[FLE COPY

US

~ Proceedings
of the
1984 MACSYMA

ERS’ CONFERENCE

~ GENERAL €D ELECTRIC

Schenectady,‘ New York
J_uly-23 - 25, 1984

DISTRIBUTION STATEMENT A

Approved for public release; i
_ Distzibution Unlimited R

PR I AL Nt -)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

.U:[»-‘.",r:u*; '"V..J{. -

) - X L IR PR

i

e E

T

e
|
en e v e,

ST
i i

T, T

Nal

...................................

f

Proceedings
of the
1984 MACSYMA
USERS’ CONFERENCE

GENERAL &P ELECTRIC

. Schenectady, New York
July 23 - 25, 1984

A pnte 8 e

AL e Th nmmay eae

BT AU S ST REIWE B Y P PP PR

Tabie of Contents

INTRODUCTION ...cooocvrerevereresnssessans ssessssssssssssessasssssssessnssasassssesssssassssassssssssans ix
List of Invited SPeakerscc.ccierenninrmiscisemrsiramsiissinsissessaessnssessscssnsssessasssnsssnsase X
Technical PrOZTAIM......cccveeurerccommascsisnivossnssmossisssssssstistsssintonssesessssssssessasssessssssannens xi
Using VAXIMA to Write Fortrah COCB. i eeierecreiersriesstsssecastaseserscassssensnaseacase 1

Stanly Steinberg and Patrick Roache

MACSYMA-Aided Finite Element Analysiscccccveeeeirarnenserseseesenseseresscesrannes 23
Paul S. Wang '

Some Applications of Symbolic Manipulation in Bivinathematics.................c.... 35

" Raymond Mejia

Application of MACSYMA tc a Boundary Value Problem Arising

in Nuclear Magnetic Resonance Imaginecccceueninnsinrinsieseencessinsennnanies e 38

J. F. Schenck and M. A. Hussain

Providing a Complex Number Evironment for MACSYMA and VAXIMA........ - 39
Johnnie W. Baker and Oberta Slotterberg

Simplifying Large Algebraic Expressions by Computer.............. e reeeesereasaeenn 50
Richard L. Brenner

Solution of Simultaneous Polynomial Equations by Elimination
iN MACSYMA ..ooon o ciicereeveee s eeen s eesiesasssasenssanassanesssnans esemnerseaseaseeabsanreaasens 110
William A. Beyer :

An Overdetermined System of Partial Differential Equationsccccueeeeere. 121
David H. Wood 4
‘Applications of MACSYMA in Solving Linear Systems of

Differential EQUALIONS......ccorviimriimnieiiniiicte st e ssae e 122
Leo Harten
Analytical Sohitions to Some Matrix Ricatti Equations........ccccccvcevvenieinnceniln. 138

Ralph Wilcox and Leo Harten

MACSYMA-Aided Large Deformation Analysis of a Cylindrical Shell
Under Pure Bending........... reeeesstesssesesseesmeestieeeretensteeaetanetaesonettanaseresbiatatesrseaan 140
Kenneth A. Bannister -

Hopf Bifﬁrcation in Multi-Degree-of-Freedom Systems Using MACSYMA........ 169

P. Hollis and D. L. Taylor

A Tutorial on Particular Uses of MACSYMAcrmrresmsasiommerssssssnssssssssasene 186
R. Drew Drinkard, Jr.

TH T

e

)

r»
|
:

T

-

PHOTOGRAPH THIS SHEET
7
" _
= LEVEL INVENTORY
<H ZE, Ykoc eec(mc(s obLte 1984
o |z Confbe
7 . _MACSYMA Useds Contecence
N, Q '
5 \ DOCUMENT IDENTIFICATION 2 3 9 £ J & (7 &Y
=
pre=i a
=T DISTRIBUTION STATEMENT A
[Approved for public release;
=T Distribution Unlimited
DISTRIBUTION STATEMENT
ACCESSION FOR
§E [nms GRA&I -
B |pric TAB (]
: UNANNOUNCED O D] ic
JUSTIFICATION ELECTEp®m
‘ GCT 22 184
|
BY | ,
DISTRIBUTION / \ . D
AVAILABILITY CODES ' ! ’
DIST AVAIL AND/OR SPECIAL Vo ,
H ' \ DATE ACCESSIONED
, \
A
DISTRIBUTION STAMP “
DATE RETURNED
DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NO.
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC

D : ‘ / V) DUNTI
. @&% pmic Form 70A DOCUMENT PROCESSING SHEET PREVIOUS EDITION MAY BE USED UNTI

_L SECURITY CLASSIFICATION OF THIS RAGE (When Data Entered)

P

(20) Abstract:

lenger exists. Most users have their own copies of MACSYMA on VAX's (VAXIMA)

The purpose of this Third MACSYMA Users' Conference is to provide a forum
or the discussion of all areas related to the development and application of
CSYMA and of similar systems. Five years have passed since the last MACSYMA
sers' Conference. A much larger and more dispersed community is now using
omputers for performing symbolic, as well as numeric, mathematical computations}
meeting for the purpose of exchanging information between individuals applying
qch1systems to the solution of scientific and engineering problems is especially
imely. A '

At the time of the previous MACSYMA User's Conferences, MACSYMA was on
he MACSYMA Consortium Computer at MIT under the direction of Professor Joel
loses. - The ARPANET made access to MACSYMA convenient for a user community
;eographically distributed from Hawaii to England. The MACSYMA Consortium no

r on the Symboiics 3600 (LISP) machine. A few are still using MACSYMA via
RPANET on the MIT-MULTICS.

The First MACSYMA Users' Conference was held at the University of Califcrnra

t Berkeley in 1977 and the Second in Washington, DC in 1979. The Proceedings
f these conferences were published by NASA (as NASA Report No. CP-2012) and
y MIT Laboratory for Computer Science, respectively.

The early development of MACSYMA at MIT was funded by the Defense Advanced|
esearch Projects Agency. Later sponsors included the Department of Energy,
he National Aeronautics and Space Administration, the U.S. Navy, the U.S. Army
nd the U.S. Air Force. o . _

The Third MACSYMA Users' Conference sponsors include the General Electric
orporation Research and Development Center; Symbolics, Inc.; the U.S. Army
esearch Office; the Office of Kaval Research and the Air Force Office of

cientific Research.

' We are grateful to all of those wio have made this Confererice and the
ublication of these Proceedings possible including our sponsors, the Organizing

oY

ommittee, the invited speakers, those who contributed papers and the conferencep

ttendees. Very special thanks are due to Dr. Hussain of GE who initiated the
onference and contributed in so many ways to its success, to Ellen Golden of
ymbolics whose efforts have made the publication of these proceedings possible
nd to Mickey McGinn and others at GE who attended to the many conference

details. :

e

S/N 0102 LF 014- 6601

SECUMTY CL ASSIFICATION OF THIS PAGE(Then Dota Snternd)

T

Bl

SECURITY CLASSIFICATION OF THIS PAGE (Wnhen Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

o T ET s ST
- REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Sudtitie) S.

Proceedings of the 1984 MACSYMA Users Conference

TYPE OF REPORT & PERIOD COVERED
Conference Proceedings

6. PERFORMING ORG. REPORT NUMBER

More

7. AUTHOR{a) 8.

Editor: V. Ellen Golden
Co-editor: M. A. Hussain

CONTRACT OR GRANT MUMBER(s)

61153N

3. PERFORMING ORGANIZATION NAME AND ADDKESS

General Electric Researcy & Development Center
Schenectady, NY 12301

10. PROGRAM EL EMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

61153N (Program Element)
RRO11-07-02 (Project)
MR 396-063 (Work Unit)

13, CONTROLLING OFFICE NAME AND ADORESS

Code 412
Dept. of Navy, Office of Naval Research

12. REPORT DATE

25 July 1234
3. NUMBER OF PAGES

T4, MONITORING AGENCY NAME & ADDRESS(i! dilferent from Controlling Olfice) 15. SECURITY CLASS. rof thia report)

Same as above

1%a. DECL ASSIFICATION/ HOWNGRADING
SCHEDULE . v

16. DISTRIDUTION STATEMENT (of this Repert)

" Unclassified - Unlimited

17. DISTRISUTION STATEMENT (of the sbawict enicred in Bleck 1w, i1 Ellesent from Repoet)

Papers presented at the 3rd MACSYMA Users®' Conference, on applications
of symbolic manipulation in research and engineering.

18. SUPPLEMENTARY XOTES

The purpose of the 3rd MACSYMA Users' Conference was to provide a forum for
all areas of the development and applications of MACSYMA and similar
symbolic manipulaticn systems.

19. KEY WORDS (Continus on reverse side if necessary and identify by Mack rumber)

symbolic-manipulation, mathematics, automatic-code-generatibﬂ. computer algebry

"F20. "ABSTRACT (Centinue on reverse aide if

and ldentify by bleck number)

Please see reverse.

LN . :
,55o%, 1473 Eoimion oF 1 MoV 6813 OBsoLETR

- 3 - M
) S/N 0102- LF-014- 6601 SECURMITY CLASSIFICATION OF THIS PAGI (When Data Entarod)

Lu.&

Forward

The Proceedings of the 1977 MACSYMA Users’ Conference contained 46 papers,
of which 19 were written by members of the MIT Mathlab Group. The
Proceedings of the 1979 MACSYMA Users’' Conference contained 44 papers, of
which 10 were written by members of the MIT Mathlab Group. This
proceedings contains 43 papers, of which only 4 are written by members of the
current MACSYMA Group. .

In addition, the first two conferences dealt only with MACSYMA, while this

conference includes -participants and papers from most of the other symbolic

manipulation systems now in. use.
Clearly the MACSYMA User Community and the User Community of symbolic
manipulation systems in general 1s growing and thriving.

I wish to thank all the authors for their efforts to get their manuscripts to me
in time. As another indication of the advance of the computer revolution, all but
two of the papers or abstracts included in this volume were produced by word
processors or computer text formatters.

V. Ellen Golden

" Editor

iii

-
"

,ml' A
o A

:

WL E R

LY BN RS

[N

i

T

—

m

. -
i

Bk

a

i

|

I

i

T

T

[

T,

T

8

iv

Officers of the 1984 MACSYMA Users’ Conference

General Chairman: :
Elizabeth Cuthill, David W. Taylor Naval Ship Research
Development Center

Co-Chairman: _ '
M. A. Hussain, General Electric Corporate Reseach and Development

Local Arrangements:
Mickey McGinn, General Electric Corporate Research and Development

Proceedings Editor:
V. Ellen Golden, Symbolics, Inc.
Co-Editor
M. A. Hussain, General Electric Corporate Research and Development

Organizing Committee:
Dr. Carl Andersen, College of William and Mary
Dr. Jagdish Chandra, U. S. Army Research Office
- Dr. Richard Pavelle, Symbolics, Inec.
Dr. Paul Wang, Kent State University '
Dr. Richard Zippel, Massachusetts Institute of Technology

Sponsors:
General Electric Corporate Research and Development -
Office of Naval Research
Symbolics, Inec.
U. S. Air Force O:fice of Scientific Research
U. S. Army Research Office

N R

LSS

[AEN

PP SN S sgE-ALE %

.

T

The New SCRATCHPAD Language and System. for Computer Algebra.......... 409
Richard D. Jenks :

Applications of MACSYMA to Kinematics and \1echamcal Systems 112
M. A. Hussain and B. Noble '

Implicit Equation for a Parametric Surface by Groebner Basis....................... 431
Dennis S. Arnon and Thomas W. Sederberg

Computing the Groebner Basis of an Ideal in Polynomial Rings
OVEr the INLEZETS .ocivceieicrireisisseercntinnse st resenssssnesrsrasasseressnesnseasaransensssasesensanans 436
Abdehlah Kandri Rody and Deepak Kapur _

Complexity of Testmg Whether a Polynomlal Ideal is Nontrivial...................... 452
S. Agnarsson, A. Kandri Rody, D. Kapur, P. Narendran, and B. D. Saunders

lsrimaiity of Ideals in Polynomial Riligscccoueeemeciinciccsnierenccnscnsisssscnsnnannns 459
Abdelilah Kandri Rody and B. David Saunders .

On the Modular Equation of Order 1l........................ Cterereenensereree e st naane 472
Erich Kaltofen and Noriko Yui '

New Foundations for Computer Algebra..........coooveecincis e tversseteeeesasreseneasanasens 486
William G. Dubuque

The Role of Maintenance in Knowledge Programming...........cccceereeerercrnerccnennn. 488
Dr. James O'Dell _

Levy (Stable) Probability Densities and Relaxation in Soiid Polymers............. 492
John T. Bendler

An Approximate Solution of an Integral Equation That Anses in the ‘
Design of Magnetic Field Coils.......ccooiiiniiriiirecicnniicsninninreescreenasesssesanes 496
M. A. Hussain and J. F. Schenck

George J. Carrette and Leo Harten

AUthOr INAEX ...ttt s e reeriesnan ‘567

An Automatic Testing Facility for MACSYMA ... reerteeserenaeeeanan 507

Carl R. Powell ‘ :

Using MACSYMA to Generat» (Somewhat) Optimized FORTRAN Code......... 524

Leo Harten '
~ Macros, Translation and Corapilation in MACSYMAcccovmrviercrrerceneeireneneen. '545 .

vii

R

CITIm

B

o

-1

r

T

ri

e —T
o

T

T

i

TETR

vi

Computer Algebra Applied to Kalman Filtering.......... coooe oviiniiiiinicninne 187
M. L. Suarez

Research in Algebraic Manipulation at the University of California, Berkeley.. 188
Richard J. Fateman, John Foderaro, Gregg Foster, Rick McGeer, Neil Soiffer,
and Chfton J. Williamson

On the Design and Performance of the Maple System e er e e e 199
ruce Char, Gregory J. Fee, Keith O. Geddes, Gaston H. Gonnet,

Michael B. Monagan, Stephen M. Watt

Five Years of SMP .. 220

Stephen Wolfram

David R. Stoutemyer

Measuring the Performance of a Computational Physics Epvironment 244

Robert H. Berman

Evaluating Infinite Integrals Using MACSYMA tessrssisiestisreseestensresanaraneastasnanass 291
Elizabeth Cuthill
Results in Unexpected MACSYMA Implementation Environments................... 202
George J. Carrette
Stability Criteria for Finite Difference EQUationsc..ccveecomemreirenssensens ereneeenes 294
Dr. J. J. Yagla :
Two to Three Dimensional Mapplng 313
Paul D. Engelman
A LISP-Based RATFOR Code Generator .. 319
- Barbara L. Gates and Paul S. Wang o
A Survey of Symbolic Differentiation Implementations........ccooviiiciiiinviinninns 330
Michael Wester and Stanly Steinberg - \
~ An Alternate Top-Level for MACSYMA ...cc..coovemininnimnninnisines ererenreerennenne 356
Gene Cooperman :
Computational Geography - The Habitats of the Migratory MACSYMA 362
V. Ellen Golden
A Functional Language Machine and Its Programmingccccoieniaisinniannns 37N
Donald F. Stanat
Ramanujan and SCRATCHPAD........ccoivminnminnsi s s 383

George E. Andrews

-4l)

Invited Speakers

Monday:
Dr. Richard Pavelle, Symbolics, Inc.
Prof. Stanly Steinberg, University of New Mexic..
Prof. Paul S. Want, Kent State University
Prof. Car! Andersen, College of William and Mary

Tuesday:.
Prof. Richard J. Fateman, University of California at Berkeley
Prof. Keith O. Geddes, University of Waterloo
Dr. Stephen Wolfram, Institute for Advanced Studay, Princeton
Prof. David R. Stoutemyer, University of Hawaii
Prof. John P. Fitch, University of Bath

Wednesday:
Prof. Donald F. Stanat, University of North Carolina at Chapel Hill
Prof. George E. Andrews, Penn State University
Dr. Richard D. Jenkz, IBM Thomas J. Watson Research Center
Dr. Ben Noble, University of Wisconsin Mathematics Research Center

Banquet Speaker:
Prof. Joel Moses, Massachusetts Institute of Technology

L T I T T T P A N T ™

“ wm w w M w-om @ cmeowm. o w. e e

-

E) LSRN A DRI) DU ST SR PR

B ST

e

ST

s

TAEBRY v ALY,

L a4

2TATATSTE 2 T S T X,

[

T T

T

}.—_—_‘—.
-

w

INTRODUCTION

The purpose of this Third MACSYMA Users’ Conference is to provide a forum for the
discussion of al! areas related to the development and application of MACSYMA and of simi-
lar systems. Five years have passed since the last MACSYMA Users’ Conference. A much
larger and more dispersed community is now using computers for performing symbolic, as
well as numeric, mathematical computations. A meeting for the purpose of exchanging infor-
mation between individuals applying such systems to the solution of scientific and engineering
problems is especially timely.

At the time of the previous MACSYMA Users’ Conferences, MACSYMA was on the
MACSYMA Consortium Computer at MIT under the direction of Professor Joel Moses. The
ARPANET made access to MACSYMA convenient for a user community geographically dis-
tributed from Hawaii to England. The MACSYMA Consortium no longer exists. Most users
have their own copies of MACSYMA on VAX’s (“VAXIMA’’) or on the Symbolics 3600
(“LISP’’) machine. A few are still using MACSYMA via ARPANET on the MIT-MULTICS.

" The First MACSYMA Users’ * Conference was held at the University of California at
Berkeley in 1977 and the Second in Washington, D.C. in 1979. The Proceedings of these
conferences were published by NASA (as NASA Report No. CP-2012) and by MIT Labora-

" tory for Computer Science, respecnvely

The early development of MACSYMA ai MIT was funded by the Defense Advanced
Research Projects Agency. Later sponsors included the Department of Energy, the National
Aeronautics and Space Administration, the U.S. Navy, the US. Army and the US. Air
Force.

The Thll'd MACSYMA Users’ Conference sponsors include the General Electric Cor-

porate Research and Development Center, Symbolics, Inc., the U.S. Army Research Office, .

the Office of Naval Research and the Air Force Office of Scnenuﬁc Reserach.

We are grateful to all of those who have made this Conference and the publication of
these Proceedings possible including our sponsors, the Organizing Committee, the invited
speakers, those who contributed papers and the conferences attendees. Very special thanks
are due to Dr. Hussain of GE who initiated the conference and contributed in so many ways
to its success, to Ellen Golden of Symbolics whose efforts have made the publication of these
proceedings possible and to Mickey McGinn and others at GE who attended to the many

conference details.

Elizabth Cwhill
Conference Chairman

......

ix

B ¥ P

) Y

R]

15:45 - 16:00

16:00 - 17:45

18:15
19:00

20:30

21:30

9:00 - 9:45

9:45 - 10:30

10:30 - 10:45

10:45 - 11:30

William A. Beyer
Los Alamos National Laboratory]
Solution of Simulta Poly jal Equations by Elimination
in MACSYMA Co

Break (CRD Lobby)

Dr. David Wood
Naval Underwater Systems Center
An Overdetermined System of Partial Differential Equations

Leo Harten
Paradigm Associates, Inc.
Applications of MACSYMA in Solvmg Linear Systems
of Differential Equations

Ralph Wilcox and Leo Harten
Hughes Aircraft and Paradigm Associates, Inc.
Analytical Solutions to Some Matrix Ricatti Equations

Dr. Kenneth A. Bannister
Naval Surface Weapons Center
MACSYMA-Aided Large Deformation Analysis of a Cylindrical Shell
Under Pure Bending

P. Hollis and Prof. D. L. Taylor
Cornell University
Hopf Bifurcation in Muln-Degree-of Freedom Systems Using MACS YMA
R. Drew Drinkard, Jr.
Naval Underwater Systems Center
Tutorial on Particular Uses of MACSYMA
Social Hour (Atrium)
ﬁanquet (Cafeteria)
Auditorium
Prof. Joel Moses
Massachusetts Institute of Technology

Bus Departs from Lobby for Hotels

Tuesday Morning, July 24

" Bus Departs from Ramada Inn and Holiday Inn

" Chairpeisons: Dr. Elizabeth Cuthill, David W. Taylor, Naval Ship R&D Center

Prof. Richard Fateman et al.
University of California at Berkeley
Research in Algebraic Manup:lanan at the University of C alifornia
at Berkeley .

Prof. Keith Geddes et al.
University of Waterioo
On the Design of Performance of the Maple Systems

Break (CRD Lobby)
Dr. Stephen Wolfram

Institute for Advanced Study, Princeton
Five Years of SMP

LR ¥ P

r

1

I

T

7:45

8:15 - 9:00
9:00 - 9:15
9:15 - 10:00
10:00 - 10:45
10:45 - 11:00
11:00 - 11:45
11:45 - 12:30
12:45 - 14:00

’ 14:00 - 15:45

Technical Program
Third MACSYMA Users’ Conference
July 23-25 1984
All sessions will be held in the audirotium of the
General Electric Corporate Reseszch and Development Center

Monday Morning, July 23

Bus Departs from Ramada Inn and iloliday Inn

Registration (CRD Lobby)

Opening Remarks and Welcome (Auditorium)

Dr. Elizabeth Cuthill, David W. Taylor Naval Ship R&D Center
Dr. Pete Meenan, Information System Ogperation, GEVCRD

Technical Sessien

Chairperson: Dr. Jagdish Chandra, US Army Research Office

Dr. Richard Pavelle
Symbolics, inc. .
Status and Future of MACSYMA

Prof. Stanly Steinberg and Patrick Roache
University of New Mexico
Using VAXIMA 1o Write FORTRAN Code

Break (CRD Lobby)

Prof. Paul Wang
Kent University
MACSYMA Aided Finite Element Analysis

Prof. Carl M. Andersen)
Coliege of William and Mary
Noor Reduction Technigue for Differential Equations

Lunch (Cafeteria)
Monday Aftenoon

Chairperson: Dr. Sandra DeLoaich, NASA Langley Research Center

Dr. Raymond Mejia
National Institute of Health :
Some Applications of Symbolic Manipulation in Biomathematics

J. F. Schenck, MD, and M. A. Hussain
GE Corporate Research and Development
Application of MACSYMA to a Boundary Value Problem
in Nuclear Magnetic Resonance Imaging

Prof. Johnnie W. Baker and Oberta Slotterberg
Kent State University, Hiram College and University of
Texas at Austin

Providing a Complex Number Environment for MACSYMA and VAXIMA ~

Dr. Richard L. Brenner
Symbolics, Inc.
Simplifying Large Algebraic Expressions by Computer

xiv

9:00 - 9:45
9:45 - 10:30
10:30 - 10:45
10:45 - 11:30
11:30 -12:15
12:30 - 13:30
13.30 - 1545

A !

| 15:45 - 16:00

|

' 16:00 - 17:45

Prof. Donald Stanat
University of North Carolina a: Chape! Hill
A Funcnonal Language Machine and its Programming

Prof. George Andrews
Penn State University
Ramanujan and SCRATCHPAD

Break (CRD Lobby)

Dr. R. D. Jenks
1BM)
The New SCRATCHPAD Language and Sysiem (or Computer Algebra

Prof. Ben Noble and M. A. Hussain
University of Wisconsin Mathematics Research Center and GE CRD
Apphication of MACSYMA to Kinematics and Mechanical Systems

Lunch (Cafeteria)
Wedaesday Alterncon
Clairperson: Dr. Robert B. Grafion, Office of Navai Research

Prof. Dennis Arnon and Thomas W. Sederberg
Purdue University
Impiicit Equarion for a Paramerric Surface by Groebner Basis

Abdelilah Kandri-Rody and Deepak Kapur
Rensselaer Polytechnic Institute and GE CRD
Computing the Groebner Basis of an Ideal in Polvnormial Rings
over the Intexers '

S. Agnarsson. A. Kandri-Rody, D. Kapur.
P. Narendran. and B. D. Saunders
Rensselaer Polytechnic Institute and GE CRD
Complexity of Testing Whether a Polynomial ldeal Is Nontrivial

A. Kandri-Rody and B. D. Saunders
Rensselaer Polytechnic institute
Primaiuy of Ideals in Polynomial Rings

Erich Kaltofen and Nori Yui
Rensselaer Polytechnic Institute N
On the Modular Equation of Order 11

W. Dubuque
Symbolics, Inc.

New Found tor Computer Algebra

Break (CRID» Lobby)

Dr. James O Dell
Symbolics. Iac. .
Role of Maimenance in Knowledge Programming

Dr. J.T. Bendler
GE Corporate Research and Development
Levy (Stabie) Probabiliny Densities and Relaxanion
n Solid Polymers

M.A. Hussain and J.F. Schenck
GE Corporate Eesearch und:-Development .
Approximate Solution of an Iniegral Equation That Anses
in the Design of Magnenc Field Cois

.

37

TR

T

-

i

e

ey T h

el

11:30 - 12:15

12:15 - 12:45
12:45 - 14:00
14:00 - 15:45
15:45 - 16:00
16:00 - 17:45
18:00

8:15

Prof. David R. Stoutemyer
University of Hawaii
Which Polynomial Representation is Best?

Poster Session {(Conference Raom 5)

" Lunch (Cafeteria)

. Tuesday Afternoon

Chairperson: Dr. Phil M. Lewis, Computer Science Branch, GE CRD

Prof. John.Fitch
University of Bath, England
A Survey of Reduce '

‘Dr. R. Berman
Massachiusetts Institute of Technology
Measuring the Performance of a Computational Physics Environment

Dr. Elizabeth Cuthill
David W. Taylor Naval Ship R&D Center
Evaluating Infinite Integrals Using MACSYMA

George J. Carrette
Massachusetts Institute of Technology and Paradigm Associates
Results in Unexpected Af 4CSYMA Implemeniation Environments

Dr. Jon J. Yagla
Naval Surface Weapons Center
Stabitity Criferia for Finite Difference Equations

Break (CRD Lobby)
Paul D. Engleman :

The Penagon, Washington, DC

Two to Three Dimensional Mapping
Barbara L. Gates and Paul 8. Wang

Kent State University

A LISP-Based RATFOR Code Generaior

Michael Wester and Prof. Stanly Steinberg
University of New Mexico
A Survey of Symbolic Differennation Implementations
Gene Cooperman
GTE Labratory
Alternate Top-Level for MACSYMA
V. Elien Golden
Symbolics, Inc. .
Computational Geography - The Habitais of the Migratory MACS YMA

Bus Departs for Hotels

Wedcesday Merning, July 28
" Bus Departs from Ramada Inn and Holidzy inn

Chairperson: Dr. Steve Wolff, Ballistic Research Lab

Car} R. Poweil
Kent State University
An Automatic Testing Facility for VAXIMA

Lz2o Harten and G. Carretie
Paradigm Associales
Using MACSYMA 10 Generate (Somewhe:} Opumize’! FORTRAN
Code and Macros, Translation and Compilation m MACSYMA

17:45 Adjourn

USING VAXIMA TO WRITE FORTRAN CODE?t

Stanly Steinberg
Department of Mathematics and Statistics
University of New Mexico
Albuquerque, NM 87131

Patrick Roache
Ecodynamics Research Associates, Inc
: P.O. Box 8172
Albuquerque, NM 87198

Abstract

This paper describes the symbol manipulation aspects of a project that
produced a large FORTRAN program that is now used to model lasers
. and other physical devices. VAXIMA (MACSYMA) was used to write
subroutines that were combined with standard software to produce the

full program.

1. INTRODUCTION AND PROJECT OVERVIEW‘

: The purpose of this paper is to describe the symbol manipulation aspects of a
project that used VAXIMA (MACSYMA) [8] to write FORTRAN subroutines that are
part of 2 finite difference code that is now used to model lasers and other physical dev-
ices. Some of the results of this project were reported in (10, 11, 12, 13, 15, 18] and
some substantial improvements will be reported in [18]. Without the help of a symbol
manipulator, portions of the project would have been impossible. With. the help of
VAXIMA, useful code was produced in a few weeks. Thus, as users of a symbol mani-

pulator, we had a reduction in code development time that was infinite, a fact of -

importance for anyone considering using a symbol manipulator in a coda development

~ project. Unfortunately, not all of our report is accolades.

The physical devices that are being modeled are assumed to be in a steady
state and consequently it is assumed that the physics of interest can be modeled by a

t+ This work was ?artially supf?rted by the U.S. Army Research Office, by the U.S. Air
ch, by the National Science Eonndahon Grant

Force Office of Scientific
#MCS-8102683, and by System Deve'opment Foundation.

.

T

e, o
i . ARV

o e
(O Il N

. -

R P gy o
. . - B .

E . i SO

LT A

partial differential equation (called the hosted equation) that involves the Laplace
operator or a gel eralization of this operator. Mathematically, the equations must be
elliptic. Such differential equations have been well studied both analytically and
numerically. The difficulties come not from the differential equations, but from the
fact that the physical devices have an irregular shape. This means that the full model
will involve a boundsary value problem: in an irregular three dimensional region, or if
the device has sufficient symmetry, then a boundary value problem ia an irregular iwo
dimensional region.

There are several different finite difference or finite element methods available
for handling such problems. We are interested in a technique called Boundary-Fitted
Coordinates that involves finite difference techuiques. This subject has become a field
of study in its own right as evidenced by the proceedings [2, 8, 19]. The basic idea is
to find a transformation (or change of coordinates) that maps the given region (called
physical space) into a rectangular region (called logscal space), see Figure 1. In the rec-
tangular region it is easy to produce finite dificrence scheres. Althcugh the idea is
simple, there are several complications and it is these complications that made using a

~ symbol manipulator so helpful.

z
2 £
P a——b
rd
7
Ly

z

zy .
Physical & Logical
Space Space
’ Flgure 1

One complication is that the given regions are usually so u'regular that it is
impossible to find analytic transformations; the transformations must be determined
numerically. The geometric idea that underlies the numerical methods is that the
transformation should be smooth. Historically this is translated into requiring the
transformation be harmonic: that each componert of the transformation satisfy
Laplace's equition. If the transformations are required to be harmonic as mapping
from logical space to physical space, then converting the differential equations to finite
difference schemes is easy. However, it was discovered that such a formulation leads to~
poorlv behaved numerical methods while if the transformations are recuired to be har-
‘monic as mappings from physical space to logical space, then the numencal methods

i ot TR

are better behaved. In this formulation, the Laplace.equations are called the smooth-
ness equations. The fact that the smoothness equations must now be transformed to
equations on logical space is an important complication in this approach. This is done
using the yet to be determined transformation from logical to physical space which
results in a coupled system of quasi-linear elliptic differential equations (also called the

smoothness equations) for determining the the transformation from logical to physical -

space. The prescription of the transformation on the boundary of the region provides
the boundary conditions for the smoothness equations. We used VAXIMA to do the
algebra and calculus in this step. The condition that the trensformation be harmonic
has been gencralized, and we included these generalizations 'in our work. More
recently, the harmonic condition has been replaced by a variational principle which we
will describe in Section 5.

Another complication is that the hosted equations (the equations describing the
physical process) must be transformed to logical space. Because the transformation is
not known analytically, a general transformatior must be used. To give the reader
some idea of the size of these problems, we aote that the Laplacian in three dimensions
in. general coordinates and in fully expanded form contains 1611 terms. Again, we
used VAXIMA to do this algebra and calculus although we did not always use the fully
expanded form. Once the smoothness and the bosted equations are known in logical
space, they must be converted to finite difference form. This was also done with VAX-
IMA. Finally VAXIMA was used to write all of the formulas into a file in a form
appropriate for the FORTRAN compiler. In fact, we had VAXIMA write two complete
subroutines, one for the hosted equation and one for the smoothness equations. A few
minutes work witk the editor and the subroutines were ready to compile.

After the subroutines were written, they were combined with other standard
numerical sofiware to produce a program that could model physical devices. Although
the level of confidence in the resulting code was high there was no guarantee that it
was correct. Consequently, the program was checked using convergence rate testing on
a set of examples that would exercise all parts of the program. The program has now
been distributed to several universities and laboratories for production modeling. At
the end of this paper we have included three coordinate systems generated by our pro-
grams. Each figure represents a coordinate system in the interior of a laser cavity. Fig-
ures 8 and 7 represent regions that have ome axis of symmetry while Figure 8
represents the surface of a three dimensional region. We did not lsebel the axes in these
figures because such labeling is arbitrary and should be chosen for the convenience of
the user. The details of the devices being modeled are described in [11, 13).

We now describe some parts of this project in more detail. In Section 2 we
will describe the mathematical formulation of coordinate changes, in Section 3 we will
‘desciite how to introduce the finite difference schemes, and in Section 4 we ‘will
describe how to wriic the FORTRAN code. Section 5 is devoted to describing a varia-
tional formulavion of the grid problem while Section 6 is devoted to a summary of
what was accomplished. This nroject provided us with experiences we believe are

T

T’

-

Y"’]_ﬂ‘
i
vl P

e®
M
|

T

m

S

¢
b

-t
i
{

P e

A

SO0 .

. ‘Vv

T

-k T
PFEPTARARPL 2

[

CA Y 7SO TR S

relevant to general applied mathematics and symbol manipulations problems so some
of our opinions are presented in Section 7. Finally, some of the basic ideas used in this
project we used in a project to develop a program that performs analytic changes of
coordinate for partial differential equation, so a brief introduction to this material is
given is Section 8.

2. MATHEMATICAIL FORMULATION

Here we will give a brief introduction to the mathematics involved in our prob-
lem. The mathematical formulation is done in n-dimensions, not because we need the
formulation for dimemsions other than 2 and 3, but because this allows us to write
VAXIMA code that works for all dimensions including 2 and 3. Thus a point in space
will be denoted

T = (%) = (29, - - - 5 Ty) | (2.1)

where n is a positive integer parameter and w2 think of 7 as a column vector. The.

simplest hosted equation is the Laplacian,
V ' 2 oo
Af = EQ_;;_) (2.2)
i az; .

where f = f(Z) and we assume that all sums run from 1 to n. In general, the hosted
equation will have the form

) (] s ¢ .

i 1% ¢, dand f 'depend on Z. The smoothness equations have a similar
form where the coefficients depend on the unknown transformation, that is, the equa-
tions are quasi-linear rather than linear.

where a..

In our applications we will be doing nume:icai calculations in logicai space so
we will want to write all of our formulas in terms of the € variables. Thus we write

7 = 7(3), f | (2.4)

and choose tﬁe Jacobiah matrix J to be

M o DAL EPA L AP

DAE UG VN . RENEARAL A

[

e'_ mwr e

.t
Sy

P SUMILILIAPAPREY g

az‘ 61'2
9 9§
J=(J) 32] 331
B
and K to be the cofactor matrix of J. Thus if A = determinant(J) , then
| K
Jl = —. : .
5 _ (2.6)
The chain rule gives ‘
o a] |
FI7 z} i dz; (2.7)
and multiplying by K /A gives :;
K 1 -8
L vy K.
dz; A ? ¥ 9¢;
+ The formula for 8/8z; can be uséd to compute the second derivatives,
Y N TR I 3 . |
97,0z, 2;4 x Ko el Kie 5g) \
‘ l\
1 P 1, 9 1 d
= Y — K, K;, = — K;, —(= K;;))=—
zn: Az 1wehe afraf' + § A\ " aE' (A Ji)ae‘

The next step is to use the above formulas to transform the hosted and
smoothness equations to logical space. In our first: approach, this is exactly what we
did. We believe that this is a very natural approach to;the problem and the fact that

“this leads one to a trap points out that symbol manipujlation is not as easy as it may
seem. Using this approach, VAXIMA required about 60 cpu hours to write the subrou-.
“tine for the hosted equation in three dimensions and produced about 1800 lines of very

dense FORTRAN code. This work was done on a VAX 11/780 computer with 4 mega-
bytes of RAM memory. After some minor adjustments to the 77 compiler, approxi-
mately one cpu hour was required to compile the subroutine. As it turned out, the sub-

" routine was correct the fisst time it was written, which is not the same as saying that

no errors were made in the symbol code:

(2.5)

(2.8)

(2.9)

»

R EH

ey

. o

2 e s

7

If a less obvious approach is taken, then VAXIMA can write an equivalent sub-
routine in about 8 cpu minutes (60 cpu hours over 8 cpu minutes equals 450). This
subroutine contains only 130 lines of code (1800 lines over 180 lines equals 10). As we
proceed with our discussion we will point out the differences between the first and the

. second approaches that make such a great difference in the VAXIMA run time and the

size of the subroutine.

Before we proceed we need to point out that we would have liked to derive the
above formulas using VAXIMA. This 1s not practical because VAXIMA does not know
about vectors of length n, where n is an integer parameter and does not know about
functions of n variables where n is an integer parameter. We believe that none of the
existing symbol manipulators can do this type of computation.

A major improvement in our programs was achieved by noting that there is a
classical formula for differentiating the inverse of a mairix A whose eniries are func-
tions of the £ variables,

9 1 1 9A 1 | ,
56 A A A (210)
Combining this with a previoué formula gives
2 (Lk,)= LK Jo K, . (2.11)
%€, & -7 £ Ka ae, o
and thus 4 /
i 2 1
—— Y K, K K 2.12
az;azj Az y ir Jl aefaE' A; r(::' l(“)36, ()

It is this last formula that was used in the second approach. Moreover, in the
first approach we plugged everything into the differential equation that was to be
transformed and then expanded out the formula. This produced a rather large expres-
sion which, in turn, accounts for part of the excessive time used in the first approach.
In the second approach, we introduced some intermediate quantities that are equal to

_ various coefficients in the previous expression. This has the effect of reducing the size

of the expressions to be manipulated but makes it very difficult to understand what is -
the simplest form for expressions defined in terms of the intermediate expressions. In
either case, this produces the formulas needed to generate the finite difference equa-
tions. For more details see [16].

3. FINITE DIFFERENCES

The next step is to replace all of the £ derivatives in the previous formulas by
standard centered finite differences (which we do not write here). The portions of the
VAXIMA code that deal with finite differences were programmed separately for two

k4" I P

LA Wi Y e FL RN |

and three dimensions because we found it

impossible to do this with the dimension n

as a formal parameter, see also [22]. The fact that we could not manage a general for-
mulation was disappointirg, but VAXIMA was still an indispensable tool for complet-

ing this part of our work.

In our first approach we simply su
for the differential equations. Now our for
reality, not very complicated. In three d
have the form -

Y ¢; i 4(€1€2,€8) 9(§+iD
1415141k <3

Here i, j , k each run over the set of

bstituted these formulas into the expressions
mulas were getting really large but were, in
imensions, the resulting difference equations

values {-1,0,1} . T2 coefficients ¢; ;, are

called a stencil. For convenience, we vieﬁ the elements of the stencil as points on a

cube in three space and then label the ele

ents as in Figure 2. Note that not all of the

stencil elements have been labeled so as to avoid cluttering the figure. In addition, the

€, axis points to the right, the §; axis poin

ts up, and the &5 axis points forward.

¢ ' €0,1,-1
-],1,_l 14y ¢
=l 1,11
ﬂ)
- €0 e
c—l,l,l (& I v ‘ - - -
> -
.] ‘ ? ? ‘/. d cl,o.—l
! | |-~
$ | ¢
| -~
— '
' _ -t
c-l’o,l ?/. | 1 L_—- .- -8
. c_l?‘ll‘l .
/ L —— - - |
€_1,-1,0
»>~ > o
c - —
1-1-1 €9,-1,1 €_3-1,1
The Stencil
Figure 2

It is easy to check that, because

we used centcred differences, there are many

relationships among various stencil elements, for example,

€1,6at AL, E+kAL) = R(6,62,6) - (3.1)

B [

T

—

(I

n

.T‘

g

[€111 = 0, €101 = €101 -
f ' These relationships reduce the 27 stencil elements to 10 independent stencil elements.
g" Because of these relationships, the formulas generated by the first method con-

= tain substantial redundant information. In the second method the difference formulas
: - were never substituted into the differential equations. Instead, various coefficients of
;’ the differential equation were collected and combined to give the formulas for the sten-
cil elements. This can be thought of as reversing the order of the substitution and the
‘ collectmg of the coeflicients. We did not find this convenient in VAXIMA. It is our
impression that decisions concerning the order in which the steps of a computation are
to be done are very important. Shoulda’t symbol manipulators provide facilities to

! help the user with such decisions?

b At this point the stencil elements are defined in terms of intermediate expres-
L sions which are, in turn, defined in terms of the parameters and derivatives of parame-

’ ters appearing in the original differential equations. These expressions also contain
. derivatives of the coordinate change. The situation for the smoothness equations is a
| bit different from that for the hosted equation but the computations are similar. For
o - more details, see [16]. In either case, these parameter functions and derivatives must
[be replaced by a notation that the FORTRAN compiler understands. In the three
dimensional case, we created 31 atomic variables (variabl: names) and substituted
these into the formulas needed to write the FORTRAN subroutine. '

} In the first formulation this was a disaster. At this point we were dealing with
a very large formula and every time a substitution was made the simplifier rearranged
the terms in the formula in an attempt to find simplifications where we knew that

L none existed. We estimate that roughly 50 of the 60 cpu hours used in the first method

L went into this step, that is, by stopping this irrelevant work we reduced the computa-
} tion to about 10 cpu hours. The remaining savings requn'ed some mathematics to be
' done.

At ,this point our VAXIMA program had produced all of the formulas needed
< to write the FORTRAN subroutines. These formulas were reccrded in several lists in
Ft { the form of VAXIMA equations that corresponded to FORTRAN assignment state-
ments. We had also collected lists of all of the variables used in the formulas that were

to be used in the subroutines. So let us write the subroutines.

4. WRITING FORTRAN

At this point we had all of the formuias needed to write the FORTRAN code.
We had also saved some lists that contained all of the variable used in these formulas.
The next thing that needed to be done was to create the subroutine header, some com-
ments, some variable declarations, and some loops over the grid in logical space. We
could have written these things into a file and then used the VAXIMA foriran function
to convert the formulas to FORTRAN syniax and then written these expressions into

IR

R

a file. A few minutes work with an editor would have produced the subroutine.
Instead, we decided to write a VAXIMA function to produce a complete subroutine.
This is not a particularly efficient way to do things given the state of the facilities in
VAXIMA or, for than matter, any other symbol manipulator. However, we now have
some opinions on what is needed to make writing floating point programs more
efflicient and less irritating.

When we are writing FORTRAN code we would like our symbol manipulator
to be a good programmer’s assistant. We are not interested in converting symbol
manipulation programs or functions to floating point programs (although some may be
interested in this). One step in writing 2 program is creating the assignment formulas
which is the forte of symbol manipulators. These formulas need to be in or converted
to FORTRAN syntax. The arithinetic operations seem to cause no difficulty whereas
the logical operators do cause problems. First note that the VAXIMA fortran {unction
converts the VAXIMA assignment operator ““:”” to the FORTRAN assignment operator
“="" while converting the VAXIMA logical =" to the FORTRAN ‘.eq.”. Hereis a
short sample of a VAXIMA run that illustrates the point.

(c_1) x:a"2+b"2;

2 2
(a_1) a +b
(c_2) y:x+c*d;
. o 2 2
(d_2) a +b +cd
(c_3) fortran(y):
(a_3) a**2+b**2+c*d
(c_4) fortran(y:x+c*d):
(d_4) y=a*#2+b* *2+ctd
(c_S) fortran(z=a"2+b"2):
(d_5) | Z.eq.a**2+hr*2
VAXIMA Output

' Figure 3
Now imagine that the the values being assigned are very complicated and we don't
want VAXIMA to do the substitutions, we want FORTRAN to do floating point

evaluations and substitutions. Now things becor:e a bit convoluted. We opted to use
the VAXIMA “=" in our assignment formulas and then use the editor to change the

L e i A e I e S

-

I |

T

I3

=
==
[

I
li

10

“eq.”" to “=". We believe a good resolution to this problem is to have a data type
that is a FORTRAN assignment statement so that the meaning of “="" is clear.

A good assistant could help with many other chores. It would be nice to have
the inanipulator check that we had declared all of the variables used in the subroutme,
that tne formulas were in a consistent order, that all of the values used in the assign-
ment formulas were computed locally or passed into the subroutine through the calling

- -.. sequence or a common block, and that all of the values passed out of the subroutine
“were computed; it also would have been nice to have the manipulator read into the
program a file that contained some comments. No doubt, there are many other pro-

gramming tasks thav a good assistant could do for the user. Again, we believe that it
would be helpful if the symbol manipulator had a data type called FORTRAN pro-
gram and could manipulate suck an object. One thing that we could do with VAXIMA
was very useful: we wrote all of the assignment formulas used in the subroutine into a
file in the VAXIMA two dimensional format. This made reading the FORTRAN code
much easier. In fact, much of our FORTRAN code is not very readable by humans.
However, we hope the the VAXIMA code and the two dimensional format formulas are
readable.

Of course, we have saved the real bad news to the last. All of the subroutines
that we have written using VAXIMA contain an outrageous amount of redundant
arithmetic. This can be corrected with a large amount of at the terminal work with
either VAXIMA or a text editor, but there are many chances for mistakes. Because
the subroutines that we wrote account for a small percentage of the total run time of
our programs, we have not yet optimized the formulas. Anyone planning on using a
symbol manipulator to wrlte code chould be aware of this problem. There is a func-
tion in VAXIMA called “optumze” that will correct this problem for small formulas,
although ‘“‘optimize” does not change any of our formulas and was not designed to
work on a list of formulas where the formulas contain common expressions. It does
not seem that it will be difficiilt to improve this situation. However, it is not clear to
us how to optimize both the arithmetic count and the stability of formulas. We are
currently working on these problems. To give the reader some idea of what we are
talking about we have included, see Figure 4, one assignment statement from the
three dimensional code.:

ul = s33*%*vKk31*233+2*s23*vk31*z23+s22*vk31%222+2*s513*vk31*2z13+2*sl -
2*vk31*z12+s11*vk31*211+s33*vk21*y33+2*523*vk21*y23+s522*vk21*y2
2+42*s13*vk21*yl13+2*s12*vk21*yl12+s511*vk21*y11+s33*vk11*x33+2*s23
*vk1l1*x23+s22*vk11#x22+2*s13*vk1l1*x13+2*s12*vk11l*x12+s11*vkll*x
11 :

WM

" Sample of VAXIMA Written FORTRAN Code
Figure 4

Note that almost any rewriting of this expression in a form analogous to that given by

.....................

Horner’s rule will improve the operation count and presumably the stability of evaluat-
ing the expression. The problem is that there are many ways of rewriting the formula
and so it is not obvious how to automate such a procedure.

T

5. THE VARIATIONAL FORMULATION

Recently, there has been an interest in formulating variational problems for
determining coordinate systems in physical space [3, 14, 18]. A problem with the pre-
vious methods is that they are ad hoc. There is some geometric intuition but the
parameters in the method have no direct geometric interpretation. With the varia-
tional methods the parameters do have a geometric interpretation and consequently
this geometric intuition can be used to help determine the parameters. Previously,
numerical experimentation and experience were the best guides to choosing the param- (
eters. In the simplest cases tbe variational methods yield the previous methods. How-
ever, the variational method provides direct control over many aspects of the grid
including the smoothness, the angles between the grid lmcs and the area or volume of
the grid cells. For more details see [3, 14, 18]. . :

In this section we will describe how to convert a variational problem into a
FORTRAN subroutine. We will see that this type of problem is very appropriate for a
symbol manipulator. On the other hand, the derivation of a variational problem from
geometric intuition seems the proper domain for human thinking so we leave describ-
ing how this is done to another paper [18]. The simplest variational problem is the one {
that is related to smoothness, so we now describe that problem and its conversion to a *
FORTRAN subroutine {or generating a grid. The more general variational probiems
involve the same mathematics; they are just more complicated and complicated !
enough to warrant using a symbol manipulator. _ ;

We will use the notation of the Section 2 and formulate an n-dimecrsional ver-
sion of the variatioral problem. The variational prohlem is to find a transformation
7 = %(§) mappmg a rectangle S in logical space to the glven region in physical space
which minimizes the integral '

| 2] =1

@ = % |5 250 e, ae, (5.

T

The transformation :T:’(—E.) is to be specified on the boundary of S. It is known that if
Z(€) minimizes /(Z) then the components z;(€) must satisfy the Euler equations which
are a system of partial differential equations, that are well known. Instead of writing

- the Euler equatlons we will derive them. This is because the method of denvmg these
equatlons is far more interesting than the equations themselvw

Let Z(€) be defined on the region S and be zero on the boundary of S. Then
for every ¢, the transformation Z = Z(€) + ¢ T::(—) maps the region S in logical space
to the given region in physncal space. f ¥ = ?(E) minimizes /(Z) then ¢ = 0 must be

a mmunum of

"I"ﬂiﬂ" ST

.................

F(e) = I(Z+v), | (5.2)

" that is, it must be the case that
Lio)=0. (5.3)

A common way of thinking of the above is to consider I(Z) to be a functional (func-
tion) on an infinite dimensional space of smooth furctions and then the previous
derivative is thought of as being a directional derivative of the functional I(Z) in the
direction @. This type of derivative is a direct generalization of the notion of direc-
tional derivative in finite dimensional spaces and is frequently called a Fréchet or
Gateaux- derivative. Tbis derivative has many diverse applications in applied
mathematics.

A bit of calculus gives ‘,

ar % o de =
dc(o) f .f?..af, 36, df dé, = 6. (5.4)
An integration by parts gives
» 82::, .
fS. Z % d§; - ¢, = 0. . ' (5.5)

The integration by parts is easy to do symbolically because what is remure.l is to
remove all of the derivatives from the ¢;.

The previous integral must be zero for all choices of T which are zere on the
boundary of S, which implies that the coefficient of each ¢; must be zero. Thus

. 3%

0,1<i<n, - (5.8)
=1 8512 :

which are the usuzl smoothness equations!

Now we are ir a position to apply all that we have learned previously. We
would like to note thai we are very fond of this approach to grid generation problems:
it has geometric insight, straighiforward computations, and considerable versatility. In
addition, VAXIMA handles the computation casily if we don't try to completely imple-
ment the n-dimensionz' formulation.

