N N  ALTINI; 

APPENDIX IV 

I' DERIt'I. EI!LER IDENTITY SEE ALSO 
S M4rRIXI 

B R A N D  PEF 121 PWR'/ 

l0:CCl .-CC~2.-CC3I. 
I C ~ I  .o.-cc.wczi. 
~crz.rc~.n.-cci I. 
IC~~.-CCZ.CC I .oi I, 

I0:CPl :CP2 -CP31. 
ICPI .O.-CP~.CPZI. 
ICP~.CP~.O.-CPI I. 

SP-MATR IX( 
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I:IDENT(iJ. 
AA:COS(ALPHA)'l+II-COSIALPHAl)'fN TRANSPOSIIINIl+NN'51Nl.~LPIIAl. ICP3..cP~.CPI.oII. 

I.IDENTl4). A4PlfAA; 
I' W O R K  WITH HALF ANGLES *I VCCO*I+S. 

EVI AAI: MATI V VP. 
TRICiEXPANDI'Yo). 
A 4 .!%S MAT2 SI!BMATRIX('!h.Z.3.J): 
/'AUl)lULN111t MZIRIA ANUlNVLHl 'I 
A4 P:A A + IS 
IAAP AAP'f.IJS 
/'SUBTRACT IDENTITY MATRIX A N D  F O R M  MATRIX PRODUCT AS ANSWliR'I 

ALPIIA-BTA'2. vp:cpn*I+sp. 

I' N O W  T A K E  T H E  I..RST C O L U M N  O F  T H E  ABOVE MATRIX A N D  SQUARE IT.. 

ANSW1.R % 'A. 
ANSWCR.FACTOR IANSWERI: 
/* NOTE ABOVli IS A COMPLETE SQUARE 'I 

.APPENDIX V A h M  AA-IS 
ANSWER A A M  . IAAPS 
I'VSE IDENTITY T H A T  N1'2+N2'2+N3'2=I ./ 
"3: I - N  I"?- N2.T 
ANSWER:RATSUBSTI NN3.N3'2.ANSWER I: 
A N S W E R  RATSIMPI'X,J. 

APPENDIX II 

I' CAYLEY'S DLCOMPOSITlOh OF ORTHOGONAL MATRIX 
A =iI-Bl~-I~I+Bl.WHERE 81.82.83 ARE R0I)RlCilll:S P4RAMETERS.I 
I' DLFINE CROSS PRODUCT OR ALTERNATING TENSOR MATRIX'/ 
ALTINI:=MATRIXIIO,-i~I3.l~.N!2.1 ll.lN13.1 I.O.-NII.lIl. 
17N12.11.Nll .11.01l: 
B:MATRIXlIBII.IB2I.fB3ll; 
BB ALTIB); 
I.LUENT131: 
INBB.II-BBI"-l; 
A:INBB.II + BB). 
ANSWER-RATSIMPI'X~J: 
&LVE ABOVE FOR BI 82 B3.FOLLOWIN IS A CROSS CHECK *I 
D~L.RATSlMPlI+All,l~+A12.2~+A~).)l); 
Rql .RATSIMP( I/l~EL'lA~l.21-AI2.3~l I. 
BBZ:RATSIMP( IIDEL*(AII .31-A(3.1 I )I; 
BB3.RATSIMPl IIDEL'lA12.1 ~-All.2~Jl: 

'i APPENDIX 111 

/*TWO SUCCESIVE ROTATIONS IN TERMS OF RO1)RIGUES PARAMETER'/ 
ALTINI: =MATRIXl~O,-NI3.II.Nl2.ll~.lNl3.ll.O.-Nll.l~~.l-NlZ,ll.Nl~.l~.O~l~ 
B.MAiRIX~lBll.lB21.1B~~l. 
BB:AL1TIB>; 
I:lOENTI3); 
INBBII-BB).~-I; 
A:INBB.II + BB)S 
A:RATSIMPllC); 
BP:MAT;RIX!IBPI 1.~UP2l.IBP3l); 
BBPALTIBP): 
INBBP:lI-BBP)'--I ~ 
AP INBBP.(I+BBP)S 
AP.RATSIMP('%l; 
APPAPA; 
/'SOLVE ABOVE FOR BPPl BPPZ BPP3 'I 
DEL RATSlMPl I +APPl I. 1 1  + APPf2.21f APP13.31); 
BPPI.RATSIMP( IIDEL'lAPPl3.21.APPl2~3l)); 

BPP3:RATSIMPll I DEL'(APP12. I I-APPI I .21) ); 
/'THE ABOVE RESULTS ARE S A M E  AS EOUATION (I I) 'I 

BPP2~RATSlMP~lIDEL~(APPll.3l.APPll. Ill); 

/'QUATERNION MULTIPLICATION EXAMPLE '/ 
/'ANALOG OF CAYLtY.KLEIN RESUl T 'I 
I:II)ENT(JI: 
I' N O W  W E  UEFINE A N  OPERATION SS O N  A C O L U M N  MATIX BASED O N  ANALOG 
OF CAYLliY KLEIN DIiCOMPOSITION 'I 
SSlCC~~=MATRlX~~CCll.Il..CClZ.ll.-rT[).I.l~~. 
ICCIZ. I I.CCI I. I j.-cm I LCCIJ. I 11. 
lCCl3. I I.CCl4. I I.CCll. I l.-CCl2.lIl. 
ICCl4,I I.-CC13.1I.CC 12.1 I.CC1 I. I Ill; 
I* IJEFINE A N  INVLRSE OPERATION 'I 
INVICC) IIICC CCl~MATRIX~lCCll.l~~.(-CTI:.III.I.ĉ C13.l~~.~~CCl4.lll~: 
/" N O W  THt BRANUS'S THEOREM O N  QUATERXION FORMULATED IN MATRIX FORM '/ 
RI1O.MATRIX fIROI.IR ll.lR.?l.lR3lJ: 
r;AM~MATRIX~lVol.lQIl.lQZl,l~3l~; 
/'NOW UEFINE QUATERNION PRODUCT 'I 
APROIIIR.QI -SS1RI Q. 
A:MATRIXlIAOI.IA l~,lA2~.~A3~>: 
RATSIMPfAPROUlIWV(AI.A~): 
ANSWER:R 9TSIMPIAPRODIGAM.APRODIRHO.INVI~AM))~I: 
EQI:ANSWERII.Il. 
EQZANSWFR 12.11; 
EQ3:ANSWIR13.ll. 
EQ4'ANSWER 14.11. 
I' N O W  GENERATE COEFFICIENT MATRIX FOR RHO *I 
COEFMATRIX I lEQl.eQ2.EQ~.E~J,lRO.R I .R2.R31): 
I' THE ABOVE IS SAME AS EXTENIWD EULER PARAMETCR MATRIX 'I 

' 

APPENDIX Y1 

I' THE BASIC DECOMPOSITION FL'R EULER PARAMETER 'I 
/'TEST OlJT lCO'l +S)XlCO'I.SI .I 
II-IDENTI4). 
SS MATRIX I lO..CC I .-CC2..CCll. 
irci .O..CC~.CCZI, 
I~C~.CCJ.O..CC I 1. 
i~r~.-crn.r~i .I)I): 

IZ.-Y .x .oi. 
l0.X.Y.Zl. 
I-X.O.Z..YIl. 
EQI .EXPANUI(CCO.II t SS).Q.lCCO*II.SSl); 
TI:EQI lm 
T2.EQl I I. II. 
T3:EQI 14.31; 
ANSWliR:COEFMATRIXI!Ti .TZ.TlI.IX.Y.ZI~: 
/*ABOVE IS S A M E  A S EQUATION I I  'I 

QMATRIXI IY .%.O..XI. 
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Extended Abstract 

Polynomial parametric COSG olrd surfaces art widely used in com- 

puter graphics and computer-aided design. A parametric curye (in the 

plane) is the set of points < x y > defined by 8 system of equations 

-10) Y -so) D 

f and g polynomials. A parametric surface is :he et of <.I, y , z > defined 

by a system 

I =11(3*f) y =v(s,r) r *.w(rDt). 

Y ,v, and w polynomials. in each case w e  have a (purmcrric) hyperowf ucc: 

the number of parmeters is one less than the number of variables. W e  
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assume that all Folynomials have real coefficients, and that w e  are only 

interested in real values of parameters and variables. 

O n e  frequently needs to intersect two ps~arnctric hypersurfaces. But 

whereas two plane curves intersect in some finite number of isolated 

points, two surfaces meet in a space curve comprised of finitely many com- 

ponents. Constructing useful descriptions of such intersection sets, suit- 

a b k for subsequent manipulation, is a nontrivial task (Req831. A closcd- 

form expression is desiiii5!=. Wr describe how Grdbner bases can be used 

to achieve this goal. 

W e  begin by introducing a second class of hypersurfaces. W e  call the 

set of points in PR" satisfying an equation 

F(x1, . . * P I") - 0 
F a polynomial, an (implicit) hypcrswjucr. The reader will see that this is 

merely a different term for what is usually called an "algebraic" hypersur- 

face. As before, w e  assume that polynomials have real coefficients, and 

we are only internsted in real values of the variables. 

W e  will make use of the following straightforward observation. Sup- 

pose w e  have two hypersurfaces in R", one parametric and the other 

implicit. Then if w e  substitute the parametric equations of the one, into 

the implicit equation of the other, we get a closed-form expression in 

parameter space for the intersection set. For example, if x = u(I,I), 
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Y = V(J,t) z = w (S , r )  is a parametric surface, and Z.J (x, y, z) = 0 an impli- 

cit surface, then U( u(s,~),v(J.I),w(J,I)) = 6(r,r) is a closed-form expres- 

sion for the intersection curve. 

Suppose n o w  w e  have two parametric hypersurfaces that w e  want to 

intersect. If w e  could construct an implicit equation for one of them, 

then we could intersect them as per the observation. Methods of perform- 

ing this "implicitization", for particular classes of parametric curwes and 

surfaces, have recently been developed by one of us [Sed]. Here w e  use 

Grdbner bases. 

Classical resultant theory (see e.g. [Col7l]) suggests that in general, an 

implicit equation exists. Consider, for example, a parametric surface in 

R': 

C(X, y, r, s, r) = I - w(s, r )  = 0. 
Let s(~,Y,z,J) be the resultant of A and 8, and T(x,y,z,s) the resultant 

of B and C. Let R(x,~,z) be the resultant of S and t. Let 

a point on the surface. Then there exist r and r' such that < r', y, r, F* i > 

a,g, r 3 be 

is a c o m m o n  root of A, B, and c, and hence R(x* p, r) = 0. It does not fol- 

low, however, that R -0 is an implicit equation for the surface. There 

may exist < z,ji,r> which are not on the surface, but for which 

. _ .  . . .  
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R(Z,F, r) = 0. Typically, however, either R or m e  of its factors gives an 

implicit equation. This line of argument can be generalized to arbitrary R. 

Grdbner bases enable us to actually construct implicit equations. We i 

review some relevant facts. Let K be a field, let I denote a &-tuple of 

variables I!. . . . .xk, and let y denote zin m-tuple of variablesy,, . . . .ym. For 
i '  I L- any ideal f in ~ [ x ~ y ] ,  the conrrucrion of f with ~ [ x ]  is 1 n ~ [ x ] .  It has 

been shown (see e.g. [ZacW]) that if G is a Grabner basis for I, then 

i -  
E 

G n K[X] is a Grdbner basis for the contraction of I with X[I]. Sappose 
. .  
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p = { pl(x), . . . ,P,(x)) is a collection of polynomials in x[I]. The set I of 

which w e  call the ideal of polynomtuf rrlaiions of 3. Clearly I is the con- 

traction of the ideal L =(Ut -PI,. . . y, =P,)k[r,yl with rk]. By th; r 

results w e  have cited, if we compute a Grcbner basis for L and retain 

exactly thosc elements which involve only the variables yl, . . . *ym, then w e  

have a basis for 1. 

i 

Suppose w e  are given a parametric hypersurface in R,. W e  may write 

it as a set of polynomials: 
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W e  construct a Grdbntr basis G for the ideal generated by these polyno- 

mials; the subset G, of G, consisting of the elements involving only 

yI, . . . ,yay is a basis for the ideal of polynomial relations of { p1, . .pa }. 

Clearly, each element of cy vanishes at every point uf the hypersurface. 

Typically, one of the elements of G, is actually an implicit equation for 

the hypersurface. 
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ABSTRACT 
An algorithm is developed for computing a Grobner basis of an ideal 

in polynomial rings over integers. The algorithm is a natural extensioii 
of Buchberger's algorithm for computing a Grobner basis of an ideal in 
polynomial rings over a field. The algorithm is implemented in ALDES 
and LIS? and the implementation is discussed with a number of exam- 
ples given. The uniqueness of the Grobner basis of a polynomial ideal 
over the integers is shown. 

1. INTRODUCTION 
Buchberger [1,3,41 developed an algorithm far computing the Grobner Basis of an ideal in 

polynomial rings over a field. This algorithm takes an ideal specified by a finite set of polyno- 
mials as its input and produces another finite basis of the ideal which can be used to simplify 
polynomials such that every polynomial in the ideal simplifies to 0 and every polynomial in 
the polynomial ring simplifies to a unique normal form. The algorithm has been found useful 
in algebraic simplification [51. 

In this paper, w e  develop an algorithm to compute the Gr6bner basis of an ideal in poly- 
nomial rings over the integers. The algorithm is a natural extension of Buchberger's algo- 
rithm. N e w  polynomials to complete the basis are computed between pairs of polynomials In 
the basis, the reduction process is simple and, the minimal Grobner basis thus obtained is 
unique. An imp1eme;ltation of an efficient version of this algorithm in ALDES and LISP, 
patterned after Huet's version [71 of the Knuth-Bendix completion procedure, is also 
discussed. 
-- 
* Partially supported by NSF grant MCS-82-11621. 
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1.1 Related Work 
According to Lauer I191, Szekeres (221 showed the existence of a canonical basis for 

ideals over a Euclidean ring and Shtokhamer developed a generalization of the construction 
suggested by Szekeres to define a canonical basis over a principal ideal domain. Schaller [211 
proposed an algorithm to compue h Grobner basis of an ideal over polynomials over a princi- 
pal ideal domain; at the same time. Zacharias [241 developed a similar algorithm for an ideal 
in a polynomial ring in which the ideal membership and basis problems for homogeneous 
linear equations are solvable. In both Schaller’s and Zacharias’s approaches, new polynomials 
needed for c complete basis must be computed for every finite set of polynomials in the input 
basis; this coniputation needs solving homogeneous linear equations. The reduction process 
in their appioach needs a computation of extended greatest common divisor over many head- 
coefficients in the basis; their aigorithm gives a Grobner basis which is not necessarily unique. 
In contrast, our approach is simpler; the rewriting relation induced by a pciynomial is defined 
ir, a natural way. 

2. WELL-FOUNDED ORDERiNG ON POLYNOMIALS 
Let z [XI, ..., X,] be the ring of polynomials with indeterminates XI. ...* X, over the ring of 

integers Z; it is assumed that XI < X, C . . ~ < X,. A term is any product $‘9 where 

k, 2 0; the degree of a term is k,. A monomialis a term multiplied by a nonzero coefficient 

from Z. A poly~omiul is a sum of monomials; such a polynomial is said to be in sum of prod- 
ucts form, abbreviated as SPF (this form of polynomials has also been called distributive nor- 
mal form in the 1ite:s:ure). If no term appears more than once in a polynomial in SPF, it is 
said to be in simplijied sum of products form, abbreviated as SSPF. An arbitrary polynomial 
which is not in SSPF can be transformed into an equiva!ent polynomial in SSPF using the 
rules of the polynomial ring. Henceforth, w e  will assume polynomials to be in SSPF. 

The ordering on terms is defined using the degree of a term and terms of the same degree 
are ordered lexicographically (this ordering is the same as the one used by Buchberger 
in 11.31). Terms rI = n x, c l2 = x,’~ if and oniy if (1) the degree of 4 c the degree of t2, 

or (2) the degree of ti  = degree of 12 and there exists an i 2 1, such that k, < j, and for for 
each 1 < i’ < 1, k,. - j,.. This ordering is a total ordering and is well-founded. Another total 
well-founded ordering, for example, is the p w e  lexicographic ordering on terms based on a 
total ordering on indeterminates in which the degree of terms is not considered. The results 
of the paper hold for this total ordering also. 

Let c and e’ be two integers. W e  say that c is less than e’, written as c cc e’, if and only if 
Icl < lc’l or (Icl = lc’l, c is positive and c’ is negative). For example, 2 cc -2, 2 <a 3, 
2 << -3, as well as -2 << -3. The ordering << on Z is total and well-founded. 

Monomials are ordered using their terms and coefficaenrs: Given two monomials ml = c I  I, 
and m2 = c2 12, ml ca m2 if and only if I: c r2, or (I, = l2 and cl e< cz). It is easy to see that 
the ordering << on monomials is total and well-foiinrled. 

Let p - m + r be a polynomial in SSPF such that the term of the monomial m is grePter 
than those within r; then m is called the head-monon~iulof p, the term of m is called the head- 
term of p and the coefficient of m is called the head-coeficient of p. W e  will call r the redmum 
of p. The ordering cc on monomials can be used to define a ordering << 011 polynomids in 

1- I 
I1 

I- 1 

11 
I 

I I 
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the following way: polynomials p1 << p2 if and only if either (1) ml << m2, or (2) ml = m2 
and r I  << r2, where m, and r, are, respectively, the head-monomial and reductum of p,, 
i = 1, 2. It is easy to see that the ordering << on polynomials in ZIX1, ..., X,l is total and 
well-fc unded. 

3. GROBNER BASIS OF AN IDEAL 
Informally, a finite set B of polynomials, say (pl, - a . ,.ph], in ZIX1, ..., X,,] is called a 

Grobner busis for an ideal I generated by B if for any polynomial q ,  no matter how q is rewrit- 
ten using the rules corresponding to polynomials in B, the result is always the same, Le., it is 
unique [1,31. An equivalent definition is that for any polynomial p in the ideal I generated 
by B, p .-.* 0 . The Grobner basis of an ideal generated by a finite set of polynomials is thus 
like a canonical rewriting system for an equational theory generated by a finite set of axioms. 
For examples, consider the ideal f generated by B 3. (X Y + 1, Y2 + XI in ZIX, Y1; Y - X2 is 
in I but does not reduce to 0, so B is not a Grobner basis. However, B'= (X Y .+ 1, Yz + X, 
X2 - Y] is a Grobner basis. 

In order to precisely define a Grobner basis of an ideal I, it is necessary to define the 
rewriting relation induced by a polynomial. 
3.1 Polynsmials as Reduction Rules 

. - -t mh in ZIXI, ..., X,l in SSFF such that ml is 
the head-monomial of P. Further, assume that its head term tl has a positive coefficient cI 
(i.e., ml = c1 tl). Then the rewrite rule corresponding to P is as follows: 

Consider a polynomial P = m l  + m2 + 

CI tI -- m2 + . - + - mh 
In case the coefficient cl of the head term r i  in P is negative, P is multiplied by -1 and the 
result is used as a rewrite rule. In contrast to the rewrite rule for a polynomial over a field, 
where both the sides of the rule are divided by the head coefficient c1 as division is defined 
on Coefficients, the whole monomial is the left-hand-side (111s). For example, the rewrite 
rule corresponding to 2 X2 Y - Y is 2 X2 Y - Y. 

A rule L - R, where L = cI f I  and c1 > 0 rewrites a monomial c t to (c - E el) r + E U  R 
where E = 1 if c > 0, = -1 if c < 0, if and only if (1) there exists a term u such that r = u t l  
and (2) either c > (eI / 2) or c < - (el - 1) / 2. If - (CI - I)/ 2 < c < (CI / 2; or there does 
not exist any u such that t - (I tI, then the monomial c r cannot rewritten. 

A polynomial Q is rewritten to Q' using the rule L -. R if and only if (1) Q = QI + c t and 
c r is the largest monomial in Q which can be rewritten using the rule, and (I) Q'- 
Q1 + (e - rl) I + E CT R, where E - 1 if c > 0, E - -1 otherwise. If there is no monomial in 
Q which can be rewritten using the rule, then Q is irreducible or in normal form with respect to 
the rule. For example, using the rcle 2 X2 Y - Y, the polynomial 

4x3 Y + 5x Y2 - 3x2 Y - 2x3 Y + x Y + 5x Y2 - 3x2 Y - 2x Y + 5x Y2- 3x2 Y. 
The result can be further reduced as the monomial - 3 X2 Y is reducible: 

2x Y + 5 x Y2- x2 Y - Y --. 2 x Y + 5 x Y* + x2 Y - 2 Y. 
W e  assume that after rewriting by a polynomial, polynomials are always brought back io 
SSPF, Le., indeterminates in terms are ordered using the prespecified ordering on indeter- 
minates, equal terms are combined, and terms with zero coefficients are omitted (see 
also 131). 

c 

3 
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Let T 3. (L, - R1, ..., Lk - Rk) be the rule set corresponding to a basis B = (pl, + a - ,pk] of 
an ideal I such that (L, - R, 1 be the rule corresponding to p,. Let -. denote the rewriting re- 
lation defined by T. 
3.2 Properties of Reduction Relations 
We define properties of - which are needed for defining a Grobner basis (an interested 

reader may want to refer to [5,61 for more details). Let -* be the reflexive and transitive clo- 
sure of - and ++ be :he transitive closure of -. 
Definition: A relation - is Noerherian if and only if there does not exist any infinite sequence 
xo-x1-x2- * . e .  

