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ABSTRACT

The C. acetobutylicum genome annotation has been markedly improved by in-

tegrating bioinformatic predictions with RNA sequencing(RNA-seq) data. Samples

were acquired under butanol, butyrate, and unstressed treatments across various

growth stages to sample the transcriptome from a range of physiologically relevant

conditions. Analysis of an initial assembly revealed errors due to technical and bi-

ological background signals, challenges with few solutions. Hurdles for RNA-seq

transcriptome mapping research include optimizing library complexity and sequenc-

ing depth, yet most studies in bacteria report low depth and ignore the effect of

ribosomal RNA abundance and other sources on the effective sequencing depth.

In this work, workflows were established to address type I and II errors as-

sociated with these challenges. An integrative analysis method was developed to

combine motif predictions, single-nucleotide resolution sequencing depth, and library

complexity to resolve these errors during assembly curation. This contextualization

minimized false positive error and determined gene boundaries, in some cases, to

the exact basepair of prior studies. Curation of the pSOL1 megaplasmid reconciled

transcriptome assembly statistics with findings from E. coli.

The resulting annotation can be readily explored and downloaded through a

customized genome browser, enabling future genomic and transcriptomic research

in this organism. This work demonstrates the first strand-specific transcriptome

assembly in a Clostridium organism. This method can improve the precision of

transcript boundary estimates in bacterial transcriptome mapping studies.
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Chapter 1

INTRODUCTION

1.1 Motivation

Increases in global CO2 levels, sea level, temperature, and acidification are

tipping climate models toward disaster.1 Few solutions exist for what has been de-

scribed as the "...issue that will define the contours of this country more dramatically

than any other."2 A chief issue with the global CO2 equation is the lack of systems

that utilize this greenhouse gas. A renewable chemicals industry has been suggested

to restore balance to our climate system in an economically sustainable way.

Leading scientists and engineers3;4;5;6;7 recognize Clostridum acetobutylicum

as a potential platform organism for a biorefinery, a bioprocess featuring an organ-

ism which converts different substrates into chemicals. This microbe produces an

advanced biofuel called butanol, an energy-dense gasoline replacement. Recently,

genetic tools have been developed to optimize C. acetobutylicum productivity.8;9;10

Metabolic engineering techniques have been investigated11;12 to increase butanol yield

and its already impressive feedstock flexibility.13;14 However, successful strains also

require biosystems engineering to increase robustness and fuel tolerance.13;15;16;17

Limited knowledge of the biofuel-stress tolerance systems in C. acetobutylicum is a

barrier to the development of robust strains for renewable fuel production.

Research and development in C. acetobutylicum requires a complete and ex-

perimentally determined genome annotation. A complete set of transcript boundaries

1



would facilitate research into the biochemical and molecular systems responsible for

biofuel tolerance. For example, transcription start sites (TSS) would enable the dis-

covery of regulatory motifs and network structure responsible for the solvent-tolerant

phenotype.18;19;20;21 Only open reading frames were predicted in the original genome

annotation that have not been verified by absolute expression measurements.22 To

provide the features of interest, a transcriptome mapping study was designed.

Transcriptome mapping studies frequently utilize high-depth Next-Generation

Sequencing methods to provide sensitivity for low abundance transcripts and their

features.23;24;25;26 However, the required depth of sequencing for high-sensitivity bac-

terial transcriptome mapping is unknown27;28;29. Authors frequently report biased to-

tal read counts or fold-coverage estimates instead of per-base sequencing depth.30;31;32

Moreover, studies often fail to quantify ribosomal RNA removal rates30;31;32 which

have a dramatic effect on effective sequencing depth.33;34;35 Additionally, these studies

rely on sequencing depth alone, ignoring the complexity of the dataset for assem-

bly.25;26;36 Without the empirical guidelines described for Eukaryotic applications,27

these studies under30;37 or over-estimate31;32 the required amount of sequencing yet

observe low depth and complexity32 and poor utilization(Table 2.1) of their sequenc-

ing results.

1.2 Approach

To facilitate future renewables research in C. acetobutylicum, an RNA sequencing(RNA-

seq) transcriptome mapping study was designed with sensitivity in mind. A mixture

of laboratory and informatic approaches were used to identify and remove “noise”

(e.g. rRNA, duplicate reads) from the sequencing library, leading to a high-quality

2



sequencing dataset and unbiased sequencing-depth statistics. Transcriptome assem-

bly was used to describe operon structure and estimate transcript boundaries. Fi-

nally, a genome browser was constructed to identify and resolve misassemblies and

share the data with the Clostridia research community.

1.3 Document Overview

This thesis describes a technique for unbiased and precise estimation of tran-

script boundaries in microbial systems. The document compares related approaches

for transcriptome mapping and identifies their strengths and weaknesses. A method-

ology is described that lead to a high-quality sequencing dataset, optimized with

considerations of biological and technical noise. After describing this technique, the

sensitivity of the technique is qualified both in terms of fold-coverage and sequenc-

ing depth. Next, an assessment of the assembled dataset is presented, which reveals

challenges associated with high-depth sequencing, either not detected or described by

comparable studies. This assessment lead to the development of a genome browser

that was used for proof-of-principle curation of the pSOL1 megaplasmid, markedly

improving the false positive or type I error rate. This document describes a method

and its application in the model solventogenic bacterium C. acetobutylicum, mark-

ing the first reported strand-specific transcriptome assembly in the Clostridia. This

thesis describes the discovery of novel genomic and transcriptomic features that will

be shared through the genome browser with the entire Clostridia and renewables

research community.
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Chapter 2

BACKGROUND

2.1 Renewable Chemicals: A 21st Century Challege

Climate change research1 and petrochemical exploration38;39 suggest that es-

calated weather variation, sea levels, and atmospheric and oceanic temperatures will

accompany steep increases in the cost of petroleum. Renewable chemical platforms

will be an increasingly economical solution to climate change. Renewable biofuels

can be carbon neutral sources of energy. Renewable biochemical processes can actu-

ally behave as carbon sinks, with net accumulation of CO2 in chemicals and biomass

after subtracting processing energy requirements.

Many renewable biochemical systems revolve around a biocatalyst, a microbe

that can convert low cost substrates into fuels or chemicals.3;4;5;6;7;40 This production

system, frequently referred to as a “biorefinery,” requires a microorganism with a

wide range of potential feedstocks and a natural biofuel producing metabolism. Bio-

fuels with comparable energy density and hygroscopicity to conventional fuels are

desirable for infrastructure compatibility. The butanol-producing bacteria Clostrid-

ium acetobutylicum consumes a number of sugars and hydrolysates13 and produces

butanol, a direct gasoline replacement.41

C. acetobutylicum is a historically industrial solvent producer.42 It consumes

hemicellulose, a variety of simple and complex carbohydrates, and hydrolysates.13;42

Also known as the Weizmann organism, C. acetobutylicum converts these substrates

4



into solvents through an acetone, butanol, and ethanol (ABE) fermentation.13;42

Importantly, these cells synthesize most amino acids with ammonium salts as a ni-

trogen source, requiring only a minimal defined medium.43;44 This microbe meets

the requirements for low-cost non-food feedstocks and infrastructure compatibility.

Therefore, C. acetobutylicum is an excellent chassis organism for an integrated biore-

finery and is the system of study in this work.

C. acetobutylicum has a number of intrinsic advantages that minimize the

engineering efforts required for bioprocess development. It is one of over 17,000

bacteria with sequenced genomes.22;45;46 For example, current metabolic models12

are used for sophisticated metabolic analyses, such as C13 metabolic flux analysis.11

A model for the solventogenic Clostridia, C. acetobutylicum is a reasonably well

studied organism with industrial potential.

Prior to the genomic era, targeted studies in this organism revealed the spe-

cific loci for solvent formation,47;48;49;50;51;52;53 sporulation,54 and canonical heat-shock

operons.55;56 These genes were typically cloned, sequenced, and investigated with

gene-specific transcriptomic techniques. However, only the mechanisms of the unique

metabolic systems (e.g. solvent formation) have been investigated in detail; many

proteomic and transcriptomic mechanisms behind the C. acetobutylicum regulatory

networks remain unknown.57;58 The mechanisms for the majority of the genetic and

metabolic systems in C. acetobutylicum are largely inferred from homology, often an

appropriate assumption.

That being said, many interesting characteristics of C. acetobutylicum are

unique to solventogenic Clostridia. Of particular interest for renewable fuel research

is its solvent stress-response, which may be uniquely adapted to its solvent-producing

metabolism. A number of stress-response systems exist for specific stresses while

broader systems can respond to multiple stressors. By exploring the knowledge
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of these systems in C. acetobutylicum, gaps in understanding can be identified for

this work to explore. In the next section, stress-response systems are reviewed,

demonstrating opportunities for the discovery of novel transcriptomic features.

2.2 Biofuel/Solvent Tolerance and the Bacterial Stress Response

Bacteria respond to a wide variety of intrinsic and extrinsic challenges with

stress response systems.6;59;60 For example, nutrient deprivation, osmotic shock, tem-

perature fluctuation, and high chemical concentrations are common in their natu-

ral environments.59 Cells activate specific or general response networks after these

insults. C. acetobutylicum is a naturally solventogenic bacterial species and could

possess biofuel or solvent-tolerance genes that would likely be regulated by general or

specific stress response systems. Such genes would be natural targets for biosystems

engineering, improving the tolerance of engineered strains to high biofuel titers.

Unfortunately, knowledge of these systems is incomplete in C. acetobutylicum

and no unique solvent tolerance mechanisms, such as solvent exporters, have been

identified. The stress response is an important system for biotechnology, but the an-

notations of Clostridia genomes require improvement for understanding of these and

other systems. Here we review these systems and their mechanisms to understand

how a solvent stress response system would function.

2.2.1 Specific Stress Response Systems

Specific stress-responses are designed to mitigate the negative effects of a

particular stressor. These systems typically contain a detection mechanism for a

molecular stressor, such as antibiotic compounds,61 or its effects, such as DNA dam-

age.62
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Antibiotic resistance is an example of a specific response system that detects

a molecular stressor. In the presence of organic compounds of the β-lactam61 or

tetracycline families,63 bacteria activate antibiotic resistance genes that either export

or modify the organic compounds to prevent their action. Some of these antibiotic-

resistance genes are part of operons that possess antibiotic-detecting repressors.61

Upon detection of the antibiotic agent, a conformation change triggers derepression

of the antibiotic resistance gene, resulting in an antibiotic resistant phenotype. This

stress response system helps bacteria to quickly and specifically respond to a family

of antibiotic compounds. Interestingly, multidrug resistance genes can contribute to

solvent tolerance in P. aeruginosa 64 and E. coli.203

A second example of a specific stress response is from D. radiodurans, which

has an unparalleled resistance to ionizing radiation.65 In response to breaks in DNA,

D. radiodurans repairs the multiple copies of its genome, enabling growth, viabil-

ity, and survival at over 5,000 Gy of radiation.65 This system responds instead to

DNA damage, a symptom of γ-radiation. The extreme tolerance of D. radiodurans

to radiation is a byproduct of a specialized system for DNA repair,65 augmented

from the standard DNA repair system.62 This system contains a detection system,

non-homologous recombination, and a specialized DNA repair system allows D. ra-

diodurans cells to survive and repair hundreds of insults to its genome.

If specific stress response systems exist for solvent stress (e.g. solvent-exporting

efflux pumps) in C. acetobutylicum, they would be desirable targets for biosystems

engineering. Solvent tolerance pumps, such as the SrpABC efflux pump of P. putida,

could enable a butanol-tolerant phenotype.66 A solvent efflux system was not de-

scribed in the original genome annotation,22 although gene models have changed

significantly in the previous 14 years. An updated, improved genome annotation

could enable the identification of solvent efflux genes.
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In addition, stress responsive small RNAs (sRNAs) have been described,44

although their roles, regulation, and conservation remain unknown. This discovery

suggests that there are previously unknown active regions of the C. acetobutylicum

genome that require investigation. Naturally, differential expression experiments

are desirable to understand the dynamics of sRNAs, their targets, and other novel

transcripts. However, the statistical treatment of measurements for such experi-

ments is complex and requires reliable estimates of transcript expression.28;29;67 While

these estimates would be impossible to acquire with the original bioinformatically-

predicted genome annotation, an improved genome annotation could benefit these

investigations in several ways. First, transcriptome mapping could identify novel

stress-responsive transcripts that could be co-regulated with the previously discov-

ered small RNAs.44 Novel stress-responsive transcripts could encode ORFs homol-

ogous to exporters or efflux pumps. Precise transcript boundaries could improve

gene-expression estimates by counting reads at the transcript level, as opposed to

the ORF level. Therefore, an improved annotation could reveal novel components of

the stress response and would support differential expression investigations of these

systems.

In addition, an improved genome annotation complete with transcription start

sites and regulatory regions would facilitate research on stress-responsive genes and

associated regulatory motifs. Regulatory motifs could be discovered with compu-

tational methods68;69 with a complete set of transcript boundaries.19;20;21 Solvent

responsive regulatory motifs would be useful for designing a semi-synthetic stress

response.70;71 If C. acetobutylicum possesses a specific solvent-response system, an

improved genome annotation could also enable the discovery of corresponding regu-

latory motifs.
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The specific stress-response systems have unique detection and response mech-

anisms to particular intrinsic or extrinsic stressors. These genes have important

applications in environmental remediation,62 pharmaceutical research,61 and renew-

ables research. While a solvent stress response system has not yet been identified in

solventogenic Clostridia, a genome annotation could reveal stress-responsive genes

and transcripts, beyond those identified by ORF predictions alone. In addition to

these benefits, an improved genome annotation could also benefit knowledge of gen-

eral stress response systems and will be discussed next.

2.2.2 General Stress Response Systems

In contrast to specific stress-response systems, general responses are activated

by more than one stimulus. For example, during both nutrient deprivation and acid

stress, cells must slow or cease growth (stringent response) to adapt to energetic

demands of the activation of both the specific and general stress response program.

Also, both heat-shock and solvent stress can denature proteins and consequently

activate chaperonin systems, another example of a general stress response.60;72;73 Af-

ter detection of the stressor, signal transduction events activate dormant response

machinery or activate/derepress response systems60;74. These systems can be useful

for stress response engineering70;71 and are somewhat conserved across genera, al-

though their knowledge in C. acetobutylicum remains incomplete. The general stress

response is divided into four classes of genes based on the regulator responsible for

their activation.

2.2.2.1 Class I

The first class of general stress response genes is governed by the repres-

sor HrcA, which responds to protein denaturation from thermal or chemical causes.
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The hrcA regulon contains at least 3 transcripts including the hrcA and dnaK/J,

groES/EL, and htpG loci.58 Denatured proteins titrate the GroEL chaperone from

HrcA/GroEL complexes, resulting in a conformational change of HrcA and decreased

DNA binding.60;74 Operons regulated by the HrcA repressor are subsequently dere-

pressed, rapidly increasing the amount of heat shock proteins. Protein denaturation

negatively affects nearly every program and structure of the cell, resulting in de-

creased survival and viability. In C. acetobutylicum, the HrcA motif was recently

described for standard heat-shock operons.58 Additionally, class I genes are solvent-

stress responsive due to solvent-induced protein denaturation.72;73 It is unknown if

any additional operons are also regulated by this repressor in C. acetobutylicum. To

answer this question, an improved genome annotation including transcription start

sites would facilitate the discovery of additional genes in the HrcA regulon through

in silico analyses.

2.2.2.2 Class II

The second class of genes is regulated by a stress-responsive σ-factor, σB. In

B. subtilis, the σB regulon consists coordinates a general stress response for a variety

of stressors. A C. acetobutylicum σB ortholog was not predicted in the initial genome

annotation,22;58 although orthologous genes from its regulon have not similarly disap-

peared.75;76;77;78 The regulation of these genes is unknown in this organism. Perhaps

σB genes in C. acetobutylicum are under the control of overlapping regulons, as in L.

monocytogenes 79 or are regulated by an unknown mechanism. Given the large size

of the σB regulon and the presence of several of its genes (e.g. clpC75), the promoter

and regulatory regions of C. acetobutylicum orthologs of σB-regulon genes would be

useful for understanding the unique stress response of C. acetobutylicum. This class
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of general stress-response genes present another opportunity for an improved genome

annotation to facilitate stress response research.

2.2.2.3 Class III

The third group of genes are governed by the repressor CtsR, a dimeric helix-

turn-helix regulator capable of responding to heat-shock, oxidative stress, and acid

stress.80 In B. subtilis, CtsR responds to heat-shock when ClpC, the fourth gene

of the CtsR operon, releases McsB.81 Free McsB phosphorylates CtsR, leading to

positive autoregulation and derpression of the ctsR regulon.81;82;83 This mechanism

is thought to vary across the gram positive bacteria,82 but the operon organization

suggests that the C. acetobutylicum CtsR system is similar to B. subtilis.58 A CtsR

motif was found ahead of canonical CtsR regulon genes in C. acetobutylicum(Qinghua

paper) although additional genes may be controlled by CtsR in the absence of σB. A

genome-wide motif search in this organism could similarly reveal CtsR regulation of

solvent responsive transcripts. Similar to the class I system, knowledge of the ctsR

regulon would also benefit from an improved genome annotation.