8. SUMMARY

"~ Vel us look at what was accomplished. Using our first mathematical formula-

tion it is certainly possible to generate the two dimensional FORTRAN subroutine by

hand but probably impossible to generate the three dimensional subroutine by hand.

The new mathematical formulation of the problem has probably brought the writing .

by hand of the three dimensional subroutine within the realm of possibility. For two
dimensional codes there probably is no time saved in producing the subroutines using
VAXIMA. Even though no time is saved in the production, it is still advantageous to
use VAXIMA. The reason is that there is a very small probability of typo type errors
in the VAXIMA written code. - In fact, we did not have to spend any time debugging
the FORTRAN subroutines although there was a small problem in combining the sub-
routines with the elliptic equation solver. This comment is a bit unfair because a rea-
sonable amount of time was spent debugging the symbol codes. However, because the
symbol codes are written at a higher mathematical level than the subroutines, they are
usually correct or produce garbage, and consequently are considerably casier to debug
than FORTRAN code. Thus the VAXIMA project had the advartage of requiring less
debugging time and producing a product that we were confident was correct.

As stated before, the mathematical formulation used to write the VAXIMA
code was derived for the general n-dimensional case. About half of this was pro-
grammed in VAXIMA using n as a formal parameter. The parts of the formulation
that could not be programmed for the general case were programmed for the two
dimensional case and then the two dimensional subroutines were written and tested. A
modest amount of programming produced three dimensional versions of those parts
that were not general and then it was possible to write the three dimensicnal subrou-
tines. The fact that much of the VAXIMA code was used in the two dimensional case
or was a direct analog of the code used in the three dimensional case gave us a very
high level of confidence in the three dimensional subroutmes, and now we had realized
a tremendous saving of time!

Certainly VAXIMA is a useful tool. However, this project and other pro;ects A

have shown that there are problems. Here we do not mean bug type problems; in fact
this type of problem is rather rare; we mean problems in the fundamental design of
VAXIMA. Clearly part of the problem: could be that VAXIMA evolved over a number
of years and involved a large number of programmers. However, we have looked a!
several of the new generai purpose manipulators, which were certainly designed and
find that the problems are still there. Thus we are led to believe that there is some
disparity between what the symbol manipulation cecmmunity is desugmng and the
needs of the applied mathematicians who use symbol manipulators.

7. COMMENTS

In this section we will make some general comments about the use of symbol
manipulators in applied 1nathematics.

FA A Sl i e g P i e e e R i R R A

13

g

R TR

"

R

fra

T

odefhr

m

I

One of the most important pheuomnenon in symbol manipulation is that of
intermediate expression swell. Certainly, our 60 cpu hour run times were a result of this
phenomena. It seems reasonably clear that fuster hardware is not going to be all that
helpful in tackling many problems that have large intermediate expressions. Clearly
some problems will have a best formulation that is very large and for such problems
fast machines are crucial. We believe that improved design of symbol manipulators
along with the user community developing more skill in using these programs will have
more impact. :

The problem of large intermediate expressions is not unique to computer sym-
bol manipulation; the same problem occurs in hand computation. When students do
computations in elementary courses we often refer to their approach as plug and chug
and are clearly aware that more experience may improve their computational abilities:
they will start to have an overview of their computations and will start to choose
among several computational strategy. We believe [7] that more experienced users of
mathematics use abstraction to overcome the intermediate expression swell problem.
They tend to introduce symbols to represent large expressions. Such symbols need to
be well chosen; they must have nice manipulation properties and represent important
parts of the underlying problem. The more abstract symbols may be manipulated in an
attempt to find an approach to a problem that has tractable intermediate expressions.

The fact that we could discover a reformulation of our probiem that reduced
our run time by nearly thrce orders of magnitude can be interpreted in many ways;
perhaps we should have thought more before programming. From an applied
mathematics point of view, our original programs were very natural and this is whai
allowed our rapid progress. We believe that the use of the identity that reduced the
run time could have been found by a symbol manipulator. The identity is well known.
The use of the identity is indicated because it allows some of the calculations to be
done before the messy details are put into the formulas; clearly this a good thing to
try. :

Another problem is the notion of functional dependencies that is used by the
VAXIMA differentiation routines. This notion is not adequate for our nced and is
probably not adequate to carry out many applied mathematics projacis that involve

- multivariate calculus. This prollem caused ‘us to carry out hand derivations of the

coordinate transformation formulas rather than doing this work in VAXIMA. As far
as we can tell all of the manipulators that are commonly avaii:hle have problems in
‘this area. This problem is so important that M. Wester and one of the authors have
published a.paper [20] on this subject and are presenting a separate paper [21] on this
subject at this conference.

As we noted above, some of the VAXIMA code could be written using the
dimension, n, of physical space as a parameter. The fact that about half of the VAX-
IMA code could not be written this way was more than a nuisance. One of the prob-
lems. here is that it is not possible to define vectors of length n where n is an integer

parameter and then have VAXIMA bnow how to mnanipulate such objects. Stated

more mathematically, it is not feasible to teach VAXIMA about abstract vector spaces.

We believe it is impossible to over-estimate the importance of abstract vecior spaces in
applied mathematics. A simpler version of this problem can be found in the fact that
it is not easy to define lists of length n where n is a formal integer parameter and then
have VAXIMA (or Lisp) know how to manipulate these objects. As far as we know, no
other manipulator has this type of facility.

8. ANALYTIC CHANGES OF COORDINATES

Some of the previous ideas we used in a project {17 that developed a program
to perform analytic changes of coordinates for partial differential equations. There are
some facilities available [8] for changing the independent variables in partial
differential equations: what we wanted was a program that would change both the
dependent and independent variables. The program developed will transform up to
cecond order partial differential equations in any number of dependent and indepen-
dent variables. As the algebra here is quite complicated, let us briefly describe the case
of one dependent and one independent variable. In fact, what is needed is a program
that will change any partial derivative in one coordinate frame to partial derivatives in
a second coordinate frame. These formulas are then substituted into the partial
differential equation.

Let z be the independent variable, while y is the dependent variable in th~
given coordinate frame, and let ¥ be the independent variable and v be the dependent
variable in the new coordinate frame, as is shown in Figure 5.

y | v
v=(x)

h

Change of Coordinates
. Figure 5
The curves in Figure 5 are given by y = y(z) and » = v(u). We are interested in
transforming the derivative y' = dy/dz into an expression involving the derivative
v = dv/du. : '

We assume that the transformations are given implicitly,

F(z:yv“yv) =0, G(Z,y,ﬂ,‘l’) =0, (8“1)

15

i

T

e

"

I

B

i
i

T

____v,‘.‘

e
CEaDNORC

because this was the case that occurred in our applications. Here we assume that it is
possible to solve these equations numencally for z and y in terms of ¥ and v, that is,
a certain Jaccbian described below is not zero and that the Jacobian of the resulting
transformation is nonzero. This will imply that the inverse transformation exists, that
is, the equations can be numerically solved for ¥ and v in terms of z and y. We are
not assuming that the equations can be solve algebraicly, although if this can be done
then the results we obtain can be improved.

Bec:wse this case is so simple it can be done in many ways. We found that the
ideas from ¢lementary calculus were not powerful enough to allow us to do the more
general problem so we opted to use differential forms to solve the problem. It should be
noted that differential forms are nice because they convert analytic problems to linear
algebraic problems as we will see below. First, calculate the diflerentials of the
transformation:

 F,dz+F,dy+F,du+F,dv=0, (8.2)
G;dz+ Gy dy+ G ds + 5, dv=0

where dz, dy, du, and dv are the differential of the depehdent and independent vari-
ables and F, = 0F /3z and so forth. Introduce the matrices

F, F, F, F,
wom (5 ()

Our assumptions on the Jacobians means that the determinants of the matrices M,
and M, must not be zero. Now the system of equations (8.2) can be solved for dy and
dz yielding

dy =Adv+Bdy ,dz = Cdv + D du (8-4)
where the matrix
A B ‘
M?bo' (8.3)
is given by .
- M=M'M,. ,mm

Note that M depends on z, y, u, and v.

To transform the first derivaiives note that

. S BVINEIM

& b e % e g e c e e ma
PR P . . cale . PR v :

dv
4 _Adw+Bd _ A tP ©7)
dz Cdv+Ddu C—di-i»D
du
which implies that
I
s _ A+ Buv (8.8)

T C+Dv

As noted above A, B, C, and D depend on z, y, u, and v. If the equations (8.1} .an
be solved aigebraically for z and y in terms of ¥ and v, then this information can be
used in the previous equation. This should not be done before computing the second

derivative.

The computation of the transformation of higher derivatives is simple: for the

second derivative compute, as we did for the first derivative, divide dy’ by dz and

then use the formulas for dy and dz to eliminate these terms from the resulting

expression. This computation can be done using the matrix form of the equations, in
which ~ase it is important to use the ideatity that was discussed in Section 2 for
differentiating the inverse of a matrix. The compuiaiions in the multivariate case are
similar but considerably more complicated than what we just did. Since we carried
out the derivation of these formulas by hand in [17], we do not believe the computa-

tion to be practical in VAXIMA. As can be seen from this note and the paper (17}, we |

believe that it is important for symbol manipulators to know about differential forms.

References

Anderson, J;D., Lay, EL,, ana Hellings, R.L. Use of MACSYMA as an automatic
FORTRAN coder. In 1979 MACSYMA Users’ Conference, (V.E. Lewis, Ed.),
(Washington, D.C., 1979}, pp. 583-595.

Babuska I, Chandra, J., and Flaherty J.E., Eds. Adaph've Computational Methods
for Partial Differential Equations, SIAM, (Philadelphia, 1083).

Brackbill, J.U. and Saltzman, 18. Adaptive Zoning for Singﬁlar Problems in Two
Dimensions. J. Computational Physics, 46 (1982), pp. 342-368.

Engquist B. and Smedsaas T. Automatic computer code generation for hyperbolic
and parabolic differential equations. SIAM J. Sei. Stat. Comput., 1, (1980), pp.
249-259. | | / .

Fateman R. MACSYMA's general simplifier: philosophy and operation. In 1979

17

L3 LI L I 1

s

T

1,

T TN TR T

R

18

10.

il.

13.

15.

MACSYMA Usera’ Conference, (V.E. Lewis, Ed.), (Washington, D.C., 1978}, pp.
563-582.

Ghia K.N. and Ghia U., Eds., Advarces in Grid Generation, ASME FED, 5,
(1983).

Hermann, R. This point was discussed whlle R. Hermann was vnsmng the Depart-
ment of Mathematics and Statistics at the University of New Mexico in April of
1984.

MACSYMA Reference Manual, The MATHLAB Group, Laboratory for Computer
Science, MIT, Cambridge, MA, 1977.

Ng E. and Char B. Gradient and Jacobian Computation for numerical applica-
tions. In 1979 MACSYMA Users’ Conference, (V.E. Lewis, Ed.), {Washington,
D.C., 1979), pp. 604-621.

Roache, P. and Steinberg, S. Numerical aspects and potentiai of symbolic mani-
pulations for partial differential equations. Talk presented at the Army
Research Office - General Electric Corporation Workshop on Symbohc Compu-
tations, {Dec. 1882, Schenectady, NY). '

Roache P.J., Steinberg S., Happ H.J., and Moeny W.M., 3D electric field solutions
in boundary fitted coordmates. Yn Proceedings of the 4th I[EEE Ptdaed Power
Conference, (Albuquerque, NM, June 1983).- -

Roache P.J. and Steinberg S., Symbolic manipulation and computational fluid
dynamics (General background and demonstrations). In Proceedings of the
AIAA 6th Computational Flusd Dynamics C’on/erencc, (Danvers, Mass., July
1983), pp. 443-162.

Roache R.J., Moeny W.M., and Steinberg S. Interactive Electric Field Calcula-
tions for Lasers. In AIAA 17th Fluid Dynamics, Plasma Dynamics and Lasers
Conference, (June 1984, Snowmass, Colo.), pp: 25-27.°

3 | Saltzman, J.S. and Brackbill, J.U. Appﬁcations and generation of variational

methods for generating adaptive meshes. Numerical Grid Generation, Proceed-
ings of the Sympoasum on the Numerical Generation of Curvilinear Coordinate
Systems and use in the Numerical Solution of Partial Differential Equations,
(Thompson J.F., Ed.), (April 1982, Nashville, Tennessee), North-Holland, New
York, 1982. ’ v

Steinberg, S. and Roache, P. Symbolic manipﬁlation for generation of FORTRAN
codes for partial differential equations. Talk presented at the Army Resecarch

.
«

.
o
.

16.

17.

18.

19.

21.

22.

. Office - General Electric Corporation Workshop on Symbolic Computations,
- {Dec. 1982, Schenectady, NY).

Stemberg S. and Roache, P.J. Symbolic manipulation and computational fluid
dynamics. To appear in the Joumal of Computatzonal Phy.sncs, (1984).

Steinberg S. Change of Variables in partial differential equations. Technical
report, Dept. of Math. 2nd Stat., Univ. of New Mexico, Albuquerque, March
1983.

Steinberg S. and Roache P.J. Variational furmulatlon for numerical coordinate
changes, In preparation.

‘Thompson J.F., Ed. Numeri-’:al Grid ‘Generation. Préceedinga of the Symposium

- on the Numericul Generation of Curulinear Coordinate Systems and use in the
Numerical Solution of Partial Differential Equations, (April 1982, Nashville,
Tennessee), North-tloliand, New York, 1982. ‘

Wester M. and Steinberg S. An extension to MACSYMA's concept of functional
differentiation. ACM SIGSAM Bulletin 17, (1983), pp. 25-30.

Wester M. and Steinberg S. A survey of symbolic diﬂ'erentiatidn»implementations.
In Third MACSYMA Users’ Conference, (V.E. Golden, Ed.), (July 1984,
Schenectady, N.Y.). -

Wirth M.C. Automatic Generation of Finite Difference Equations and Fourier Sta
bility Analysis. In Proc. 1981 ACM Symposium on Symbolic and Algcbra:c Com-
putation, (Aug., 1981, Snowbird, Utah), pp 73-78.

"

"1 4

T

8 Wb ST AD P Y S WY WD SO P b oy uk =B Ll AL L L L T 2 T ¥ T Fryryey

Grid for a 2D Laser Cavity
Figure 8

L4+
T m
L1 i
Twrx-‘xxx
17
4 r.i_.rxxj-
(441

20

EAPE R T A Y IJ_- Nttt TR T ute. s L NRNENY i s b6 L e T e b o el e € ¢ il LR R N A ek it S M) AN YW W ¥ ..,.i'- L

poe T o e s T _, S ST R A

o

AWy

NN VLR AL VLT

ALY

. SR ID N ST

™ e ¥
i

21

7.0
6.0
5.0 -

4.0+

0.0

1.0

L2

2.0

v L) 1

3.0 4.0 5.0

Grid for a 2D Laser Cavity
Figure 7

™

6.0

T

7.0

6.0

8.0

10.0

T

v

Rl

L

v,
—t

T

My

!

22

T T LT e

w i

I

o 2

%.a

PRt s dd W am ¥

Grid for a 3D Laser Cavity
Figure 8

Ataa

T

A

: .

R A

e TR T L NP A LA I R AF R

C 1R A

[E—

MACSYMA-AIDED FINITE ELEMENT ANALYSIS:
TECHNIQUES FOR THE AUTOMATIC GENERATION OF
NUMERICAL PROGRAMS

Paul S. Wang+

Department of Mathematical Sciences
Kent State University
Kent, Ohio 44242

ABSTRACT

MACSYMA is used to derive formulas needed in finite element analysis. The
automatically derived formulas are then used to generate programs which can
be used with existing, FORTRAN-based finite element analysis packages. A
system for this purpose is described. Symbolic computational techniques for
efficient derivation and generatior of code are discussed. These techniques are

useful not only for finite element analysis but in general.

1. INTRODUCTION

Onpe important application ofl a symbolic manipulation system is to facilitate the tedious
pre-processing involved in large numerical computations. A MACSYMA subsystem is under
construction for finite element analysis computations., The system deals with the symbolic
derivation of quantities such as the strain-displacement matrix, the material properties matrix
and the stiffness matrix. It contains a package for the generation of complete FORTRAN pro-
grams from symbolic formulas. The reader is referred to [1], [5], [6] and [7] for some previous
work in this area. It is found that the degree of success of such an approach depends on how

well several problems are dealt with:

*» Work reported herein has been supported in part by the US National Aeronautics and Space‘Ad-
ministration under Grant NAG' 3-298 and by the US National Science Foundation under Grant
MCS-82-01239 and by the Department of Energy under Graut DE-AC02-ER7602075-A010.

23 -

A N

—p

T

e

T

R

24

1) the efficiency of the symbolic processor and its ability to handle the large expressions

"associated with practical problems,

(i) the intesface between a symbolic system and a finite element system on the same com-

puter, and
(i) the inefficiencies that are usually associated with automatically generated code.

Techniques used and experiences gained in this research effort will benefit other

automatic code derivation and generation applications.

We describe our on-going research on the design and implementation of this finite ele-

-ment generator. Ways to simplify derivation and to generate efficient code will be presented.

Techniques used include the use of symmetry in the given problem, automatically generating

functions and subroutines and the systematic identification of common subexpressions. The ‘

computer system used is a VAX-11/780 under Berkeley UNIX [12] which runs VAXIMA.

2. FUNCTIONAL SPECIFICATIONS AND DESIGN

The finite element generator (Generator) as a software system should provide the follow-

ing functicnaiities.

(1) to assist the user in the symbolic deriva.tigﬁ of finite elements;

(2)v _to provide routines for a variet;v of symbolic compntations in finite element analysis,
including »li“nca_.'rr and non-linear applications especially for shells [2]; |

(3) to provide easy to use interactive commands for most common operations;

{4) to allow the mode of operation to range. from interactive manual control to fully

automatic;

(5) to generate, based on symbolic computations, efficient FORTRAN code in a form specified
by the user; '

(8) to automatically arrange for gemerated FORTRAN code to compile, link and run with.
FORTRAN-based finite element analysis packages such as the NFAP package [3];

(7) to provide for easy verification of computational results and testing of the code gen-

erated.

In providing the above functions attention must be paid to making the system easy to

use, modify and extend. Our initial effort is focused on the isoparametric element family.

‘La.ter the system can be extended to a wider range of finite elements.

3. CODE DERIVATION AND GENERATION

As an example, we shall describe the automatic processing leading to the derivation of
the strain-displacement matrix [B], and the elment stiffiness matrix [K] in the isoparametric
forrculation. From user supplied input information such as the element type, the number of
nodes, the nodal degrees of freedom, the displacement field interpolation polynomial and the
material properties matrix [D], the Generator will derive the shape functions, the matrix [B]
and the matrix [K]. ‘

The computation is divided into five logical phases each is implemented as a LISP pro-
gram module running under the VAXIMA system. Aside from certain intérface considerations,
these modules are largely independent and can therefore be implemented and tested

separately. Detailed descriptions of these phases foilow.

3.1. Phase I : define input pa.rameter-

The task of this phase is to interact with the user to define all the names, variables, and
values that will be needed later. The basic input mode is interactive with the systein prompt-
ing the user at the terminal for needed information. While the basic mode provides flexibility,
the input phase can be tedious. Thus we also provide a menu-driven mode yhere well-known
element ﬁypes together with their usual parameter values are pre-defiued for user selection. A
flexible and user-friendly input phase is a goal of the system.

. The input handling features include :
(1) free format for all input with interactive prompting showing the correct input form;
(2) »editing capabilities for correcting typing errors;
(3) the capability of saving all or part of the input f(;t use later;

(4) the flexibility of receiving input cither interactively or from a text file.

3.2. Phase II : Jacobian and [B] matrix computation

The strain-displacement matrix [B] is derived from symbolically defined shape functions

in this phase. ‘Let n be the number of nodes then

H=(h,hk,..., h,j

is the shape function vector whose components are the n shape funciions h, through A,. The
value for the shape functions will be derived in a later phars. Here we simply compute with

the symbolic names. Let r,s and t be the natural coordinates in the isoparametric formulation

[

T

R

ar—*

SRR

PN

26

and HM be = matrix
H,r
HM = |H,»
H,t

where H,r stands for the partial derivative of H with respect to r. The Jacobian J is then

J=HM. [x,y,z]

where x stands for the column vector [z,,..., z,] etc. Now the inverse, in full symbolic form, of

J can be computed as

By forming the matrix DH = (invj . HM) we can then form the [B] matrix.

3.3. Phase III : shape function calculation

Based on the interpolation polynomials and nodal coordinates the shape function vector
H is derived and expressed in terms of the natural coordinates r,s and t in the isoparametric
formulation. Thus the explicit values for all h; and ail their partial derivatives with respect to
r,;3 and t, needed in HM are computed here. ' |

The input handling module, the derivation of the shape functions, the [B] matrix and its
corresponding FORTRAN code, were done by Mr. P. Young [11] and later unproved by Mr. H.

Tan [8] as their master's thesis projects.

3.4. Phase IV: FORTRAN code generation for [B]

A set of FORTRAN subroutines for the numerical evaluation of the strain-dispiacement

~ matrix [B] is generated for use with the NFAP package. - The NFAP package is a large FOR--

TRAN based system for linear and nonlinear finite element analysis. It is developed and made

“available to us by P. Chang of the University of Akron. It has been modified and made to run

in FORTRAN 77 under UNIX.

FORTRAN assignment statements will be generated to define the compenents of the

shape function vector H and the various partial derivatives. The [B] matrix can be generated
with little difficulty. The resultant code for the plane 4-node element: is shown in Figure 3.

This rode can be improved and many repeated computations avoided by adopting another

strategy discussed in section 5.

3.5. Phase V : compute and generate FORTRAN code for [K]

The inverse of the Jacobian, J, appears in [B]. By keeping the inverse of J as
invj/det{J), the quantity det(J) can be factored from {B] and, denoting by {BJ] the matrix [B]

thus reduced, we have

_ ¢ BIT.D]. BY
& =J[J dc[‘l(’})— dr ds dt

The determinant of the Jacobian involves the natural coordinates r,s and t. Thi= makes the
exact integration in the above formula difficult. We elect to evaluate det(J) at r==s=t=0 and
factor it out of the integral. The resulting integrand involves only polynomials in r,s and ¢t
which are readily integrated. This approximation may not be reasonable for certain applica-
tions. In other applications the symbolic form of the stiffness matrix may be too large. In
studying this prébicm, we have developed several techniques of general interest for reducing

the size of automatically derived code and to increase its efficiency.

4. THE FORTRAN CODE GENERATOR

A separate module is developed for producing FORTRAN code from results derived sym-
bolically. This package, called GENTRAN [9], has been developed to satisfy the needs of
producing finite element code. However, it is also of independent interest as a general purpose
code generator/translator. Rather than generating FORTRAN directly, GENTRAN generates
RATFOR code. It can generate control-flow constructs, functions, subroutines and complete

programs. GENTRAN can generate a program with or without a template” file.

5. CODE GENERATION TECHNIQUES
Let us discuss here some techniques we have applied to generate better FORTRAN code.
_Although these were used in finite clement code generation, they are general techniques which

should be helpful for other symbolic code derivation and generaiion applications.

27

g

T

T

7!

e

5.1. Automaiic expression labeling

Figure 1 coutains straight forward FORTRAN code for two stiffness coefficient in the
plane 4-node case. Figure 2 contains a different version of the code for the same coeflicients.
One can see: that the latter is much more efficient. The key is to automatically generate and
use the labeled expressions t0, t1 and t2 that appear repeztedly in the sk(1,1) and sk(1,2) com-
putations. This means in the mathematical derivation of these coefficients, certain intermedi-
ate results should be generated with machine created lnbels. These results can be saved on an
association list to prevent the re-computation and re-generation of the same expressions in
subsequent computations. The following LISP function is used for this purpose.

i
J

(defun intermedciate{operand zlist fn labelname labelcnt file)
{prog(exp labzl ans)
© (setq anv (assoc cperand (cdr alist)))
(cond (ans (return (cdr ans))) ;; label previously defined
(fr. (setq exp (apply fn (list operand))))
[t (setq exp operand)))

;; makelabel creates a new label and inciements labelent
(setq label (makelabel labelname labelcnt))

;; DOW generate a;ssignment. code
{(cond ((null file) (ratfor (list '(msetq) label exp)))
(t (ratfor (list '(msetq) label exp) file)))

;; record operand-label pair in alist o
{setq alist (rplacd alist (cons (cons operand label) (cdr alist))))
(return label)))

"This function is called when automatic labeling is needed. Input parameters to "inter

mediate” are:

(1) operand: the expression on which an operation specified by the parameter "fn” is to be

performed; ‘
(2) alist: an association list of dotted pairs each in the form (cperand . label), (initiall& pil);
(3) fn: the intended operation on the parameter "operand” (no operation if fa is ail);

(4) labelname: an atom which serves as a prefix for the automatically generatéd label;

(5) labilent: an integer count, associated with a given labelname, which is incremented after

each new label is formed;

(8) Sle: a file to which any new code generaied by "‘interm.ediate” will be zppended.

5.2. Using subroutines in template files to eliminate repeated computations

As an example of this technique let us look at Figure 3 where the [B] code is shown. The
code results from deriving the [B] directly in the LISP environment. But instead of computing
[B] in LISP, we can generate the FORTRAN array, "gb”, corresponding to DH as shown in Fig.
4. A FORTRAN subroutine (contained in the template file) is then used to fill the array [B] by
simply taking an appropriate entry of ﬁhe array "gb” or zero. This requires only 1/3 of the
total computation as in Fig. 3. ‘

In forming "gb", note also that another subroutine "inner” is use& to form inner products

of linear arrays.

5.3. Using symmetry by generating functions and calls -

Upon re-examination of the mathematical derivations leading to the expressions for t0,
t1, t2 etc. as contained in Fig. 2, we soon realize that the gives problem has many symmetries
that can be exploited for more efficient code. Since symmetries do arrise in practical problems,

techniques for taking advantage of symmetry are of great intcrest.

For example, the expression x+y-2 is related to x-y+2z by symmetry. If we have = func-
tion F(x,y,2)=x+y-z then the latter expression is F(x,z,y). If F(x,y,z) is a large expression then
we can simplif}f the resulting code generated by first generating the function definition for
F(x,y,z) then generate calls to F with the appropriate arguments wherever F or its symmetrié
equivalent occurs. Here we are not talking about finding symmetric patterns in large expres-
sions.- Rather we want to make sure that the symbolic derivatidn phase preserve and use the
symmetry in the given problem. | _ _

Let us take a detailed look at the symmetry involved in the [K] computation. “To keep
expressions simple, we again use the two dimensional element as cur example. If we let P(x)

= H,s.x and Q(x) = H,r.x then invj can be written as

[ay -Ax]
vi=1_oy) ex)

T

x

e HY
! .

Tl

T

L

3. SRRSO
iy Fe's a v

" T Y ST et
. (.,',','.1. PR '.'v FVQVAA-]

A

If JROW(y,s) denotes the 1st row of invj, HMT the transpose of HM, and HMT]j] the jth
row of HMT, then

o JROW(y). HMT}j |
DH = invj.HM = [- JROW(X)-I'MTMJ

The matrix DH contains all the non-zero entries in [B]. Let us define a function FF.
FF(a,b,i,j) = JROW(a) HMT]i* JROW(b).BMT|i}.
Note that FF(a,b,i,j)=FF(b,a,j,i). Then the matrix [K] can be constructed in terms of

1
G; =[] FF(a,b,ij) dr ds
-1

Each G\{a,b) is a sum of terms in the form

1
padab) = [j; Pa)HMT/[j] Q(b).IIMT|i] dr ds.

Thus we see in Fig. 5 that functions gll, plpl, qlql and qlpl are automatically generated
with appropriate declarations in RATFOR. Then calls to these functions are generated to com-

pute t0, t1 and t2.

5.4. Optimizing the final expressions before code generation

Our experiments with the REDUCE code optimizer has shown that, in addition to the

above techniques, a systematic common subexpression search can help reduce code size and

. increase code efficiency. For more details see [10).

et

R .
o ; . . A g e,
. MNP A TS T T O

- .

4

1

sk{1,1) = 4*((4*m1+y4+ *2+(-8*ml*y3—8*m3*x4+8*m3*x3)*y4+4*ml*y3**2+ ‘

S o N

9 o =

S o

(8*m3*x4-8*m3*x3)*y3+4*m6*x4“2—8* mB+x3¥x4+4+mB+x3++2)/3.0+4+ml
svis+2+(-8+ml *y2-8*m3*x4+8~m3*x2)*y4+(4*ml*y3**2+(-8*m1 +y2-8+m3

+x3+8+m34x2)*y3+4+mlry2+ *2+(8*m3*x3—8*m3*x2)*y2+4*m6*x3**2-8*m6
+x2+x3+4+m0B+x2+*2)/3.0+4sm1+y2* *2+(8*m3*x4—8*m3*x2)$y2+4*m6*x4*
+2-8¢mB*x2+x4+4*mB+x2++2)/detk

sk(1,2) = 4*((4*1113*)'4«*2+(-—8*m3*y3+(-4*m6—4*m2)*t«.4+(4*m6+4*m2)*x3)

+y4-+4+m3+y3* *"24-((4*m8+4*m2)*x4+(-4*m&4*m2)*x3)*y3+4*m5*x4* *2.8
sm5*x2% x4+ 4*m54x3++2)/3.0+4+m3*y4* *2+(-8*m3*y2+(-4*m6—4*m2)*x4+

4 *m6+4*m2)*x2)'y4+(4*m3*y3**2+(-8*m3*y2+(-4*m6—4*m2)*x3+(4*m6+
4+m2)#x2)sy3+4xm3*y2e*2+((4* mB+4+m2)*x3+(-4*m6-4+m2)*x2)*y2+4*m

5xx3+ *2-8*m5*x2*=x3+4*m5*x2**2)/3.0+4*m3*y‘2**2+((4*n16+4*m2)*x4+(
—4*m6—4*m2)*x2)*y‘2+4*m5*x4**2-8*m5*x2*x4+4*m5*x2**2)/detk

Fig. 1 Code for two stiffness coeflicients

t0 = (16*y4**2+(—8*y&24*y2)*y4+8‘y3“2-8*y2*y3+16*y2**2)/3.0

1l

1

= -((16%x4-4*x3-12*x2)* y4+(-4*x4+8*x3-=4*x2)*y3+(-l2*x4—4‘x3+ 16+
x2)+y2)/3.0 |

12 = (]0'*x4**2+(-8*x3—‘24*x2)*x4+8*x3'*2—8*x2*x3+16*x2*'2)/3.0
sk(1,1) = 4*(m6*t2+2*m3*t_.1+ml*tO)/detk
sk{1.2) = ,4*(m5*t2+m6‘t2+m2*tl+m3*t0)/demk

\

Fig. 2 Improved code for the two stiffness coefficients

31

TR

3

P

"

T

T

2 32
¥
-
b(1,1) == (-2+y4+r+(2%y3-2¢y4)+s+(2+y2-2+y3)+2+y2)/det
[b(1,2) =0
= 1 b(1,3) = (r+(2+yd-2+y3)+s+(2+y4-2+y1)+2+y3-2+y1)/det
& b(1,4) =0
b(1,5) = (2+y4+s%(2*yl- 2*y4)+r*(2*y2-2*y1)-2*y2)/det
b(1,8) =0
b(1,7) == (s%(2+y3-2+y2)-2¢y3+r+(24y1-2+v2j+2+yl)/det
o b(1,8) = 0
) b(2,1) =0
[' B(2,2) = (r#(2#x4-2#x3)+24x4-+9+4(2#x3-2+x2)-24x2)/det
- b(2,3) = 0
P b(2,4) = (r*(2+x3-2#x4)+s#(24x1-2+x4)}2+x3+2+x1)/det
Lo b(2,5) =0
b(2,8) = (s#(2#x4-2%x1)-2%x4+24x2+r+(2+x1-24x2))/det
~1 b(2.7) = 0
. b(2,8) = (2*x3+s*(2*x2~2*x3)+r*(2*‘(2 -2+x1)-2#x1)/det
T b(3,1) = (r#(2+x4-2%x3)+2%x4+39%(2¥x3-2+x2)-2%x2)/det
- B(3,2) = (-2*y4+r#(25y3-25y4)+s+(2+y2-24y3)+24y2)/det
Lo b(3,3) = (r+(2#x3-2#x4)+3+(24x1-2+x4)}-2+x3+2+x1)/det
i ; b(3,4) = (r+(2+y4-2+y3)+s+(2xy4-2+y1)+2+y3-2+y1)/det

b(3,5) = (s*(2*x4-28x1)-2+4x4+2+x2-+1*(2+x1 - *+x2))/det
b(3,6) = (2+y4-+s#(2+y1-2+y4)+r+(2+y2-2+y. y2*y2)/det
b(3,7) == (2+x3+3%(2*x2-2+x3)+r#(2+x2-2+x1}-2+x1)/det
b(3,8) = (s#{2+y3-2+y2)-24y3+r*(2+y1-24y2)+2+y1)/det

Fig. 3 FORTRAN code for [B]

gb(1,1) = inner(jinvl,hm1)/det

[

Ly gh(1,2) = inner{jinv1,hm2)/det
- gbh{(1,3) == inner(jinvl,hm3)/det

r gh(1,4) = inner{jinvl,hm4)/det

L. gh(2,1) = inner{jinv2,bm1)/det

o gh(2,2) = inner(jinv2,hm2}/det

vr-:i gbh(2,3) = inner{jinv2,hm3)/det

Lo gt(2,4) = inner{jinv2,hm4)/det

:i Fig. 4 the array "gb”
)

e ————

L4

"8

27 v x

[3 O R

B TR RS T N

R STR TR S

(1

[l

33

t0=g11(y.y)

t1=-gl1(x,y)

t2==g11(x,x)
sk(l.l)=(ml*t0+2*m3*tl+m6*t2)/detk

sk(1 ,2)=(m3*t0+m2*t1+m6*tl+m5*t2)/detk

function plpl(aa,bb)

implicit real*8 (a-h,0-z)

dimension aa(4),bb(4)

vG=vi(12,aa); vl=vi(12,bb); v2=vi(10,bb); »3=vi(10,a3a)
return (16.0/3.0*v0*v1+16.0/9.0*v2*v3)

end

function qlpl(aa,bb)

implicit real*8 (a-h,0-2z)

dimension aa(4),bb(4)

v0=vi(9,aa); vl=vi{12,bb); v2==vi(10,aa); v3=vi{10,bb)

return (-4+v0*v1+-4.0/3.04v1sv2+-4.0/ 3.09v0+v3+-4.0/9.04v2+v3)
end '

function qlqgl(aa,bb)

implicit real+8 (a-b,o-2)

dimension aa(4),bb(4) '
vO=vi(9,aa); v1=vi(9,bb); v2==vi(10,a3); v3=vi(10,bb)
return (16.0/3.0#v0*vl+16.0/9.0*v2*v3)

end

function gl1(aa,bb) :

dimension aa(4),bb(4) ,

return (plpl(aa',bb)+qlpl(aa.,bb)+qlql(aa,bb)+qlpl(bb,aa)) A
end

Fig. 5 functions and calls in generated RATFOR code

REFERENCES

M. M. Cecchi and C. Lami, “Automatic genera;ién of stiffness matrices for finite el¢ment
analysis”, Int. J. Num. Meth. Engng 11, pp. 396-400, 1977.

T. Y. Chang and K. Saviamibhakdi “Large Deformation Analysis of Laminated Shells by
Finite Element Method”, Cémput. Structures, Vol. 13, 1981. o

T. Y. Chang, “NFAP - A Noplinear Finite Element Apalysis Program Vol. 2 - User's
Manual”, Technical Report, College of Engineerinj, University of Akron, Akron Obhio,
1980. ' '

- -
i

4

[

IFTHE,

c m—

34

4]

5]

i6]

]

t

(9]

(10)

[11]

[12]

J. K. Foderaro and R. J. Fateman, “Characterization of x Macsyma”, Proceedings, ACM
SYMSAC’81 Conference, Aug. 5-8, Snowbird, Utah, pp. 14-19, 1981.

A. R. Korncoff and S. J. Fenves, “Symbolic gencration of finite element stiffness
matrices”, Comput. Structures, 10, pp. 119-124, 1979.

A. K. Noor and C. M Andersen, “Computerized Symbolic Manipulation in Nonlinear Fin-

. ite Element Anaiysis”, Comput. Structures 13, pp. 379-403, 198].

A. K. »Nobr and, C. M. Andcrsen, “Computerized symbolic Manipulation in structural
mechanics-progress and potential”, Comput. Structures 10, pp. 95-118, 1977,

H. Q. Tan, “Design and Implementation of an Improved Finite Element Code Generator”,
master's thesis, Dept. Mathematical Sciences, Kent State University, Kent Ohio, 1984.

P. S. Wang and B. Gates, “A LISP-based RATFO_R Code Generator”, Proceedings, the
Third Users Conference, August, 1984.

P. S. Wang, T. Y. P. Chang and J. A. van Hulzen, “Code Generation and Optimization

for Finite Element Analysis”, Proceedings, EUROSAM'84, London, England, July 9-11,
1984.

P. Y. Young, “Automatic Finite Element Generator”, master’s thesis, Dept. Mathematical
Sciences, Kent State University, Kent Ohio, 1983.

UNIX programmer’s manual, Vol. 1 and 11, Seventh Edition, Bel! Telephone Laboratories,
Inc:, Murray Hill, New Jersey, 1979 . '

.............................

E

LU SN

PRI EREAET

L SN

.

LA T T Dr Tt RO UL T - AP

SOME APPLICATIONS OF SYMBOLIC MANIPULATION
IN BIOMATULEMATICS

Raymond Mejia
Intramural Research, NHLBI
and Mathematical Research Branch, NIAMDDK
National Institutes of Health
Bethesda, MD 20205

Abstract

Symbolic'manipulation, and MACSYMA in particu’ar, has been
used to solve or simplify a number of models of biological
phenomena. Some uses described previously include: (1) matrix

operations and FORTRAN code generation prelimirary to the

numerical solution of a model of the mammalian kidrey {1,2], (2)

parameter sensitivity analysis of a central core model for urine
formation {3]. Other applications include the manipulation of
statistical models that do not have a closed form sclution and
the manipulatioh of differential forms that describe certain
probability distributions. A recent use of symbolic manipulation
has been in the devélopment of a preliminary model of the
formation of the septum in the morphogenesis of the yeast,

Saccharomyces cerevisiae.

The formation of the septum between mother and daughter
cells of the yeast has been correlated with the deposition of
chitin in the cell wall [4,5]. A model for the growth of the
septum, developed in collaboration with Drs. J. Gonzalez-

Fernéndez, L. Lara-Carrera and E. Cabib, desgribes this growth as

a function of curvature. Thus, given a space curve at time t

with the equation

xbt = x%(s) . (1)_

R A T - L R L » . . e e .
~ o~ v . M R T S I e T A PTRAE CLL

35

-

]

)
-

e

L
T pr

A1 | PR B

36

with t > 0 and the parameter s being arc length, we define the

t

curvature of x- at the point s_ to be

= lim- I — ' (2)
As+>0 As

|-

where A® is the angle between the tangents at the points s, and

So + As.

For symmetric growth and x% € C2(E2), the‘growth may be written as
G(x%) = | % ds/ [ds (3)

where B is constant, and where we choose a positive orientation

to be‘away from the origin.

The position of the curve at time ty may then be computed

"using the equation

1

X = x + c(x%) dt.. (%)

—
o
T

0

Another u%e of symbolic manipulation has been in the calcu-
lation of solu&e concentration profiles in permeable flow
tubes. An exam%le is the computation, in collaboration with Drs.
M. Knepper and #. Star, of radial gradients due to diffusion in
axiaily symmetrﬂp flows, where there is production or consumption
of species due t; chemical reactions [6]. The model is described

by Laplace's equation in cylindrical coordinates as follows:

2

TDi v Ci + Si = 0 ‘ (5)

where DiAand C; are the diffusion coefficient and the

concentra;ioh of species i, respectively, and

S. =128 =1I(k . c-k.C) . (6)
j FE L

AL

37

o
are the reactionm equations for each species with rates kj and k-j N
for the jth reaction. “)
2 -
Solutions of (5) with the radius r, 0 { r { a, symmetry at 5
r = 0, and a radiation conditicn with Michaelis-Menten kinetics =
at r = a are considered. Henderson-Hasselbach aigebraic o
equations for titrating buffers complete the model. é
References
1. R. Mejia and J.L. Stephenson (1979). "Symbolics and o
" pumerics of a multinephron kidney model,” Proc. 1979 R
MACSYMA Users' Conference, Washington, DT. S
|
o
2. R. Mejia and J.L. Stephenson (1979). “Numerical solution N
,of multinephron kidney equatiomns,” J. Computational Phys. :
32:235. :
b
3. R. Mejia (1982). "Sensitivity analysis of a central core R
model of renal concentration,” Navy MACSYMA Users Mini- L
Symposium, Carderock, MD. o o
4. E. Cabib and B. Bowers (1975). "Timing and function of chitin .
synthesis in yeast,"” J. Bacteriol. 124:1586.] ;
5. M. Vrsdnska, Z. Kratky, P. Biely and S. Machala (1979). : Do
“Chitin structures of the cell walls of synchronously grown :
virgin .cells of Saccharomyces cerevisiae,” Zeitschrifr f. : 5
Allg. Mikrobiologie, 19:357. ,]
] » . i
6. K.W. Wang and W.M. Deen (1980). "Chemical kinetic diffusional c
limitations on bicarbonate reabsorption by the proximal L
tubule,” Biophys. J. 31:161. %

.o m T AR AR e_*
-
e] -

=1 e

38

APPLICATION OF MACSYMA
TO A BOUNDARY VALUE PROBLEM ARISING
IN NUCLEAR MAGNETIC RESONANCE IMAGING

J.F. Schenck
M.A. Hussain
General Electric Company
Corporate Research and Development
Schenectady, NY

A major issue of NMR imaging is the effect of induced eddy currents within the
patient’s body on the imaging process. Such currents alter the distribution of the radio
frequency field, thereby changing the pattern of excitation. Furthermore, they limit
the penetration of high-frequency energy into and oui of the body, thereby provndmg
a potential limitation to the imaging at high field strength.

For this reason, it is desirable to have a soluble, closed-form model that can pro-
vide a reasonable guide to the distribution of induce eddy currents and to characterize
the power deposition associated with them. Such a model was provided by Bottomley
and Andrew in 1978 and extended somewhat by Mansfield in 1981..

These previous calculations, however, model the human body as an infinitely long
cylinder in a uniform external field. Additiopal pertinent phenomena can be exhibited
by a spherical model which overcomes the limitation of two-dimensional models.

The problem solved is that of a uniform sphere with given homogeneous values
for conductivity and permitivity. The problem is set up using the standard methods of
Mie sczitering theory. The resultant boundary value can be readily solved using
MACSYMA. The resuiis can be manipulated readily to compute resonant frequencies,
damping factors and the impedance properties of the transmitting coils that are cou-
pled to the spherical model of the human tissue.

The analysis suggest methods to extend the calculations to more refined models.

. The results of calculations have a direct application to NMR imaging system
design. _

PROVIDING A COMPLEX NUMBER ENVIRCNMENT
FOR
MACSYMA AND VAXIMA®*

Johnnie W. Baker
Department of Mathematical Sciences
Kent State University
Kent, OH 44242

Oberta A. Slotterbeck
Department of Mathematical Sclenc&s
Hiram College
Hiram, OH 44234

Department of Computer Sciences™™
University of Texas at Austin

Abstract

While looking at the problem of handling contour integration symbolically,

the ‘authors discovered that the underlying complex number environment of

MACSYMA was awkward at best and sometimes incorrect. In this paper, the

authors discuss some of the problems found and describe their revision of the
. MACSYMA simplifier to provide a complex number environment.

S

1. THE PROBLEMS WITH THE CURREN(I‘ SIMPLIFIER.

MACSYMA was designed ongmally to support a real number environment. Com-
plex number support, such as it is, is awkward at best and sometimes incorrect.

% This work was supported for both authors, in part, by The Department of Energy

under Grant DE-AS02-76ER02075.
ss The authors wish to thank members of the department for t.heu' gracious hospitality

~ during their 1983-84 sabbaticals.

T

T

=1

T,

I

[P

40

Basically, MACSYMA treats the number i as an indeterminate whose square is nega-
tive one. Consequently, the expression

(2 + 3i) + (1 + 2i)

is simplified by the systemn to 3 + 5i, just as the expression
(2 + 3x) + (1 + 2x)

is system-simplified to 3 + 5x. However, the expression
{5 + 2i) (3 - 4i)

" is not automatically changed to the more natural 23 - 14i because the underlying

MACSYMA philosophy does not support automatic expansion of expressions.

In the real number environment provided by MACSYMA, real constants ip
expressions are combined automatically into simpler forms while full accuracy is main-
tained for rational numbers and the specified precision is carried for floatnums or
bigfloats. As typical examples,

(1) 2%3 becomes 6
2

(2) 2/3 becomes ---
' 3

3 _
(3) 2 becomes 8

(4) 2.0/3.0 becomes 0.666...67 (up to specified precision)
2.0 ' .
(5) e becomes 7.389... (up to specified precision)

By way of contrast, each of the following is returned unsimplified by the existing
MACSYMA simplifier: '

(1) {2+ 3i) (1 + 2i)
(2) (2+3i)/(1+20)

-3
(3) (2 + 3i)

(4) (2.0 + 3.0i) / (1.0 + 2.0i)

(2.0 + 3.0i)
(5) e

A more natural approach, in lins with the MACSYMA philosophy for dealing with real
number simplifications, would be to reduce the above automatically to

(1) 4+ 7
8 i

(2) — - -
5 5

(3) -6+ 9i

(4) 1.6 - 0.21
(5) 1.642743656235904i - 7.315110094901103 (assuming 16 digit precision)

A few user functions, such as RECTFORM, POLARFORM,
REALPART,IMAGPART, CARG, AND CABS in the MACRAK package, exist in
MACSYMA to manipulate complex: expressions. In addition, some packages, such as
Paul Wang's LIMIT package {9], allow some complex expressions as input. However,
the existing environment does not-provide a good working environment for the user
interested in working with complex-valued functions. Although (5 + 2i) {3 - 4i) can be
user-simplified to 23 - 14i with RECTFORM {or EXPAND or RATSIMP), even simple

expressions such as
.3 .2 4
(2 + 2i)° (1 + 2i)” (a + bi)
cannot be displayed in the more natural form
(102 - 211i) (a + bi)?

“without effort from the user.

The standard exponential, logarithmic, power, trigonometric, hyperbolic, and
inverse functions are already implemented in MACSYMA. Since the present
MACSYMA simplifier assumes that these functions have the same properties as their
real counterparts, some of the results it produces when simplifying expressions involv-
ing these functions are either not correct or not adequately simplified. Some typical
examples that illustrate these problems are listed below: ‘ ‘

(1) log(e3+4i) is simpliﬁed by the system to 4i + 3 instead of 3 + (4 -2 pi)i.

(2) log((3 + 4i)2%) is simplified to 25 log(4i + 3) instead of 25 log{3 + 4i) - 8 pi i.

2/3

is simplified incorrectly %o (3i - 2)2/3 (51 - 4)2/3.

The ‘prOper value is {-2 + 3i)2/ 3 (-4 + 5i)2/ 3 e('4/ 3 pi i).

(3j ({2 + 3i)-4 + 5i))

5'4_i)4i+3 is simplified incorrectly td e(4l'5)('4"3), i.e. e3l+8',

(4) (e

instead of the correct value of e(3l'8 pi) + (8-2 pi)i. .

Consequently, the absolute value of the original expression in (4) is returned as e’31

T

o WN}"

7

M

instead of e"(31-8pi}.

The difficulties enumerated above lie with the design of the MACSYMA simplifier,
which was written to support a real number environment, nct a complex number
environment. By locking at some of the changes in the code over the years and the
packages, such as the MACRAK package, which have been added, it appears that

. some knowledge about complex numbers has been added to the simplifier on an ad-hoc

basis as the need arose. Although many users of MACSYMA feel that complex number
operations are supported by the system, the preceding calculations and comments illus-
trate that this is not the case.

The absence of a complex number environment also leads to some problems in the
real number environment. While each of these can be dismissed with "let the user
beware”, the addition of a complex environment in MACSYMA can help prevent these
problems. Three examples follow:

{1) Log(xz) simplifies to 2 log(x). Evglua.ting this expression at x = -1 yields 2 log(-1),
which is 2 pi i. However, log((-1)") = 0. '

(2) Log((sqrt(x))2) simplifies automatically to log(x). If we are in a real environment, x
must be nonnegative. However, MACSYMA accepts negative values for x without
complaint. Evaluation of this expression at x = -1 produces log{-1), which has
pii as its value.

(3) Sqrt(x) evaluated at x = -1 produces the non-real value of i.