Definition: T w o  elements x and y are said to be joinable if and on!y if there exists u such that 
x -' u and .v -.* u, 

Definition: A relation - is corlfJuent if and only if for all x, y, z, such that x -.* y and 
x -. Z, y and z are joinable. 
Definition: .A relation - is canonical if and only if - is Noetherian m d  confluent. 
IF the relation - is Noetherian, then the test for confluence reduces to a simple local teat, 
called local confluence. 
Definition: A relation - is locally confluent if and only if for each x, y, z, such that x - y 
and x - z, y and z are joinable. 
Theorem 3.1 [Newman]: A Noetherian relation -> is confluent if and only if - is locally 
confluent. 
See [61 for a proof. 

3.3 Definition of Cfoher Bssis 
The Grobner basis can be defined by requiring that the rewriting relation defi9ed by a 

basis satisfies certain conditions. It is sufficient to require of a Grobner basis B that the rela- 
tion - induced by E is confluent. Since we are interested in developing algorithms, we put 
an additicnal requirement that - be Noetherian. 
Definition: A basis B is a Griibner basis if the rewriting relation - induced by B is canonical. 
In order to develop a Grobner basis test for polynomial ideals over 2, we first show that 4 is 
Noetherian using the total well-founded ordering defined on polynomials ;R Section 2. Then, 
we develop a test for local confluence and use the above theorem to check whether a basis is 
a Grobner basis. 
Lemma 3.2: The rewriting relation - induced by any finite basis over ZIX1, - ,&I is 
Noetherian. 
Proob: Follows from the fact that for any polynomials Q, Q', such that Q - Q', Q' e< Q. 0 

The test for local confluence is developed in a way simi!ar to the approach developed by 
Buchberger fdr pqlynomial ideals ever a field [1,3,4,51. W e  define critical pairs for a pair of 
polynomials in a basis. Then it is shown that if these critical pairs are trivial, - is SoaIIy- 
confluent. 

-_ 
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3.4 Critical Pairs 
Given two rules L 1  - R I  and Lz- R2, where L I  = cI t i  and L 2 =  c2f2, such that 

el 2 c2 > 0. Its critical pair < p ,  q >  is defined as: p = (cl - -  c2) Icm(rl, 12) + /2 * R2, and 
q = f * R1, where fl * t i  = fz * I’ = lcm(t1, t2). Polynomials p and q are obtained from the 
superposition cI Icm(f1, t2) by applying L2 - Rz and L1 - R1, respectively. 

The above definition of critical pairs is a generalization of the definition used by Buch- 
berger [1,3,41 for a field. In that case, since :, and L-2 are 1, the above definition reduciz to 
taking the Icm of the left-hand sides. As in the case of polynomials over rationals, for any 
pair of polynomials, there is exactly one critical pair. 

Example: in Z[X, Y1, consider the basis BI = ( 3 Xz Y - Y, 10 X Y’ - XI. The superposition 
of the two polynomials is 10 X2 Y2, and the critical pair is < 7 X’ Y’ + Y2, X2>. 

It is easy to see that for thc critical pair < p ,  q >  of two polynomials in an ideal, the poly- 
nomial p - q is also in the ideal. So, adding the polynomial p - q to the ideal does not 
change the ideal. 

The S-Polynorniul corresponding to a critical pair < p ,  q >  is the polynomial p - q. 
Definition: A critical pair < p, q > is rrrviul if and only if its S-polynomial p - q can be reduced 
to 0 by applying at every step, among all applicable rules, a rule whose left-hand-side has the 
least coefficient. 

The above restriction is necessary because: of the way the rewriting relation is defined 
above. If w e  do not have this restriction, !hen there are bases for which all critical pairs are 
trivia1 but the bases are not Grobner bases. For example, consider the basis 
B2 = { 1. 6 X2 Y - Y, 2. 2 X Y2 - X). Its critical pair is <4XZ Y2 + X‘, Y2>, 
and the two polynomials are joinable if w e  apply rule 1 first and then rule 2 on the first poly- 
nomial. 

3.5 Gidbner Basis Test 
To tesl whether a given basis is a Grobner basis, (1) get the rule set corresponding to the 

basis, and (2) check whether for each pair of distinct rules, the critical pair < p , q >  is trivial. 
For example, the basis BI in the above example is not a Grobner basis because the two poly- 
nomials in the critical pair < 7 X2 Y2 + Y2, X2> do not reduce to the same polynomial. The 
following theorem serves as the basis of this test. 
Theorem 3.3: A basis B of polynomials in ZIXI, . - , X,? is a Grobncr basis if and only if for 
every pair of polynomials in B, the critical pair < p ,  q >  is trivial. 
Proof: By L e m m a  3.2 above, -+ is Noetherian, so it is sufficient to show that the relation - 
induced by B is locally confluent if and only if the critical pairs are trivial. 

Explanation of “only if’: Since - is both locally confluent and Noetherian, - is 
confluent. For every pair L I  - R 1  and L2 - R2, where L, .= c, r,, i = 1, 2, and el 2 c2, consid- 
er a polynomial p - cI t - f l  R I  , where I - km(tl, t2) .= f 1  R I  = /Z Rz. Using LI - RI, p 
reduces to 0, whereas using Lz - R2, p reduces to (cl - c2: t + f2 R 2  - ,f I RI. By confluence 
of -, w e  have (c, - c2) + f2 R 2  - J1 R I  reduce to 0 no matter how it is rewritten. Hence, 
the critical pair of these rules is trivial. 

Explanation of “if”: Consider a polynomial p which is rewritten in two different ways to 
q 1  and 42. Let f’ be the term of the largest monomial being rewritten and c be its coefficient 
in p (this is so, since the rewriting relation is defined to be rewriting the largest monomial, so 
the case when two different terms are being rewritten does not arise); let p = p’ + c t’. Let 
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L~ -. R ,  and L2 -. R 2  be the two rules being used to rewrite the monomial c t'; these rules 
must be distinct as otherwise w e  have q 1  = q2. Without any loss of generality, we can assume 
that cI 2 c2; let t = km(tl, i2) = f l  R I  i= f2 R2, and t'= a t. Then 
41 = p' + (C - E cI) t' + E u fl RI, and 
where E = 1 if c > 0, and -1 otherwise. 

Since the S-polynomial SP = (cI - c2) t + f2 R2 - f, R ,  corresponding to the critical pair of 
the two rules is trivial, q 1  and q 2  are joinable using L e m m a  3.4 proved below. This is so be- 
cause if E = I, then q 2  - q 1  = u*SP, whereas if E = -1, then q1 - 42 = a*SP. R 
Lemma 3.4: For any two polynomials p and q ,  if p - q 4'' 0, then p and q are joinable. 
The relation 4' is a subset of the relation - and !s defined as: A monomial c i -.' q' if and 
only if c t - q' using a rule c, r, - R, in i3 such that there does not exist any other rule 
c2 t2 - R 2  in B which can be applied on c t and c2 < cI. A polynomial P -.' Q if and only if Q 
is obtained from P by rewriting the largest rnonomial under -+'. The definition of a critical 
pair being trivial uses the rewriting relation 4'. 

Before we give a proof of the above lemma, wc show the following property of -', which 
is used in the proof of the above lemma. 
Lemma 3.5: For any two polynomials p, q such that p - 4 -' h and h --'* 0, there exist p', 
q', such that h = p' - 4' and p -* p' and q +' q'. 
Proof: Suppose that p - q Is reduced to h by a rule c t - R. Let p - R, + d, f', 
q = R,, + d, t', d = d, - d,,. Then h = (R, - R,) + (d, - d, - E c) t'+ E r~ R, where f'- ai. 
There are two cases: (I) d > c/2 and (2) d C -(c - 1)/ 2. 

Case 1: d > c/2: This implies d, > d, +c/2 and h - (R, - R,) + (d, - d, - c) t'+ cr R. There 
are two subcasesr 

Subcase 1: d, 2 0, which implies d, > c/2, hencc d, is not a remainder of c. So, w e  reduce p 

Subcase 2: d, c 0: If d, < - (c - I)/ 2 then we reduce q to q'= R, + (d, + c) 1'- u R and we 
take p' = p. 
If 0 > d,, 3 - (C - 1)/ 2, then d, > 0. If d, > c/2 :hen w e  take p'- R, + (d, - e) rf + u R 
and q'= q. If d, Q c/2 then c/2 < (d, - d,) < (c/2 + (c - I)/ 2) \and d, - dq - c is a 
remainder of c. This implies that 4 cannot be reduced to 0 since in T', we require that the 
rewriting be done using a rule with the smallest head-coefficient. This isi a contradiction. 

Case 2: d < -(c - 1)/ 2: This implies dq > d, +(c - 1)/ 2 and h = (R, - R,) + 
(4 - d,, + c) 1'- u R. There are two subcases: 
Subcase 1: dp > 0, which implies d,, > c/2, hence d, is not a remainder of C. So, w e  reduce q 
to q' = R, + (d,, - c) t' + a N. W e  take pi = p. 
Subcase 2: d, ,< 0: If d, < - (c - I)/ 2 then w e  reduce p to p' = R, + (d, .t c) i' - u R and we 
take q' = q. 
If 0 2 dp 2 - (C - I)/ 2, then d, > 0. If d, > c/2 then w e  take 4'- R, + (dq - C) t'9 rn R 
and p'- p. If dq Q c/2 then (c - 1)/ 2 < (d,, - d,) < (c/2 + (c - I)/ 2) and d, - d, + c is a 
remainder of c. This implies that h cannot be reduced to 0 since ip -J, we require that !Re 
rewriting be done using a rule with the smallest head-cocfficiert. This is a contradiction. 0 

92 = p' -t (c - E c2) t' + E cr f2 R2, 

, 
i 
I 
\ 

to p' = R, + (d, - C) t' + u R. W e  take q' = 4. 
I 

I 

, 

W e  now give the ppQof nf L e m m a  3.4. 
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Proof: Let p - q-.IR 0. The proof is by induction on n. The basis step of n = 0 is trivial, as in 
that case, p - q. 
Inductive Step: Assume for n' .: n, to show for n. 
Let p - q -.' h -" 0. By the above lemma, there exists p' and q' such that h = p'- q', 
p -t* p' and 4 +* 4'. By inductive hypothesis on h, p' and q' are joinable. So, p and q are 
joinable. 0 

Another way of showing the correctness of the Grobner basis test is to use the approach 
developed in [lC] to show the rclationship between Buchberger's Grobner basis algorithm for 
polynomial ideals over a field and the Knuth-Berbix completion procedure. The polynomial 
simplification process is decomposed into two parts: reduction relation and simp!ification rela- 
tion. The rules corresponding to the polynomials in the basis are in the reduction relation, 
whereas t + - t = 0 and r + 0 = f are the only axioms in the simplification relation. In 1101, it 
is shown that the canonicalization of a polynomial obtained after combining reduction and 
simplification such that simplification is performed before each step of reduction (as is done 
in Buchberger's Grobner basis algorithm as well as in the implementation of our Grobner 
basis algorithm over Z) is the same as the canonicalization obtaiccd if reduction is completely 
performed first, followed by simplification at the end. Using tbis approach, the correclness of 
the Grobner basis test is shown by proving a !kcorem similar to Theorem 4.12 in [lo]; an in- 
terested reader may look at 191 for details. 

4. GROBNER BASIS ALGORITHM 
If a basis is not a Grobner basis, it can be completed to get a Grobner basis. The comple- 

tion procedure is very much like the Knuth-Bendix completion procedure for term rewriting 
systems. For every non-trivial critical pair < p ,  q >  , add a new rule corresponding to a normal 
form of the polynomial p - 4 using the relation -', thus generating a new basis for the same 
ideal. This step is repeated until for each pair of polynomials in the basis, the critical pair is 
trivisl. 
Example: In Z[X, Yl, consider the basis B = (1. 2 Y2 Y - Y, and 2. 3 X YZ - XI, w e  first add 
the rule obtained by critical pair of rules 1 and 2: Le., 3. Xz Yz - - Y2 -5 Xz. From rules 1 and 
3, w e  pet the critical pair < X2 Yz - Y2 + Xz, Y2> which gives an additional rule: 
4. 3 Y2 - 2x=. 
Using rule 4, ruls 2 can be reduced to 2'. 2 X' -. X . 
The above 4 rules constitute a Grobner basis because every critical pair is trivial. There is no 
need to reduce rule 2 using rule 4, however, doing so turns out to be more efficient and also 
results in a unique Grobner basis subject to an ordering on indeterminates. This will be dis- 
cussed later in the paper. 

One may think that the Grobner basis of an ideal I in ZIX1, ..., X,,] could be obtained by 
first (1) generating the Grohner basis B of I using Buchberger's algorithm over rationals and 
then (2) clearing the denominators of each polynomial in U to get the corresponding polyno- 
mials in ZM,, ..., XJ. 
This construction does not work. As illustrated by the abob: example, using this consrruc- 
tion, w e  get 

,- 

B ' - { ~ . z x ~ Y -  y.2'. 2 ~ 3 - x ,  4. 3 ~ 2 - 2 x 2 1  

which is not a Grobner basis. 

.. . 
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The Grobner basis algorithm for polynomial ideals over Z is given below. It is patterned 
after Huet's version [71 of the Knuth-Bendix completion procedure. Note that the basis being 
used for reduction is always kept in reduced form. 
ALGORITHM: 
Given F, a finite set of polynomials in Zk,, .... &I, 

find G such that ideal(F) = ideal(G) and G is a Gr6bner basis. 
Initialization: To := F; Go := { ) ; i:=O; m:=O; 
LOOP 
WHILE f {} DO 
{reduce polynomial: select polynomial P in TI 
(hm, red) := normalize(G,, PI; 
;;;; h m  and red are head monomial and reductum of normalized P, respective!y.] 
IF hm = 0 THEN { T,+, := T, - { P 1; 
ELSE { Add new polynomial: let K be the set of labels k of polynomials of GI 

Gl+l := GI; i := i+l; 1 
whose head term hm, is reducible bay (hm. red); 

T,+l := (TI - ( P 1) U ((hm,, red,), k belongs to K]; 
m := m + 1; 
GI+!:= b: (hm,,red;)l j: (hm,, red,) in GI and j P K] U (n: (hm,red)); 
.... ,,,, red; = normalize(G, U {m: (km, red)), red') 

the new polynomial m:(hm,red) is unmarked; 
i := i+l 1 

END WHILE; 
compute critical pairs: IF all polynomials in GI are marked 

ELSE {select an unmarked polynomial in GI, say with label k; 
THEN EXITLOOP (GI canonical); 

K+l := the set of all critical pairs computed between polynomial k and 
any polynomial of GI of label not greater than k; 

GI+, := GI, except that po!ynomial k is now marked; 
i := i+I ) 

EFDLOOP. 

G := Gi. 

Since ZD,, . - , &I is a Noetherian ring, the termination of the process of generating critical 
pairs and augmenting the basis is guaranteed because of the finite ascending chain condition 
of properly contained ideals over a Noetherian ring as shown below. The following theorem 
establishes that a version of the algorithm in which GI and TI are not separated and T, is re- 
duced immediately using GI, will terminate (in the proof below, GI U TI - Ti;,). Ths proof 
that the above algorithm terminates is a special case of the following proof because the loop 
for T, is always guaranteed to terminate. 
Theorem 1.1: The Grobner Basis Completion Algorithm always terminstes. 
PrmP: Let TC, - (Si, .... BL,) be the basis at the i-th iteration of the Grobner basis ale Irithm. 
Let M; - C; H; be the head-monomial of the polynomial E; in the basis TG,, whei? Lj( and Psi 
are the head-coefficient and head-term of Bj, respectively. Let BL;;: be the pdymonial 
corresponding to the nontrivial critical p.iir* if any, generated in the i-th iteration to get 
from TG,. 
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From TG,, w e  construct another basis SI made only of the head-terms of the polynomials in 
TG,, Le., S, = (Hi, ..., Hi,> . 
W e  first show that the ideal of S, is a subset of tile ideal of Sl+l, written as S,GS,+l 
If in the i-th iteration, no nontrivial critical pair is generated, then TG,+, = TG., so S,+I = SI. 
Consider the cz.se when a nontrivial critical pair is generated in the i-th iteration. There are 
two cases: 
(1) BL:: does not reduce the head-monomial of any polynomial in TG,: then S+] - SI U 
{Hilt+: I, implying that Sf G Sf 
(2) BiL: reduces the head-monomial of some polynomials in TG,. So !here exist 1 < j < k, 
(could be more than one j) and a term U, H; = u Hilt+', . In that case, Sf is a subset of 
even though Hf may not be in the basis of S,+r. 
Further,' for any i. since TG, is finite, it is only possible to add finitely many polynomials 
(bound by the largest head-coefficient in TGJ to Tc;, $0 that the corresponding St remains in- 
variant. This is so because in order to have Sf - w e  must have Hilt+: so that there exist 
j, U, Hi:.: - u H; and for BiL!, to be irreducible with respect to TG,, 
-CCf - 1)/2 < Ci;t,: < Cf /2 for all such j. 
(As if, there does not exist j, u, such that 
proper subset of 

= u H;, then Hi>'l is not in Sf. so Sf is a 

However, if the process of generating new rules does not terminate, then there is an 
infinite sequence of ideals SI E S2 G - . . C SI ..., such that there does not exist any s fcr 
which S, - SA+] - S,+, = . . . This leads to a contradiction because for a Noetherian ring of 
poIynomials, such an infinite ascending chain of ideals does not exist (van der Waerden, Vol. 
11, p. 117, second formulation). C 

Note that if w e  had assumed that whcn a new rule is added to TG,, it is not used to simpli- 
fy TG, (as in another version of the Grobner basis algorithm given in the Appendix, which is 
patterned after Buchberger's algorithm for polynomial ideals over a field), then 

= TG, U {&+I 1, then the above proof simp!ifies because in that case, there is no need 
to consider case (2) above. 

The c'uove dlgorithm has been implemented in ALLIES (Algorithm Description Language 
developed by Collins and Loos) as well as in LlSP with various strategies for normalizing a 
polynomial and choosing z oolynomial from T,. W e  found it is better to choose the smallest 
polynomial P in T,. The normali7ation of P with respect to a basis G, is done step by step 
starting with the head-monomial of r', reducing it with respect to C,, taking the second 
highest monomial, reducing it and so on. 

W e  also f m n d  that for many examples, a reduction check s~a~:i.?z with the largest rule in 
G, first was more efficient than that starting with the smallest rule. To gent?z!o the critical 
pairs w e  can choose an unmarked polynomial whose superposition with all the marked one's 
is the smallest one. If w e  compute all critical pairs and w e  reduce the basis at the end, w e  miry 
run out of all available storage before finding the Grobner basis. H(\wever, if we reduce the 
basis each time w e  add a new Lritical pair, the algorithm works much better. The above im- 
plementation takes care of these two problems, i.e., space and time. Different strategies for 
generating critical pairs discussed in [I31 can also be implemented. The next section contains 
some examples which were run on this implementation. 
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5. EXAMPLES 

implementation. Some of these examples and their Grobner bases are reprcduced below. 
W e  have run many examples (some of which were provided by Lmkford) in the ALDES 

Example 1: In Z[X. Y, Wl. X < Y < W,'consider the ideal generated by 

(1) -w+x Y2+4XZ+1 
(2) Y2 W + 2x + 1 
(3) - X'Z w + Y2 + x 

The caconical Grobrxr basis is 

(1) w2-W-4 Y2 + 2 X2-3X 
(2) - w +  X Y2+4 XZ+ 1 

(3) X2 W- Y2- x 
(4) YZ W+2 x + 1  
(5) -3X W -  Yz+2X4+13X3+X-1 
(6) W +  yl+;X3-3X2-1 

Example 2: In Z[X, Y. Wl, X < Y < W, consider the ideal generated by 

(1) 2X' Y3 Ws+5X Y2+X W-6 Y 
(2) x'+2x+1 
(3) X2 Y2- 1 

(4) 8 X  Y w-8 
(5) 6 X + 3  Y+2 W 

The canonical Grobner basis is 1. 
Example 3: In ZIX, Yl, X < Y, consider an ideal / generated by: 

(1) 
(2) 2 

p +  x4 y4- xz y4- y4- x4 YZ+2 xz Y2+ x- x4 
;" - -y y4 - 2 x; y2 + 2x YZ + 3 x5 - 2 x' 

(3) 3 y5 + 2 x4 y3 - 2 X2 y3 - 2 YJ- A-4 Y i 2 x 2  Y 

(1) 4 Y4+4X4 Y2-88x1 Y2-4XXh+4XJ 

(3) 4x P - 8 X  Y3-4X5 Y + 8 X 3  Y 
(4) r* + xj y' - 2 x'? y* - 2 Xh + 2 x4 
(5) -x y4 + 2 x3 y2 + 2 x Y2 + 2 x: - X5 - 2 x3 
(6) 2 y5+4xZ Y3-4 Y3+4X6 Y-6X4 Y+4Xz Y 

The canonical Grobner basis is: 

(2) X2 Y4 + 2 Y4 + 2 X4 Yz- 6 X' Y2 - 3 Xh + 4 X4 
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(7) 3 P + 2 X 4  Y3-2X2 Y3-2 Y3-x4 Y + 2 X 2 Y  
(8) 3 P + 2 P  Y2+2X4 Y2-2x2 Y 2 + X 8 - 2 2 - X 4  
(9) 2 xs Y2 + 2 x Y* + x9 - 2 x3 
(10)4X2 Y3-2 Y3+P Y + 2 2  Y - 4 X 4  Y + 2 X 2  Y 

, .  