2.2.2.4 Class IV

The fourth and final class of general stress-response genes are regulated by

unknown mechanisms.59 In C. acetobutylicuM, this class includes stress-responsive

genes with unconfirmed operon structure and no confirmed motifs. Microarray ex-

periments from Venkataramanan et al. show over 1,000 solvent responsive genes in

C. acetobutylicum, the regulation of which remains almost completely unknown.58

As suggested above, an improved genome annotation would aid the categorization of

this massive gene set into class I, III, or potentially new regulons.
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These general stress response programs are vital for adaptation and robust-

ness. However, both sporulation and stress-response systems in the Clostridia differ

from the model for sporulating gram positive bacteria, B. subtilis.57 At the very

least, key genes are missing such as the sporulation kinases and the stress response

regulator σ_B.57 Furthermore, most solvent responsive genes in C. acetobutylicum

are regulated by unknown motifs and response regulators.58 It is reasonable to expect

that there may be some stress-response genes specific to the solventogenic Clostridia.

Such genes would have had little homology to known genes during the initial genome

annotation and therefore would not be included in previous comparative genomic

and microarray analyses.22;58 To illustrate the plausibility of this hypothesis, a re-

cent study identified solvent responsive small RNAs in C. acetobutylicum, many with

no known homologs or regulators.44 Clearly, there is much to be done to understand

and develop this organism for biofuel applications.

In this section, the example of stress-response systems was used to demon-

strate differences of Clostridia from the Bacillus model. It is clear from this review

of C. acetobutylicum stress response systems, there are opportunities to discover

novel transcripts or proteins not described by the initial genome annotation and pro-

vide precise transcript boundaries for motif identification. To provide definition to

the stress response and other systems, regulatory regions and operon organization

should be revealed by modern transcriptomic techniques. Techniques that provide

these details throughout the genome are discussed in the following section.

2.3 Transcriptomic Research

Modern high-throughput techniques can produce gloabl datasets, even when

reference genomes are not available.84 A large number of array and sequencing

techniques have been developed to investigate the proteome, transcriptome, and
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interactome including the elements of protein-protein,85 protein-DNA,86;87;88 protein-

RNA,89 and RNA-RNA interactions,90;91;92 protein post-translational modifications,92

single nucleotide polymorphisms,93 and transcript expression.94;95;96;97 These power-

ful genome-wide techniques allow experimental investigation of nearly every aspect

of biological systems, including the identification of all genes and their boundaries.

Here, we focus on transcriptomic techniques to identify these features.

Transcriptomic techniques allow the characterization of the properties and

dynamics of RNA species. Microarrays and sequencing techniques have revolution-

ized transcriptomic research, providing new insights into the complexity of the tran-

scriptome95;97;98;99 and its regulation.100 In addition to the measurement of specific

populations101;102, specific features of the transcriptome can be quantified.103 Two

common experimental approaches are used to explore cellular programs with high-

throughput transcriptomic techniques: annotation and differential expression.

Before differential expression experiments are conducted, or in instances where

a complete genome is not available, the catalog of all genes and their transcripts is

required for microarray probe design or sequence read counting. ORF prediction

algorithms104;105 and annotation suites106;107 can identify putative ORFs encoding

enzymes and canonical genes for sequenced genomes, with small false positive and

negative error rates. However, unique genes and small RNAs cannot be identified

with these predictions. It is desirable to experimentally determine the transcriptome

for conditions of interest.

The most common techniques for cataloging expressed transcripts and their

properties are the tiling microarray108 and deep RNA sequencing32. Microarray

based analyses use probes spanning an entire genome, with some amount of overlap,

to detect transcriptional activity.109 Deep RNA sequencing32 measures transcription
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through the number of cDNAs sequenced from fragmented RNA, roughly propor-

tional to the expression level.67 Strand specific options for these methods are es-

pecially useful in dense bacterial genomes.32;108 The large amount of data require

computational processing to identify the desired features.110;111 However, false posi-

tive and false negative errors (type I and II errors, respectively) from these techniques

make automation of transcript annotation difficult, an issue infrequently discussed

in the literature. Nevertheless, transcriptome assembly methods permit the recon-

struction of full-length transcripts from sufficiently deep sequencing datasets at the

expense of misassembly errors.25 In this section, transcriptomic techniques are re-

viewed and experimental designs discussed to identify opportunities for improvement

over convention for this study’s objective, revealing transcript boundaries, regulatory

regions, and operon organization.

2.3.1 Analytical Techniques

2.3.1.1 Microarrray

Microarray-based transcriptomics allows the simultaneous measurement of

thousands of sequences simultaneously.94 Probes designed for genomic sequences or

open reading frames(ORFs) measure the expression of segments of the genome or

ORFs, respectively. The former, tiling microarrays, are used to identify features of

the transcriptome and annotate the genome. The latter is a typical practice for

expression profiling experiments and identifying relative expression differences.94;108

The experienced research community have made the microarray an excellent platform

for transcriptomic analyses.

Microarray technology has limitations that should be considered during the

early stages of experimental design. First, the microarray suffers from limited de-

tection range and sensitivity compared to RNA sequencing.112 Additionally, probe
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design is limited to either ORFs only or to overlapping segments of a genome sequence

where available.96 Finally, the cost of tiling array experiments is a function of the

amount of overlap between the probes; higher resolution implies higher cost.112 The

limited detection range could make low-abundance transcripts challenging to identify

or distinguish from spurious transcription.113;114

A comprehensive investigation of B. subtilis identified many ORFs to be ex-

pressed under various environmental and life-cycle conditions.108 The authors de-

tected 85% of all previously known transcription start sites.108 With 22-basepair res-

olution, tiling microarrays were used to detect increases in fluorescent signal across

the genome, providing transcript boundaries after manual annotation. The use of

manual methods to identify novel genes and transcript boundaries highlights the

complexity of these datasets and the lack of methods for automated annotation.

This study108 is an excellent model for transcriptome mapping using the microarray

technology.

2.3.1.2 RNA Sequencing

The emerging technology of RNA sequencing(RNA-seq) is displacing tiling ar-

rays for transcriptome mapping and annotation studies.112 Parallel sequencing plat-

forms such as 454115 or Illumina116 enable the sequencing of gigabases of cDNA with

precision for mapping and counting. cDNA libraries are sequenced in an extremely

parallel manner, producing millions of sequenced “reads”, which are then aligned to

the genome. RNA-sequencing has a higher dynamic range than microarray technol-

ogy in addition to basepair-level resolution.112 These characteristics make RNA-seq

optimal for precise determination of transcript boundaries, even for low abundance

transcripts.
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To achieve this, each step of the experiment and RNA processing must be con-

sidered carefully. Poor consideration of the factors involved with this method leads

to uneven coverage,25;26;27;28;32 poor depth,31;32 and questionable strand specificity.30

While attempts have been made to establish standards for biomedical RNA-seq,27

no guidelines exist for the broader research community. RNA-seq is frequently per-

formed with the Illumina platform for the amount of data it produces. This amount

of data plays a crucial role in detecting transcript boundaries and low abundance

transcripts.

A central challenge to the design of RNA-sequencing experiments is related

to detection limit. The likelihood of sampling low-abundance cDNA fragments from

transcript termini or low abundance transcripts is a function of the number of se-

quenced reads.25;26;27;29 The absence of reads at a location in the genome indicates ei-

ther an insufficient sequencing depth(false negative or type II error) or a true absence

of transcription. Bacterial cDNA libraries are commonly sequenced in multiplex over

one or more lanes of an Illumina sequencer, leading to millions of reads distributed

across the libraries. Therefore, there is a three-part tradeoff between the replication,

depth, and independent variables in the experimental design. A recent study con-

cerning the tradeoff between the first two concluded that for differential expression

experiments, replication is preferable.29 In the case of transcriptome mapping and

genome annotation however, additional depth may be preferable.27

Standard procedures are required to compare sequencing depth between RNA

sequencing studies with similar objectives (e.g. transcription start sites). The Ency-

clopedia of DNA Elements(ENCODE) research consortium frequently uses RNA-seq

in various forms117;118 and has published best practice guidelines for Human genome

research.27 While average per-base sequencing depth and their distributions are not

provided, they suggest that 100-200 million clusters of paired-end reads is sufficient
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Genome(Mbp) Transcriptome(Mbp) Clusters(M) rRNA-free(M) Mapped(M) Alignment Rate Ratio†

Standard27 3000 140 30 30 25 N/A 0.18
Deep27 3000 140 100 100 100 N/A 0.71
Ultra-deep27 3000 140 200 200 200 N/A 1.43
C. beijerinckii 31 6 6-12 14 N/A 11.5 0.82 N/A
P. difficile 119 4.3 4-8 50 4 N/A N/A 0.5-1
B. anthracis 120 5.5 5-11 33 N/A 5 0.15 N/A
H. pylori 30 1.7 1.5-3 0.4 N/A 0.2 0.54 N/A
Synechocystis. sp 37 3.9 3.9-7.8 0.2 0.1 0.1 0.475 0.03
E. coli 32 4.6 4.5-9 52 N/A 17.7 0.34 N/A
P. gingivalis 121 2.3 2.3-4.5 15 N/A 2.3 0.15 N/A
S. typhi 122 5 5-10 5.7 N/A 1.8 0.31 N/A

Table 2.1: Study Comparison: Poor Data Utilization Rates
RNA-seq transcriptome mapping studies have widely different sequencing depths and align-
ment rates. These depths are not directly comparable between organisms; rather, the num-
ber of clusters/reads divided by the size of the transcriptome† is a more ideal metric for
comparison. However, there is little discussion of the diluting effect of rRNA on useful se-
quencing depth, such as the 8% utilization in a study in P. difficile.32 As a result, the ratio†

cannot be calculated precisely for all studies. That being said, the poor read alignment and
rRNA removal rates suggest that many studies do not achieve desirable sequencing depth
given the size of the transcriptome.

depth to identify novel transcripts and transcriptomic features (e.g. TSSes) in the

hg19 H. sapiens transcriptome. This number is much larger than required for mi-

crobial genomes; a preferable metric is the ratio of the number of reliably-mapped

non-ribosomal reads to the approximate size of the transcriptome. Next, this metric

is used for persepective to compare transcriptome mapping studies.

2.3.2 Transcriptome Mapping Studies and Common Challenges

The most phylogenetically similar organism to C. acetobutylicum that has

been investigated with RNA-seq transcriptome mapping is C. beijerinckii.31 In this

study, 82% of the reads aligned uniquely to the genome, a good alignment rate and

depth when compared to other studies (Table 2.1). However, the authors fail to

qualify their work with respect to several factors that influence transcript discovery

and transcription start site identification. These common issues to transcriptome
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mapping studies are described next.

In dense bacterial genomes, proteins are coded by polycistronic transcripts,

operons, that are packed closely in to small circular genomes, only a few megabases

in length. In bacteria, overlapping transcripts can be encoded on opposite strands.

Strand specific techniques are seldom used,32 preventing the detection of divergent

operons, novel genes in antisense, and cis-encoded sRNAs.

Unlike eukaryotic transcriptome mapping studies where poly-A selection is

available, bacterial total RNA extracts contains 95-99% ribosomal RNA.33;34;35 For

most RNA-seq applications, the overwhelming presence of rRNA lowers the useful

sequencing depth extraordinarily. Several commercial kits are available with subop-

timal and inconsistent removal rates.32;33;34 Very few studies provided calculations

or discussion of the effect that rRNA had on the effective sequencing depth.

Another intrinsic artifact to the RNA sequencing method is the effect of pref-

erential PCR amplification on library complexity.123;124 After cDNA library construc-

tion, the library is typically amplified to provide additional material for sequencing.

Duplicated reads provide redundant information and should be removed in silico.125

It seems that no efforts were made to address this issue in these studies.

Ribosomal RNA and PCR-amplification bias are two sources of noise that

lower the amount of useful signal from bacterial RNA-seq experiments. In silico

solutions125;126 allow researchers to separate and quantify the useful signal for the

purposes of qualification and comparison with other studies. Ribosomal RNA was

treated in two of eight studies reviewed, showing poor data utilization.37;119 Cor-

rection for duplicate reads from amplification bias was not found. Therefore, the

true quantity of useful data in many studies is unknown. Furthermore, it is unclear

what the distributions of per-base sequencing depth actually were in these studies.

Quantification of the sensitivity used by these studies(Table 2.1) would have helped
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the experimental design for this work.

The final issue concerns the presence of background signal. Transcriptional

noise is a phenomenon that is detectable with high sensitivity methods such as

deep RNA sequencing.113;114 RNA sequencing can detect low abundance signals

such as residual genomic DNA,127 low abundance transcripts,24;26;27;128 and spuri-

ous transcription.113;114 It is unclear how this noise was distinguished from signal in

these studies, despite low and unstable depth of coverage reported by many stud-

ies.30;31;32;121 In the most sensitive study reviewed (Table 2.1) the authors report

“...less than 60% genes in the genome had their length completely covered by at least

one read”.32 The effect of background signal on false positive or type I error is largely

ignored in the literature.

These issues highlight the need for standards in RNA sequencing and tran-

scriptome mapping, similar to MIAME standards for microarrays.129 Clearly there

are a number of challenges for transcriptome mapping studies, especially with un-

known type I and type II error rates typical of exploratory projects.25;26;27;28;29;123;124;127;128;130

However, by addressing technical obstacles explicitly with bioinformatic methods, the

amount of useful data can be quantified. Taken together, these issues informed the

experimental design and qualification of sensitivity for this project.

2.4 Lessons and Objectives

The biofuel producing bacterium C. acetobutylicum is an excellent platform

organism for bioprocesses. A crucial challenge for productivity in this and other or-

ganisms is the tolerance of the host to large biofuel concentrations. Knowledge of the

stress response systems of this organism are limited by an antiquated genome anno-

tation22 without transcription start sites, operon organization, or promoter signals.
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These transcriptomic features are essential for understanding coexpression and reg-

ulatory networks. RNA sequencing is a powerful method used here to identify these

features for future research on stress response systems and biofuel tolerance. This

project aims to identify transcription start sites in the C. acetobutylicum genome

while addressing frequently ignored issues in sequencing approaches.
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Chapter 3

METHODS

3.1 Culture

Wild type Clostridium acetobutylicum ATCC 824 was cultured anaerobi-

cally in 4L New Brunswick Scientific BioFlo 310 bioreactors at 37 ◦C, pH >= 5.0,

200mLmin−1 N2 and 200rpm agitation in a defined Clostridia growth medium, as de-

scribed previously44. When the cultures were grown to A600=1, the N2 flow rate was

decreased to 50mLmin−1 and cultures were either stressed to a final concentration

of 60mm n-butanol, 40mm potassium butyrate, or left unstressed. This procedure

allowed the experiments to be synchronized with respect to optical density (OD).

15mL samples were acquired at 15, 75, 150, and 270 minutes after treatment and

OD synchronization. Samples were centrifuged at 8,000rpm, 4 ◦C for 20 minutes. Af-

ter discarding the supernatant, cell pellets were then immediately frozen at −85 ◦C.

3.2 RNA preparation

RNA was extracted by first washing the cell pellets in 1mL of RNase-free SET

buffer (25% sucrose, 50mm EDTA [pH 8.0], 50mm Tris-HCl [pH 8.0]) before resus-

pending cells in a 220mL solution of RNase-free SET buffer containing 4.55 umL−1

proteinase K and 20mgmL−1 lysozyme and incubating for 6 minutes. Resuspended

cells were vortexed with 40mg of RNase-free glass beads (≤106 µm) at maximum

speed and room temperature for 4 minutes. Each sample was mixed immediately
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with 1mL of ice-cold QIAzol (Qiagen, Valencia, CA, USA) and then 200 µL of ice-

cold chloroform, mixing well with each addition. After a 3 minute room temperature

incubation, samples were centrifuged at 11,000rpm and 4 ◦C for 15 minutes. The

aqueous phase was then mixed with 1.3mL of ice-cold ethanol before transferring

to a miRNeasy Mini spin-column (Qiagen, Valencia, CA, USA) and centrifuging at

11,000rpm and 4 ◦C for 15 seconds.

Next, 700 µL of RWT buffer was added to the column, before centrifuging at

11,000rpm and 4 ◦C for 15 seconds, discarding the collection tube and transferring

the column to a fresh collection tube. The column was washed twice with 500 µL of

RPE buffer before centrifuging at 11,000rpm and 4 degreeCelsius for 15 seconds each.

The membrane was then dried with an additional centrifugation step at 11,000rpm

and 4 degreeCelsius for 1 minute. The RNA was eluted twice by incubating with

50 µL of nuclease-free water for 1 minute and eluting for 1 minute at 11,000rpm and

4 degreeCelsius.