In ihie last two examples, the answers are correct. However, we have entered only
real data into a simplifier that basically supports only real number calculations and
produced, without warning, a non-real answer. This illustrates a basic problemn with
the real number environment: It is not closed under normal mathematical operations.
It is easy to produce examples where a user could enter only real data, cbtain non-real

intermediate results which are never displayed, and obtain an incorrect real number for °

an answer. It is also easy to imagine situations where a user has sqrt(x) occur in some
expressicn and then evaluates x at a negative value many steps later when no square
root function is present to warn that this evaluation in a real number environment is
illegal. . ‘

We have talked to many MACSYMA users that believe the present simplifier fully
supports complex number operations. Aithough they may realize that such calculations
are awkward, they do not doubt the accuracy of complex number calculations in
MACSYMA using the current simplifier. Since it is difficult to hand-check complicated
complex aumber operations, there is no easy way to observe that answers obtained

‘may be incorrect. This is obviously an undesirable and dangerous situation. Moreover,

since some physicists, engineers, and mathematicizas need to do difficult complex
number environment computations, it is imperative that a complex number environ-
ment b> supported in MACSYMA and other general purpose computer algebra sys-
tems. o

PR P

Gl v

A aviee

S o Al
s ALt

]

,’1",,._.;»
VR P

> Tomwp—
s ST
W’ L e

T

4

p

-
VI

ooty

2. AN OVERVIEW OF THE REVISED SIMPLIFIER: ITS DESIGN AND
IMPLEMENTATION

Our original goal was to provide additional user-callable functions to MACSYMA
that could be utilized whenever a user desired a complex number environment. This
goa! was soon abandoned when, as discussed earlier, it was discovered that the present
simplifier “messed up” some complex number expressions before they were returned to
the top level. Consequently, it was necessary to redesign and rewrite major sections of
the simplifier code. : ‘

One could design a high level algorithm for a complex number simplifier indepen-
dent of an existing system, but a more challenging problem is to design and implement
one within an existing computer algebra system while attempting to maintain the ori-
ginal simplification philosophy of that system. By embedding the new simplifier
directly into the existing code we can test our design for accuracy, speed, completeness,
acceptability of returned forms, and interaction with existing packages and demo files.
We chose to embed in the VAXIMA version of MACSYMA, specifically UNIX MAX-
SYMA release 304 running under UNIX 4.2 BSD #19.

The user can enter the complex number domain for. s:mphﬁcatlon by setting a
switch COMPDOMAIN to true. This has the effect of routing the expression during
the simplification process to the new code when necessary. This approach was chosen
to minimize the timing impact of the complex domain simplifier upon the
simplification process in general. (As the entire complex domain simplifier code is not
complete, we have not yet been able to determine what the final impact will be. How-
ever, preliminary timing results do not indicate a significant degradation of response
time.)

In the complex domain simplifier, complex number constants are simplified in line
with the MACSYMA philosophy for dealing with real number constants. Complex
number constants can occur in either rectangular form (i.e., a + ib with a and b real),
polar form (i.e., r (i arg) with r and arg real) or in mixed forms such as (a + ib)
e’(c+id). Moreover, expressions can be constructed from any of these general forms,
such as

(2+1i)e
In general, no automatic conversion from either rectangular form or polar form to the
other form is provided. Users can manually use functions such as the present
RECTFORM and POLARFORM to convert from one form to another. Some prefer-
ence is given to rectangular forms in that a few special numbers in polar form with a
simple rectangular form {e.g., 3 e*(pi i/2) = 3 i) are automatically converted to rec-
tangular form. Likewise, "corrupted” numerical expressions such as 2 ¢"(3.5i) which
contain floatnums or bigfloats are converted automahcally to an approximately
equivalent rectangular form. In fact, all corrupted quantities are numesically simplified
as much as possible. This is consistent with the current simplifier’s handling of real
expressions involving floatnums or bigfloats. Some examples using rectangular coordi-
nate representation for constants are shown in Section 3.

i sin(x) and log(z) e

-

T

o A

Ui

T

L

AR T A AL s we
RIS - HEN

' '
.- kN
= v

AN S

AT

g

SR

Pabniure A iuih L j i

B B EFALREAAS

TR 1 O

Some complex-valued functions, such as the logarithm function, are multi-valued.
A critical issue is which branch(es) should the simplifier provide? We default to the
principal branch. However, some users may wish to choose a specific braxch or to
maintain information about all possible branches. This service is provided by the
GENARG switch. When GENARG is set to TRUE, integer variables %nl, %n2, ...,

are generated, as needed. For example, when simplifying a logarithmic expression such
as

log(5 * sqrt(3) * %%i - 5)
the default simplification is

2 %:i %opi
--------- + log(10)

while the GENARG simplification is

2 ,
(- + 2%nl) %pi %i + log(10).
3

Automatic mteger variable reductlons such as replacing %nl +%n2 with %n3 are
included.

When simplifying complex expressions, it is often necessary to know 'if certain
subexpressions are integer or real and if they are negative, nonnegative, or positive. In
order to answer questions like this, variables can be tagged as real, integer, positive,
etc. Untagged variables are handled as complex variables and require the use of the
more general simplifying formulas. Moreover, if a variable is tagged as a nonnegative
real, then an evaluation or substitution setting x to a value such as -1 produces a’
warning message to the user. However, the requested evaluation or substitution will
still be produced, and the warning message can be ignored, if desired.

Germane to the above questicn is the need to determine the sign of real number
expressions when evaluating, for example, a logarithni.. Our simplifier tries to deter-
mine the sign of real numbers by utilizing numerical evaluation. lf, during the numeri-
cal evaluation of any part of an expression, an overflow or underflow occurs, the
simplification process automatically switches to more simplistic techniques (i.e., are all
the terms positive or are all the terms negative in a sum?). If these more snmplxstxc
techniques fail also, a ”don’t know” answer is returned. In this case, further
simpliﬁcation of the original expressiqn may be impossible or restricted and the expres-

- sion would be returned unsimplified. Scme examples showing mmphﬁcatxons with the

complex logarithm functicns are shown in Section 3.

We are implementing the usual complex mathematical functions for this complex
environment. In particular, the complex logarithm, exponent, power, absolute value,
real part, imaginary part, argument, rectangular form, polar form, conjugate, and
square root will be available. Most of these are available in a restricted form currently,
but the code related to many of these funciions has to be either modified or rewritten
so that these functions will perform correctly, have their expected propertics, and be

S R S S

ety

R e

2O,

S TR

P . AT A

L e e

e

easy to use in this new environment.

A complete integration of a complex environment into MACSYMA requires that
some additional functions in MACSYMA be either modified or replaced. For example,
the EV function provides a numerical evaluation for real number expression (using
NUMER), bui does not provide numerical evaluation for many complex number
expressiors. Some of the packages that presently run correctly with the present
environment may not run correctly with a complex environment simplifier. ' While some

" of the required modxﬁcstions or revisions may be natural to include as part of the

numerical evaluation of complex expressnons), other projects such as modlfymg existing
packages to take advantage of a complex number environment will be left to research-
ers interested in working in those particular areas. Initially, packages that do not run
correctly in the new environment will be blocked untll the user switches back to the
present real environment simplifier.

3. SOME EXAMPLES.

The following MACSYMA like workskeet illustrates some of the features of the
current complex number simplifier. The symbol (ci) denotes the expression entered by
‘the user, the symbol (di) denotes the expression returned by the current MACSYMA

simplifier, and the symbol (ei) denotes the expression returned by the complex nuinber -

simplifier.-

(c1) /% Complex constants should be simplified automatically
just as real constants are. */

2#(-24+4%951) "(-2) /(-3%(1-6%%01)" 3+(4/5)* Toi* (- Toi+2)) wH(4+-2+ T)»
%" 3%(-3-%01) " (-3)* Topi*f(2+(Toi-4)* Toix(t+s* /ox)*(-a-%i)*(2+4*%i)‘(-2));

S 2(- %1-3)(/01- %l(t+%ls) 3
5 %1 (2 %i + 4) %pi {{ Jwx z
5 .
(4 %i + 2)

(d1) ‘
| 3 2.
12 (1-5%1) (- %i- 3) (2- %i) (4 %i-2)

-y
#

-

i

‘

" | i

1

46

391 1179 9Gi : 11 7 %i 3
= (e1) (-) Gopi f((-=mmn = ~mmememe) (t + BiS)) WX 1z
' i 607836000 202612000 10 10

(¢2) /* Floatnums and bigfloats should propagate through an
expression */ '

1 ' (3.2550i+6.4) T+(-2%5i-6)+(3+%i+2) " 3/(2-3+%%i)" 2;
- . ‘ 3
7 (-2 %i-6)(3%i+2)
(d2) (3.2 %i + 6.4) +
i’ | 2
| (2 - 3 %i)
(e2) - 99623.48978791007 %i - 955212.1230801042
(¢3) (1.6b-3+2.4%“21)/ 5% Toi*(a+bx%0i)*6/T+(a+b*%i);
o _ o ' 2
‘ : 6 %0 (2.4 %i + 1.6b-3) (%1 b + a)
; (d3) .
- : ’ -9
L (e3) (2.742857142857143b-4 %i - 4.114285714285714b-1) (%i b + a)
k (c4) /* The principal branck of the multi-valued logarithm
[function can be returned */
B | - logl-2);
® ,
? v (d4) log(- 2)
- | : v o
B (ed) %pi %i + log(2)
(e5) log(%i);
T
- (d5) log(%5i)
= | %pi %i
= (e5) e
; 2
P
-
- _

- e

. e

LN

-3
, ¢ e %pi
(d5) A
3
2 %opi
(e6) log(----=---- ; + %01 %opi- 3

3
(T} log(5%(3%“ci-2)%(5+ i) /13); -

5 (%i + 5) (3 %i - 2)

{d7) ' log{
: 13

(e7) log(5 sqrt(2)) + e -

4

(c8) log(-“te*Copix12-sqrt(3)x4xGex5i*T5pi);

(d8) log(- 4 sqrt(3) %oe %i %opi - 12 %e %pi)
5 %i %opi
(e8). log(8 sqrt(3) %opi) - —---ememeees + 1

(¢9) /* The logexpand switch should inhibit expansion on -
expressions for which the result would be incorrect,

but expand properly on other expressions. */

logexpand:super $

(c10) log(2*Sée " (-9+CTi));

(d10) log(2) - 9 %i

C(e10) log(2) + %i (2 %pi - 9)

47

L Y

—

e

TTTHE

i

—

pr T

Tt

(5]
(6]
[7)
18]
[9]

R.J. Fateman, MACSYMA’s general simplifier: »plilosophy and operation
MACSYMA User's Conference (V.E. Lewis, editor), MIT Lab Publication, 1979,
563-582. A ‘

J.P. Fitch, On algcbraic simplification ,Compu?. J. 16/1, 23-27, (1973) 23-27.

J. Korpela, Some problems connected with ambiguous expressions, SIGSAM Bull.
11,(August 1977) 7-9.

J. Moses, Algebraic simplification, a guide for the perplexed, Comm. ACM 14,
(1971) 527-538. |
P.S. Wang, Automatic computation of limits, Second Symposium on Symbolic
and Algebraic Manipulation (S.R. Petrick, Editor), New York:ACM, 1971, 458
464.

49

DLV F S

TOER KRRt L ta T

i

THTam !

4

Anan A e S A

T

e

L

L

-time. Computer Algebra systems are capable of izimplifying small problems much more rapidly

Simplifying Large Algebraic Expressions by Computer

Richard L . Brenner

Symbolics, Inc.
Cambridge Research Center

ABSTRACT

Computer simplificalion of very large algebraic cxpr;;i;ihs by direct tm.:thods is
often impractical because of the exhaustion of available fcsoutces. Some of tﬁc
causes of this difficulty are discussed, and a method of circumventing it for cer-
tain types of probiems is presented. The method has been implemented for the
Computer Algebra sysiem MACSYMA and .is being used in the calculation of
one-ioop corréctions to the hadronic deray rate of quarkonium in Quantum

Chromodynamia.

i. Introduction

Anyone who tries to simplify by coniputcr a large algebraic expression learns quickly how '

easy it is to exhaust the available resgurces of compﬁt'er memory, disk memory or compuler‘,‘
' 1

i
\
|
\

and accurately than people can, vut often their margin cf superiority declines as the size of the \
problem increases. Although the cause of this difficuity varies from problem to problem ‘and

from program to program, their is a procedure, described in this paper, that enables the com- |

puter to reduce a large class of expressions thay might otherwise § 2ve difficult. This method
cnhances the capabilitics of Computer Algzbra systems by exploiting the ability of the machine
to recall the results of intermediate calculations, and the ability of the user to invent techniques
specialized to particular simplification pﬁblcms. Aithough it 's generai, the method is flexible

cnough {o accomodate spéci_ﬁc_fcaluru of the problem at hand becausc it is merely a

[LR

IS 1 PRNLNACUESEERE | SRR] AR A

RERTeT CaT

BT IR

- N . y

B T T I R T Ll g P P R AT IR e Vaem P e e ML K R e R AT s M T N e sy

The rcduction of a porphyrytic expression typically requ'res extensive processing of the
quantities in the second class, followed by rational simplification of the quantitics from the first
class. Since one usually focusses upon the second class of quantities first, they are called the

foreground kemels[3]. The rest of the expression is called background.

A simple examplc may clarify this terminology, and is useful in the discussions in the

vemainder of this section. Consider the set of functions defined by [4]:

F(0,x) = - log(X=2) | (2.1)
x -1 A xR -k

F{n,x)=—x"log{ -3, n=1,23"-"-- .(2.1b)
. ey K :

These functions arise when performing loop momentum inicgrals in perturbative trecatments of
certain quantum field theorics in the context of dimensional regularization of ultraviolet diver-

gences. They have a number of interesting properties, including:
F(n,x)=xF(n -1,x) —% o (22)

In the discussion below, we shall use this recursive definition of F(n,x) in preference to (2.2)
because the recursive form better illustraies the important concepts. For the purposes of illlus-

tration, we shall also need a slightly more complicated structure:

Y(mon,z,y) =2 E(nax) —x F(m.y) A e

Xy

In our terminology, the right hand side of the equation

Y (3,5,%,) =,’3”5"):;5F(3") (24)

is porphyritic. Its foreground kemels are F(5,x) and F(3,y), and the background variables are

x and y. We shall retum to this cxample later to illustrate severzd pounblc reducnon strategics.

A dmgrammatlc representation of these algcbrmc structurcs is aiso uscful for discussing

reduction strategies. Let us rcepresent an algebraic expression as an n-ary tree. We can
» represent the rational operators plus, fimes, and exponensiation as nodes of this tree, and kemcls
as the leaves of the tree. We label a node p for plus, ¢ for times, lndc for exponentiation. We
also assumc that a complcic set of mles determine the order of the branches sttached to thesc
-nodcs, so that we are assured that the mapping from the set of rational expressions to the set of

trecs is one-to-one. Thus we caa represent the expression
x +y +Y(3,S.x.y)+% - (2.5)

as shown in Figure 1. If we apply (23) to the above expression, we obtain

2 r(sx):’m,y) i | | (2.6)

x+y

which is represented as shown in Figure 2.

Although these diagrams are useful for modeung the expressions themselves, they are not
intended to represent the actual contents of any pat of a computer memory. The contents of
memory cclls that are uscd to represent these expressions depend strongly on the computct
algebra sysiem being used. Nevertheless, this diagrammatic reptuemauon of the algebra:c

structure docs provide a valuable conceptual framework, and can be uscful (or judging the com-
plexity of the structures in question. | ' ’

, Now that we hav= established a suitable language, we turn to a discussion of smu-.gxes for

reducing porphyritic algebraic expressions. The most significant characteristic of such reduction

cfforts is the practical difficulty of actually pét(onning such a computation. When confronted

53

L0

i

=t

(W

A

1

S

 —

Wiy L

PR 1

54

with a porphyrytic expression to simpli‘fy, one's first impulse is to apply the eatiie reduction
proccdure to the entire expression. If the reduction procedure is relatively simgie, and the
expression is }claﬁvcly compact, this direct approach is perhaps the best. But when a large
expression is being simplificd, and the simplification procedure is relatively complicated, it may
be wisc to segment the calculation. This scgmcnuﬁoﬁ may be advisabic for a varicty of rea-

sons:

{1] Non-fatal errors of conception or execution of a calculation may be discovered while the
calculation is in progress. If the calculation has been :cgmcntéd, then there is the possi-
biliiy that only certain portions of it require correction. If the calculation has not beea

segmented, recovery of ‘correct partial resuits may be difficult.

[2] The procedure 'may take 30 long to exccute that much effort could be lost if the operation

of the computer were interrupted due to cither a programming error, hardware malfune-

tion, or scheduled maintenance of equipmeat. This is possible, since it is not unusual for

the timcscalco(n:impliﬁcaﬁoncffonwapptbxhthembo(themmﬁm:betvm
failures for the equipment being used for that effort.

[3] Spacc may be at a premium, because of the. size of the expression itself or the size of the
programs that are required to operate on the expression, or both. For machines with lim-
ited address space, the size of the calculation may force segracatation.

[4] Most important, it may be possible to uscv mtcmcdxate results for parta of the calculation
in subscquent parts of the calculation. If intermediate results have been saved, they can
casily be extracted for later usc. This is difficult unlcﬁ the segmentation has been done
systematically. This éapabilii‘y can greatly increase the cfficiency of any procedure.

For these reasons, ﬁzost large reduction cflocts are evcntuaﬂy segmeated, often by neces-
sity if not by choice. In the remainder of this section, we shall dexcribe an approack to this scg-
mentation that systematically addresses the problems indicated sbovew, while providing
significant increases in cificicacy. We shall carcfully characterize the types of problems to
which this approach is best suited, and compare thé cfficicacy of this mezhodvlo that of alterna-
tive methods. A family of MACSYMA programs called LTAB provides one example of a pos-
sible implementation of this chmcntation, and it is the t‘ubject of Section 3.

To understand the nced for, and the advamtages. of scgmenting a reduction problem, it is
necessary to examine the sourcess of the difficulties of réducing porphyritic expressions. Prob-

" lerns associated with redudngporpkyﬁﬁcexptéuiommducinhrppmwthc‘weu-knm
difficulty of simplifying rationally any l:rge expression that contains many distinct kM. The
difficulty usually appears as a choice betweea rational simplification of a very laxge cxpression in
only a fcw variables, und rational simplification of several smaller expressions involving large
numbers of variablzs. In a typical situation, one Méﬂl with a relatively compact algebraic
expression that is to be reduced aéoording io some well-defined procedure to another relatively
compact form. Unfortunately, the inme forms that are generated during this reduction
procedurz can be quitre large. If in addition, the intermediate results arc rational functioas of
many variables, then interinediate rational simplification may be very mﬂj. or cven impossi-

ble in pﬁctica! terms. For this rca:on,' onc might postﬁone‘nﬁonal.simpliﬁcaﬁon vatil the

number of distinc; kemels has been reduced. But thﬁ usually occurs late in the reduéion,
when the expression is larger still. Thus the size of the set of kernels has been traded for bulk

55

1
-

T

AL

SR N

G

4

56

of thc rational cxpression, and onc difficalty has been replaced by another. This is the unfor-

tunate dilemma that onc often faces wkea attempting 0o reduce a large porphyritic expression.

As a practicai’ cxample of such a reduction problem, consider a typical Fcynman diagram
evaluziion, a procedure that requires the application. of several operations in sequence to reduce
the original expression to its final form. For example, onc might have to perform tensor con-
tractions; then carry out traczs of Dirac matrix prodects, thea pesform a Taylor expansion , and
finally an integration. The end result might be & fuaction of caly a few kinematic invariants,
but the intermediate mnim, vicwed as rational expressions, might depcad on scveral teas oc
cven hundreds of kerncls. Thus, any attempt to rationally simplify the intermediate results

could lead to disaster.

This cffc'ct is casily demonstrated in terms of our simple example (2.3). Let:

Z(n)=i¥(n -k,n,x,y) . (2.7)
k=]

Consider the problem of reducing tbe expression:

ﬁ‘r(lo-k.m,x.,) - (28)

The final result is a rational funcion of oaly four distinct kemmeh:
.y, xog(l‘—;'—‘) and log(-’—i-l—), On the other hand, the number of distnct kernels preseat at
intermediate stages of the expannon czn be much larger. After spplying (2.3), the expression
contains the kemels x, y, F(n,y) and F(10,x), for values of a from 1 through 10, so that
thesz are 13 kernels in all, or roughly three times as many keraels as occur in the final result.
If we try to avoid the difficulty of faﬁonally simplifying such :ntermediate forms and instead
choo_te to apply (22) to the result we have obtained so far, we n:duc the number of distinct

MOATRN - M) AL R L A TR

- -.‘-' .
s T

- >
" ry
«

e

~y iy

~ N

kemels to 4, but the resulting expression is very large. In this case, there are 10 occurrcaces of
F(10,y) alonc, cach with 11 tcrms. Although the scale of this particular example is well within
the reach of modern Computer Algebra systems, one can casily imagine reduction problems
‘.(h_lat display the same cxpansion characteristics and present real difficultics to any cxi;ting sys-
. Explicit cxamples of the ideas described above should provide the reader with additional
insiéht into these difficultics. The fundamental quertion the timing of ratioual simplification.
We shall discuss this issuc in terms of two possible strategics, which we call Postp&nexncnt and

Interspersion.

As shown above, algebraic cxpressions can be represcated diignmaxically as tree struc-
turcs. In this laryguage, rational transformations can be represcated as mappinp from onc
diagram to anotlier. and we can now construct a diagrammatic represcntation of the two most
straightforward reduction strcategics. For cxample, postponcment of rational simplification
ﬁntil aftet all foreground kernels have beea expanded is cquivalent to scanning the tree for
those leaves that represent fon:gmund kemels, and then replacing them by subtrees that
represcnt the expanded forms. Fmally the whole ltmaure is rationally simplificd. We shall call

_this approach the Postponcmm‘:t Mc(hod. The other method that we shall consider is
equivaleut to first replamg somc of the luves that represent foreground kemels by partially

expanded subtrees, simplifying $he entire e_xpreulon rationally, then alternately repeating -

replacement and simplification of ihc entirc expression uatil the desired form is obtained. We
shali call this approach the lntcupeﬁ\:ion Method.

We begin our discussion of d\u:e two approachcs by comparing their advantages. Each
can be useful for speﬁ'ﬁc problcms. ln particular, Interspersion offers the possibility of avoiding
duplication of effort in reduction pt!;blems that produce multiple copics of foreground kemcls.
In the Interspersion Method, it is possible to collect together many ieml that iavolve a

57

e

A

g

e

L

b

Bl

S W e e R R K R _ A % &%, "

b

Tata B

PRV R

S

- % ..

58

particular forcground kernel, and then to cvaluate that kemnel once, or perhaps only a few
times. By comparison, in the Postponement Method, this evaluation may occur m;ny more
times, but of course, the actual amount of duplicated cffort depends on the reduction procedure
and on the Computer Algebra system itself. For some problems, duplication may not arise at
all, in which case the Postponement Method becomes .:omcwhaﬁ more attractive. For example,

consider the expression Y (3,5,x,y) +Y(2,5,x,¥). Applying (2.4):

Y(3,5,x,y)+Y(2,5,x,y) -
=y3F(511)-xsF(31Y) +y2F(511) —SSF(Z,y) (2.9)

xy xy
Proceeding by Postponcmcm, we sce that the evaluation of F(5,x) is duplicated, whereax in

Interspersion, judicious rational simplification of (2.9) before applying (22) can eliminate

duplication:

YD F(5,2) —x3(F(3,y) +F(2,5))
xy

(2.10)

Such savings are convenicntly obtained by the Interspemsion method. Interspersion can also

recognize cancellations, as shown below:

Y (3,5,x,y) -y Y(2,5,x,y)

_YF(5,x)=xF(3,y) _y*F(5,x) ~x3F(2.y)
xy o X

=L 6 F@) ~FEN o @)

However, Interspersion cannot recogpize all such doplication. Duplications that occur within

the same rational expression can be recognized, but there are many examples of duplication=

—

\ g — e e

w w.¥ 4m s

S 57 SRR

*»

*a '-l‘['.'.'-_'t.’)'_".'lﬂ‘ FINTEEVTY FEPLIL oF BN AR e

that appear in other ways. In terms of our example (2.4), the cxpwssioﬁ below illustrates this

effect:
Y (3,5,x,y) +Y(2,4,5,7)

3 g 2 2 SF (D~ :
=X F(S,x)x ; F(3,5) ,2% F(‘LI)‘ ’x F(2,7) , (2.12)

Applying (22) to (2:12), we scc that F(4,x) again sppears in the result, duplicating its appear-
ance in (2.12). Thus unless the reduction is designed so that previously evaluated occurrences
of F(n,x) are stored, duplicate cvaluatidxu are neccssary. Although msay Computer Algebra
systems do provide facilities for such storage, it is important to note that Interspersion alpne
cannt climinate all dupliwtca cffort in all reduction problems.

We now consider cxamples of the failure of these two approaches. To seec most clearly
how the Postponcment method can fail, let us expand the right hand side of (2.4). In Figure
3a, we illustrate the Postponcment method, which in this casc might be the sequential cxpun-

‘sion of (2.4) by applying (2.2) throughout the expression repeatedly until all occurrences of F

kemels hﬁvc been climinated. It is clear that the Postponement method leads to a hrgc result
similar to that shown in Figure 3b. Since rational simplification is to some extent a matter of
taste, the form shown in Figure 3b is offered only as an example of what might be desirable for

certain applications. In thi. :ample we see that rational simplification achicves considerable

reduction in the complexit: he result. Because the expansion by (2.2) ncver incrcases the
number of unique-kcrneﬁ ; expression, the Interspersion method docs 3 bit better in this

case. Since the compler: of the intermediate expressions is always comparable to tbe com-

plexity of the final result, Intcrspersion is effective for this example, and superior to Postpone-

ment.

59

JRE—

] B
R S

ARk

-

R JN—— A

60

3
|
!

- Figures 4a-4g illustrate a problcm for which Intcrspersion is incffective. We have chosen

a problcm similar to (2.8), but in the intcrcst of brevity we have set 8 =5. Referring to Figure

4, we sce that although the intermediate expressions are only a bit more complex than the final
result, they involve as many as twice the number of distinct kernels found in the fin- result.

In this case, Interspersion requires the rational simplification of 6 intermediate expmsidns.

" each one more complex than the final result. Although duplicate evaluations of many F ker-

nels are required, Interspersion itsclf docs not prevent any duplication. The display of the tree
structurcs of the intcrmediate expressions also clcarly demonstrates the magnitude of the inter-
mediate calculations, which- casts some doubt on the wisdom of cmploying the Interspersion
method. Moreover, Postponement offers no itaprovement, since this problem is actually com-

poscd of varts similar to the problem illustrated in Figuré 3.

now summarize the advantages and disadvantages of Postponement and Interspersion.
Postouement avoids rational simplification of large expressions that contsin many distinct ker-
nels, but may lead to rational simplification of cnormous expressions. Postponement does not
allow for the possibility of duplicate foreground kernels unless intenmediate evaluations of
those kernels are stored. ‘lntcnpenion can avoid rationa! limpliﬁatioll of very lirge expres-
sions, but maf require rational six;:pliﬁcéﬁon of ‘expteisionl that gonuin msny distinct kewnels.
In addition, Interspersion may avoid duplicate cvaluation of foregroucd kernels, but uanless.
those kcrnéls are stored, duplicate kemels are recognized only when they are present in the
saﬁlc rational expression. Thus we have shown that the two most straightforward reduction

procedures arc insufficient. T
The method used by LTAB provides a desirable altcmative to these two approaches. In

this mcthod, rzational sii::pliﬁcaﬁon is pcrtonnéd only on ecxpressions that contain a small

aumber of ‘kcmcls. and since simplification is pﬁomed on intermediate suberpressions, the

size of each expression that is subjected to rational simplification is limited. In this way, we

combine the virtues of both methods and reduce the difficultics associated with cach. The pro-
cedure that is implemented in LTAB accompﬁshcc thﬁ by postponing rational simplification,
and maintaining tables of intermediate results. To avoid the problem of simplifying expressions
that contain many distinct kemels, rational simplification is in fact postponed until cxpansion is
complcte, but instcad of simplifying the cxprecssion 23 a whols, the simplification is applied to
subtrees that represent the expanded fonns of the foreground kernels. These expressions are
then combined into progressively more inclusive subtrecs and rationally simplified together. Té
avoid the duplication of cffort that results from expanding mulﬁph copics of the same fore-
ground kemel, tables of intermediate results are maintained, 50 that previously obtained results
can be used again whenever possible. Beciuse rational simplification is performed on parts of

the intermediate results, we shall call tkis mecthod Dissection.

More specifically, Dissection begins by extracting ail of the foreground kemels from the
original expression. These kernels are compared for duplicatioi, snd then they are formed into
a list. The first step of the reduction procedure is thea applicd to the elements of this list,
which results'in 2 ew list, cach entry of which is 2 porphyrytic cxpression. If a particular entry
in this cvaluated list is not a porphyritic expression, no funﬁu reduction is necessary, but some
other entries may n:f;uirc more work. This part of the procedure is now complete for this level
of the reduction, but it has resulted in a similar reduction problem, one step further along in

-the feduction proccdure. We continue in this way, creating more lists of foreground kernels,
onc for cach level, and their associated lists of further porphyrytic expressions uﬁlil finally the

reduction .of a list of foreground kemels for some level leads to & list of expressions that con-

sists entirely of background. Now we work back through the levels of lists it has gcner;ted.'

rationally simplifying at cach level. Specifically, beginning st the peaultimate level, the fore-
ground kemels that Wcrei evaluated in the last level are replaced by their equivalent background
expressions wherever they occur in the porhyrytic expressions of the penultimate level. The

61

]
.“

LS

i

A

EZ

3
1
3
1
3

62

results are then rationally simplified. Next, this procedure is repeated, with the penultimate
lcvel now in the role of the last level. We continue in this way until the foreground kemels of
the original expression have been replaced by their equivalent background cxpr&bns and the

entirc expression has been rationally simplificd. -

The advantages of this procedurc resuit from three important fcaturcs. First, rational .

simplification is never applied to cxpressions large exprecsions that contain more than » few dis-
tinct kerncls. The problems inherent in the hteﬁpenion Mecthcd, namely the rational
simplification of cxpressions that involve many unique kemels, arc avoided completely.
Second, the extraction of the foreground kemels is done a way that avoids duplications, so
some of the advantages of the Interspersion Method are recovered. Finally, the avdhbﬁiq of
intermediate resulis makces it possible to reclaim them for all parts of the calculation for which
they are valid, cven if those separate parts of the reduction have been carried oui at different

times. Thus, if the intermediate results are saved on disk or tape, it is unnecessary to duplicate

any bortions of the reduction that may later require those results, which can greatly improve -

the efficiency of the procedure.

Onc Ehoncoming of this méthod is that canccllations cannot be recognued automatically,

| , .
because the intermediate rational expressions that involve the intermediate foreground kemels

‘are never gsembl& So(if one expects numerous such cancellations, the Dissection method is

i

less mnvcnicnl than a scgmented reduction interspersed with_ntional simplification, although
in LTAB or;‘q: can always reasscmble the expression at any point where such cancellations are
expected. U;:\lcu onc cxpects frequent carceilations or small numbers of foreground kernels
during the int;mwm rational simplification, cither Postponement or Interspersion will prob-

ably be co_nsidérably less cfficicnt than Disscction.
|

The mct!;od implemented in LTAB is therefore best suited to problems Vthat involve com-

plicated reduction of large porphyritic intermediate cxpressions with porphyritic intermediate

v

R IR TSI 2 L2 B 4 -_ | UL I D F_E IR R Ao e B0

et]

cxpressions involving many intermediate foreground kernels that cannot be cxpected to cancel
at interincdiate stages.
To demonstrate the behavior of this alternative reduction procedure, consider the exam-

ple used previcusly to examine the cfﬁcicncy of Interspersion:
E Y(S—kosox !’) (2'13)
k=1

LTAB is fiexible. This Hexibility can be expioited to implemeat the particular reduction pro-
cedure that is best suited to this problem. In this casc one might rdeuce this expression as fol-
lows. It is usually wise to reorganize the expression while it is still compact, so thet muliiple
copies of foreground kernels can be climinated. Thus we obtain |

CFG,) 4y +y2 4y +1) —(F(4,y) +F(3,y) +F(2,y) +F(1,y) +F(0.y)) x* (2.14)
zy N - - v

Next we cxtract from (2.14) all F kemcﬁ and enter them in scparate lists. For this problem,
it is probably best to orgznize them eccording to their first urgument, so we obtain in this way
six lists, as shown in Figure Sﬁ. We have numbered thesc lists according to their icvel in this

hierarchy. This organization of the problen is suggesied by the recursion relatioa (2.2), which,

. in the course of expanding foreground kernels of a given level, generates foreground kemels

that belong to the Ievels bencath it. The Dissection method as currently implemented in LTAB
cannot deduce the reduction stﬁteg that is best fcr a giveﬁ problem. The strategy to be
emplcyed must be supplied by the user.

We now apply (2.2) to the highest level in the hierarchy, Level 1, to obtain list of pau.h
tially evaluated forms, as shown in Figure 5b. In this case, there is only one cntry in the list of
foreground kernels of Level 1, but in general tilere rﬁay be any number. These forms contain

ncv'v foreground kernels, whose values are as yet unknown. They are then entered into the lists

63

i | INERNETEARERY) RT3 T

1 R AR A

i

[NPR—T—

}
i
i
J

64

lower down in the hicrarchy, for later cvaluation.” The result of this step is shown in Figure 5z.

The first step of the reduction procedure is now complete.

For the next step of this procedure, we direct our effort ai ;hc second list, labeled Level

. 2, and procede as above. The result is shown in Figure 5d. Repcating this process for cach

level, we finally reach the state depicted in Figure 5S¢, in which all the foregrcund kernels that

bave been assigned to Level 6 have been expressed in terms of the buackground variables.

Next we substitute these values from Lovel 8 into the expressions entered in Level 5, as)

shown in Figure 5f. Tbhis upward substitution and simplification is ther repeated for cach level
unii! we reach the ztate showa in Figurc 5g. Finally all these results are inserted into the origi-

nal expression, and the entire result is rationally simplified to obtain:

. -1 -1,
((60.x° (iog(*—-=) ~log(*=))
—(60x*+30x% +20x2+15x +12))(y* +y* +y2 +y +1)

+x5(50y> +90y2 +1107 +125))/60xy ' (2.15)

The effect of this procedure is cxactly cquivalent to applying (2.1t) o (2‘.13).’ Conscquently,

one might wonder whether anything has been gained by such efforts. For examéle. in light of
the cxistence of {2.1b), onec might object that the above rather intricate procedure ig wasteful.
However, in more praciical problems than this one, closed fetm icsults analogous to {2.1b) do
not necessarily exist, Furthermore, the steps of the .reduction procedure of a practical problem
arc generally far more complex than those illusirateC here, which unfortunately leads to the
difficultics discussed above. Briedly, the reply to such objections is that the purpose of this
illustration has been to 'eompan‘e the Dissection method to other methods that might be

employed if (2.1b) were unavailable.

8 JURI

R ITERrred B R S AUAAS

WV

B SRS

Taa

s 0

Y.

. L PRI AN NS NEN
(@

« v = »
LR YA}
w e Y e

.
()

What then has been achieved by this method? First, this scgmented reduction proédurc
has provided a derivation of (2.1b) for those kernels that appeared in our problem. In practical
problems for whicﬁ closed forms arc not known in advance, Dissection provides a method of
obtaining these necessary forms. Second, this result has been achicved by a method that
involved manipulating onfy thosc particular intermediate expressions that were directly related
to the goal of deriving the rquired closed forms. By ignoring the original expression (2.13)
throughout most of the procedure, expensive rational simplification of largely irrelevant strc-
turcs was completely avoided. TI:us pﬁnciplc was actually applicd at all 6 levels of the seg-
mented reduction procedure. Finally storage of intermediate :c'sultxv allowed us to avoid waste-
ful recalculation of the forms F(n,y) for a2 =0, 1, 2, ard 3, 25 would have been required in

cither the Postponement or Interspersion methods described above.

These idc#s are illustrated in Figure 6. The tree structure of (2.14), which is the starting
point of the reduction, is shown in Fiéurc 6a. Since the entrics in the lists of Figure 5 arc all
relatively small, the tree structures of the in(enncdiatcl structures that ate stored there are not
shown. The largest structure, which is obiained when the resulis shown in Figure 5g are lubsti-
tuted into (2.14), is illus_trétcd in Figure 6b. Since (2.14) was simplified by Interspersion. as’
shown in Figure 4, the result of simplifying the expression of Figure 6b is»s‘hown in Figure 4g.

Although the expression of Figure 6b. is a bit larger than the expressions obtained when

_ the Interspersion method is applied to.this problem, note that it contains only 4 distinct kernels.
By comparison, the ﬁncxmcdiatc forms‘ that were simplified in the Interspersion treatment of
this problem contained as many as eight distinct kernels. Thc—eipmsion of Figure 6b is also
much smaller than the intermediate cxpression that would have beeq limpliﬁed if Postpone-
ment had been applied to this problem. Moreover, in the ﬁisscction i‘mcthod, only one such
large expression was rationally simplified, whereas in the lnte;spetsion method, ﬁvc such inter-

mediate forms were simplificd. This shows how Dissection can reduce the number of kemels

65

el

e
e

P RV

N

LI

S

N .

il
1

i

{I

AL

functions inadvisable. A BATCH mode approach is preferable for several reasons. First, the
batch file provides an accurale record of the specific operations dm were performed. This
record is very useful for locating and understanding crrons. .Scc‘ond. if an error is discovered,
theu ii is often possible to recover from that error by simply running some of the batch fiics
again, after making minor corrections. Finally, several attempis may be necessary before a par-
ticular stép in the reduction can be achicved to satisfaction, and the availability of the batch file
climinates duplication ofd the simpler portions of that effort.

Given this cavear, this section is divided into several parts. We begin with a general
dcscriptibn (3.1) of the preparations that are neccssary before one can begin to reduce an alge-
braic expression by means of the LTAB programs. Next we describe in detail (32) the struc-
wre of the data tables that arc used by these programs. Finally, we describe (3.3) the functions

that one actually uses te carry out the reduction.

3.1 Prepanﬁon for Segmenied Reduciion
To use LTAB in MACSYMA, onc must first decide where to scgmeat the reduction pro-
édurc. With expericnce, one will probably dcvélop a fecling for choosing the segmeniation
points, but we offer the following suggestions. The choice of scgmentation depends somewhat
upon the computer facilitics that are available. For cxample, if the reduction is expected to
procede quickly, one niight divide the reduction into only a fcw parts. On the other hand, a
shortage of workspace may nccessitate a more scgmented approach. Oftes it is impossible to
determine in advance the precise division points for & scgmented reduction, and in the end,
_experimentation usually provides this information. The choice of segmentation is also directly
influenced by the naturc of the reduction problem. For example, the reduction may lead
through some point wherc many identical foreground kemels arc produced. Although it may
not always be possible to anticipaté that this will happen, it is usually advantageous to segment

67

[

S

‘E

LI

Al

.

-

ul g

e

containcd in expressions that must be rationally simplificd, while at the same time reducing the
amount of cffort cxpended during the intermediate rational transformation. In this way,

Dissection provides a useful compromise between Postponement and Interspersion.

3. Using LTAB in MACSYMA

We now turn to a detailed discussion of a computer program that makes usc of the idcas

preesented in Section 2. This discussion has a twofold purpose. Fimst, it can serve as a guide to -

MACSYMA users who may wish to undertake a very large reduction problem, and sccond, it

may suggest a useful reduction scheme to users of other Computer Algcbia programs,

The reader who is unfamiliar with MACSYMA will probably be most interested in deter-

mining just what is required to achieve the cfficicncy improvements that are possible with scg-

mented reduction. With this goal in mind, we have tried to organize this section to clearly

answer two important questions.
{1] What facilitics docs LTAB provide for implementing 2 segmented reduction procedure?
[2] What steps of the reduction procedure must be provided by the user?

To discuss these questions, itis not necessary to understand the precise technical meaning
of all of the terminology used below. However, rcaders who have little or no expcﬁéncc with
Computer Algebra systems or who may find portinns of this section somecwhat obscure may

wish to consult the MACSYMA Reference Manual(1].

We begin with 2 recommendation of caution. Although much of MACSYMA is nricnted
toward interactive use, calculations to which LTAB might be applied are best carried out in
BATCH mode. Some advance planning is desirable, and may even be neccssary as a glance at
the following LTAB function descriptions may indicate. The complexity of this cvaluatior. stra-

tegy, combined with the complexity of a large calculation, makes interactive use of these

the reduction ﬁrocedurc may fail to take account of certain special characteristics of the problem
at hand. This failure can be expreased 25 a conceptual civor, but more likely it appears as clum-
siness or inefficiency in the reduction procedure. Fibally. there is always the possibility of pro-
gramming errors cither in the user’s programs or in system progﬁms. For these rzusons one
almost incvitably needs to retrace some step or sequence of steps in reduction procedure. In
such cases it is necessary to have a tho:ouzf: understanding of the intemal stzucture of LTAB
sad its data tables, so that recovesy from crrors can be as pxialess as possible. Thercfor,
detailed descriptions of the structure and content of the LTAB dzta tables ar provided below.
The description of each compoaent includes suggestions fof its use wheacver appropriate. '
For the purposc of these descriptions. we think of a reduction procedure a3 if it consisted

of a simple vertical chain, with the ongmal porphynne expression at the top and the final LTAB
table at the bottom. Thus down, below and subsequens refer to the dlrecuon of further reduc-

tion, while up, above and previous refer to the other direction. For convenicnce, we shali
describe the contents of one such table named A. The table just above A is culled PARENT,
and A's successor is called CHILD.

In actual use howaver, there is no such restriction on the strecure of the interreiations
between the various LTAB tables. It is possible for any table to bave sevesal parents or chil-
dren, and there are many instances when such structures are desirable. As an example of mul-

_ tiple children, suppose that at some stage in the reduction procedure two differcut types of fore-
| ground kernels are generated, and that further reducuon of these keincils :cquxres distinctly
different mcthods. In such a case onc might wish to proccu the two types of forcgrouad ker-
nels in separate tables, which would require thas tible A have two children. Multiple PARENT
tables are also uscful. Suppose that a givea problem has been lelded into two or more parts
according to the validity of a certain appmximaﬁon procedure or other special method particular

to ﬁle problem. Algebraic expressions arc then sct up in cach domain and must de reduced

69

T

-t

T

o .

i

rm

T

68

the reduction at such a point to avoid duplication of that part of the reduction procedure. Of
course, the efficiency gains that result from the segmented depend upoa the cost of reducing
cach kerncl, but in general it is advantagcous to segment a reduction procedure at those peints

where one cxpects multiple copics of identical foreground kemels to be pruduced.

Once one bas determined a scgmeniation point, the next required preparatory step is to
writc a funciion that performs the step of the reduction procedurc that carries the reduction
from dxan scgmentation point to the next one. In the discussion below, this function is called
the PROCESSOR function. This function is specific to the problem at hiand, so it cannot be
provided by LTAB.

In the final preparatory step, onc creates a blank table for cach step in the ugincnled
reduction. As the evaluation procedes, LTAB stores all necessary information in these tables.
Although the structure of these taﬁlcs is uniform independeat of their level in the procedure, it
is not possible for LTAB tb generate these tables sutomatically, since the content of the tables
is dependent on the procedure itsclf. The function LTAB_INITIALIZE has beea provided for
creating such blank tables. |

3.2. Description ol the Data Takles

In principle, preparation for a segmentation using LTAB consists of three steps: choosing -

_ the segmentation points, writing PROCESSOR functions for the coﬁ'apondin; reduction steps,

and creating the requisite blank tables. In practice, however, things ars more complicated for
three reasons. First, choosing the scgmentation points can be a difficult task. In many
instances, the optimum choice of scgmentation is not at all evident at the outset, znd in the

extreme case, it may not be possible to determine the next segmentation point uatil one has

. proceded part way into the reduction ctfort. Second, even the most carcful advance planning of

oo™

- s

T T

v Fk & w
A a0, &y,

L

N
.-

-
0

£

wrwo .
PRt R

AT

M)]

IPh g

[N

. . : B
. . . - P &
» ‘ . P / .

A[_PROCESSOR] This array cicment holds the name of the function that is used during the A
' stcp of the reduction procedure to process the foreground kernels that are being held in

A[_VALLIST]. These kemnels are the ones that were discovered during the step in the
cvaduation procedure that is just above A. ‘If one wishes to change the name of the PRO-
CIESSOR function after the A table has becn created, one merelx sets A[_PROCESSOR]
to that name. The processor function itself must be a function of one argument.

A[_NEXLIST] This array tlement refers to a list of expanded forms eone'spc;nding to the quan-

titics held in A{_VALLIST]. The elements in this list are the resulis of applying the fuuc-
tion A[_ PROCESSOR] to the clemeants of A[VALLIST]. The form of the clements in
the list heid in A[_NEXLIST] is as follows. Enach catry consiats of background kemels
supporting the forcground kernels generated in the A step of the evaluation procedure,
However. the newly geacraied foreground kemels have been replaced by new Jabels,
using the alphabetic label prefix provided by CHILD, and stored in CHILD|[PREFIX]. If
A is the last step in the procedure, then there are no such labels and the elements con-
sists purely of background kernels. '

This componcnt of the A table is very uscful as a safety mechanism. If onc discovers an
crror in the reduction procedure somewhere below A, aand if one has already back-
substitut=d into the A table or perhaps cven above it, one need correct only the meults
beginning at the point of the error, but not above it, if one uses the _NEXLIST of the
tables above the error. Since back-rubstitution has been carried out above the error, one
might think at first that all downward calculations would also be lost, but they can be
recovered from the NEXLIST, since it hoids the forms calculated during the downward
phase of the reduction. Ome simply executes A[_FULL_EV_LIST:A{_NEYLIST] or
equivaleatly, LTAB_FULL_EV_ERASE(A) to restore the A table to the statc it was in
prior to the back substitution of the incorrect forms. If only certain portions of
A[_FULL_EV _LiST] have been affected, & correct structure can always be composed of
picces of A[_FULL EV_LIST] and A[_NEXLIST], using the MACSYMA functions

' PART sad SUBSTPART. In this way, any incorrect results can be carcfully removed,

without the nccessity of duplicating results that are known to be correct.

A[FULL_EV_LIST] This array clement refers to a list of expanded forms corresponding to

the quantitics held in A[_VALLIST]. The form of the clements in this fist, unlike the fist
held in A]_NEXLIST], can vary. Immediately after the processing of the elcments in
A[_VALLIST] with the function A[_PROCESSOR], the clements are in the form of the
clemeats in A[NEXLIST]. However, there are several circumstances that can result in
changes in A[_FULL_EV_LIST]. Suppose for example, that onc has evaluated all the
tables beneath A, and then back-evaluated up to A, or poesibly above A. The ciements in
A[_FULL_EV_LIST] then consist entirely of background. That is, the clements arc “tully
cvaluated” (hence the name _FULL_EV_LIST). In this situation, they differ from the
clements in A[_NEXLIST), which are always in the form of structures composed of back-
ground kemnels and labels from the table beneath A. Yet another possible form of the
clements in A[_FULL_EV_LIST] can result if onc subsequently adds more clements to

71
-
fo=
=
£
(
{
!
{
i
.
{
=
=
{
§
! L
; i
| ¢
\ 1
£
1 i
i
: !
{
| |
\ {
\ =
\ !
i
|
I
. F

~x

~

al

i

r.mv‘
|

T

T

mr-

- i .
. wr " e
) Aianautess | Sasnccus - SEELEE - AEHSEE
I v P 1 [. - P .
) 3 P . . A

e ey
o

according to distinct procedures appropriate to cach domain. However, suppose further that as
the reduction procedes, it becomes possible to merge the domains and process the cxpressions
according to a single procedure. This could happen if, for example, one has proceded past the
point at which the special tuhni@c was applicd. Onc might then save much cffort by designat-
ing a particuiar tablc as CHILD of as many parcats as possiblc, because of the sharing of cifort
that would thea become automatic. Another example of a multiple pareat structure is given in
Section 4.

Each LTAB table is an array with 11 clcmcats. Four of thesc clemeats refer to lists of
raw or processed data: _VALLIST, _LABLIST, _NEXLIST, and _FULL EV_LIST. Of the
remaining seven clements, four an: used by variovs LTAB functions whea these data are being
processed or stored. These clemeats arc _PROCESSOR, _FULL_EV_FCN, _NEXT_TABLE
and MISCLIST. The remaining clemeats are used by the PARENT table whcln it is adding
data to A. These clements are COUNTR, _PREFIX and _OPERATORS. The formation and
applications of cach of these quantitics are described below,

A[_VALLIST] This array clement refers to a list of foreground kemels that were generated in
the PARENT step of the evaluation procedure. During the PARENT atep, whenever
LTAB eancountered onc of these kernels, A[_VALLIST] was checked to see if it had
already been entered there. If not, thea an catry was made and a label gencrated for that
kemel. All of these kerncls weze then replaced by the corresponding labels that were
being held in A[_LABLIST]. These kerncls are the input for the A step in the reduction
procedure. After exccuting the PARENT step of the reduction procedure, one may
examine the forcground kernels extraced in that step by aking for the value of
A[_VALLIST]. Onc may also tcst thc PROCESSOR of A by applying it to one of the cle-
ments of this list. T

A[_LLABLIST)] This array clemént refers to a list of atomic symbols that were generated during
the PARENT step in the reduction - procedure. These are the symbols that were used in
place of the foreground kernels that were discovered in that PARENT step, and which are
being held in A[_VALLIST]. They were gencrated as labels for their correspoading fore-
ground keérnels by concatenating A[_PREFIX] with successive values of A[_COUNTER].

PARENT, it is essential that the table A cxist, at least in blank form, prior to the execu-
tion of the PARENT step of the reduction procedure.

A[_PREFIX; This array clemcnt holds the alphabetic string that PARENT uscs when it gen-
crates labels for the foreground kernels of the A step. Bote that since this list is used by
PARENT, it is essential that the table A exist, at lcast in blank form, prior to the execu-
tion of the PARENT satep of the reduction procedure.

3.3. Functlos for the Redaction Process

Once the preparations are coﬁlplete.' onc cxccutes the reduction procedure by means o
the functions provided. For cxample, to add the first foreground kernels to the first table in
the reduction procedure, one uses the function LTAS LABEL UPDATE. To execute one step
of the reduction procedure, onc usce the funition LTAB VALUE_UPDATE. To substitute the
final background kernels from one level into the table just above it, one uses the function

BACKEY. To substitute the final values of foreground kerncls back into the original expres-

sion, one uscs the function LTAB FINAL_SUBST. To store onc or morc LTAB tables in &

disk file, one uses the function LTAB SAVE. Thesc and other uscful functions are described
below.

