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ABSTRACT 

 The ever-present threat of terrorist activity – made plain by devastating 

events in the late twentieth and early twenty-first centuries – warrants detailed 

investigation into ever smarter materials and methods of combating the terrorist 

offense with a well-engineered defense. While the literature on the subject is 

voluminous, the complexity of the problem justifies continued research. This thesis in 

particular represents a continuation of previous experimental, analytical, and finite 

element modeling at the University of Delaware. With a panel typology utilizing 

horizontal facesheets separated by a core comprised of rows of stiffeners 

perpendicular to the facesheets established as optimal in previous papers, this research 

seeks to both perfect the previous finite element model and use it to glean some 

optimized geometric parameters.  

 MATLAB code provided a more accurate load profile for a chemical 

explosion based on Kinney and Graham’s work. Analyses of varying connection and 

imperfection inputs in ABAQUS files honed the previous finite element files to more 

accurately model experimental results. Using the results, a parametric study of core 

geometries was executed to observe the effects of various core geometries. The 

analyses suggest that the ratio of stiffener spacing-to-height is a governing factor in 

decreasing the force effect on a protected structure.
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Chapter 1 

INTRODUCTION 

1.1 Motivation for Research 

In his famous “Four Freedoms” speech, President Roosevelt famously 

ranked freedom from fear alongside freedom of speech, of religion, and from want – 

liberties American have always held dear. In the twenty-first century, freedom from 

fear manifests itself as a freedom from the ever-uncertain threat of terrorist attack. 

Military vehicles and structures are in need of defensive shielding against explosives. 

This warrants research into innovative structures made from better materials which 

can sustain impulse loading. The burden falls on civil engineers to protect the 

environment that they have built.  

Composite sandwich structures show great promise to this end, both in 

their strength and ability to absorb the energy generated by blast loadings. While 

protective structures date to the Second World War and garnered more research 

interest during the Cold War, their reliance on reinforced concrete rendered 

researchers without a material with a high strength-to-weight ratio. Advanced 

composites can be crafted into any shape, and the scope of possible configurations to 

alter material properties seems limitless. With the scope of possibilities so vast, and 

the analyses so complex, engineers would benefit greatly from understanding the 

effect of simple geometric parameters, and a simple empirical equation incorporating 

these effects could greatly streamline panel design.  
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1.2  Scope of Research 

All research herein is a continuation of the funded project “Mitigation of 

Blast Forces Through Advanced Composite Materials,” funded by the Department of 

Defense with Dr. Jennifer McConnell as Principal Investigator. In particular, this 

particular thesis seeks to utilize, perfect, and extend work reported in “Analysis 

Procedure for Optimizing the Core of Composite Sandwich Panels for Blast 

Resistance,” by Dennis Helmstetter (2009). The experimental testing used for model 

verification, the rationale for perpendicular core stiffeners, and the preliminary use of 

ABAQUS for finite element analysis all lie within Helmstetter’s research.   

Helmstetter (2009) suggested conducting a parametric study of different 

core geometries and suggested developing a method of applying alternative load 

profiles that simulate a blast load profile. This was born of the assumption that his 

model was a reasonably valid simulation of a lab experiment. Therefore, the scope of 

this project has three main components: correcting past errors and refining previous 

finite element models, developing an efficient means for imputing a realistic blast 

profile into the finite element model, and using the refined finite element model to 

study the effect of changing the geometric parameters of the core on the panels’ blast 

mitigation performance. 

1.3 Thesis Organization 

Naturally, this work opens with a review of literature. As the topic is vast, 

the literature review has been truncated to analyzing Helmstetter’s thesis and 

publications post-Helmstetter’s thesis, along with a review of some literature 

regarding finite element analysis of composite sandwich panels used for blast 

mitigation produced in the past few years. Additional information regarding the 
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precursor to this work may be found in Section 2.2. The following chapters of this 

work chart the progress of the project. Chapter 3 discusses blast loading and maps out 

the design of MATLAB code to generate script which can be analyzed by ABAQUS 

as a series of time-varying concentrated loads using the *CLOAD command. Chapter 

4 provides information about constructing the models. Therein the reader will find 

improvements that helped Helmstetter’s files deflect more accurately. Finally, Chapter 

5 presents the results of the parametric study. Chapter 5 also presents several metrics 

by which the models may be judged in an attempt to arrive at an optimum solution. 

Chapter 6 concludes the work, with an overview of the thesis and suggestions for 

further work.  

Appendix A provides the MATLAB codes discussed in Chapter 3. 