After quantification on a Nanodrop ND-1000, samples were then precipitated

in 0.3M sodium acetate and 75% ethanol overnight, centrifuged at 14,000 rpm for

30 minutes, washed twice with 400 µL ice-cold 70% ethanol, and rehydrated in 50 µL

RNase-free water. Next, samples were treated with the Turbo DNA-free kit (Am-

bion, Austin, TX, USA). 5 µL of 10X Turbo DNase buffer and 1 µL of Turbo DNase

(2UµL−1) were added to each sample before incubating at 37degreeCelsius for 30

minutes. Next, 5 µL of DNase inactivation reagent were added to each sample, mix-

ing occasionally for 5 minutes. The samples were then centrifuged at 10,000rpm and

4 degreeCelsius for 90 seconds, precipitating the DNase. The samples were moved to

fresh 1.5 µL tubes.

Samples were then precipitated, washed twice more with 70% ethanol, and

resuspended in 20 µL of nuclease-free water, requantified, and aliquoted for quality

22



analysis with the BioAnalyzer platform (Agilent, Wilmington, DE, USA), and 10 µg

aliquots in 10 µL samples were stored at −85 ◦C.

3.3 RNA enrichment, RNA-seq library preparation, and Sequencing

Ribosomal RNA was removed with the MicrobExpress kit (Ambion, Austin,

TX, USA) according to their protocol. Briefly, beads were prepared by taking 50 µL

for each sample, washing with an equal volume (50 µL) of water capturing for 5

minutes on a MagnaSphere (Promega, Madison, WI, USA) magnetic stand and as-

pirating. Subsequently, the beads were resuspended in an equal volume (50 µL each)

of binding buffer and capturing as above. The beads were then resuspended in an

equal volume (50 µL each) of binding buffer and warmed to 37 ◦C. Next, 200 µL

of binding buffer was added to each 10 µg RNA aliquot with 4 µL of capture oligo

mix. The mixture was warmed to 70 ◦C for 10 minutes, then cooled to 37 ◦C for 15

minutes. Next, the rRNA was captured by mixing 50 µL of beads with each sam-

ple, incubating for 15 minutes at 37 ◦C, and capturing as above. The enriched RNA

was transferred to a fresh 1.5mL tube. The beads were then washed with 100 µL of

pre-warmed (37 ◦C) wash solution, incubating on the magnetic stand for 5 minutes,

and adding the wash solution to the enriched RNA. The samples were then ethanol

precipitated at 20 ◦C overnight with 35 µL of 3 m Sodium Acetate, 5mgmL−1 Glyco-

gen, and 1175 µL of chilled 100% ethanol. The samples were washed twice with 70%

ethanol and resuspended in 25 µL. The samples were enriched further by repeating

the MicrobExpress treatment. Small 10-100ng aliquots were analyzed at each step

with the BioAnalyzer to monitor enrichment.

Selected samples were enriched further with Terminator 5’-phosphate depen-

dent exonuclease kit (Epicentre, Madison, WI, USA). Terminator Exonuclease 1 µL

(1UµL−1) was added with 2 µL 10X Buffer A to each RNA sample. The reaction was
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run in a thermocycler for 60 minutes at 30 ◦C. The reaction was terminated with the

addition of 1 µL of 100mm EDTA and Tris HCl (TE buffer) at pH 8.0. The samples

were then purified by ethanol precipitation (0.3 m Sodium Acetate and 75% ethanol)

with two 70% ethanol washes, as above.

Enriched RNA was quantified as above and assessed for quality with the

BioAnalyzer platform (Agilent, Wilmington, DE, USA). High quality samples were

used to prepare RNA-seq libraries with the ScriptSeq v2 library preparation kit and

indexed PCR primers (Epicentre, Madison, WI, USA). Briefly, 1 µL of fragmentation

solution and 2 µL of cDNA synthesis primer was added to 50ng of RNA and the

solution was fragmented for 5 minutes at 85 ◦C in a thermocycler. To each reaction,

0.5mm of Dithiothreitol, 3 µL of cDNA synthesis premix, 0.5 µL StarScript Reverse

Transcriptase was added to each sample and run with the following cycle: 5 minutes

at 25 ◦C, 20 minutes at 42 ◦C. After cooling each reaction to 37 ◦C, 1 µL of finishing

solution was added, incubating for 10 minutes.

The RNA is degraded by fragmenting further for 3 minutes at 95 ◦C, cooling

to 25 ◦C. The first strand cDNA is di-tagged by adding 7.5 µL of terminal tagging

premix and 0.5 µL of DNA polymerase. The terminal tagging reaction is run at

25 ◦C for 15 minutes and 95 ◦C for 3 minutes. The di-tagget cDNA is then purified

with the AMPure XP bead system (Beckmann Coulter, Brea, CA, USA). First, the

library is mixed with 45 µL of homogenous bead mixture. After thorough mixing,

each solution is transferred to a 1.5mL tube and the library is captured with the

magnetic stand and the supernatant aspirated. Each library is then washed twice

with 200 µL of 80% ethanol. After resuspending in 24.5 µL of nuclease-free water, the

beads are captured and each library is transferred to a new 200 µL microfuge tube.

Adapters were added to the di-tagged cDNA during PCR by adding 25 µL

FailSafe Premix E, 1 µL forward primer, 1 µL of ScriptSeq v2 indexed reverse PCR
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primer, 0.5 µL of FailSafe Polymerase. The PCR conditions were as follows: cycles of

30 seconds of 95 ◦C, 30 seconds of 55 ◦C, and 3 minutes of 68 ◦C. After 12 cycles, the

reaction terminated with a 7 minute incubation at 68 ◦C before purifying the library

with the AMPure system, as above. Libraries were multiplexed and sequenced for

76 cycles over five lanes of an Illumina HiSeq 2500 at the University of Delaware

Sequencing and Genotyping Center (Newark, DE, USA).

3.4 Data Processing, Alignment

Paired-end sequencing resulted in 749,709,771 pairs of 76 bp reads which are

to be deposited in the Sequence Read Archive (SRP052867). Summary statistics for

the libraries are shown in Table A.1. The basic bioinformatic processing pipeline

is described on Github (https://github.com/MatthewRalston/NGS_scripts) and in

4.3. In brief, the fastq headers are briefly pre-processed for downstream applications

by concatenating the two columns of the Casava 1.8+ header with an underscore.

Then, remaining sequencing adaptors were removed from the reads with Trimmo-

matic131, an algorithm that recognizes and removes user-supplied adapter sequences.

Base quality is adjusted by trimming to the minimum Phred base quality of 20,

corresponding to a base-calling error probability of 0.01. Before aligning to the

Clostridium acetobutylicum ATCC 824 genome, the data were subjected to in silico

ribosomal RNA removal by aligning the reads to the rRNA sequences with Bowtie

2.1.0126. The unmapped reads were then aligned to the genome and megaplasmid se-

quences (NC_003030.1 and NC_001988.2). The alignment files were then cleaned,

sorted, indexed, and validated before removing duplicate reads with SAMtools132

and Picard125. These programs verify the integrity of the alignment file, sort and

index the alignments by read name or location, and remove duplicate reads from

preferential PCR-amplification.
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3.5 Depth of Sequencing

Coverage vectors for each strand were initially acquired with BEDtools133.

Coverage vectors for each transcript were then acquired with a custom Ruby script.

Manipulation, summarization, and visualization of these data was performed in Julia,

R134, circos, rails, and d3. Scripts are also available on Github.

3.6 Transcriptome Assembly, Quality, and Annotation

Reference assembly was done with Trinity24. Fastq files were modified by

appending the second column of the fastq Casava 1.8+ header to the first column

before processing and alignment. Next, the resulting alignment files were merged

and sorted before appending the pair information (“/1” or “/2” were added to each

read name in the alignment) according to the Trinity documentation.

To assess the assemblies, I have contributed to a transcriptome assembly as-

sessment software project: Transrate. This software assesses transcriptome assem-

blies by calculating general assembly statistics, coverage statistics, and agreement

with the reference proteome. Several additions were made to this software. Specif-

ically, unpaired reads and strand specific alignment were integrated into the cov-

erage/alignment statistics. Additional Julia scripts were used to extract transcripts

from the genome and calculate spreadsheets and summary statistics that were plotted

in R and Gadfly.

Finally, the assembly itself was aligned to the reference genome, assuring

the validity of the assembly and the identity of the assembled transcripts. The

assembly, in fasta format, was aligned to the genome with BLAST135 and BLAT.136

It was determined that BLAST produced comparable and superior alignments in

most cases; the BLAST alignment was used as a result. The aligned transcripts

were converted to bed format, processed, converted to genePred and ultimately to
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gtf format. Transcripts that completely and uniquely aligned to the genome with

<30bp of gaps in the alignment were selected for further analysis. The gtf format

assembly was then combined with the reference proteome for comparison.

Assembly statistics were produced with a ruby script, grouping transcripts as

’standard’ (reference-ORF containing) or ’novel.’ For the standard transcripts, UTR

lengths and IGRs were identified and compared with both the reference annotation

and according to the operon organization by Paredes et al.137 Assembly quality was

assessed with specific examples of canonical genes and curated through a customized

genome browser. These regions were probed for agreement between known tran-

scriptional start sites, transcript sizes, ORF boundaries, promoter, and terminator

annotations. ORFs were predicted with transdecoder and subsequently annotated in

RAST.

3.7 Promoter Prediction

A promoter prediction tool was developed in ruby for the detection of bipartite

promoter motifs and transcription factor binding sites. Regulatory motifs were ac-

quired through a database of B. subtilis transcription factor binding sites, DBTBS.138

These motifs were then processed into their components, for example, the -10 and

-35 box components of the σA promoter motif. Position-specific probability matrices

were created from these components and used to scan the C. acetobutylicum genome

with the MAST algorithm.68 The results were then parsed into gtf format, filtered,

and uploaded into the genome browser to facilitate assembly curation. This tool is

available on Github (www.github.com/MatthewRalston/PromoterPrediction).
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3.8 Digital Gene Expression, Principal Components Analysis, and Dif-

ferential Expression

Read counts per transcript were quantified with HTSeq139. Raw count data

were visualized and normalized in R. The data were regularized following the con-

servative approach of DESeq2140,141. The processed data was subject to Principal

Components Analysis using the rgl library in R, and results were added to an interac-

tive webpage. A Wald test was used to test for differential expression. Calculations

and visualizations were done in R with various packages(OTHERS)142. Data were

also processed manually for visualization in Circos graphs143.

3.9 Gene Expression Clustering and Visualization

Regularized data were normalized or converted into Kendall, Pearson, and

Spearman correlation matrices in R. The data were used as input to a parame-

ter sweep with my hrefhttps://github.com/MatthewRalston/OPTICS-Automatic-

Clusteringimplementation of the OPTICS clustering algorithm. The source code

of the automatic feature extraction was adjusted to be closer to the original algo-

rithm.144 Additional per-cluster metrics were added, described in the project README.

This allowed visualization of the parameter sweep results for optimization of cluster-

ing parameters. Exploratory data analysis was done in R.

3.10 Web Content

Interactive web material was generated using a mixture of Ruby on Rails,

javascript, HTML, and CSS. The d3 library145 was used for dynamic content and

interactivity. Circos was used to generate the larger circular plot visualization. These

web pages are hosted on github for access by collaborators.
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3.11 Genome Browser

The genome browser was designed as a web application to address issues of

speed, data density, and flexibility. A simple database was created to host coverage

and annotation data. No joins were necessary for data retrieval so the schema con-

sisted simply of two tables. Simple indices were designed for each table to optimize

retrieval.

The application layer was written in Ruby, utilizing the rails framework.

Queries were pacified to prevent SQLi. A simple object-relational model(ORM) was

used to design the interaction between the application layer and the database, al-

though a customize query system was developed for the depth/coverage data retrieval

for increased speed, bypassing the ORM and returning simple JSON-formatted text.

The application layer consisted of verification protocols to ensure minimum record

requirements, validity, and more.

The user interface was designed as a webpage with dynamic web content fea-

turing the d3 library.145 Queries are passed with simple “GET” requests, completely

separating the application layer from the user. Retrieved data is passed to the user

interface as JSON text and converted into SVG using javascript. The browser ui

is depicted in the appendix(A.2). Users can upload and view individual annotation

records, as well as upload entire annotation files in gtf format. The browser itself

has a number of useful features including zooming, scaling, tooltips, and more.
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Chapter 4

RNA SEQUENCING

4.1 Experimental Design

The primary objective of this research was to provide the first global exper-

imental evidence for both canonical and novel transcripts, their boundaries, and

operon structure in C. acetobutylicum. For this objective, a strand-specific (ss)RNA

sequencing approach was superior to array based and standard RNA-seq approaches

for detecting strand-specific signal at high resolution. This technique offers true

strand-specific signal, typically with 1-5% background antisense signal.36 To identify

these transcripts and their features at high resolution and with true strand-specificity,

this technique was selected to assess a number of experimental conditions.

A fractional-factorial experimental design was selected to best sample mul-

tiple times throughout the C. acetobutylicum growth curve (4.1) and in response

to two fermentation products, butyrate and butanol. This organism responds to re-

source limitation, acid/solvent stress, and other signals by activating stress response,

sporulation, and other stationary-phase systems.6;57;146 This range of conditions was

selected to view transcriptomic responses to growth stage and stress in combination

for analysis with ssRNA-seq.
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Figure 4.1: C. acetobutylicum Growth Curve
This growth curve, adapted from Jones et al.,147 illustrates the time points selected for
the experimental design. After the exponential growth phase (A), C. acetobutylicum cells
(squares) produce carboxylic acids, such as butyric acid (circles), at increased rates during
the transition phase(B). Then, the acids are reassimilated and reduced into solvents such as
butanol (triangles) during the stationary phase(C). The stress types butyrate, butanol, and
control were assayed in this experiment, in addition to time points 15(i.), 75(ii.), 150(iii.),
and 270 minutes (iv.) after synchronization of the cultures at A600 of 1.0.

4.2 Desirable Data Qualities

4.2.1 Sequencing Depth

The success of transcript boundary determination with shotgun-strategy se-

quencing depends on two signals in the dataset: depth and complexity.25;26;27;127;128

Here depth of coverage, sequencing depth, or simply depth is defined as the num-

ber of reads aligned to a region divided by the size of the region. In the case of a

single basepair, this is simply the number of reads overlapping this base. Depth is

a useful data quality for identifying absolute differences between fully transcribed
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and untranscribed regions. Sequencing depth is a complex and over-dispersed ran-

dom variable140;141;148 that is non-uniform across a transcript,130 particularly towards

transcript termini.36 Sequencing depth near transcription start sites has a compli-

cated type II error profile that is a function of sequencing depth due to this bias.

This previously discussed(2.1) and important signal is frequently used to identify

expressed transcripts and their termini.

However, several factors of the experimental procedure affect sequencing depth

and are not addressed in most studies. Sequence specific (hexamer,123 GC124 bias) or

technical issues (background antisense,36 spurious transcription113;114) raise variabil-

ity and noise of the depth signal and have no existing bioinformatic solution. In con-

trast, other errors such as DNA contamination, RNA degradation, and overabundant

sequences (e.g. rRNA) can be addressed with adjustment to laboratory and analyt-

ical workflows. Accounting for these issues during experimental design can improve

error rates for reported sequencing depth and depth-based inferences. Specifically,

the quantity of useful data in Illumina-based RNA sequencing of prokaryotes can

be maximized by acquiring pure, undegraded RNA and removing ribosomal RNA

transcripts. Optimal sequencing depth was the first goal for this study to improve

error rates and provide a useful sensitivity metric.

4.2.2 Library Complexity

Library complexity is an additional signal that augments the information of

sequencing depth. Complexity is the number of unique molecules sequenced by the

experiment and can be thought of as the horizontal overlap between aligned reads.149

Library complexity is desirable for a number of reasons, including decreased loss of

sequencing depth to PCR-duplicate reads.25;149;150 Library complexity can also be
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translated directly into transcript boundaries using assembly algorithms.24;25 Algo-

rithmically, the assembly solution’s estimates of transcript boundaries improve as

both depth and complexity increase. Therefore, high depth and complexity are re-

quired for successful assembly of the dataset and determination of transcript bound-

aries.

Most useful assembly algorithms are overlap consensus or de Bruijn graph

based, directly relying on the k-mer complexity of the dataset (where k is an integer

and a k-mer is a k-length subsequence of a read) to provide significant overlaps to

form the graph.24;25 Therefore, a large amount of reads (i.e. depth) with long hor-

izontally overlapping segments (i.e. complexity) results in a quality graph that can

be traversed by an Eulerian walk. Library complexity results from the fragmenta-

tion process and the random sampling of these fragments from the library. However,

complexity can be negatively affected by preferential PCR amplification of certain se-

quences, leading to their over-representation in the final library and dataset.25;123;124.

Sequencing complexity is a useful data quality for both gene expression and transcrip-

tome mapping studies. A high complexity dataset facilitates transcript boundary

identification, especially in the case of low abundance transcripts, and was therefore

another goal of this study.