6. OPTIMIZATION 
Using the definition of critical pairs given in Section 3 (henceforth called definition CPl), 

many intermediate 'rules are generated which later get simplified and thus do not appear in 
the Grobner basis as illustrated by the following example: 
The basis B = (1. 13 X2 Y - Y, 2. 8 X Y2 - X) 
Using definition CPI, w e  get from the superposition of rules 1 and 2. < 5 X2 P + X2, Y b  as 
the critical pair, which gives a rule: 

3. 3 x2 Y2 - - Y2 + 2 x2 . 
Rules 2 and 3 give a critical pair < 5 X2 YZ - u2 + 2X2, X2>, which gives the rule: 

4. X2Y2--.-3 Y2+5XZ, 

Rale 4 simplifies 3 to: 
1 

3'. 8 Y2 - 13 X2. 
Rule 3' simplifies rule 2 above to: \ 

2'. 13 X$- X .  

Rules 1, 2', 3' and 4 constitute a Grobner basis. !, 
The above computation can be optimized using the following definition of critical pairs: 

Definition CP2: The critical pair for two rules C I J ~  - R I  and c2 12 - R2, where cl 2 cz is: let 
t - Icm (II. 12) = fI i1 = f 2  12 and CI = a cz + b, - - 
the two left-hand-sides is the monomial cI I from which by applying the two rules, w e  obtain 
the critical pair < p , 4 > ,  p - b r  + of2 * R2 and q =,JI * RI. 

It is again easy to see that the polynomial p - 41 obtained from the critical pair < p ,  q >  as 
defined above is still in the ideal. 

As should be evident from the above discussion, rule 4 can be obtained directly from 
rules 1 and 2 by the greatest common divisor computation on the coefficients. This suggests a 
further optimization of definition CP2 using the gcd computation on the coefficients of the 
left-hand-sides of rules. 

\ 1, c2i1 1 Q b<  7, c2 then the superposition of 
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Definition CP3: The critical pair for two rules cI tl - R 1  and c2 t2 - R2, where c1 > c2 or 
c1 = c2 is defined as follows: 
(1) if c2 divides c,, w e  generate the critical pair using the Icm of clil and c2t2 as the superpo- 

sition and w e  obtain p and q by applying the giten rules respectively. This case is the 
same as Definition CP2. Since Icm of cI and c2 is cI, suppose cI = k c2, then, p = f l  R1 
and q = k f 2 R2; otherwise, 
if c2 does not divide cl, w e  generate the critical pair using the gcd. Let c be the extend- 
ed gcd of cl and c2; there exist u and b such that c - a c1 + 6 c2. Theii the superposi- 
tion of the two rules is u clfl rl  + 6 c2 f 2 r 2 ,  and the critical pair < p , q >  is: 
p = c ic-m(tl, r2) and q = afl R I  + Sf2Rz. 

Note that <p,q> can be derived using the definition CP2 of critical pairs from the rules 

(2) 

c1 r 1  - R 1  and c2 r2 - Rz by mimicking the gcd computation of cI and c2. 
W e  will now illustrate definition CP3 on the above example. The extended gcd of 13 and 

8, the coefficients of the left-hand-sides of rules 1 and 2, respectively, is 1 such that 
1 = (-3) * 13 + (5) * 8. So, the critical pair of rules 1 and 2 using definition CP3 is 
< Xz Y2, -3 Y2 + 5 xZ>, which directly gives rule 4. From rules 1 and 4, w e  get another rule: 

6. 40 Y2 - 65 X 2 ,  
and'from rules 2 and 4, w e  get yet another rule: 

7. 24 Y2 - 39 X2 
Definition CP3 on rules 6 and 7 produces rule 3' using which we get the Grobner basis. As 
should be evident from this example, although deSnition CP3 using the extended gcd compu- 
tation helps in directly generating certain rules (e&, 4) without having to go through inter- 
mediate rules (e.g., 31, yet in order to generate other rules (e.g., 3'). it ends up generating 
other intermediate rules (e&, 6 and 7). So, for some cases, definition CP3 works better than 
definition CP2 while in other cases, definition CP2 works better than definition CP3. 

- 

7. UNIQUENESS OF MINIMAL CROBNER BASIS 
Definition: A Grobner basis B - (61, ..., 6,) is minimal (or reduced) if and only if for each 

i, 1 < i < m, the head-coefficient of b, is positive and y, cannot be rewritten by any other po- 
lynomial hi B when viewed as a rewrite rule. 
Theorem 7.1: Let B - (bl, * .,b,,,) be a basis of an ideal I in ZIX,, a .  ,A',]. Then, a 
minimal Grobner basis of I is unique subject to a total ordering on indeterminates XI, ..., X,. 
Proof: By contradiction. Assume that I has two minimal Grobner bases B - (b,, , 6,) and 
B' - (bl', + , 6,'). Let L, - R, be the rule for b, and C,' - R,' be the rule for b,'. Assume 
also that the rules are ordered corresponding to their polynomials it1 both bases, i.e., 
LI -. R I  < e < L, -4 R, and LI'- RI' < . a . < L,'- L"'. 

Let i, 1 < i < u, be the smallest rule number where the two bases differ. That is, 6, and 
6,' are no+ identical, and for all j > 1 and j < i, if any, b, - b,'. There are two possibilities 
because of the same ordering being used on indeterminates {XI, ..., A',] for both buses: 
(1) L, g L,', or (2) L, = L,', but A, f H,'. 
Case (1): L, f I-,'. WithouE any loss of generality we can assume that L, < L,' since monomi- 
als are totally ordered. 



-- . . . -  

The polynomial b, is in I, and since B' is il Grobner basis, b, must reduce to 0 using poly- 
nomi~ls in B'. But only rules corrzspondLig to b,', for j 2 1 and j < i, if any, can be applied 
on b,, which means that I > 1, as otherwise b l  is not in I, which is a contradiction. The 
above a!so implies that b can also be reduced by polynomials in B, since for all 1 < j < i, 
b, = b,', which is a contradiction as B is a reduced basis. 

Case (2): L, = L,' but R, f R,'. This implies that p = R, - R,' must reduce to 0. Let ik be the 
head-term of p with a non-zero coefficient d (such a ik must exist as otherwise R, - R,'). Le[ 
d, and d,' be the coefficients of !k in R, and R,', respectively, so d = d, - d,'. For R, - R,' to 
reduce to 0 there must be a rule L, - R,, 1 < j < I (because ik < the head-term of L,), in 
both B and B' which reduces d /A. Consider a rule whose left-hand-side has the least 
coefficient; say, that ru!e is L, - R,, where L, - c I,. Sincs B and B' are reduced, d, and d,' 

<d4t'd,'<L. There does not exist aqy k suck that d = k c, which implies fc - !,r such that - ~ 2 
that R, - R,' cannot be reduced to 0 either using B or using B', since c is the smallest 
coefficient of the left-hand-sides of all the ru!es that can be applied to /k. Hence, R, R,'. (In 
a rzduced basis, there cannot be two polynomials with the same head-term.) 

So, there is no ; such that b, is different from b,'. To show that u = v implying that 
B = B', assume Y > u, in which case b',+l is in I such that b',+l reduces to 0 using B. But 
then, b',,+, reduces using {b,', 1 . - , h,') in B', which is a contradiction since B' is reduced. 
H e w e  the proof. 0 

Similar results about the uniqueness of a reduced canonical system have been reported 
in [121 for Thue systems and 1151 for term rewriting systems; see also [161. 

8. CONCLUSION 
W e  hsve developed a Grijbner basis algorithm for polynomial ideals over Z. Simiiar argu- 

ment can be used to ge: a Grobner basis algorithm for finitely prssented abelian groups. Im- 
plementations of these algorithms have been done in ALDES and LISP. Lauer 1191 showed 
that the Griibner basis can be used to construct canonicar representatives for ideal residue 
classes. Since our algorithm compuies a unique Grobner basis of an ideal, in presence of such 
a basis, every polynomial in the polynomial ring has a canonical form. Moreover, the unique 
Grobner basis of an ideal gives us insight into the structure of the ideal under consideration, 
such as its dimension, maximality, primaliiy, etc., especially when the pure lexicographic or- 
dering on monomials is used to compute the Grobner basis, s=e 191 for more details. 

Lankford [personal communication, Sept. 19831 suggested that there might be relation- 
ship between the Groaner basis computation and word problems over finitely presented alge- 
brts. It turns out that computing the Grobner basis of a polynomial ideal over 2 solves the 
uniform word problem !for elementary terms) ovcr a finitely preserted covmutittive ring 
with unity. The generators of the finitely presented commutative ring play the same role as 
the indeterminates of the polynomial ring over 2. The Grobner busis is the canonical system 
for the finitely presentcd commutative ring. Further, a set of polynomials of the form t I  - t2, 
;-[here i,, i - I, 2, is R term, can be treated as a presentation of a finitely presented cammuta- 
tive semi-group, so computing the Griibner basis of the ideal generated by this set of polyno- 
mials also solves the word problem (for elementary terms) of the corresponding commutative 
semi-group (see [21 for an alternative but related approach). In a similar wuy, if the 
definition of critical pairs given in Section 3.4 is changed slightly so as not to consider the 
operation of the polynomial ring, the Grobner basis computation solves the uniform word 
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problem (for elementary terms) far finitely presented abelian groups. See [181 where an ap- 
proach using a commutative-associative completion procedure is discussed for solving the uni- 
form word problem for finitely presented abelian groups. The Grobner basis approach for 
solving the uniform word problem for finitely presentee abelian groups can also be used to 
solve the abelian group unification problem for elementary terms (see I171 for a different ap- 
proach for solving this problem). 

By adding additional polynomials (namely, 2 = 0 and for each indeterminate X,, 
X, X, = A’,) into a basis over Z[X,, .... X,], w e  can simulate polynomial ideals over a bwlean 
ring. Thus, the Grobner basis algorithm over Z can be used as a why to prove theorems in 
propositional calculus by showing the unsatisfiability of a formula in conjunctive normal form; 
this method is closely related to Hsiang’s approach [SI. The Grobner basis approach also 
solves the uniform word problem (for elementary terms) for finitely presented boolean rings. 
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APPENDIX 

G := F 
k := size(G) 
i := I 
while i Q size(G) do 
j:= 1 
while 1 < j < i do 

<p, q> := critical-pair(Gb1, GIil); 
< hm. red> := normalize (G,,S-polynomial (p,q)): 

-- 

if hm'# 0 then ( G{k+ll := hrn + red; 

j := j + 1; 
k : = k +  1); 

endw hile 
i : = i +  1 ;  

endw hile 
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ABSTRACT 
This paper considers the problem of deciding if a polynomial ideal generated 

by a finite set of polynomials is equal to the whole underlying polynomial ring. 
The problem is shokn to be co-NP-hard for polynomials over any ring R which 
has ZI as a homomorphic image, under a mapping whose kernel is finitely gen- 
erated. Such rings include the integers and the Gaussian integers. These 
results also show that for polynomial rings over integers, determining whether 
an ideal is prime and if the radical of an ideal I is I itself, are also co-NP-hard. 

1. INTRODUCTION 
The problem of determining if two polynomials represent the same element in a poiyno- 

mial ring modulo an ideal is significant in symbolic computation. The method generally used 
is !a compute a Grobner basis for !he given basis of an ideal and to use the Grobner basis to 
reduce each polynomial to a canonical form [21. This method is based on the result that 
equivalent polynomials modul.: en ideal reduce by the Grobner basis of the ideal to the szme 
canonical form. The Grobner basis can also be used to test the membership of a polynomial 
in an ideal. See the survey paper by Buchbergcr and Loos for many applications of polynomi- 
al simplification. 

Using Hermann's results I61 Mayr and Meyer showed that the uniform word problem for 
c o m m v  tative semi-groups is complete in exponential-space under log-space transformability. 
Their result can be used to show that computing the Grobner basis, as well as polynomial 
membership and polynomial equivalence with respect to an ideal, is exponential-space-hard 
IS]. For the case when the number of variables is 2, Buchberger has derived an explicit com- 
plexity bound. Apart from that case, not much is known about the complexity of computing 
the Grobner basis of an ideal. 

This paper focuses on a simpler problem: deciding if an ideal of polynomials over a ring 
with certain structure is trivial (Le., the given ideal is the whole polynomial ring). For rings 
containing a unit, this is equivalent to deciding whether 1 is a-member of the ideal. We show 
that this problem for polynomial rings over integers is co-NP-hard. This result is also used to 
show that for polynomial rings over integers (i) the primality test of an ideal and (iil if the 
radical of an ideal I is I, are also co-NP-hard. These results are based on relating the 
satisfiability problem in propositional calculus to checking if 1 does not belong to the ideal 

* The authors were partly supported by NSF grant MCS-8314600. 
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over a boolean ring generated by a finite set of variables. Later the resiilt about whether a 
given ideal in a polynomial ring on iiitegers is trivial, is generalized to ideals of polynomials 
over a ring R such that R has Z, as a homomorphic image, undLr a mapping whose kernel is 
finitely generated. The Gaussian integers, for example, have this property. Similar results 
for computing ideals in polynomial rings over nontrivial fields have been reported in ill. 

2. SATISFIABILITY PROBLEM AND CHECKING FOR NONTRIVIAL IDEAL 
This section shows the relationship between the unsatisfiability problem for propositional 

calculus and the poblem of testing if an ideal is trivial. 
Stone showed the relationship between the Bookan ring 
BR = (B, +. *. 0. 1)' 

and the Boolean algebra 

where + is 'exclusive or9 and * is A. Here, 1 stands for 'true' and 0 stands for 'false.' Stone 
also proved that every element in a boolean ring has a unique normal form which can be ob- 
tained using the axioms of the boolean ring. The correspondence between the boolean ring 
and the boolean algebia can be shown using-the following transformation: 
from BA to BR: 
x v y = x + y + x  'y 

x A y = x  'y 

- x = x + l  

from BR to BA: 
X+Y=(XA-~Y)V(-XA/\Y) 

x * y = x A y. 
Hsiang showed how to use Stone's result to prove theorems in proposition21 calculus. In 

particular, he developed a clausal approach in which given a propositional formula f expressed 
using propositional variables xi ,..., x,,, in conjunctive normal form, the unsatisfiability of f can 

and * in the boolean ring representation and equated to 1 (to mean that the clause is true). 
The formula f is unsatisfiable if, and only if, 1 = 0 can be derived from the equatiops ob- 
tained from the clauses. 

\ .\ 
I 

. I  
I be established. Each of the clauses in f are transformed into polynomials expressed using + 

Given a clause c = L, V . . . V L ~ ,  where each Li is a literal, C = 1 is transformed to a,po- 
lynomial in a boolean ring over xi, .... x,,, as follows: 

r ( ~ )  = x, + 1 if C is a variable x, 
if c is a literal - x, XI 

r(L,) * r(L2V 0 . . V Lk), otherwise. 
A boor& ring is a commutative ring with 1 such that for every element a in the ring, 
a ' II = a as well as II + a = 0. 

w -- 
?I. r 

r 
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Theorem I [71: A formula f, which is a set of clauses, is unsatisfiable if, and only if, 
1 = 0 can be equationally derived from (r(C,) = 0 I C, inf) using axioms of boolear. ring. 

here has coefficient 1 and each indeterminate in the monomial has at most degree 1). The 
Consider the free booiean ring over [xlr .... x,,] (note that every monomial in a polynomial 

representation of a formula f as a set of'elements in the boolean ring BR[xl, .... x.1 is the 
ideal generated by (r(Cl), .... r(C,,,)). Thus the check whether 1 = 0 can be equationally 
derived from (rtC',) - 0) is the same as checking whether 1 belongs to (r(C,), .... r(Cm)). 
Thus the above theorem can be restated as: 

Theorem 2: A formula f is unsatisfiable if and only if 1 belongs to the ideal 

Since the unsatisfiability problem is known to be co-NP-complete (and we have a 
polynomial-time ;ransformation), we see that the membership of 1 in an ideal in 
BR[xl, .... x,] is co-NP-complete. (See also Gary and Johnson (p. 251) where they credit a 
similar result to Fraenkel and Yesha.) 

Henceforth, w e  will refer to the problem of testing whether an ideal is the whole ring as 
the rriviulity problem. For rings with identity, this is the same as the problem of testing 

morphic to the polynomial quotient ring Z2 [xl, .... x,I/ (x: + xlr .... x; + x,,), it can be easi$ 
shown that 

(r(C1), .... r(C,,,)) in BR[xl, .... x,,]. 

whether 1 belongs to an ideal I. Since the free Boolean ring generated by xl, .... x,, is iso- 

Theorem 3: The triviality problem of an ideal I in Z2 [xl, .... x,I is at least co-NP-hard. 
Further, because Z2 is a homomorphic image of Z (under the homomorphism that maps 

every even integer to 0 and every odd integer to l), we have the following result about ideals 
in Z[xl, ..,, x,,]: 

Theorem 4: Let I - If I, .... f,,,) be an ideal in ZIxl, .... x,,]. Then, the problem to test 
whether 1 belongs to I is at least co-NP-hard. 

Proofi A n  algorithm for testing whether 1 belongs to an ideal I in Z[xl, .... x,] can also 
be used to test whether 1 belongs to an idea! J of polynomials over Z2[x1. .... x,,l by testing 
whether J'- (J, 2) in Z[xl, .... x,,I has 1. So, checking for 1 belonging to I over Z[xr, .... x,,] 
is at least as hard as checkhg whether 1 belongs to ZS[xl, .... x,l. Hence the theorem. R 

c 

In a later section, we generalize this result to show that the triviality problem of an ideal I 

NP-hard. These results are shown by defining a homomorphism from R to Z2 and identifying 
polynomials in R[xl, ,.., x,,] which play ihe role of 'true' and 'false.' 

over a polynomial ring R[x;, .... x,]. where R/(rI, .... rs), r, E R, is isomorphic to Zz is also co- 

2.1 Primality, Radical, and Power Problems 
The above results can be also used to analyze the complexity o'f testing (i) prirnality of an 

ideal, (iil whether the radical of an ideal I is I itself, and (iii) whether some power of a given 
polynomial P is in an ideal I. 

Let I = (f,. .... f,,,) be an ideal in Z[xt, .... 4. Let x be an indeterminate 
different liom x,, i - 1, .... n, and let f'- (I, x2) be the ideal g3nerated by the f,'s and x2.in 
Z[xl, .... x,,, XI. Then, 

~ 

Theorem 5: 

(1) I' is a prime ideal if and only if I - (1). 
(2) Radical(1') = I' if and only if I - (1). 
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ProoJ 
Conversely, 1 belongs to I implies 1 belongs to I' which implies I' is prime. 
(b) Radical(/') - I' implies x belongs to I' but x is not in I' unless 1 belongs to I 
Conversely, 1 belongs to I implies (1) = I' which implies that Radical(I'1 = 1'. 
Corollary 5.1: Let I = (fI. ..., f,) be an ideal in Zkl, .... x,]. The problems of testing 

whether I is prime ind Radicnl(I1 = I are at least co-NP-hard. 
Theorem 6: The problem of testing whether some power of a polynomial p is in an ideal 

I over Z[xI, ..., x,] is as hard as the triviality problem for ideals. 
ProoJ The triviality problem can eesily be reduced to the power problem, by choosing 

p=l. For the converse case, let I = (fl, ..., f,) be an ideal in ZIxl, ..., x,I and let p be a non- 
zero polynomial in Z[x,, ..., x,l. Consider I' - (I. p x - I) where x is a new indeterminate. If 
1 belongs to 1', then it can be seen that a 7ower of p belongs to I by employing the substitu- 
tion x = l/p as in the proof of Hilbert's Nullstellciisatz. Conversely, if p m  is in I, then p m  xm 
is'in I' which implies 1 is in f', using px - I. 3 

(a) I' is x i m e  implies x belongs to I' but x is not in I' unless 1 belongs to I. 

3. BOOLEAN FORMULAS AND POLYNOMIAL IDEALS 
Let R be a ring cont;ining a finite set of elements {rl, ..., rs) such that R/(rI, ..., r,) - ZZ. 

W e  will denote the homomorphism from R to Z2 by 4. Then R[xl, ..., x,]/(h, ..., r,, 
X{ + xI, ._.. x,' + x,) also behaves like a free Boolean ring. This will be used in the following 
to prove our main theorem. 

Definition: 

Let o be some odd element of R which commutes with all elements uf R. 
Definition: For u,v E R define u A v = u * v, define u V v - u + v + u v, define 

Dejiiniiion: For p t R[xl, ..., x,J w e  define p to be oddiff p(q, ...* c,) is odd for all evalua- 
tion points cI. ..., c, E R. Similarly, p is even iff the values of all possible evaluations are 
even. 