3.3.1. Cresting s Table
A necessary first step for carrying out a scgmented cvaluation using LTAB is the creatioa
~ of the desir. { evaluation tables. The following function is pmvndcd for this purpose.

LTAB_INITIALIZE(name ,processor, full_ev_fcn ,nexs_table , string , ops , optional —args) creates
a table named name for a segmented cvaluation. procesior is the name of the function
that is used to process the clements in the _VALLIST of the table name. Sfull_ev_fcn is
the name of the function that is applied by BACKEV to the clements of the
_FULL_EV_LIST after substitutions Lave been made from lower lcvel resuits. nex:_table
is the name of table that is immediately below NAME in the segmented cvaluation. If
NEXT_TABLE is the atom END, then LTAB deduces that this table is the last of a chain.

73

-

CEm bt

Vol RS

iRET.

T
|

e

e

g
i

CTHT

-
ThT

'
3
i

(m

1

—

TR T

i

PR

ORI

[-

[P N

[

72

A[_VALLIST] using the fuaclion LTAB_LABEL_UPDATE. This often happeas, espe-

cially in a large calculztion thal has becn segmented. The resulting form of the clements

of A[_FULL_EV_LIST] is thea mixcd: some clements are full evaluated, and some are
idcentical to their corresponding clements in A[_NEXLIST], awaiting further processing.
Fiually, the elements in A[_FULL_EV_LIST] can be pointeis to other clements in that
same list. This form rcsults only when the function LTAB OPT has been used to reduce
the size of the A tabic.

A[_MISCLIST] This array cleenent holds a list of the uames of miscellancous items that are to
be saved along with A when the function LTAB SAVE is used. For example, onc might
wish to store a predefined quantity for use with A's PROCESSOR function, or perhaps the
names of auxiliary user-defized functions that PROCESSOR calls to carry out its task.
Including the names of these quantities or functions in A[_MISCLIST] forces the function

- LTAB_SAVE to savc these items whenever it save A. Flements can be added to this list
at any timc by the user, but they must evaluaic to valid arguments to SAVE or FAS-
SAVE. . :

A[_COUNTER] This array cicment holds au integer that is the number of the highest label
geacrated so far by PARENT. Thus it is the number of foreground kemcls stored in A.

A[_NEXT_TABLE] This array clement bolds the name of the table CHILD. If this array cle-
ment holds a list, then the list is interpreted as a list of the CPFILDREN of A. This
teature allows multiple tranching downward. If A has no children, A{_NEXT_TABLE]
has the value END. '

A[_FULL_EV_FCN] This array clement holds the narne of the function that is
used by BACKEV when values from CHILD sre inserted for CHILD's foreground ker-
nels in A[_ FULL_EV_LIST]. After BACKEV performs the substitutions of the values -
obtained from CHILD, A FULL_EY _FCN] is applicd to the resulting expression.
Examples of functions uscful for this purposc arc RATSIMP, FACTOR and SQFR, but
the uscr may also provid: the name of a more spccialized function if desired. The only
restriction is that the fuuction must accept 3 single argument.

A[_LOPERATORS] This array clument holds a list of the leading operators of foreground ker-

— _ nels that are stored in A[_VALLIST], and is used by PARENT when it is scarching for
the foreground kernels to be inscrted in A[_VALLIST]. Mormally this is a list of one cle-
ment, but it may take scveral other possible forms. For rg, there may be several different
operators that can be the leading operators of foreground kernels stored in A. In this
case, the list Al OPERATORS) may contain scverzl elements, including one for cach
operator. Also, one or mure of the clements of the list AJ OPERATORS] can be of the
form PREDICATE(predicate —name,, predicate —name;, * ++). In this casc any kemel
whose leading operator satisfics any of the predicates named in the argument list of the
pscudo-function PREDICATE are also stored. in A. Note that since this list is used by

then FASSAVE is uscd, otherwise SAVE is used. It is reccommended that periodic
storage be :mpioyed whenever a long computation is anticipated. In this way, recovery
from errom. is required only for the calculations done since the last writing.

LTAB_LABEL_UPDATE(name ,processor ,cxp) is uscd to add new foreground kernels to the
table name using the function processor on the cxpression exp. LTAB_LABEL_UPDATE
is most useful for generating or adding to the first table in a chain of tables, or the root
table in a tree of tables. The LGYECHAR that is used for isolation of any new foreground
kemcls that might arise in the course of this evaluation is held in umc[_PREle] and
can be any string i alphashetic characters.

One switch controls the behavior of both LTAB LABEL UPDATE and
LTAB_VALUE_UPDATE when they cacounter foreground kerncls that Lave already been
fully or partially proccssed in a previous evaluation. ' '

LABEL_UPDATE_FULL_EV determincs preciscly what quantities are substitutcd for the fore-
ground kernels encountered by LTAB_LABEL _UPDATE and LTAB_VALUE UPDATE.

If a kermel has never been encountered in a previous cvaluation of
LTAB_LABEL_UPDATE or LTAB_VALUE_UPDATE thea of course, there is no choice

but to return a newly generated label. But if one is adding to an old table, and thai table

has had some further pmceumg before the new additions arc made, then its
_FULL_EV_LIST may contain some fully- or partially-processed valuss of foreground ker-

nels :lrcady in the table. Normally, one would prefer that these values be inserted when-

ever these kernels are reencouatered. This is indeed the behavior whea

LABEL_UPDATE _FULL_EV is TRUE, the default. Setting this switch to FALSE forces

substitution of tiac labcls themselves, which may occasionally be preferable, especially
when one wishes to make comparisons to sxpressions calculatzd carlier. Finally, setting
this switch to ZERO_ONLY produces behavior similzr to the FALSE setting except that if
any of the fully evaluated kernels arc known from previous ealculahon to be 0, that O is
‘nserted instead of a label.

LTAB _LABEL FlND(namc) returns a liss of the n<wly added and uncvaluated foreground
kernels that are held in name[LABLIST]. This includes only those kernels that have
not been processed in any way, and excludes those clements that have been expanded in
terms of the next forground kernels of higher lcvcls It is unlikely that the user would
ever require access to this function.

75

& N

i,

K

DAL A SRV | PP

T

T

T

W -

i .

i
Lo

S

[P

[
{

4
L.

string is the string of alphabetic characters that is to bz used for generating labels to stand
for the foreground kemels discovered cither by the PROCESSOR of the table above name
or by mcans of the functicn LTAB_ VALUE_UPDATE. Ops is a list of the possible lcad-
ing operators that the foreground kernels stored in name [_VALLIST] may have. It is also
possible for ops to include clements of the form
PREDICATE(< predicaie —name predicate —name;, -+ >). I such clements arc
included, then any kemnel that satisfiecs any of the predicates is also added to
name[VALLIST] whea cncountered by the processor of the table above name.
Optionud —args refers to any number of additional optior al arguments that are the names
of any objects that one might wish to save along with mame when the functi.a
LTAB SAVE is used, or whea the switch PERIODIC_SAVE_FILENAME is not FALSE.
For cxample, onc might wish to have the processor function or the full ev_fos function
stored in the same file as the table. If 50, one would include the names of these functions
among the arguments of LTAB INITIALIZE, in the position indicated by optional —args .

3.3.2. Downward Evaleationa

There are two different types of downward cvaluation. In the beginning of an cvaluation,
ons wishes to make entrics in a table by processing an expression that is not itself a table. For
this case one uses the fuaction LTAB LABEL_UPDATE. To make entrics in a table A from a
parent table of A, onc uses the function LTAB_VALUE_UPDATE.

LTAB_VALUE_UPDATE(hamc.n) updates the values of sny recent additions to the table

named name. If no new additions are found, no changes arc made in the table. If ncw
additions are found, then the function whose name is held in name[PROCESSOR] iz
used to process these new clements. The new foreground expressions that are generated
in the course of this evaluation are automatically added to the table whosc namc is held in
name [NEXT TABLE]. They appear in the table name only in an ISOLATEd form in
name [_FULL_EV_LIST]. That is, only labels that stand for these newly gencrated fore-

ground keimels appear in name[_FULL_EV_LIST]. The LINECHAR that is used for the

geacration of these labels is held in name [NEXT_LABEL].

The gzecond argument, a, is optional. If it is given, it must be a positive ihlcger. Whea
such an argument is given, it represents the maximum number of clements that are

evaluated before the partially updated table mame is written out into a disk file.

Specification of a file for this purposc is givea by sctting PERIODIC_SAVE_FILENAME
to the name of the desired file. If PERIODIC_SAVE_FILENAME is FALSE, then no
such intermediate storage occurs. The swiich DGVALFASSAVE[TRUE] determines
whether SAVE or FASSAVE is used for this purpose. If DGVALFASSAVE is TRUE

s

R TTRNEFIEE RS

YT

[IR PRy I LG R

T E T

PR AT)

-

LTAB_LABEL CLEAR(exp, rame) cxamines thc array name to determine what labels are
stored ip it as the result of any previous scgmented cvaluations. Then it substitutes the
values that these labels stand for into the cxpression exp. This operaticn is the inverse of

- LTAB_LABFL_UPDATE, 3! lcast zs far as cxp is conccracd. No alterations are made in
nrame . ’

LTAB_FINAL SUBST(exp, name) cxamincs the array name to determine what labels are
stored in it as the rcsult of any previous segmented evaluations. Then it substitutes the
entries of tac _FULL_EV_LIST that correspond to thesc labels into the expression cxp.
No alterations are made in name.

3.3.5. Storing and Retrieving the Tables

LTAB tables can be stored with any of the standard storage functions, but if one has
several things to store along with the array itself, then it may be more co;lvenicnt to usc the
‘function LTAB CAVE. For example, one might wish to store a few global variables with the
table, or perhaps the _PROCESSOR and _FULL_EV_FCE defigitions. If so, then inclusion of
the names of thesc objects in the _MISCLIST entry of ibe tablec permits oﬁc to exploit the con-

 venience of LTAB_SAVE. '

LTAB_SAVE(filename , crgy args, - * -) saves the quantitics named argy, argy, - * in the Gle
pamed filename. The form of the arguments of LTAB SAVE is identical to the form of
the argumenis of SAVE or FASSAVE, cxcept that LTAB_SAVE cvaluates its arguments.
Thus if any of the arguments has a value, it is necessary to present it to LTAB SAVE in &
"single-quotc.d” form. Failure to do so leads to an error when LTAB_SAVE passes such
arguments to SAVE or FASSAVE. The use of SAVE or FASSAVE by LTAB_SAVE is
determined by the value of the switch LTABFASSAVE[TRUE]. If LTABFASSAVE is
TRUE then FASSAVE is used; if FALSE, SAVE is used. If any of the arg, are hashed
arrays, and the value of the amy indexed by _MISCLIST is a list, then the clements of
that list is also saved. ,

Retncval of LTAB tables that have been stored on disk can be wcompluhcd with the
standard’ MACSYMA forms LOAD or LOADFILB

77

(A RNy
. ST

P

—

. coeTe e e
. PR A

RS

NI o

T

e

nr

fons

[0

JRis

"

e -

I

§
f
i

E

i

Ym__,

i

|
i

L

76

3.3.3. Correcting Errors

As noted carlicr, it is frequently necessary to alter the contents of an cvaluation tabic to

correct errors. Two functidns are provided for this purpose.

LTAB_ERASE(name) crases all labels and values that are already entered :n the array name.
This function is useful for purging the amay of previously calculited erroncous results
without changing other parameters or functicns that might be essociated with the array. It

is also uscful for obtaining a copy of the mmahzcd array from onc calculation for use in
another. .

LTAB_FULL_EV_ERASE(arrayname) is similar to LTAB_ERASE, except that the labels
already stored in the array arc not removed. NEXLIST and _FULL,_EV _LIST are, how-
ever, reinitialized. This function is useful for purging the array of ptevmluly calculated

- erroncous results while retaining the foreground kernels that are stcred in the array.

3.3.4. Upward Evaluation

Thei'e are twe possible kinds of upward cvaluation. The first type involves lubiﬁtuﬁon of
the fully-cvaluated forcground kerncls of onc level into the tabel one level immediately above
it. This is done by means of the funeuon BACKEV. The second type mvo!vec substitution

into some expression that is not a table. This capability is nceded for thosc tables that do not -

have parents. If the substituted quantitiei ‘are to be foreground kemcis thea

LTAB_LABEL_CLEAR is used. If the cvaluated, reduced forms of these kemnels arc required,
|

then LTAB_FINAL_SUBST is used. |

i
Y

BACKEYV (higher_!.vel, lower level) BACKEYV lifts the results of a table lower in the chain\' up to

a table higher in the chain. This is accomplished by modifying the entrics in

. higher_ievei[_FULL_EV_LIST] to reflect the values contained ‘\\ in

lower_level FULL_EV_LIST]. The function whose name is held | in

higher_level[_FULL_EV_FCN] is applicd to the cntries in higher Ieve![_FULL BV LlST]
after the substitutions arc madc »

L J WY

S 4 R AR

"

"

@Y

. Rt atIE ALY,

7 ‘.A‘_ .l._..“ .

e

P
P
APl N

o

e

79 . il

we try a segmented reduction.

-
-
We begin by clioosing as segmentation points the points determined by the values of a. . :'_ o
Thus we attempt o build tables ot foreground kernels of the form: ' wr
L
f(n,x,p(x), s, w), ‘
. ,.'A b Yi‘
ong table for each of the three possible values of . ! =
We are now'pmpared to writc a program for performing this reduction by mecans of .
LTAB. Fixsf. we nced functions that can detect ¢ kemels, which appear in the expression ¥ as - :::
nouns. So: e s
L
F3P(EXP) := IS(PART(EXP,0) = NOUNIFY('F) AND PART(EXP,1) = 3)$ o
. - Lo
F2P(EXP) := IS(PART(EXP,0) = NOUNIFY(’F) AND PART(ZXP,1) = 2)§ n =
"FIP(EXP) := IS(PART(EXP,0) = NOUNIFY('F) AND PART(EXP,1) = 1)$ ' T
‘ R
| S
. Bach of these predicate functions returns TRUE for a given EXP if the value of n it as v ;—»
required and the leading operator of EXP is . These functions will be used by LTAB to locate _ =
the kerneis that must be expanded. Since we have decided to break the expansion at points -
that correspond to the different valuces of », we now construct a PROCESSOR for each of the ::.j'.
"three levels. For this t_:xample, the PROCESSOR for 2 =3 can also serve for s =2: !-

;
]
J
~
i
i

.“v_"in T

. et e ("";‘fhp&f?‘,:cﬁ’r'—'«._.‘_,‘ 1 ,} K - ! U ‘/‘- AL “‘)‘("“: /" o I ;’ 1\
- LT Bt A . B g PO N E R R A ~

78

mr

.

T

N

N,
,_{,‘._-—-4 R
ol

T

—

=
i

I —

iy

4. Ao Example

It is difficult to construct a specific example of the application of this method that is gen-
eral cnough to be widely understood without special k.nowlcdgc. Therefore we offer 2 general-
ized examplc in the hope that the important principles are clearly illustrated witﬁout intx'oduct-
ing the obscurity that inay result from a highly specialized cxample. Consider the following

problem. We are given a rational expression ¥ that depends on variables @, x, ands and on

kemels of the form

f(n,x,p(x), 5, w)

where p is a rational function of its argument. The precise form of p is not fixed, and may be
different for cach o&currcncc of f. The possible values of n arc 1, 2, and 3. the function f is

defined as:

S0 5.pG), 52 @) =800, p (),)f (0~ 1, 2, LEL 4)

+h(x,p(x); logs, log‘(l -w)) (n+1)
and
f(n,x,p(x), 5, w) =i(£5;g)' logs, log (1 ~w), w) (a=1)

where g, 5, and j are known rational funr;tion;u of their arguments. For all n, the cxpanzions
of f are cumbersome. We require a pewer scrics expansion for ¥ about @ =0. To this end,
we have alrcady applied the MACSYMA function TAYLOR (which produces a Taylor serics
expansion of its argument) to the result of expanding all of the f ‘kernels in ¥ , and have found

that the expanded foma is much too large for our computer to work with cfficiently. Therefore

O

- —P, STaTaTT
,"vv"- B adiN '-.'-‘.‘.'-'."-'-"'. ..
.

RSl R

'y]
G §

.

T
oa,
T

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDAC _ P

PHOTOGRAPH THIS SHEET
o E TEVEL INVENTORY
< |2 Yeoc eec(mc{s o e 1284 -
. =] : ~ "
:g B MACSYMA " tsec's Confecence L
_ § © DOCUMENT IDENTIFICATION 23. 9 £ J & (., '&¥
<t 2 T
| &
=T DISTRIBUTION STATEMENT A |
o - Approved f bl =
- =T] Dis;ibug:nmllinlfm;felzm ,
DISTRIBUTION STATEMENT é
ACCESSION FOR]
NTIS GRAAI %(|
DTIC TAB : !
UNANNOUNCED O DTi C
JUSTIFICATION ' ELECTE pw»
GCT 22184 £
BY
DISTRIBUTION / D
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL .
H . DATE ACCESSIONED
DISTRIBUTION STAMP o
"DATE RETURNED ¥
84 09 27 006 L
DATE RECEIVED IN DTIC

REGISTERED OR CERTIFIED NO.

DTIC. FORM 70A

DOCUMENT PROCESSING SHEET

PREVIOUS EDITION MAY BE USED UNT! '
STOCK IS EXHAUSTED. .

[3 80

= PROCESSOR32(EXP) :=
SUBST(LAMBEDA({NVALUE,XVAR,RATFUN_X,X,OMEGA],
'F(NVALUE-1,XVAR,DIFF(RATFUN_X,XVAR),X,OMEGA)
*G(XVAR,RATFUN_X.S) | ;
+ H(XVAR,RATFUN_X,LOG(S),LOG(1-OMEGA))
NOUNIFY('F),EXP)$

PROCESSOR1(EX?) :=

RATsmp(sunsr(LAMBDA([NVALUE,XVAR,RATFUN_X,X,OMBGA],
' J(DIFF(RATFUN_X,XVAR),LOG(S),
| LOG(1-OMEGA),OMEGA)),
NOUNIFY('F),EXP),
g " LOG(1-OMEGA),OMEGA)$
= # ' -
_‘7 - ‘ The FULL_EV_FCN for cach tablc. should organize the results around terms involving @, B
' since we require a serics cxpansion in w. This is d_e:i'nble- f.or all levels, so we shall use the
h function RATSIMP_LOG_OMEGA, dcfined below, as the FULL__BV_FCN of cvery level. The
[| FULL_EV_FCH of the lowest table is ignoted, o this restructuring with respect to e is done in
- PROCESSORI1. For LEVEL2 and LEVEL3 we need:

RATSIMP_LOG_OMEGA(EXP) := RATSIMP(EXP,LOG(1-OMEGA),'OMEGA)$

X
4

s

[N
Voo

\
L3 te" s @& & N 0 ir‘- -

. » 1[4 1

08 AN SRR s

!
f

.

N
AP

-
.o T,
AT

#
>
N
3
.
1
.

2

We arc now prepared to create the nceded blank tables. We choose the names of the

" tables to correspond 10 the values of », aad choose the _alphabctic striogs I, [and il as the

prefixes for generating the labels for the kernels of tables LEVEL1, LEVEL2 and LEVEL3,
respectively. Thus LEVELL is the lowest, LEVEL3 the highest of the tables in :his reduction.
We have incladed all functiors associated with a particular tavle iz the _MISCLIST .of that table
so that they will be saved with the table itself when we use LTAB SAVE.

LTAB_INITIALIZE('LEVEL3, PROCESSOR32,"RATSIMP_LOG_OMEGA,’LEVEL2,'lll,
(PRFDICATE('F3P)],
[’F3P,'PROCESSOR32,'RATSIMP_LOG_OMEGA])$

LTAB,_INITIALIZE('LEVEL2, PROCESSOR32,’'RATSIMP_LOG_OMEGA,’LEVEL1,'Hl,
[PREDICATE('F2P)],
['F2P,’PROCESSOR32,’RATSIMP_LOG_OMEGA])$

LTAB_mmALlZE('LEVEi.i,"‘ROCESSORI,'RA’ISMP_LOG_W]‘-BA,’ND.‘I.
[PREDICATE('F1P)],
['F1P,"PROCESSOR1,’RATSIMP_LOG OMEUA])S

We begin pmw:ingthccxp;asionY bycxtncﬁngthef kerne's from ¥ and inserting
them in their designated tables. - “

Y_EXTRACT_3:LTAB_LABEL_UPD'ATE(’'LEVEL3,’PROCESSOR32,Y)$

‘‘‘‘‘‘‘‘‘

81

N

(REIn

T T

1
|

i

~TIF

ol

T

-

ST T .

S .
<

T

il

TN
' i i

TR I -

-

]

82

Y_EXTRACT_23:LTAB LABEL_UPDATE(’LEVEL2,'PROCESSUR32,Y_EXTRACT 3)$
Y’_E:xmcr_:zsa.TAB_LABBL_U?DAm('LEvm,l,'ansomz.‘r_mcrgs)s

in the cbove sequence, the quantity Y_EXTRACT 3 has ooly the kernels of Level 3
extracted, Y_EXTRACT_23 has kerncls of of both Level 2 and Level 3 extracted, and
Y_EXTRACT_123 has all f's extracted. Y_EXTRACT 123 s the quontity into which we will
substitute the final valucs of the expanded kemels. Y_EXTRACT_3 and Y_EXTRACT _23 arc
no longer nceded. Now thathave made the initiad entries of the foreground kernels into the
tables LEVEL1, LEVEL2 and LEVEL3, we procede to cvaluate the kernels stored in those
tables. _This is done casily: |

LTAB_VALUE_UPDATE(LEVEL3)$
LTAB_VALUE_UPDATE(LEVEL2)$
LTAB_VALUE_UPDATE(LEVEL1)S

We have now reached the lowest level, and all foreground kemels in LEVEL] are reduced

to background. The next step is to substitute these results into the tables above:

BACKEV(LEVEL2,LEVEL1)S,
BACKEV(LEVEL3,LEVEL2)$

All tables now contain expanded forms of al kerncis, cach one reduced to background and

restructured so that the quantitics involving @ are in leading positions. The next step is to

L3RI B L

LR FERL I B L PR N R AR

substitute tinese results into Y. Since the original expression may have contairied kernels from

all three levels, iwe must make substitutions from all three tables.

Y_FINAL_3:LTAB_FINAL_SUBST(Y_EXTRACY _123,LEVEL3)$
Y_FINAL_23:LTAB FINAL_SUBST(Y_FINAL_3,LEVEL2)$

Y_FINAL_123:.LTAB FINAL_SUBST(Y_FINAL_23,LEVEL1)$

Again, Y _FINAL 3 and Y FINAL _23 arc intermediate forms that are no longer useful. The
result we have sought is Y FINAL_123. All that remains is to apply TAYLOR to this form.

The cfficicncy of this part of the procedure is improved if we first ISOLATE with respect to w.

In this case ISOLATE simply replaces expressions that do nof contain @ with acwly-generated

stomic quantitics.

ISOLATE_WRT_TIMES:TRUES
Y_FINAL_ISOLATED:ISOLATE(Y_FINAL_123,'OMEGA)$
Y_FINAL_ISOLATED_TAYLOR:TAYLOR(Y_FINAL_ISOLATED,’'OMEGA,0,3)$
Y_FINAL:EV(Y_FINAL _ISOLATED_TAYLOR)}

The final call to EV removes the isolation varisbles inserted by ISOLATE. The result we scek
is f_mAL '

This problem has a feature that deserves special emphmsis. The original expression ¥
contains kernels of cach of the three types. Therefore impouibleimmaormema.
that arc found in the original expression arc akso gencrated as & result of expendiug higher

83

i
W T

T
i

T

o

i

LTI

- T T

T

84

order kerncls that are themselves found in the original expression. A straightforward expmsion‘
of all kernels can therefore result in Jduplication of effort. In the approach that we have taken

here, cach unique kernel is evaluated only once.

5. Outlook

In its current implementation, LTAB provides a systematic method for applying intricate
reduction procedures to large expressions. However, it is possible to construct programs which
automate this procedure cvea further. Currently, the user must gencrate blank tables before
the reduction proczss can begin, and provide names for the prefixes used in those tables, but
one can define functions or macros that will carry out these steps automatically if necessary.
These cvaluation fuactions would need as arguments both the downward and upward processor
functions for each level, as well as the expression to be reduced. Alternatively, one might con-
struct a macro equivslent {o a function definition operator, except that instcad of producing a
lfmplc function definition, it produc=s a function definition that uses Dissection to procede
from one step to the next within the body of the definition. The user might be required to
specify the downward processors for each level, u well as their corresponding upward proces-
sors, all as statements in the “function definition®. The only evidence that a Dissection-orirated
reduction scheme was actually being used would be this tripling of statements in the definition.

Such a scheme could greatly improve performance of Computer Algebra systems on machines
with large address spaccs.

In this way one can automate much more of thé Dissection method than has been done in
LTAB. However, the gencral problem of choosing a particular dissection for a given problem
is mon.: difficult. Although it may now be possibie to automate the entire dissection procedure,
including chonce of ‘ngmenuﬁon, for some claua of problems, it is likely that general dissce-
tor programs capable of treating many kinds of reduction problems will eontﬁue 10 require

o s e

* o mmerth e s 8

. b -

85 -

human intervention. :
.-
Notes and References :'; "
N
{11 MACSYMA Refercnce Manual (Version 9), Mathlab Group, Laboratory for Computer: e -
Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1977. ;
. : . o
[2] In Secction 2 we use the term list to denote an ordered set of algebraic expressions. For " ‘
many Computer Algebra systems, list has a specific technical meaning. This is not the <
. 8
scnsc in which the word is used here.
[3] A kernel of an expression is a subexpression that is not rationally simplified as a result of L
rational simplification of the expression itself. That is, its leading operator is not rationai. ' =
[4] G. Passarino and M. Veltmann, Nudl. Phys. B160, 151, (2979). S
Pl
R i
. [—
Acknoviedgements .
. : o !
Jhis work was carried out under Contract No. DE-AC-03-81ER40050 st the Califomia i i
Institute of Technology using MACSYMA, a symbol manipulation program developed at the ‘ f .
MIT Laboratory for Computer Scicnce and supported by the National Acronautics and Space ' l
Administretion under gfanl 1323, by the Office of Naval Research under grant ET-78-C-02- . [;5:-
4687, and by the U.S. Air Force under grant F49620-79-C-020. The MACSYMA communily, IR
and especially J.P. Goliden, has been very helpful. The author is also gratcful to M.P. Shatz - ' : L:]
and to 3.C. Fox for many useful discussions during the preparation of the manuscript. L
I
Ry
|
;

86

Figzures

-

T

T

- ET

m

S

o

T

’ l’-x,’) P

Figure 1.

SR b

‘. . In"l")'.:l.V:

l.l

{. ORI PEIA

Figure 3a.

87

PR

K FVE RV A

PROE) PRREA RN

R__J DM R

\'.’b "0 .

H IO PR

. e "

STy T

=

S | S TR

e i

[REI

T,

3.
/
\
/
AN
\/

T

T T

T

Rt

TR

[

T

A/\

30 e20 ¢15 x

44x 3: 2

Figure 3b.

i
.l d e

-

S KR
4 4. e e

H’:."

e "'."f'."f.:' A

M § e :

RO SRR

—

= ‘L;—;J'—;:—T

P

CgTee.r .
P AR
- drfatetaTete

s

» B
"aae

»
AP M)

L N R
iy

w1

AR

e LA s)
s '.',‘.'b e ’l,’_g.l tal,

N

- D :

AW, \/ "\ / ‘\e
AN
e F(5, x) -I/l\FM. y) I :/ \l
| 7'\5 0/1-'(5\1) -14}3, y)
NN

y 3 x 3

y

SN/
F(5,) l/r\

3

Figure 4a. '

4
>I. y)

8%

e
[XN
H RO

WY e Y Y YRS

R RN

P -!'g".-,'.'.'.
Kt VA
At o P Tacas

(NEIE

{

W

i 90

[RE

T

T

T

M

it

o

M‘APHY‘F
c R

ey

/\\

/\/\/\/

//\

/\

S~

\ AWAWAY

F(4, x) y

4y 3y

8

/\ /\

M3,"y) A2,

-60 |og(Z___) -'

/\\

Figure 4b,

I TR

AW e,
R R RN

B ST
PRARP A

/\\

/\ /\ /\/

¢

/\

//\ /\\
AN

xZOeI"(Jx)y 4y

x 2

\

| y)P
A

y

AN //\.JL\,
Rz, y) N1, y) F(0, y)

Figure 4c.

/

I,

N IS

e

e

i1

o

|

T

i

ot

i

/ \‘
\\F(Z.x) -!\p y/ 4 y/ 3 3\2 ’
\ I\
£ 5, 12
20 \e I{S\x

Figure 4d.

..
......................................
...................

B s T 7
; -~ P A
i /// // - v

N
\

' Figuxc.k. ‘

N AN
N

mw

IR

I

e

S

r-‘”.,/—r

[A

e M e L+ a4 e e et et emate et ateTeTe®at %t TwT et m e e T e, T

.....................
....................

- L - . . SR BN a . - joa " - e
A AR %) A S i o e / s
ao e T R o S : A R /
e e N R R f - _ ! s

94

":r!':*. AT

i

i AL GO

sl

[L

,5”,,__‘

e SO SN

e w/\,- , ./\' /\,/\,,/\

/\fﬁajlog(z—)\\ | .A
x/\l x\J

Figure 41,

..........

95

«
"i

Lo sl

Y U U R 0 R

........

BRI R iV

Figure 4g.

P
RS SR A A

- 96
F Level 1
—
= Kemel Value
.i F (5 x)
=
. Level 2
{ , Kemel | Value
= F(4,7)
15 : Level 3
i Kemnel Value
P FG.7)
[
i)
L.
Level 4
| Kemel Value
= F(2,7)
| Level §
: Kermncl Value
‘ O lE(R.)
B |

Level 6
Kermnel Value
F@O,y)

Figure 52,

S
i
:V":
1
Lo
i
Lo
s - < - CAPUL I R N B e T LT BN A O T S B T IR

Level 1

Kemel

Value

F(5 x)

£ F(4.x,)--;-

level 2

Keranel Value

F(4,7)

Level 3

Kemel

F Gy)

Level 4

Kemel

Vajue

F(2,y)

Level §.

Kernel

Valve

F(,y)

Level 6

Kemel

Value

F(0,y)

Figure 5b.

...........

Lo r

...............

e

-
I

BE)

[t

CTH

-

”
7

ritT

.. - , . R i et - . .
- v ’ : t e 4 A B .) i ” A . =
-) - S S S S e e M ot v - S -
o . " i - - - K K H v - N ~ 3 - . § Al

98

Level 1
Kemcl Value

.x) | = F(l,x)-——;-

T

"

g

Level 2
Kemel Value

F(4,x)|x F(B.x)f%
. . F.y) |y FG.y)- ¢

Level 3
Kemnel Value
F(@3,x)
F@3,y)

Ii

-

Level 4
Kemel Value

F@2,v)

= Level S

o Kernel Value

‘% F(l,y)

| Level 6

Kemnel | Value
FO,y)

=

=

P

Figure Sc.

R

-_me

g . *
A SRR)

»

PR

\. ,/,""’ e e
,;/?‘l o’ PR ‘;_/. \.\,
ok AT B
Level 1
Kernel Value

F (5, x)

x F(4.x)--;—

Level 2

Kemeld

Vslue

F({4,x)

x I(S.x)--:-

F(4,y)

y FG3.y) -3

Level 3

Kemel

Value

F(@3,x)

r F(hx) -3

F@G.y)

y F.y)-3

Level 4

Kemel

Value

F(2,zx)

x !(1.;)-%

F(,y)

y FLy)-%

Level S

Kemel

Value

F(l,x)

x FO,x)-1]}

F{(l,»y)

y F{(0.y) -1

Level 6 '

Kemel

Value

F (0, x)

- b‘(ﬁ.:.l_)

X

F(@O,y)

- tog(L=-1)

- Figure 3.

AN

e

99

‘@t

L RN B 2 TR APV & B w0

P
CIRE BRI B

LY Tele

S

=

T

==

T

=
=

gl i}

ais

It

e

mwr

e

|

sy

i

L
,
{
L.

I

Lever 3

Kemel

Value

F(5 x)

x F,“ﬁ.") —-

Wi

Level 2

Kermel

Value

F(4,x)

x F(S.x)—%

F(4,y)

y FG.y)-%

Level 3

Kesnel Value
F(3,x) |=x F(Z,x)—-;-
F(3-’) ’.F(2'~’)__%
Level 4
Kemel Value
F(2.x)|=x F(l,x)—-;-
FRy) |y FiLy) -}
Level 5
vl(cmel Value
FLx) | o) -1

FQ,y)

v o>y -1

Level 6

Kercel

Value
F o x) | -los(E)

FO7)

- log("—i)

Figure Se.

1 A

i .

@

PR
o .
M

..
-

S]
“a%c”s

| T - N . St 5 — i
hf iy i
il £
101

Level 1
B
Kcemel Value ‘
_ x -1, s_ _4_21 3_1 2_1_ _1
F(5 x) Jog(e) x x°—ox 3% o 3

Keruel : ~ Value
- x -1, ¢__35_21.2_1 _1
F(4,x) log(o) = x Nl 3% .
' toefl—Ly y4_ 3 _ 1 3_1 _1
F(4,y) log(—) "~y — 3y =3y~
. Level 3
" Kemnel Value
| oo X =1y . 3 __2_1 _1
F(3,x) log(T) x x 2x 3
-1
F(3,7) —los(L-“-’ Yy -yi-3y -3
B Level 4
Kernel Value
e X—1y 2 _ . _1
F(z.x) bS(x)A" x 2
-1)
F.y) | -oe(E==)y?-y -
Level 5
Kemel Value
F(l,x) - log(= ;!)x -1
FLy) | —log—hyy -1
Level 6
Kemel Value
F O 5) |-logE)
-1
F(0.y) -bs(l';—)
Figure SI.
e l ’ / 3 i - ‘.--:"‘"fyf'/ N

g -'.‘" !4-";: ;:‘_‘:;"j}. ‘.",. "

]
Ve

"
]

cEet

tT ‘.l-l\]

: § B /7 3 ;rmj.v

-

P
R
5 B

N .-.¢ L

P

A [} ...l -.
IR R

PR L AT T

‘l
»

. w
-

4

A M T = - s S W = e Tedes N .. .
LN NV O T L NS T e T L e N e NGNS T e Lo T
‘..,” e ,:... /LJ./IAJ}WWM.]F. ‘../f, x ..,.1:.al./«”.// A . f ,Te/..,; . .«; i . .o~ - \ ‘rﬂl“r A -../) ! [s ; A . N -~ .

/T \” ’ N
/flr r‘ o) ;//,,
>:
1 e ‘
34 N4,y) (3
Figure 6a.
Y e

102

T A 1 TR S ORI | N

103

oo L8 Batae tas
P R AN

. 4 e et
RAT !-'- R
- PR et a el

e T

R S T
D,
A L e e e

o tele ..

rx‘ N '. ” -.'_:._.'.‘

T

T

R

P

[
|

T

gL

T

N

R P P

m -

T

104

Figure Captions

Figure 1.

The tree structure of the expression:x +y +Y (3,5, x,y) + %

Figure 2.
The tree structure of the expression:

x 4y y22F(G5,x)-xF(3,y) 1

xy z.

Figure 3a.

The tree structure of the expression:

(-t - - - -3 - 1y,

~2%0 O (s> - 1) - 3y - Yy

Figure 3b.

The tree structure of the expression:
(105 *(6(0g(2L) - tog(ES) 45 43y +2)

—(50x* +30x? +20x 3 + 152 + 12)y %)/ 50xy

¢

.
e
.t

g

o .;.._‘ o
el

s e

¢

105

Figure 4a.

The tree structure of the expression:

F(5.x)y*-F(4,y)x® F(5x)>-F@,y)’ +F(5,x)y’—F(2,y)x’
xy xy xy

F(5,x)y1—-F(,y)? +F(5.x)-F(0.y)x’ +
v x ‘ xy

‘Figurc 4b.

After applying (2.2) to the expression in Figure 4a, and after some simplification we ob-
tain:
(25F (4, x) Dy +y2 +y2+y +1)
-1
~x%(60y (F (3,7) +F (2. 7) +F (L, y) +F (0, 7)) = 60log(2-=) ~ 125)/60zy

This figure illustrates the tree structure of this expression. '

Figure 4c.
After applying (2.2) to the expression in Figure 4b, and after some simplification we

obtain:

(3(20x21~'(3-.;)—5x)@ty +ytity 1)
-5x3%(12y(F (2, y) +F(Ly) +F (0. y))
- 12103(1—;—‘-)0 +1) —22y - 25)/60xy

This figure illustrates the tree structure of this expression.

-

sl

o

I

b

AT

T

JE— [P——

i

I

il

e r‘f

i

P

106
Figure 4d.
After applying (2.2) to the expression in Figure 4c, and after some simplification we ob-
tain: .
(60x°F (2, x) - (20x % + 15x +12)(y‘ +y3+y?*+y +1) =
-5x %12y (F (1,5) +F (0, ¥)))
- 1ziog(L§i)(y 24y +1) -18y2 - 22y — 25)/60xy
This figure illustrates the tree structure of this expression.
Figure 4e.

After applying (22) to the expression in Figure 4c, and after some simplification we ob-

' tain;

LR R A
"'!I"‘

(]
L

(60x*F (1, x) —(30x3 +20x2 +15x +12)(y*+y3+y2+y +1)

‘-""l

x5 -60F (0, y)y*+ 6oiog(1’;—1)(y +1D)(y?+1)

60y 3 + 90y 2 + 110y + 125))/60xy

This ﬁguré iltustrates the tree structure of this expreasion.

.

ce S

Figurc 4f.

- — \-
] .
Pty

[

- {
Lacs Y e

£y

After applying (2.2) to the expression in Figure 4c, and after some simplification we ob-

tain: -

R}
B

1

L ((60x 5F (0, x) + los(lf—‘-»)

E

—(60x*+30x3+20x2+15x +12)(p‘+y +y2+y +1)

- x5(60y? + 90y 2 + 110y + 125))/60xy
. This figure illustrates the tree structure of this expression.
L ./:"-‘
{1 .
- - Figure 4g. ‘
,i ~ After applying (22) to the expizasion in Ff\gmc 4f, ard after some simplification we ob-
;_,' t) tain:

P 4

N
S . L)
o * v
. Vot

((60x (log(2=1) + los(%l»'

1

1

L
[

My

—(60x* +30x? +20x2 + 15z + 12))

!

7 (y‘+y3.+yz+y +1).

\.
[OpE
l.‘ -:! .‘7

e

T e .y
ARG

s
1
-

et

x3(60y ? + 90y 2 4110y + 125))/60xy
| .

1

’J,.
-
IR

This figure illustrates the tree structure of this expression.

e
- 8 5
"N
"I ‘I

',
N

-
e

Figure Sa.

The six-level hicrarchy obtained by extracting the foreground kernels from (2.11).

107

|

e

mr

T

P—

W

: ; 108
Figure 5b.
The result of applying (2.2) to the highest level in Figure Sa.
Figure Sc.
New foreground kemels generated jn Figure Sb have beea entered in the table for later
5 " evaluaticn.
,,g Figure 5d.
All foreground kemels that were inserted in the tabie from the original expression have
A been expanded according to (2.2). This resulted in the discovery of several new fore-
\;i ' ground kernels which were in turn inserted into the table and =xpanded. The procedure
o that was uscd was an cxtension of the one used to generate Figures Sa-c, applied sequen-
tially to cach of the 6 levels.
=l Figure Se. -
r . New foreground kemels generated in Figure 5b have been entered in the table for later
| ;'.; evaluation. ' '
A
RN Figure Sf.
~
%‘ The expansions of the kemels of Level 6 resulted in no new foreground kemels. These
=2
'i ~ expressions were then substituted into the expansions of the foreground kemnels that were
;': being held in Level 5. The result is that now the expansions of the Level 5 kerels are
- expressed eatirely in terms of background variables.
Figure 5g. .
The procedure that was used o cbtain Figure Sf was repeated for cach of the other 5 lev-
cls.
3 |
e
e e e e " e e
C T] NI AR A AR AT IR RN R A .; e
o b, ' Y i : ¢ i

. ‘ . | =TT ~ . o1
7 | . ' ; . . 3 3 N e T i 5 o s /
Ve ‘ e < ‘ T P e . V. ' S
/ . s . N T T L . Voo . S

A0S

N

(U SN

5o

A\

N

N A P Y

Figure 6a.

The tree structure of the expression of Eq. (2.12).
(FG. x)y*+y +yi+y +1)

~(F(4, y)+F@.y)+F@2,y)+F(,y) +F(0,y))x 5lxy.

Figure 6b.

"The tree structure of the expression cbtained by substituting the results shown in Figure

Sg into (2.12).

\

109

gy

iEniin

M

TP

- .\(i“c_.,‘

BT

m

-

[T

T

i

—4——.{"'}‘

T

]

110

SOLUTION OF SIMULTANEOUS POLYNOMIAL EQUATIONS
BY ELIMINATION IN MACSYMA

William A. Beyer
Theoretical Division, MS B284
) Los Alamos National Laboratory
Los Alamos, NM 87545 USA

Abstract
Discussion of the solution of simultaneocus
polynomial equations by the classical elimination
algorithm is given. This algorithm is compared with
more recent Newton and homotopy algorithms. The
MACSYMA implementation of elimination theory is

g

= reviewed and its shortcomings are commented on.
Directions for future work are discussed.

E

- 1. INTRODUCTION

‘Eg o At present the principal algorithms for sclving

simultaneous polynomial equat1ons with real coefficients are
Newton's algorithm in several variables [5] and ' homotopy

algorithms due to Li, York, Garcia, Zangwill and Morgan {31.

The disadvantage of the Newton algorlthm is that 1t is not easy
- to ensure that all solutions to the system are obtained.
' .Homotopy algorlthms have the disadvantage that they depend on
solving initial value problems for nonlinear differential

= equations and the solution curves may involve singularities, at
least as far as the numerical implementation is concerned.

7 TLoa i 7 o e P > L L .
FE ’ ’ / B . S 2 LT ki < s N -
- . - i b ://

B —— - e . . . p,
.-) ol E A . 5 . . g
- - - fad 7z i . 3 i BPRE ,5&' . s

In this paper we discuss the MACSYMA implementation of the
oldest algorithm for solving simultaneous polynomial equations:
elimination, which goes back to Babylonian times circa
1700 B.C. It was subsequently developed by Euler, Bézout,
Sylvester, and others. Ultimately, elimination theory evolved
into algebraic geometry, where it lost its algorithmic flavor.
For a history see van der Waerden [9]. The best summary of the
algorithmic aspects of elimination theory is given in the first
29 pages of Macaulay [2]. The treatment is old-fashioned. A
modern treatment seems not to be available and we will not
prpvide it. Future work on the topic is suggested. "

Our experience is that elimination algorithms arei more
practical and more useful than the Newton or the howotcpy
algorithms for solving polynomial syStems.

2 ELIMINATION AND THE RESULTANT

A following polynomial system is found in a cuneiform text
from the first Babylonian dynasty circa 1700 B.C.:

2 2

x2 + y% + 2% = 1400 ’ (2.1a)
X -y =10 o | (2.1b)
y-z=

i0 . ' (2.1c)

The system is solved in the text by using (2.1b) and (2.1cj to
express X and y in terms of z and substituting into (2.l1a) tn
obtain a quadratic equation for z. The quadratic equation is
solved for z and x and y are obtained by back substitution,
yielding the two solutions

(30, 20, 10] , [-10, =20, =301 . (2.14)

...

o i

- L .

.-

T

- . .

'Y

i

e -

AT

o

[P——

T

o

T

T T

— {’ ”

i

T

,.«'f" ST - //\\ “k,i; w‘ //’v;‘ . ‘//f /;- , /ﬂ: “MV,J,‘_«::/"—‘“’ - ;7 / e e
- : - \"', - S .. < ' FA{_.‘» AT SR ~; - . - s/
112 | E
’ L]
The MACSYMA .system carries out a similar procedure, using the
;2_:_ subroutine ALGSYS, short for algebraic system:
=" (cl) ALGSYS ([x A 2 + yA 2 + 2z A 2 = 1400 , :
{ b
' X -y=-1 , y -2z - 10] , [x, ¥y, z1) ., -
= ' ®
which yields (2.14). _ | v
ALGSYS uses the method of the resultant, which we now :
review following the exposition in Muir and Metzler [4]. Let °
= n n-1 _ .
gox + a,x + + a _1% + a, = o , (2.3a) :
- m m- P = . <
box + blx + + bm-lx + bm o , (2.3b) .
,’E be a pair of equations in a single Yariab_le x. Multiplying E
= (2.3a) by x* (0 ¢ i < m-1) and (2.3b) by xJ (0 ¢ j < n-1), we
obtain the n+m system o
i . ' . ' . ~'j
v aoxnﬂ' +ax™l i o saxt=0 0<ic<mel (2.4a) ®
1
. | .
% T boxm+3 + blxm+3'1 + cee + bme =0 0¢<3j<n-1l . (2.4b)
’ The system (2.4) is é nonhomogeneous system of n+m linear ;
| equations in the n+m variables PR otm=l L %, In o
. ! . . = . . + . R .
-i[— ‘ order that this system have a solution for x, -, XM it s S |
L | 2
i
' 2
| »

T RN SPUPIE T S S S R L L S AP T A VLN Tt SR TR S S E S

necessary that the resultant

R=|bb, -+ b (2.5)

by/by -0 by

vanish. The resultant can be applied to a pair of equations by
treating one variable (usually of lowest order) as a variable
and the resgvof the variables as constants. The resultant of
the pair of equations is then regarded as 2a %ingle equation
with the variable eliminated. For example, the resultant with
respect to x of (2.1a) and (2.1b) is ’ x '

z2 + 2y +.20y - 1300 \ (2.6a)

and of (2.1a) and (2.1c) is

(z -y +10)% . o | (2.6b)

..........................

o - P ¢ ..
s e
LS LIS AN

-

ha

.,...,,.
AW

354 .‘...'_

;
tu

e e W

Wl

PR R K

.‘.
o'a

-,'_
Paaa

.
e e A

VYT T

N

e

- I

)
y

T

{
3
£
1

B
I

L.

-

1T

=

T

S—
IHE
1;I‘r l;

T
|

-y
I

il

T

The resultant of (2.6) with respect to y is

9(z2 + 20z - 300)% . | (2.7)

The roots of (2.7) are z = =30, 19. Back substitution then
vields (2.1d). ' '
More generally, one can use the subroutine RESULTANT in

Macsyma. The general procedure will be ‘discussed in the next
section.

3. ALGSYS

The subroutine ALGSYS solves a system of n polynomial
equations with integer coefficients in m > n variables as
follows. The equations with right side zero are first factored
into polynomial factors of degree > 0 over the domain of
integers and the svstem 1is split into a system of systems of
irreducible polynomial equations. For each system, a
succession of resultants are calculated and variables are
eliminated until one is left with a single equation which may
be multivariate or univariate. If the single equation is
univariate, the subroutine ALLROOTIS is called to solve the
equation. (The routine ALLROOTS solves the general univariate

polynomial equation (with real coefficients) over the complex

field. It obtains all the roots with their multiplicity by the
method of Jenkins and Traub [1]). The roots of the univariate
equation are then back substituted to obtain the ’genéral
solution.. : _

I1f the'single equation is multivariate and of degree ¢ 5
in some variable, the equation is solved as an equation of
degree < 5 in terms of the remaining variables. If the degree
of each of the variables is > 5, the solution procedure is
terminated. '

- TR e

s e
PIEL SRRy

w0

..
R

@,

% s
.

"I.. »
e e e

il . - P .7 B ’ - . , .

e o - - . R . - e ; o e o

a . s /S i A / . X .. L . . '2-;‘/4&,7? /,v/’;,,— Cp e
E P Al R

= ot T Y

o, . * el PR 7 K . X .
A J S . e
. B B > Lo e oo A

The algorithm ALGSYS has at least several shortcomings.
One is that if the final resultant is identically 2zero, the
algorithm yields the empty set, which may not be the correct
answer. Also, it is sometimes not clear what the complete
algorithm is. These shortcomings can be overcome by resorting
to *the algorithms RESULTANT and BEZOUT, where the procedure is
unambiguous. ' :

We call attention to the "“flags" ALGEXACT (affecting the
method of solution of univariate polynomials) and ALGEPSILON
whidh affects the accuracy of the solution of univariate

polynomials.

4. ', BEZOUTIAN

A method of producing an n-rowed determinant as the
eliminant of two polynomial equations of degree n was given by
Bézout in 1779. See Turnbull [7]. Suppose we have '

F(x) = agx + a,x + ayx + e
+a, 1% + a, = 0 ' (4.1)

- n n-1 n-2 v

¢ix) = box + blx + b2x + .
+b__x+b =0 (4.2)

vhere a, # 0. Multiply (4.1) by by and (4.2) by a, ‘and
subtract to obtain ‘ : :

n-3

n-2 -
+ |aob3|x +

- n-1
laobllx + |a0b2|x

+ |a°b ‘ =0 ’) (4:3)

il5

X
[N

A
e %o 0 O
o LT .

.
.