Both depth and complexity are useful data qualities for RNA sequencing stud-

ies. Some factors such as sequence specific biases and spurious transcription are

largely uncontrollable. However, other intrinsic or technical artifacts can be mini-

mized with minor adjustments to laboratory and analytical workflows, yet they are

frequently ignored in the bacterial RNA-seq studies(2.1). The poor treatment of

these issues in the literature has lead to low and inconsistent coverage, sometimes

with “...less than 60% genes in the genome had their length completely covered by

at least one read”.32 To avoid regions of zero depth inside of annotated ORFs32 and
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false negative errors towards transcript termini, the depth-effecting factors of rRNA-

removal, DNA-contamination, and over-amplificiation were optimized. The cover-

age/complexity signal was used to automate the inference of transcript boundaries

and address false positive rates from depth-only inferences. Interestingly, coverage in

turn depends on sequencing depth and the fragmentation process, the later of which

can be difficult to optimize. In addition to the previously mentioned optimizations,

ultra high-depth sequencing(encode ref), with hundreds of millions of non-ribosomal

reads, was the appropriate method to improve both coverage and depth for this

study. With these data qualities in mind, the following RNA processing workflow

was established to produce an ultra high-depth sequencing dataset for transcriptome

assembly.

4.3 Laboratory Workflow

A protocol was established to optimize library depth and complexity with

hybridization and enzymatic steps(3.2). After each RNA manipulation step, the

samples were twice washed with 70% ethanol, stored as precipitates to minimize

degradation, and aliquots were taken for quality control. The quality control pro-

cedure consisted of spectrophotometric and electrophoretic analyses to ensure RNA

purity and integrity. The goals and observations of the quality control process is

briefly detailed first.

4.3.1 Quality Control

4.3.1.1 RNA Purity

After washing with ethanol, the absence of salts, divalent cations, and proteins

was assessed through spectrophotometry. These contaminants cause RNA degrada-

tion or adversely affect the enzymatic reactions of RNA manipulation and library
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Figure 4.2: RNA Quality
In this BioAnalyzer electropherogram, sharp and intact rRNA peaks are visible along
with a substantial small RNA population, resulting from the miRNeasy kit used for
RNA extraction.

construction. Ratios of absorbance (260nm/280nm, 260nm/230nm) are frequently used to

describe the purity of nucleic acid samples, due to purine/pyrimidine absorbance

maxima at 260nm. Observed ratios of 2.0 indicated pure RNA(source), optimal for

RNA integrity and library preparation. Afterwards, electrophoretic methods were

used to assess ribosomal RNA removal and RNA integrity.

4.3.1.2 RNA Integrity

RNA integrity is commonly analyzed by interpreting ribosomal RNA bands

obtained with electrophoretic techniques. Specifically, a small peak width of the

rRNA electrophoretic bands with little background signal indicates that the RNA

is high quality (e.g. RNA Integrity Number). A representative electropherogram is

shown in 4.2. The results indicate that the RNA was undegraded, with sharp peaks
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for the 16S and 23S rRNA bands. At each QC step (4.3), the RNA had clear pellets,

clean spectrophotometric ratios, and the electrophoresis suggested that the RNA

were undegraded. The passing samples were then used in subsequent hybridization

and enzymatic steps.

4.3.1.3 DNA Contamination

DNA contamination was addressed in this study by DNAse digestion. This

is a common step in RNA processing workflows to address residual DNA fragments.

DNA and RNA have slightly different spectrophotometric properties; for example,

the nucleoside Thymidine has a slightly different absorbance spectra than Uridine.

Consequently, 260/280 ratios are typically higher for RNA (2.0 vs 1.8).151 As pre-

viously mentioned, the high absorbance ratios suggested good RNA purity. It is

reasonable to expect that with the treatment and these observed ratios, that the

samples primarily consisted of pure, intact rRNA.

Nevertheless, the electropherograms were inspected for DNA contamination

as well. Most samples displayed smooth and simple curves for the electropherogram,

consistent with curves from the manufacturer showing the absence of gDNA.152 No

gDNA peaks were apparent in the RNA samples, although the gDNA fragments

could have been present at a low level. Alternatively, Southern analysis of cDNA

from the RNA samples, produced with and without reverse transcriptase, could have

indicated the presence of gDNA. However, if there were low amounts of DNA that

were not obvious from the electropherograms, they would have been somewhat uni-

formly distributed throughout the genome due to non-specificity DNAse treatment.

This small and minor signal would be indistinguishable from background spurious

transcription in the AT-rich C. acetobutylicum genome and would have been inter-

preted as background signal. In future sections, the issue of background signal will
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be discussed again as well as its remedy by distinguishing false-positive signals.

4.3.2 mRNA/sRNA Enrichment

The previous subsection discussed quality control measures that were used

for initial and stepwise assessment of RNA samples. To produce a high quality

sequencing dataset, RNA manipulations enriched primary transcripts (mRNAs and

sRNAs) and minimized background signal (e.g. degraded transcripts, DNA) through

RNA manipulations(4.3). After extraction, residual DNA was removed with DNAse

treatment (Step 4., 4.3). After verifying the initial total RNA samples with the QC

procedure, ribosomal RNA(rRNA) was removed with the MicrobExpress hybridiza-

tion method. After additional QC, the primary transcripts were further enriched

with an additional round of rRNA removal. Then selected samples - technical repli-

cates of 2 times points(75 and 270 minutes) and all stress types (6 total) - were

treated with a 5’-phosphate specific exonuclease (TEX), enriching for primary tran-

scripts further. Primary transcripts such as mRNAs and sRNAs are produced with a

5’-NTP. Post-transcriptional processing of primary transcripts (e.g. endonucleolytic

cleavage) results in 5’-monophosphate ends, which are preferred by the TEX exonu-

clease. The TEX treatment thus removed rRNA and degraded transcripts in these

samples. This workflow maximized depth and complexity in the results by removing

DNA, rRNA, and degraded transcripts. After a final QC checkpoint the enriched

samples were used for library preparation(4.3) and sequencing.

4.4 Data Processing, Alignment, and Coverage Analysis

The libraries were sequenced paired-end over 5 lanes of an Illumina HiSeq

2500, producing 1.5 billion 76bp reads, averaging 25 million clusters/pairs per li-

brary(App. A.1). The reads were then processed through a customized bioinformatic
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workflow (??). K-mer content, read length, GC-content, and additional basic quali-

ties were assessed to ensure the quality of the unprocessed reads. Next, low-quality

bases were removed to raise the quality of the sequenced bases to acceptable lev-

els(3.4). Then, sequence reads from remaining ribosomal RNAs were removed in

silico. After two rounds of hybridization-based removal, signal from ribosomal RNA

was reduced from 95%(bacterial rRNA removal source) to 62%, representing a 7.6-

fold enrichment of primary transcripts. Finally, 97% of the reads aligned to the C.

acetobutylicum genome (4.3). Of these, 7.75M(83%) reads per sample were properly

paired, that is, both mates of each pair were in the correct orientation. In total,

458,814,860 perfectly-paired non-ribosomal reads were produced and then used for

subsequent analysis. This number was in excess of ENCODE recommendations for

RNA-seq in the much larger human genome.27 The remaining 17% of reads that

were improperly paired were duplicate reads (32M) or discordantly (4M) or sepa-

rately aligned reads (74M), as performed by Bowtie 2 (3.4).

However, the number of reads alone are a poor indicator of the sensitivity of

an experiment; the distribution of these data throughout the genome is preferable,

but is infrequent in similar studies(2.1). To better understand the depth of sequenc-

ing, it was desirable to determine the per-base sequencing depth throughout the

genome. Two methods are frequently used to quantify and summarize depth. The

first approach is referred to as “fold-coverage,” calculated by summing the number

of sequenced bases divided by the estimated size of the transcriptome or genome.

However, the underlying assumption of a uniform distribution of reads is not valid

for transcriptomic sequencing. A more precise approach is the second approach, cal-

culating sequencing depth directly. By summing the number of reads aligned to each

base, central tendency measures of the resulting distribution are precise estimates of

per-base sequencing depth across the genome. No single average sequencing depth is
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Figure 4.4: Sequence Read Processing and Alignment
An average of 50 million reads (25M clusters/pairs; left) was produced for each of the 30
libraries. Ribosomal RNA reads were then filtered and the remaining reads (middle left)
were then aligned to the genome (middle right). Of these, 83% were properly paired reads
(right), ideal for transcriptome assembly.
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more significant than another (e.g. 10x vs 9x), although increasing depth provides

additional terminal reads for transcript boundary identification.

Empirically, it seems that a coverage of 100-200 million(M) 100bp paired-end

reads is sufficient to detect low abundance transcripts in the 60-140 megabase(Mb)

hg19 human transcriptome,27 although other studies claim that this number could

be as high as 700M.153 This sums to 20-40 gigabases(Gb) of sequencing, 120-660

times the conservative estimate of the size of the human transcriptome. In the case

of C. acetobutylicum, the maximum possible size of the transcriptome is 8.2Mb,

with a realistic estimate of 4-6Mb. With the 450M properly-paired reads described

here, 68.7 Gb were sequenced for a much smaller transcriptome, approximately 11-

17 thousand times its length. This estimate suggests that, cumulatively, this study

achieves comparable or superior fold-coverage than recommended by these guidelines

using the first method for depth calculation.

In terms of actual sequencing depth, however, requirements for bacterial tran-

scriptome sequencing are unknown despite recent efforts25;26;27;127;128 and differing

views on detection limits.127;154 In this study, the definition of ideal “coverage” is

strictly a sequencing depth greater than one from one transcript boundary to an-

other. In most species, these boundaries are unknown and their identification is

complicated by uneven sequencing depth at transcript termini.36 The discovery of

transcript start and stop sites thus depends on per-base sequencing depth computed

using the second method above.

A median of > 10x coverage per base and per strand was observed for each of

the 30 libraries (4.5). Cumulatively, the median per base coverage is 156x through-

out the genome(4.6), generally considered very deep. The median depth in truly

transcribed regions is greater as shown in the next chapter. To clarify, some of the

depth described by this distribution(4.6) was due to previously discussed background
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Figure 4.5: Representative Per-base Sequencing Depth
These boxplots show the distribution of per-base sequencing depth throughout the
pSOL1 megaplasmid (left) and the C. acetobutylicum chromosome (right) for a single
library. The median depth in each library was greater than 10x.
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signals such as DNA contamination127 or spurious transcription.113;114 Background

signal is indeed a pressing concern for RNA-seq,27;127;150 complicating the determi-

nation of transcript boundaries. After describing read counts, fold-coverage, and

per-base sequencing depth it is clear that this study possesses unprecedented sen-

sitvity for transcriptome mapping.

Figure 4.6: Cumulative Depth

Boxplot

The distribution of per-base

sequencing depth illustrates high

sensitivity.

In summary, the data suggested a success-

ful first aim for this project: a quality RNA-

seq dataset for subsequent assembly and annota-

tion. The experiment and RNA processing pro-

tocol were designed with depth and complexity

in mind. Primary transcripts were enriched and

contaminants were removed, controlling for RNA

purity and integrity after each manipulation.

Thirty samples were sequenced over six lanes,

resulting in 1.5 billion reads, with 458 million

properly-paired reads aligning to the genome.

Analysis of the aligned sequences demonstrated

consistently high primary transcript enrichment,

alignment rates, and sequencing depth. This

depth of signal is comparable or superior to many

similar studies in prokaryotes and to guidelines

for human genome sequencing.
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Chapter 5

TRANSCRIPTOME ASSEMBLY

The high sequencing depth achieved in this experiment suggested that even

for low abundance transcripts, boundaries would be determined effectively. To this

end, transcriptome assembly was the computational technique selected for its speed

and dependence on both sequencing depth and complexity.25 Recall that assembly

is resistant to the high variability of expression measurements in experiments with

significant depth. It is also resistant to sequence-specific biases and low complexity

background signals.

However, it is known that transcriptome assembly is sensitive to other com-

ponents of sequencing datasets such as residual adapters, substitution errors, and

duplicate reads.25 In addition to the aforementioned quality trimming, adapters and

primer-dimers were removed from sequenced reads and duplicate reads were removed

from the dataset after alignment. This trimming and filtering strategy resulted in

both paired and unpaired strand-specific reads aligning to the genome. As previ-

ously described, a large subset (450M, 83%) of the reads were uniquely aligned and

properly-paired according to the forward-reverse(FR) sequencing chemistry. The

remaining data consisted of 74M discordantly aligned reads. Two assemblies were

conducted to understand the effect of the extra unpaired or improperly-paired reads

compared to an assembly of the properly-paired data alone.

A wide range of open source tools and approaches optimized for the transcrip-

tome have been reviewed recently.25 Trinity was selected for transcriptome assembly
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after comparison with other existing approaches. Trinity24 is a flexible de-Bruijn

graph assembler that accepts paired and unpaired reads alone or in combination.

Perhaps more importantly, Trinity has strand-specific assembly options and improved

support for bacterial genomes. This transcriptome assembler was optimal for this

dataset and assembly optimization.

5.1 Initial Assembly

Initial transcriptome assemblies were conducted for the full dataset and the

subset of properly-paired reads. Both assemblies were compared to address questions

regarding assembly performance (Table 5.1). Would extra improperly-paired or un-

paired reads improve the precision of boundary estimates, potentially as terminal or

bridging reads? Alternatively, the properly-paired subset could have resulted in a

simpler and cleaner graph for traversal by the assembly algorithm. Both of the re-

sulting assemblies were compared by their qualities, such as assembly size, transcript

lengths, and inclusion of the reference protein annotations.

In this comparison, the assemblies were inspected for errors that affect these

qualities. The previous chapter described techniques for the minimization of fre-

quently ignored background signals, not quantified by similar studies. While spec-

trophotometric and electrophoretic analyses suggested pure RNA, some residual sig-

nals are often encountered in RNA-seq studies.127 Automated methods such as as-

sembly encounter difficulty when background and overlapping signals are sufficiently

complex. To identify potential false positives, the results were inspected for misas-

semblies, artifacts from the graphs constructed for the dataset. Documentation and

analysis of these artifacts was required for assembly selection.
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All Reads Proper Pairs
Transcripts 2874 4177

Sequenced Mb 6.1 7.2
Length Range 200-28kb 200-35kb

ORFs 2389 (63%) 3347 (89%)
Standard Transcripts 796 (28%) 1057 (25%)

Standard Mb 3.7 (61%) 4.6 (64%)
Novel Transcripts 2082 (72%) 3120 (75%)

Novel Mb 2.4 (39%) 2.6 (36%)

Table 5.1: Assembly Comparison: Proper-pairs Produce Large, Inclusive Assemblies
This table contains statistics for the two transcriptome assemblies, the first with all se-
quenced reads and the second with only properly-paired reads. The total number of assem-
bled transcripts and the size of their span is reported. A group of transcripts contained the
majority of reference ORFs, referred to as the “standard” set of transcripts. The number
and percentage of included reference ORFs are both provided. Additionally, the number
of the standard transcripts and their span is provided. Finally, these statistics are also
presented for novel transcripts.

5.1.1 Assembly Comparison

First, simple statistics were compiled for both assemblies (Table 5.1). The

transcripts that contained reference protein annotations (referred to as “standard”

transcripts), were approximately 25% by number of assembled transcripts, yet they

accounted for 63% of the assembled basepairs for both datasets. Upon inspection,

the assembly from the subset of properly-paired reads was larger and more inclu-

sive, recalling 85% of the reference ORFs. Also, this assembly had higher per-base

sequencing depth in both “standard” and “novel” transcripts (5.1). While the tran-

script lengths were comparable (5.2a), the assembly from the total amount of aligned

reads had lower expression, size, and inclusiveness of the reference CDSes compared

to the subset. Many factors can cause misassembly errors, not the least of which

are discordant reads, which may be handled poorly by the assembly algorithms.

46



While the unpaired reads most likely did not negatively affect the assembly, the 74M

additional discordant reads caused errors during the assembly process that lead to

misassembled transcripts. Ultimately, the misassemblies decreased the total number

of assembled basepairs and the inclusiveness of reference ORFs in the assembly from

the total dataset. Therefore, the transcript coordinates from the uncurated properly-

paired assembly were used for further analysis of feature length, UTR length, and

expression.

5.1.2 Uncurated Assembly Statistics

In the uncurated assembly, 4,177 transcripts spanning 7.18Mb were assembled.

This size is 88% of the maximum possible size in C. acetobutylicum. Each transcript

aligned to a single location in the genome with >98% identity and less than 30bp of

gaps, suggesting high quality assembly results. Of these, 1,029 standard transcripts

spanning 4.56Mb contained 3,225(86%) reference protein annotations. The remain-

ing 3,120 (75% by number, 36.5% by basepairs) were potentially novel transcripts,

lengths ranging from 200-32.7kb. These whole-transcriptome statistics suggest that

the C. acetobutylicum transcriptome is large and complex, in agreement with previ-

ous findings(keerthi BMC).