It can easily be shown that 'odd' and 'even' behave like truth values; i.e. 'odd' behaves 
like 'true' and 'even' behaves like 'false' with respect to. the operators '4.'' 'A' and V'. This 
is true both for R and RIxl, ..., x,l, the difference being that in R, all elements are either 
even or odd, but in R[xl, ..., x,l there exist elements, which are neither odd nor even. This 
rel:tionship between polynomials and truth values is used to prove in a more general setting 
the result, which was proved for 2 in the previous section. 

Theorem 7: Let R be a ring, (ri. ..., rs) be elements of R such that R/(rI, ..., rJ = Z2. Let 
o be some odd element of -'? which commutes with all elements of R. The problem of deter- 
mining whether an ideal generated by a finite set of polynomials in RIxl, ..., x,,l contains o is 
co -NP- hard. 

PruoJ This theorem can be derived from Theorem 8 below which relates 3- 
unsatisfiability and the ideal membership problem. 0 

From the above theorem, we immediately have: 

For r E R w e  will call r odd if r$(r)=l. W e  will call r even iff +(r) = 0. 

u - u + + .  

L-. -..= 
0 
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Corollary 7. I: Determining whether an ideal in R [xl, .... x,] is trivial is co-NP-hard, 

ProoJ This follows directly from Theorem 8, sine the ideal ( r l ,  .... r,, xI 

where R fulfills the requirements of Theorem 7. 

+ -xl. .... .xf + x,,, p I  + W, .... pm + w) is trivial iff it contains w (since it then contains all of 
R). 0 

Theorem 8: There exists a polynomial time trasformation from a 3-unsatisfiability prob- 
is a member of the ideal generated by the set 

2 

lem CI A, .._. A C,, into the quwion whether 

commutative odd element of R ,  and each p, is constructed from C,. 

ProqJ- As in the translation from boolean algebras to boolean,rings discussed above, in- 
terpret each clause C, = aVbVf. as a polynomial p, = a V b V c. As stated above, the operators 

respectively as true and false. Therefore, the unsatisfiability problem can also be posed as the 

n'p, is even in all evaluations, which by definition, is the same a5 checking if n pi is an even 
poly n o m  ial. 

(rl. .... r,. -Y: + xI, .... ,Y: + x,,, pI + W, .... pm + 0). where R/(rj, .... r,) = Z;, 0 is an arbitrary 

'- , ' 'A' and 'V' can be defined for polynomials so that odd and eveil polynomials behave 

question of whether p I  A ... P, pm is even in all evaluations. This is the same as asking if 
1?1 m 

a -  I I =  I 

By Theorem 9 below, this is the same as asking if w is a member of the ideal generated by 

As an example, the clause x V  - y V z gets transformed into the polynomial 
the set {rl. .... r,, .x: + xI. .... x: + x,, p~ + w, .... qm + w). 

x v - y v 2 = x + (- y v 2) + x ' (- y v 2) = 
x + - y + z - C - y  *:+x ' ( - y + z + - y  * 2 ) =  

s + y + 0 + 2 + ~ y + w )  * Z + X  * ( y + o + z + ( y + w )  'z)= 
s + y + w + z + g  '2+w * z + x ' y + x  'w+x ' ; + x * y  'z+x 'W '2. 

Since each clause contains at most three literals, the number of terms that can arise from 

Theorem 9: In R 1x1, .... x,l, n pl is even iff w E (rl. .... r,, x: + xlr .... X: + x,, 

an expansion such as the previous one, is bounded by a constant. 0 
m 

I- I 
p I  + w, .... pm + w) The proof of this theorem follows from the following two lemmas. 

* 
,,, m ... 

Lemma I: In R [xI. ..., x,,], n pl is even iff there exist cI, ... ,am such that u,(p,+w) is 
/'I I' I 

odd. 

. Lemma 2; For p E R [xI, .... .4, p is odd (respectively even) iff p = w (respectively 0) 
m o d  Ifl, .... r,, x: + xlr .... x,2 + x,) 

Proof of Lemma 1: 
m I- I 

Case a) Let it be given that p, is even. Let a, = w n pl, where u1 is W. Then 
/-I /-I 

VI I- I m i  ," 1 - 1  

. .  
. .  
. -  a -  . . . . .  

. .  
. I  

+-.. .- J 
- .  
a 

; .  . .  . .  . . .  - .  
. .  . .  

. .  

-I 



m 

N o w  JJ p, is even, and the last s u m  is even because each term is of the form x + ox. There- 
fore the whole result is odd. 

1- 1 

m 

Case 6) Let it be given that a,(p, + W) is odd. Then by lemma 2, there exist b's and c's 

such that a,(p, + w) + b,(x? + x,) + c,r, = W. Multiplying on both sides by n pIs w e  
get: 2 a,(pI + W) rl[ p, + bI2(x/ + x,)n pJ + I: c12 r, n pJ - w n p,. Now each term in the 
first s u m  is even, because it contains pl + w and p,. Each term in the second sum is even, be= 
cause it contains xr2 + x,. Each term in the third s u m  is even because it contains €r2. There- 
fore esch side of the equation is even. But for w n p, to be even, n p, must be even. 0 

m k /'I I m 

I= I .TI '7 rn m n r-l , 
I =  I J' I I= I J'I I= I J'I I- I 

1- I m 

m m 

I- I I- I 

Proof of L e m m a  2: Let /(p) be the highest index of a variable occurring in p. If no vari- 
able occurs in p, define l(p)=O. Let ?(p) be the highest power of x,(,, in p. If no variable oc- 
curs in p, define r(p)=O. Th5 proof is by induction on /(p) and r(p). 

Basis of outer inducrion, /(p)=O: Obvious - this case reduces the lemma to R. 
Basis of inner induction, r(p)=O: Obvious as above. 
Inner inductive step: Given that it holds for all pp such that /(p) < c, and that it holds for 

all p with /(p) = c and r(p) < d, w e  wish -to prove that it holds for p', where /(p9 = c and 
r(p') = d. Find pol p 1  and p2 such that p' = x,' p2 + x, p1 f PO where po contains no powers of 
x,, and the polynomials p2 snd p~ contain no powers of x, higher than d - 2. Then 
p' = x,2pZ + X, p2 - X, p2 + x, p I  + po =. (x,' + x,) p2 + (pI-p2)x, + po. By evaluating at x, = 0, 
w e  can certify that yo is even (respectively even). Therefore, by induction, po - w (respective- 
ly 0) m o d  (rl, ..., r,, xf + xI, ... x,,? + x,,) Now x,2 + x, is obviously even, so by lemma 2, 
(x,Z + x,)p2 is also even. Therrrbre ( p I  - p2)x, must be even, which implies that pl - p2 is 
even, and therefore, by inner inductive hypothesis, pl - p2 - 0 m o d  {rl, ..., r,, 

Outer inductive step: Givren that the theorem holds for all p with /(p) < P, w e  wish to prove 
that it holds foi p' with /(p') = c and r(p') - 0. This condition is trivially satisfied, since there 
are no such p's. [3 

XF + XI, ..., xf + X,l. 
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1. Introduction 

W e  construct algorithms for testing the primality and maximality G; an 
ideal in a multivariate polynomial ring over a field. Effective methods for 
these and related questions in commutative algebra have been studied in the 
past century. I f  one can determine the associated primes for the primary 
decomposition of an ideal then one can answer our main question, pi-imality. 
In 1925, G. Hermann [Her] constructed an algorithm for the primary 
decomposition of an ideal. Seidenberg [Sei] expanded upon her methods and 
gave more precise conditicns under which they apply. In 1982, Lazard [Laz 
31 has given an algorithm far primality testing. Lazard's paper [Laz 31 is 
also a good reference to other work in this area. All of the algorithms, 
including ours, spend considerable time in the general case. We observe, 
however, that our method, which avoids adding new variables, is suitable 

. for peccil and paper application to many non-trivial simple examples. T h e  
other methods are based on the construction and factorization of a 
polynomial, the "ground-form", in many new indeterminates. T h e  approach 
taken here exploite the interplay between two reduction processes which 
serve, among other things, to determine membership of a polynomial in a 

'This work partially supported by NSF grant MCS-8314600. 
ZSoms of the the results will appear in A. Kandri-Rody's doctoral thesis at 
RPI. 

------------------ 
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given ideal. T h e  first of these w e  call B-reduction. It is Buchberger's 
reduction process based on the the construction of a Grabner basis for the 
given ideal. T h e  second w e  call R-reduction. It is Ritt's reduction process 
based on the concept of characteristic set. Characteristic sets are used by 
Ritt primarily for work with differential ideals, but are useful also in 
application to polynomial ideals as this paper demonstrates. W e  are thankful 
to M. Singer tor bringing characteristic sets to our attention. - _  I -  

\ '  

In the next section, w e  wili define these two reductions and give 
basic defiqitions. In section 3 w e  give an algorithm to test whether an ideal 
is maximal. In section 4 w e  give an algorithm to test whether an ideal is 
prime. Henceforth, let R = KIX1,. . .,Xn] be the ring of polyrtomials wher.2 
X1, ..., Xn are indeterminates and K is a field. 

2. Definitions 

in this section, w e  will characterize Buchberger's completion algorithm 
and the notion of characteristic set. For more details see Buchberger [Buc 
1,2], Buchberger L Loos [B.L.] and Ritt [Rit]. A treatment of 
Buchberger's algorithm which unifies it with the Knuth-Bendix completion 
procedure is given by Kandri Rody and Kapur [K.K.]. 

2.1 6-complete basis 

Following Buchberger, w e  rejerve the word term to refer to any 
n e. product Xi I , ei 2 0, of indeterminates with possible repetition. A 

i=l 
monomial is a term multiplied by a non-zeio coafficient. W e  represent a 

polynomial as a sum of monomials in which nc term appears more than once, 
such a polynomial is said to be in distributive normal form. T h o  
B-reduction process w e  consider will depend on an ordering which w e  apply 
both to monomials within a polynomial and to compare polynamials. Though, 
for most purposes, a variety of ordering can be used, we will use only the 
pure lexicographic ordering defined as follows: 

n e. n fi 
Given two terms t,= B X. I and t2 = Ai , w e  say that t, is of lower I i=l i=l 
order than t2 and write t, < t2 if either en < fn or there exist i < n such 



that for every j > i, e = f. and e. < f.. I j 1  i 

For example 
x, < x2 < ... < xn I x1x2 < X1X3 , x13 < x1x2. 

Suppose w e  are given two polynomials P = c4t, + PI' and 1 
P2 = c2t2 + P2' where the terms of P'. ( i  = 1, 2) are all less than ti, then 
w e  say P is lower than P, and w e  write P2 if t2 < tl or (t2 = t., 
and P'2 < P,') . W e  say the zero polynomial is of lower order than any 
nonzero polynomial. 

I 

P1 2 1 

Note that if C is a product of two polynomials A and B then A < C 
and B < C. 

Th e  B-reduction process is characterized by the fact that if a 
B-reduces to P2 with respect to El,. =.,BIc then P, < P, and 

D i S i .  We say that P1 is B-irreducible with respect to A,,.- .,Ak 

polynomial P1 
k 

P1-P2 = 1 
i=l 

if there is no polynomial P2 such that PI B-reduces to P2. 
A finite set B = {B1,. . .,B 1 of polynomials is called a Gr6bner 

basis for an ideal I = (A,, ..., Ak) if for any polynomiat P, the B-reduced 
form of P is unique. An equivalent definition is that any polynomial in the 
ideal 8-reduces to 0. 

r 

If each Bi is B-irreducible with respect to Bj, i f j, w e  say that 
6 = (B1,. . .Br) is B-complete. (B is the minimal Grsbner basis for I in 
Buchberger's termonology 1. O n e  knows that such B-complete basis for a 
given ideal I can be effectively computed and is unique. In this case, each 
polynomial P in R 8-reduces to a unique B-irreducible form. In the rest of 
the paper, for.' a given B-complete basis (B1,. . . , Br), w e  will assume 
Bi < B. 

2.2 Chbracteristic sets 

1'1 - 
I 

For the secund reduction process, R-reduction, w e  view a polynomial 
P in R = KIX1,. .'.,Xn] as a polynomial in Xm the highest variable occuring 
in P. T h e  coefficient of the highest power of Xm, a polynomial in the 
variables X, , . . . ,Xm-l, is called the initial of P. Let iC1,. . .,es) be 
polynomials in I, and let N. i=l,. . . ,s, be the initial of Ci. Let P1 and P2 I' 
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be. in KIX1,.. .,Xn]. W e  say that P2 is 5-raducible with respect to P1 if 
either ( i )  P2 2 P1 and P2 does not have any variable greater than those 
occuring in P, or ( i i )  P2 is B-reducible with respect to P1. 

For example, in Q[X,Y,Z], X < Y < 2, let P1 = Z + Y2 + 1, let P2 
= XY + I and let P3 = XZ + X2Y2 + 2. Then, P2 is rot R-reducible with 
respect to P1 and P1 is not R-reducible with respect to P However, P3 is 
R-reducible with respect to P1 and P2. 

2' 

A set (Cl,. . .,Cs) is a characteristic set for an ideal I if 
(1) Ci, i=1, .... s, belongs to I and 
(2) either (*) s = 1, C f 0 and I contains no polynomial lower than C, or 
(**) s > 1, {C1,. .,Cs-l) is a characte'ristic set for some ideal, 
introduces at least one variable higher than those occurr:ng in C1, 

(4) every polynomial in I can be R-reduced to 0 with respect to 
C1,. . .,Cs. (This definition is equivalent to the one given in [Rit]) 

1 
. 

cS 

cs-l .... 
and (3) Cs is B-reduced with respect to C1 ..... Cs,, and 

T h e  set of - polynomials which can be R-reduced to 0 with respect to a 
characteristic set C = IC,, ... ,Csl form an ideal J ,which w e  call. the ideal 
generated characteristically bv C. Note that J contains I. 

A more general version of the following theorem, applicable to 
differential polynomials, is given in [Rit], page ti ( see also [Z.S], theorem 
9, page 30). 
Theorem 2.1 
characterishc set for I and, N i  be the initial of Ci. Then, given any G in 
ti, w e  can construct a unique R-irreducible H in R such that 

Let I be an ideal in R = KIX1,. ..,Xn], let C1 ..... Cs be a -- 
s s. 

( ll N i  ')G - I 
i=l 

i.e. G R-reduces to t 

Theorem 2.2 Let I 
(B1, ..,Br1. Let C = 
new variable. Then, 
by c. 

S = I: DiCi 
is1 

be an ideal in, KIX1,. . .,Xn] with B-complete basis 
{Cl,. .,Cs) be the set of Bi which first introduce a 
is contained in the ideal characteristically generated 
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Proof: It suffices to show that each B. can be R-reduced to 0 with respect 
to C. Suppose B. R-reduces to R, with respect tc C. If R. # 0 then R. is 
of lower degree thar, any Ci in Y., in 
its leading variable, so that R. does not B-reduce to 0; but I 

I 
I I I I 

hence of lower degree than any B 
I i 

s s  S 
I R. = ( II P'li )Bj - Z DiCi is in I .  

1 i=l i=l 

Let B = (B,,. . .,Br) be the B-complete tlasis for an ideal I in 
K[X ,,..., Xn]. Let C = {Cl ,..., Cs) be the set of Bi which first introduce 
a new variabie. Then, C is a Zharacteristic set for I which w e  call the 
extracted characteristic set for I .  

3. Maximal ideals 

Let I = (A1 ,..., As) be a n  idea! in R = KIX1 ,..., Xn], where K is a 
field. T h e  algorithm Maximalldeal below tests whether I is e maximal ideal in 
R. T h e  algorithm is expressed in the N E W S P A D  language being developed 
by Jenks and Trager [J.T.]. Newspad is convenient for us because it 
permits suitably abstract specification of the algorithm (arbitrary ground 
field and variable list for example). But also w e  have zxecutabls code 
(well, nearly so). T h e  code consists of a variety of declarations followed 
by the definition of the predicate Maximalldeal per se. 

ldealPackage f K, V, IdealBasis) : ExportedFunctions == Definitions where 
K: Field 
V: List(Expression) { variable list 1 
Idealaasis: List(MultivariatePoJynomiaJ(K, VI) 
ExportedFunctions == with - 

Maximalldeal: IdealBasis -> Boolean 
Primeldeal: IdealBasis -> Boolean 

B-CompleteBasis := IdealEasis 
Poly := MultivariatePolyriomial( K, V) 
{ We assume this domain of polynomials in the variables V with 
coefficients in K has among other things the function 

which returns true if the Poly is irreducible when viewed as a 
polynomial over the given field. The field may contain several of the 
variables in V as algebraic QS transcendental elements. 
Also w e  use 

which returns the highest variable from V that occurs in its 
argument. 1 

Definitions == add 

irreducible: (Poly, Field) -> Boolean 

lastvariable: Poly -> Expression 

4 6 3  
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{ declarations 1 

B: B-CompleteBasis 
F: Field 
Maxinial Ideal (A : Ideal Basis) == 

prq: Poly 

B := GrobnerPackageSBuchbergerCompletion(A1 
- if C"B # #V then return false 
{i-th poly in 6 must introduce i-th variable 1 
for - p '&'B , X & variables repeat 

if lastVariable(p) # X then return false - 
F := K 
for P in B, X & variables repeat - 

if Irreduci ble ( p, F 1 
then F := QuotientRing(polyRing(F,X) ,p) 
e& return false 

- 
Return true 

{ Idealpackage continued in section 4) 

Theorem 3.1 if {B ln...,Bs) is 
a B-complete basis for I,  then I is a maximal ideal in KIX1,.-.,Xn] if and 
only if  s = n, Bi introduces Xi, and B. is an irreducible polynomial over 

T h e  algorithm Maximalldeal is correct, i.e. 

I 
Ki-l=KIX1,. . . ,Xi-l]/(B1,. . . , Bi-l). 

Proof If the ideal I 'is maximal then the algorithm returns "true". This 
follows from [Z.S.], theorem 24, page 197. Note that the B-complete basis 
is "the canonical basis" described there; this is because the canonical basis 
is a Griibner basis and it is minimal. T h e  unique basis with these 
properties is the B-complete basis. If the algorithm returns "true" w e  show 
I is maximal by an induction over n. If n=1, I=(B1) is a maximal ideal in 
K[X11. Assume n>l , by induction hypothesis 
KIXl ,..., Xn-l]/(B1 ,..., Bn-l) is a field and, since Bn is irreducible in 
Kn-,[Xn], Kn = KIX1 ....., X,]/(B1 ,..., Bn)is a field. Thus I is a maximal 
ideal. 

- - 
Kn-l 

Theorem 3.2 
field and let (B1,. . .,Bn) be the complete basis for I. Then, 
(a) Each Bi introduces Xi. 
(b) T h e  intersection of I and KIX1 ,..., Xi] is (B1 ,..., Bi). 
(c) If K is a finite field of cardinality q, then the cardinatity of 

Let I be a maximal ideal in R = K[X l,...,Xn] where K is a 

PI.. .vr, 
R/I is q where pi = degree of Bi with respect to Xi. 
(d) If K is algebraically closed then Bi = Xi - a. for some a I i in K. 

T h e  proof follows readily from theorem 3.1. 
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4. Prime ideals t 
I .  

'-. In this section, w e  will show how to compute a characteristic set for 
a prime ideal with a given Sasis, and, given a characteristic set of a prime 
ideal, how to compute a basis for the ideal. With these facilities, w e  will 
prove the following algorithm to test whether an ideal is prime. 

ii 

F 
{IdealPackage -- continued from section 3) 

i Characteristicset := List(MultivariatePolynomial(K, VI) 
{ declarations 3 

A, G, H: IdealBasis 
R: B-CompleteBasis 
C: CharacteristIcSet 
CharacteristicSetExtract: B-CompleteBasis -> CharacteristicSet 

CenerateComplete Bas i z : C ha racteri st icSet -> B -CompleteBasi s 
primitive: (Poly, Expression) -> Boolean 

Primel deal (A 1 == 

p. g,: Poly 
*-- 

+- CharacteristicSetOFPrimeldeal: Characteristicset -> Boolean R 
L. 
I* 
L { Get B-complete basis 3 

B := Gr6bnerPackageSBuchbergerCompletion(A) 
C : = CharacteristicSetE A t  ract ( R) 
if CharacteristicSetQfFrimeIdeaIiC) then 

if B = GenerateCarnplc?teBasis(C) 
then return true else return false 

t 

C ha ract e r i s t i c Set E x t rac t ( B I == 
{we assume B ordered following the pure lericographical ordericg 1 
C := [ first B J 
for p in rest B if lastV&riable P > lastVariable(first C) 

return C 
then C := conaCp,Cl 

CharacteristicSetOf Primeldeal (C) == 
{True if C is a characteristic set of a prime ideal 1 
F = QuotientField (MultivariatePolynomial(K, {X in V I for i in 
1. . s, X # lastVariable(Ci) 1) 1 
for i in l..s 

if not primiti4e(Ci, lastvariable (C,)) then return false 
- if not irreducible(Ci, F) then - return false 
F := QuotientRing( PniyRing(F, lastVariable(C,) 3, Ci) 
{ Then F is a field because Ci is irreducible. ? 

return true 

ifi 
i 

primitive(p, X) == 
- if 1 = greatest common divisor of the coefficients of p (as a 
polynomial i r c  X) then return true else return false 
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I 
i t- . 