DR B N

T T

H o v..;‘

Yo

wr

. —]w... N

m

i

T
]

[l

116

W

T

[t

L

1

Ry

T

——

where
a, a.
lagbyl = 0 "1y |
b. b.
0 "1

X + a 'and subtract

Multiply (4.1) by bgx + by and (4.2) by a,

to obtain

1

n-1 : n=2 - _ n-3
lagb, 1% + (lagbgl + lajbyl)x + (lagh, | + Ialb3l)x

+ e 4+ (laobnl + |albn_1|)x‘+ Ialbnl =0 .
(4.4)

and so on, the final equation being

lagb |x"7* + lagb 172+ -ov 4 Jay_ob 1
+ la,_jb I =0 . | (4.5)
The dquantities xn'l, xn-z, .++, x are then in succession

eliminated from (4.3), (4.4) and (4.5) and finally a
determinantal equation not involving ~the variable x is
cbtained. The determinant is ‘called the Bezoutian of the
systems.(4.1) - (4.2).._Evident1y, the BRezoutian has the same
value as the resultant, although wve do not have an explicit

- statement of this.

el

1]
~
“
Rl
e
™~

The following are ten test examples taken from a report by
Morgan (3] where the examples were used to test 'homotopy
methods of solving polynomial systems cue to Li, York, Garcia,
and Zangwill. The examples were all soived correctly and
easily using the MACSYMA routine ALGSYS. Some of the examples
were selected becaus~2 traditional methods of solutions had
difficulty. |

Example . : Number and Type of Soclutions
1. xg + xy-1 =0 4 real solutions
Yy + x=-5 =0
2. 4’3 - 3x=y = 0 3 real solutions
X =y =0 .
,3. '4(x+y) =0 2 2
4(x+y) + (x-y){((x~2)° + y“-i) 1 real and two complex
‘ = 0 : solutions.
2 2 . _ .
4. x1 + xz-l.— 0 |
X.,-a, X,-a. X,-a 4 real solutions
11 2 "2 373 6 complex solutions
det xl-b1 xz-b2 x3-b3 = 0
2x1 2x2 0
Ix-bl2 (x~a, N)2 ({problem from geometric
2 2 optics)
-}x=-al® (x-b, N)* = 0
'where
X = (xl, Xy x3) ’
a= (-1, -~10, 0) ,
b= (1, «10, 0) .

117

T -

-

T

s

118 : ' —

5. x% + 2y°-4 =0 | o

x2 + y2 + z-8 =
o (x«l)2 + (2y - J2)° + (z-5)2-4 =0 ‘2 real solutions L
%%< 6 complex solutions

0
52

6. x + 10y
Z+wW
(Z‘Zzﬁgf
(X‘W) “2N

(0, 0, 0)

on
[eNeoliNoNe]

T

7. X+y+z+w - 1 = 0 two real solutions ;
: Xty=-z+w=3 = 0
! 2 +y2 + 22 +w - a=o0
(x-l)2 + y2 + 22 + w2 = 0 .
‘l: .
= 2 2 2 -

2 real solutions »

o
[
+
[5V]
"
w
+
»
= o : :
]
w
i
o O ©O © ©o o

-

’..«

= | \ - 3 real solutions ﬁ.?

=K
»
!
=
n
<

]
[«3

10, S y2 -1 4 real one-parameter
- - 2 o surfaces

119 =i

6. GEnNERAL SIMULTANECUS QUADRATIC EQUATIONS

T

The general pair of simultaneous quadratic equations in

W

' two variables has the form

‘bﬁﬁh.f'“kf
T

2 . 2 _
MyiX] F 2MoX Ky F MyoXo K miXy +mpXy +my =0, : N
. ' {6.1)
2 ‘ 2 _ -
Dy X] * 2DgpXg Xy * MpoXp *MyXy FmpXy; ng =0 -
The form of the resultant has been given by P. R. Stein [6] as :;if %
: . o {
x¥p.p, + %) + x3(p,P, + PP, + 2P.P.)
1{(F1F3 * F5 11F1%, 2P3 7%8 :
+ X2(P.P. + PP, + P> + 2P_P_) {6.2) s
1'71%s 274 8 7°9 ‘e T '
2 T
+ xl(P1P6+ P2P5 + 2P8P9) + PZPG + P9 =0 lﬂﬁ
~where . ‘ ' ' r'y é
Py = 2(mpnpp - NppMpy) S
Pp = BpoWp = Mpofp ~ wn
P3 = 2(mppnyy = Dyptyy) . -
. Py = nyym, = my n,c+ 2my,ny - 2n12m1 , (6.3) ;3}
‘Ps = 2m12n3 - 2n12m3 + m2n1 - nzmll ’
Pg = myng = MMy
Py = Mypfyy = Moy o
- Bg = mppny m mgomy
and
Py = myyNig = NyyMfg.

Formulae (6.2) and ({(6.3) have been ve;ified by MACSYMA.

However, these days the utility of such formulae may be *_
questioned. ' ‘ RS
Teve
T
® .

N
b

Y
.

SN B S W

oo

We applied MACSYMA to the general triple of quadratic
equations in three variables:

il2 4 2 i 2 i i i
1% * X, + Q5axg + Q2%1%p + Q3X;X3 + Q5% X,
: . . (4.4)

+ Lox, + Lix, +

+ Lyxy 2%z * L3x3 + C" =0

~for i =1, 2, 3. MACSYMA did yield a formula for the‘general

resultant of the three equations; but the formula filled the
VAX and a partial printout did not reveal anyt :ing interesting.’

Acknowledgment. The author thanks Paul R. Stein for
information on the classical elimination method and for
introducing him to elimination theory.

REFERENCES

1. Jenkins, M. A. and Traub, J. F. A three-stage
variable-shift iteration for polynomial =zeros and its
relation to generalized Rayleigh iteration. Numer. Math.

- 14 (1970), 252-263. ')

2. Macaulay, F. S. The Algbraic Theory of Modular Systems.
Cambridge University Press, Cambridge, 1916. ‘

3. Morgan, A. P.- A method for computing all solutions to
systems of polynomial equations. GMR-3651, General Motors
Research Laboratory, Warren, MI, July 1981.

4. Muir, T. and Metzler, W. A. A Treatise on the Theory of
Determinants, Dover, New York, 1960. '

5. Ortega, J. M. and Rheinboldt, W.C. Iterative Solution of

Nonlinear Equations, Academic Press, New York, 1970.

6. Stein, P. R. Elimination theory applied to general
systems .of quadratic equations. Unpublished manuscript,
Los Alamos National Laboratory, Los Alamos, about 1959.

7. Turnbull, H. W. ' Theory of Equations. Oliver and Boyd,
London, 1947. :

8. . van der Waerden, B. L. Science Awvakening. P. Noordhoff,
Groningen, 1954. 4
9. van der Waerden, B. L. The foundation of algebraic

geometry from Severi to André Weil. Archive for History
of Exact Sciences 7 (1971), 171-180.

. .
s |
f {
3/"1 AM OVERDETERMTMER SYSTEM OF PARTTAL DIFFERFEMTTAL RQUATTOMS i
£ Navid H. “ood =
| Code 2222, Mew Londc Laboratory ’
Naval lnderwater Systems Center -
o Yew London, Connacticut 0A220 USA M
CEEN Abstract
oL {
};VE 2 use MACSYMA to address the question, "What g
oo equations must be satisfied by the ratio of tuc
. -solutions of a given linear partial differential
A equation . in two wvariables?"™ The answer for ordinary {
- : differentinl equations is already Uknownt the ratio L
o satisfies a third order nonlinear ordinnary '
- differential involvine. the "Schwvarzian derivative,”
. which is known to be ‘invariant under Dhilinear év
. ~ mappiness. For partial differential equations, we find =
o the ratio mus% satisify two fifth: order partinl
DR differential equations, and we strug~le %to express ;
: : them in terms of genereslizations of the Schuarzian g
o darivative to functions of more than one variable, A ‘
i - descrintion of the method will make the need for :
Coo “ACSYMA obvious. Let U and V »e two solutions of the f
: rartial differential equntion, and 1let Y be their [
T : ratio. Substituting both U and Y*W into the egquaktion
o and takine their difference, we ohtain a first order .
i o ~partial differential ecquation for ! with coefficients E
datermined by first and second order partial {
. derivatives of ., Yo zet 2 nev cquation hy
- differentiating this ecquation with respect to X ond
. " another by differentinting with respect to VY. These ;
- 5 two equations, 2lonz with the orisinal eaquation :
o) satisfied hy '), 2re solved for the three second order-
Tl nartial Aderivatives cf i, For these to bhe %%
o analytieally consistent, the mixed third order .
i;; derivetives are computed and equated. This nives two
T identical 1linear constraints on I and its first ;
Sl derivatives having coefficients dependine on partial £
T derivatives of Y, nne of these eguations is solved L.
, - for the two first order partinl derivetives of V Hy
e usina the previously mentioned first order partisl e
N differential oecquation for 1. hs before, the mixed ;
. partial derivatives of second order must “e obttrinahies i {
" from differentiatine either of the first or-der
: Aerivatives., '"'Then tris is done, it results finally in ' *_
z two consistency conditions involvinr derivetiives of
- first to fifth order in V. Thase are thr tyo
. equations thrt w must satisfy. ' L
B |
T

.

e ey st

LLas

N,
N

T

-

ot

—_—

Rl

i

T

ey
i f
'

e

AN

i 1 L]

APPLICATIONS OF MACSYMA IN SOLVING
LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

Leo P. Harten
MIT
Cambridge., MA 02138
and
Paradigm Associates, Inc.
29 Putnam Avenue, Suite 6
Cambridge, MA 02139
’ Abstract
The exponential of a matrix plays an important
role in the solution of coupled differential
equations. Some programs that interface to the
DESOLVE routine are presented along with results for
linear sysiems. A linearized analysis of stability of
autonomous non-linear systems can be carried out zbout
the'equilibria. Certain Matrix Riccati - equations can

be converted into linear systems and then solved.

INTRODUCTIORN

| The exponential of a square matrix A is defined by the

power series:

exp(. A) = sum(At*i / §! , i, 0, inf)

{the 0 power is interpreted as the identity matrix I.)

There are a great many applizations in pure and applied

' sciences of linear systems of coupled differential equations

which can be written:
diff(U, t)=4A.1U (2)

where U is either a vector or a matrix, and A is a constant N x
N matrix (the dot stands for non-cohmutative multiplication.)

The case of vector U is typically included in an undergraduate

L LD

course on differential equations, but the treatment is often

limited to cases in which the matrix A has a complete set of

eigénvectors.
-The solution to Eq. (2) is given by:
U(t) =expl A=t) .U(D) | (3)

-1t is often not - evidently simule to compute exp(A * t)
from Eq. (1), unless A satisfies :some auxilliary condition such
as A413=0. A more powerful me:thod is to do a similarity

transformation on A and put it ir diagonal form:

A= SAM(-1) . LAM . S o (4)
where S is the matrix whose culumns are the eigenvectors of A,
and LAM is the diaQOnal métﬁix of eigenvalues. However, not all
matrices are diagonalizable, and thus this method will not
always be Usefu]. When A 'possesses N 1linearly independent

-eigenvectors,

..............

...

..........
.......

g2 00 2 s € 31w

T

T

e

e ® e

“ CBERW. C..e Ceiy T .

'~ s

/ E : S s R

e - et

I

LN

1

A

I

I

.

T MY

exp(A) = exp(SM(-1) . LAM . S) ;

. = St (-1) . exp(LAM) . § :
a and -exp(LAM) is a diagonal matrix with [i,i] element = 3
L exp(LAM[i ,i 1). The EIGEN package [1] will find !
| the similarity transformation, if it exists.
f When A does not possess a complete set of eigenvectors, it _ iA
| is not diagonalizable, and a different approach is needed. The
o use of Laplace Transforhs turns out to be useful for this case, ;
%i and they also work when A is diagonalizable. Thus, the use of ‘i
o the DESOLVE program [1] is an ideal method for }outine'solution
; of coupled linear systems. Some programs that interface with
r the DESOLVE routine are presented and discussed.
- In Section 2, the case of vector U is handled. Section 3 i
| gives the‘resu]té for matrix U. The lineérized stabflity i
- analysié of autonomous systems is discussed in Section 4, and !
-i Section 5 gives the reduction of a Matrix Riccati equation to a E
_ lfnear system. | :
B | :
o ' MACSYMA'ié thus found to be capabie of handling a variety f

: of»important systems of coupled differential équations. . Only ﬁ
r the homogeneous‘case_is here considered for the linear systems; ;
'E; but Laplace tfansiorms canbhandle inhomogeneous cases as well.'. ﬁ
L | ;
= (]
i 2. SOLUTIO®H FOR VECTOR U :;_
:
| '
- -
e S S e e
| - : E

When U is an N-dimensional vector in Eq. (2), the solution
is obtained by first finding the N eigenvalues lam| n] and the
M (M <= N) eigenvectors vl m] of A (see [2]).

For each distinct eigenvalue, denoted by j, tam{ - j], there

exists an eigenvector, vl j 1, and a solution
ul 3 1 =constl j 1 *v[j] *expl lam[j] =t). (6)

For K repeated eigenvalues, denoted by r and K, .
lam{ r , K], there may exist L (L <= K) linearly independent

eigenvectors, vl r , 1]. A solution is then

ul r 1] sum{ const[s] * vi r , s] * t4s *

expl lam[r , s] = t) , (7

If L < K then K - L additional solutions, denoted by q, of

fhe form

\ : ‘ ul gl =suml wlq,p ! * ttp *» expl 1aml q , p] = t) ,
\ R
L : (8)

p, 0, K-L-1)

must be sought} where the vectors w {not wigenvectors) are to be

determined.

laborious in general.

-These calculations are somewhat

Using the DESDLVE routine is far superior to hand computation

...................

1 &2

!
T

3

Bl (.

e

|

B

.‘I—
® |
~
T L
.

X3 Qi

.......................

......................

126 A o

when the characteristic equation for the matrix A has quadratic

T

or linear factors over the integers. 'Y
- The command VECODE(A,UO); will solve dU/dt = A . U with =
| Uto) = U0. The user specifies the matrix A and the 1list U0 of zg
L in{tial values. The output is U(t), stored in the global %:
: ‘variable UV. To solve the same equation with a different set o: ’ié

'i initial conditions, U(0) = NEW_UO, the user runs RESDLV(NEW_UO),_ ;;

i which avoids the re-computation of U(t). Thus for each matrix A ’“
b thefe is one call to VECODE, and for each set of initial -5
L conditions after the first there is a call to RESOLV. The code ;ﬁ
- is presented in Appendix 1. !’
| 3. SOLUTION FOR MATRIX U | ' | ;ﬁ a

The matrix system is converted into a vector system by -
E adding the N rows of lenéth N together to form one vector of | ii.
| length N*N. This requires a little bit of manipulation, but :
| then the method is the same as in Section 2.

L The command MATODE(A,U0); will solve for U{t), stored in . 22
= the global wvariable UM, when the constant - mafrix A and the : ?%
l | initial-value matrix U(0) = UD are the input. ﬁfter UM has been ;E
g found once, differeht initial conditions can bé imposed without . ;f
L the re-computation of UM by calling RESOLM(NEW_UO) with the new \
Eﬁ initial condition U{(0Q) = NEW_UO. Thus for each matrix A there ﬁ{

E is exactly one call to the function MATODE, and for each 1nitiql ;E
5 : e
g ‘

- %

) . - R L4 i - R . -t . g . . - . : - -
R T e W R -
, . S .- - -
. . . : e

127

condition on U after the first there is one call to RESOLM. The f ;_,/
code is presented in Appendix 2. v P =
: ' .

4. LINEARIZED STABILITY ANALYSIS ABOUT EQUILIBRIA OF

AUTONOMOUS NON-LINEAR SYSTEMS

Autonomous non-linear systems are of the form . ¥
dix1)/dt = fi(x1.x2....;xn) S ?7
d(x21/dt = £2(x1,x2,...,xn) ! 5 L
. v -
(9]

’.
dixn)/dt = fn(x1,x2,...,xn) - ' N ;gf 1,

| | | | ol |

whare the n unknowns are (x1,x2,...,xn) and the n functions .. =
(f1,f2....,fn) depend only on the x's and not on the independent : f-i -

h

variable t.

e

.
NI
—

The equilibria of this system are at points s
f1{x1a,x2a,...,xna) = f2(xtla,x2a,...,xna) ' , -
| | | o RO
= = fni(xla,x2a,...,xn2) = 0 . ':ﬁﬁ ;i
",
SO 4
L 2 }

©128

T

W,

T

T

N

m

—

T

g
Jan

r.._.,.ﬁ_

il

e
!
P

_,.».ﬁ..ﬁ..«
N

The object of linearized stability analysis is ‘to determine
the effect upon the system of a small displacement from such an
equilibrium. If the perturbaticn tends to die out in,time; the
System is stable, such as for a ball at the bottom of a well
which has ffiction. If the perturbation does not terd to
change., then neutral equilibrium has been found - a ball on a
flat plane. Fina1ly,. the perturbation may increase, resulting
in instability, such as a ball perched on top of a hill which

slopes down on both sides.

The SOLVE command may be used to find equilibria insofar as

it is able to solve coupled non-linear systems, as for low order

"polynomial f's which result in a factorizable “univariate

poiynomial upon eliminatfon. The Taylor series command will

then be able to expand the f's to first order in the x’'s around

- the eqhilibrium point. This linearized system will be

homogeneous when the coordinate system is centered on the
equilibrium. The results of Section 2 can now be used to
determine . the stability property: . the solutions are

exponentials involving the eidenvalues cf a matrix, and as long

as the real parts of the eigenvalues are negative there will be

'a decay back toward the equilibrium, ahd hence stability; if

there is exactly one eigenvalue with real part equal to 0 (the
rest being negative), neutral stability prevails; if more than
one real part is 0, then a polynomial growth can occur and be

unstable; and if any eigenvalue has a positive real part then

exponential instability occurs. The program STAB in,Appendix 3

............................

129

can be called on simple systems to determine the stability

~ property around the equilibria.

5. MATRIX RICCATI EQUATIONS WITH CONSTANT COEFFICIENTS

The non-linear and inhomogeneous differential.equation:
Giff(V, t)=A.V+Y . AT+M-V.N.V (11)

where AT = Transpose(A)}, and A, M, and N are constant nxn
matrices, and V is nxn - isl a matrix Riccati equatibn. There
are many problems in control, estimation, and scattering
theories in which this equation appears. Please see Reference

[3] fqr a list of references.

A transformation exists which converts the ‘matrix Riccati
equation into a linear system in twice as many variables. See
Appendix. 4 for a Macsyma derivation showing the equivalence.

The linear system'can then be solved as in Section 2.

6. ACKNOWLEDGMENTS

The author wishes to thank Dr. Ralph M. Wilcox of Hughes
Aircraft Co. EDSG for the introduction to the subject of Matrix

Riccati equatioﬁs.

The use of the DESOLVE program written by R. Bogen, and of the
EIGEN package written by Y. Gursel, aided this work greatly.

..

- EAA AN
- - LY
LN PR

1

- .

.
o ..
(N
a8 @

¥
A o s
NN

o 5,
e

ote’

i
=
I'd
e 3 «Tq,*“;
A L
-'-. t
RS
.t .
A s
P& Sy
. -.‘_ .
P
M i
R |
. A
H
/‘_::;,
e
7
.-
=t
- - E’:’
.=
[] =
P e
= Ed
- !
. - i
N I
L
——— /-
PR
. |
A
OO
Sw T :
oL {
et 1
LY !
.‘ ‘.' . I3
oL
.
\
L., N
el {
. " ” -
Ve e T w
it -
e B
e I
® -
- - .
‘-~ -'.--
Ot o
e =
A =
K
-.‘-‘;'- L
AR
._.‘.' v
Vol e
" I
. }
AR }
te i
"- LY
. N ==
.
LIRS !
AR i
* i

JEN———

LI

A

T

T

Sl

,w,m..m
I
! 1

[l

0T

7. REFERENCES

1. MACSYMA Reference Manual, Version 9, The MATHLAB - Group,

. Laboratory for Computer Science, MIT {1977)

2. Kaplan, W. Ordinary Differential Equations, Addison-Wesley
Pub1ishing Co., Inc. (1958}

3. Wilcox, R. M. and Harten, L. P. MACSYMA-Generated
Closed-Form Solutioins to Some Matrix Riccati Equations, Journal

of Applied Mathematics and Computation, Vol. 14, pp 149-166
(1984)

APPENDIX 1

CODE FOR VECTOR U

/* Copyright Leo P. Harten 1982, 1984 A1l Rights Reserved. */
/* Permission. is granted to use the code for any
non-conmercial purpose */

/* Sample call:
VECODE(matrix([1,3),[2,4]),[1,0]) =/

/* UV will be a vector (matrix) in general, so mode is ANY «/

DEFINE _VARIABLE{UV,' UV ,ANY);

/* Nefine the function VECODE which solves d(uv)/dt=A.Uv
with UV(t=0)=UQ =/

VECODE (A,U0) :=(MIDE DECLARE([A uolj, ANY),

BLOCK([DIM UL,EQ,EQNS],

/* temporary variables */

MODE_DECLARE([DIM],FIXNUM, [UL,EQNS], LIST [EQ], ANY)

/* their modes */

DIM:LENGTH(A), /* get dimension of the problem */

/* simple error check */

IF LENGTH(UO)#DIM THEN

Y
-

e

131

ERROR("A AND UO HAVE INCONSISTENT DIMENSIONS"),
/* generate a list UL conta1n1ng ui(t), U2(t) JUDIM(t) =/
UL: MAKELIST(FUNMAKE\CDNCAT"UV 7 T]) s 1, DIM)
/* bind EQ to the equation and show the Lser */
PRINT(EQ: TRANSPOSE (DIFF(UL,T}H)=A.UL),
/* get all terms on one side */
EQ:LHS(EQ)-RHS(EQ),
/* make a list of all the equations */
EQNS:APPLY (' APPEND,ARGS(EQ)),
/* call DESOLVE to solve by Laplace transform method */
UV:DESOLVE{EQNS,UL),
/* call the re- so]vor for vectors with the initial value UD */
RESOLVI(UO)))S :

/* sample call:
RESOLV(]O,1}) =/

/* define the vector re-solver */
RESOLV(NEW_UO):=(MODE_DECLARE (NEW_UO,ANY),
BLOCK([CIM, UL, ULO] MODE DECLARE(DIM FIXNUM UL,LIST,ULO,ANY),
/* temporary variable and mode */
DIM:LENGTH(NEW_UQ), /* dimension of problem */
/* simple error check */
IF DIMHLENGTH(U) THEN

ERROR("WRONG NUMBER OF INITIAL CONDITIONS"),
/* generate a 1ist UL containing utit),u2(t),...,udDimit) =/
UL: MAKELICI(FUNMAKE(CONCAT(uv,), [’ T]) 1,1, DIM).
/* supply initial values for UL from NEW 0o */
ULO:MAP(LAMBDA([X,Y],5UBST(0,T,X)=Y),UL, N:W uol,
/* return a vector from using ULO in' U */
 TRANSPOSE (MAP (' RHS,SUBST(ULO,U)))))$

APPENDIX 2

CODE FOR MATRIX U

/* Copyr1ght Leo P. Harten 1982, 1984 All Rights Reserved */
/* Permission is granted to use the code for any
non-commercial purpose */

/* sample call
MATODE (matrix([3,2], 1,4]),ident(2)) »/

/% UM is of mode any since it is a matrix */
DEFINE_VARIABLE(UM,’ UM, ANY) $

/* define MATODE which solves d{UM)/dt=A.UM with matrix
COUM(t=0)=U0 =/ ‘

1

-

rm

t
1
[

v

RS
!

I

—

MATODE(A,UO):=(MDDE_DECLARE([A,UO],ANY).

' BLOCK([DEG.EQNS,UNK,EQ,ANS,GM], /* temporary variables */
LOCALI(GM), /* GM is local to the block =*/
MDDE_DECLARE(DEG,FIXNUM,[EQNS}UNK;ANS],LIST,

GM,ANY), /* modes */
DEG:LENGTH{A), /* dimension of system x*/
/* define a matrix from an array with elements -
Uuttit), ut2(ti, ..., UIDEG(t) e

[ARDN

T

T

- UDEG1(t), UDEG2(t), ..., UDEGOEG(t) =/
X . GM[I,J]:=FUNMAKE(CONCAT(’U,I,J), 'T)]), ,
! ‘ UM:GENMATRIX(GM,DEG,DEG), . o
EQ:DIFF(UM,T)-A.UM, /* here is the equation =/ s
UNK:APPLY(’ APPEND, ARGS(UM)) . S
/* make a list of unknowns =*/ IR
EQNS:APPLY('APPEND,ARGS(EQ)). BRSPS
~/* list of equations */ s !
ANS:DESOLVE(EQNS,UNK), R
/* solve by Laplace transforms */ e
UM:SUBST(ANS,UM), _ T
/* use the answer to bind UM to general soln */ c ‘
RESOLM(UQ)))$ /* use the initial value */

i

/* sample cail ' ' - : ifE=;
RESOLM(matrix({1,e],[f,1])) */ . | | . .

-

/* define re-solver for matrix case */ . R
.. RESOLM(NEW_UO) :=(MODE_DECLARE (NEW_UO, ANY), . - ' T
] (IF NOT MATRIXP(UM) THEN /* simple error check */ R
- ERROR(“UM WAS NOT A MATRIX") ELSE R
IF FREEOF(U11(0),UM) THEN e
/* require that UM contain U11(0) */ R
. ERROR("U11(0) DID NOT APPEAR IN UM") ELSE A
BLOCK([LUO,DEG]), /* temporary variables =*/

MODE_DECLARE(LUO,LIST,DEG,FIXNUM), LUO:[],
/* modes */ s
DEG:LENGTH(U), /+* dimension of system */ o
/* DO loops to make list of UMij{0)=NEW_UO[1,j] =/ -y
FOR 1:1 THRU DEG DO | R
FOR J:1 THRU DEG DO o N
LUO:CONS(APPLY(CONCAT(’U,I,d),[0))= : S
NEW_UO[I] d] ’ LUO) ’ ' '.."‘ﬂ':'-.': .

SUBST(LUO,UM))))S$ /= use initial values in UM =/ o

F%
L.

APPENDIX 3
STABILITY ANALYSIS OF COUPLED AUTONOMOUS SYSTEMS3

/ * cobyright 1983,1984 Leo P. Harten A1l Rights Reserved #*/
/* Permissicn is granted to use the code for any
non-commercial purpose */

/* The routine STAB determines the stability to small
perturbations of a system of differential equations. Only
linearization is performed for this anaiysis, so the program
will predict neutral stability for the system dx/dt=xt2+y42,
dy/dt=x12+y?*4 at the only real equilibrium (x0=0,y0=0), while
this system is non-linearly unstable for real (x,y). For
systems which have a non-trivial expansion to first order around
the equilibria, the eigenvalues of the matrix of coefficients
determines linear stability: if any eigenvalues have a positive
real part, the system is wunstable; if the largest real part is
0, the system has rneutral stability; and if all real parts are
negative, then the system is stable. =*/

/* Here is a sample call to the program STAB. Note that the
dependencies of X,Y, and Z on T must be stated explicitly with
the CEPENDS command. -

DEPENDS{[X
DECLARE(
EQ1:DIFF
EQ2:DIFF ;
EQ3:DIFF =-X+ZxY-1;
STAB(EQ1,EQ2,EQ3) ,A: 1;
STAB(EQ1,EQ2,EQ3),A:-3;
ER?CATCH(STAB(EQ1 EQZ,EQ3))

STAB([SYSTEM]) :=(MODE_DECLARE(SYSTEM, ANY)},
/* SYSTEM must be of the form
dx/dt=f(x,...,2z), ,dz/dt=g(x,...,z) =/
‘ BLDCK({NUMER RATPRINT LEN EQ,DE,LOV,EQUIL,LOE, SDLJ TL
| LIN,NL,PROD,LN,CHAR,DET, TEMP), /* temp values */
WODE DFCLARE([NUMER RATPRINT] BOO'EAN /* modes */
: [LENT, FIXNUM
[EQ, DE Lov, EQUIL LOE SOLSE TL,LINS,NL, LIN PRQOD,
LN] LIST
[CHAR DET, TEMP],ANY).
NUMER:TRUE,RATPRINT:FALSE.
LEN:LENGTH(SYSTEM), /* number of unKnowns */
EQ:MAP(RHS, SYSTEM), /* the functions f,...,g */
DE :MAP(LHS,SYSTEM), /> the derivatives */
_ LOYV:MAP(FIRST,DE), /#* the unknowns */

I va
A, CON
(X,T)‘-A+X Y;
(Y,T)= ;
(Z,T)

133

x
.
R B
R
o i T
’. |
ce]
RO
. P s
]
O I
..-.‘.‘q
| . §
O
wd
(-
Sl 4
. -
IR b
- 1
. N
L
4
..:,'. ~
RSN i
-"
|

ST

r.—ﬁwr‘!“"
T

N

-

.

T

C G
» —

EQUIL:SOLVE(EQ,LOV), /* call SOLVE to get the

IF EQUIL=[] THEN
ERROR("SCLVE FOUND NO ROOTS"},

/ *

/x>

/>
/ *

/*

/*

/*

/*

equilibria */

complain if SOLVE could not handle */
make a list [x=x0,...,z=z0]
LOE:[], FOR I IN LOV DO
LOE:ENDCONS(I=CONCAT(I,0),LOE),
make a list of lists for x0=,...,z0= */
SOLS:MAP(RECTFORM, SUBST(LOE,EQUIL)),
make a list for Taylor of the form
[[x,x0,1],...,[z,z0,1]} =/
TL:[], FOR. I IN LOV DO
TL:CONS([I,CONCAT(1,0),1},TL),
linearize the functions f,...,g in x about
x0,..., and in z about z0 */
LIN:APPLY(’ TAYLOR,
APPLY (' CONS, [EQ,APPEND(TL}])),
make a list [x=xn+x0,...,z=zn+z0] =*/
NL:[}, FOR I IN LOV DO
NL :ENDCONS(I=CONCAT(I,N)+CONCAT(I,0),NL),
replace x by xn+x0, etc., in the linearized
system */
LIN:SUBST(NL,LIN),
make a list of products xn*yn=0 =*/
PROD:I[1,
FOR I IN LOV DO
FOR J IN LOV WHILE J#I DO
PROD:CONS(CONCAT(I,N)*CONCAT(J,N)=0,
’ PROD!, :
remove products from the linearized system */
LIN;LRATSUBST(PRCD,LIN),
maKe[? list [xn,...,zn] =*/
LN:L],
FOR I IN LOV DO LN:ENDCOMS(CONCAT(I,N),LN),

< characteristic equation of the metrix of

coefficients of [xn,...,zn] */
CHAR:COEFMATRIX(LIN,LNj-
IDENT(LEN)=*EIGENVALUE,
DET:EXPAND (DETERMINANT (CHAR)),
for each equilibrium compute DET,
solve (for 1ist of EIGENVALUEs),
get realpart of EIGENVALUEs,
find largest realpart,’
print the equilibrium point and
jts stability property */
FOR I IN SOLS DO (TEMP:EV(DET,I,NUMER),
TEMP:EV(SOLVE(TEMP) ,NUMER:FALSE),
TEMP:EV(TEMP,NUMER:TRUE),
TENP :MAP(LAMBDA([U],REALPART(RHS(U))),TEMP),
TEMP:APPLY (’ MAX, TEMP),
IF TEMP>0. THEN PRINT("THE EQUILIBRIUM ",I,
"1S ?NSTABLE, MAX RATE OF GROWTH = ",
TEMP :

P

L o R _7_

ELSE IF (TEMP=0 OR TEMP=0.) THEN
PRINT("THE EQUILIBRIUM *,1I,
"HAS NEUTRAL STABILITY OR",
"POLYNOMIAL GROWTH")
ELSE IF TEMP<O. THEN
PRINT (“THE EQUILIBRIUM "I,
*1S STABLE"))))$

APPENDIX 4

EQUALITY OF MATRIX RICCATI EQUATION AMD LINEAR SYSTEM

/* Copyright Leo P. Harten 1982, 1984 A1l Rights Reserved */
/* Permission is granted to use the code for any
non-commercial purpose */

Demonstration that the Matrix Riccati Equation

dv/dt = A . V + V . transposel(A) + M - V.. N .V

where A, M, and N are Constant kxk matrices, and
V, X, and Y are t-dependent kxk matrices,

is equivalent to a linear system in X and Y where

V=X . YM(-1)

(c4) /* TIME DEPENDENT FUNCTIONS =/

DEPENDS([V,X,Y],T}):
(dd) :

(c5) /* MATRIX QUANTITIES =/

[vit), x(t), yl(t)]

DECLARE([V,X,Y,A,M,N],NONSCALAR);
(d5) A done

icg) /=* RELATION OF vV TO X AND Y */
ViX. YA (=1)7

<-
(d6) X .y

e

T

I

(c7) /= EQN FOR DX/DT =/

= EQ1:DIFF(X,T)=A. X+M.Y; .
= . dx ;
- (d7) o - =m.y+a. X -
= dt p
| (c8) /+ EQN FOR DY/DT =*/ :
, °
| EQ2:DIFF(Y,T)=N.X-TRANSPOSE(A).Y; :
L dy
(d8) -- = n . x - transposelal .y
at) :
(c9) /+ EQN FOR DV/DT =*/ .
EQ:DIFF(V.T)=A.V+V.TRANSPOSE (A} +M-V.N.V; :
= _ dx - 1 d - 1 .
(d9) -- . vy + x . - |y) = g
'Ef dt | dt | -
= - 1> - 1> <- 1>
' - X .Yy .n . X .y + X .y . transposel(a) + m
| - 1
‘ +a . x .y -
| . .]
s {c10) /= USE THE DX/DT FROM EQ1 IN DV/DT =/ -
B EQ:EQ,EQ1; | S
- , d - 1 <- 1> -
I (d10) x . -- (y) + (m . y+a.x) .y = .
! dt)
- <- 1> - D <= : =
| - X .y N L X L.y + XLy . transpcse(a) + m -
_ | - 1 -
in +a.x.y °
’ {c11) /* REPLACE D{(Y#4(=1))/DT =/ | o
%? EQ:SUBST(-Y4(-1) .DIFF(Y,T).Y4(-1),DIFF(YM(-1),T),EQ); =
i -1 <- 1> dy <- 1> o
(d11) (m . y+a . x) .y - X .y - ..y - = s
[, ' : dt _ -
* | 1> <= 1> RO D 0
_ - X .y LN L X Ly + X .y . transpose{a) + m -
B < 1> | | e
M + a X . Yy ':
: .

137

o

{c12) /% USE EQ2 FOR DY/DT IN EQ =/
EQ:EQ,EQ2: '

LT
T

<- 1> <- 1
(d12) (m . y +a . x} . vy - X . ¥

ol imE

<- 1>
(n . x - transposela) . y) .y =

. et el
P

l

<- 1 <- 1 SECER P ,
=X .Yy ‘ . N .Xx .y + X .y . transpose(a) + m

<- 1) i (
+a.x .y . .

(c13) /+ SHOW THAT THEY ARE EQUAL =/ o i

RHS(EQ)-LHS(EQ) ,EXPAND:
(d13) ' 0

2y
1

Since the difference is (, the two forms are equivalent.

T

I

e
i

il

T

-, i
. I
L
I..
I\‘
e T
. (i
’ ks
s
-'_‘ |
oo
.

BEEEER -
. ’ ‘e 'm

....................

......

138 ;*
= i
E ANALYTICAL SOLUTIONS TO SOME MATRIX RICCATI EQUATIONS bt
L Ralph Wilcox o o
; Hughes Aircraft Co. EDSG _ s
L E1 Segundo, CA 90245 »
» and _if
f S Leo P. Harten o
‘ Paradigm Associates, Inc. -
29 Putnam Ave. Suite & .
W Cambridge, MA 02138 L
- and T
A MIT e
: Cambridge, MA 02139 o
= o o ~ Abstract 9
| ‘ Macsyma [1] was used to convert the inhomogeneous ﬂf
| non-linear matrix Riccati equation: L
: | .)
= S diff(vV, t)= A . V+V AT+M-V . N.V oo
{“ ' - |A, M, and N are constant nxn matrices, V 1is a ;i
symmetric nxn matrix, AT = transpose(A)] S L
| |
‘ into a linear system of differential equations in2 =
'?f' : nt2 unknowns. The DESOLVE program [1] can solve such o
- v o L
linear systems by Laplace transforms. .
L - A target tracker in which the‘tabget is‘subject to
stochastic forces was mode led by such an equation. : E ..
s ’ ‘ N
- j The resulting analytical solutions for V. when n=2 and 2
L. n=3, and with V either initially 0 or singular, were i
- obtained and verified. The Taylor-Laurent series as 2.
N t-->0+ and the limiting behavior as t-->infinity were: o
. : Ve
.
o ;9*”‘5515"5“5“”"525;£i’*‘-"*’L'}flf:’}f}:—"l"; ---- .?;*L‘;‘b-}VEi’i’i’;LL:Qlllki?LQL}Liiii{ti}}}gls}glgbgbcl

/

vf 7 g . 1’/7 //
v I ~ ,‘:, /,/
139 L
,'.v‘ ’
obtained, and confirmed the plots of the solutions. i*ﬁ N
See Reference [2] for full details. | ‘;‘“ =
 ACKNOWLEDGMENTS S
| .
The authors wishuclo thank Larry Rubin, Carlton Nealy, and aﬁf
Richard Frey of Hughes Aircraft Co. EDSG, and Frank Shields and ?i;
Stanley Rodak of Night Vision and Electro-Optics Laboratory for Pﬂ* f
their encouragement and interest in the work on the matrix fff =
Riccati equations. | ;;: gh
This work was supported, in part, by the Night Vision and }jﬂ ,
Electro-Dptics Laboratory through U.S. Army Research Office {ﬁi i
contract DAAG-29-76-D-0100, awarded to Hughes Aircraft Company ir: ,
on 26 June 1981. | | i =
W RS
| =y
_ \ » .
REFERENCES ‘= ST
RRE.
| | | A
1. MACSYMA Reference Manual, Version\ 8, The MATHLAB Group, Eﬁt -
Laboratory for Computer Science, MIT (1@77) | ’F: ﬁr

2. Wilcox, R. M. and Harten, L. P. MACSYMA-Generated

- Closed-Form Soluticns to Some Matrix Riccati Equations, Journal ;w’
of Applied Mathematics and Computéticn, Vol. 14, pp 149-166
(1984) - o -
e
,-.::-- -
S
per
e
|\.‘.‘ ‘L
| B
T e e e e e e e s .::-.:‘»:_'--}'.--:I'-j:-‘:l-{:u‘;--j}\::’4‘;'j:

Bl |

an

i

—
b
[
J
i

T

MACSYMA - AIDED LARGE DEFORMATION ANALYSIS OF A
CYLINDRICAL SHELL UNDER PURE BENDING

Kenneth A. Bannister
Naval Surface Weapons Center
White Oak, Silver Spring, MD 20910

Abs’ract

This paper addresses the large deformation behavior
of cylindrical shells under pure bending with
simultaneously applied uniform pressure. This
problem is important in the practical design of
cylindrical shell structures to resist failure due
to in-service bending loads combined with pressure,
for example, submarine pressure hulls, aircraft
fuselages, and industrial piping systems. A new
methodology is described for dealing with such
nonlinear shell analysis problems., MACSYMA is first
applied alone ané then is coupled with two.
appropriate minimization algorithms to solve for the
local large deforration response of the cylinder. A
previous potential energy-based analysis of the
problem has bheen extended for the purpose, and the
mathematical labor is greatly expedited with the aid
of MACSYMA, It is shown that in cases where
explicit algebraic solutions for, say, the
moment~curvature relation of the shell are
impractical to geaerate, only a potential energy
expression and its first derivatives need to bhe
constructed. From these expressions, nonlinear .
optimization algorithms can then be brought to bear
to minimize directly the potential energy by
methodically and efficiently adjusting the
displacements (or other appropriate basic
guantities). Having solved for the basic
quantities, derived quantities, such as strains,
stresses, and moments can then be computed.

1. - INTRODUCTION

This paper is concerned with the development and
demonstration of a new methodology to aid in the solution of
nonlinear problems in mechanics. The particular application
discussed here is a very specific case of nonlinear shell

BRI

T e

....................

response. The original motivation for this study was to
achieve a better understanding of the mechanics of a submarine
pressure hull undergoing "whipping,"” i.e., low frequency
flexural vibrations, caused by a nearby underwater explosion.
Pressure hulls are complicated structures, so instead of
tackling the complete problem from the outset, two
simplifications are introduced. First, a highiy idealized
representation of the actual pressure hull is adopted;
secondly, dynamic effects are ignored. . Because the purpose
here is to demonstrate a new methodology for solving this kind
of mechanics problem, it is felt that, although structural
details and the effects of motion are very important, trying
to account for them all at once would obscure rather than
enhance the purpose. In any case, subsequent refinements can
be easily carried out given a powerful analytical tool such as
MACSYMA. The underlying methodology actually has a much
broader range of application for both shell vibration problems
and in structural mechanics at large. It is shown how the
methodology can be used to extend a previous nonlinear shell
analysis and then facilitate practical solutions, exact and
approxXimate (numerical), of the resulting equations. The
large amcunt of mathematical labor typically associated with

obtaining nonlinear shell solutions is greatly reduced and the .

analyst has much greater freedom to modify or e:xtend the
analysis without the penalty of tedious, time- consumlng
algebraic manlpulatlons.

2. BRIEF REVIEW OF WHIPPING

. An earlier paper [l] gave a fairly detailed discussion of
explosion bubble-induced whipping of surface ships and '
submarines. Basically, whipping is defined as the transient
beam-like response of a ship to some form of strong
hydrodynamic loading, in this case the accelerating fluid flow
field surrounding a pulsating and migrating explosion gas
products bubble. Whipping analyses can be performed with a
simple lumped mass-elastic finite element structural model
coupled to the fluid equations of motion. Typically, only the
first few modes of vibration of the ship are needed to
satisfactorily capture the whipping response, i.e., the heave
and pitch rigid body modes and the first 2-3 distortion modes.

If the whipping motions achieve large amplitudes, then
any attempt at predicting the local hull plating response
{that is, shell response) must account for possible large
out-of-plane displacements of the 8hell which cannot he
handled within the context of elementary beam theory.
Fortunately the motions are low freguaency, at least at
locations remote from where the fluid loads impinge, hence a
quasistatic shell analysis is appropriate. 1In the regions of

141

i
i
i

R—

a—

T

Proseaty ey

8 ..

NI

et "
A
| —

Sai

T
L

AT

s
..
LSS e

Pd
‘s

[
i
L
=

T

R

intense fluid loading, because of the high frequency shell
motions, shell inertia terms become important and thus a more
sophisticated transient analysis is required. In this paper
we will focus on the problem of analyzing the quasistatic
large deformation behavior of the overall pressure hull.

3. ENERGY ANALYSIS OF SHELL UNDER BENDING AND PRESSURIZATION

We consider the large deformation response of an elastic
thin-walled circular cylindrical shell subjected to pure
bending and either internal or external pressure. Figure 1
shows the craoss saction of the shell and defines pertinent
geometric and pressure parameters used in. the analysis. By
"thin" we mean that a/t>50 and sinc» most pressure hulls are
of the order a/t=100 we can regard them as thin shell
structures. Because the shell is thin, we say that the state
of affairs in the shell wall can be adequately represented by
conditions in the middle surface (r=a). For the sake of
convenience, we further assume that moment and curvature do
not vary over the shell length so that all cross sections
deform in the same manner. A side view of the shell is shown
in Figure 2. The shell's neutral axis is bent into an arc of
circle with radius p due to the terminal moments. Figure 2
also derfines d, distance from the neutral surface to a given
point on the deformed shell middle surface. This parameter is
used in computing stress and strain gquantities in the shell
wall. Linearly elastic material behavior is assumed, thus E
(Young's modulus) and v (Poisson's ratio) completely
characterize the material response.

The thinness of the shell wall relative to other shell
dimensions leads to large (when compared to the thickness t)
displacements normal to the shell wall during hending,

‘rendering the problem jeometrically nonlinear. Therefore, any

attempt to accurately determine the shell response must
account for these geometric nonlinearities. There is a smooth
transition from small to large displacements in this problem.
Thus, nonlinear effects must be anticipated starting at fairly
low load levels compared to the peak (maximum possible) moment
that the shell can carry. Furthermore, pressure has a

remarkable effect on the load-displacement response,. as will

be shown. Internal pressure tends to stiffen the shell in a

vay that increases the peak moment while external pressure

weakens the shell's ability to withstand bending.

The problem will be analyzed by an energy minimization
approach, facilitated by the use of MACSYMA. The total
poten‘ial energy function is formulated for the loaded shell
and is cast in terms of middle surface displacements at a
cross section of the shell. The shell is assumed to be

. "C
Lt e
el
O /
1
.

143

T

il
“

CTHTT

ot

Uniform

internal

pressure

\ P

“iniform
external
pressure
pO

v,z = Circumferential and
normal coordinates

v, w = y and z-direction displacement components at the
paint P of the shell middie surface

- Figure 1. Definition of Cross Section Parameters and
' Coordinates for Circular Cylindricai Shell -

‘44

f
!
i
i

L
i
{
i

T

V RS - . ‘ . oo

P = Radius of
curvature

d = Distance from neutral axis to point P of
shei! middle surface
\ .

\
Figure 2. \Cylindrical Sheil in Pure Bending

i
|

. .
‘e ca g e g

TP

»

.-
-‘ * ™
-. '.
~
AOAD, |
) -

.

-

&L:_u' ;'4' o

infinitely long and moreover that no variation of cornditions
occurs along its length. Truncated Fourier series terms with
a priori unknown coefficients are included in the displacement
functions to account for nonlinear effects. The goal of the
analysis is then to determine the coefficients of these
additional terms which minimize the potential energy. The
strategy followed is to generate an expression for the
potential energy involving the unknown ccefficients and the
curvature parameter defined by ¢ = a/p. € will also be
uriknown for given values of moment and pressure. Then, for
each choice of bending moment and pressure, the minimizing set
of unknown displacement coefficients and curvature parameter
is found by two methods: '

(1) Use of MACSYMA to obtain explicit solutions for the
coefficients in terms of ¢ and subsequently M(e); this we
will call the "exact" solution; and

(2) Generation of the nonlinear momet-curvature relation
by direct applicatior to the potential energy of two different
computer algorithms designed to minimize nonlinear multivariate
unconstrained functions; that is, the potential energy will be
minimized directly with the aid of optimization algorithms.

The purpose for the second method is to show that in the
case where an "exact" moment-curvature relation cannot easily
be obtained by the first method, then accurate numerical
results can nevertheless be produced through direct energy
minimization. This notion has broader implications for
situations where a large number of unknowns, say 200, are
involved in a particular nonlinear mechanics problem.

As in most nonlinear shell analyses, the sheer amount of
mathematical manipulation can be enormous. In the present
case, MACSYMA is used to substantially reduce the mathematical
labor. This is, to the author's knowledge, the first time
such a tocl has been applied in a comprehensive manner to a
nonlinear shell analysis. MACSYMA is excellently suited to
the task as it can handle all of the necessary mathematical
operations involved such as functional evaluation, trigono-
metric expansion and reduction, differentiation, integration,

. and equation solving. Its convernient similarities to other

.‘'standard programming languages, along with its file
manipulation features make MACSYMA extremely useful for the
problem at hand. :

Using a powerful mathemat1ca1 ‘tool such as MACSYMA, it is
now possible to carry out analyses of nonlinear structural.
mechanics problems and avoid many .ad hoc simplifications
authors in the past found necessary to make the effort
tractable. 1In the present work, a MACSYMA code has been
constructed which reproduces step-by-step the mathematical

e

==

N

Blink

S

[

T

A

i

T

mr

~

[

H
[
§

R

T

I

analysis of the shell bending problem beginning with
displacement function generation, derivation of stress and
strain quantities, proceedina with construction of the
potential energy function, and finally ending with solution
for the unknown Fourier coefficients and generation of a
moment-curvature parameter relation. It is possible, within
this code, to include or exclude quite readily certain
nonlinear displacement terms that previous authors felt
ccmpelled to drop due to mathematical complexity. Thus, the
usual simplifications invoked in shell work suggested by the
Phrases "neglect quantities of small magnitude"” and "neglect
cross product and squared quantities" can be freely adopted,
ignored, or modified as the analyst wishes. The extra
calculational burden is carried by the computer, not the
analyst. As an example of the savings in time and labor that
can be realized with such a symbolic language tool, the author
applied FORMAC-73, an older language, to a two-term Fourier
series displacement function analysis based on a nonlinear
shell theory in order to obtain the integrand of the strain
energy (bending and stretching of the shell middle surface)
expression. Manually, this effort required two weeks--with a
considerabie amount of time consumed in checking for and
correcting errors. With FORMAC-73, the same exercise required
less than one day with the aigebraic operations done correctly
throughout. For three, four, or more Fourier terms or, let us
say, alternative displacement functions of greater complexity,
it was clear that hand-computations would become very costly
in time and the likelihood for errors very great. In
addition, the coding could be stored if desired and modified
and re-run for different cases and the results retained on
files for listing or for later applications.

One of the earliest studies of the cylindrical shell in
pure bending (without pressurization) was the classic paper by
Brazier [2). Brazier simplified the analysis greatly by the
accurate assumption that the shell middle surface does not
stretch, i.e., is inextensible. He also pointed out that the
problem becomes fundamentally nonlinear due to the thinness otf
the shell wall relative to other dimensions of the shell.

Thus the linear relationship between moment and curvature
derived from the usual St. Venant's theory for bending of
beams of seolid cross section is invalidated since local wall
deformations are large and thus strain cannot be a linear
function of original position. Figure 3 shows the disparity
between the linear (St. Venant) and large deformation
(nonlinear) predictions of moment vs. curvature. Also, in
Figure 4 we see the ovalization mode that the shell cross
section takes on; this mode was assumed by Brazier in his
analysis. :

In the small dispiacement range, superposition holds;
hence the moments and pressure can be applied in any order., .