Additional data showed the characteristics of the transcripts themselves and

painted a complicated picture. The standard transcripts, including mono and poly-

cistronic transcripts, were larger than the novel set(5.2b). More surprisingly, they

were larger on average than estimates of the mean transcript size in E. coli 155. In

addition, the standard set possessed higher levels of expression(5.1). Together, there

was a trend between length and expression that divided the novel transcripts into

distinct classes(5.3). The majority of the novel transcripts were short in length (200-

500bp) with low read counts. Depending on local depth and annotation patterns,
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Figure 5.1: Depth Comparison: Increased Depth Observed in Properly-paired As-
sembly
Clearly, the standard transcripts (middle left, middle right) have higher per-base sequencing
depth than novel transcripts (far-left, center). In fact the distribution of depth in standard
transcripts is comparable to the reference ORFs/CDSes themselves (far right). A noticeable
albeit insignificant difference can be observed between the two assemblies in term of their
per-base sequencing depth. Boxplots on the left show the distribution of per-base sequencing
depth from transcripts assembled from the Total dataset (left, middle left). The properly
paired dataset shows a slight increase in sequencing depth for novel (center) and standard
(middle right) transcripts.
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(a) Length Comparison (b) Feature Lengths

Figure 5.2: Transcript Length Comparison and Uncurated Feature Lengths
a) Length Comparison: Transcripts from the assembly of properly-paired reads (yellow)
have comparable lengths compared to the assembly from the total dataset (blue).
b) Uncurated Feature Lengths: Various classes of transcripts and their associated lengths
are depicted here, including polycistronic/operonic transcripts (green), all standard tran-
scripts (yellow), novel transcripts (orange), and more. The standard transcripts appear
to be slightly larger (< 300bp) on average than those from E. coli,155 likely suggesting
misassembly.
With improved inclusiveness for reference proteins (Table 5.1), increased expression lev-
els(Figure 5.1), and comparable transcript sizes a), the uncurated assembly from the
properly-paired reads was selected for further evaluation.

some of these putative transcripts were likely technical artifacts. Longer novel tran-

scripts with similarly low read counts were most likely assemblies of background

(1-5%) or antisense signal. Outside of these groups, there were a number of highly

expressed, short, novel transcripts that could reflect small peptide encoding tran-

scripts or small RNAs. Equally expressed and larger transcripts could also represent

novel transcripts and protein encoding genes. The trend between transcript length
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Figure 5.3: Expression (Avg. Read Count) vs Transcript Length
This scatterplot shows the standard and novel assembled transcripts along with previously
verified small RNAs44 and a few curated example transcripts that will be discussed shortly.
It seems that with verified small RNAs and the standard transcripts, that an average read
count threshold occurs between 50 and 100 reads. Short transcripts with low read counts
could represent false positive transcripts, depending on local background sequencing depth.
A large number of transcripts possess comparable lengths and read counts to standard
transcripts. This suggests that despite the false-positive signal captured with this level of
sensitivity, truly novel transcripts were detected.

and expression indicated the presence of both novel transcripts and technical arti-

facts in the assembly results, suggesting that further investigation and correction

would be necessary.

An additional illustration of misassembly was seen in the distribution of un-

translated region (UTR) lengths (5.4a). A number of the standard transcripts possess
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(a) 5’ and 3’ Untranslated Regions (b) Intra-operonic Untranslated Region

Figure 5.4: Untranslated Regions
a) While terminal UTRs can contain regulatory sequences, most in E. coli 156 are around
or less than 100bp. It is exciting to speculate about the existence of unannotated proteins,
although these results most likely indicate misassembly.
b) Many intra-operonic UTRs agree with work from prior predictions137, although misas-
sembly has not been excluded for the UTRs described here. Curation of the initial assembly
could reveal unannotated proteins within these large UTRs.
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5’ and 3’ UTRs that were several hundreds of basepairs in length, while most UTRs

previously determined in C. acetobutylicum 48;49;55;72;157 and E. coli 156 are approx-

imately 100bp. Some of these could have contained riboswitches or unannotated

proteins, although likely not at the frequency shown by this histogram. Therefore,

it was desirable to address these misassemblies through a curation process.

Nevertheless, encouraging results were obtained from examination of the un-

curated assembly of the properly paired reads. This subset produced a large number

of transcripts spanning 88% of the bases of the genome and contained the major-

ity of the reference protein annotations. The large number of assembled basepairs

suggested both sufficiently high sensitivity (low false negative rate)and good k-mer

complexity in the data. This truly diverse library was likely to contain rare and novel

transcripts. Analysis of the novel transcript size and expression suggests that small

RNAs and larger protein-encoding messages have been acquired in this dataset in

addition to technical artifacts. As expected, false positive transcripts were assembled

from background antisense signal or spurious transcription. Additional evidence for

these background signals were apparent in large UTR lengths of the standard tran-

scripts. After seeing evidence of these issues in both standard and novel transcripts,

it was desirable to closely examine and illustrate these examples. To investigate these

issues, a customized genome browser was developed as a tool for curation to increase

the precision and accuracy of the transcript coordinates. The integrated curation

method involving this tool is discussed next.

5.2 Exploratory Tools

As described in the previous section, inspection and description of the back-

ground signal was required to identify the previously mentioned misassemblies. Such
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illustration is typically accomplished with a genome browser. Genome browsers al-

low the exploration of sequencing datasets in high detail, producing publication-ready

images of depth, coverage, features, and more. To facilitate this exploration, flex-

ibility was a key aspect for selecting a genome browser for both identification and

correction of assembly errors.

Specifically, an ideal genome browser would display depth, coverage, and an-

notation data from both strands separately. Visualization of multiple coverage vec-

tors (e.g. different conditions) in a single track has improved data density compared

to multi-track browser designs. Unfortunately, “reducer” functions (max, sum, av-

erage) are not simple to compute for multiple large alignment files and existing

genome browsers. In fact, many conventional browsers are sluggish to even load

such large datasets.158;159 These genome browsers did not meet the requirements for

this project. Instead, a customized genome browser was constructed with flexibility,

speed, and simplicity in mind to facilitate assembly visualization and curation with

the sequencing data and genome annotations.

5.2.1 Genome Browser

In this genome browser, only the coverage vector was required for visualization

and not the inspection of individual reads. A total of 169 gigabytes of aligned

reads were summarized by 6.8 gigabytes of coverage vectors, a dramatic reduction of

resource requirements. Still, these data were too large to transmit to users or perform

reducing functions upon. The appropriate format for visualization and distribution

of these data to the Clostridia research community was a web application with a

database. The objective for this genome browser was simple: allow users to upload

and view feature annotations (e.g. sRNAs, proteins) alongside condition-specific
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coverage vectors from this sequencing dataset. The details of its construction have

been described in the Methods chapter (A.2).

Figure 5.5: Database Tables

A simple database was designed, in-

dexing the annotations and cover-

age entities on their genomic coor-

dinates.

The finished product was a modern

genome browser with an intuitive user inter-

face(A.2). A simple database was required to

host coverage and annotation records. An ob-

ject relational model was required to retrieve and

pass data to the web application layer for conver-

sion into scalable vector graphics (SVG). This

creation had both speed, with optimized SQL

queries, and flexibility, with interactive zooming,

filtering, and tooltip details. Strand specific cov-

erage and annotations were displayed in a pub-

lication ready form. This genome browser was a

tool to integrate annotation types including the

transcriptome assembly, reference CDSes, and more, contextualizing these genomic

features with expression data. After construction, this genome browser was loaded

with genome annotations to facilitate error correction.

5.2.2 Promoter Prediction Tool

To aid the curation process, it was desirable to integrate additional annota-

tions such as promoter and terminator predictions. For example, promoter predic-

tions help resolve misassembly near transcription start sites. Promoter motifs are

genomic signals that should correlate with expression levels at a rate predictable

from sequence similarity to a consensus motif. Unfortunately, promoter annotations

do not exist for C. acetobutylicum. After observing the extended transcripts and
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UTRs in the previous section, a promoter prediction tool was developed to address

these errors.

A promoter prediction tool was developed to utilize consensus sequences from

B. subtilis 138 to predict promoter motifs in this C. acetobutylicum. The promoter

prediction tool, described in 3.7, converts consensus sequences into models suitable

for input into the MAST algorithm.68 Consensus sequences from DBTBS138 were

used to generate models of promoter elements and transcription factor binding sites.

Then, these were used to scan the C. acetobutylicum genome. Predictions with p

<0.01 were then converted to GTF format and uploaded into the browser. This

browser, loaded with annotations, was then used to visualize errors in the uncurated

assembly and discussed in the next section.

These exploratory tools were created to improve the precision of the transcript

boundary estimates by contextualizing the coverage patterns with annotations (e.g.

Rho-independent terminators, promoters motifs) that explain drops in depth. These

genomic signals provide biological mechanisms for the depth and coverage obser-

vations, increasing the amount of useful signals present at transcript boundaries.

These annotations were combined in a customized genome browser to be used for

integrative analyses of these genomic signals and sequencing data.

5.2.3 Background Signal

Figure 5.6: Feature Frequency

Barplot of total numbers of

predicted σA-promoters and

Rho-independent terminators,

indicating the abundance of

promoters in the AT-rich C.

acetobutylicum genome.

In the previous section, a genome browser

and promoter prediction tool were described to

facilitate an integrative analysis and curation
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of the C. acetobutylicum genome. In this sec-

tion, these tools were used to assess the back-

ground signals responsible for misassembly, pro-

duced from the high sensitivity of this experi-

ment. A large number of Sigma A promoters

were predicted (p < 0.01) throughout the C. ace-

tobutylicum genome (5.6), close to 3x the num-

ber of predicted terminators. These promoters

were uniformly distributed and perhaps surpris-

ingly, were not necessarily concentrated at the

beginning of transcripts (5.7). Many of these

predictions were weak matches to the consensus

motifs (p > 0.001) and would in turn have had

only weak affinity for σ-factors and residual transcriptional activity. The AT-rich

genome of C. acetobutylicum leads to an abundance of putative promoter sequences,

contributing to the background signal observed both statistically and through spe-

cific examples (5.8). In addition to the previously described benefit of integrating

promoter motifs into the curation process, this enabled the quantification of their

prevalence and quality. The abundance of σA motifs in this AT rich genome could

be partially responsible for some of the background signal and misassemblies.

The transcriptome assembly was inspected with the customized genome browser

to understand this background signal and determine if the transcript boundary es-

timates could be improved by curation. The assembled transcripts matched the

sequencing depth well, despite the misassemblies that were apparent upon exami-

nation (5.8). Assembly extended through some troughs in depth (transcript fusion)

and beyond expression termini (transcript extension). The extent of background

56



Figure 5.7: Promoter Prevalence
A representative region of the C. acetobutylicum genome with a large number of σA promoter
motifs relative to the Rho-independent terminators. The high frequency of these promoters
in the AT-rich C. acetobutylicum genome may contribute to the high background signal.
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Figure 5.8: Background Signal
An example of a misassembled trancript is shown, extended beyond the hairpin/terminator
into the intergenic region. A novel transcript is indicated that may have contributed to this
misassembly, although the misassembly extends into obvious troughs of sequencing depth.
The misassembled region and novel transcript are indicated in the figure.

signal - residual depth in seemingly inactive regions of the genome - is impossible

to quantify without first distinguishing true signal from the noise through assembly

curation. However, background signal is not uncommon with RNA-seq,27;112;113;127

despite neglect in comparable bacterial studies.

Potential sources for this noise include residual antisense signal (1-5%), con-

taminating DNA, and spurious transcription. These signals that were minimized

(ref methods) but are difficult to eliminate completely in RNA sequencing exper-

iments(ref background signal papers). Residual antisense signal was not overly

abundant(1-5%), mostly a factor of the library preparation method.36 Contaminat-

ing DNA was minimized and not observed during quality control checkpoints. While

these residual contaminants might have contributed towards the background sig-

nal, they were expected to be distributed uniformly throughout the genome. These

signals could have contributed to the misassembly.

The last source, spurious transcription, can be minimized through certain
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extraction and size selection techniques during library preparation. However, this

experiment was designed to identify all coding and noncoding primary transcripts.

The RNA extraction technique used did not exclude short transcripts, such as those

from non-specific transcription. The previously described sequencing depth sug-

gested that some of this signal was expected.27;112;113;127 Spurious transcription was

also supported by the promoter prediction frequency (5.6) and uniform distribution

of these motifs in both transcribed and untranscribed regions of the genome (5.7).

Similarly to the other noise factors, a small and uniform noise is expected given the

extreme sequencing depth, and this noise is a likely cause of misassembly.

Fortunately, there were distinct depth patterns (5.8) that agree with promoter

and terminator annotations. The separation of true signal from noise was possible by

integrating these multiple datasets through the genome browser. Next, the curation

process is detailed for specific examples, where previous gene-specific experiments

have produced transcript boundaries. The integrated analysis corrected for these

background signals, revealing precise and accurate estimates of transcript boundaries.

5.3 Example Transcripts and Curation Process

Previous sections described global indicators of misassemblies cause by back-

ground signals and the tools required to identify and address them. Correction also

required clear description of these errors and a defined curation method, facilitated by

the genome browser and genomic signals. These errors, not discussed or documented

in similar studies, were best described for genes that have previously determined

transcript boundaries. This external validation allowed true understanding of the

type I and type II errors in the uncurated assembly. Six issues, listed below, were

considered for each example to better understand the quality of the assembly and

the degree of curation required.
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1. Was the transcript large enough to include the known ORFs and RBSes?

2. Did the assembled transcript’s TSS agree with promoter motifs?

3. Did it agree with published transcription start sites?

4. Did the assembled transcript’s size agree with published Northern blots?

5. Did the assembly represent the coverage and if not, which of these two best
represents the biological knowledge of this region?

6. Did the assembled region require curation (e.g. fused, extended, or truncated
transcripts)?

These questions were considered for each of 5 loci where there is a priori

knowledge. In the following examples, the uncurated assembly results were compared

to the promoter, terminator, and sequencing data for the region. Misassemblies

were documented when the assembled transcript disagreed with obvious patterns in

sequencing depth, promoter, and terminator annotations. These examples illustrated

the types of errors found in the data and details the simple methods to correct them.

The first example, the Sol locus, contains 3 transcripts that display minor extension

misassemblies with clear and simple solutions.

5.3.1 Sol Locus

The sol locus is a 7kb region on the pSOL1 megaplasmid surrounding the sol

operon(4.3kb, basepairs 175,564-179,841). This region is responsible for the produc-

tion of several solvents47;48 and is immensely important to the physiology of the C.

acetobutylicum ATCC 824 strain. This region encodes several enzymes including a

tri-functional NAD(H+)-dependent alcohol/aldehyde dehydrogenase (AdhE1)47, two

subunits of coenzyme-A transferases (CtfA/B)50, and an acetoacetate decarboxylase

(Adc)49;50;160. The region is also home to a protein SolR, which includes a helix-turn-

helix motif and is thought to regulate solventogenesis161. These genes are vital for
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(a) Sol locus

Figure 5.9: Sol Locus Overview
This operon (upper track) consists of orfL, alcohol dehydrogenase (adhE1), and Co-A trans-
ferases A and B (ctfA,ctfB). solR (far left) and acetoacetate decarboxylase (adc; lower track,
right) are also shown. Coverage for the Watson and Crick strands (top and bottom tracks)
are visualized with an annotation track (center). Tracks show cumulative coverage for un-
stressed (yellow), butanol (light green/ light orange), and butyrate (green/orange) stressed
samples over all time points. Transcripts (blue), ORFs (orange), RBSes (purple), inverted
repeats (yellow), promoters (green), and TSSes (red) are represented as arrows and bars.

carboxylic acid reuptake and conversion into alcohols, a vital part of this organism’s

metabolism and the solventogenesis process.

5.3.1.1 Acetoacetate Decarboxylase Transcript

In the early 1990s, several articles were published about the sol locus including

the cloning and sequencing of adc and the sol locus47;48;49;50;160. An early study of

the sol operon probed the adc locus, reporting two transcript sizes of 670 and 865

with Northern blot160. The authors also reported the major transcription start site

of adc at base 180,671 of the pSOL1 plasmid. To examine the quality of our data

and raw assembly, we examined this locus to observe the transcript size and locate
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the transcription start site in our data.

In 5.10a we see the transcription start site reported by Durre et al.(red)160

located very near a sustained increase in sequencing coverage just downstream of

a canonical promoter motif. This pattern of coverage (cumulatively >10,000x) is

sustained until a bidirectional Rho-independent terminator (5.10b). In this instance,

the precise transcription start site was not estimated precisely by the uncurated

assembly. The reported transcript continues for several hundred basepairs upstream

of the adc TSS, despite the decrease in coverage. This artifact is most likely due

to sufficient k-mer complexity in the reads mapping upstream of the TSS for the

assembly algorithm to fuse these reads to the adc transcript. While this complexity

is generally a good sign for the quality of this dataset, in this case a misassembly

was the result. Correcting for this error (5.10c), the full transcript size is 857bp.