1 
F- E '  - 

i 
L .  

I 
I 
1 

i -  

i 

i 

I '  
j ..j 
I- . 

Generated Corn p I e te Bas i s ( C == 
G : = G rgbnerPackageSBuchbergerCompletion (C) 
H := [] 
while H f G repeat 

H := G 
for p C - 

L := BasisOf({g I g*lnitial(p) = IPiGi, Gi is in GI) 
{ For L w e  can use Herman's module basis algorithm, 
c.f. [Sei] page 276.) 
{ Get B-complete basis for ideal generated by L 1 
G := GrobnerPackageSB- CompleteBasisExtension (L) 

return G 

Theorem 4.1 Let B = (B1,. . .,Br) be a B-complete basis for an ideal I in 
KIX1,.. .,Xn] . Let C = {C1 ,..., Cs) be the extracted characteristic set for 
I ,  and, let J be the ideal generated characteristically from C .  T h e  Xi can 
be divided into two sets, U 1  ,... Ut and Y,,. ..,Ys, t+s=n, where Yi is the 
highest variable occuring in Ci and the il. represent the other variabies. 
Then (a) implies (b) and (b) is equivalent to (c), for the assertions: 
(a) I is a prime ideal. 
(b) For i = 1, ..., s, C. is irreducible over K (hence C. is primitive BS a 
polynomial in the last variable) and is also irreducible when viewed as a 
polynomiai over Fi-l, the field of quotients of K(Ul, .. .,Ut)[Y1, ..., Y.- J/ 

1-1 
(c) J is a prime ideal and C = IC,, . . . ,Cs) be the extracted characteristic 
set for J. 

1 

I I 

I 1  
(C,,. ..,c. 1. 

Proof: Let us show (a) implies (b). Consider Ci as a polynomial over K, 
suppose C. has a nontrivial factorisation C = A.8, where A or B do not 
belong to K. Then,A or B beiong to I which implies A or B can be 
B-reduced with respect to B 6. < Ci , but then Ci will be also 
B-reduced which is not possible since !B ..., B,) is a B-complete basis. 
Thus, Ci is an irreducible polynomial over K. Consider Ci viewed as a 
polynomial over Fi-l. 1 is obvious from the irreducibility and 
I = (Cl). Assume s > 1. Note that the intersection of 1 and 
K(GI ,..., UtIIY1 ,..., YSml] is a maximal ideal for which {C ,,..., (ls,l? is a 
basis, hence that Fs-l is a fieid. Let us show that Cs is irreducible over 

Let Cs = A 8  (over Fs-l). Clzaring denominators of coefficients in A 
and B, w e  obtain DCS = GH, where D is in K[U,,..,,Ut)] and G, H are 

-I- 

I S 

i' I 
1" 

T h e  case s 

. Fs-l 

t - 
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polynomials in KIU1,. . , ,Ut,Y1,. . . ,Yc]. Without loss of generality, assume 
that G and H are both of positive degree in Ys# but then each is of 
degree lower than Cs in Y s  and hence cannot be B-reduced to 0, i.e it is 
not in I. Note that the initial of H (or of G) does not belong to I because 
D and the initial of Cs do not belong to 1. Since I is prime, Cs mist be 
i I- reducible . 

Now since (a) implies (b) it is immediate that IC) implies (b). Let 
us show that (b) implies (c). W e  remark that Ritt [Ritl, page 89, has 
shown that the C. are irreducible over F. if and only if J is prime. Ci 
will be considered as a polynomial over Fi-l. T h e  case s = 1 is obvious 
from the irreducibility over K and J = (Cl). Suppose s > 1, by induction, 
Js-l the ideal generated characteristically by C1,. . I Cs-l, is a prime 
ideal. Note that Js-l is also the set of polynomials which vanish for 

where y. is a root of Ci considered over Fi-l. Let 
ys be a aero of Cs. Let I s  be the totality of those polynomials in 

I 1-1 

U1 .... 'Ut.Y1,".'Yp-l I 

I is a prime 

Dici. M i  

Nip considered 

K[X,, . . . ,Xn] which vanish tor u9,. e ,ut,y,, . . . ,ys. 

ideal. We shall prove that J = Is. Let G be in J .  [ II N i ')G = 
does not vanish for u1 ,..., ut,yl ,..., y,. 

s s  s 0. 

i=l $1 
Indeed if it does, 

as a polyr.omial over F(i-11, is multiple of Ci-,; clearing denomin3ters and 
replacing each of x. by the indeterminate Xi, w e  get ONi = HC. where B 
belongs to KIUlg ..., UtYl ,.., Yi-2], this implies that ti-l divides DNi. T h e  
irreducibility of Ci-l implies Ci-l divides D which is impossible since D 
does not involve Hence G(ul ,.., ut,yl ,.., yo) = 0 i.e G belongs to I s +  
Let -show the other inclusion. Suppose A is in is, i.e. 

A("~,. .,ut,ylt..,yS) = 0. There exists an integer ss such that N,"A = 
D.Cs + R(X y,...,X,) where degysR < degysCs. If degysR = 0 then R is 

0, hence there exists a polynomial R( ul,. . ,ut, yl,. . ,Y,,~ ,Ys) f 0 which is 
annuled by ys and degysR < dsg C this is contrary to the assumption Ys 5 
Cs is the minimal polynomial of y,. Suppose C'={C1',.. .,Cs'] is the 
extracted characteristic set and let J' be the ideal charecteristically 
generated by C'. Let us show that C = C'. If C1 < el' then C1 cannot be 
R-reduced to 0 using C'. If C1' < C1 then C1' cannot be R-reduced Po 8 
using C. This implies el = Cq'. Suppose i > 1 and C = C.' fop j = 
l,..,i-1. If Ci < Ci' then Ci cannot be 8-reduced to 0 using C' otherwise 

I 1-1 

in Js-,, this implies A is in J. If degysR > 0 then R(ul ,.., ut,y1 ,.., vsl = 

i 1 

I i 
i -- 

"' I  
. :  

c t  

C" 

I 

- f  
, '  j 
1; i 
, :. 



Ci will R-reduce to 0 using C which is impossible. T h e  same argument 
applies if Ci' < C,. Thus, t = s and C = C'. 
Theorem 4.3. Let B=(31,. . .,Er) be a B-cogplete basis for an ideal 1 in 
KIX1,. . . ,Xn] be the extracted characteristic set for 
I, and, let J be the ideal generated characteristically from C. Then, 
1. I is included in J. 
2. I is a prime ideal if and otily if J is a prime ideal and I=J. 
3. If J is a prime ideal then algorithm Primeldeal computes a B-complete 
basis for J. 

. Let C=I.C,, . . . ,Cs) 

Proof: 1 .  This is theorem 1.2 . 
P 

to 2. Th e  only if part.is evident. Let us show the if part, from l.,we need 
s s. S 

show J is included in I .  If G belongs to J, then ( II Ni I)G 1 DiCi. 

this implies ( Il N i  I)G is in I. Since I is prime and II N i does not 
belong to I ,  G belongs to I.. 
3. T h e  proof follows from the lemma 1 and lemma 2 below. 

S S. i=l S S. 
I 

i=l 

Lemma 1 Given 
{C1,. . .,Cs), let 
Then, 
(1) Li , i = 1,2 
(2) there exists 

J, tf4e prime ideal characteristically generated by 
G is in Li-l). l+i mod s .o=(C1,. . .,Cs) and Li={G I N 

. . . , rorm an ascending, chain of ideals. 
r such that Lr = Lr+s-l and J = Lr. 

Proof: (1) Obvious. 
(2)Since KIX1,. . . ,Xn] is Noetherian, the ascending chain is finite, 

i.e. there exists r such that L,zL,+~ for all k 2 3. To detect the end of 
for some r. 

This is because if Lr = Lr+l = ... =Lr+i-l # Lr+i then there exists a G in 
L +. such that G is not in But that G is in Lr+i implies N.G is in 
Lr+i-,' and Lr+i-2=Lr+i-l implies G is in Lr+i-l, contrary to the 
assumption. 

- - the chain, it is sufficient to find Lr = Lr+, - - ... Lr+s-l 

Lr+i-l. r i  

Let us now show that J = Lr, Let G be an element of J, there exists 
s 5: s 

s. such that ( II N i 'IG = Z DiCi, then G belongs to Lt where 
i-1 i=l I 
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t = max(sl, . . . ,sS). Hcnce G belongs to Lr. This implies J is inciuded in 
bre To show the othrr inclusion, let G be in Lr, then NiG = Z DiHi where 

tii are the generalrrs of Lr-l, by induction over r, Hi are in J, this 
implies NiG is in J, i.e. G in J. 

- -  Lemma 2 Given the ideal L =. (H1,.- .,Hm) and N a polynomial in 
KIX1,=. ..Xn] , w e  can compute a basis for M = [L : N) i.e. 
M = (G : NG = 0 mod L 1 

Proof: W e  need to solve the equation 
NG = P,H1 + .... + PmHm , the generators of such equation can be 
computed explicitly (see [Sei] ), an improvement for the solutions of such 
equation has been done in [Laz 11 and [Lar 21. Thus the given equation 
hss a finite set of generators which can be computed explicitly. However, 
for our case, if the degree of the intial is not small, we 
ordering to compute the B-complete basis and w e  may 
computation to do. 

may change the 
get an easier 

Theorem - 4.3 Let I be an ideal in KIX1 ,..., Xn]. Then. 
effective algorithm to test whether I is a prime ideal. 

T h e  proof follows from theorem 4.2 and theorem 4.3. 

Z2 - 

there exists an. 

X 2 Y) is a prime 

ideal where (Y - x ,  ZX - Y) is a characteristic 
N1=l and N2=X. 
((Y3 - x4, zx - y) : X) = (Y3 - x4, zx - Y, ZY - X3). 
((Y3 - x4, zx - Y 2 , zy - X3) : X) = (Y3 - x , zx - Y , ZY - x , z2 4 2 3 

set for 1. Note that - 
2 - x Y). 

This example is taken from [VdW], page 154, exercice 16.1. I is 
represented here by its B-complete basis foilowing the pure lexicographical 
ordering X < Y < 2. 

2. In Q[X,Y,Z], X < Y < Z, I = CY2 + X , zx - Y, ZY + X, z2 + 1) is 
a prime ideal where (Y 2 + x ,  ZX - Y) is Characteristic set for I. 

, 

'I , ' /  
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2 3. In Q[X,Y], X < Y, I = (XY2 -1, X Y 
the B-complete basis of I is B = (X3 -1, 
over Q. 

Corollary I f  (Cl,. . .,C ) is a characteristic 
N i  = 1, for i = 1 ,.., s , then I = (C ,,.. 
and s = n then I is a maxim21 ideal. 

S 

5. Further Results 

.. ._ 
-1) is not a prime ideal because 
Y -X) and X3 -1 is 

set of a prime ideal I 
,Cs). If N i  = 1, for i 

W e  have given an algorithm to test the primaiity and the 

. -  
red uci ble L 

(I 

.. ' 

max imality 
of a given ideal. This algorithm leads also to a way to compute the radical 
of an ideal as an intersection of prime ideais [Kan], chapter 5. Since w e  
know how to compute the intersection of two ideals, w e  can compute the 
radical of an ideal. Taking advantage of the pure lexicographic ordering 
and the fact that if {C1, ..., Cs} is a characteristic set of an ideai I and if 
Yi represent the highest variable in Ci, then the variables which are 
different from Yi, are algebraically independent over K, we can conclude 
that if I is a prime ideal, then n-s is the dimension of 1. However, if I is 
not prime, this need not hold. T h e  dimension may be- computed by 
considering permutations of the variable ordering during the computation of 
B-complete bases to ensure the minimality of s. 
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1. INTRODUCTION 

In this paper we give the explicit form of the modular equation af 
order 11: Gl1(z,y) = 0, computed using the computer algebra system 
MACSYMA [lo]. 

The modular equation On(z,y) = 0 (n 2 2) was introduced by 
Kronecker and used by Kronecker and Weber in the theory of complex 
multiplication to prove the (algebraic) integrality of the "class invari- 
ants". The equation @,(z,y) = 0 defines a (singular) affine curve over Z. 
We hope that our result will be of some use for the study of its geometri- 
cal as well as arithmetical properties (e.g. irreducibility, singularities 
and desingularization). 

In 1878, Smith [ll] computed 9s (see also Fricke [3, 11.41). 9, was 
first computed by Berwick [ 11 in 1916. In 1974, Merrmann [5] 'deter- 
mined 47 explicitly. Yui [ 131 described an algorithm which we used in [7] 
to compute 95 and 97, being unaware of previous work. The equation we 
next aimed to determine was 911. However, our algorithm when applied 
to 411 became inefficient, and in fact, we ran out of storage after 7 hours 
of VAX-780 CPU-time. Hcrrmann, using a slightly different algorithm, 
stated that his program would consume unjiistifiable much of comput- 
ing time to produce @ll. In spite of this pessimistic forecast, owing to a 

* This research was partially supported by NSERC grant 3-661-1 14-30. 
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very lucky, so far unnoticec, mathematical property of the coefficients 
of the modular equation (see sectioq 3) we were able to modify our algs- 
rithm in such a way that it requires much less space. The renewed 
attack, running in the background of UNlX on a VAX-780, finally pro- 
duced 4jll. Because of several system failures, which, though partial 
information was retained, destroyed our time keeping records, we can- 
not tell how much CPU-time was consumed. However, we are not too far 
off to say that the time was 20 i 5 hours. 

We present a hard co2y of @ll(z, y) in the appendix. We factored out 
primes S 1000 in the coefficients, but the remaining factors are still of 
substantial size (e.g. 60 digits). Readers who are interested in using all 
can obtain either a FORTRAN-style source file or a MACSYMA save module 
from the authors. 

Since the coeflicients of @,, are rather large, we felt that it was 
paramount to provide an independent test to check its correctness. ]In 
section 4, we describe such a test, based on a theorem of Kronecker (the 
Kronecker relation) (cf. Weber [12]) and our previous work [7] on the 
determination oi class equations. This test verified our computation. We 
recommend that readers who are interested in using our result apply 
this test to avoid typographical or transmission errors when defining the 
p o 1 y n o m  ial . 

2. MATHEMATICAL PREREQUISITES 

We first introduce the elliptic modular j-invariant. For each com- 
plex number z with non-negative imaginary part, let Q = e2&z and %et. 

Qo 

E4(z) = 1 + 240 03(n)q", 03(n) = Ct3. : 2 n=I 

P r urtherrnore, let 

n(3n-1) 

)] 

m 1 
- 0  

q ( ~ )  = q Z 4  n ( I - Q ~ )  = (--l)yq 2 + Q 
n=l 

The elliptic modular J' -invariant (2) is defined as 
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We see hat j (z ) has the g -ex?ansion with integer coefficients 

Now let CLz(Z) denote the set of 2x2 matrices with entries in Z and 
positive determinant. If a = (F :) E GLZ (Z), we say that a is primitive 
if GCD(a, h , c , d )  = 1. For a prime p let %* denote the subset of GL.$ (Z) 
consisting of primitive matrices with determinant p. Then SL2(Z) acts 
on A; (indeed, the multiplication on the left or right by elements of 
SL2(Z) maps Ai into itself). The left coset representatives of hp' modulo 
SL2(Z) are given by the set A of the p + 1 matrices: 

For a = (z :) E A and for z = z + dz-?y withy > 0, we write jma.for 
an.d form the polynomial 

with an indeterminate x ,  where Si(z) are the elementary symmetric 
functions in the j a. Then the coefficients of 'p,(z) are in Z[j], i.e., 

Th1.1.: we m a y  V ~ P W  fi (y) ;=c!yr,9,m __._ - -- 
as a polynomial in two variables z and j, and ve write it as 

;PI+. ip 5 J 7 )  yi++ i _ n t p g m ]  PoPffiCjpgt.: 
P .) , 

We call this the modular polynomial of order p. The equation (Pp ( x, j) = 
0 is called the modular equation of order p. 

The properties of @p (z, j), which are relevant in our discussion, are 
collected in the following theorem. 

Theorem (see, e.g. Weber [12, $691, Fricke [3, 11.41 and Lang [9]) 

(a) +,(x,j) is symmetric with respect io z and j, i.e., ap(z,j) = 
@ p ( j d  
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(b) +p(z, x )  E Z[z] and the leading t e r m  is -x2P. 

(c) cPP(z,j) satisfies the congruence @,(x,j) = (xP-j)(z-jP) (madp). 
By virtue of the properties of @,(z,j) stated in the theorem above, 

we can write 

m,n=Q 

where cm,n are integers such that 

Cm.n = Cn,m 
for 

and cp,p = 0. Putting all the above 
Theorem (Yui [ 131). Let z = j (pr). 

cm,* = 0 (modp) 

0 = SP(Z,j) = (aP -j)(z -jP) 

all m , n = 0 , 1  ,..., p 

together we get the following result. 

men 

m=l n=O 

m =O 

3. THE ALGORITHM 

The above theorem is the basis for our algorithm. In order to deter- 
mine CtglLvn and dm,m, we substitute for j and x their q-expansions j(q) 
and j(qP), and then equate the coefficients of the power of q in 

( j ( q V  -j(q))(j(qP) -j(qIP) = 

Note that in this expression the term of lowest order is q-p'q, and that 
do,o occurs in the term of order zero. Therefore, one needs the q -  
expansion of j to order p 2  + p - 1. This leaves us with a linear system 
of (p2 + 3p)/2 variables and p 2  + p equaticns (the lowest term 
coefficient is 0). Smith [Ill, Berwick [ 11, Herrmann [5] and Yui [13] all 
suggest setting up this linear system and solving it for &,n and & , m e  

For p = 11 we get an expansion with 132 terms in 77 variables whose 
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integer coefficients are typically 80 digits long. This expression is much 
too large, even before one attempts to solve the resulting system. How- 
ever, on inspecting this system for G5 and @?, one quickly discovers the 
following computationally important fact: The resulting linear system is 
subdiagonal from lowest to highest coefficient, i.e. has the shcpe. 

- .-. 
-131 - 
-1 30 

COt?ff. of q 

coeff. of q 

- - 
. 

0 Goeff. of q 

I 
I 

Though it might appear that this observation is important for the 
lipear system solver, we make use of it long before that step. The idea is 
to set up the system for, say, the first 11,unknowns, d l l , l ~  , . . . , dll,o. 
To do this we only need the q-expansion of j to order 10. After having 
found the correct values, we repeat this procedure for the next 1: unk- 
nowns, dlo,lo , . . . , d,,,,, now already using the values for the known 
coefficients. The q-expansion of j is needed to order 21, but the number 
of unknowns does not grow. In fact, one could introduce one variable at 
a time, instead of 11 new unknowns, thus reducing the storage require- 
ment approximately 7'7-fold. Actually, we broke up the system into only 
two parts, since our available computing resources are abundant. Our 
observation also resolves an old question, namely, whelher the linear 
system obtained from the q -expansion sufficiently determines the unk- 
nowns. It could have been that the system (of even infinitely many 
equations) was underdetermined, but this is not the case. 

~~ 
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4. ‘ r m  VERIFICATION 
W e  use another propcrty of the modular polynomial, known as the 

Kroqecker relation. 

‘I’heorcm (Kronecker, see e.g. Weber [ 12, 1151). We have 

where tha quantities in the right-hand side are defined as fallows. 7he 
product ranges over all D E: Z, D < 0, such that v 2  - Dz2 = 4p hus a solu- 
tion (x,y) c % x  Z with x > 0. Denoting by r(D) the numbe;r of such 
solutions, the multiplicity r ‘(D) k equd fo r(D) if D < -4, T@)/2 if 
= -4 and r(D)/3 if KI = -6. lgD(z) denotes the class equation 3or the 
imaginary quadratic ordeT of discriminant D; it is an integral polyno- 
mial of degree h, (the class number of order). 

In case -0 is a prime (so necessarily = 3 mod 4, since it must be a 
discriminant), we can determine the class equation HD(z) using the 
algorithm developed in Kaltofen and Yui [7]. For composite D the theory 
is more complicated and readers are referred to our full paper [8] for 
the explanation (see, also Weber [ 121 and Lang [9, rjlO]). 

For p = 1 1 ,  we list the discriminarlta C, class numbers hD, and the 
corresponding class equations Hn(z) with their multiplicities r ‘(13) in 
the table below. 

Our results satisfies the relation of Kronecker: 

-@11b*z) = H-++ H-&)2 N-,,(z) H,&)2 H,&)* 
x H-&)2 H-,& H-&)2 H,,,(=e). 