‘Then, following the approach of Brazier [2]) and Wood [4]), the

147

Moment, M v
Linear (St. Venant) theory

el '
\ Large deformatio

theory .

M

crit.

Curvature, X=1/p

FIGURE 3. MOMENT-CURVATURE BEHAVIOR AS PREDICTED BY LINEAR {ST. VENARNT)
THEORY AND LARGE DEFORMATION (BRAZIER} THEORY o

e

N

Original circular
Q\ Cross section

‘ Ovalized or
— flattened cross
section

FIGURE 4. BRAZIER'S OVALIZATION MODE FOR THE CIRCULAR CYLINDRICAL
SHELL IN PURE BENDING

RN T B
. CRFCI]
* 0.

1
1

et s
IR I P T
[i

possibility of nonlinear deformations is allowed by
introducing truncated Fourier series terms in the displacement
components v and w (defined in Figure 1). These terms have
undetermined coefficients which are to be found by application
of the Theorem of Minimum Potential Energy.

The potential energy V is ¢iven by
V=UH“+W. (1)

U is the strain energy stored in the shell due to bending and
W represents the work of the pressure and bending loads. In
order to account for the bending strain energy, the change of
curvature at any point on the shell must be computed. Brush
and Almroth [3] show this to be given by (after accounting for
a sign change due to use of a different convention for w)

. 2
x =21_fdv 4 dwy, (2)
06 a2 \de de?) '

Next, the strain energy U is given by

_ 2w
2
U= % f [D X¢¢ + t(UxxExx
(o]

*t Opecee *t Tpecee * TxxExx v (3)

+ 2 Oyxxexx * 2 E¢¢€¢¢;]‘d¢ ,

An important geometric parameter is d, the distance from
the shell neutral surface to a given fiber in the shell middle
surface. (as shown in Figure 2). The usual assumption of thin
shell theory is appliad here, namely, that stresses and
strains do not vary through the wall thickness and that the
normal stress through the thickness vanishes. Therefore, the

. middle surface stress-strain state adequately represents the
response of the shell. The parameter d is given by

d = (a - w) cos¢'- v sin¢g . — (3a)

AT

. ¢ PRI
. e K T a
RS- . B

" ’.’,—.:'_'_'. . <

(
3
i
!

T

T

VW%J o

e
| i

IR

L?U

The circumferential and axial stresses and strains in the
small displacement range arec given by Wood [4] for bending and
pressure as follows:

for bending

€xx d ’
p

(4)
€4 = -

Tpp = 0i .
and for pressure
Txx = s (1-2v),

Oxx = 5—

(3)

€pp = 3 (2-v),

_6¢¢ = Ea.

Although the deformations may become large, strains remain
small; this is typical in thin shell structures. A large
strain analysis would require accounting for plastic material
response-this problem is not considered here.

In these equations, the pressure entsrs through the
parameter o« given by o

a = Pa | ' ' (6)
Et

=
L

-) g b - S : -
151 Seli
@
Sokolnikoff [5] reports the linear w and v displacement '
components for bending and pressure are gilven by:
for w E
= VE€a el Z;
wo == cosd , R
(7) R
Boalmnt
*. =
’5:'-(_2_5.\.)_Laa ;
..
and for v .
v = 0 (symmetry) , .w:;'f
‘ (8) r) —
vg = - XE2 sin¢ . !
2
We havé introduced@ the curvature parameter € in Equaticns i .%
(7) and (8). 1t is defined by : Aot
e =2, (9) PR
p o e L
».
The total displacements v and w are then the sum of bending, }E f
pressurization, and additional terms vj, W needed to -
account for large deformations of the shell. Thus we have
v = vg + vy '
(10)
w = w+ wog + wy . ,': -
e_
N e S e L I RO
) , .

g

|

T

,-m»,,.

g

T

152
Following Brazier [2], we assume that the additional
displacements v), w] are inextensional; thus we have
dv
- d¢ .
According to Wood [4], vy and Wl can be expressed as the
infinite series given by
[+]
vy = z An sin.n¢ , (12)
T =2 .
and, following Equaticn - (11), we must have
[-]
wi'=_1= I nA, cos no . : (13)
d4 n=2 .
Note that v and w do not vary with position along the shell
wxis; that is, all cross sections must deform in the same
manner. Also note that the choice for v satisfies /
displacement continuity and symmetry conditions on v. Hence,
the total displacements become
w
v = - Y83 s5in ¢ + I Ap sin né
2 n=2
w = - (22V)aa + YEa cos ¢ -
2 2 (14)
’ |
@ '
+ L nAp cos né.
n=2 :

.

S
L

e
|

L.

The work done by the pressure and applied moments is given by
Wood [4]1 as

(15)

We see then that the potential energy V can ultimately be ‘ n:,; ;
written as a nonlinear function of the coefficients A, and cE
the current curvature parameter € in the general form »

V = V (AZ,A3' - . .7 E)o ») (16)

The strategy followed from this point is to seek values for s =
the coefficients Aj,A3, . . . which minimize the total ST

potential energy of the loaded shell.

, Wood [4] proceeded with the eglution by neglecting
certain terms in V involving vl, wi, viwi, then expanding V
and applying the theorem of Minimum Potential Energy-. V is

stationary when

V_ = = 0. o (17)

V_ = 3V

A
Az 3A3 ‘ ’ An

Wood [4]), for example, has carried out the simplification (or
linearization) of V just mentioned and has found that the
coeff1C1ente A and A3 become in that case

ae?(l-vz) [l + (liﬁ’]a
2(t/a)2 + 8(1-vd)a

(18)

-ae3 (l-v)
48(t/a) + 72(1-v9)a

>
w
]

...................................

54

The remaining coefficients vanish, i.e.,
Ay =Ag=...=A,=0. {19)

However, these terms do not vanish if the linearization is not
carried out, as is shown in {6]. Unfortunately, the
amount nf algebraic manipulation associated with including
squared and cross product terms grows enormously as more terms
in the Fourier €xpansions are taken. This difficulty is
greatly lessened by use of MACSYMA.

It is useful to derive a general form for the
moment-curvature relation of the shell. We have seen earlier
that the coefficients A, can be expressed as functions of
the curvature parameter; hence, the potential energy V may be
wricten '

i
f

joon

V = G(Ag(e) ,A3(€), « o «s€)- (20)

mr

For V to be stationary with respect to €, we must have

da
V=296 "24+,,.,+86G =0, . 21

- Je A, de de p)
= ‘But since
L :
; V_ = 9V_= _ ., .3V =0, (22)
% 9 3A3 An
F% i.e.,
L.
36 =236 =, ,,=236_=9 | (23
= 3R, A3 : A, '
L
fé Equation (21) reduces to
L. : .

a6 = g . : (24)

Q
™

ol e n, %, %y %, Y "w e "m " - - - - R P - R
T T T T e e B e o I e DR TN S . B

This last equation may be rewritten quite easily in the
following form

gg = f A A e s o e) - g = 0
de (2:83, ’ a (25)
or, solving for M, we have

M= a f(Az,A3' s . 0'An'€)n (26)

Wood has found in his linearized analysis [4] that Equation
(26) becomes

E 2 2 2
M = IXX € [2 + NV !tfa) + 2 (2-v) a2)
2a 6(1-v2) g

4+ 4 iZ%Xl a - 2v2a]

(27)

2 2
3(1-v) (1 + (2¥)«)
+ &3 [vz - -T2
(t/a)2 + 4(1~-v2)a

+ €3 -v? ilfvzl-
24(t/a)2 + 36(1-v2)a
Equation (27) may be written, for convenience, in the simpler
form
M = cje + ce3 + c3e>. (28)

Note thét peak moment values are readily found, corresponding
to roots of the quartic given by

5&364 + 3c252 + ¢y =0, | 29)

f
|
b
|
i

w1

JE——

|
.

Since Eguation (29) has four possible roots, the root desired
must be real and positive. This value of € can then be
substituted in Equation (28) to get the corresponding peak
moment. Other quantitiss of interest, such as the deformed
cross secticn profile and stress and strain dependence on
angle ¢ can also be generated at this peak moment wvalue.

This analysis has been extended with the aid of MACSYMA
to include the quadratic terms in v; and wj; which Wood
neglected in his energy function. It is shown in [6] also
that Wood's entire analysis can he reproduced by use of
MACSYMA. By including the quadratic terms previously
neglected, we show that these terms have significant effects
on the moment- cuvature behavior of the shell. Explicit
solutions, in algebraic form, are given for two, three, and

" four term trigonometric expansions of vj and wj; {(see

Equation (4)). It turns out that the coefficients A4 and

Ac calculated in this case do not vanish as Wood found in

his linearized analysis. As an alternative to
straight-forward solution for the moment-curvature
relationship through the use of MACSYMA, two different
gradient method-based optimization algorithms are applied
directly to the potential energy functional. These algorithms
were designed for the minimization of nonlinear unconstrained
multivariate functions. They require only explicit
expressions for the function to be minimized {in this case the
potential energy) and its first derivatives with respect to
the independent variables (A, . . ., Ag,€). We show

that both algorithms give excellent agreement with the "exact™
moment-curvature results calculated through MACSYMA- generated
expressions. Thus in situations where it may not be practical
to solve directly for a moment-curvature relation, useful and
accurate numerical results can be obtained by direct
minimization so long as expressions for the potential energy
functional and its derivatives can be obtained.

4. RESULTS

By use of the MACSYMA symbolic manipulation system,
quadratic and cross-product displacement terms can easily be
retained in the energy expression (Eauation (3)) and the
necessary algebraic operations carried out. To do this by
hand would prove to be a fOrmidahle task, even for a few terms
in the Fourier expansions. Such routine mathematical
operations as trigonometric reduction, expansion of products,
differentiation, and integration can be done with MACSYMA., A
further useful application of this tool, is illustrated in

Appendix A, where the Euler equation for Brazier's an¢lysis is

solved.

A useful way to characterize the shell respoase is to
display its moment-curvature behavior similar to the generic
curve given in Figure 3. Two computational procedures are
available: Direct generation of an explicit equation relating
moment M and the curvature parameter ¢€; or direct minimization
of the total potential energy expression by numer.cal
minimization (i.e., optimization) methods. MACSYMA-generated
solutions fer the coefficients A, . . .,Ap have been
obtained for the fully nonlinear energy expression. With
these coefficients, we can then compare plots of M(e) for
Wood's linearized analysis with resuits from the present
nonlinear analysis. This will show clearly whether neglecting
the quadratic terms (as Wood did) affects the moment-curvature
behavior. Figures 5 and 6 show respectively comparisons of
M(e)} for Wood's analysis with the present analytical results
for moderate internal and external pressure (300 psi). The
shell is made of steel and has dimensions typical of a '
submarine pressure hull. The curves for the fully nonlinear
analyses (two, three, and four-term Fourier expansions) are
very nearly the same; hence, all three curves appear to
coalesce to a single line {upper curves in Figures 5 and 6).
Computations for the nonlinear cases were done with the
MACSYMA code listed in Appendix B. Additional comparisons
like those in Figures 5 and 6 can be found in [6] for other
pressure values and shell geometries.

As an alternative to explicit generation of the
moment-curvature eguaticn, the energy expression for the
system can be minimized directly through use of a numerical
optimization technique. In this case, of course, we must
foreqo seeing the explicit algebraic solutior form and must
instead settle for "approximate” answers, albeit with a
controllable accuracy. The purpose here is to demonstrate
that in those cases of nonlinear shell analysis where even the
‘assistance of a tool such as MACSYMA is not completely
effective in obtaining "exact” solutions, extremely accurate
numerical results can be easily gotten if the energy
functional can at least be generated. This situation could
arise in the present work, for example, if a large number of
Fourier expansion terms were desired or if the underlying
shell theory formulation was made more complex. We will,
without loss of generality, illustrate this approach for only
the simplest of the Fourier expansions (i.e., two terms); more
terms could easily be accommodated but with a greater
expenditure of computer time in performing the MACSYMA
manipulations. : " ' '

Two gradient method-based algorithms have been used to
minimize the energy functional. Both are designed to minimize

. quite general nonlinear unconstrained multivariate functions.

At present V, the tctal potential energy functional, is the
objective function for which a global minimum is sought for
given moment and pressure. The minimum is found by

157

- ,’. / i - ‘/‘ P - - . .
R
\‘_
Peos
5
4.0
. E =30x10%psi
L v =03
a/t = 100 T
‘ P, = 300 psi
[
%
‘ 3.0~ Two, three, and four term

5{ . ' nonlinear analyses

&
| o
; z
= x 20k Wood's prediction

w
1 s
{
= 1.0+
4
0.0 i 1 i { i
‘ 0.0 2.0 4.0 6.0 8.0 10.0

€(10%)

il

FIGURE 5. COMPARISON OF NONDIMENSIONAL MOMENT-CURVATURE PREDICTIONS
{THIN SHELL, MODERATE INTERNAL PRESSURE)

TTHE

coea

§

T

|

i
I
'

U,

159

-
4.0
Two, three, and four term
nonlinear analyses !
3.0 g
—
Wood'’s prediction
& =
e
X 2.0]
z | |
(1]
= 6
E =30x 10° psi [
v =03 -
a/t =100 =
P, =3.0psi
0.0 | |] 1 .
0.0 2.0 4.0 6.0 8.0 10.0 E
€ (103) ' -
FIGURE 6. COMPARiISON OF NONDIMENSIONAL MOMENT-CURVATURE f’R EDICTIONS - %
{THIN SHELL, MODERATE EXTERNAL PRESSURE) e

M

JRN———

e

systematlcallj adjusting € and the coefficients Ap until V

is minimized. The user must supply explicit expressions for V
and its first partial derivatives with respect to €A1, - - .
A,. Also, reasonabie starting values must be supplied for
these parameters from which the algcrithms begin with
iterative search for the minimum of V. Both algorithms are
conveniently contained within the FORTRAN subro:zcine CONMIN
developed by Shanno and Phua [7].

The first algorithm incorporates a variable metric
technique, i.e.. initially it resembles the Steepest Descent
Method in performance while resembling the Newton-Raphson
method as the minimum is approached [8]. The second algorithm
is based on the conjugate gradient method. 1In this case, the
procedure is to seek the minimum by successive linear searches
along mutually conjugate directions. Of course a major task
then becomes the generation of sets of such directions. The
particular implementation used here is one due to Shanno [9].
As is shown in [6), both algorithms were first "put through
their paces” by testing them against suitably difficult
functions; both were found to be satisfactory. FORTRAN
routines were then written, built around MACSYMA-generated
FORTRAN coding for the energy expression, and coupled with the
CONMIN subroutlne to compute moment-curvature re«ults similar
to the prevxous "exact solution" procedure.

_ Moment-curvature plots, similar to Figures 5 and 6, were
computed for the same shell geometry but for an internal
pressure of 3000 psi by use of both algorithms. Results for
the conjugate gradient and variable metric methods are shown
in Figures 7 and 8, respectively. The upper line in both
figures was generated from the exact solution for M(g) :
discussed earlier while the triangles represent the discrete
points where the algorithms supplied approximate values. Both
algorithris gave excellent agreement with the exact solution,
typically to three or four digits' accuracy on moment values.
Further calculations of this kind are given in [6]. It is
expected that the excellent performance obtained for the
simple two-term expansion carries over to the higher
expansions as well. 1In general, in both the test problems and
in the moment-curvature calculations, the conjugate gradient
method required more function evaluations (of V and its
partial derivatives), that is, more computer time, than the
variable metric method to converge to a solution.

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

A new methodology has been developed for the solution of

.geometrically nonlinear shell problems and is illustrated by

application to the specific case of a large deformation

Ma/El, (107)

10.0
9.0 ' Minimizer solution &\
E =30x 10° psi / :
v =03 4 ,
80+ a/t=100
P, = 3000 psi
20k Conjugate gradient

Two term nonlinear analysis

6.0

5.0 \

40

Wood's prediction

3.0

| 1 |] |

60 40 8.0 12.0 16.0
€(10%)

FIGURE 7. CONJUGATE GRADIENT, EXACT, AND WOOD'S RESULTS FOR
3000 psi INTERNAL PRESSURE :

20.0

T

T

T

R

L

. . BN . . . - ;. = P S o~ [Ry TS — .o
B I T T P S U e e v T e Tt il e T

g - —_— - - - oL
[t LT LT | [- B o BN - f o anl e *

i

el 10.0

9.01-

> : Minimizer solution A .-
Two term nonlinear analysis L
8.0} :

:\‘f—_

Wood’s prediction

X

RUEAN
SURTSN N U< ST NS

i

Ma/El_, (10?)
(&)
(=]
l

4.0

E
14
Pi

. 3
= a/t =100 o
2 3.0 000 psi
T3 BFGS method
L‘r; 2.0 :._-‘
7 1.0 e
2

0.0 4.0 8.0 12.0 16.0 20.0)

€(10?)

FIGURE 8. BFGS, EXACT, AND WOOD'S RESULT' FOR 3000 psi INTERNAL PRESSURE

analysis of a thin elastic circular cylindrical shell
subjected to pure bending and pressurization. We have shown
that a symbolic manipulation 1anguage, such as MACSYMA, is a
power ful analytical tool. The massive algebraic work
attendant with nonlinear shell work is greatly expedlted with o
the aid of such tools. It is demonstrated that two o i
optimization algorithms (one conjugate gradient., one variable g

metric) originally designed for minimization of nonlinear
“unconstrained multivariate functions can be used to compute
extremely accurate results where MACSYMA-generated exp11c1t

solutions may be impractical. The function minimized in this :?ﬁ
case is the total potentlal energy of the shell and external . L

loads : : ’j*

Several assumptions and limitations are inherent in the o
shell analysis considered here. The main assumptions are -
that: (1) The possibility for bifurcation (buckling) from the -
nonlinear deformation states leading up to the limit moment is o
omitted; (2) Initial imperfections, or deviations from the
true circular form, are not considered; (3) The shell is
infinitely long and thus all cross sections deform the same
way {(also the influence of end boundary conditions are
neglected); and (4) The additional displacements vi, w)
are assumed to be inextensible. These effects can all be
considered by reformulating the analysis from the start. It o
was felt that the complexity associated with analyzing these ey
effects would unnecessarily obscure the purpose here wh1ch is L
to illustrate clearly a new methodology. Of these T
assumptlons, perhaps the most 1mportant to relax in extending .
the work, is the . assumption concerning bifurcation. Other
investigators have pointed out that bifurcation into a pattern
of axial wrinkles on the compression side of the shell occurs
just before the limit moment. 1In real shells, this wrinkling
behavior is greatly affected by the presence of imperfections.
Also, material nonlinearity (plasticity) may become important
as the wrinkles increase in amplitude.

e

et
TR
o

There are several avenues for further research. Clearly, ..
the entire subject of shell buckling anaylsis can benefit from e
the introduction of tools such as MACSYMA--this applies to ' -
finite element-type work as well. An interesting alternative
to starting with the displacement-based energy approach of
Brazier and Wood is to begin with strains as discussed by
Reissner. This would allow the use of series of polynominal
functions such as Legendre or Chebyshev polynominals. 1In
fact, Chebyshev polynominals appear very attractive for this
application as they are known to possess certain optimal
propert1es.

The ana1y31s can also be extended to include stretching
of the shell middle surface, influence of the axial dimension
(i.e., thre=e dimensional analysis), the presence of stiffeners,
or plasticity effects. Again, the strain energy functional

SRR

=

I) l .
2.
3.

=

= 4.

|

} 57

!

Fr,f

- 6.
7.

E

E

1

Ei;

% 8.

?

9.

e 10.

.

1‘“"%

may turn out to be very nonlinear, including non-smooth
behavior if plasticity rules are invoked; but practical
solutions may be computed by treating the problem as one in
constrained minimization, or if need be, an equivalent
succession of unconstrained problems.

6. REFERENCES

Bannister, K. A., "Whipping Analysis Techniques for
Ships and Submarines," The Shock and Vibration
Bulletin, Bulletin 50, Part 3 (September, 1980):

Brazier, L. G., "On the Flexure of Thin Cylindrical
Shells and Other Sections," Proceedings of the Royal
Society of London, Series A CVXI (1927): 104-14.

Brush, D. O., and Almroth, B. O., Buckling of Bars,
Plates, and Shells, New York: McGraw- Hill, 1975.

Wood, J. D. "The Flexure of a Uniformly Pressurized,
Circular, Cylindrical Shell,"” Journal of Applied
Mechanics 25 (1958): 453-58.

Sokolnikoff, I. S., Mathematical Theory of
Elasticity, New York: McGraw-Hill Book Company, 1956.

Bannister, K. A. "Large Deformation Analysis of a
Cylindrical Shell Under Pure Bending and
Pressurization," Ph.D Dissertation, The Fennsylvania
State University, 1983.

Shanno, D. F., and Phua, XK. H. "Remark on Algcrithm
500: Minimization of Unconstrained Multivariate
Functions,” Association for Computing Machinery
Transactions on Mathematical Software o, No, 4
(December 1980): 618 22.

Shanno, D. F., and Phua, K. H., "Matrix Conditioning
and Nonlinear Optimization," Mathemat1ca1 Programming
14 (1978): 149-60.

Shanno, D F., “Cbnjugate Gradient Methods with
Inexact Searches," Mathematics of Operahxons Research
3 (1978): 244-56.

Mathlab Group, MACSYMA Reféerence Manual Version 10,
Massa-husetts Institute of Technology, Laboratory for
Computer Science, Cambridge, Massachusetts, 1982.

. - . C. . .
‘-j’/ T [- i //. L - :, =
rLQ0 PR
.
i
APPENDIX A _ '_-A'%
APPLICATION OF MACSYMA TO ROOT-FINDING ‘95 .

Brazier's analysis [2] leads to an Euler equation for the S
circumferential displacement component v in the following form ‘b“ s
6. . a 2 5 a k-
dvs+o2dyv+dyv=-18a sin 24 . (a-1)
as ded de? p2t?

The solution to Eguation (A-1) can e¢asily be obtained by the
theory of ordinary differential equations, but it is

instructive to employ MACSYMA in obtaining the homogeneous S
solution. Although MACSYMA can solve ODE's by the Laplace) !

e

Transform method, i: turns out that sixth-order differential :i) ;%
equations exceed tne present capability. However, by T
inspection we can write down the characteristic equation for I
(A-1) as v
1
R6 + 2r% + R? = 0 b (A-2) -

v (» .

. —

o 1
which obviously has the rep%ated roots

I
13
_ SRCEN
R=20 _ \ . . '
. t ‘ (A-3) ' T
\ . . [
| T E
\ o
\‘ ' . :
m b

PP S AP UL r WA Py SR S S W UVIP UL WL el U0 i S0 S SPO SO ST U G UL S SO SO DI . S — e W e e B b ad el s

NG - P . s . . -

e

T

L

T

b6

MACSYMA can be used to obtain the same roots. The input
commands and replies to these commands are shown next,

This is a MACSYMA 303

FIX303 1 DSK MACSYM being loaded
Loading done

(C1) EQU:R**6+2*R*?4+R**2;

(D1) R® + 2rY + R2

(C2) SOLVE (EQU,R);

SOLVE FASL DSK MACSYM being loaded

Loading done :
(D2) [R=- %I, R= %I, R = 0]

After a preliminary message, the righthand side of the

_characteristic equation is input to MACSYMA on the line (Cl)

and is ctored in tne variable i.amed EQU. After this point,
any reference to EQU is =quivalent to referencing the
polynominal expression in R. In line (Dl), MACSYMA merely
"plays back" or displays the contents of EQU in standard
algebraic format. On line (C2), MACSYMA is instructed to
solve for the roots of the R-expression; _ :

it is assumed EQU = 0 in this case. After printing a brief
message concerring loading of files to pe:form the root
search, the roots are computed and then are displayed on line
(D2) . Note that MACSYMA uses the convention

31 = J-l = i. | (A-4)
Having found the roots, the homogeneous solution can be written

v(¢9) = (B + By$) + (B3+Bygd)coséd

- (A-5)
+ (Bg + Bgd) sind.

167

APPENDIX B

LISTING OF MACSYMA CODE USED TO GENERATE NONLINEAR SOLUTION
FOR THREE-TERM FOURIER EXPANSION

/* N IS THE NUMBER OF THE HIGHEST FOURIER TERM TO TAKE */

N:53

/* DEFINE RULES WHICH WILL ELIMINATE SINE AND COSINE TERMS

: FROM TRIGREDUCED EXPANDED TRIGONOMETRIC EXPRESSIONS. THIS
SAVES AN INTEGRATION STEP SINCE THESE TERMS WILL VANISH
UNDER INTEGRATION FROM ZEROQ TO 2%*pI */

MATCHDECLARE (2% ,TRUE) $

DEFRULE (R1,SIN(ZZ),0)$

DEFRULE(RZ,COS(ZZ),O)$

/* THE FUNCTION EBOTH WILL TAKE CARE OF APPLYING RULES R1 AND
R2 TO A GIVEN EXPRESSION */ 1

EBOTH (XX,YY) : =BLOCK { [RESULT] ,

RESULT : TRIGREDUCE (EXPAND (XX) , YY),

RESULT:APPLY1 (RESULT,R1,R2),

RETURN (RESULT)) $

/* AA ARRAY WILL CONTAIN THE TRUNCATED FOURIER SERIES
COEFFICIENTS */

ARRAY (AA,10)$

/* V, W ARE THE TOTAL DISPLACEMENTS */

V:V0+V1$

W:WO+W1+WBARS

/* DEFINE THE DISTANCE D AND ITS SQUARE */

D: (A-W) *COS (PHI)-V*SIN(PHI)S$

DD:D*D$ ‘

/* DEFINE THE SMALL DISPLACEMENT TERMS CORRESPONDING TO LINLCAR
ELASTICITY */

VO:VVO*SIN(PHI)$

W0 : WWO*COS (PHI) $

WBAR:WWBAR$ ‘

/* COMPUTE AND EVALUATE THE TOTAT. DISPLACEMENTS */

v1:08% .

Wl:0%

V1:V1+SUM(AA{I)*SIN(I*PHI),I,2,N)$

"Wl: W1+SUM(I*AA[I]*COS(I*PHI) I,2 LN e

V:EV(V)$

W:EV(W)$

/* EVALUATE D AND ITS SQUARE */

D:EV(D)$

DD:EBOTH (EV(DD) ,PHI) $

/* COMPUTE THE LATERAL CURVATURE EXPRESSION */

CHI: (DIFF(W,PHI,2)+DIFF(V,PHI))/(A*A)$

[T

VI

T

T

T

-

/* COMPUTE THE VARIOUS STRESS AND STRAIN EXPRESSIONS AND THE
TOTAL POTENTIAL ENERGY TERMS */

ULI:DC*EBOTH(CHI*CHI,PHI) *A$

ST:E*D*EPS/A$

SP:0%

STB:E*AL/2$

STB:E*AL$

ET:D*EPS/A$

EP:-NU*D*EPS/A$

ETB:AL* (1-2*NU) /2%

EPB:AL* (2-NU) /2%

U2I: DD*E*EP%**Z/A**2*A*T$

U31:0%

U4I:SPB*EPB*A*T$

USI:STB*ETB*A*T$

U6I:EBOTH (STB*ET*A*T,PHI'$

U71:A*T*EBOTH (SPB*EP,PHI) $

/* UI IS THE INTEGRAND FOR THE SHELL BENDING AND STRETCHING
ENERGY. U IS ITS INTEGRAL., */ .

UI: (UlI+U2I+U3I+U4I+U5I)/2+U6I+U7I$

U:2*3PI*Ul$.

/* TT IS THE WORK OF THE PRESSURE FORCES. WW IS THE WORK OF .
THE "XTERNAL MOMENTS. VV. IS THE TOTAL POTENTIAL ENERGY */

TT: ((AL*E*T/A)*%PI/Z)*((A*NU*EPS)**Z ~SUM((I**4-T**2) *AA[I]**2,

I,2,N))$.

ww M*EPS/A$

VV:U-TT-WW$

/* SET UP A SET OF EQUATIONS TO SOILVE FOR THE UNKNOWN FOURIER
SERIES COEFFICIENTS AA[2] THROUGH AA[N] ¥/

ARRAY (DVV,1,10)$% :

FOR I:2 THRU N DO

(DVV{[I] :DIFF(VV,AA[I])=0)%

SOLVE([DVV[2],DVV([3],DVV[4],DVV[5S]],

[AA[2],AA[3],AA[4],AA[5]]) ,ALOBALSOLVE: TRUE;

-/* EVALUATE AND DISPLA" THE TOTAL DISPLACEMENTS V, W */

V:EV (V) ;

W:EV (W) ; '

/* DISPLAY PORTRAN VERSIONS OF AA[3] THRU AA[5] AND V AND W */
FORTRAN (AA[2]) ;

FORTRAN (AA[13]) ;

FORTRAN (AA[4]) ;

FORTRAN (3A[5]) ;

‘FORTRAN (V; ;

FORTRAN (W) :

169

HOPF BIFURCATION IN MULTI-DEGREE-OF-FREEDOM SYSTEMS

USING MACSYMA

P. Hollis and D. L. Taylof
Sibley School of Mechanical Engineering
Cornell University
Ithaca, NY 14853
Abstract
This paper deals with the use of MACSYMA to perform
Hopf Bifurcation analysis 6f some multi-degree-of-
freedom svstems. Although it is possible to perform
the same analysis numerically, MACSYMA allows the user
to obtain a much better appreciation of the role of
several parameters. The systems examined include the
very familiar Van Der Pol equations, Léngfo:d‘s
equations, the Lorenz equations and a follower force
example. The system for which the prégram was initially'

written proved too difficult to examine.

'l. INTRODUCTION

Although it is possible to perform numerical analysis of
' ' . ’ . »
nonlinear systems, sometimes it is more desirable to perforin some

type of appréximate analytical technique to examine the same

systems. Such techniques can yield much more insight into global

nonlinear behavior than can numerical calculatiens. Hopf

.......................

-

T

= -

ey
i

i

ey
i

P
[

T

bifurcation analysis from a center manifold approagh is just one
such technique. It is mathematically equivalent to the more wei?
known methods such as avéraging, harmonic balance, describing
functions etc. Hassard, Kazarinoff and Wwan (1981) have provided
a powerful numerical anlysis p;ogram‘ to predict limit cycle
behavior of nonlinear systems.

We take the same approach to develop a MACSYMA program t6
perform essentially the same analysis. It is greatly reduced in
its éapabilities for handling large systems, but for small
tractable prﬂblems it does yield far more informat.on about
system behavior forAsevéral variables than does the equivalent
nurerical program. The technique allows for some simplification
of the probiem-through the application of formulae rather than

épplying a geﬂeral technique to the nonlinear problem. The

program itself ban be easily extended to calculate higher order

terms which will allow a better approximation or, for some cases,
information about degenerate points where the method cannot make

any predictions.\

A
\

2. HOPF BIFURCATION

Consider a sy$tem of differential eguations
. '
x = £(x,v) ‘ ' _ (1)
where x ¢R®, v¢ R, Let x,(v) be an isolated stationary point i.e.

f(x, (v}, = 0. Then x,(v) 1is linearly stable if all the

eigenvalues Xi(“), i~1,2,...,n of the Jacobian matrix
J(v = 2 (2)
X :

have negative real parts and 'is linearly unstable if some
eigenvalues have positive real parts.

If peiiodic_solutions arise out of x,(Vv) as the parameterv
is varied throgh some critical value V., @ Hopf bifurcation has
taken place. It is associated with a change in stability type of
the equilibrium point. In particular, it occurs when a conjugate
éair of eigenvalues change from having negative or positive real
parts to having positive or negative real parts respectively. At
bifurcation, the rea. part is zero. For systems of interest, it

is also required that the remainder of the eigenvalues have

negative real parts for VY in the neighbourhood of V The

. c °
conditions then are

(1) Tl(v) = 72(\:) = a(v)‘ + iw(v)
(ii) . a(vc) = 0, . w(vc) >0
(iii) | a"(vc) # 0

(iv) Re Aj(vc) <0, j = 3;e0en

Then Hopf bifurcation theory asserts that a parameter L exists
and is. interpreted as follows: if
b, > 0 periodic solutions exist for u > v

g < 0 periodic solutions exist for oy < Voo

The periodic orbit is apéraximated by
. ' : VeV 1/2 i w{v) . :
X = x*(\)c) 4 - Re [el Vl] (3)
o -

where v, is the eigenvector of the Jacobian at v=wv

c
corresponding to 3, (v) and w(v) is the frequency of the orbit.

171

Stability of the limit cycle can be determined from a second
| quantity 82 defined as 82 = -2a'(vc)U2.- 1f

8, < 0 the solution is orbitally asymptotically stable

£, > 0 the sdlution is orbitally asymptotically unstable.
Lo That real systems exhibit such behavior‘is_weli known., For
example, high speed instability of automobiles can be interpreted
as Hopf bifurcation. Also the wind induced vibrationlof Venetian

blinds can be considered Hopf bifurcation to limit cycles. For

.

~ further information on Hopf bifurcation, the reader is referred

é% to the booké by Carr (198l) 'and Marsden and McCracken (1976).

{ 3. PROCEDURE

The procedure to be cutlined here is basically the same as
~ that described in Hassard, Kazarinoff and Wan (1981) and it
follows élosely the numerical algorithm they have develcped.

Given the equations in the form (1) we

a. Find x,(v) such that f(x,,v) = 0.
b. - Evaluate the Jacobian
=
. J(v)y =2f .
= i 9X. X, (V)
{ C. . Evaluate the eigenvalues and eigenvectors of J{(v) and

find the vélue_of v where thére is a paiﬁ of pﬁrely
im;ginaiy éigenvalues (and all the rest haQe negative
o real parts). Let vy (v) be the eigenvector
correspornding to the bifurcating pair of eigenvalues

)\1'2(\)) =2 afv) £ 1wlv).

Form the transformation matrix P(v) such that

[+ 3 wo
P(y) g (w)P(y) = |© ©“ol. (4)
L0 0D

P(v) is of the form ([Re vl"Im Vl; V3"°"Vn] where
Viseeesv, are vectors spanning the eigenspace of
L TRRRY, ,\n'.
Change variables according to

X = X, + Py,

Y] =l\J - \)c

and change equations according to
.y = P—lf(x* + Py'u) = F(Y'U)-
Perfofm another change of variables
2=y * iy,
and
o= [y3,..;,yn]T.
Also form the new eguations
G =F, + iF, -}z
and ‘
Hy = Fiyp - Dw | o
fOY.' i = l’u;o,n-zn

Evaluate the quantity

2
0 3
giJ = Gij =

R
32”9271 (0,0,0,%)

where i + j = 2 and the quantity
P "o :
G} = e—— [-'5’- 3G

reeer T}

1] 5zt 5zd oWy a1 (0,0,0,u)

Ealin

T

e

I

i s

T

F*’_
=

W

where i + j =

Form

le = [(

where (i,j) =

33

-

82 32

921 =

-Form

=
[%)
]

ol (U) =

w'(0) =

l.

-~

-1 3%H

i+ 29I - D] .
3zlaz

(210)1' (l,l) and

Sl 1
* 26G3ow11 * Co1%20-

9205911 (22+Y) 91191

J
(0,0,0,u)

90292 |

2 0 A 2(2x =-})

¢y (0)
o (0)

-Re
2Re ¢, (0)
Re Ai(vc)
Imajey

(Im ¢, (0) + ”2‘3(0))
w (0)

2m .
<)

(L + "o
w (0) 2

2

The main problems involved in doing these transformations

finding the equilibrium point for general nonlinear systems

and finding the eigenvalues and eigenveciors for n > 2, Also the

’

size of the equations generated tends to be large, eSpecially if

the initial equations are already cumbersome. Out of these

problems came some interesting side results: programmed breaks to

allow the user to experiment with varicus solution methods orx

numeric substitutions; saving parts of lcrge expressions in

variably named files:
MNAME : [CONCAT(D,'F,
WHAT : CONCAT(TEMP_,
DERIV : DIFF(F[I],X[
WHAT :: DERIV,

"FILE : *SAVE(NAME,WH
EV(FILE,NOUNS),

1,D,'X,J),MAC],
1,d), '
Jl),

AT),

For the practicing eng ineer, there is the function for evaluating
the linearized spring and damping coefficients about aay
nominated point.
4. EXAMPLES

Presented here are the results from several problems of

increasing complexity.

4.1 Van der Pol Equations (Hassard, Kazarinoff and Wan (1981})

- . 3
X, = UX, = X, = X3
¥2.7 %)

yields

equilibrium point = f[X =20, X = 0]

T

sl nd
'("l I’ﬁi’." 1" -.' ..".'1 X et

T

I

e e S as T i"‘r—VV_rgrf R LILA T
RANMAVCEEL HESEE . « MENDE AR

T

I,

PR

~T

.ir

e e T DA e e o
= 176
L4

bifurcation variable and value at bifurcation [NU, 0]

NU -1

[WY R N

[
jacobian =
Pl 0

real part of eigenvector

H
~—’
. —
-
]
[}
i

imaginary part of eigenvector =

%1 SQRT(NU - 2) SQRT(NU + 2)
]

[0, ====---cccmmceee e
2
11 0 %
A ' : :
p= [NU . %I SQRT(NU - 2) SQRT(NU + 2}]
[o= = =-=e---r-sssesecccoconooonn-]
L2 _ 2 J
_ 2 i a

F == %1 (=Y NU + %1 Y SQRT(NU - 2) SQRT(NUi+ 2)

1 2 1 :

\
2 ‘ k

(NU - 2 Y)+ 4Y)/(2 SQRT(NU - 2) SQRT(NU '+ 2))
\ 1 A i

\
\

-
[}

2
- %I (%I Y SQRT(NU - 2) NU SQRT(NU + 2) + Y \NU
2 1

3 :
-2 Y NU -4 Y)/(2 SQRT(NU - 2) SQRT(NU +:2))
1 1

. . . 2
6= (%1 Y SQRT(NU - 2) NU SQRT(NU + 2) + Y NU
2 : 1.

3 .
- 2Y NU-4Y)/(2 SQRT(NU - 2) SQRT(NU + 2))
1 1

. e
CEER Sttt

S e o
S TR L

-y
o

(| ', UPR R AR A
ML S IRV

-
..{

v "
L

R
SOk

[

gy
A Y

S JRA

.

ey
A
ata a0

T
St .

TAuZ2

2
- %1 (- Y NU + %I Y SQRT(NU - 2) SQRT(NU + 2)
2 1

2))
(NU - 2 Y) + 4 Y)/(2 SQORT(NU - 2) SOrRT(NU + 2))
1 2 '

NU - 4 NU

- (B1 Y 4 Y) (mmmmcm-smemmmsmmoo—eoe----- + --)
2 1' "2 SURT(NU.- 2) SQRT(HU + 2) 2

LAMBDA S e m e e e mEaEmm e EE .- 4 =

AMU2

i
(=)

BETAZ2

n
)
oW

b

DALPHAOQ

"
o

DOMEGAO

177

T

e

[

1
il
s

I

T

T

S %
i

178

E 4.2 Langford's Equations (Hassard, Kazarinoff and Wan (1981))
£, N

X, = (v—l)xl - Xy + X1Xq

17(2 -*xl + (\)—l)x2 + XoXq ‘ A ' (7)

1:77.).(3 = \)xz - (xi + x% + X%)

I_ yields

| ~ equilibrium point = [X =10, X =0, X = NUJ]

. 1 2 3

-

|

‘ 1

8 pifurcation variable and value at bifurcation [NU, -] ,

: 2 _

E

f r 2N -1 -1]]

o L .)

* jacobian = [1 2N -1 0]

[' J

L [0 0 - NU]

- real part of eigenvector = [1, 0, 0]
| . |

: imaginary part of eigenvector = [0, - 1, 0]

- ’

a .

‘ [1 0 0]

i [J
= p= [0 1 0]

[)

i [0 0 1]

]

b F =2Y N +Y Y -Y -
. 1 1 I 3 2 1

) F o =2Y NU+Y Y =Y +Y
— 2 2 2 3 2 1

- 2 2 2
f F = -Y NU-Y -Y =-.Y
i 3 3 3 2 1

179 s

-t

1

6 =% (2Y (NU +# =) +Y Y =Y +7Y) F
2 2 2 3 2.1]
) | I
: 1 1. =
S (X1 Y 4+ Y) (2 (NU + =) + %] - 1) +2Y (NU+ -) =
2 1 2 1 2
Y OY - - Y L
1 3 2 1 !
N | 1.
LAMBDA = 2 (NU + -) + %I - 1
2 : o
o
' 1 : 1 2 2
H = MATRIX([- Y (NU +# -) =Y (- NU - =) =Y =~ 3
3 2 3 2 3 2 -
2 1
- Y 1)
1
{
{ 1] —
D=[-NU--] =
[2] ,
2
CIMU = = =======-- (
10 NU + 1 }
€10 = - 2 _ : : =
_ B
AMU2 = 1 -
L
TAU2 = 0
BETA2 = - 4 {
DALPHAO = 2 =

DOMEGAD

]
(=3

wr

4.3 Lorenz Equations (Hassard, Kazarinoff and Wan (198l1))

k)
%, =
i3

- Oxl + O'Xz

-xlX3 + '\{xl - X2

]

X1x2 - bX3

yields

equilibrium point =

X =

bifurcation variable

jacebian = Col 1 =

Col 2

-1
SQRT(B (6

0
Col 3

- SQRT(B (

(e Lamun T e ¥ st e | e Y rirT

- B

(8)

[X = SQRT(B (G - 1)),
1

SQRT(B (G = 1)), X =6 - 1]
3

and value at bifurcation

2
S + (B +3)5S
[G, ==========mmn-
S ~B -1
[=S]
[.]
[1]
[‘]
[SORT(B (G - 1))]
]
]
]
]
- 1)) 1
]
]
6 -"1))]
SR
]

. wmr o

R A

P I T)

_solve_main_mat;

L : - S]
[']
[o 1]
Col 1 = []
[SQRT(B) SGRT(S + 1) SQRT(S + B + 1)]
% SQRT(S - B - 1) %
[S]
L]
i =1]
Col 2 = []
% SQRT(B) SQRT(S + 1) SQRT(S + B + 1) %
[SQRT(S -'B - 1)]
[| 0
[.
[SQRT(B) SQRT(S + 1) SQRT(S + B + 1)
Col 3 = [= ===-====-cc--cessoc-mcr-cocos==conaososs
L SQRT(S - B - 1)
| e
Xx€q; _ :
SQRT(B) SQRT(S + 1) SQRT(S + B + 1}
[X S e R R g R
1 SQRT(S - B - 1)
SQRT(B) SQRT(S + 1) SQRT(S + B + 1)
X = ==e==-mm--co-es---e-- EEL L e L L L .
2 SQRT(S - B - 1)
2
S + (B+2)S +8B+1
X = =me-ec-ese-e-cccc-m=-o=o]
3 S -8 -1 A

real part of eigenvector =
2 SQRT(B) SQRT(S + 1)

[1, 1, =======c-cm====s==cocon=cmo- ---1]
SQRT(S - B - 1) SQRT(S + B + 1)

et b b et R

. -t e

T

T

T

T

i

i

T ¢
T

i

T

o JHT

1

mr

T _'”

e

ey
o

1

grmmerg

U

182

imaginary part of eigenvector =
[0, - SQRT(2) %I SQRT(B) SQRT(- S + B + 1) SQRT(S + 1)
SQRT(Z) %1 SQRT(- S) (S + 1)

J(SQRT(S) (S = B = 1)), = ====mecemcememecaoacaaooooos]

S SQRT(S + 3 + 1)

p = MATRIX([1, 0, 1], [1,
SQRT(2) %I SQRT(B) SGRT(- S + B + 1) SQRT(S + 1)
USRSy (s -8 -1y T

B+ 1. 2 SQRT(B) SQRT(S + 1)

5 1> [SQRT(S - B - 1) SQRT(S + B + 1)

SQRT(2) %I SQRT(- S) (S + 1)
""" S SRT(S + B + 1)

SQRT(B) SQRT(S - B - 1) SQRT(S + B + 1)

R S LB LEEE LD 1)
S SQRT(S + 1)

F =~ (2 (S + 1) SQRT{S - B - 1)
1

2 .
(2 SQRT(2) Y B S SQRT(S + B + 1)
R o

| 5/2
2 SQRT(2) Y B S SQRT(S + B + 1) - Y v3 S

+

5/2 2 2
-Y Y S -Y 'Y B SQRT(S) -Y Y B SQRT(S)
1 2 2 3 S 2

Y SQRT{S) +# Y Y SQRT(S))
2 3 1z

+
_<.

2 Y SQRT(B) SQRT(S) SQRT(S + 1) SQRT(S + B + 1)
2 .

3 2. 2 2 3 2
(S -85S +s +38B §$-5-8 +8 +B - 1)

") ENAFRARERRARE REECROAMEEE AR LD P AT RV A FEFAEW

L RN

Coim el

- SQRT(2) (Y + Y) SQRT(B) S SQRT(S + 1) (S ~ B - 1)
31
(Y S~2Y S+Y B-7 B+Y -37Y))
3 i 31 3 1
/(SQRT(2) SQRT(S - B - 1) SQRT(S + B + 1)

3 2 2 2 3 2
(S -38BS +S -B $-4BS-5+8 +B -8B

- 1))

The results here are incomplete and have been evaluated at
the bifurcation point. The other eqﬁations are extremely 1dng
and complex, and it is no£ possible to find tﬁe general equations
in this case.b The main problem lies in forming the transformed
equations although finding just the eigenvectors and eigenvalues
yields large exp:essions for the general case.

i

4.4 Follower Fbrce'Eguations (Sethna and Schapiro (1977))
)
!
|

'
o

X4 \

(Sin(x;rxl)(:ds(xz—x1)x§+xi) - (x1+bx3)(cos(x2—x1)+2)

+ (x’2+b§<4)(cos(x2—xl)+l) = tsin(x,-%,))

We
1

3 j ;
L (2 + s1n2(x2-xl)))
(9)
X—sin(x Fx) (cos(x,-X)x2+3x2)
: 27" 2771774 3
-+'(x1+bx3)(2cos(x2-xl)+3) |
. = (x,+bX,) (cOS(xy=X1)+3) + tsin(x,-x;)cos(xy-%y))
4 - (2 + sinz(xz-xl))
. :) i = -
yields as far as MACSYMA is able to proceed with b sqrt(7)

183

l‘{

@,

——n

PRI " HAir I I
J4 LI .o
[RTA 1.:. e

PRI

v

0

U * N
R YO
e .)

o

i

T

-

BT

il

|

T

T

o

-,TZE

J—

-1

]

PUD—

T

184

equiliorium point = [X =0, X =0, X = 0, X =10]

bifurcation variable and value at bifurcation [S, -]

[o 0 1 0]
L ']
[o 0 0 1]
L] -
' [S-3 2-5 3 2]
jacobian = [----- ----- . mmccean emmmeaa]
[2 2 SQRT(7) SQRT(7)]
E 5-S .S -4 5 4 %
% 2 2 SQRT(7) SQRT(7) %

5. CONCLUSIONS

Although-MACSYMA can éive useful results, it appears that
the class of problems it can handle is very 1imi£ed. It may be
betﬁei to resort to numerical analysis of large problems, or for
some 'cases, approximate the nonlinear .problem by a simpler
nonlinear one which still céptureé the basic nonlinear behévior.

The fundamental problem. lies not with the technique but rather

~with the amount of computer time and space available for dealing

with such large expressions. These expressions are in general

too big to be of any use unless they can be simplified greatly.

ol

i

B PRI

6.

ACKNOWLEDGEMENTS

This research was supported in part by the United States Office

of Naval Reseach under contract N0014-80-C-0618.

REFERENCES

Carr, J., Applications of Centre Manifold Theory, Applied

Mathematical Sciences 35, Springer-Verlag, 1281l.

Hassard, B.D.) Xazarinoff, N.D., and Wan, Y¥Y-H., Theorz and
Applications of Hopf Bifurcation, London Mathematical
Society Lecture Notes 4l, Cambridge University Press, 198l.

Marsden, J.E., and McCracken, M.F., The Hopf Bifurcation and
its Applications, Applied Mathematical Sciences 19,
Springer-Verlag, 1976. '

Sethna, P.R., and Schapiro, S.M., Nonlinear Behavior of

Flutter Unstabe Dynamical Systems with Gyroscopic and
Circulatoy Forces, Journal of Applied Mechanics, vol 44,
Dec. 1977, pp 755-762.

185

prr—

9.

i

1

T

in

il

T

Y I

-
}

T

[EU—— Igr]w — ey R i ,_rv e

T

f—

[PE—

7
i

A

B —

ST T

e

T

A Tutorial On Particular Uses 0f Macsyma

R. Drew Drinkard Jr.
Naval Underwater Systems Center
New London Laboratory
New London, Connecticut 06320

Abstract

»The question is. often asked by new users of macsyma:
what can one use mac¢syma for? At least six major uses of
macsyma can be idertified. They are

* simplification of large computaticnal expressions

* mathematital reference to recall standard mathematical
identities or formulas.

* verification of the correctness of lon3), tedious and
error prone mathematical manipulations performed by
hand

* avoiding unnecessary numerical approximations by
computer

* solution of mathematical problems symbolically
* symbolic manipulation and numerical method interaction

It is the purpose of this tutorial to provide specific
examples of each of these six major uses of '‘macsyma.
Furthermore, a couple of new user turnoffs are pointed out,
which perhaps have disillusioned some new users from
exploring macsyma capabilities further.

o

p...