It was claimed that a 670bp product was most likely a specific degradation

product or the result of a secondary transcriptional start site160. To investigate

this, a transcript of this size would correspond to a transcriptional start site at ap-

proximately base 180,484. Unfortunately, none of the promoter motifs in the region

could explain a transcript of this size in vegetative cells. After curation based on the

coverage pattern, promoter and terminator motifs in this region, the transcription

start site and transcript size for adc accurately match previous results. The uncu-

rated assembly predicted a transcription stop site with good precision, in contrast

to the start site. The degree of k-mer complexity, despite the low coverage in the

background signal upstream of adc, suggests that library complexity is reasonably

high. In this instance, the background signal poses and obstacle for automated as-

sembly, but suggests that sufficient depth is achieved in this experiment. This type

of misassembly will be referred from here on as an “extension”. From 5.10b, another

extension misassembly is present in our next example transcript, the sol operon.
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(a) adc transcription initiation region on the Crick strand.

(b) Bifunctional Rho-independent terminator for sol operon (upper track, left) and Adc
transcripts

(c) Curated adc locus

Figure 5.10: Adc locus
a) Transcription initiation region for adc. While the coverage clearly shows the appropriate
increase, the transcription start site has been fused to residual coverage upstream of the
true TSS. b) A bifunctional terminator is responsible for transcriptional termination of
both Adc and the sol operon. c) With minor curation, the region matches previous results
faithfully.
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5.3.1.2 Sol Operon

In160, the sol operon was investigated using a probe specific for ctfB and a

transcript of size of 4.1kb was reported. Unfortunately, no blots were included as fig-

ures in this work. In48 adhE1-based probes revealed a nearly identical transcript size

of 4.1-4.2kb. Interestingly, the sol operon has both proximal and distal transcription

start sites at 175,726 and 175,564, respectively47;48. Ribosome binding sites have

been identified upstream of adhE1, ctfA, and ctfB48. From these previous studies,

good recall of the transcription start sites was expected.

The expression level of the sol operon is substantial, also upwards of 10,000x

coverage cumulatively. The distal transcription start site is matched perfectly (5.11a),

demonstrating the precision of the assembly technique in the absence of background

or residual signal. An increase in coverage is observed immediately following the

proximal promoter (5.11a) in close agreement with the previous determinations47;48.

However, the transcription stop site was not precisely determined by the assembly,

owing in part to basal antisense signal from the Adc gene (5.10b). After adjustment,

the transcript sizes are 4,115 and 4,277, respectively, in close agreement with the

reported transcript sizes48;160.

5.3.1.2.1 Multiple Transcripts from Sol Operon

While the results from this region agree as a whole, there is an interesting

pattern in coverage in the sol operon near the C-terminus of adhE1(5.11b). This

100bp region is expressed at a statistically lower level (K.S.-test, p < 0.05) than the

rest of the sol operon but has a standard GC content of 35%. It is unlikely that

the low sequencing depth is caused by sequence specific biases, described earlier.

Upon further examination of this region, we find a Rho-independent terminator

with a ∆G of -9.6 kcal/mol that is not as strong as the -11.5 kcal/mol bifunctional
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(a) sol operon transcription initiation region. The distal (left) and proximal (right) tran-
scription start sites (red) are shown for adhE1 (far right, orange).

(b) Putative adhE1 (left) terminator, ctfA (right) promoter

Figure 5.11: Sol Operon
a) sol operon (orfL, center; adhE1 right) transcription start sites. The coverage and assem-
bly data have strong agreement with previously described proximal and distal promoters
and transcription start sites. b) Low coverage in the sol operon. A terminator may be
partially responsible for a sustained low coverage level in the sol operon. Additionally, a
promoter motif was located upstream of the ctfA RBS and the pattern of expression is
consistent with these observations.
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terminator at the end of the sol operon. The region is also near a σA promoter motif

of TTCATA(13)TATAAT located upstream of the previously mentioned RBS.

As mentioned above, no Northern blots figures were included in the only

study, to the best of my knowledge, that uses ctfA or ctfB specific probes160. Most

studies of the sol operon in C. acetobutylicum use adhE1-specific probes or larger

restriction digestion probes48;51;162. One of these displays a Northern with a weak

but distinct band for a 2.6kb transcript under solventogenic conditions157. If adhE1

were transcribed both in the classical sol operon and as a separate transcript, the

length would be 2,716bp from the proximal transcription start site, similar in size to

the observed band157.

This region shows steep changes in coverage that are consistent across all

replicates. It is likely that this observation does not merely represent difficulty se-

quencing secondary structure in the sol operon transcript. In addition to the full

sol operon transcript, additional transcripts from the adhE1 and ctfA/B genes may

be produced. Recent Northern blots from our lab seem to corroborate this finding

(Alex Jones, personal communication, December 9, 2014).

In addition to correcting misassembly, identifying overlapping transcripts and

alternative transcription start sites is a benefit of curation. The uncurated Sol tran-

script has basepair-level resolution of the distal transcription start site. With minor

curation, two additional transcripts were discovered from this region and the stop

site was easliy determined. For the first two example transcripts, boundaries were

determined with high precision and accuracy, although it should be noted that these

regions had strong expression. In the next example, high precision is achieved again,

even in a transcript with lower coverage.
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5.3.1.3 SolR Transcript

The last transcript produced from the sol locus considered here is from the

solR gene. This gene produces two transcripts, one 1kb and the other 1.3kb48. A

later study revealed the role of SolR as a repressor for the sol operon157. This study

also produced a single transcription start site at 174,154 on the pSOL1 plasmid. As

a result of examining this dataset, perfect recapitulation of the transcription start

site was achieved(5.12a). The transcript from the raw assembly is approximately

1.2kb(5.12b), showing only residual coverage (cumulatively <5x) after the first ter-

minator(5.12c). After curation (5.12d), the transcript size is 1,036bp. There was

insufficient coverage in the conditions studied to strongly support the larger tran-

script. No alternative transcription start sites were apparent.

In the first locus, boundaries were accurately determined after minor curation.

Examples of the first type of misassembly, the “extension” were presented. The

level of complexity of the reads mapping to these regions was high, given complete

assembly of these regions including low coverage background signal. Basepair level

resolution of the transcription start sites was observed for 2 of the 3 transcription

start sites without curation. With the misassemblies that were described here, minor

curation was required to accurately determine the remaining boundaries. In the next

example locus, two butanol dehydrogenase transcripts will be examined, along with

the next type of misassembly that this curation approach can address.

5.3.2 Bdh Locus

The bdh locus encodes two homologous butanol dehydrogenase(BDH) en-

zymes in a 3kb region on the main chromosome. Early studies of butanol dehydroge-

nases in Clostridia located a number of NADH-dependent and NADPH-dependent

butanol and alcohol dehydrogenases responsible for butanoate metabolism52;53;162;163,
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(a) solR Transcription Initiation Region

(b) solR Transcript

(c) solR Transcription Termination Region

(d) Curated solR Transcript

Figure 5.12: SolR Locus
a) The assembled transcription start site for solR agrees with previous findings.
b) The assembled solR transcript has an extended 3’ UTR and subreffig:5.12c) in-
sufficient coverage for a transcript past the first terminator. d) The curated solR
transcript agrees with previously published findings157.
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specifically the reduction of butyryl and acetyl groups into the solvents butanol and

ethanol. One such locus in C. acetobutylicum produces two isozymes with different

physiological roles. These isozymes like have distinct regulation and physiological

roles from the other alcohol dehydrogenases found in this organism. The bdh locus

proteins were described by several authors, reporting different activities and speci-

ficities for each enzyme162;163. After characterizing the enzymes in this locus, the

region was cloned and two homologous isozymes were found. The two transcripts

originating from these isozymes will demonstrate the precision and accuracy of this

technique when compared to primer-extension analyses but also the need for assem-

bly curation that reflects the motifs and coverage pattern of the region. We begin

by discussing the first of these, bdhA.

5.3.2.1 BdhA

BdhA is an NADH-dependent butanol dehydrogenase that acts on both bu-

tyryl and acetyl groups. Studies suggest that this enzyme has fairly comparable

activities with both substrates, with slightly higher activities for butyryl groups162.

This enzyme was observed to have higher activities at low pH, indicative of its phys-

iological role in the conversion of butyric acid to butanol. The entire locus was

sequenced, producing ORFs that exactly matched the bdhA and bdhB isozymes53.

Northern analysis determined that these genes are transcribed separately and not as

an operon. BdhA was found to have a 1.3kb transcript and the transcription start site

was mapped through primer-extension to base 3,465,240 on the main chromosome

of C. acetobutylicum 53.

Here we find the transcription start site of bdhA one base upstream at 3,465,241(5.13b).

The results of transcription start site identification agree well with the upstream
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Sigma-factor A promoter and the aforementioned start site. The uncurated assem-

bly produces a transcription stop site at base 3,464,329, before the stop codon of

BdhA(5.13c). The pattern of coverage clearly reflects the Rho-independent termina-

tor nearby. The misassembly could be due to low complexity in the reads mapping

to this portion of bdhB, possibly resulting from homology with bdhB. This type of

misassembly will be referred to from here on as a “truncation” misassembly. The final

transcript (5.13d) reflects the assembly, coverage pattern, and motifs in this locus,

agreeing with the transcription start site and a transcript length of 1,282bp. In this

example, the fairly obvious coverage pattern was not reproduced by the assembly,

demonstrating the need for some simple curation by integrating knowledge of pre-

vious experimental data and genome-wide predictions of promoter and terminator

motifs with the coverage pattern and assembly. Next, the paralogous gene BdhB

produces a similarly sized transcript.

5.3.2.2 BdhB

The next gene is bdhB, another NADH-dependent butanol dehydrogenase,

with a slightly longer transcript size of 1.35kb. It was reported that this enzyme

has 46-fold higher activity with butyryl groups than acetyl groups53;162. BdhB was

sequenced an analyzed along with bdhA, where it was discovered that bdhB had

at least two transcription start sites, independent from BdhA. The most dominant

transcription start site was very close to a secondary band at approximately 3,463,816

and 3,463,811, respectively53. I will refer to these two distal bands collectively as the

primary transcription start site for bdhB. A third band was located slightly farther

upstream at 3,463,80353.

The coverage pattern for this region shows at least 3 increases in coverage at

3,463,802, 3,463,813, and 3,463,843 (5.14a). The first (proximal) site has a promoter
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(a) bdh Locus

(b) bdhA Transcription Initiation Region

(c) bdhA Transcription Termination Region

(d) Curated bdhA Transcript

Figure 5.13: Bdh Locus
a) The bdh locus displays an obvious coverage pattern for two monocistronic transcripts. b) The
bdhA transcript displays a sharp increase in coverage near the transcriptional start site. This data
agrees to a good extent with primer extension studies for this gene. c) The raw assembly has failed
to recapitulate the transcription termination region, likely due to low complexity coverage of the
3’ region of this transcript. d) The curated transcript reflects experimental characterization of this
transcript53. 71



-35 box
Motif Start End Sequence p-value
1 3463831 3463836 TAGGTT 3.5×10−2

2 3463847 3463852 TTGTAA 9.4×10−3

3 3463870 3463875 TGGATA 2.6×10−2

-10 Box
Motif Start End Sequence p-value
1 3463816 3463821 TATAAT 4.3×10−4

2 3463820 3463825 TATATA 1.6×10−3

3 3463830 3463835 TAAAAT 4.2×10−3

4 3463852 3463857 TATTAT 4.2×10−3

Table 5.2: BdhB Sigma-factor A boxes

motif upstream, corresponding to the 1st -10 and -35 boxes in 5.2 and the tertiary

transcription start site from above52. The second site has a significant increase

in coverage between residue 3,463,817 and 3,463,810, which match well with the

primary transcription start site described above53. The primary transcription start

site matches the 2nd -35 box and the 2nd or 3rd -10 box motifs53. It is clear that

the strongest start site is the primary transcription start site previously described53,

although the multiple bands observed in their analysis could indeed be explained

by the additional matches to consensus Sigma-factor A motifs. Additionally, an

observable but insignificant increase is correlated with a final promoter motif. It is

clear that the raw data match previous results to a good extent but curation was

required to correct the transcription start site(5.14a) and stop site (5.14b). The

final transcript is shown in 5.13c with a final length of 1,367bp or 1,381bp, in close

agreement with the published length of 1.35kb.

In this example, the bdhA and bdhB transcripts were very close to capturing

the true boundaries of these genes. In the case of bdhA the TSS was both precise
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(a) bdhB Transcription Initiation Region

(b) bdhB Transcription Termination Region

Figure 5.14: Bdh Locus and Transcription Start Sites
a) The bdhB transcript has several promoter motifs and matching increases of coverage.
These increases agree with previous experimental results53, 2 which were dismissed after
not identifying the appropriate promoters. Unfortunately, the transcription start site was
incorrect in the raw assembly. b) A Rho-independent terminator is found at the end of the
bdhB transcript although residual coverage triggered misassembly.
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and accurate, but the assembled transcript did not match the coverage pattern,

ORF, and terminator annotations, the first example of a truncation misassembly. It

is possible that this and similar misassemblies could be due to homology between

paralogues, such as in the C-terminus of bdhA and bdhB. In the case of bdhB, the

start and stop sites did not agree with patterns in coverage (extension misassembly)

and were simple to correct. The next example is another positive example, this time

of a stress-response operon containing the heat-shock proteins GroES and GroEL.

5.3.3 GroES/EL Locus

5.3.3.1 GroES/EL Operon

The GroES and GroEL proteins are evolutionarily conserved heat-shock re-

sponsive chaperonins. These proteins are found throughout the tree of life, including

C. acetobutylicum, where they are an integral to the solvent stress response55;72;73

and the class I heat-shock response58;72;73. Expression levels are both strong and con-

stitutive for this region, with a dramatic and transient increase with solvent or heat

stress72;73. In a molecular study, GroES and GroEL were found to be produced from

a bicistronic operon with a transcript size of 2,150bp55. In addition, a Sigma-factor

A promoter was identified for an experimentally determined transcription start site.

Two bands were observed during the primer-extension assay55. The proximal band

was dismissed as an artifact although the bands persisted under all conditions ex-

amined55. This region is known to contain a CIRCE motif upstream60, overlapping

both of these start sites (??)73.

The transcription start site determined in this work is located at 2,829,142, a

mere two bases away from a previously reported start site55 (5.15a). Interestingly,

the second transcription start site is located at a sharp increase in expression. The
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distance of this start site from the promoter would suggest either sequencing diffi-

culties or post-transcriptional processing. The transcription stop site is located near

a Rho-independent terminator (5.15b). The transcript size determined by the raw

assembly is 2,131bp in agreement with the 2.2kb band and the 2,150bp calculated

distance between the transcription start-site and the Rho-independent terminator60.

In this example, the uncurated assembly produced a flawless recapitulation of the

coordinates and size of the groES/EL operon (5.15b). Having established the coor-

dinates for this transcript in agreement with previous findings, the regulation of this

operon should be briefly discussed.

5.3.3.2 GroES/EL Regulation

The groES/EL operon is stress responsive, although its expression under stress

appears lower in 5.15c. For this reason, it is worth discussing the regulation of this

region and why these results are consistent with knowledge of this area. The CIRCE

motif upstream of groES is regulated by HrcA, a heat responsive repressor58;60;74.

In response to heat-shock, the groES/EL operon is derepressed, revealing a Sigma

factor A promoter and resulting in transcription (5.15a). The response to heat shock

is fairly acute, increasing for 2-3 minutes and returning to standard levels after an

additional 10 minutes60. Here a general decreased expression is observed in response

to solvent stress for two reasons. First, the 6S small RNA is a stress and growth-

stage responsive regulator that globally reduces transcription from Sigma factor A

promoters44;164. Additionally, the time scale assessed here does not include a 3

minute time-point to identify an acute stress response. The stress response observed

is the global downregulation of Sigma factor A promoters and the transition of the

transcriptome towards one designed to tolerate stress and Sigma factor A dependent

promoters are downregulated throughout this dataset as a result of the 6S small
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RNA. For this reason, we defer the test of differential expression for these time

points for the next chapter. In the case of the GroES/EL operon, we observe precise

and accurate estimates of transcript boundaries from the uncurated assembly. The

next example is the regulator responsible for the acute stress response of these heat

shock proteins, HrcA.