‘This verifies that the equation @ll(z, y) = 0 is indeed correct. 
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-7 

-8 

- 1 1  

--19 

-28 

-35 

-?O 

-43 

-44 

y = k 4 , x = 2  

ZJ = r6, Z =  1 

y =o, x = 2 

y = *5, z = 1 

y = *4, z = 1 

y = * 3 , z = l  

y = *z, z = 1 

y = rtl, z = 1 

y = O , z = l  

x + 3353 

x - 2653 
+ 215 

z + 21533 

z - 3353 

x 2  - 27325213*379~ 
+ 212 36 53 2g3 

x + 21e3353 

X3 - 241'709.41057~2 
+ 2'3- 1l424O49z 

- 212 1 i3 I y3 2g3 

2 

2 

1 

2 

2 2 

2 

2 

1 
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3. ADDITIONAL, PROPERTIES 

It is known that (Pp(z,y) is absolutely irreducible. This fact can 5e 
easily proved for 9,1(z,y) with the help of a criterion developed by Kei- 
tofen [6] stating that if 411(z,y9 is irreducible over Q and +ll(ztr] has a 
linear factor for scme ~- r E Q, then (P,,(z,y) is absolutely irreducible. 
Choosing r = j((1+4-11)/2) = --P we get a linear factor ~,,,(a) = 
z + Z15 dividing +ll(z, --215). The irreducibility of +ll(z.y) over Q may 
be verified directly on MACSaTMA. 

David Masser communicated to us that Paula Cohen [Z] had recently 
established the following bound for the absolutely largest coefficient of 
9, ll%all: 

where 

pprime p prime 

Her estimate (ignoring O( 1) term) leds t~ !qgi!4jl\l = 141 25. whereas 
the true logIl+llll = 289.09. The difference by a factor of 2 can, perhaps, 
be explained by the fact that our n is rather small. 

6. CONC1,USION 

‘I’he modular equation 9,,(z,y) = 0 represer,ts the (modular) alge- 
braic correspondence 

i(j(z), j(u(z)))la c A ,  z = z + “ q y  withy > 01 C PI X P’ 
and it defines an affine curve over Z. After desingularization, this yields 
a (modular) elliptic curve with conductor 11. (Forp < 11, 9,(z,y) = 3, 
after dcsingularization, gives rise to a rational curve). It, therefore, 
secrned important to us to compute this equation explicitly to be used 
in future invest.igalions. 

Finally, we remark that the methods recently developed by Gross 
isrid Zagier 1.1 1 for corrtputjng values of class eqtiations also seem to yirld 
a vcry efficient algorithm for determining the explicit form of 9, with p 
4 13. 
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The 

New Foundations for Computer Algebra 

Ubiquity of Universal Techniques in Computer Algebra 

William G. Dubuque 
Symbolics, Inc. 

Cambridge Research Center 

Abstract 

. -.. 

.: 

rl. 
_. 
a 

Has 1984 arrived for the field of computer algebra? Newspeak (Berkeley) and Newspad 
(IBM) are two recently developed state of the art computer algebra systems whose languages 
are largely founded upon universal ideas borrowed from category theory. Category theory is a 
relatively new framework for discussing and analyzing many ideas common to diveree 
mathematical theories. The startling success of category theory ~9 a language for miffing a 
large core of mathematics has prompted many mathematicians to learn and reason in it. 
Indeed, there &*e even proposals for categorical foundations of mathematics to replace the 
Oldspeak of set theory. However, category theory is not universally accepted by the 
mathematics community. There are many mathematicians who are very uncomfortable 
working at such a high level of abstraction as is common in many categorical endeavors. Some 
m! even quick to dismiss the field as a collection of "abstract nonsense". Nonetheless one 
wuuld be foolish to totally dismiss a theory which has produced so many new insightful results 
towards the solution of problems resistant to attack by classical methods. A large m o u n t  of 
such criticism stems from the fact that such critics claim to lose a considerable amount of 
intuition in such an abstract setting. Results that might be consided as "natural" in a 
category theoretic setting may seem quite unintuitive to those classidly trained. An 
interesting issue thus arises regarding what influence ones training has on his mathematical 
reasoning capabilities and intuition. It is fairly well known in the mathematical community 
that differently trained mathematicians will often reason in (seemingly) quite distinct ways. 
Hence it may be the case that those trained in certain ways will be so biased that they will 
never feel comfortable working in a categorical setting. However, this valid problem for a 
classically trained mathematician may actually turn out to be a blessing for computer algebra 
in view of the fact that no existing computer algebra system has biased intuition. Indeed, due 
to the lack of suitably powerful formalisms for expressing mathematical intuition, most 
computer algebra systems capture none of the intuitive knowledge of mathematics. In this 
talk we will argue that by adapting and enhancing methods from category theory, universal 
algebra and model theory it is possible to capture much more mathematical intuition in a 
computer algebra system than is possible in a system based on classical methods. Moreover, 
one ne4 not fear an Orwellian system since it is quite possible (indeed, desirable) to construct 
such a system without imposing a totalitarian mew of universality on the user. Put more 
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simply, the system can be designed so that the user can comfortab!y work at whatever level of 
abstraction he is et home with. To utilize such universal techniques in an effective manner it 
is nece~sary to incorporate basic iiniversal concepts more cohesively at the fgun4ational level. 
AI1 existing computer algebra sytems which employ universal methods do 60 only minimally 
and tnen so only in the m a  of language design. As such, they capture only syntactic 
information and ipore the important'semantic components which are crucial to modelling 
intuitive ideas. W e  will describe an approacS which bas as one of its primary goals the sim to 
formal!y capture as much intuitive mathematical information as possible. To iilustrate the 
ubi2uity of this approach as 8 powerful tool for computer-assisted mathematical problem solving 
w e  will discuss a number of diverse problems solvcble by our techniques ?ut beyond the stop 
of classicai computer algebra systems. 
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?he Role 01 Maintenance in Knowledge Programming 

Dr. James E. O'Dell 
Symbolics, Inc. 

Cambridge, MA 02139 

Abstract 

In this paper we describe several of the differences between MACSYMA and 
BASIC, emphasizing the evolutionary nature of a Knowledge Based program 
such as MACSYMA rmd contrasting it to the fEed nature of a traditknd 
application program. W e  conjecture that Knowledge Based programs in general 
have a different life cycle and that the traditional notion of maintenance 
programming may not be applicable. W e  make the case that the term 
Knowledge Engineering may be a more appropriate term to describe the ongoing 
involvement of a programmer with a Knowledge Bit& program. 

1. Comparisons with the BASIC programming language 

What is a Knowledge Based program? What expectations do the people who use one 
have? H o w  are the tasks performed by programmers of Knowledge based programs differ from 
those perfmned by the maintainers of traditional programs? Some hportant light can be shed 
on these questions by taking a look at a program like MACSYMA and comparing it with a 
program like a BASIC interpreter. Out of this comparison will come a plausible explanation of 
the term Liowledge Based, which directly implies that the traditional concept of mamtenance 
programming may not apply in the domain of Knowledge Based programs. 

To most people who use a system like MACSYMA, the difference between it and a 
programming language like BASIC is immediate and obviorls, MACSYMA acts intelligently. 
Take a loooh at a simple problem in the common programming language BASIC: 

100 PRINT "ENTER A NUUBER" , READ A 
200 B = A + A 
300 PRINT A , "PLUS" , A , " IS " , B 
400 END 

Everyone can understand this program, it reads a number, adds it to itself and then 
prints out the results. For a computer to be able to execute this program, another program 
called an interpreter will have to be written which takes the characters as written and 
transforms them into instructions executable by a given piece of hardware. Hardware must be 
constructed to execute the instructions, a display must be created to show the results and 
some sort of keyboard or input device to enter the program. Even from this admittedly 
sketchy description it is pretty obvious that constructing a computer to execute a BASIC 
program would take quite a bit more knowkdge and time than most of us have. 
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Even if we neglect the hardware expertise reqxird and concentrate only on the software 
necessary to run a simple BASIC program the amount of knowledge that has to be distilled 
into a program is still quite large. 

1) The syntax of BASIC 
2) How to REA@ and PRINT in a manner acceptable to a human. 
3) Understanding of the properties of numbers. 

If w e  subject MACSYMA to the same close scrutiny w e  will find tkat, not only does 
MACSYMA require all of the same sorts of information that BASIC requires, it dlse, relies on 
many mathematical facts. In fact by simply rearranging two lines of the above BASIC program 
and translating it to the MACSYMA language, w e  can create a program whose output is 
exactly the same as before but will require algebraic knowledge to run. Look at this simple 
MACSXMA program: 

B : A + A ;  
A : READ( "ENTER A NUMBER"); 
PRINT( A , "PLUS" , A I " IS " , EWB)); 

The program causes the variable B to be set to the sircplification of the symbolic 
expressioii A+A, that is 2*A. It then rsads a value for A and prints out the result of 
evaluating 2*A given the value of A pre~ously prompted for. By rearranging 2 lines of 8 
BASIC program and translating it to MAC§YMA we have caused its exmtiow to depend OR 
algebraic simplification knowledge availabtblle only in a system such as M A C S W .  AIthoPmgh the 
example given is trivial, it makes the point that a user of both systems might find it hard to 
distinguish which was the Knowledge Based pmgram. 

' 

2. What is a Knowledge Based Program 

If we accept the nave meaning of the term mowledge Based one might be led the 
think that it means any program which embodies a given E?: of facts and attempts to use 
them in its functioning. As w e  have seen though, even running a Basic program entails the 
understanding of a tremendous number of facta. It is simply not true, contrary to what same 
would have you believe, that hlLACW is constructed based on howledge and BASIC is 
constructed out of ignorance. It is simply not true that programs based on knowledge are 
something new. It has been at the heart of programming since its inception. What may 
indeed be true is that the term Knowledge Based is taking on a meaning different than one 
might think. W e  know that there is a difference between MACSYMA and BASIC, but that 
difference is not due to the fact that MACSYMA is based on knowledge and BASIC wRile 
BASIC is not. 

One difference between the examples we have been studying is that BASIC only has 
knowledge about BASIC programs and programming while MACSYMA includes in its 
knowledge base facts about mathematics. It is one of the few computer systems that attempts 
to integrate knowledge about programs and programming and expert knowledge of an &ea of 
howledge that is not computer oriented. By dlocing programs to possess knowldge about 
domains such as "The Field of Mathematics" we have created an dmost unending task for the 
programmers of such a system. The programs can take on mammoth proportions m d  have 
hundreds of person years invested m them without exhaustively covesing the field of 
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Mathematics. As a direct result of thib it often results that a large Knowledge Based system 
cannot be understood by a single person. To reiterate, here me the some of the characteristics 
of a Knowledge J3as.d program we consider importmt: 

1 )  liic kz-wledge outside the field of Computer Science. 
2) Huge programs: aot understood by any one person. 
3) Incoaplete: leaving large "Holes" in the Knowledge Base. 

_... . _ _ _ _ _ _  * - . - - - - - - - -  . .  . -  - -  - - .  - - .  - . ~ - I - * - * - e  

3. Maintenance and Dealing with incompleteness 

Probably the most crucia! feature of MACSYMA in relation to maintenance is that by 
some metric it can be judged incomplete and unfinished. By no means is this meant to be a 
criticd'remark about the MACSYMA system but a simple observation of the nature of all 
currsnt Knowledge Bsed Frograms. Given the development time of a program of this type it 
is essential that the:. be available for general use during the development stage of their life. In 
fact many of the defic;c,ncies in a program such as MACLSYMA may not even become apparent. 
until a user starts to explore a new area of mathematics for which the program hrd never 
been used before, 'There often exists a kind of Creative Tension between the users expioring 
new =cas of the programs capabilities and the programmers trying to provide new areas of 
experti?-.. 

To understand this better look at the sixple example of the evolution of knowledge of 
complex numbers that has covered MACSYMA's first decade. Several years ago, an exploration 
of much of the code in MACSYMA that was trying to handle imaginary numbers vould have 
revealed something very startling to even a novice mathenatician. In most phees the code was 
simply checking explicitly for the square root of -1 to determine if an expression was real or 
imaginary. The was done not because the early workers on MACSYMA were ignorant of 
mathematics but because they felt it necessary to get the progmm running. To d~ :his they 
were willing to sacrifice mathematical accuracy. As the problems presented to MACSYMA grew 
in complexity this incorrect mathematics began to be seen as an area which needed work. 
While today a perusal of the MACsyhlA code dealing with imaginary numbers would certainly 
reveal more accurate mathematics the job is by no means done. Users are now asking for 
correct handling of logarithms of complex numbers for example. This example of interplay 
between the users of a system and the programmers is the exciting part of the work. Of 
Zourse there is always the more mundane problem of correcting simple programming bugs 
which get introduced during the process of writing the new code. 

While modifications such as the above are proceeding, new versions of MACmMA must 
strive to provide no less functionality than previous versions. In many respects the users of 
MACSYMA axe using an unfinished and incomplete piece of software because of the constant 
growth and change. Most people would not think about using a BASIC interpreter that was 
judged incomplete. 

M A C S Y M A  is evolutionq in nature. It takes a long time to program, even to figure out 
how to program, some of the mathematics that MACmMA is expected to know about. This 
means that the users and programmers of such a system must both work in a constantly 
chmging environment. The goal of a maintenance programmer in such a situation is to 
continually add knowledge to the body of the program while at the Same time maintaining a 
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Sense of continuity between old versions of the program and new ones. This leads us to the 
mnjecture that Knov;ledge BasEd programs in gcnenl have a different life cycle from 
'Traditional" prsgrams. Because part of the job of programming a system such as MACSYMA 
involves adding new knowledge to the program and not simply correcting propammmg errors, 
the traditional notion of maintenance programming is ciearly inappropriate. Traditional 
maintenance programming is only one part of the work in Engineering a Imge knrpwldge 
based program. 

In this sense we feel the term Knowledge Engineering may be a more appropriate term 
to describe the ongoing involvement of a programmer with a Knowledge Based program. 
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volum~ id magnetic decay is described by the characteristic function e 

In view of this considerable practicrl ptential and tbe present dearth of 

convenient computational methods, it seemed worthwhile to examine algoritho 

suitable for use in fitting data. Two series expansions for Q (z) are horn. 

For small z ; 
a 

(7) 

(A result 'al~.cz to Cauchy.) Thio series diverges but may be considered asymp- 

totic for small z. It is useful for high temperature solids where a is still 

m a l l  but the ::laxation rate is largo. A convergent large z series for Q (z) 

was found by Vintner; 
U 

(2) 

Equatitm 8 is convergont for 0 < a < 1 and therefore in tho range of interest 

for glassy solids. Unfortunately, several hundred terms of the series may be 

nesdod for a as large as 0.2, necessitating a search for better methods. 

Using Macsyma, ne have found (2) new rlgorithmr for the fino, cosine and 

t a  - (7) 
Laplace tranfonar of the Characteristic function e . The inverse Laplace 
transform gives the ao-called distribution of relaxation times corresponding 

t a  - (7) 
to e , which ir itself a stable density. For very small a, Qa(z) mimicks 

a lognormal 6ensity. 



The stable dessitias are closely ralated to the theory of fractals. (3) 

Their non-analytic rmentless properties rweal the lack of a norralizing tire 

scale, and in fact they represent hierarchical ly-clustered tire scaler for 

glass defect migrationr. The set of hopping tires for bond motion is, on aver- 

age, a Cantor set in the case when the charcateriatic exponent , a f8lls bbior 

1. a is a fractal or Haurdorff diaensian of the ref of hopping timer. 

radelr leading to such beh8vioe have recentlg been found. (4) 

1. A rmnary with references to early literature r8y be fond in B.W. XOP 

troll and B.J. West, Studies in Statistical Y8chanics. Vol. VI1 (Edr. 

B.W. Yontroll and J.L. Labowitr) (North Holland. New Port, 1979) chapter 

2. 

2. E.W. Yontroll and J.T. Bendler, J. Statistical m s i c s ,  34, 129 (198rl). 

3. B.B. hndelbrot, The Fractal Goaretry oi Nature (Freeran, Ner Yorlb, 

1982). 

4. J.T. Bendlcr, f. StatisticaZ Phpsica (In Prers). 
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r AN APPROXIMATE SOLUTION OF AN INTEGRAL EQUATION 
THAT ARISES IN THE DESIGN OF MAGNETIC FIELD COILS 

M.A. Hussain 
Information System Operation 

and 

J.F, Schenck 
Electronic Systems Programs Operation 

General Electric Cornpaw 

i Abstract 

r In this paper we reconsider the integral equation that arises in coil dzsigrr The form of the 
dominant kernel allows two distinct transformations corresponding to short and long coil approx- 
imations. Fourier expansions and Schwinger’s transformstion lend to closed-form solutions for 
the approximated kernel. Symbolic computation is used to carry out tedious algebra, and an ex- 

Results compare well with numerical solutions and lead to some practical coil designs. 

L I 
I 
I plicit form of singularities is recovered. The method can be applied to any order of coil design. 

- 
i 
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DERIVATION OF THE INTEGRAL EQUATION 

The complete representation of the magnetostatic field as well as the derivation of the integral 
equation are given in Ref. 111. For completeness, a brief outline is given below (see Fig. 1). 
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Figure 1. Representation of field and source points for cylindrical winding. 
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Using the conventional notations, the magnetic field B is given by 

_-. c- 
... 1- 

P _  

where 
source point 

is the surface current density vector and R is the distance between the field and the - 1- 
', - 

R2 = (x - a)' + (y - yo)' -k (Z - 5)' 
-. . -- 
. \  and 

dA - a2d& dZ, . 
The z-component of Eq. 1 is 

R can be expanded in Legendre polynomials (Ref. [21, p. 173) 

. i  Using an expansion formula w e  have (Ref. [21) I 
I I 
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- 1  ', then it can be shown (Ref. 1) I 
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Using Eqs. 3, 4, and 5 we get the complete representation of dS: from Eq. 2. The results are 
given in Ref. [ll - 

For !he simpler case of cylindrical symmetry considered in the present paper, w e  represent 
tfie current distribution as 

- 
i 

: I - c ~ ~ ( 2 , )  which gives 
E 
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A x  = - c ad ( Z, )si n 4  , 
A, = c ad(Zolo)~os~, 

and hence 
m 

B, = An r" P,, (cost?) 
n-0 

with 

(7) 
(l+Z,Z) 

As can be seen from Eq. 5, A,, provides the constraints on the quality of the magnetic field for a 
given current distribGlion. In our case we take 

A,,=C,O p=O,1,..-,Y (8) 

Our objzctive is to find the current distribution ad(Zo) for a given order of homogeneity of mag- 
netic field under the condition that \he energy is micirnized. As shown in Ref. [l], the energy W 
can be represented as 

(9) 

where 

and K (K), E(K) complete elliptic integrals of first and second kind. 4 
K2== 

4+ (Z- Z,Y 

Using Lagrange multipliers, we set up a functional from Eqs. 8 and 9 as 

(9) 

The above functional will be stationary around the exact solution of ad (Z,,) 'provided the folicw- 
ing integral equation is satisfied 

Z m  N 
JdZm cr,(z,)Q(Z,- Z)dZ, = A,J,,(Z), -Zm< Z< Z,,, 

n-0 

where the kernel 

Hence, w e  need to solve a set of integral equations 

(10) 
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and the final solution is given by superposition: 
.s cr6(z,) - A,o$(Z,) 

I- 1 
(13) 

SHORT COIL APPROXIMATION 

The kernel given by Eq. 10 has a lcgarithmic singularity around Z-2,. Expanding around 
this singularity 

(14) 

The main contribution to the solution comes from the singular part of the kernel, and the 
remaining expansion can be treated as a perturbation and transformed to the right-hand side of 
the integral equation, keeping as many terms as desired for improving the accuracy of rhe solu- 
tion (Ref. [41). 

1 Hence, Eq. 1 1  becomes with a - -1 + T log8, B = - - I 
It can fui ther be shown that 

f,=----- 1 d  
d z  fi-1 

1 
(1 + Z2P2 ' f, (Z) =I 

-Zm< 2< Z,,,; i-0, - - - ,N (1 5) 

(16) 

and, in view of the expansion (Eq. 141, f,, for the short coil approximation, can be expanded as a 
Taylor series of order T 

(17) 

Let 
z = z, cos0 
2, - 2, cose (18) 

After trigonometric reduction, Eq. 17 can be represented as a Fwiier series 

(19) 
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and Eq. 15 becomes (for i = 0) 

In view of identity, for the dominant kernel (Ref. 141) 

O0 cosnwcosne 
IO~~COSO - cosel= -2 - log2 n n- 1 

I .  

. .. 

(21) 

w e  expand the unknown solution as 
00 

-u,.<z,> -= dzo - A:+ Ascosme 
rn- 1 de 2 

(22) 

Substituting from Eqs. 22, 21, and 19 into Eq. 20 and using orthogonality conditions, w e  can 
solve for A$ 

B," A: = a + log.Z, - p log2 

Carrying out a similar procedure for each constraint and assembling the solution we have 
N 

n- 1 
(T4(z,) = A, u$(zoi (24) 

.. 

. .' 

To obtain A'S w e  use the above in the constraint equations (Eq. 12); transforming variables by 
Eq. 18 and using the orthogonality condition, we have the following linear equations for A n  

(29 

The analysis given above involves tedious algebra. This was accomplished using the symbolic 
manipulation program MACSYMA (Ref. [6]). The complete program is given in Appendix Al. 
Using this program, w e  plot the result in Figure 2 together with numerical results obtained by the 
method given in Ref. [l]. A s  can be seen, the results agree well except possibly at singularities 
near the end points. In the present case, the singularity is given by (see Eq. 22) 

I T 

m- 1 
1 2  A, -AIS!+ AgBg -8: 
m N  n- 1 I: 

(26) 1 1 

d0 

--=E 

d& (Z2 - Z,')" - 
The coefficient of the singularity can be easily computed. This phenomenon makes a short coil 
less desirable. In the next seaion w e  carry out the approximation for a large coil. 