..
Ry
o
"
.
Tl
o

COMPUTER ALGEBRA APPLIED TO KALMAN FILTERING

M. L. SUAREZ
AGORA Systems, Inc.

Abstract

The Advent of Computer algebra brings with it new capabilities in the area of
Kalman filtering. It is now possible to input symbolic versions of the filtering
matrices and vectors and follow the effects of multiple updates on the state
and/or the state covariance and to do so symbolically thus gaining greater
insight into the effects of measurement noise, process noise, correlations, etc.
The task of examining these by long-hand derivation is often prohibitive. This
approach also allows for quick redefinition of the filter. A program, written in
MACSYMA, is described which incorporates the equations of optimal linear
estimation as well as smoothing. Both symbolic and numerical results are

presented.

187

o
-
.
- =
=
L 2 L
H
Seo
T
LR [
NS 1
L
T é
o . -
.
® I
!
;
he
i
i
i
[
=
=
=
|
i

=

FTTT

188

Research in Algebraic Manipulation at the University of
California, Berkeley

Richard J. Fateman
John Foderaro
Gregg Foster
Rick McGeer

Neil Soiffer .

Clifton J. Williamson

University of California
Berkeley, California

ABSTRACT

We describe recent work at UC Berkeley in the design and imple-
mentation of components of an algebraic manipulation system. Our
intent has been to provide a sound framework for the next generation of
workstation-based scientifc software environments, and also explore the
necessary technology for the development of mathematical expertise in a
- symbol processing system. We indicate the broad outline of this research
project and its status.

‘1. Introduction and History

Over the last decade at UC Berkeley, we have been working on a number of appli-
cations of Macsyma and other algebraic manipulation systems. We have generated a
number of specialized algebraic manipulation systems starting from the PDP-10
‘Macsyma system. For example, John Favaro’s Symbolic Fortran execution system [],
and a number of applications, were done via ARPAnet at MIT. In 1978, we began work
on Franz Lisp, a host language sufficiently compatible with PDP-10 Maclisp to allow
Macsyma code to run on the DEC VAX. This was motivated primarily by the acquisi-
tion of a VAX at UC Berkeley, and the need to use larger address spaces than available
on the PDP-10. The kernel of Franz is written mostly in the portable language ‘C’.
The bulk of it is written in Lisp. Since 1979 we have used the PDP-10 Macsyma system
rarely: principally for benchmarks and debugging. The ‘Vaxima’ variant of Macsyma,
distributed under various mechanisms with the begrudging cooperation' of MIT, has
become fairly widespread, and is now under limited distribution by Symbolics, Inc.
Although the current versions of the VAX computer are not as fast as the PDP-10 (KL),
its address space is much larger than that of the PDP-10 simplifying programming
matters éonsiderably; furthermore, the hardware price is much lower. :

189

In 1983, we once again ported Macsyma, this time to a workstation environment
based on the Motorola 68000. This system has been demonstrated on computers pro-
duced by at least three different manufacturers. (Sun Microsystems, Pixel, and
Masscomp). As this paper is being written, neither MIT nor Symbolics has any plans for
distribution, or for allowing us to distribute this system. Since the US Department of
Energy has funded most of this work, we hope to see a resolution which will make
Macesyma more easily available.

T

T

2. Why a New System? (
As is the case for many large software systems, Macsyma suffers from inertia: its i
size and lack of extensibility in certain crucial places. A paper in progress [Fateman,
24] describes the unforeseen consequences of Maesyma's design. In summary, though, {
we concluded that Macsyma could not serve as a testbed for many of the new ideas for -
the construction of an advanced symbolic algebra system. Given the changing computer (
environments, greater awareness of software engineering techniques, new mathematical -
abstraction languages, new devices for. graphics, and the excitement of ‘knowledge bases’
it became ciear that a new approach to the problem of constructing a computerized
‘mathematical assistant’ was warranted. It secmed that UC Berkeley would be the
most likely location for an atiempt to study the issues, and then design and build such a
system. Interest by the System Development Foundation of Palo Alto, CA lead to the
production of a discussion paper on open problems in in the area [Fateman, 1983] and
then to some funding for startup of a major project. SDF support was vital in allowing
us to look at a wide range of directions as alternatives to our own views. :

Chesing a name for such a project is a problem: fortunately, this paper is being
written on a word processing program so that late-breaking acronyms can be incor-
porated: the current choice is SCARAB (Symbolic/Scientific Computation and
Representation/Reasoning at Berkeley).* The following sections outline topics of investi-
gation at UC Berkeley. In some cases we have identified a need, but not made progress =
to date; in others, we have made substantial progress.

T

3. Newspeak _ ‘
John Foderaro's-PhD thesis work [Foderaro, 1983] on the design of a language for
the construction of an algebraic manipulation system, provided the stariing point for e
our recent efforts in experimentation in implementation strategies. : I -
The direction taken with Foderaro's language, Newspeak is not entirely new, but
grew out of the perceived prohlems in the use of Lisp or Lisp-level constructs

* We have been bombarded with suggestions includiag SNARK, CAL.‘Xi, Nevﬁmath, and
ONION; (Onion’s Not It's Original Name). [think SCARAB has some nice logo possibil-
ities, though some people dislike beetles.)

——

T
%

- -'y."'!"—.“'a,i | e
A .

implemented in ‘C’ as the standard language level for system implementation. By bas-
ing programs on manipulation of trecs, linked lists, hash tables and similar data struec-
tures, the mathematical structure of the data is often obscured in Macsyma, SMP,
Reduce, Maple, and many other systems. The Scratchpad '84/ Newspad system has
taken a siinilar approach to ours. Approaches which have influenced the design of
Newspeak include Barton's Andante, the IBM Research Modlisp [Jenks 1979], and van-
ous work by Hearn, Loos, and others.

The next few sections provide some indication of relevant features of Newspeak.

3 1. Language design and refinement

No computer language des:gn is finished until. the language is obsolete. We
assumed that Newspeak would bencfit from a rapid turn-around in implementatios, and
that substantial feedback from early users would insure that the language was actually
suitable for the uses proposed. Pounding on the design and the implementation has
been an important contributing factor in the refinement of Newspeak. Contributors
have included David Barton, Clifton Williamson, Neil Soiffer, Scott Morrison, Andrew
Lazarus, Carolyn Smith, Rick McGeer. The person- respondmg to the pressure
{threats?) and redirecting it has been John Foderaro.

The language i is merely the raw material for construction of the mathematical com-

voaents of the data and algorithm hierarchy which make up the “‘Berkeley Algebra and

Analysis Development™ described under ‘BAAD’ in the next major section.

3.2. Newspeak Philosophy

The pholosphy of the Newspeak language is to add strong typing in such a way
that it enhances the user’s productivity rather than degrades it. The major advantages
of Newspeak's typing are 1) detection of simple typing bugs prior to. execution; 2) its
potential for compilation te efficient machine code; and 3) the compile-time resolution of
generic function calls (thus making generic function calls in Newspeak as inexpensive as

normai function calls in most other languages). The relationships between types in an |

algebra system are far more complex than can be described in the typical typed
languages in common use (Pascal, Ada, C}. As a consequence, to use of these languages-
for a symbolic algebra system one must first 1) disable the type system (simulating Lisp,

“in effect), or 2) use the inadequate type mechanism provided. Secondly, one must then -

build & type system on top of this first. stage. The result is often a runtime type-
checked system, and cannot take advantage of the type-checking inherent in the base
language. Newspeak’s type description facilities are sufficiently powerful that the rela-
tion between algebraic types can be expressed in Newspeak itself.

X

LR

.o

£ REnss el .E. S
Y N . »
- il

«

s

)

1
.

I3

3.3. Language Implementation and Portatility
- Newspeak runs entirely interchangeably on the two UNIX implementations we use
for our development. That is, it runs on Motorola 68000 and VAX architectures
without alteration. This flexibility is available because the underlying system is based
on Franz Lisp, which runs on these machines (and others). Newspeak code is compiled
into byte codes which are then interpreted by an interpreter written in Lisp. This
approach has the advantage of rapid initial implementation and ease of change. It also
provides us a garbage collection system. The major disadvantage of our current imple-
mentation is that it runs slower than an equivalent compiled system. Furthermore, we
are also restricted somewhat by Franz Lisp’s view of data. Franz, in common with most
modern Lisp dialects, has a number of data types, but must make concessions to the
need for garbage collection. We generally garbage-collect over not only data space, but
also over the (large) and relatively static program space. We intend to implement a
generation scavenging garbage collector [Ungar, 1984] in the future. Needless to say,
compilation of the byte codes is a high priority.

Newspeak is currently a residential system (ala Interlisp and Smalltalk), but
separate compilation is planned.

4. Algebra and Analysis .

191

The Berkeley Algebra and Analysis Development (BAAD) group, the major users of

Newspeak, have designed a directed graph structure for describing the relationships of
the principal components of algebraic manipulation systems in general use today. Cer-
tain. extensions have been examined to see if it is, in fact, simple to provide for the
future implementation of more esoteric algebraic objects and operations. ‘

Principal advantages of this approach are:

e The developers are relatively free to redesign the mathematical hierarchy as needs
change. It puts the algebraicist in control, rather than the data structure designer.

N .’ " .
e The mathematical relationships between algebraic systems are sometimes revealed for
what they are: ‘matters of convenience of definitior, subject to re-evaluation.
, 4 _ :

|

e Exceptions to the classification scheme are ecasily identified, can be discussed openly,-

and treated as special cases, rather than elevated to be the central objects of study.

4.1. General Structure

True to its name sake, Newspeak data structures provide both a diverse set of data
structures and yet make the choice of a data structure unimportant. This is done
through the use of generie functions: semantically similar function on similar data

aal

T

1

T

B wr T

p
i

1
]

m

RSl

N (N

Lo~

192

structures have the same name. For example, the procedure for inserting a node into an
AVL tree and to a B-tree both have the same name (add/). Thus the decision as to the
final data structures can be deferred until after experimentation with alternatives and
an empirical determination of the best choice.

4.1.1. Kernels

Kernels provide non-decomposable ‘symbolic variables’ used in polynomials,
rational fun'ctions, power series, eic. Many systems only ailow a single, system wide
ordering of the kernels and give the user little control of how this is done. This affects
efficiency of various global and local operations, usefulness of the display, and the
eflectiveness of pattern matching. SCARAB allows very flexible kernel ordering. Not
only does SCARAB have a system ordering and allow the user to order kernels, it also
allows the user tc order the “internals’” of a kernel (potentially, a separate ordering
from the containing kernel). For example, SCARAB can represent sin(z+ y)+ cos{y + 7).

4.2. Implementation basis

A number of subsystems have been essentially implemented, documented, and
mostly integrated into the system. Rather than list all current projects, we highlight a
few: '

4.2.1. Power series

At present power series in SCARAB are given a dense representation, that is,
power series are represented by lists of their coeflicients. The coefficients can come from
an arbitrary ring, so that one can consider power series whose coeflicients are matrices
as well as power series with more typical coefficients, say, floating-point numbers. At
this time only Taylor series (i.e. power series with only non-negative integral powers of
the variable) have been implemented. A

Programs have been written to use power series for solving explicit ordinary
differential equations (i.e. ODE’s of the form y<">=p(z,y./ , - - y<*'>)). In addition to
providing an application of power series arithmetic, it has proved to be a good way to
test modifications of the power series code.

Future plans include a sparse representation of power series using a representation
coeflicient-exponent pairs, as well as allowing power series to have more general
exponents, inciuding negative or fractional powers of the variable. This will aliow solu-
tion of more general ODE's. For example, we could solve an ODE about a singularity
or we could obtain a solution involving a series with fractional powers of the variable.
[Williamson, 1984

[T I PR I AL

193

4.2.2. BigFloats _

Arbitrary precision floating point arithmetic has been implemented as an instance
of a field. Included are basic arithmetic functions plus log, exponential, and tri-
gonometric functions. The iceas for the algorithms are those used by Fateman's
bigfloat package in Macsyma, although they are much cleaner as a result of restructur-
ing. The pervasive use of global variables needed in Macsyma became unnecessary.
Multiple-value returns are avszilable in Newspeak, and the precision of float types is
associated with the objects when they are created. The floats are also incorporated into

: éomplex types, and the same functions are available for them.

Extended bigfloats, which would include signed infinities and ‘undefined’ can also
be used as though they constituted a field. A more rigorous implemeatation of a related
type of extension is arithmetic on the Riemann sphere, which is also implemented. Pro-
jective coordinates and transformations on ‘generalized circles’ provides a neat apphca—
tion of our mechanism, and should be useful in conformal mapping.

5. Human Interface

The human interface must satisfly both beginners {to the system) and experts.
Beginners need informative displays and help finding their way through an unfamiliar
system. Experts want the system to be as unobtrusive as possible and provide a com-
paci, sensibly orthogonal set of expressive commands. In each case, substantial develop-
ment work will be needed to implement the features behind the scenes. Both exjpeorts
and beginners want to be able to rely on the system to ‘‘do the right thing™ in the pres-
ence of errors or elision. It has become extremely clear that a naive user does benefit
from a naive system, but might well need sophisticated features as is present in the
Apple Macintosh system and its precursors. Nevertheless, we feel it is important that
this kind of cleverness be separate from the ‘“core algebra’’ part of the system, which
deals_in fully specified (and strongly typed} mathematical manipulations. Attempts to
second-guess the user which as a side effect impose ngld limits on what can be specified,
are problematical.

Users of algebraic manipulation systems tend to be sophisticated mathematically
but not familiar with the detailed program structure of the system. If we want to bring
such systems to users who are both cn"‘“mqtionally and mathematically unsophisti-
cated (e.g. a user with a technical problem but unaware oi ihe tools required for the
“solution process) rather diiferent problems are posed.” The computer system has to have
some meta-level information about the problem domain and the program capabilities.
Incorporation of text-book or reference-book material into a corputer system will
undoubtedly be possible; the burgeoning ‘expert system’ area may have an impact on
technology. At the moment, getting a computer program to cope with any but the sim-
plest applied mathematical context would be a breakthrough.

o

1oy

UM

o
|

—

mi

m

f"“M?

me T

I

0T

T

T

e
i Dot

T

-

5.1. The Interface technology: Windows/Menus/Mice

Recent technological advances make pointing devices and advanced graphics
software more easily available. This has affected the approach to the user interface
quite drastically. Using windows, several views of a session can be visible on a bit-
mapped display at once. In addition to the multiple, overlaid structure of a ‘desktop’-
like view of information, it is possible to shrink windows down to ‘icons’ or pictorial
reminder-symbols of the data available ‘under’ the icon. Menus are displays of
currenily possible commands from which an alternative cau be selected. Aice are the

‘most widely availabie pointing device on our systems, and have certain advantages to

pointing with fingers or light pens. Among other features, they are not only indicators
but provide additional input data via buttons. Working with menus and mice, a rapid
display and selection mechanism can be implemented. SCARAB's interface design has
been explored by Carl Andersen [Andersen, 1984] and Richard Anderson [Anderson
1983).

5.2. Knowledge Bases for Programmers

Building tools to make the programmer’s job easier is one of the favorite occupa-

‘tions of programmers. It inccreases productivity, at least in principle. Mewspeak and

SCARAB programmers are no exceptions.

Most developers of hierarchical languages have found that the proliferation of types
(or their counterparts) necessitates the implemeniation oi a browser so that users can
find out about parts of the system that they have forgotten about, or never even knew
about. This is the case with Smalltalk, and Interlisp’s Masterscope. We have imple-
mented a prototype knowledge base to help deal with the complexity of the system.
The knowledge base can answer specific questions about types, procedures, and files, by
giving documentation, argument lists, file dependencies, ete. It can also answer more
complicated queries about global information (eg, “what files contain ged procedures”,
“‘where is the coef* parameter iniroduced, etc).

The above questions can only be asked by someone who has some familiarity with
the system (e.g.,to jog one’s memory). To aid novices, the knowledge base allows the use
of pattern matching of regular expressions. Users of UNIX and other systems can
readily ‘attest to their usefulness i finding things. Another important feature of the
knowledge base for novices is its ability to display information graphically on bit
mapped displays. The ability to show hierarchies and quickly find out information
about them using the point and click paradigm is particularly important for investiga-
tion. The display front end for the data base is not being pursued at this time.

We have specific plans for the improvement of the interface and functionality of

~ the knowledge base, which we describe briefly in [Sonﬂ'er, 84].

195

5.3. Display: ‘DREAMS’

Dreams is an elaborated expression syntax tree display system for mathematical
expressions on bitmap computer displays. To support current display technology, we
need to handle screen position, font information, and classes of displayable objects.
Dreams, a Lisp-based system desigped here, is the basis of an output and input feedback
system for a user mterface for algebraic manipulation.

Dreams expects expression input in the form of Lisp symbolic expres'::ons The
input expression is processed to form a tree of successively refined expression ‘‘boxes”
Once the box-tree is formed, DREAMS figures how to display the expression sensnbly in
its given window. A strategy for displaying the expression is chosen using the size and
extent of the cutermost enclosing box. Finally the tree of boxes is traversed pnntmg
the leaves (and doing a few other chores).

The envisioned interface using DREAMS would use a bitmap display (or two), win-
dows, menus, a mouse, and (certainly) a keyboard. Windows would be used for text,
mathematical expressions and subexpressions, and, eventually, graphs. Menus would
provide help and inspection commands. A ccmmand language (from the keyboard)
would be best for some kinds of interaction. The mouse would be useu for focusing
attention.on expressions and for menu interaction. All of the above would be used in an
expression editor for mathematical expressions.

5.4. Input/parser/editor and command processor

SCARAB's current parser is a variant of an operator precedence parser (similar to
Macsyma's parser). It is user-extensible and table-driven, thus admitting different syn-
tax for different problem domains. This property is important because syntax is a
scarce resource and is used for different purposes in different problem domains (in fact.
authors in the same area occasionally use different syntax for the same idea).

One annoyance with current parsers/displays is that the user types two dimensional

input in one dimensional form and doesn’t receive feedback from the system until after
the expression is fully parsed. We are considering implementing a system that displays
the expression in two dimensional form as it is being input (with ”?” filling in for miss-

/ing operands). This is-a potentially useful feature, but we await implementation and"

user feedback before drawing any conclusions.

8. The Semantiq Matching Facility in SCARAB

Pattern-matching has been a feature of many symbolic computation systems. A
few systems such as Fenichel's FAMOUS was primarily a framework for expression of
pattern matching and replacement. Numerous matching programs have been described
in the literature. There has been much ado recently about the Prolog language, which
is essentially a restricted matching engine. Rather than dwell on the well-kncwn appli-

cations of pattern recognition to symbolic manipulation, or the various implementation

-

LI N

AT

ST

-
I

T

T

T

i

[
P

T

L

T

T
|

!

196

techniques, let us merely note that in SCARAB, we expect a very highly efficient pat-
tern matcher for simple patterns, and a full backtracking unification matcher for the
Prolog fans who may wish to be as general (or more general, considering the problems of
commutativity and associativity in the usual commutative algebra semantics).

7. Applications

We mention briefly a few of our areas of current work.

7.1. Function representations

In a forthcoming paper, the need for representation of singularities of functions, for
both numerical and symbolic needs. will be explored. We hope to see a more useful
representation emerge; one that distinguished between a mathematical function and the

. representation of an expression which can sometimes be evaluated to obtain a value of

the function at a point. The distinction is critical. [Kahan, Fateman, 1984]

7.2. Contours and Conformal Mapping

Data representation techniques and algorithms for dealing with maps on the com-
plex plane or projective sphere provide a test-bed for ideas involving mathematical
abstract and graphics, simultaneously.

7.3. 'NAGIink’ and othgr numerirsi jaterface work

The Numerical Algorithms Group scientific software package has an enormous
potential for use from symbolic systems. Access to this frem lisp and our current
Macsyma base will be extended to the BAAD work as the framework is put i place.
Kevin Broughan of the Univ. of Waikato is working with us on this. Phil Colella of

Lawrence Berkeley Labs has been working towards a system to aid in the generation of '

numerical PDE programs for parallel execution.
8. Comparison with othef systems

In an earlier draft of this paper, we began a comparative study of Macsyma, Maple,
Newspad (now called New Scratchpad), Reduce, SCARAB, and SMP. We have
removed it from the current version: because of length and our inability to get suitable
consensus from highly opinionated people. Maybe another time...

Acknowledgments

This work was supported in part by the Systems Development Foundation, General
Telephone and Electronics, the US Department of Energy.

R " LS SERRUCURTLVAPUN [1 SEEN 7% ECANEFRRRRRES - R @y, L

SN P T e s

References
Andersen, Carl M, “Specifications for a mouse-oriented mathematical manipulator,”
(draft, 1984)
Anderson, Richard, “EXED, an mteractwe algebraic expression editor.” EECS Dept, U.
Calif, Berkeley, 1983.
Fateman, R., “Open Problems in Algebraic Mampulatxon" 1983
Fateman, R., ““The Legacy of Macsyma '82": 1984 (draft)
Favaro, J., A Symbolic Executor for Fortran Code” MS project, UC Berkeley
Foderaro,” J.,, “Design of a Language for Algebraic \\Computation Systems,” Ph.D.
Thesis, ECS Dept, U .Calif, Berkeley. Dec. 1983.
Foster, G., “DREAMS: Dis;ilay REpresentation for Algebraic Manipulation Systems,”
M.S. Pro;ect Report, EECS Dept. UC Berkeley, April, 1984. (32 pages + program list-
ings.)
Jenks, R. D., “MODLISP An Introduction”; Proc. Eurosam 79, Spnnger-Verlag Lecture
Notes in Comp. Sci. 72, (466-485).
Kahan, W. and Fateman, R., “Symbolic -Singularities and the IEEE Floating-Point
Arithmetic Standard”, in draft 1984. ' :
Soiffer, Neil, “Everything You Wanted to Know about SNARKDB but were Afraid to
Ask,” 1984.
Williamson, Clifton Jr. “Taylor Series Solutions of Explicit ODE’s in a Strongly Typed
: Algpbra System”, ACM SIGSAM Bulletin 18, no 1, (Feb 1984) (25-29).

|
\,

197

R TSP
s T
.-.'Arl-'"’,

R e

I

§o

T

T

-

LN

I

U

T

198 -

ERRSY

...........

internaiset)

)
<ancernise
«Fisidlcealy
et ideanDona iInldesl>
»

<anterna _giﬁn >

<Tup 1907,

T augles
xv.a.s.

<Coordinaterairy .

Jects>

<Matr ix0(Ob ject s>

«Comg3 1ex> y A
CSgquUareMatr t ‘»‘
cinteger> A
<gauss iahInteger) «Fronty
<Loch)jzationy
«Conp e or? iela

.o...nosLA 810>

. XOvVirB i9f toats
1) <racionaly
(gauss iarmat ionals n .uuon..yw.nlouﬁ

<3pec 1A 1CoMD lexOvers igf loat>

< i 4
< >
< Oroup»
< e
<IntegralMono (d>
RE :
J

<Fracgion
. vector >
«Pigfloaty :..:.31.-:./ Iphce
~

<0 ivrS uayert ve 1> O 1T VPO b 2t \veR ing>

<UN tVP0 1YOVerfA 1Debra i CEXTInS (on” ie 1d>
<o ¥ tvsy

CSAUIreMatT ¢ Nteora 1D0ws in>
< IFg. isty »
:.-? boioid
v » x»\owi‘-.l
« y 134
(MIOVerConp lexr i# 18>

cPactorResu ity
>

«@w ..Wﬂ

CNORTHL. INCORDO!

@.3!" st

DO 1YL inkedL ist>

.oouﬁnnv
APEA _QF.u.nv.

>
>
<EaKeynsso. .n.ci..-ﬂ/ .
Nunhw_u\\!in.nn.ﬂf.n?
hssOCiatTom ISty o

« ?
< a }
< C 14 <

L]
¥

<Uro tyIntegraibows iny

(1Y, -4 —(-1."“.'_\8_0%::

. PO LARDy

<UPo Iyovers ie\a)

<M 1gebraicExtens ion (e 1d> .
<Denser ios0ver INTepra IDORA i

R

L

s L

me L

e i J— S

......

¢

e 1

o/

Types (partial)

ScARAB.

Figare 1

N et

- FATEMAL

652

L L1

ON THE DESIGN AND PERFORMANCE
OF THE MAPLE SYSTEM*

Bruce W. Char, Gregory J. Fee, Keith O. Geddes,
Gaslon 1. Gonnel, Michael B. Monagan, Sitephen M. Watt

Symbolic Computation Group
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3Gl

ABSTRACT

Maple is a symbolic computation system under development at the
University of Walterleco. A primary goal of the system is to be
compact without sacrificing the functionality required for serious
symbolic computation. The system has a modular design such that
most of the mathematical functions exist as external library fune-
tions to be loaded only when they are invoked. The compiled ker-
nel of the system is about 100K bytes in size. The library func-
tions are interpreted. Efficiency is achieved through techniques in-
cluding the identification of eritical functions that are put into the
compiled kernel, extensive use of hashing techniques, and careful
design of the mathematical algorithms. Timing comparisons with
other symbolic computation sysiems show that time efficiency is
achieved as well as space efficiency. ‘

1. Introduction
Maple is a language and system for symbolic mathematical computation
which has been under development at the University of Waterloo since De-
cember, 1980. The Maple system can be used interactively as a mathematical
caleulator, and computational procedures can be written using: the high-level
'M_ap]e programming language. :
: The primary motivation for the design of Maple can be described as user ac-
cesstbility. This concept has several aspects. The state of the art in 1980 was
such that in order to have access to a powerful system such as Macsyma it was
necessary to have a large, relatively costly mainframe computer and then to

" This work waa supported in part by grants from the Natural Sciences and Engineering Research Council of Canada, and
by the Academic Development Fund of the University of Waterloo.

199

—_—n

14

S BRI

T

CmT

.

i

[————

¢
[
¢
L

Rl

(
f,
|
[

W

200

dedicate it to a small number of simultaneous users. In the university setting, it
was not feasible to offer symbolic computation to large classes for student ¢om-
puting. In a broader context, a large community of potential users of symbolic
mathematical computation remained non-users. The. development of the Mu-
math[1] and Picomath[2] systems showed that a significant symbolic computa-
tion capability could be provided on low-cost, small-address-space microcomput-
ers. It scemed clear that it should be possibie to design a symbolic system with
a full range of capabilities for symbolic mathematical computation which was
neither restricted by the small address space of the early microcomputers nor
“inaccessible to the masses” because of unreasonable demands on computing
resources. In particuiar, it seemed possible to design a modular system whose
demands on memory would grow gracefully with the needs of the application
program. '

Portability was another of our earliest concerns, partly because we found
ourselves users of a computing environment in transition, and partly because it
was clear that a wide variety of computer systems would be coming onto the
market in the decade of the 1980’s.

Thus the primary design goals of the Maple system were: compactness,
modularity, a powerful set of facilities for symbolic mathematical computation,
portability, and a good user inter face.

2. Design Philosophy

2.1. Space versus time

One of the fundamental conflicts facing systems designers is the tradeoff
between space and time. In many circumstances, it is possible to improve speed
by allowing space consumption to expand, and conversely it is often possible to
conserve space consumption at the expense of speed. In the case of designing a
symbolic computation system, the potential amount of system code is extremely
large because such a system is inherently faced with the task of “mechanizing all
of mathematies”. An early design decision for the Maple system was that the
system would have a relatively small kernel (say, on the order of a hundred kilo-
bytes as opposed to a few megabytes). The vast bulk of system code for the
vasious mathematical operations, such as ged computation, factoring, integra-
tion, etc., exists as library codes to be loaded if and when they are needed.
Furthermore, given the current state of the art of symbolic computation, we be-
lieve it is very important that the programs for these high-level mathematical
operations should be readily accessible to, and modifiable by, the non-expert
users of the system. Therefore, the library programs for the Maple system are
coded in the high-level Maple programming language.

Since another design goal is to be portable across many different'opera.ting a

systems, the only practical implementation of the above mcdel is that the li-
brary programs do not exist as compiled code but rather they are interpreted at

‘run-time. Thus a fundamental design criterion for the Maple system is that.

«
-
.
-
*
.
D)

.
M
-

space is more crucial than time. In order to keep the compiled kernel small, we
are willing to sacrifice some speed of execution. This can be viewed as a mcans
to satisfy one of MaclLennan’s[3] design criteria, namely the principle of localized
cosl: users should only pay for what they use.

Given this model, there are several methods hy which the time cost of the
Maple system is kept to a minimum. QOne factor is the use of a stmple, efficient
interprefer. As one indication of the relative efficiency of Maple’s interpreter, an
experiment was performed using the “tak’ function[4] and it showed Maple's in-
terpreter to be about four times faster than Macsyma's interpreter on that par-
ticular benchmark. Consequently, the tradeoff between interpreted library code
and compiled kernel code is not as great in Maple as in other systems. -

Another factor in minimizing time cost is the identification of eritical func-

tions which are placed inic the compiled kernel. This has been a dynamic pro-
cess in the development of the Maile systemn. Some of the functions that were
once in the external library but which have been identified to be critical and
were moved to the kernel are: indets (to extract the indeterminates from an ex-
pression), seq (to construet a sequence), subsop (to substitute for a particular
operand, or subexpression), maz, min, mod, and divide {Tor polynomial division).
On the other hand, some functions that were once in ihe kernel have been (or
are being) moved to become external library fuactions (for example, solve, sum,
and int) and for some internal functions an external library interface was
developed to handie some of the higher-level cases (diff, expand, and laylor are
examples of functions that have an external library interface).

Yet another very crucial factor in achieving minimal time cost is the use of
efficient algorithms. This is perhaps a “motherhood” issue. llowever, particu-
larly in symbolic computation, we have seen that some innoceri-looking
~ methods take cxponential space and/or time while it is often possible to find
better approaches. It has been our experience that most mathematical functions
can be executed in the interpreted user language, instead of being included in the
compiled kernel, without significantly affecting execution speed. Whereas the
speed improvement that can be achieved by placing such a function into the
compiled kernel is usually not more than 20-40%, we have in many instances
achieved an order of magnitude improvement in speed by improving the algo-
rithm. We note that the effort required to improve an algorithm once it is cod-
ed in the internal system implementation language is far greater than the effort
required to modify an algorithm coded in the high-level language. Indeed, many
of the contributors to the Maple system have never written code in the system
implementation language, and would have been unlikely to make their contribu-
tions if coding in the low-level language was necessary. {We believe that this is
a property of all system developments, not a special property of the Maple sys-
tem and its particular system implementation language). '

The conflict between space and time is, of course, not only a matter relating
to the size of the compiled kernel. The run-time consumption of data space and
processor time is of equal importance. When an algorithm is being designed for

201

o

vy
’ s
o

LA
L] ‘c'

dati

T

1,

e

ar

N_.,fh

..........................

202

a particular function, there are usually variations of the algorithm which trade
off space consumption versus time consumption. We find it useful to consider &
measure,

- cost = (space)® (time),

that arose originally in theoretical studies of time-space trade-offs in sorting [5].
It corresponds with our belief (which has also been expressed by others, such as
liearn [6]) that space is ‘‘scarcer” than time in typical algebraic manipulation.

2.2, Compact size as a design goal

The kernel of the Maple system (i.e., the only part of Maple that is written
in the system implementation language and compiled) occupies a little more
than 100K bytes on a VAX computer. The kernel system includes only the most
basic facilities: the Maple programming language interpreter, numerical, polyno-
mial, and series arithmetic, basic simplification, facilities for handling tables and
arrays, print routines, and some fundamental functions such as coeff, degree,
subs (substitute), map, 1ged (integer ged computation), lcoeff (leading coefficient
of an expression), op (to extract operands from an expression), divide, mod, and
a few others. Some of the fundamental functions have a small core coded in the
kernel and an interface to the Maple library for extensions. The interface is gen-
eral enough so that additional power, such as the ability to deal with new
mathematical functions of interest to a particular user, can be obtained by
“user-defined Maple code. Some examples of fUIlCthIlb Whl(‘h have such an inter-
nal core and an external user interface are diff, ezpand taylor, type, and evalf
(for evaluation tc a floatmg—pomt number). Other functlons supplied with the
system are coded entirelv in the user-level Maple programmmg language and ex-
ist in the Maple library, including ged, factor, normal (for normalization of ra-
tionai expressions), limit, int, resultant, del, and solve.

The compactness of a system is affected by many different design. decisions.
The following points outline some of the design decisions whxch have contributed
to the compactness of the Maple system. _ ,\ ‘
1. The use of appropriate data structures. We have designed into Maple a set

of data structures appropriate to the mathematical objects being manipu-

lated, with a direct mapping between these abstract structures and the

machine-level “dynamic vectors’.

2. The use of a viable file system. By having an efficient interpreter and by
- placing much of the code for system functions into the user-level library,
Maple has the property that ‘‘you only pay for what you use”’. Writing
functions in the user-level Maple language has the additional advantages of
readability, maintainability, and portability.

3. Awvoiding a large run-time support system.. We view Maple as just one of
many software tools that a user may employ to solve problems, regardless
of which system it may bc used on. We see no need to provide all of these
‘tools within Maple itself, not only because they consume space and greatly

...................

increase the problems of porting without providing any greater ilgebraic
computation power, but also because many computing environments will al-
low their native software tools to be casily connected to Maple (say, as com-
municating processes).

4. A policy of trealing main memory as a scarce resource. We believe that
this point of view is important if we are to achieve the goal of providing a
symbolic computation system to ‘the masses”. Because we have adopted
such a point of view, we are constantly concerned about which functions be-
long in the Maple kernel and -which functions can be supplied as user-level
code in the Maple library. '

The choice of the BCPL family of system implementation languages. Im-
plementing Maple in system implementation languages from the BCPL fam-
ily has helped us to achieve the compactness goals outlined in the above

_ points. The support of “dynamic vectors” in the implementation language
allows the creation of compact data structures for the higher-level objects.
Furthermore, an implementation language in the BCPL family typically has
a run-time librarv that is small, selectively included, and yet provides the
desired functionality. :

o

2.3. Data structures : ’

Maple has about 40 different internal data structures designed into it. Ap-
proximately one-quarter of these data structures correspond to programming
language statements: assignment, if, for, read, etc. The remaining data struc-
tures correspond to the types of expressions including those formed using stan-
dard arithmetic and logical operators, numbers (integer, rational, and floating-
point), lists, sets, tables, (unevaluated) functions, procedure definitions, equa-
tions, ranges, and series. All of these structures are represented internally as
dynamic vectors. '

This approach using dynamic vectors at the machine level and a rich set of
data structures at the abstract level has significant advantages in improved
compactness and efficiency of the resulting systeni code. First, in Maple there is
only one level of abstraction above the system-level objecis. We believe that the
direct mapping between the abstract objects and the system-level objects simpli-
fies our code and makes it more efficient than a scheme involving a less direct
‘mapping. Secondly, we believe that the design <. data structures should be re-
lated, if possible, to the language that describes the data cbjects. In our case we
have a simple context-free language, and it is natural to relate the data struc-
tures to the productions in the grammar. This immediately suggests the need
for many data structures since there are many productions in the language.
Thirdly, dynamic vectors allow us, in many cases, to have direct access to each
of the components of the structure at about the same cost. This is more desir-
able than the sequential access required when all objects are represented as lists.
Fourthly, dynamic vectors are more compact than structures linked by pointers.
In summary, an important part of the compactness and efficiency of Maple is

T

Hliine

- e

o

. [THI

e -
AR I . [T

t

T T

R k!

e e M L b

204

due to the use of appropriate data structures.

2.4. Computational power through libraries of functions

Another goal of the Maple system is to provide a powerful set of facilities
for svmbolic nathematical computation. In other words, we are not willing to
achieve competness by sacrificing the functionality of the system. Thus while
the number of fun'(-t.inns provided in the kernel system is kept to a minimum,
many more functions for symbolic mathematics are provided in the system li-
brary, to be loaded as required. The functions in the system library are written

~in the high-level Maple programming language and are therefore readily accessi-

ble to all users of the Maple system. A load inoduie for each library procedure is
stored in “Maple internal format™ which is a quick-loading expression-tree
representation of the procedure definition. When a library function is invoked,

- its load module is read into the Maple environment {if not already loadod) and
"the expression tree is interpreted by the Maple interpreter.

3. The Use of Hashing in Maple

Maple's.overall performance is in part achleved by the use of table based al-
gorithms for eritical functions. Tables are used within the Maple kernel in both
evaluation and simplification, as well as less crucial functions. For simplifica-

_tion, Maple keeps a single copy of each expression or subexpression within an cn-

tire session. This is achicved by keeping all objects in a table. In user-level pro-

‘eedures, the remember option provides a hint to the interpreter vhat the values

returned are likely to be needed again. These values are maintained in a table

" until a-garbage collection is performed. Finally, tables are available at the user

level as one of Maple's data types.

All of the table searching is done by hashing. The algorithm is an imple-
mentation of direct chaining in which the hash chains are dynamic vectors in-
stead of linked lists. Each table element is stored as a pair of consecutive eatries
in the hash chain vector. The first entry of this pair is the hash key and the
second is a pointer to the stored value. For efficiency, the hash chain vectors
are grown a nuinber «f entries at a time and consequently some of th: entries
may not be filled..

3.1. Internal Use of Hash Tables

A computer algebra system spends most of its time evaluatmg and simplify-
ing expressions. The Maple kernel manages two tables, the partial computation
table and the simpli fication table, in an effort to make evaluation and simplifi-
cation efficient. Other :ses of hash tables in the kernel cre the global symbol
tablc and temporary tables used in performing input/output.

g e yrm e oy
Al P

3
'

o T

3.1.1. The Simplification Table

By far, the most important table maintained by the Maple kernel is the sim-
plification table. All simplified expressions and subexpressions are stored in the
simplification table. The main purpose of this table is to ensure that simplified
expressions have a unique instance in memory. Every expression which is en-
tered into maple or generated internally is checked against the simplification
table, and if found, the new expression is discarded and the old one is used. This
task is done by the simplifier which recursively simplifies (applies all the basic
simplification rules} and checks against the table. Garbage collection deletes the
entries in the simplification table which cannot be reached from a global name.

The task of checking for equivalent expressions within thousands of subex-
pressions would not be feasible if it was not done with the aid of hashing. Every
expression is entered in the simplification table using its signature as a key. The
signatuvre of an expression is a hashing function itself, with one very important
attribute: signatures of trivially equivalent expressions are equal [7]. For exam-
ple, the signatures of the expressions a4+b+c and c+a+b are identical; the sitna-

" tures of a*b and b*a are also identical. If two expressions’ signatures disagree

then the expressions cannot be equal at the basic level of simglification.
Searching for an expression in the simplificaiion table is done by:

— simplifying recutsively all of its components; ‘

— applying the basic simplification rules; v

— computing its signature and searching for this signature in the ﬁable.

If the signature is found then we perform a full comparison (taking into account
that additions and multiplications are commutative, etc.) to verify that it is the
same expression. I the expression is found, the cne in the table is used and the
searched one is discarded. We have to do a full comparison of expressions only
when we have a “collision” of signatures. How often this occurs is machine
dependent. On a VAX, which has a 32-bit word, the signatures have 22 {o 24
useful bits. An experiment we conducted measuring the collision rate during
“typical” Maple computation indicated that signatures of inequivalent expres-
sions coincide about once every 1500 comparisons for signatures of this size.
Thus, the time spent searching the simplification table is typically negligible.

Since simplified expressions are guaranteed to have a unique occurrence, it

~ is possible to test for equality of simplified expressions using a single pointer

comparison.

3.1.2. The Partial Computation Table

Some functions tend to be called many times with the same arguments.
Maple takes advantage of this fact by maintaining a table of function results for
these functions. This is called the partial computation table. In it, function calls
are used as the keys and their results as the values. Searching the hash table is
extremely efficient so even for simple functions it is orders of magnitude faster
than the actual evaluation of the function. Since both the function call and

205

T

s,

T

o

e —

LN

o

yrere—y

R |

[]

i

E

=

!
i

M;

S

i

D
¥) RSN

= Y

se STy T e e TR
S RS

I
£, v a0y
s ERU
¢ BUPCAN Y

e

- E—,
:
¢
Lo

.
‘s
«
-
L4
e
£

P
g
N
da

s

function result are already existing as simplified data structures, the only
storage consumed by an entry in the partial computation table is a pair of
pointers. The partial computation tabiz is cleared by garbage collection.

The original motivation for the partial computation table (which is still
valid) was the observation that certain operations reproduce subexpressions mul-
tiple times in their results. As an example of this, consider the operation

taylor(exp(y/(1—x) + a), x=0)

where every term in the result contains the expression exp(y+a). Any f{urther
operation on this result (such as simplification, differentiation, etc.) will have to
deal with this argument repeatedly.

There are four kernel functions that use the partial computation table: dif,
taylor, expand, and evalf. (The evalf function is used for floating-point evalua-
tion). External library functions and user-defined functions take advantage of
the partial computation table by specifying the remember option in the pro-
cedure body. This is further discussed in a later section.

3.1.3. The Name Table

The simplest use of hashing in the Maple kernel is the name table. This is a
symbol table for all global names. Each key is computed from the name’s char-
acter string and the entry is a pointer to the data structure for the name. The
name table is used to locate global names formed by the lexical scanner or by
name concatenation. It is also used by functions that perform operations on all
global names. These operations include: (i) marking for garbage collection, (ii)
the saving of a Maple session environment in a file, and (iii) the Maple functions
anames and unames which return all assigned global names and all unassigned
global names, respectlvely

3.1.4. Put Tables
It is possible to store Maple objects in a sequential file using a fast-loading

. internal format. The pointers in a collection of Maple objects form a general

directed graph. The process of saving values in a file and later reading the

values in from the file (usually in a different session) must preserve this graph,

and in particular preserve shared subexpressions. A hash table is temporarily
created for each save or read statement that uses internal format. These
tables are known in Maple as put tables. The put tables are used to keep track
of waich subexpressions have a]ready been output to {or input from) the file, .

and, in general, to perform thé mapping from a directed graph into a linear (la-
belled) structure :

R

.
gy

3.2. Option Remember

Funections written in the user-level Maple programming language, including
the system-supplied external iibrary functions, may use the partial computation
table by specifying option remember in the options list of the procedure body.
This is best viewed as a hint to the interpreter that the results of this function
are likely to be used again. It may also be advantageous to use option
remember in a function that is extremely expensive to compute, even if the
result does it have a large probability of being re-used. It is important to note
that remembered values disappear on garbage collection. For functious without
side effects, this causes no problem because the act of remembering is an optimi-
zation; semantically it makes no difference whether the result is remembered or
recor..puted. For functions with side effects, this may cause erratic behaviour.

For .nany -problems, remembering past results reduces the running time

~dramatically. For example, the Fnhnnnom nnmhprq computed with

iple, th
fib := proe(n)

il n < 2 then n else flb(n- 1) + fib(n—2) fi
end;

take exponential time to compute, while

fib := proe(n) option remember;
lf n < 2 then n elsz fib(n—1) + fib(n—2) i
end;

takes only linear time. Although the effect is not as specticular for most func-
tions, it is not unusual for typical programs to be made roughly 30% faster by
the judicious use of option remember. Of course this same factor could be ob-
tained by recoding the crucial functions to use tables explicitly. The main advan-
tage of option remember is that it achieves this performance factor without
altering the function’s code. The resulting code is very easy to read since the al-
gorithmic intent is not obscured by code for saving intermediate results. - .

Sometimes the value of a function for some argument is known without ac-
tually computing it explicitly. An example would be an idempotent furction
such as sgrfree, which produces a square-free factorization of a polynomial. If
the function uses option remember then this additional information may be en-
tered in the partial computation table directly, using the runember function. An
ex dmplo would be:

p := sqrfree(q, x);

remember(sqrfree(p,x) = p); »
Here the result of sqrfree is remembered for both p and ¢q. The remember func-
tion evaluates its argument specially so that the function call is not executed.

Many library functions that use option remember have a front end that sub-
stitutes the indeterminates of the arguments for generic names. This is an at-
tempt to remember a general result. This is done by the integrator, for exam-
ple. All integrations are done with respect to the special variable name @JX.

207

T

a3

CTRIT

BRI

T

i
i
|
§
t

iR

&

IR

e
i

T

e e —

208

Once int(z"20%exp(r),x) has been computed, then the integral int(y"20%ezp(y),y)
is obtained from the partial computation table.

3.3. Arrays and Tables in the Maple Language

Arrays and tables are provided as data types in the Maple language. An ar-
ray is a table for which the component indices must be integers lying within
specified bounds. Arrays and tables are implemented using Maple’s internal
hash tables. Because of this, sparse arrays are equally as efficient as dense ar-
rays. Contrary to the belief that arrays can be accessed quickly only by com-
puting an element’s address as an offset using the indices, our experience has
shown that, in the Maple context, handling arrays as tables is at least as effi-
cient while being more general.

A table object consists of (i) index bounds (for arrays only), (ii) a hash table
of components, and (iii) an indexing function. The components of a table T are
accessed using a subscript syntax, e.g., T[a,b*cos(x)]. Since a simplified expres-
sion I1s guaranteed to have a unique instance in memory, we use the address of
the simplified index as the hash key for a component. If no component exists
for a given index, then the indexed expression is returned.

The semantics of indexing into a table are described by its indering funec-
tion. Using an indexing function, it is possible to do such things as efficiently
store a symimetric matrix or count how often each element of a table is refer-
enced. . Because each table defines its own indexing method, generic programs
can be written that do not need to know about special data representations.
Aside from the default, general indexing, some indexing functions are provided
by the Maple kernel. Other indexing functions are loaded from the library or are
supplied by the user.

Two typical system-supplied indexing functions are symmelric and sparse.
The indexing function symmetric is used for tables in which the value of a com-

“ponent is independent of the order of the expressions in the index. This indexing

function works by reordering the index expression sequence to produce a unique
table -reference. Thus, if the table T uses symmelrie, the expression
Tli,j] = T[j.i] evaluates to zero regardless of whether or not i, j or Tli,j] are as-

signed values. The indexing function sparse is used with tables for which a com-

ponent is assumed to have the value 0 if it has not been assigned.

P

-

PR ST SR

4. Hybrid Algorithms _

It is well understoed that many problems in algebraic computation do not
have a single “best” algorithm. In fact, for some problems there may be many
algorithms to choose from. Computing polynomial greatest common divisors is
one such example. At least four major classes of ged methods are in use in alge-
braic systems today. These are ‘polynomial remainder sequence based algo-
rithms{®.9], Hensel based algorithms[10,11], the sparse modular algorithm{12],
and an integer-ged based heuristic[13]. Comparison of their performance indi-
cates that no one algorithm works best all the time. Some “win” on sparser
problems, others on dense problems. Some work well on small problems and do
poorly on problems of higher degree or numbers of variables. Others have such
overhead that they should only be used on large problems where their asymptot-
ic complexity begins to assert itself.

» How then does a general purpose system organize the code to solve a prob-.
lem where several algorithms should be considered? Consider applying a
predetermined, fixed algorithm to all problems. Such a single algorithm must be
robust. This rules out the application of algorithms that will succeed, or succeed
quickly, only on certain classes of problems. The alternative to using a single al-
gorithm is to automatically select from several: a “hybrid”, or polyalgorithm. A
polyalgorithm could also possibly use one method to partially solve the problem
{for example, eliminating some of the unknowns from a system of equations),
and then switeh over to another more general and expensive algorithm when ap-
propriate. This is not always possible but when it is, it often makes a substan-
ti:il overall improvement in efficiency.

| Thus. a hybrid procedure can be viewed as automating not only the algebra-
ic f-nmpm:\lim_i, but also automating the expertise in seleeting and combining al-
gorithms for a particular problem. If this is done well, it can relieve the user
from the unwanted burden of learning details of algorithms in areas that are not
of direet interest to him or her. In order to justify ‘a hybrid approach in con-
trast with using a single algorithm, it must be shown that the decisions about
whic\h algorithm to use. and when to start using it, can be automated without
introducing undue overhead. 1t must also be shown that the hybrid algorithm

Coften: performs much better than any single algorithm, and rarely performs

muchl worse.

We deseribe the Maple implementation of hybrid algorithms for several dif-
ferent problem areas. These include the determinant code, the ged code, and the
solve code (for sclving systems of equations). All of the codes for these problems
are implemented in the user-level Maple language and therefore they are inter-
preted rather than compiled. Timing comparisons are presented to show the re-
ative performance of Maple, Maesyma, and Rednce on some sample problems.
All timings {in seconds) were obtained on a Vax 11/780 running Berkeley Unix
1.2, by calling the user-level routine for solving the given problem.

e b

mane

S S

(1

IRt

TET

g e

-

j
i

;
i
i
|
]
i

T T

[T

T
|

T

N _w

L

m.-.—m-ﬁ'—«: . Twl-.‘;r.—n

t

i

210

4.1. Determinants

The two methods used are fraction-free Gaussian elimination and minor ex-
pansion. Comparisons of these two methods are given by Gentleman and John-
son, and Horowitz and Sahni [14,15]. Those authors’ comments, their timing
results, and our own experience, suggest the following general guxdehne for
choosing between Gaussian elimination and minor expansion:

(1) for matrices with many numerical entries and/or larger dense matrices in
only a few variables, use gaussian elimination;

{(2) for small matrices (of dimension = 5), sparse matrices, and matrices with
mauny variables, use minor expansion.

We are also experimenting with the idea of running fraction-free elimination .

steps until a small pivot is no longer available, then switching to minor expan-
sion. We note that the strengths and weaknesses of a particular computer alge-
bra system must also be taken into consideration in algorithm selection. For ex-
ample, Maple is particularly well suited to using minor expansion because of the
facility provided by the partial computation table as described previously. By
using oplion remember, we can implement the standard recursive definition of a
determinant in terms of its minors (see Figure 1). Without the help of option
remember (or some similar facility), this algorithm would be extremely ineffi-
cient, as minors would be recomputed ‘an exponential number of times. In using
option remember, the system avoids recomputation by automatically keeping
track of the minors’ determinants as it computes them. Gentleman and Johnson
avoid recomputation by computing the determinants of the minors “bottom-
up'. We believe that the use of opfion remember in Maple leads to a more na-
tural and simpler coding, ond furthormore avoids an exponential amount of
work for the sparse cases.