5.3.4 HrcA and DnaK/J Locus

5.3.4.1 DnaK Locus Overview

This rather complex locus encodes the class I repressor HrcA, DnaK and

DnaJ, another set of evolutionarily conserved heat-shock proteins. DnaK was dis-

covered to be solvent-stress responsive in C. acetobutylicum 72;73. Solvent stress and

heat shock increase protein denaturation, requiring molecular chaperones such as

GroES/EL and DnaK/J to increase proper protein folding in these conditions. The

C. acetobutylicum DnaK protein was purified as a stress responsive 74kDa protein73.

Using a restriction fragment, the DnaK locus was then cloned and sequenced56, re-

vealing a grouping of four ORFs, similar in arrangement to B. subtilis 60. An inverted

repeat, now known to be the HrcA-binding CIRCE motif, was found upstream of the

hrcA gene56. Upon Northern analysis of this region, three different transcripts were

identified as originating from this locus, of 2.6, 3.8, and 5kb lengths. Additionally, a

1.5kb band was observed with a dnaK specific probe56. The first transcript (2.6kb)

could be seen with a dnaK-specific probe and is thought to contain the genes grpE

and dnaK. The second transcript (3.6kb) was observed for both dnaK and hrcA-

specific probes and is thought to contain the same genes plus hrcA. Similarly, the

5kb transcript was observed for both probes and is thought to contain the whole

operon. The final transcript(1.4kb) and additional small bands were dismissed as

specific degradation products. It has been noted that this operon has interesting
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(a) GroES/EL Transcription Initiation Region

(b) GroES/EL Transcription Termination Region

(c) GroES/EL Locus

Figure 5.15: GroES/EL Locus
a) groES and groEL form an operon that is responsive to heat-shock through a HrcA-
mediated derepression mechanism. The transcription start sites are in agreement with
previous findings with the addition of an interesting peak inbetween these two. b) The
transcription termination region supports previous reports of a 2.2kb transcript terminating
at a Rho-independent terminator following the GroEL ORF.
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post-transcriptional regulation in B. subtilis, producing multiple transcripts from a

heptacistronic operon165. To analyze this complex operon, we will proceed through

4 proposed regulatory sites. The first is the promoter region of hrcA. The second

site is a transcription start site upstream of grpE. The third is the location of an

internal CIRCE motif, terminator, and an additional transcription start site ahead

of dnaJ. The final site is located at the end of the whole operon.

5.3.4.2 HrcA Promoter

The hrcA promoter was described during the sequencing of the dnaK/J lo-

cus56. This promoter produces the full transcript of 5kb and the smaller 3.6kb tran-

script terminating between dnaK and dnaJ. Two transcription start sites have been

described for this region56. Both of the two reported transcription start sites(S1

and S2) were located upstream of the CIRCE element, in contrast to groES/EL

(5.16a). Additional bands present in the primer extension analysis were rejected

similarly to the strand bands in the groES/EL operon. An excellent Sigma factor

A motif was located for the S1 site (P1,5.3) but only an insignificant motif (p >

0.05, TTTATG(17)AAAGAT) motif was found for the weak band of the S2 site. An

alternative promoter (P2, 5.3) seems to be too close to the S2 transcription start

site. If the observed bands represent true transcription start sites for this operon

they are transcribed from close and overlapping promoter motifs.

Here we don’t see any direct increase in transcription for the S1 site, most

likely due sequencing difficulty near the CIRCE motif. Upon TEX enrichment, no

increase or decrease in coverage can be observed near these sites(data not shown),

suggesting that post-transcriptional processing is not responsible for these transcrip-

tion start sites. The increases in transcription observed here are relatively minor
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compared to the transcription of the entire HrcA operon. The P1 and P2 mo-

tifs seem to be sufficient for transcription initiation, although the coverage pattern

shows evidence of complication of sequencing. In several studies55;56 transcription

start sites have been discarded due to local RNA secondary structure. It is reason-

able that reverse transcription in this area may be complicated by the -10kcal/mol

hairpin and CIRCE motif near the 5’ end of the transcript.

Several authors have noted that full hrcA/dnaK operon transcripts are present

at lower abundance56;165, resulting in lower coverage and an indistinct transcription

start site when considering coverage alone. In 5.16a, it is clear that the uncurated

assembly estimated the transcription start site more accurately than a coverage-

only approach would provide. As we have seen, in some cases the de Bruijn graph

assembly requires curation to most accurately reflect local motifs. On the other

hand, this method produces a reasonable estimate of the start site. After minor

curation, the transcription start site agrees with the previously described164 S2 and

S1 (5.16b). Having established the transcription start site for the entire hrcA operon

and previous transcriptional start sites are not the result of post-transcriptional

processing, we move on to the higher abundance transcripts produced by this region,

beginning with the grpE operon.

5.3.4.3 GrpE Promoter

The GrpE protein is an essential nucleotide exchange factor for DnaK. This

protein was discovered upstream of dnaK after cloning and sequencing of the dnaK

locus56. It was postulated that a second transcription start site upstream of grpE

would explain the smaller 2.6kb transcript and a transcription start site was deter-

mined56. A transcription start site exists ahead of the grpE gene in B. subtilis as

well165. The proposed promoter ahead of grpE does not match the Sigma factor A
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consensus (p > 0.05) and no alternative motifs were found. However, a substantial

increase in coverage can be found further upstream from this site.

The first two sites are specifically enriched in the TEX treated library, suggest-

ing a transcription start site. Promoter motifs of higher quality are found upstream

of two major peaks (5.16b). Looking at the entire operon (5.16c) it is clear that

this is a substantial transcription start site. The increase in coverage here is acute

in contrast with the previous site in the conditions of this study. Additionally, it

has been proposed that the hrcA operon is generated from post-transcriptional pro-

cessing and differing transcript abundances are due to differing decay rates165. If

such a processing mechanism were present in C. acetobutylicum, the coverage at the

grpE transcription start site would be differential with respect to the 5’-phosphate

exonuclease (TEX) treatment. In 5.16b, the coverage is not differential at this or

other locations in this transcript, demonstrating that the 2.6kb transcripts is most

likely a primary transcript originating from the Sigma factor A promoters P3 or P4.

In summary, a novel transcription start site and promoter motif were located

upstream of grpE. No matching promoter motif or coverage pattern was observed for

a previously documented transcription start site under these conditions. Addition-

ally, coverage at the novel transcription start site was enriched with TEX treatment,

suggesting that the 2.6kb transcripts are primary transcripts and not products of

post-transcriptional processing. CtsR and CIRCE motifs were not found near this

transcription start site. Next, the dnaK/J intergenic region is explored, which con-

tains a terminator responsible for read-through transcription of the entire 5kb operon.

5.3.4.4 DnaK/J Intergenic Region

The dnaK/dnaJ intergenic region is known to contain a Rho-independent ter-

minator56;165, thought to be responsible for the 3.8kb and 2.6kb transcripts. The
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(a) hrcA Transcription Initiation Region

(b) grpE Transcription Initiation Region

(c) Curated hrcA Locus

Figure 5.16: HrcA Locus and Promoter Regions
a) HrcA leads the 5kb tetracistronic operon. The regulation of this operon consists
of Sigma factor A dependent promoters, a CstR motif, and a CIRCE motif. b) A
secondary transcription start site in upstream of grpE is responsible for the 2.6kb
and 3.8kb transcripts. A large increase in coverage at a novel transcription start
site is not TEX responsive. c) The curated hrcA operon has two transcription start
sites and one Rho-independent terminator which explain the 5kb, 3.8kb, and 2.6kb
transcipts reported for this area.
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-35 box
Motif Start End Sequence p-value
P1 1423790 1423795 TTGACA 2.9×10−4

P2 1423774 1423779 ATGAAA 5.3×10−2

P3 1424463 1424468 TTGAGG 1.6×10−2

P4 1424514 1424519 TTGATT 6.2×10−3

P5 1427399 1427804 TTGAAA 2.1×10−3

-10 Box
Motif Start End Sequence p-value
P1 1423812 1423817 TATTTT 2.3×10−2

P2 1423800 1423805 TAATGT 1.8×10−2

P3.1 1424476 1424481 TAATAT 9.9×10−3

P3.2 1424482 1424487 TAAAAA 3.2×10−2

P4 1424537 1424542 TATGAT 1.9×10−3

P5 1427430 1427435 TATAGT 2.5×10−3

Table 5.3: HrcA Operon Sigma-factor A boxes

DeltaG of this terminator is estimated to be -13.2kcal/mol. In 5.17a, decreased

coverage is observed near this terminator, upstream of the dnaJ gene. This termi-

nator does not contain a CIRCE element, in contrast to the inverted repeat at the

hrcA promoter. A strong promoter motif (P5,5.3) is observed very close to a sharp

increase in coverage at the 5’ end of the repeat. The previously reported band is

found on the 3’ end of the repeat, which is explained by the strong terminator mo-

tif, similar to bands near the start of groES/EL and hrcA. To my knowledge, no

dnaJ-specific Northern blots have been produced to identify a 1.2kb monocistronic

transcript and thus, whether the promoter and observed increase in coverage reflect

a true transcription start site remains unknown. Possible alternative explanations

include post-transcriptional processing or thermodynamic challenges for the reverse

transcriptase56. However, the coverage pattern does not show a response to the TEX
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treatment (5.17a) and the former seems unlikely here. In the dnaK/J intergenic re-

gion, a decrease in coverage is observed near a strong Rho-independent terminator.

Subsequently, increased coverage is observed near a strong promoter motif that might

explain previous primer-extension results56.

5.3.4.5 HrcA Transcript Termination

The full operon is produced in a 5kb transcript which terminates after the

dnaJ gene. In 5.17b, a dramatic decrease in coverage is observed at the end of

the dnaJ gene, 50 bases before the stop codon. Four terminator prediction soft-

ware did not produce results for the transcription termination region shown here.

This location should contain a non-intrinsic termination signal to explain the dra-

matic decrease in coverage. The residual signal from the nearby ribosomal methyl-

transferase(CA_C1284) matches well with evidence of a longer 8kb transcript in

B. subtilis 165. Given the dramatic decrease in coverage observed here, a reason-

able transcription stop site for the 5kb operon can be assumed to follow the dnaJ

gene(5.16c). Having discussed the regulatory regions of the hrcA operon, the final

task is to summarize the transcript lengths, their regulation, and identify missing

regulatory elements.

5.3.4.6 HrcA/GrpE Transcript Lengths

In the hrcA locus, two transcription initiation regions and two termination

regions are responsible for 3 previously reported transcript sizes, 2.6, 3.8, and 5kb,

respectively. The longest transcript observed here is 4,838bp from the hrcA tran-

scription initiation region to the termination region downstream from dnaJ. The

second largest observable transcript begins at one of the two start sites from the

grpE transcription initiation region and ends at dnaJ termination region, leading
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(a) DnaK/DnaJ Intergenic Region

(b) HrcA Transcription Termination Region.

Figure 5.17: HrcA Locus Transcription Termination Regions
a) The dnaK/dnaJ intergenic region consists of a Rho-independent terminator for the 2.6kb
and 3.8kb transcripts. The coverage this region rebounds after a promoter motif and is not
depleted with TEX treatment. b) Near the end of the dnaJ gene, a dramatic decrease
in coverage signals the end of the 5kb hrcA operon. No terminators can be found in this
region, suggesting a non-intrinsic termination signal.
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to transcripts between 3,778 to 4,125 bases, respectively. This region is the most

abundant portion of this operon and may contain at least two smaller transcripts.

The first of these species would begin at the grpE transcription initiation region

and terminate in the dnaK/J intergenic region. This type of transcript would range

in size between 2,642bp and 2,989bp, respectively. The fourth and final transcript

could originate from the dnaK/J intergenic region and terminate at the end of dnaJ,

with a length of approximately 1.2kb. In the model organism B. subtilis, larger tran-

scripts are produced from this region, up to 8kb in length165. It was observed that

the transcripts and proteins of this region increase and decrease at different rates165.

Determining all the potential transcription start sites inside a region of continuous

transcription is an ongoing challenge for understanding of the stress response. To

conclude, the regulatory motifs and their locations in this region are summarized.

5.3.4.7 HrcA Locus Regulation

Both Sigma factor A or H dependent promoters could be observed in the

transcription initiation regions, as detailed above (5.3). Sigma factor A promoters

are under the control of the 6S small RNA, which has considerable expression in

this study. Therefore, the activity of this locus must be considered with respect to

global Sigma A promoter activity. Additionally, the hrcA transcription initiation

region is under the direct control of both a CIRCE motif (3.2×10−13) and a CtsR

motif (1.8×10−7)58. The inverted repeat in the dnaK/J intergenic region does not

match either motif and is therefore most likely a Rho-independent terminator. The

dnaJ termination region (+/- 200bp from the dnaJ stop codon) does not contain a

detectable Rho-independent terminator and thus terminates transcription in a non-

intrinsic manner, as previously suggested166. The sequencing technique has produced

excellent results for this region. The assembly produced a better estimate of the
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transcription start site than would be expected from coverage alone and a novel

transcription start site was identified. Additionally, exact coordinates of regulatory

motifs match well with the observed transcription start sites. Finally, potential

transcript sizes were discussed to the extent permissible with this technique and the

complexity of this region. Next, the spo0A locus is considered an important gene in

this organism that has not had the level of molecular investigation of the previous

examples.

5.3.5 Spo0A Locus

5.3.5.1 Spo0A

Spo0A is the master regulator of sporulation and stationary phase phenom-

ena. This protein transduces growth-limiting and stressful signals into sporulation

behavior in a number of firmicutes. In previous studies, Spo0A was shown to be

translated from a 0.9kb transcript in C. acetobutylicum 167. Additionally, a Sigma

factor A and Sigma factor H motif were identified upstream of spo0A, but sadly

neither the motifs nor the coordinates were provided. A single Sigma factor A motif

(5.4) was identified near a substantial increase in transcriptional activity (5.18a). A

single Spo0A box was reported upstream of spo0A167 and can be seen in 5.18a. A sin-

gle terminator motif is located 130 basepairs downstream of the spo0A stop codon.

The uncurated assembly did not identify single start or stop sites for this gene, fusing

spo0A with signal on either side of the gene. After curation with these information

combined, we observe a transcript of 1,147bp (5.18b), longer than the 0.9kb tran-

script detected by Northern blot in a previous study of this locus167. This represents

the first documentation of the Spo0A transcript boundaries in C. acetobutylicum.

86



Sigma A
Motif Start End Sequence p-value
-35 2173565 2173560 TTGATT 6.2×10−3

-10 2173537 2173542 TAAAAT 1.5×10−3

Spo0A Box
Motif Start End Sequence p-value
1 2173430 2173436 TGTCGAA 1.9×10−4

Table 5.4: Spo0A Regulatory Motifs

(a) spo0A Locus

(b) Curated spo0A Transcript

Figure 5.18: Spo0A Locus
??) The spo0A transcript is fused to signal from neighboring genes, although distinct pro-
moter, terminator, and coverage signals are observed. ??) After curation, this 1.1kb spo0A
transcript reflects the appropriate genomic signals.
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Figure 5.19: CA_C2079 Gene
Slightly downstream of the spo0A gene, a long operon follows a region of high expression
on the Crick/minus strand. This coverage pattern is distinct from neighboring regions
and surrounds a putative protein that is missing from the databases. This is the first
experimental evidence for its expression and it shares homology to efflux transporters.

5.3.5.2 Missing from the Databases: CA_C2079

In a nearby location, the genes CAC2073-2078 are found in a tight grouping

near a large peak of expression (5.19). This peak correpsonds to an uncharacter-

ized protein CAC2079 that is present in UniProt but absent from NCBI and KEGG

databases. Its substantial sequencing depth appears to be largely above 20k per

base, independently transcribed from the surrounding regions. Bioinformatic analy-

sis suggests that it shares sequence similarity to proteins in the Clostridia, Bacilli,

Baceteroidetes, and Halobacteria. While there was no common catalytic or active do-

main unifying this group of homologs, a region of homology between them precedes

a transmembrane motif. Further analysis via PSI-blast result suggests sequence sim-

ilarity to mATE (Multidrug And Toxic-compound Extrusion) efflux family proteins.

mATE family proteins use electrochemical gradients to export antibiotics and other

toxic compounds. The data suggest that the expression of this protein is important

to C. acetobutylicum and it will be interesting to examine the expression profile sta-

tistically. This final example illustrates the synergy of this transcriptomic dataset
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with existing annotation and the benefit of curation for locating high priority novel

transcripts.

In this section, several examples were presented to qualify the sequencing

results. After the misassemblies were corrected, the transcript boundaries and sizes

were in agreement with previous findings, suggesting precision and accuracy in this

technique. In several cases, transcript boundaries required no curation at all. The sol

locus illustrated the ability of the technique to even multiple transcription start sites

with good accuracy. By integrating genomic and transcriptomic signals, the precision

of the assembly was improved. After demonstrating the curation technique and

validating results with prior studies, the curation technique and results are described

in the next section.

5.4 Resolving Misassembly

These examples illustrated some common themes for misassemblies through-

out the genome, notably the effect of background signal from high depth sequencing.

Three types of misassemblies were described: extension, fusion, and truncation. In

all cases these errors were resolved by solved by combining signals from sequencing

depth and genome annotations. The assembly was fully curated for all pSol1 tran-

scripts (the pSOL1 megaplasmid is 5% of the genome). This section explicitly states

the rules and heuristics used for assembly curation. Also, the assembly was analyzed

before and after curation to determine the effectiveness of this technique.