I 

Figlrre 2. Short coil approximatior1 fGr Am = .3, comparisoh of symbolic solution to numerical solution. 
A 

LARGE COIL APPROXIMATION 

Again, for simplicity, consider the symmetric case [Le., o,(-Z,) = u,(Z,)l; then the dom- 
inant integral of Eq. 15 becomes 

For the large coil approximation w e  let 

Z - tane, Z, - tane,,, Z,,, - tanh 
However, the logarithmic kernel has to he approrimated further as 

.- I - .  .:., 5 -. In the present case - -  

'.. - Similarly, all f,(Z) will have the Fourier expansion and, hence, w e  need not take the Taylor ex- 
pansion as was done for the short coil approximation. The integral equation then becomes 

*-.:. ; 
:*\ I 
.-*\ ' 
:"\ 

... , 

* -  ' L  

73 i 

i 

. I  

-. *.a 
. .-. 

1 



50 2 

f -  
(30) 

c In the above, the limits of integration do not allow us to use the orthogonality property, and w e  
make a further transformation due to Schwinger (Ref. [51) 

COS0, = r + scost', f = cos2 [$I 
-. I- 

e r .8 

cos0 = t- + scosx, s = sin2 [ $1 -- 
?e. 

i Using Eq. 3 1, the integral equation now becomes 

JOT j 31 [ (2a +plog2s+ploglcos*-cosxl dt = f,(x), O<x<?r I (32) 

. .. -. 
Equation 32 has the same form as before (see Eq. 20); however, the algebra is quite complex and 
again w e  use MACSYMA (complete program is given in Appendix A2) to carry out the calcula- 
tions showp in Figure 3. The agreement with the numerical analjjsis is quite good. It can be seen 
that singularity is not prominant. The reason for this phenomenon is that the coefficient of ?he 
singularity asymptotically goes to zero as l/Zm. This can be seen by studying 

1 

. .  
i 

I i.e. I 

(1 4- (1 + z:P]'h (1 + zy 
(1 + Z:) [ (1 + zy - (1 + 2, 2)s ] 'A \ 

\ 
CONCLUSION \ 
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In this paper w e  have given a simple algorithm for the solution of a singular iniegial equation. 
The results can be easily used for discretizing coils which may lead to a practical design requiring 
close to minimum energy. 

The algorithm given is straightforward, but involves a number of tedious calculations. 
MACSYMA has been used extensively to carry out manipulations. The method can be easily 
adapted to multi-coil design, the mixed boundary value problem in potential theory, the theory 
of elasticity, and also for d ual-series and dual-integral equations. 

I 
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Figure 3. Large coil approximation for 2, = 4.9, comparison of symbolic solution to numerical solu- 
tion. 
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APPENDIX Al: SHORT CQIL APPROXIMATION 
TITLE(EXP) : = BLOCK (DISP(DPART(EXP) ))$ 
TITLEVINTEGRAL EQUATION FOR SHORT COIL"); 
NRS:3; 
OTE:4; 
NTS:OTE/2 + 1. 
TITLE("NRS=NO. OF R.H.S"); 
TITLE("OTE=ORDER OF TAYLOR EXPANSION"); 
TITLE("NTS=NO. OF TERhlS IN SERIES"); 
TITLE("ZM=LENGTH OF THE COIL E.G.= 3); 
ALPHA:-] + 1/2*LOG(8)-1/2*LOG iZM)% 
BETA:-l/2% 

G [MI: =RATSIMP (- l/M*DIFF (G [M- 11 ,ZO)); 

FOR I THPU I ~ R S  DO LDISPLAY ( F[II:FACTOR(G[2*(1-1)I))% 

G [Ol : 1 / (1 + Z0**2)** (3/2); 

X:COS(TH)$ 

FOR I THR!J NRS DO TYLR[I1:TAYLOR(F[I1,ZO,O,OTE)$ 
FOR I T HRU NRS DO LDISPLAY ( RHS[II:l/ZM'SUM (PART(TYLR [I] ,M),M,I ,NTS))$ 
FOR I T HRU NRS DO LDISPLAY (RHS [I]:TRIGREDUCE(SUBST(X*ZM,70,RHS!II)!)$ 
FOR I T HRU NRS DO BO(1): =BLOCK([Fl .F2,F3I,Fl:INTEGRATE(RHS[ll ,TH), 

FOR I T HRU NRS DO LDISPLAY(BO(I))$ 
FOR I T HRU NRS DO (FOR J THRU OTE DO LDISPLAY (B[I,J1:RATCOEF(RHS[II,COS(TH*J))))$ 
FOR I T HRU NRS DO (FOR J F ROM 0 THRU 0 DO BlI,J]:BO(I))$ 
FOR I T HRU NRS DO (FOR J F ROM 0 THRU OTE DO (IF J = 0 THEN 
A [I,J]:B[I,J]/ (%PI*(ALPHA-BETA*LOG (2))) ELSE A[I,J]:-J*B[I,JI/ (BETA*%PI)))$ 
FOR 1 T HRU NRS DO (FOR J THRU NRS DO BBU,J1:%PI/4*A[J,O]*B~I,O~ 
+SUM (%PI/2*B[I,N]*A [J,NI,N, 1 ,OTE))$ 
FOR I T HRU NRS DO (FOR J THRU NRS DO LDISPLAY (BB[I,J]))$ 
FOR I T HRU NRS DO EQ[II:SUM(BB[I,J1*LAM[J1,J,I,NRS)$ 

EQQ: [I; 
FOR 1:1 THRU NRS DO (EQQ:CSNS(EQ[I],EQQ)); 
LAMM:[I; 
FOR 1:1 THRU NRS DO (LAMM:CONS(LAM[I],LAMM)); 
LINSOLVE(EQQ,LAMM) ,GLOBALSOLVE:TRUE, 
FOR I:] THRU NRS DO DISPLAY (VALU[I] =EV(LAM[I],NUMER))$ 
FOR 1 T HRU NRS DO RSOL[I1:1/2*A[I,OI +SUM(A[I,NI*COS(N*W),N,1,OTE)$ 
FOR 1 T HRU NRS DO RSOL[I1:TRIGEXPAND(RSOL[I])% 
FOR I T H R U  NRS DO LDISPLAY (RSOL[Il)% 

FOR I T HRU NRS DO LDISPLAY (RSOL[I]:RP1TSUBST(Y,COS(W),RSOL[I1))$ 
REGULARS0LN:SUM (RSOL [I]*LAM [11,1,1 ,NRS)$ 
RATSIMP(%)$ 
KEGULARSOLN:Yn$ 
REGULARSOLN:RATSUBST(Z~/ZM,Y ,%I; 
ZM:.3; 
F1 :EV (REGULARSGLN); 

F2:EV (TERM*FI /ZM); 
PLOTN U M : 50; 
EQU ALSCALE:FALSE; 
PLOT(F2,ZO,-.29,.29,"SYMBOLIC SOLUTION WITH THREE CONSTRAINTS A N D  ZM =.3"); 

FZ:EV(Fl,TH = %PI),F3:EV(FI,TH = 0),2/%PI*RATSIMP(F2-F3))$ 1 

EQIlI:EQ[l ]-1/ZM**2$ - 

FOR I T HRU NKS DO LDISPLAY (RSOL[I]:RAT9UBST(I-COS(W)"2,SIN(W)̂ 2,RSOL[I]))$ 

TERM. 1 /SQRT (1 - (ZO/ZM)**2); 
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APPENDIX A2: LARGE COIL APPROXIMATION 
TITLE (EXP) : = BLOCK(DISP(DPART (EXP) 1)s 
TITLEPFIRST SELECT NUMBER OF CONSTRAINTS"); 
NLAM:4; 
SH0WTIME:TRUE; 
S:.4; 
R:I-S; 
CCO:I/2*LOG(8)-I .NUMER; 
CC1:-112,NUMEX; 
KEEPFL0AT:TRUE; 
ALPHA:Z*CCC) +CC 1 *LOG (SI ,NUM ER; 

/*.........GENERATION AND SIMPLIFICATION...*/ 
TITLEPGENERATION AND SIMPLIFICATION OF RIGHT HAND SIDE"); 
G [O]: 1/(1+2**2)**(3/2); 

FOR 1:O THRU NLAM-1 DO LDlSPLAY ( RHS[II:FACTOR((I +2"2)"((4*1+3)/2)'G[2*1])): 
FOR 1:O THRU NLAM-I DO LDISPLAY rRHS[ll:(RATSUBST((I-COS~TH)*'2)/COS(TH)**2 

BTA:-Z*CCI; 

G [MI:= (-1/M*DIFF(G [M-l I,Z)); 

,Z**2,KHS[Il))); 
FOR I:O THRU NLAM-1 DO LDISPLAY ( RHS[II:RHS[II*COS(TH)**(4*1+3)); 
FOR 1.0 THRU NLAM-I DO LDISPLAY ( RHS[II:RATSUBST((R+S*COS(X)),COS(TH).RHS[I~)); 
FOR I:O THRU NLAM-1 DO LDISPLAY ( RHSI~I:EXPONENTIAL~ZE(RHS~I~)~; 
FOX 1:O THRU NLAM-1 DO DISPLAY 
FOR 1:O THRU NLAM-1 DO LDISPLAY ( RHS[ll:DEMOlvRE~RHS~ll)); 
EP(N):=IFN=OTHEN 2ELSE1; 
TITLEPNOW COLLECT COEFFEClENT BY SCHWINGER METHOD AND ASSEMBLE SOLUTION"); 
AB 11 ,JI: = EP (J)*RATCOEFF(RHS 111 ,COS (X'J) 1; 
FOR 1:O THRU NLAM-I DO (FOR J:OTHRU 4*1+3 DO (AB[I,Jl)); 

ELSE AB[I.Ji); 
FOR I:O THRU NLAM-1 DO (FOR J:OTHRU 4*1+3 DO (BkJI)); 

IF J=O THEN A[l,J1:B(I,J]/(%Pl*(ALPHA)) 
ELSE A(I,J]:2*J*B[I,J]/(BTA*%~l) )I; 
FOR 1:O THRU NLAM-1 DO (FOR J:OTHRU 4*1+3 DO (A[l,Jl)); 
BB[I,JI: =%PI'( 1/2'A [J.O]*B[I.O] 
+SUM(AIJ,Nl*BII,Nl,N.l.M1N(4*1+3,4*J+3~)); 
TITLEPNOW SET UP EQUATIONS FOR LAMBDA FROM CONSTRAINTS"); 

RHS[Il:EXPAND(RHS[Il)); 

B[l.JJ.=BLOCK( IF J=O THEN B~l,JI~RATSl~P~2'~RHS~l~-SUM~COS(X.T~.AI,T.l.~*l+3~~~ 

FOR 1:O THRU NLAM-I DO (FOR J:OTHRU 4*1+3 DO ( 

FOR 1:OTHRU NLAM-1 DO (EQ[II:SUM(BBIl.JI"LAMIJI.J.O,NLAM-I)); 
EQ[OI:EQ IO]-1 ; 
LISTI:[I; - 
LIST2:II; 
FOR L:O THRU NLAM-1 DO ( LlSTl:CONS(EQ~LI.LISTl)); 
FOR L:O THRU NLAM-1 DO (LISTZ:CONS!L.AM(L%.LIST2)): 
TITLE ("NOW SOLVE AND GSEMBLE FINAL SOLUTION FOR PLOT, AVOIDING SINGULARITY"); 
LINSOLVE(LIST1 .LIST2) ,GEOBALSOLVE:TRUE; 
FOR L:OTHRU NLAM-1 DO 
(SOLI [LI:1/2*A[L,O] +SUM(A~L,NI*COS(N*W).N.I .4*L+3)); 
FOR L:OTHRU NLAM-1 DO (SOLI [LI:TRIGEXPAND(SOLI [LI)); 
FOR L:OTHRU NLAM-1 DO 
(SOL 1 [L]:R ATSUBST( 1 -COS(W )**Z.SIN (W)"2,SOL 1 [L]) ): 
FOR L:O THRU NLAM-I DO (SOL1 ~L1:RATSUBSTCY.COSCW),SOLI [LI)); 

EV (FIN ALSOLUTION.NUM ER); 

EXPAND(%); 
EV(W,NUMER); 
FINAL:%: 

I 

FINALSOLUTION:RATSIMP(SUM (SOL I ILI'LAM ILI,L.O.NLAM-I 1); 

EV (Yo, N U M E R : 

,F 

i 



c 

- .. -- . 
.i .. . 

. . . . , . . 

506 

ZM:TAN(2'ASIN(SQRT(S))); 
SQZ:SQRT( 1 +Z"2); 
SQM:SQRT(l +ZM**2); 
Y :l/S* (l/SQZ-R); 
FACT: ( 1 + SQZ)**C 1 / 2)/ CSQZ"(S/2)* ( 1 /SQZ- 1 /SQM I**( 1 / 2) ; 
FINAL:EV(FACT*FINAL); 
EQU ALSCALE:FALSE; 
PLOTNU M: 100; 
ZMk:2M-ZM/PLOTNUM,NUMER; 
PLOTiF1NP.L.Z.-ZMM.ZMM,"SY MBOLIC SOL.UT1ON WITH FOUR CONSTRAINTS"); 
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Abstract 

nd V ~ X -  A n  automatic testing facility for newly-created versions of VAXIMA, call- 
Test, is described. The facility, written primarily in FRANZ LISP on a BEC Vax 
111780 under the UiNIX operating system, is not restricted to any particular 
machine or operating system. The VaxTest facility provided the fool3 for the 
interactive testing of the various prepared test files or functional s~b,srups by the 
individual user and the system manager, or automatic testing by tbe operating 
system. Each test file is executed in the new VAXlMA environment. Each com- 
puted result is compared to the “correct” answer stored in the corresponding stan- 
dard file. Definitive, descriptive messages are printed to aid in the location and 
correction of comparison mismatches and execution errors. 

i 

1. INTRODUCTION 

This paper describes the design and implementation of an automatic testing facility, 
termed VaxTest, used in the tesbing of newly-created versions of VAXIMA. VAXIMA is a 
dialect of MACSYMA designed at the Univcnity of California at Berkeley for use on 
VAX/UNIX systems. MACSYhlA (Project MAC’S Symbclic Manipulation System) is a large 
computer programming system, written in MACLISP (a dialect of the LISP programming 
:aiiguagej, used for jjdoiiiikg zym_!m!ic and numerical mathematilcal manipulations. 
MACSYMA has been developed by the Mathlab Group at the Massachusetts institate of T r c 5  
nology laboratory for Computer Science (formerly Project MAC). The testing facility described 
herein is written primarily in FRANZ LISP (another dialect of the LISP programming 
language), version Opus 38, on a DEC Vax 11/780 operating under Berkeley 4.1 UNlX operating 
system. Testing and execution of the VaxTest facility were done in version 2.04 of VAXIMA (a 
dialect of version 10 MACSYMA). The VaxTest facility is designed for use with any 
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2. DESIGN OF NEW TESTING FACILITY (VAXTEST) 
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MACSYh4A facility, and is not restricted to any particular machine or operating system. 
VaxTest is a structural testing package for the dynamic analysis of the VAXIhlA facility 

following maintenance-phase modifications. The three phases Sf the facility (checking the status 
of standard files, creating standard files, and ccmparing test and standaid files) can be invoked 
interactively at the user and systerr? manager !eve!s or ~ c ~ c E z ? ~ ~ ! ! ~  zt the ci;ciatiiig system 
level. Definitive, descriptive messages are printed to aid in the location and correction of com- 
parison mismatches and execution errors. 

VaxTest is designed to be used in the construction of modifications to the VAXIMA system 
as well as in the regrezsion testing of these modifications once they have been installed. These 
modifications usually involve the upgrading or expanding of 1,he capabilities of the VAXIMA 
system, by either adding new functions or enhancing the current ones. In retesting the VAX- 
IMA system, the capabilities of the modified version are dynamically analyzed, using user- 
definzd and VaxTest-defined test files as test cases. These test files are based on the various 
demo files used currently to test the VAXIMA system. These prepared demo files contain user- 
level VAXIIMA commands designed to test a desired class of functions. Ideally, the contents of 
these demo files would be derived from a path analysis of the VAXIMA source code. This 
would provide for a very thorough structural test of the VAXIMA system. Currently, this is 
not the case. The testing diagnostics generated by the VaxTest facility w e  produced by 
automated output comparators used to compare the test case results, from the modified VAX- 
IMA environment, against a set of standards. These diagnostics aid in the location and correc- 
tion of any detected errors, enswing that the modified VAXIMA system will perform at least to 
the same level as its previous version. 

Work reported herein has been supported in part by the National Science Foundation 
under grant MCS 82-01239 and by the Department of Energy under gra3t DE-ACOZ- 
ER7802075-AO10. 

2.1 Command Summary 

' C  
I - .  

The new testing facility, VaxTest, consists of three VAXIMA-executable commands : 
rreaidd, checkatd, and runteat. These commands are invoked frcm a VAXIMA environment 
containing the VaxTest source code (using the VAXlMA r'aadfile command). A brief summary 
of each of the commands is given below, with details 011 their use an1 implementation given 
later in this document. 

TLe creofatd command is used to explicitly create the desired standard files A standard 
fiie contains the cozect representation of the evaluated VAXIMA commands stored in the 
coi+esponcling test file. If given a legal test file name, the command creates the corresponding 
standard file. If given a legal test tag, the command creates the standard files corresponding to 
each tcst file in tbe tag. Each standard file contains the internal LISP representation of each 
VAXlMA command contained in the corrcsponding test file. Diagnostics are produced when 
illegal test file or tag names are used, or when file access is denied (read for test file, write for 
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standard file). 
T h e  checkatd command is used to check the status of the desired standard files and create 

those that are out of date. If given a legal test file name, the command checks to see if the 
corresponding standard fiie is iip to date. If given a legal test tag, the command checks to see it 
each standard file correspoading to each test file in the tag is ur LO date. W h e n  a standard file 
needs to be created or updated, the checkatd command incorpo2ates those routiaes used by the 
crentdfd command. Diagnostics are produced when illegal test file or tag names are used, or 
when file access is denied (read for test file, write for standxd file), or to report standard file 
status (up to date or requiring creation). 

The runteat command is used to compare the desired test files against their corresponding 
standard files. If given a legal test file name, the cummand compares the internal LISP 
representation of each evaluated VAXlMA command in the test file to the ucorrect” representa- 
tion stored in the corresponding standard file. If given a legal test tag, the command sequen- 
tially tests all test files in the tag against their corresponding standard files. A n  optional results 
file may also be specified. Diagnostics are produced when illegal test file or tag names are used, 
file access is denied (read for test file, read for standard file, write for optional results file), or to 
report comparison results (evaluaticn errors, code inequality, or file equality). 

2.2 Advantages 

VaxTest is designed a3 a testing facility to be used in the debugging of new additions to 
the VAXIMA system as well as in the regression testing of modified versions of VAXIMA. It 
avoids all of the drawbacks of its predecessor, and includes several advantages of its own 

First, the VaxTest facility is designed to be system and maehine independebt. All but one 
of its functions are designed in FRANZ LISP and can be used on any system supportiug this 
LISP dialect. The only function in VaxTest which is dependent on the target syslem is the 
function compatd. Jt is used to check the modification status of test and standard files (used by 
the chcckatd command), and should be relatively easy to design on any system. FRANZ LISP 
provides a facility (a version of the /ad command) for the incorporation of foeeign subroutines. 
Since VaxTest was written on a mashine supporting the UNIX operating system, the funetioa 
compatd was written in the C programming language using the UNIX dd rwnmand. 

Secondly, the three VAXIMA-executable commands allow for the interactive testing of any 
combination of test files or tags. These file or tag names can be userdefined or VaxTest- 
defined, allowing each user to personalize their test file data base. This allows easy debugging 
of proposed additions to the VAXIMA facility and assistance in the construction of new test 
files for the system. Also, by allowing each user to specify the exact test files that a n  to be 
tested (thus excluding all others), it also reduces the time and memory overhead needed to exe- 
cute a test run. 

Since any combination of test files or tags is possible with all three commands, there is no 
need to separate the coding for the separate teats. All test runs usc the same functions, with 
only the test file data base changing from run to run. This reduces the amount sl coding 
needed to design the facility, reduces the memory sizc needed to store the testing facility, and 
increases the ease of modifying the facility. Also, since all test runs use the same coding 
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segments, greater conformity among the results is achieved, allowing easier analysis of the out- 
put. 