The above discussion of determinant code organization is equally applicable
to the problem of computing matrix inverses. For this problem, there is a choice
hetween fraction-free Gaussian elimination and computing the inverse via the
adjoint of the matrix.

The timing results in Table 1. show that Maple's determinant code performs -,

quite 'well over a variety of different problems. For these (and subsequent} tim-
ing comparisons, note that Maple's code is executed by an interpreter while the
Macesyma and Reduce codes have been compiled. For a detailed "listing of the !
test problems used in Table 1, see[16]. We find that the overhead of algorithm |

“seleetion s not unreasonable compared to the cost of (omputmg the deter-

minant.

i Y

W

‘al"

211
mindr == proc (A,r,e,nj local i, s, t; option remember;
Compute the determinant of the n by n minor of the matrix A, whose row
and column indices are given in the lists r and ¢, using minor expansion.
if n= l then Afr[1],c{1]]
elif n = 2 then Alr[1],c[1]]*Afr[2],c[2]] - A[(1], c[)]]*A[r[‘)] c(1]]
elif n = 3 then
Alr[1]e{1]) * (Alr[2]e[20]*Alr[3],c[3]) ~ Alrf2], 0[3]]*A[r[3] c[2]]) -
Alr[2]e1]] = (Ale(1] cl2]l*Alr[3le[3]] = Alr[t]c[31]*Alri3]cl2])) +
Alr{3Lel1]] * (Alr[1]cl2][*Alri2lel3]l = Alr{1].3]I*Alr(2]c[2]])
olse
t := subsop(1=NUl.L,c);
s = 0;
l'or i to n do if Alr[i],c[1]] <> 0 then
s :=s + Alrli],c[1]] * (—=1)"(i+1) * minor(A,subsop(i=NULL,r),t,n—1)
fi od. : ' o
fi:
if type(“, “+") then expand(“) else “ fi
end . ' _ ,
Figure I: Maple library code for computation of a minor’s determinzat.
: ‘ Y
Matrix deseription ‘Maple Macsyma (1) Reduce (1)
b\ " Vandermonde . 6.5 . 105 0.8
5 by 5 Dense univariate Bezout 19.9 19.8 17.5
6 by 6 Bezout (from Sigsam #7) 133.6 271.6 132.9
12 by 12 Eigenvalue problem (band matrix) 42,5 - 719.5 10.8
10 by 10 Hilbert , 13.5 236.0 300.7
10 by 10 Univariate Sylvester . 10.2 14140 264.9
11 by 11 Tridiagonal (univariate) 4.8 95.1 . 0.9
11 by 1t Eigenvalue problem (biv 1rnto) 279.7 >1500 >1500,

Table ; Timings for determinant problems.

Notes: (l) The default algorithm for both Macsyma and Reduce on our system is

minor expansion: Also, in collecting the Macsyma times, ralezpand was applied

to the result from defcrminant where necessary.

mr

T

o

.
——

l

Rl g

)
§

|
i RN
e [DI S A

,,,,,

i

o [T

T

e T T T

- T

| T

T

A]

4.2. Greatest Common Divisors of Polynomials

Mapicz’s ged code makes use of two algorithms. Initially, a heuristic,
gedheu,[13] is tried. Gedheu computes polynomial geds via polynomial evalua-
tion, an integer ged computation, and single-point polynomial interpolation.
This method was motivated by the fact that the hardware provides support for
integer arithmetic, and consequently even multiple-precision integer arithmetic is
fast, whereas there is no hardware support for polynomial arithmetic. Therefore
although the complexity of an intéger ged based computation is exponential in
the number of variables, such a method performs very well on a significant class
of practical problems. Roughly speaking, for most problems in three or fewer
variables we find that gedheu is the algorithm of choice. On the other hand,
there are many problems that gedheu would be extremely slow to solve. For-
tunately, it is easy for gedheu to detect its bad cases by estimating the size of
the integer ged. problem before generating it. When the integer ged problem
about to be generated would be larger than a pre-specified size (currently set at
3000 digits), gedheu gives up. Control is passed back to the main code, which
then sets up the problem for the second algorithm. The second algorithm is a
Hensel-based ged algorithm (EEZGCD).*

Another important feature of gedheu is that its code size is tiny, relative to
Hensel-based codes or the sparse modular code. For most sessions we expect
that the gedheu algorithin will be sufficient and consequently the larger codes

will not be loaded. This organization helps to maintain Maple's goal of com-

pactness.

In Table 2 we present timings for some ged problems. These problems were
generated at random. All problems are non-trivial in either the number of vari-
ables, their degrees, the number of terms, or the size of the coefficients. Seven
of the problems are sparse, three are dense; five of the problems have a non-
trivial ged, and in the other five the ged is one. For a detailed listing of the test
problems used in Table 2, sec[16]. The timings illustrate both the power of
gedheu as an algorithm in its own right, and the robustness of the overall code
organization since the timings for larger problems are also very reasonable.

¢ Code for the sparse modulnr algorithm has been wntten for Maple[17] but it iy vot yet deeermmed how this will be in-
corporated into the ged polyalgornbm

[PR
[y

Problem Maple Macsyma (1) Reduce (2)
I 2.2 67.8 > 1500
2 5.8 42.7 1472
3 6.3 17.5 >1500
4 10.7 31.3 >1500
5 5.1 4.8 >3500
6 29.5 9.4 >1500
7 9.6 2. >1500
8 25.7 24.9 11.6
9 110.6 34.8 >1500
10 34.5 24.6 >1500

Table 2. Timings for some ged problems.

Notes: (1) Using the default Macsyma ged algorithm, spmod. (2) Using a PRS
algorithm with trial-division[18].

4.3. Solving Systems of Equations

The first method to be tried in solve on a system of equations is gensys. At
each step, gensys sclects the *‘caciest’” equation to be solved for a particular unk-
nown. That unknown is then eliminated from the other equations of the system
via a substitution. Both under- and over-determined systems of both linear and
nonlinear equations can be solved in this way. Gensys spends a considerable
amount of time evaluating the complexities of each equation. Ideally, all unk-
nowns will be found and eliminated from “simple” equations, preserving sparsity
where possible. What is considered a simple equation in gensys is any equation
containing an unknown that when eliminated, will most likely produce a simpler,
smaller system. This elimination procedure is repeated until either the system
has been reduced to a single equation, in which case back-substitution is em-
ployed to obtain the solution, or else further progress is blocked because
proceeding would generate, for example, new quotients of polynomials.

At this point, control is passed to a second method, a modified fraction-free
Gaussian elimination algorithm for solving rectangular linear systems. This al-
gorithm solves the remaining linear problems for which gensys would be too ex-
pensive, If the system is found to be nonlinear then centrol is passed back to
gensys, which continues the elimination. A resultant based algorithm is called
for the general case when gensys cannot procced.

This organization of the solve code has several advantages. Simple linear
and nonlinear equations are eliminated quickly. Gensys preserves sparsity fer as
long as is practical. Since gensys is by nature a sparse algorithm, we are in-
terested in how it performs on dense systems (its worse case) where much of the
time will be spent in looking at the equations. The first problem in Table 3

shows that the cost of using gensys rather than immediately using Gaussian el-

213

T

U

L

i

s
1

T

it

T

K

T

- [THIT

—

ey

214

imination is not unreasonable. (Our time for directly applying Gaussian elimina-
tion on the first probiem is 23 seconds). For large sparse systems, the hybrid al-
gorithm performs much better than Macsyma’s default algorithm. The first four
times reported in Table 3 are for linear systems and the last two are for non-
linear systems. For a detailed listing of the test problems used in Table 3,
see[6].

Problem description Maple Macsyma Reduce
10 equations, 10 unknowns

dense with integer coefficients 50.8 22.5 21.5
30 equations, 29 unknowns ,
integer coefficients - 55.6 122.9 (1)
50 equations, 50 unknowns ,

sparse band system 138.6 1180 1162
117 equations, 49 unknowns :

very sparse with trivariate coefficients 96.5 10783 (2) (1)
1¢ equations, 17 unknowns

sparse system with 4 solutions 68.5 >1500 (1)
22 equations, 17 unknowns

sparse system with no solution 179 >1500 (1)

Table 3: Timings for solving systems of equations.

Notes: {1) Reduce's solver was not programmed to solve over-determined sys-
terns. (2) This time reported for Macsyma was obtained by Prof. Stanly Stein-
berg of the University of New Mexico, using special purpose code developed for

- the problem. Maecsyma's default algorithm could not solve this problem in under
1501 seconds. ' : ‘

5. Further Comparisons of Space and Time

Table 4 presents some timing comparisons for a variety of symbolic compu-
tation problems which are summarized below. More details about these test
problems can be found in [!6]. All times are in seconds in the form
user lime + system time obtained from the Unix time command on a Vax
11/78C running Berkeley Unix version 4.2. The Maple space column indicates

the total number of bytes of memory required by Maple {ccmpiled kernel plus -

data space) for the problem. Note that automatic garbage collection is not yet

operational in Maple and therefore the space consumption ircreases monotcni- -

cally with execution time. Note also that the iqnitial size of code plus data space
for Reduce is over one megabyte and for Macsyma is over ihree megabytes, in
contrast with Maple's initial size of 104K bytes.

oo

.

Problem Maple space
1 139K
2 145K
3 222K
1 777
5 169K
6 432K
7 251K
8 169K
9 185K

10 603K
11 181K
12 247K
13 302K
14 152K
15 414K

Mapie time

10.4 + 0.6
14.3 + 1.8
48+ 1.0
187 + 2
1.3+ 0.4
32.6 + 4.0
23.6 + 2.4
2.0 + 0.4
2.2 +05
27.2 + 2.8
2.6 + 0.5
5.7 + 1.1
124 + 1.5
1.2+ 1.2
16.8 + 2.4

Macsyma time

23.3 4+ 84
40.4 + 13.6
46.1 + 21.0

180.8 + i1.2

26.2 + 9.7
68.9 + 11.7
88.5 + 18.3
93.3 + 14.2
183.3 + 22.1

101.2 4+ 20.4
3.3+ 54
3.0 +6.0

36.7 + 14.8
2.9 + 4.7
46.9 + 13.5

Reduce time

134.0 + 297
180.0 + 26.5
43.5 + 10.0
88.6 4+ 4.9
4.7+ 14
3714 7.6
>1000.0

Not attempted

Not attempted
335+ 7.9

Not attempted
7.5+ 3.4
11.5 + 3.0
1.3+16

Not attempted

Table 4: Space and time statistics for a variety of problems.

Description of Problems in Table 4

1

VORI U]

Compute and print 10001,

Compute a “‘big”

Compute aresin{.7102633504

rational number:

93214761436) to 50 digits.
Read in a random polynomial but do not print lt
variables, each of degree 6, and 4-digit coefficients.

Do 1000 assignments in a for lcop without printing:
for i to 1000 do a :=i od.

Solve a sparse linear system of equations (20 by 20, 3 terms per equation,
random 4-digit integer coefficients).

1371000 / 147960
6985192786 3258652083

Compute and print —diff(u,z) from [19,p. 510]
Factor 16254399361 (= 89137 * 182353).

Taylor series of sin(x"5—3*x"8+7*x"29+13%x
Compute and print the I and g series to order 16. [?0]

(ompute and print the mdehmto summation: sum(*’

Find frso Tdx.

Expand (a+b+c+d+e+f+g+h) 4-and print it. :
Recursion test: f := proe(n) if n=0 then 1 else f{(n—1) fi end; {(100).

SIGSAM Problem #3: Keversion of a double ser1eq[21] solved to order 4

by Hall's 2nd me ‘hod["‘z] (includes print time).

It has 396 terms, 5

"59) up to the term in x 5.

2,i=0.n—1).

7914203194

L =
L =
N 3
Fl =
- S I
Pl t
I i
® 0
T
8, .:
: b
S &
0
i
9 L
P 57
4_?‘
L

Nt
(S9N
SRS
-~

.

-
v
x
“
-
e
-
.
-

T o'y
i}

e

6. Future Development

The Maple project is an ongoing act;vxty of the Symbollc Computation
Group at the University of Waterloo. We mention here some of the develop-
ments that are anticipated for future versions. '

6.1. Algorithm improvements

Some of the existing mathematical packages are being improv ed For ex-
ample, the ged package is largely completed but its multivariate Hensel-based
(EEZGCD) algorithm will have Wang's coefficient pre-determination added to it
for improved performance on sparse problems. The factor package similarly
needs to evploit coefficient pre-determination (this is currently implemented only
for the leading coefficient) in the multivariate Hensel lifting staze. Maple's
univariate factorizer is a heuristic algorithm based on single-point evaluation
and integer factorization [23), which performs well on problems with reasonably
small integer coefficients, but we have yet to complete implementation of the
Berlekamp/Hensel algorithm for univariate factorization. Another package to
be completed is the integration package, which currently includes only a *front
end” of heuristics. Eventually the Risch procedure will be included as part of int
(work is in. progress): The method of resultants is being added to the solve
package for solvmg systems of polynomial equations.

There are numerous mathematical packages yet to be introduced into the
Maple library. For example, a dlfferentm] equations package and a tensor pack-
age have yet to be lmplemented

6.2. Language facilities

The following are some of the language facilities awaiting implementation.

(1) Automatic rarbage collection (currently the user must issue a ge() function

Ca]l)
(2) Pattern matching simplification.
(3) User—speci_ﬁe'd simplification rules.
(4) Operators, including an operator algebra facility.

(5) Foreign function interface {some work has been done on an interface to For-
tran and an interface to Prolog). '

(6) Language conversion (some work has been done on convertmg Maple output
to Fortran syntax).

6.3. Porting Maple

The Maple system is designed to be portable to various operating systems,
usually in the C language. The main restriction is that the host system must
support a large address space {e.g., Maple is not designed to work with 16-bit
addresses) and must have enough physical memory (we recommend a minimum
of one megabyte) to be capable of handling typical symbolic computations. To
date, Maple has been fully ported beiween C under Berkeley Unix on a VAX 11,
B under GCOS-8 on a Honeywell DPS-&, C under Xenix on a Spectrix S-10
(M6R8000-bascd microcomputer) and C under TOPS-20 on a DEC20. The
VAX/Unix and DEC20 versions are currently in distribution. Work is well
underway to port Maple to the IBM VM/CMS operating system and to the
WICAT operating system. Planned for the near future is a version for DEC's
VAX/VMS operating system (see below).

6.4. Maple in undergraduate teaching ,
We are particularly excited about the introduction of Maple into the main-

. stream of the undergraduate mathematics curriculum. Current plans include ex-

perimenting with Maple as a laboratory tool to be used by first- and second-year
calculus and linear algebra students at the University of Waterloo. A pilot pro-
jeet is scheduled for the term beginning in January 1985, probably using a VAX
11/785 running VMS, to service approximately 300 students. To increase the
capacity beyond the size of a pilet project, we expect to move to a network of
microprocessors connected to a file-server VAX, with the bulk of the symbolic
‘computation being done on the microprocessors.

7. Availability of the Maple System

Maple version 3.2 is currently being distributed for VAX/4.2 BSD Unix, and
for DEC20 systems running TOPS-20. During the latter part of 1984 we plan to
begin distribution of the Maple system (version 3.3 and beyond) through the fa-

cilities of Watsoft, an institution within the University of Waterloo which is’
responsible for the distribution of several other software products (WATFOR, -

WATFIYV, WPascil, ete.); We expect that the Watsoft distribution will initially
include IBM mainframes (VM/CMS), and eventually VAX/VMS and M68000-

" based systems.

" Licensing and distribution information, and copies of Maple documenta-
tion[214,25,26], are available by writing to: - S

Mapie Lab

Symbolic Computation Group
Department of Computer Science
University of Waterloo
Waterloo, Ontaric

Canada N2L 3Gl

217

T

T

7

T

I

i :- 218

Acknowledgements

We wish to acknowiedge the contributions our Maple co-workers Marta
Gonnet and Benton Leong, and Prof. Stan Devitt of the University of
Saskatchewan, have made to the design and development of Maple. We also
wish to thank Prof. Stanly Steinberg of the University of New Mexico for sup-
plying us with one of the test problems used in this paper, and our fellow Macsy-
ma w:ers for helping us with the Macsyma system at various times.

References

1. Art Rich and David Stoutemyer, “Cagabilities of the muMATH-79 Comput-
er Algebra System for the INTEL-8080 Microprocessor,” Proceedings of Eu-
rosam '79, pp. 241-248 Springer-Verlag, (1979).

David Stoutemyer, “PICOMATH-80, an Even Smaller Computer Algebra
Package,” SIGSAM Bulletin 14(3) pp. 5-7 (1980).

é _ 3. Bruce J. MacLennan, Principles of Programming Languages: Design,
Evaluation, and Implementation, Holt, Rinehart, & Winston,, Toronto.

. - (1983).

% 1. Martin Griss, Fric Benson, and Gerald Maguire, Jr, *PSL: A Portable LISP

S : System,” Proceedings of the 1982 ACM Symposium on Lisp and Functional

Programming, pp. 88-97 (198%).

Allan: Borodin, Michael Fischer, David Kirkpatrick, Nancy Lynch, and Mar-
tin Tompa, “A Time-Space Tradeoif for Sorting on Non-Oblivious
Machines,” pp. 319-327 in Proceedings of 20th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society (1979).

6. . A.C. Hearn, “Reduce - A Case Study in Algebra System Developmeat,”
Compuler Algebra. Proceedings of FEurocam&2, Springer-Verlag, (1982).
Lecture notes in-Computer Science, v. 144.

B

T
W

1

»

- .. T
Yy Ty BRI
L A I

-
e - o

»

_ 7. Gaston H. Gonnet, “Determining Equivalence of Expressions in Random Po-
:E:-'_, lynomial Time,” Proceedings of the 16th ACM Symposium on the Theory of
1;« Compuling, pp. 334-341 (April 1934).
= 8. G.E. Collins, “Subresultants and Reduced Polynomial Remainder Se-
? o quences,” Journal of the ACM 14 pp. 128-142 (1967). ‘
e - ! ‘ , : ._
i:_. 9. W.S. Brown, “The Subresultant PRS Algorithm,” ACAM Transactions on

T

Mathematical Software 4(3) pp. 237-249 (1978).

10. Joel Moses and David Y.Y. Yun, “The EZ GCD Algorithm,” pp. 159-166 in
Proceedings of the ACM Annual Con ference, (August 1973). '

11. Paul Wang, “The EEZ-GCD Algorithm,” SIGSAM Bulletin 14(2) pp. 50-60
{May 1980).

12. Richard Zippel, “Probabilistic Algorithms for Sparse Polynomials,” Proceed-
ings of Furcsam 79, pp. 216-226 Springer-Verlag, (1979). Springer-Verlag
Lecture Notes in Computer Science no. 72.

P
|
¥

T

T ST T

UM e o

-

T

LA

.

R L4 AETILRE

et S
AR

T S

11

16.

17.

“18.
19.

20.
21.
22,

23.

94,

. B.W. Char, K.O. Geddes, and G.H. Gonnet, GCDHEU: Heuristic Polynomi-

al GCD Algorithim Based On Integer GCD Compulation, To appear,
Proceedings of the 1984 Internaticnal Symposium on Symbolic and Algebra-
ic Manipulation July, 1984.

W.M. Gentleman and S.C. Johnson “Analy51s of Algorithms, A Case Study:
Determinants of Matrices with Polynomlal Entries,” ACM Transactions on
Mathematical Software 2 pp. 232-241 (September 1976).

1. Horowitz and S. Sahni, “On Computing the Exact Determinant of Ma-
trices with Polynomial Entires,” Journal of the Association for Computling
Machinery 22(1) pp. 38-50 {January 1975).

B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, M.B. Monagan, and S.M..
Watt, On the Design and Performance of the Maple System, University of
Waterloo Computer Science Department Research Report CS-84-13. June,
1984.

Mark E. Bryant, The Sparse Modular GCD Algorithm in]Waple Umverqlty
of Waterloo, Dept. of Computer Science (December, 1983). M.Math essay.

Anthony Hearn, “Non-modular Computation of Polynomial GCD’s using
Trial Division,” Proceedings of FEurosam 79, pp. 227-239 Springer-Verlag,
(1979). Springer-Verlag Lecture Notes in Computer Science no. 72. :
J.A. Campbell and Simon, “Symbolic Computing with Compression of Data
Structures: General Observations, and a Case Study,” EUROSAM 1979,
pp. 503-513 Springer-Verlag, (1979).

Richard J. Fateman, “An Open Letter from Fateman to Veltman SIG-
SAM Bulletin, pp. 5-11 (Nov. 1978). '

John S. Lew, “Problem #3 - Reversion of a Double Series,” SIGSA]W Bul-
letin, (23) pp. 6-7 (July 1972).

Andrew D. Hall Jr., “Solving a Problem in Eigenvalue Approximation with a
Symbolic Algebra System,” SIGSAM Bulletin, (26) pp. 15-23 (June 1973).
Leonard Adleman and Andrew Odlyzko, “‘Irreducibility Testing and Factori-
zation of Polynomials,” Mathemalics of Computation 41(164) pp. 699-709
(October 1983). :

B.W. Char, K.O. Geddes, G.H. Gonnet, and S.M. Watt, Maple User’s
Manual, 3rd edition, University of Waterloo Computer Science Department
Research Report CS-83-41. December, 1983.

. B.W. Char, K.O. Geddes, W.M. Gentleman, and G.11. Gonnet, “The Design '

of Maple: A Compact, Portable, and Powerful Computer Algebra System,”
Proceedings of Furocal '83, pp. 101-115 (1983). Springer-Verlag Lecture
Notes in Computer Science no. 162

. BW. Char, K.O. Geddes, and G.H. Gonnet, An Introduclion lo Maple:

Sample [nteractive Session. University of Waterloo Computer Science
Department Report CS-83-16 May, 1983. '

219

T

i

TR

T

N

I

T

T

i

3

7t

I

M

T

e
. .

—
T T

T

18y

LA AR e e

T

FIVE YEARS OF SMp
by
STEPHEN WOLFRAM

The Institute for Advanced Study
Princeton, New Jersey 08540

ABSTRACT

SMP was born soon after the Second MACSYMA User's Conference, in the
fall 6f 1979. It was started because I believed that systems like MACSYMA
could be widely useful, but that none of the existing ones were really
adequafe. I built SMP to be a much more general system, with a coherent
structure, baséd as closely as possicle on standard hathematics. I included
a core of mathematical knowledge, together with a language, largely based on
pattern matching, to define new constructs and operations. The rather novel
nature of the SMP language seems to have paid off handsomely: it is
sufficiently natural that mdst users barely notice its structure. Within
SMP, it is possible to create prdgrams for all kinds of applications. The
challenge now is to build up a library of'progréms that covers a very broad
area.. in this way, the cohtents of tables of formulae and handbocks of

mathematical methods can be codified for conputers.

WHICH POLYNOMIAL REPRESENTATION IS BEST?

Surprises Abound!
A Preliminary Report

by
David R, Stoutemyer,

The Soft Warehouse,
Honolulu

May, 1984

ABSTRACT
Computer algebra systems have been based on a

bewildering variety of algorithms and representations for
expressions. It is unclear how much of any performance

differences between these systems is attributable to

representations rather than differences in the hardware and
software environment, Thus, there is clear need for a
systematic comparison of the space and speed efficiencies
for the major altematives all implemented in the same
software and hardware environment. This paper provides
such a comparison for unfactcocred polynomials, Their
representation is crucial for any system because even
factored rational or more general expressions typically
include unfactored polynomials as subexpressions; and for
many problems most of the space and time is consumed in
adding, multiplying, dividing, factoring and determining
greatest common divisors of expanded polynomials,

More specifically, comparisons are made between’

distributed vs recursive form, explicit vs .implicit
operators, binary vs n-ary operators, dense vs sparse
representations, distributed vs extracted variables, and
ascending vs descending order of degree, using several of
the most practical algorithms, Tne major curprise is that
a.recursive .dense representation is extremely efficient
even for quite sparse multivariate polynomials, Another
surprise is that sparse recursive Cambridge Prefix
representation is fast enough to warrant selection on its
other merits. Another surprise is that even for rather
large problems, asymptotically attractive multiplication
methods such as the tournament merge do not fare as well as
certain variants of more mundane algorithms,

" R RN | LY

R N R

© memac o«

,,,,,,

T

T

IRED

T

T

T

A o

R,

I

RN

IS

222

1. INTRODUCTION

Many of us who begin as users of computer algebra systems
eventually fall prey to the temptation of implementing our own
system., Besides masochism, reasons include a desire to focus on a
different mix of capabilities, a different style of user interface,
different computers or new foundations. There is certainly no
evidence that we have witnessed the "last remake of computer
algebra." Consequently for maximum progress, it wise to fully
appreciate the lessons to be learned from earlier systems,

A particularly crucial decision is the choice of data structures
for representing expressions, because the choice strongly influences
the efficiency, the ease of implementation, and the class of
representable expressions, Next in importance is the choice of
algorithms for the most time-consuming elementary algebralc
operations such as polynom1al multlpllcatlon. Although it is
desirable to make a wise decision in these regards, the literature
and folklore provide little guidance:

'a) Implementors generally do not publish information about wnich

alternatives they implemented but rejected after comparative
testing.

b) Each implementor probably tried only one or a few alternatives
because of the substantial effort required to implement and test
each alternative,

¢) The sequence of problems published in the SIGSAM Bulletin [1972]

and elsewhere compare different algebra systems each using a
different data structure on a different computer. Moreover, the
problems each test a mixture of various system aspects plus
ingenuity in modeling the problem, Thus, the contributions of
different data structures and fundamental algorithms is
inextricably mixed with other factors,

d) Data structures and algorithms with the most attractive

-~ asymptotic complexity are often inferior for pxoblems of typical
interest or practical size,

S

For these reasons, I decided to compare the major general-
purpose alternatives all in the same hardware and software
environment, Of course the relative efficiencies are likely to be
somewhat different in other environments, and perhaps even the
gelative rankings might be somewhat different. Consequently,
the appendix presents timings for the major low-level operations
that influence these relative efficiencies: the time for making
function calls, list traversing, building new lists from a storage
pool, reclaiming unused storage, and doing arithmetic, Analogous
timings for another environment could help support prediction of the
relative rankings there,

At the next level of consideration -~ the one that I wish to
address -- most of the time is often spent multiplying, dividing and
adding or subtracting polynomials, For example, typical polynomial

0 TR

wr. L. -y

T MRY T Tt

AT

ey

ORI 7 SRR

RSP

‘lam

factoring and greatest-common-divisor routines use these operations
in their inner loops. Consequently, it is extremely important to
determine the reiative merits of alternative data structures and
algorlth;s for these fundamental operations,

Although I have not yet tested all of the representations that I
would like to test, I am publishing this preliminary report in order
to solicit other opinions before deciding upon a set of data
structures, algorithms and test cases.

2. REPRESENTATIONAL ALfERNATIVLS & ISSUES
2.1 Recursive vs Distributed

In recursive form, a multivariate polynomial is represented as
a polynomial in one variable, with coefficients that are polynomials
in the remaining variables, Each of the coefficient polynomials is
similarly represented, and so on until we reach the coefficient
ground.domain —- usually numbers: usually integers.

In distributed form, a multivariate polynomial is represented
as a sum of terms, each of which is a product of a ground-domain
coefficient and powers of variables, . With any canonical ordering
within and among terms, recursive and distributed form are both
canonical. Moreover, it is easy to display either form as the
opposite form without actually forming an 1nternal structure
representing that ‘opposite form,

Recursive form can automatically achieve some sharing of common
subexpressions because of the more encompassing definition of
coefficients, hence of similar terms, During addltlon, entire
groups of terms may be merged in one step, reducing llSt-bUlldln
costs. The recursively-defined coefficients are also more
convenient in many respects for division, greatest common d1v1sor,

and factoring. !

3
\

Distributed form wastes less space on list terminators, hence
less time on function calls., Horeover, distributed form is more
amenable for array implementation, which saves evenimore space,
However, the loriger lists or arrays entail greater sorting cost for
multiplication of sparse representations. i

Altnough recursive form ylelds a tree-like data structure that
reduces sorting costs, the tree is not necessarily balanced, As
described by Fateman [1974], structures such as 2-3 trees or AVL
‘trees force balance, and therefore they can asymptotically furtner
reduce sorting costs for very large problems at the expense of
program complexity. As described by Gustavson and Yun [1976], bit-
arrays provide another alternative for reducing scrting costs at the
expense of space, As described by Goto and Kanada [1976], hash

tables can reduce average sorting cost at the expense of worst-case

sorting cost.

223

&

5™ IECEETIE S B

n'. ’,'-a '.: '.','.- : .'.‘.

EI

T

T

I

T

S

T

T

T

Tﬁww*

mr

T

O

f_"‘V"T'T_‘
A

T

224

2.2 Explicit versus Implicit Cperatoxs

Any or all of the operators "+", "*", and """ can be either
implicit or explicitly included in the data structure, When
included, they are usually placed at a standardized most accessible
place to facilitate quick direct access. For example, x3 can be
represented by the Lisp list (° x 3). This is an example of
Cambridge Prefix, wherein all expressions are either numbers,

variable names, or a list beginning with an operator and followed by

its Cambridge-Prefix operands, Explicitly tagged data structures
are increasingly popular in both hardware and software, 1In the
context of Lisp, they have the appealing advantage that Cambridge’
Prefix is the legitimate form of argument f£for muSIMP's EVAL function,
which thereby provides an efficient Du11t—1n‘ma1n simplification
function,

In order to save space, we can omit operators where they are
known by context. For example in an expanded polynomial, we could

represent x3 by the list (x 3). In order to elide more than one .

kind of operator, we generally have to pad degenerate cases of
polynomials so that context is properly deducible starting from a
standardized outermost level. For example, if x + 3 and x * 3
are also represented by the list (x 3), then we cannot determine
the implicit operator unless we Kkeep track of the level of descent

~from a standardized form. Thus we might want to represent a

polynomial as a list of terms even when there is only one term,
similarly representing a term as a list of factors even when there
is only one factor, Although implicit operators thus tend to
require more space for trivial polynomials, the savings can be
substantial for large polynomials where savings are more important.
The structural regqularity may also speed polynomial operations by
obviating the need for some tests., For example, if we know that
each term is a product, then we do not have to test whether it might
alternatively be a name, number or power,

2.3 Binary versus N-ary operators

For Cambridge Prefix, we can can have "+" and/or "*" be either
binary or n—ary operators, The latter may save space, particularly
in the case of sequential array storage. However, the binary choice
can facilitate writing the program almost entirely in a more natural
and educational rule-driven style that uses direct recursion rather
than secondary dispatching to list-traversing procedures,

For binary operators on systems such as muSIMP that do not use
"CDR—-coding", we can save space by making the two operands be a
dotted pair rather than a list, For example, we can represent x3
as (® x.3) or even as (x . 3) if we are also eliding """,
Implicit binary operations represented as dotted pairs generally
entail some padding with zeros arnd ones in order to maintain the
proper context, For example:

a) A variable might always be associated with an explicit degree
even if it is 1 or perhaps even 0.

...'.'.“.“v" '.". : -"..' . .. '."".-
Pl O A Y e L N

v
b

;. l'. l' l‘ ’

" R
vl

.

.
Py L SRR

e

b) A term might always have an explicit coefficient even if it is 1.

c) A sum might always contain a constant term even if it is 0.

Although these structural paddings increase the size of trivial
polynomials, the absence of list terminators and operators more than
makes up for the space in large polynomials where space is more.
important -~ especially in environments where 0 and 1 are stored
directly or uniquely. Also, the structural regularity afforded by
such padding obviates the neecd for some tests,

2.4 Sparse versus Dense Representations

In sparse representations, degrees are explicitly represented so
that terms having a coefficient of zero can be omitted. Tnus using
sparse distributed representation, the structural space for a
polynomial with t nonzero terms in v variables is O(vt). Sparse
recursive polynomial representation can also require this much space
if the terms all have distinct degrees in the the main variable,

In dense representations, the degree is implied by the positicn
of the corresponding term in a list or array. Thus, terms having a
coefficient of zero must be included to maintain the proper position
count, " One of the fundamental teachings of computer algebra has

|

been the following argument that the traditional dense representa—'

tion is hopeless for sparse multivariate problems: For a polynomial
of degree d in each of v variables, a list or vector of all its
numeric coefficients is of length v(d+l) ever if most of them are
zero, As a plausible example, all polynomials of ninth degree in
six variables would require storing one million coefficients even if
only a few were nonzero, Besides the storage inefficiency, process-—
ing times would asymptotically grow with the number of stored coeff-
icients rather than the number of nonzero coefficients.

However, this argument presumes a distributed representatlon as
a single list or vector of all numeric coefficients. What has
apparently not been realized before is that recursive form is
applicable to dense representations, with a resulting efficiency
that is quite acceptable even for very sparse problems, The basic
reason is that an explicit zero coefficient can represent a whole
subtree of zeros that would each be explicit in a distributed dense
representation:

Suppose that we have a t-term polynomial of degree d in each of
v variables xj, X2y eeer Xyi Stored in dense recursive form with xy
as the main variable, the structural space for the top-level
polynomial is ng). In addition to this, any term of the form
C*(X1XDeseXy=-1) with numeric coefficient c#0 and 0<=k<{=d
requires structu1a1 space 6[{v-1)d]. No term could reguire more,
and any terms that snare leading powers share some of their
structural space. Consequently, the total structural space is
O[d+{v-1)td]. Although much better than the distributed dense
bound, this typically pessimistic recursive dense bound is about d
times as large as the sparse bounds,

225

A

R Y

@
&

oo

..v,,
@

PN

=

im

IR EI

T

..|, _

g1

ST

.
|
bl
i
e
B
b

BT

T

. Wl
7

T

226

2.5 Included versus Extracted variables

With either the distributed or recursive form, we can represent .

the variables with their corresponding degrees everywhere throughout
the data structure, or we can extract the variables as a separate
list., By referring to each of its variables only once per
polynomial, extraction may save significant space for large
polynomials where space is important, = However, in order to deduce
the implied variable associated with each degree, terms may have to
be padded with zero degrees for missing variables. At the expense
of some extra tests, we can terminate a term with a domain
coefficient as soon as all of the remaining variables have degree
zero, but padding cannot be avoided for eariier variables having
degree zero, Either way, the storage inefficiency is most extreme
for "lean" polyncmials having many varlables, but few per term,

Recursive form offers an intermediate alternative of extracting
the main variable at each level of recursion., This avoids the
necessity of padding with zero degrees for variables that are
missing from a term, Tne number of references to variables tends to
be intermediate between that of fully included or fully extracted

variables,

For distributed form, variable extraction leaves contiguous
exponents, which can therefore be packed several per word. At the
expense of machine-dependence and program complexity, this technique

- permits parallel adaition of all the exponents in a word, Using a

1-bit zone between exponents, exponent overflow can be detected by
masking out all but the overflow zones then seelng if thls gives a 0

" word,

Full extraction significantly complicates the corresponding
polynomial arithmetic algorithms -- particularly addition:
Cancellations may cause some of the variables to occur in a result
only to degree zero, Consequently, to achieve canonicality it is
necessary to check for this possibility then make another pass to
wring out the superfluous padding if it occurs. Whether the
checking is done in'separate passes or via posting notice of nonzero
degrees during the first pass, the end result is a rather unsavory
piece of code that can be several times as slow as a single pass.
Although multiplication and the firsc pass of addition can be done
without a preliminary padding so that the operands have identical
sets of variables, an alternative is perform such preliminary
paddings as necessary in order to simplify the logic within the
multiplication and addition routines,

2.6 Descending versus Ascending Order

In traditional polynomial division with remainder, for list
storage it is most convenient to order the terms primarily by
variables, and secondarily in order of decreasing degree, Ascending
degree may be equally suitable for arrays, where access is equally
convenient from either end,

e
ot
AMENEE

o

1

| R IR
PN .

227 L

Surprisingly, in the case of exact division or a divide test,
ascending or descending order is equally suitable for list storage
too, 'Mor example:

IREIR

2-3x+2 %2 ‘ .o
$+x] 6-7x+3 x2+2 x3 : %
6 +2 X —
-9 x -_"*_‘ -: —
-9 x -3 x2 _ | &
6 x2 ;-':'.:-‘:- .
6 x2 + 2 x3 G
0 S
%.,'.

Also surprisingly, ascending or descending order is eqgually
suitable for polynomial-remainder-sequence greatest-common-divisor
algorithms in the case of list storage: To compute the next
polynomial in the sequence, we can choose a linear combination that e
annihilates the constant term rather than the leading term, then R
divide out the resulting trivial monoemial factor.

Rather than descending lexical order, ascending total order is
more appropriate for some p~adic methods, which iteratively develop
results as truncated power series of ‘increasing total degree,

Ascending order is more suitable for addition of dense list
representations, because alignment of similar terms is automatic
without need of storing or computing an explicit degree,

For recursive representations that collect together all of the
terms that are of zero degree in the main variable, ascending order
reduces the sorting costs when adding two polyncmials having.
‘different main variables: The desired slot occurs at the beginning

of the main list rather than the end, avoiding traversal of the main
~ list followed by construction of an entire replacement, However,
speed differences between ascending and descending order seemed Ry
insignificant for my multiplication test cases, s0 results are N
reported here for only one of the two orderings with each data e
structure. Perhaps large addition tests would reveal significant R
differences, '

3. ALGORITHMIC ALTERNATIVES & ISSUES

For operands of a given nontrivial size, multiplication and
division tend to be significantly slower than addition, negation and
subtraction, Moreover, division is typically based on a sequence of
multiplications and subtractions, Also, multiplication algorithms.
offer more varied and significant alternatives than those for
addition, negation, subtraction and division. Thus, it is various T
multlpllcatlon algorithms that I have chosen to test in conjunctzon T
with the various data structures: e

T

228

TR

ey

I

H
i

E
I

oy

N

In the case of different leading variables, we merely distribute
one of the polynomlals over the coefficients of the other, which
entails no merging.

For similar leading variables, the most straightforward approach
is to repeatedly form a partial product of one term from the
multiplier with the multiplicand, adding each whole partial product
to a running total, To reduce merging costs in the case of
imbalanced operands, it is definiieiy worth interchanging operands

'if necessary so that the multiplier is n¢ longer than the

multiplicand. .Also, if we let T and R represeat the leading term
and reductum of the multipiicand while letting t and r ‘represent
those of the multiplier, tiien the following recursive expansion (or
its iterative equivalent) saves some time by excluding t*T from the
addition merge:

{t, r] * [T, Rl —> [t*T, t*R + r*[T, R]]

At the expense of a rather complicated and lengthy routine,
after forming the first partial product, generation and merging of
subsequent partial-product terms can be interleaved using
pointer redirection (eg: Lisp RPLACA and RPLACD)., This technique
reduces the consumption of new cells (eg: Lisp CONS) and the peak
intermediate storage requirements,

For long enough 1lists, other methods are asymptotically

.attractiVe, as described by Johnson [1974], Horowitz [1975] and Klip

[1979]. Of these, the tournament merge has the advantages of being
easy to program and having attractive asymptotic speed for sparsely
renresnnted polynomials that are either sparse or dense,

l

Pointer redirection was fastest;for all of the recursive

representations: With typlcal results that have even 1000 fully-
distributed terms, for recursive form the number of nodes in any one
list rarely exceeds even 10. Thus, the lists are much too short for
the more complicated asymptotically fast methods such as the
tourinzaeent merge to excell, Moreover, although the tournament merge
was slightly faster for a few of the largest examples using a
distributed representation, the tournament merge consumed
significantly more intermediate storage and therefore precluded

.problems that could be done using pointer redirection. Thus, all of
the reported sparse test results are :or multiplication using

poxnter redirection. ,

For the dense recursive representatlon, it is worth checking for
a.zero multiplier term before multiplying it by each term of the
multiplicand, It is also worth trimming leading zero coefficients
from the multiplicand, with a compensatory padding of the result,

Dense representations encourage the alternative of entirely
computing the convolution for each coefficient of the result in
turn, This avoids the somewhat elaborate book keeping associated
with pointer redirection without incurring additional new-cell
consumption, Although this convolution method is about 10% faster
than pointer redirection for densely represented dense polynomials,

pointer redirection is significantly better for sparse problems.
Consequently, the reported dense representation test results are for
the pointer redirection method,

For very large dense polynomials, special-purpose modular and
Fourier techniques are advantagecus ~- at least in the context of
array rather than list storage,

4, SOFTWARE & HARDWARE ENVIRONMENT

The software environment consisted of the muSIMP-83tm
programming system, version 4,12, developed by the Soft Warehouse
[1984]. The hardware environment was an IBM-PC computer with 256
kilobytes of RAM storage available for muSIMP together with its
programs and data. This microcomputer uses an Intel 8088 processor
running at 4,77 mhz., A clock that can be checked from programs
gives times in hundredth's of seconds, but its true resolution is
about a tenth of a second. In contrast to typical mainframe
profiles, the most notable disparity is that multiplication and
division are much slower relative to other instructions,

muSIMP-83 is essentially a compact syntactically-sweetened Lisp

interpreter, with features intended to speed the interpretation and
facilitate direct implementation of computer algebra in the same
environment that is offered to the user, The data types are
uniquely-represented names, - integers represented as arbitrary length
signed-magnitude vectors of 16-bit binary words, and nodes
consisting of two 16-bit pointers, Numbers of magnitude less than
216 are stored more directly and uniguely via hashing., Garbage
collection is of the compacting mark and sweep variety, with limited
reallocation among the competing types of space when advantageous.
With 256 kilobytes, collection and reallocation each average about
1.5 seconds. The appendix indicates speeds for basic operations,

In muSIMP, the value of a newly introduced name is automatically
set to itself as is generally desired in algebra systems. Thus by
making every final result be an integer or a name or a list

beginning with a function name, the muSIMPs EVAL function

automatically serves as an efficient machine-language main
simplification function.

1f given:a noninteger argument, the arithmetic "+" function

calls a trap that can be redefined to incorporate algebraic

treatment rather than che default error break. The other arithmetic
functions are treated similarly. This method avoids degradation of
arithmetic speed by superposition of an algeibra system on muSIMP,

Moreover, .this scheme permits even the polynomial routines

themselves to use "+", "*" etc, cn any operands that are names,
integers or tagged lists of operands, wiihout first checking to
determine if the operands are integers., This technique avoids
double checking, which shortens and speeds the program: Many if not
aost of the nodes of an expression tree have terminal leaves as

descendants, Thus for many polynomial problems, both operands are

of ten numeric,

229

T

T

-
I

T

Bl

[P

-
|

T

T

T

oy

W

m

T T

I

I

[A

O B

230

5. SELECTED DATA STRUCIGRES & ALGORITHMS

muSIMP-83 does not provide arrays, so the testing was limited to
data structures using lists and dotted pairs., Arrays would most
benefit distributed form and dense representations, At the expense
of program complexity, arrays could almost half the structural data
storage for large examples, where they might also reduce the time
less dramatically.

- Even without arrays, it was impractical to implement all
possible combinations of the above data structures and algorithms.

. Nonetheless, the objective was to isolate the most decisive

determinants of performance, then experiment with fine tuning the
most promising major variants along avenues that were revealed as
the implementation and testing proceeded., Here are the data
structures that are compared, with domain ::= integer:

5.1 Distributed, Sparse, Variables Included
expression ::= domaln] wvariable | ‘(POL term term ... term)
term ::= (coefficient power power ... power)
power ::= variable ., degree
degree 2= {1' 2' 00‘-}

5.2 Recursive, Sparse, Binary Cambridge Prefix:

expression ::= term | sum

monomial ‘::= variable | (° variable deqree)

term ::= domain | monomial | (* expre551on monomlul)
sum ::= (+ term expression)

degree ::= {2, 3, ...}

5.3 Recursive, Sparse, N-ary+ Cambridge Prefix:

expression ::= term | sum

monomial ::= variable | (" variable degree)

term ::= domain | monomial | (* expression monomial)
sum ::= {+ term term ... term)

degree 2:= {2, 3, ...}
5.4 Recursive, Sparse, Variables Included:

expression ::= domain | variable | (POL poly)
poly ::= domain | term , poly :
$:= power , poly
:= variable . degree

ie= {1, 2, ...}

5.5 Recursive, Sparse, Variables Excluded:

expression ::= domain | varlable

' ' | (POL (variable variable ... varlable) . terms)
terms ::= (term term ... term)

term ::= degree , domain | degree ., terms

degree ::= {0, 1, ...}

A

WY

T Y
e

R e B LA I .
St o
St S

R AR

’

[

E" .
[g
o

5.6 Recursive, Dense, Variables Part-way Cut:

expression ::= domain | variable
| (POL variable expression expression ... expression)

Numerous secondary variations are of course possible, For

example, the POL tags could be omitted from the above dense
representation, In all cases, the ordering was lexical by variable,
For the recursive dense and excluded-variable sparse
representations, -ordering was increasing degree. Otherwise,
ordering was by decreasing degree,

6. TEST CASES & RESULTS

For testing it is desirable to have a set of problems that spans
the commonly encountered types of problems while avoiding examples
that aie extremely uncharacteristic and therefore misleading. For
the sake of manageable testing effort and succinct presentation, the
number of test cases should be as few as possible consistent with
the objective of coverage, The problems should be large enough to
erercise the candidates heavily where efficiency matters, yet not so
large as to try patience or enter a regime where site-dependent
storage reclamation masks the time attributable to other aspects for

‘any tested representation.

A major point of interest is the portion of polynomial
multiplication time attributable to numeric arithmetic for
coefficient multiplications and exponent additions: For operands
that are fixed in all other respects, this portion will increase
‘toward 100% as the numeric coefficients multiply in magnitude.
Since the multiplications of nonzero coefficients are the same for
all representations, the ratios of computing times will thus
approach 1 as the numeric coefficients multiply in magnitude,
Consequently, since an objective of this study is to determine

extremes in these ratios, most of the test cases have nonzero
-coefficients that are all 1,

The portion of time attributable to numeric arithmetic is

largest for dense univariate operands because they entail the most
similar terms and less overhead for function calls, sorting, or list
building, Thus, the effect of increasing coefficient magnitude is
studied in the dense univariate case where it is most pronounced. |

In accordance with these objectives, here first is the
completely dense unit-~coefficient polynomial of degree 4 in each of
v variables:

D(x’x'c-o' 'd)=ﬁA glxj'
12 AR e

fully expanded and distributed. Xj, X9, ey Xy reptesent distinct
letters from the set {a, b, «e., 2}.

231 ;'

B IR

T

- Ix}‘-A 4.“, .

iR

T

J

kD

. T
) RUCEEER

AT

I
B

T

e

rh._ﬂ

1

i

)

B4

L SR

o

a
L

e e, e
NOSDMORAE, X

B AN

P
et

232

Now, let
S (XJ_(xzr seey xV; 4, t)

denote the set of all "Sparse” polynomials having 0 < t <= vd+l
terms taken from D (x;, X2y eeey Xy; Q), including the term
(X1Xg...xy)d, Each element of this set has density t/vatl,

Polynomials having a large number of terms and variables can

‘have only one or a few variables per term if the problem is to be

manageable even by computer algebra, Thus, let

L (Xl, x2, cseovwy xv; d' tl m)

denote the set of all “Lean" polynomials having t terms with a
maximum of m variables per term, taken £rom D (X1, X2/ esey Xy; 4d),
including the terms g g a

xl F' X2 f ocese Xv »

In all cases, the variables are ordered alphabetically, with z
being the most main variable, etc. 1In each case, the test was

preceded by a forced garbage collection in order to reduce spurlous
variability.

Table 1 shows the computing times in seconds, including garbage
collection and storage reallccation, for test cases that are
either dense or drawn randomly with equal probability from a set of
these sparse or lean polynomials. Wwhere garbage collection or
storage allocation occurred, their total number is displayed after
the time, To prevent a significant influence of the 0.1 second

~ timer resolution, times less than four seconds were inferred by

timing ten :epetltlons of the problem in a loop, then dividing by
ten. For the operands and results, Table 1 also indicates the
number of terms and the number p0551b1e for completely dense
polynomials of the same degree,

Table 2 shows the corresponding number of nodes and unique nodes
in the result, The latter may depend in part in the amount of node
sharing in the operands, which in turn dependS'upon how they were
generated, Although the discussion below is based on the number of
unique nodes, the operands were generally entered in recursively
expanded form, so the number of unique nodes is often somewhat less
than it would be if the operands were entered in factored form using
intermediate variables to represent each distinct power of a

. variable., Names and small-magnitude prumbers are stored uniquely in

muSIMP, making their counts the same for all representations,
Consequently, their counts are nct eported,

It was not the objective to test algorithms for multinomial
expansion, so problems with identical operands were entered as a
product rather than a square., Moreover, problems having different
operands were done in both orders, with the tables indicating the
larger results. Although all but the Binary Cambridge Prefix
implementation in*erchanged operands if the multiplier was "longer”
than the multiplicand in an easily measured sense, . remaining
disparities associated with operand order were occasionally dramatic,

. -y

P SO S L I Y

Table 1: Computing Times

OPERANDS RESULT SECONDS
Case Description Trms Psb™ns Tms PsbTms Dist Bnry Nary VIn Vout Dense
1 lvardense 49 49 97 97 14.1 62-358.8 32,4185 3
2 withcfs 3&5 49 49 97 97 14.5 816 60.6 34 18.9 3.3
3 with 2-bigit cfs 49 49 97 87 192 83~6 65-2 38-2 23-2 8&-2
4 with 5-bigit cfs 49 49 97 97 233 78 70-3 43-3 28-3 123
5 with imbalance 9,89 9,89 97 97 4.6 21~1 l9.1 9.9 6 1.1
6 ' 2var dense 64 64 225 225 43.5 110-6 105-2 51.1 37.1 8.1
7 3 var dense 64 64 343 343 67.8 109-