The curation process was used in the previous section to address the misas-

semblies, providing precision transcript boundary estimates. This technique used

heuristics to correct transcript boundaries according to depth and annotations in
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cases where interfering signals result in misassembly. Background signals were de-

fined as extended (typically intergenic or antisense) regions of low depth that fre-

quently conflicted with matching promoter/terminator annotations and large depth

fold changes near transcript termini. Briefly, the heuristics are as follows:

1. Weak terminators (∆G >-5 kcal/mol) were omitted.

2. Weak promoters and TFBSes were excluded from analysis when p >1×10−5,
defined below for upstream and downstream motif matches (e.g. -35 and -10
elements of σA promoter).

ppromoter = pupstream × pdownstream

3. Extended transcripts were corrected by shortening or spliting transcripts, such
that the resulting transcript(s) captured depth patterns and annotations.

4. Fused transcripts were similarly addressed, with terminators as an important
signal.

5. Truncated transcripts typically accompanied obvious trends in depth (e.g. BdhA)
and were corrected by extension of the transcript to termini suggested by both
depth and genome annotation.

6. Almost always, two or more signals (i.e. depth and terminator, etc.) in agree-
ment were used to determine the true transcript boundaries. In edge cases, ex-
tended location specific differences in depth (>2 fold change) consistent across
replicates were determined to be a transcript terminus.

These heuristics guided the curation process, addressing the errors described

in previous sections, similarly to the treatment of the example transcripts. The

most common types of misassemblies were the result of residual background signal

assembled and mixed with true transcriptomic signal. The three types of errors were

corrected during curation of the entire 192kb pSol1 megaplasmid, resulting in 111

transcripts spanning 192kb (5.5). In addition to improving the precision of transcript
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(a) 5’, 3’, and Intraoperonic Untranslated
Region Lengths (b) Intragenic Region Lengths

Figure 5.20: UTR and IGR Lengths
a) UTR lengths were considerably improved by curation, with most less than 100bp,
in agreement with E. coli averages.156 Interestingly, a number of large 3’ and in-
traoperonic regions remain after curation, suggesting either regulatory roles or the
presence of unannotated proteins.
b) The size of intragenic regions (IGRs) increased upon curation after the drastic
reduction in false-positive basepairs (5.5).
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Uncurated Curated
Transcripts 181 110

Sequenced kb 347 190
Length Range 202-16kb 172-11kb

ORFs 155 157
Standard Transcripts 59 86

Standard kb 247 175
Novel Transcripts 122 24

Novel kb 100 15

Table 5.5: Final Assmelby Statistics and Curation Effect
This table shows final assembly statistics and the corrective power of the curation
method. The number of misassembled baspairs and transcripts has been substantially
reduced. Two additional ORFs/CDSes were included upon curation and a number
of standard transcripts were split in half. Interestingly, about 20% of the assembled
transcripts were novel, a good number of interesting candidates from a small portion
of the total C. acetobutylicum genome.

boundary determination, the type I error for transcript discovery was reduced by

removing a large number of false positive transcripts.

The transcript length distributions agreed with prokaryotic averages (5.22)

after improved precision detailed above.155 Specifically, the distribution of untrans-

lated region lengths closely matched E. coli averages156 (5.20a). In contrast to the

decreased transcript and UTR lengths, intergenic region lengths increased upon cu-

ration (5.20b). The curated transcripts are evenly spaced along the pSol1 megaplas-

mid, in contrast to the uncurated assembly. Additionally, both the standard and

novel transcripts have higher average per-base depth after curation, comparable to

the coverage of the reference ORFs (5.21). These data show considerable agreement

with E. coli averages and improvement over the uncurated assembly results.
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Figure 5.21: Cumulative Depth Distribution
After curation, the expression level as indicated by the per-base sequencing depth has
increased substantially. While uncurated novel transcripts (far-left) had an order of magni-
tude lower average sequencing depth than found in reference ORFs (far-right, the 24 curated
novel transcripts (center) had comparable sequencing depth. The depth of uncurated stan-
dard transcripts (middle left) were only slightly improved in terms of depth by curation
(middle right). The best improvement in the novel transcripts was the increased precision
of the final transcript boundaries.
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5.5 First Strand-Specific Transcriptome Assembly for Clostridia

Figure 5.22: Transcript Lengths

The transcript lengths were

improved after curation, centering

the distribution on the standard

transcripts on the E. coli average of

1.1kb155.

In this chapter, a strand-specific tran-

scriptome assembly was conducted with the high-

depth sequencing dataset obtained for C. aceto-

butylicum under various experimental conditions.

The resulting boundaries were determined pre-

cisely due to laboratory and informatic quality

controls and curation of the assembly. Signif-

icantly, these results represent the first strand-

specific transcriptome assembly for the class

Clostridia. Moreover, the innovative approach

described here addresses misassemblies that re-

sult from the limitations of modern sequencing

technology that are frequently neglected by sim-

ilar studies.

The initial assembly from the subset of

properly-paired reads had maximal size, expres-

sion, and inclusion of reference protein annota-

tions compared to the assembly from the full dataset. However, several types of

misassemblies were present in the dataset that were observed statistically and with

specific examples. To correct these errors, a customized genome browser was devel-

oped for integrative analysis of complexity, sequencing depth, and genome annota-

tions. Heuristics for curation of the assembly were described and exemplified with

canonical C. acetobutylicum transcripts. In each case, the curation method produced

transcript boundaries with precision comparable to previous targeted studies. The
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curation method was applied to the entire pSol1 megaplasmid, fixing misassembled

transcripts. The curation technique deeply improved the type I error rate for tran-

script discovery and boundary determination. The integrative analyis was resilient to

background signals of the sequencing technique, resulting in a high-quality assembly

for the pSol1 megaplasmid. Re-evaluation of the final assembly showed transcrip-

tome feature lengths in agreement with prokaryotic averages. These data clearly

suggest the efficacy of this technique and the precision of the results.
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Chapter 6

CONCLUSIONS

Renewables research revolves around the development of a feedstock-flexible

chassis organism that requires minimal engineering for biofuels production, such as

C. acetobutylicum. The development of this organism requires a complete genome

annotation consisting of ORFs, promoters, terminators, and transcript boundaries.

The existing annotation of this microbe is largely the result of ORF predictions from

antiquated gene models and is consequently incomplete. Genomic and molecular

research will be more efficacious with an accurate genome annotation.

High-throughput transcriptomic methods such as RNA-seq are ideal to up-

date this annotation, despite the well documented challenges related to this platform.

Many of these challenges have not been addressed by the literature, leading to poor

data utilization rates(Table 2.1). The absence of standards for bacterial transcrip-

tome mapping studies provided the opportunity to develop an innovative technique

to explicitly address false positive and false negative signal in sequencing datasets.

Several problematic issues, including rRNA and RNA degradation, were ad-

dressed by developing a laboratory workflow and quality control system prior to

deep sequencing. The dataset was cleaned for errors, biases, and contaminants for

proper quantification of the sensitivity. 450M properly-paired reads provided >9000

fold-coverage of the C. acetobutylicum, with a median per-base sequencing depth of

156x. This method even detected low-level background signals, an issue affecting
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deep sequencing studies that leads to false positive errors, yet ignored by studies in

the microbial community.

To identify and treat these issues, a fast and flexible genome browser was con-

structed. The genome browser visualized the background signals and misassemblies

that were detectable in assembly statistics. Genome-wide promoter predictions re-

vealed the prevalence of σA-promoter elements in the AT-rich C. acetobutylicum

genome, a potential source for the background signals. An integrative analysis

method was developed to correct the misassemblies where necessary by including

sequencing depth, complexity, Rho-independent terminators, and promoter motifs

in the annotation visualization and curation method.

Most examples required little to no curation and showed excellent precision

and accuracy with respect to previous studies. Even challenging edge cases involving

multiple transcription start sites had excellent signal to noise ratio and consequently

simple corrections. A proof-of-principle curation of the pSOL1 megaplasmid pro-

duced ideal assembly statistics, including a median transcript size of 1.4kb consistent

with the reported average transcript lengths in E. coli. A total of 86 reference-ORF

containing transcripts and 24 novel transcripts were identified.

By explicitly addressing several issues related to false positive and false neg-

ative signals, a sequencing protocol and integrative analysis method was developed.

This method lead to the first strand-specific transcriptome assembly in the genus

Clostridia. The technique described by this work is applicable in any bacterial species

where a genome sequence is available. While the unprecedented sequencing depth of

this study lead to false positive results in the initial assembly, the integrative curation

method provided both precision and accuracy in transcript boundary determination.
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Chapter 7

FUTURE WORK

7.1 Annotation Completion and Differential Expression Analysis

This study provided C. acetobutylicum transcript boundaries for future molec-

ular and genomic studies. The method used in the proof of principle curation of the

pSOL1 megaplasmid should be extended to the entire C. acetobutylicum chromo-

some. It is reasonable to expect that the transcript and UTR sizes for the whole

genome should be similarly improved. The transcript boundaries could improve

expression estimates and differential expression analyses. Beyond comparing with

previous microarray studies, novel transcripts discovered here could be discovered to

be stress responsive. Such findings would be natural targets for future targeted or

whole genome stress response analyses.

Specifically, this work paves the way for a refined differential expression study.

Differential expression with RNA-seq relies on identifying statistically different counts

of sequenced cDNAs between samples.141 These counts can be acquired for each ORF

individually, or for entire transcripts. The larger size of transcripts provides an in-

creased sampling area for read counting. It is reasonable that this may provide a

better representation of the expression of the RNA molecule and is preferable sta-

tistically to expression measurements from ORFs alone. Augmented with transcript

boundaries and novel transcripts, this genome annotation could then be used for

differential expression analysis of this and other datasets.

98



7.2 Annotation Cross-validation

A previous standard RNA-seq dataset from C. acetobutylicum could be used

to further evaluate the transcripts identified here.44 While I was a co-author on this

paper, I served in a purely computational role and did not handle the RNA material

prior to sequencing. Therefore, the dataset represents an independent measurement

of the C. acetobutylicum transcriptome and could be used to cross-validate the tran-

scripts. Detection of these transcripts by more than one dataset would provide

additional verification and significance.

7.3 Further Misassembly, Background Noise Investigation

With a complete genome annotation, a particularly important comparison

may be made: how does the sequencing depth in intergenic regions (background

noise) compare with the identified transcribed regions? Is there a statistically signif-

icant difference? Furthermore, are the misassembled transcripts/bases all located in

these intergenic regions or co-localized to specific regions of the genome? Were the

improperly paired reads also co-localized? The presence of phage sequences in the

C. acetobutylicum genome has been recently identified (unpublished results), which

may have affected the alignment rates and/or co-localization of reads observed in

this study. The answer to these questions can be obtained with a fully curated set

of transcripts and computational investigation of the phage regions.

7.4 Regulatory Motif Investigation

The transcript boundaries provided by this work also facilitate regulatory mo-

tif identification. Besides the promoter motifs and transcription factor binding sites

described here, new motifs could exist upstream of transcription start sites of clus-

ters of co-regulated genes. Differential promoter usage can be investigated using the
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genome browser and gene-specific techniques. Gene networks in C. acetobutylicum

inevitably possess transcription activation systems and will be ready to be explored

with a complete genome annotation.

In fact, differential expression and motif analyses can be combined in an in-

teresting way. By coupling differentially expressed genes, their expression profiles,

and clustering algorithms, patterns of co-expression and perhaps co-regulation may

be identified. The performance of such an approach naturally depends on normal-

ization approaches (to make profiles reasonably comparable) and clustering theory.

While some approaches have been suggested for expression profiles specifically, the

performance of any approach is ultimately determined by these two factors and thus

all options should be explored.

With a set of likely promoters, comparison of these promoters to less-significant

promoters located throughout the genome is desirable. There may be statistically

detectable differences in promoter motifs that are desirable for refining the under-

standing of the Clostridia promoter.

7.5 Transcriptome Annotation

Additional research can be done with comparative genomics, including re-

annotation of the genome and transcriptome for protein coding ORFs. With the

example of the missing CAC2079 gene for example, there may be substantially

transcribed and protein coding regions that require comparative analysis to identify

metabolite exporters, two-component systems, and more. In fact, the RAST anno-

tation system106 can be used to annotate transcriptomes, with some clever scripting

and knowledge of its features.
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7.6 Additional Genome Browser Features and Deployment

The genome browser in its current state is most useful to those who are familiar

with it and how it can be used most effectively. Additional features can be added to

simplify this resource for more users. For example, the current user interface utilizes

genomic coordinates for browsing as opposed to browsing by an individual gene

(A.2). The addition of UI features and aesthetics for the browser might facilitate its

adoption. Additional flexibility regarding the annotation uploading/editing process

might improve its utility as well, although gtf remains a widely used format and

is readily converted from BED format and others. Downloadable features such as

conversion scripts and the complete annotation in gtf and/or genbank format may

also facilitate its use.

Comparison of the PostgreSQL database with the less intensive MySQL for-

mat may reveal performance advantages that should be used. Additionally, MySQL

is a widely adopted database format and as a result, may be simpler to deploy. De-

ployment of this resource could be accomplished locally at the University of Delaware,

but additional sources could prove useful.

7.7 Complexity Index

A theme throughout this work was the benefit of integrating multiple perspec-

tives of the dataset, specifically library complexity, sequencing depth, and bioinformatically-

predicted motifs. However, the analysis of complexity was restricted to the assembly

by the Trinity algorithm. Ultimately, library complexity is a function of the uniquely-

sequenced cDNAs from a particular position in the genome. Trinity presents this

information in a binary manner (i.e. active/assembled vs inactive/unassembled).

Alternatively, a quantitative basepair-specific library complexity index would be an

incredible useful metric to additionally understand the quality of transcription in a
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region. This could be overlayed with sequencing coverage in a creative way to further

illustrate the patterns that are useful for identifying truly transcribed regions.

7.8 Machine Learning Algorithm for Alternative to Transcriptome As-

sembly

Another theme in this work was the imperfection behind the transcriptome

assembly paradigm. Realistically, sequencing datasets can be expected to have some

basal levels of noise from DNA contamination or spurious transcription. Addition-

ally, it seems that studies that do not dicuss this issue are not sufficiently deep.

Therefore, in truly deep sequencing datasets, transcriptome assemblies can produce

false positive errors (extra assembled bases and transcripts). Therefore, it is desir-

able to develop a bioinformatic procedure to automate the process described in this

work for application as an alternative to transcriptome assembly.

Ideally, this procedure would be as independent as possible from genomic

GC content and other characteristics. It would leverage a sequencing dataset from

an organism with a reference genome. By converting aligned reads (BAM files)

into coverage vectors, this information could be combined with promoter predictions

from a related organism and terminator motif predictions to identify truly expressed

regions. This technique could be used for cross-validation of this research and would

be a simple alternative to the complex assembly curation process.

7.9 Small RNA Target Prediction

Finally, additional analyses should be done for RNA hybridization and small

RNA target prediction. Many recently identified stress responsive small RNAs44

have unknown targets and functions. Exploration of their roles has been prohib-

ited by undefined UTR structures and thus the thermodynamics of interaction with
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their partners. A complete genome annotation provides these information and an

additional tractable problem for C. acetobutylicum researchers to explore.

The first assembly and annotation provided by this work presents a number

of opportunities for additional work in C. acetobutylicum. Increasing temperatures,

CO2 levels, and energy prices provide ethical and economical incentives to explore

renewables research in this organism. A small number of intrinsic conditions have ex-

plored in this study, including the exponential and transition stages of growth, and

stress responses to metabolite stress. Additional conditions may display alternate

gene sets, expanding the complexity of the transcriptome beyond what is described

here. Novel transcripts identified in the megaplasmid and chromosome require an-

notation and molecular study. If enzymes are discovered, metabolic models should

be updated. Differential expression experiments are an increasingly useful method

for understanding transcriptomic dynamics and represent an opportunity to further

explore this dataset. Such studies in C. acetobutylicum directly benefit from a wider

and more complete genome annotation. This work facilitates future research in C.

acetobutylicum through the genome browser, which can incorporate future annota-

tions and display expression data in a fast, flexible, and data-dense manner.
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Figure A.2: Genome Browser
The customized genome browser has unique features that facilitate the exploration
of the sequencing dataset at high resolution.
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Appendix B

PERMISSION LETTERS

From: "Shawn Jones"

Subject: RE: Permission letter

To: "’Matthew Ralston’" <mrals@udel.edu>

Hi Matt,

You have my permission to use the figure. Congratulations on the thesis!

Shawn

From: Matthew Ralston [mailto:mrals@udel.edu]

To: Shawn Jones

Subject: Permission letter

Hi Shawn,

On page 31 in my thesis, I adapted a figure from your Genome Biology paper “The

transcriptional program underlying the physiology of Clostridial sporulation.” It is

a beautiful growth curve and metabolite profile that was easy to adapt to illustrate

the time points and metabolites that were part of this experimental design. I have

attributed the figure to your paper (pg 31) but require a permission letter to formally

associate that the figure is yours. Would you mind if I use the adapted growth curve

as a figure in my thesis? The figure is included in a pdf accessible below.

Thank you,

Matt Ralston
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