Next, since file comparison is done on the internal LISP representations of the evaluated 
results of the VAXIMA commands, no errors will be produced for mathematically eqnivabnt 
answers. Whereas the old testing facility would flag the following examples u being none- 
quivalent, the new VaxTeyt facility recogpizes them as being mathematically equal : 

spacing : “x + 2” and “ x + 2” 
ordering : dx + 2” and “2 + X” 

2 expansion * ‘‘(X + 2)2 ” and “x + 4x +- 4” 

Finally, the VaxTest facility is designed to gmerate definitive and descriptive diagnostics 
to identify the test files and their line numbem where errors occur. This greatly increases the 
ease and rapidity with which problem area can be isolated and corrected. These comparison 
diagnostics are printed when an evaluation error occurs (cvalcrr), when nonequivalent lines ot 
code are found (miumafrh ), 0; when all lines of code are found to be equivalent (allmatch ). The 
printing of thpse comparison diagnostics does not cause a premature termination of the test run. 
All lines remaining to be compared in the test file, as well the zemaining untested $est files, 
will be processed. In addition, errm diagnostics are also printed when illegal test file or tag 
names are used, or when file access is denied. 

In 311, the VaxTest facility allows for a greater flexibility in the number and types of tests 
that can be executed, and increases the range of applications in which it can be used. The facil- 
ity is not tied down to any particular machine or system, and can be used jointly in the regres- 
sion testing of VAXlhiA modifications as well as the design of new VAXIMA functions and their 
corresponding test files. 

2.3 Constraint8 

.- 

.* 

.4 

-- 
;a 

In designing the VaxTest facility, some restrictions had to be placed on the testing facility 
a9 well as its test files. First, since the VaxTest facility depends on t h e V A X l M A  commands 
alike, ratsimp, and meval, it is assumed that these functions arc work& properly when the 
VaxTest commands are used. Unfortunately, this assumption may be incorrect if the 
modifications to the VAXlMA system have altered the operation of these commands. This 
places the VaxTest facility in a “catch-22“ situation : it requires the flawless operation of the 
very item it is trying to find errors in. Fortunately, an error in any of these VAXlMA com- 
mands would cause erratic behavior in the operation of the VaxTyst facility, indicating 
improper funttioning of the testing facility. 

Also, several restrictions have been placed on the design of the test files. First, although 
any of the VAXIMA-desned coustants (%E, %I, %PI, and %RHO ) can be used in the test file 
commands, the % vari~ble {previous computation) is the only VAXIMA-defined variable 
allowed. The %% (last MACSYMA-BREAK computatioa) and the %Tlf((i) (i-th previous com- 
putation) variables were not implemented and will produce erroneous results if used. Second, 
even though any VAXlMA function can be used in the test file commands, the display functions 
(display, diapjun, and lctrules ) should be avoided. These functions produce iesults that av not 

I 

.. .. 



stored in the standard files and are, thrrefore, excesa baggage in the test files. 
Finally, each test file command is managed digerently depending an its terminating charac- 

ter. In an attempt to coaform to the VAXIMA facility, tet file commands terminating with a 
semicolon (;) are evaluated and manipulated by the VaxTest facility. These commands will 
either be stored ID the appropriate standard files (creatcfd and chxkrtd commands) or used in 
the :omparison of the test and standard files (runtest command). Demo file comm-mds ter- 
minating with a dollar sign (3) are evaluated but are not manipulattd by the VaxTest facility. 
They are neither stored in the standard files nor used in the comparison of teat and standard 
files. The % variable will always be set t3 the previous command line prior to evaluation, 
regardless of its terminating character. 

3. IMPLEMENTATION OF VAXTEST 

Many diagnostic message ape printed at various stages io the VarTcst facility to assist in 
the loration and correction of problem awaa as well as to menitor the status of the various com- 
mands. There are the+ types of messages produced : those co report user or system emom 
(error messages), those to report the status of a function or command (informatiou mesages), 
and those to report comparison results (comparison messages). This section briefly describa 
each mrsssge, when it is printed, what is printed, and its effect on the execution of the current 
command. 

If an illegal test file or tag name is supplied to any of the three VAXIMA-level VaxTet 
commands (creetrtd, checkdd, or runted), the fclloring error message will be printed ts the 
standard error port : 

illegal file or tag : <test fife or tog nome> 

The printing of this message suppresses execution of the rest of the command and eauSeS an 
immediate return to the top-level VAXIMA environment. 

If file access is denied to any of tbe test or standard !Yes referenced by any of the VaxTest 
commands, one of tbe following error messages ail1 be printed to the standard e m r  port : 

Cannot read from test file : <teat file nome> 
Cannot write to standard file : <standard file name> 

File access can be denied if the desired access permission (read or write) ha3 been removed, or if 
the file does not exist. This error message is produced by the functions mokertd (creotrfd) or 
out-ofidale (rheckutd) .when read acmu for test files or write access for standard files is denied, 
or by the function demo-cm-std (runtest ) when read access for test and standard files is denied. 
The printing of this message causes an immediate exit from the current VaxTest command if its 
argument is a test file name. If the argument is a test tag name, the command will exit for the 

-y" 
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current test file name, but the remaining test files will be processed normally. 

permission), the following error message is printed to the standard error port : 
W h e n  the optional output file for the command runtcat cannot be accessed (denial of write 

c- - - _- 
Cannot write to results file : <output j'ilt: n m w >  

c 

1 
I 

c 
i 

f 

The printing of this message suppresses execution of the rest of the command and causes an 
immediate rrturn to the top-level VAXIMA environment. 

W h e n  standard files are being created or having their status checked, one of the following 
information messages will be printed to the standard output : 

Creating standard file : <standard file name> 
Standard file up to date : <standard file name> 

The first message is produced by the function makeatd (creatatd), while both messages are pro- 
duced by the function out-of-date (cherkstd ). The printing of either message does not cause an 
interruption in the t.*xecution of the &sired command. 

W h e n  the command runtest is invoked, the following information message will be printed 
to the desired output port (either the standard output or the optional results file) : 

Run test for file or tag : <test file or tag name> I 

The printing of this message d w n  not cause an interruption in the execution of the runted com- 

If an error is caused during the evaluation of a line of the internal LISP representation 
code (either from the test or standard file), the error will be trapped (using the LISP function 
errsef 1 and the following error message will be printed to the desired output port : 

I mand. - 

ERROR : found in <lest file name> at line # <lint no.> 

' This rrmr message is produced by the function demo-ur-rld (runted ) and will cause a 'tail' con- 
dition (nonequivalent code) for the comparison of the test and standard film. The comparison 
function will resume with the foilowing lines in each file. 

If two lines of internal LISP representation code (one from the test file, the other from the 
standard file) arc found to be nonequivalent, the following comparison message will be printed 
to the desired output port : 

Mismatch : found in <test file name> at line # <li:ic no.> 

This comparison mcssagr is produced by the function demo-ua-rld (runlest) and will cause a 
'fail' condition for the comparison of the test and standard files. The comparison function will 
resume with the Mlowing lines in each Ele. 

If all lines of both files (test and standard) are found to be equivalent, the following com- 
parison message will be printed to the desired output port : 

- .. 
I 
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Test and standard files match for <test file nume> 

This comparison message is produced by the function demo-us-std (rudest) and indicates a 
'success' condition for the comparison of the test and standard files. 

3.2 Command Ueage 

As stated earlier, the VaxTest facility consists of three user-level VAXIMA commands. 
This section contains a description OF how these commands are used, when they are used, and 
examples of their use (using a DEC Vax 11/780 operating under the UNlX operating system). 

T o  use the VaxTest facility, Lhe file containing its source code must be loaded into a VAX- 
IMA environment. 

% vaxima 

(cl) loadfile ('vaxtest.l")$ 

User-defined test file or tag names should also be loaded in at this time, although user- 
defined modifications to the VAXIMA package should not be loaded until after tFe crcatatd and 
chcckstd commands have been executed. This is to ensure that any new or updated standard 
files are created in the curtent 'correct" VAXIMA environment and not in an environment con- 
taining the proposed VAXIMA modifications (since this might rm rlt in the storage of erroneous 
LIS? code :n the standard files). 

(c2) loadfile ("myfiles.l")$ 

The cteatstd command, used to explicitly create the desired standard files, is a preparatory 
function to the actual file testing and should always be used after a new fest file or tag has been 
created. It can also be used any time the checking overhead in the chcckstd command is not 
needed. The creatstd command must be given one argument : a test file or tag hame defined by 
the user or the VaxTest facility. Any diagnostic messages will be sent to the standard e m r  
port (usually the terminal screen). 

(c3) creatstd ('my.demo"); 
Creating standard file : 'my.std' 

(d3) false 

(c4 1 creatstd (mytag); 
Creating standard file : 'my.std' 

.. . .. . .  .. . .. 

. . .,. . :. . .  . .  ' .  

. - - , . - - . .  . _ .  . .  
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Creating standard file : 'your.std' 

(d4) (my.demo, ... , your.demo) 

(c5) 

The checkatd command, used to check thp status of the desired standard files, is a prepara- 
use of the runtest tory function to the actual file testing and should always be used prior to the 

command or after a test fife has been mdified. The checkatdcomrnand ensures that all stan- 
dard files to be tested are current, thus preveuting 2~14 inappropriate comparison diagnostics if 
aut of date standard files were used. The chcckatd command must be given one argument : a 
test file or tag name defined by the user or the VaxTest facility. Any diagnostic messages will 
be sent to the standard error port. 

(c5) checkstd ('my.demo"); 
Creating standard file : 'my.std' 

(d5) fals:: 

(cS) checkstd (mytag); 
Standard file up to date : 'my.std' 

Creating standard file : 'your.std' 

(d6) (my.derno, ... , your.demo) 

(4 

After the creafsfd and eheckatd commands have been used, the user-defined modifications 
to the VAXIMA facility should be loaded in. This ensures that the rudest command will evalu- 
ate the test file commands in the new version of VAXIMA while the standard files will contain 
the correct interns1 LISP representations. 

(c7) loadfile ('new .vaxima")8 

- - - 
~ 

The runtest command, used to compare the desired test files against their corresponding 
standard files, is the heart of the VaxTest facility. The runtest command may Le given one or 
two arguments. The first argument, which is mandatory, must be a test file or tag name 
defined by the user or the VaxTest facility. The second argument, whicb is optional, must be a 
file name to which any comparison messages will be appended to. If a second argument is not 
given. the stzudard output port is used. All error messages are sent to the standard error port. 

~ - - 

~ 

- 
1 

(c8) runtest ('my.demo"); 



Run test for file or tag : 'my.demo' 
Test and standard files match for 'my.demo' 

(48) false 

(c9) runtest (mytag); 
Run test for fill: or tag : 'mytag' 
Test and standard files match for 'my.demo' 

Mismatch : found in 'your.demo' at line #lo 

(a91 false 

(c10) runtest ("my.demoiS, "my.results"); 

( ~ 1 1 )  runtest (mytag, "my.resliIts"); 

(c12) exit(); 

% cat my.results 
Run test for file or tag : 'my.demo' 
Test and standard files match for 'my.demo' 

Run test for file or tag : 'mytag' 
Test and standard files match for 'my.demo' 

Mismatch : found in 'your.demo' at line #lo 

3.3 Levels of Implementation 

There are three levels at which the VaxTest facility can be implemented : the user level, 
the manager level, and the system level. This section describes how the VaxTcst facility is used 
at each level, along with examples of its use. 

At the user level, the VaxTest facility provides an interactive tool to check the effect of 
user-defined modifications on the current VAXIMA environment, to aid in the debugging of 
these modifications, and to aid in the designing of the appropriate test files. The creotstd com- 
mand is used on user-defined test files to create the appropriate user-defined standard files, with 
the command runtest used on al! test files (usex and VaxTestdefined) to aid in the debugging 
of the proposed VAXIMA modifications. 

51 5 
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Once in a VAXIMA environment, the VaxTest source code should be loaded in. The user 
can then modify the VaxTest-defined test file and tag names by loading in their own test ver- 
sions from a file containing the user-defined tag names and their associated test file names. 

.- .-_ .-. 
I . ._ 
I _ . _  

. -  
, .  

. -  
. .  . .  . .  - .. , .  

7% vaxima 

(cl) loadfile ("vaxtest.l")$ 

lc2) loadfile ("my.files")$ 

(c!) 

a 
I 

'\ \. 

All user-defined test files must be appended to the VaxTest 'all' test tag, and all user-defined 
test tags must be appended to the VaxTest 'tags' list. 

After modifying or creating the desired user-defined standards, the user-defined 
modifications to the VAXIhlA environment should be loaded in. 

,'. . '. . .  
. .  . .  
. .  

t -- I (c3) creatstd ("my.demo"); 

i 
(c4) creatstd (mytag); 

(c5) loadfile ("new.vaxima")$ 

- 
The user can then test the user-defined test files and tags, as well as the VaxTest-defined 

test files and tags, to see how they perform in the modified VAXIMA environment. The results 
of the initial tests should be sent to the standard output to aid in the debugging of the pre 
posed modifications. After selective testing has been satisfactorily completed, all test files (user- 
and VaxTest-defined) should be tested using the 'all' test tag, with the results sent to a cpecific 
results file. 

:*s.? 
. .  . .  I .  . .  - .  . . .  .-.- . ... -.. 
.-.- 
- .  . .  . -  . -  .. . .  

I _ - _ -  .. .. . .  . -  . I. . .  
. I  
~. . .. 

(c6) rua!c.st ("my.demo"); 
- - - 
~ 

(c7) runtest (mytag); 

~ - __ ~- (c8) runtest (all, "my.results"); 

(c9) exit(); 

- 

- At the manager level, the VaxTest facility provides an interactive tool to check the effect 
of proposed modifications to VAXIMA, or to the operating system, on the current VAXIMA 
environment. The checkatd command is used to create the standard files for any new or 
modified test files, with the runleal command used to check the entire VAXIMA facility for any 

I 



\ 'i 

. ,  I' 

i 

51 7 

introduced perturbations. 
Before any of the VaxTest commands are executed, all modifications to the test files or the 

t.est t.ags should be installed, although installation of the modifications to the VAXIMA package 
should wait, until all standard files have been brought up to date. 

modify VozTest teal file data base 

7% vaxima 

(cl) loadfile ( 'vaxtest.ln)$ 

(c2) checkstd (all); 

(c3) exit(); 

All test files should then be tested in the new VAXIMA environment to check for any per- 
turbations not corrected at the user level. 

modiiy VAXIA4A package 

96 vaxima 

(cl) loadfile ("vaxtest.l")$ 

(c2) runtest (all, "new.resuIts'); 

(c3) exit(); 

7% 

If any errors are-detected, they should be isolated, corrected, and retested using the VaxTest 
commands. Once all test files have been tested successfully, aII proposed modifications to the 
VAXIMA and VaxTest facilities should be permanently installed. 

At the system level, the VaxTest facility provides an automatic batch facility to perform 
the manager's duties when new versions of VAXIMA are constructed (with the proposed 
modifications added) or to periodically check the current VAXIMA version. At the system level, 
only the standard files can be modified. There is no capability to modify the VAXIMA environ- 
ment or the VaxTest test file data base. The checkstd command is used on all of the test files 
(using the old, version of VAXIMA) to ensure that all of the standard files are up to 
date. The runtest command is then used on all of the test files (using the new, proposed version 
of VAXIMA) to check for perturbatians, if any, to the sy3tem. These commands should be 
placed in separate files, each one batch-executed in the appropriate VAXIMA environment using 
I/O redirection. 
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‘vazima’ is the current ezecutable environment 
96 vaxima < check.batch > check.errors 

‘uvazima’ ia the propoaed environment 
svaxima < trst.batcE > test.errors 

%j cat check.batch 
load file (“vaxtest .ln)$ 
checkstd (all)% 
sit.( )$ 

% cat test.batch 
loadfile ( “vaxtesdn)$ 
runtest (all, “vaxtest.out”)S 
exit( )S 

n optional result The results of the system test should be stored in file (“vaxtest.out” in this 
example), revicwed to check the status of the current VAXIMA system (error-free or error- 
containing). 

4. INITT?AL RESULTS OF VAXTEST 

4.1 Creating Standard Files 

Before preparing the standard files, some changes had to be made to the test files due to 
the restrictions placed on the VaxTest facility. First, since the THfi) variable was not imple- 
Eented, all commands containing this variable had to be modified. Fortunately, the 
modifications needed were minor and only affected two test files (combin and simpl). Secondly, 
all display commands (display, diapjun, and lctrules) were removed from the test files. these 
commands are used as visual checkpoints and contribute nothing to the automatic testing of the 
test files. 

In creating the standard files for these updated test files, several problems arose. Out of 
the forty-seven VaxTest-defined test files used, seven were flagged as containing erroneous code 
segments (ball, bzgin, c2cy1, r--yl2c, cylL, limit, and simpf ). Of these, six belonged to the mit 
functional group (orit of eleven test files) and one belonged to the int functional group (out of 
five test files). Of the various functions used in these erroneous code segments, most were found 
to cause sporadic errors. While they worked fine in some test files, they performed poorly in 
others. On closer observation, it was found that these functions performed satisfactorily well in 
those test files used at the sta~t of the test ruq and caused error messages to be generated in 
those test files used near the end of the test run. The reason for this strange behavior was the 
carrying over of labels and variables defined and declared in previous teut file evaluations. This 
caused a variable assumed to be unset in the current test file to be misinterpreted as being 
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bound to some value, thus resulting in the generation of unexpected error statements. This 
problem waa easily alleviated by placing the VAXlMA command “KILL.-(ALL)$” at the begin- 
ning of all test files. This command has the effect of eliminating aII previously defined variables 
and labels, giving each test file a new slate to work from. 

With these changes made to the test files, the only errors that still occurred were a result 
of the poor design of the test files. It ’must be kept in mind that the tejt fi!e currently in use 
were not specifically designed to put through such stringent tests as those performed by the 
VaxTest facility. For this reason, some errors will always be present when the current, albeit 
modified, test files are used. T o  “correctn these errors (at least temporarily), the command lines 
that still generated error diagnostics were removed from the test files. 

One final error, attributable to the poor design of the test files, w;u the dependency of the 
gen test file on the previous evaluation of the d:&r test file. To remedy this, the gen test file 
was removed, with its contents appended to the differ test file. This resdted in a reduction of 
the number of test files to forty-six, and the number of more test fib to fourteen. 

cf their standard files. 
Listed below are the changes made to the test files that resulted in the error-free creation 

Changed in test file orroy : 
MIDDLE&&MAT:MATRIX([Q,V],[W,LJ]); 

MAT:MATRIS( IQ,V],[W,U]); 
to 

Changed in test file combin : 
FACT C 0 M B( %T H ( 3)); 

FACTCOMB(( N+2)* N!); 

Removed from test file legen : 

to 

FOR 1:0 THRU 4 DO DISPLAY(P[I](X),P[I](l)); 
... DISPLAY(Q[I]) in commond #S 
... DISPLAY( MOMENT[I,J)) in command 98 

Changed in test file limit : 
A*LOG(Ai-1 )--A*LOC(A); 
LIMIT( %,A,INF); 
to 

x+ LOC(X+I )-X*LOG(X); 
LIMIT( %,X,INF); 

Removed from test file nisimp : 
LETRULESO; 
LETRULES(ARULES); 
LETRULES(SUB); in commond #SO 

in commondr # 9, #49, ond #SI 
in command8 Q36, #/2, and #44 

Changed in test. file simpl : 
RATIO:%TH( -3)/%; 
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E**X = 9z X*O'P- = sz EZ/l = PZ (ZZ*lZ)dX3 = EZ 2**A = ZZ z**x = LZ 

((SZ+9Z*ZZ*O'P)*A+8Z 1 

!Z, 
JEA, '-6.3 'SaLqelJEA AJEJOCbJ JOJ XlJaJd 3qJ JaJua 
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suokJeJnduo3-aJ aq~ P~OAE 03 1~0~ asn */ 

/* aAOqI2 Jeadde JE~J 

3NOO (za) '3aSU 6Ls =aUJtJ39 '3;3SUI sgZ1 =alulJ[EJOl 
(2* P 

*A*Z**X-)dX3*P-(Z**A*Z**X-)dX3*2***Z**X*89+ E 
(Z**A*Z**X-)dX3*V**A*P**X*08-(2**A*Z**X-)dX3 Z 
*9**A*9**X*9l+(A*Z*+X)SO3*A*9**X*92-(A*Z**X) 1 
NIS*P**X*OE-(A*Z**X)NIS*Z**A*8**X*b = (2'2)SS3W (Z**A*Z**X-)dX3*A*P- E 
(Z**A*Z**X-)dX3*€**A*Z**X*OZ+(Z**A*Z**X-)dX3 2 
*S**A*V**X*8-(A*Z**XiS03*2**X*Zl+(A*Z**X)SO3 1 
*Z**A*9**X*P-(A*Z**X)NIS*A*P**X*81- = (L'Z)SS3W 

(Z**A*I**X-)dX3*X*P-(Z**A*Z**X-)dX3*2* 2 
*A*E**X*OZ+(Z**A*Z**X-)~X3*P**X+8-iA*~* 1 
*X)S03*A*L**X*Z-(A*Z**X)NIS*S**X*9- (2'l)SS3W 

(Z**A*Z**X- Z 
)dX3*A+X*P-(Z**A*Z**X-)dX3*&**A*&**X*P+(A*Z* 1 
*X)S03*E+*X*P+(A*Z**X)NIS*A*S**X*Z- = (C'l)SS3W 

f (%=SSaU, )UEJJJO.J (Lz3) 
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