Appendix B is an error analysis for some of the data manipulations performed in 

Chapter 5. Appendix C contains an example of a mode shape file and analysis file as 

explained in Chapter 4.  
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Chapter 2 

LITERATURE REVIEW 

2.1  Introduction 

As the scope of this work serves as a continuation of the work done by 

Helmstetter (2009), the natural frame of reference for a review of literature will be 

Helmstetter’s own work. The review then explores select publications regarding blast 

mitigation through composite sandwich structures post-2009.  

2.2  Helmstetter’s Research 

Helmstetter investigated composite laminates, stitched composites, fiber-

metal laminates, and sandwich panels, and concluded that sandwich panels “…offer 

high stiffness in both flexural and in-plane directions, while maintaining a lightweight 

frame,” thereby focusing the remainder of his research on sandwich panels. He 

assessed three web configurations in Chapter 4 of his work: straight stiffener design, 

angled stiffener design, and combination design (Figure 2.1).  



5 

 

Figure 2.1:  Web Configurations Analyzed by Helmstetter: (a) Straight Stiffener 

Design (b) Angled Stiffener Design, and (c) Combination Stiffener 

Design 

The panels were analyzed as a beam on an elastic foundation which is 

described in Boresi et al (2003), and shown in Figure 2.2.   

 

 

Figure 2.2:  Beam on an Elastic Foundation (Boresi et al 2003). 
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An optimum panel configuration was chosen using analytical methods via 

the following equations found in Boresi et al (2003): 

 𝑦𝐻 =
𝑤

2𝑘
 2 − 𝐷𝛽𝑎 − 𝐷𝛽𝑏   (2.1) 

Where yH is the deflection at any point along a beam on an elastic foundation, w is the 

load per unit length and Dβa, Dβb, and k are given by 

 𝐷𝛽𝑧 = 𝑒−𝛽𝑧 cos 𝛽𝑧 (2.2) 

 
𝐷𝛽𝑧 = 𝑒−𝛽𝑧 cos 𝛽𝑧 (2.3) 

 𝑘 =
𝐾

𝑙
 (2.4) 

where K is the spring constant (i.e. axial stiffness of the stiffeners), l is the stiffener 

spacing, E is the modulus of elasticity of the facesheet, and Ix is the moment of inertia 

of the facesheet. As shown in Figure 2.2, a and b represent the boundaries of the 

loading profile, while z is the independent variable along the beam. Further 

derivations for the load causing failure can be found in the remainder of Chapter 4 of 

Helmstetter’s work. The strengths of panels with stiffener geometries shown in Figure 

2.1 were normalized by E to give strength irrespective of material properties. In order 

to assess efficiency of the panel apart from strength, the results were further 

normalized by the core volumes (Vcore). These normalized values are found in Table 

2.1 (where the results are presented in w/EVcore). The higher strengths afforded by the 

straight stiffener design justifies devoting further research into this particular panel 

configuration’s performance under blast loads. For this reason, Helmstetter chose to 
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create finite element models of straight stiffener composite panels. Helmstetter’s finite 

element analysis is discussed in Chapter 4.  

Table 2.1:  Number of Stiffeners Failed versus Panel Strength (w/EVcore), from 

Helmstetter 2009 

Number of 

Failed 

Stiffeners 

Straight 

Design 

Angled 

Design 

Combination 

Design 

1 5.598E-05 2.827E-05 2.276E-05 

3 5.624E-05 2.832E-05 2.294E-05 

5 5.686E-05 2.847E-05 2.335E-05 

7 5.804E-05 2.887E-05 2.399E-05 

9 6.009E-05 2.970E-05 2.501E-05 

11 6.341E-05 3.123E-05 2.644E-05 

13 6.840E-05 3.372E-05 2.844E-05 

 

2.3  Other FEM Work 

A review of literature contemporary to Helmstetter’s research suggests 

that other investigations on the topic of blast mitigation through advanced composites 

remain focused on foam-core composites without web stiffeners. Sections 2.3.1 and 

2.3.2 discuss other finite element analysis work in LS-Dyna and ABAQUS, 

respectively.    

2.3.1  LS-Dyna Analysis of Polyurethane and Polyurea Interlayers 

Bahei-El-Din and Dvorak published an analysis of composite sandwich 

panels for blast loading in Journal of Sandwich Structures and Materials in 2007. 

Their work used LS-Dyna to evaluate the value of adding polyurethane (PUR) and 
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polyurea interlayers between the facesheets and foam cores of sandwich panels. The 

control analysis, termed "Design 1," had no such interlayers, while "Design 2A" 

contained a polyurethane interlayer and "Design 2B" contained a polyurea interlayer.  

Using brick elements, the authors input the schematic shown in Figure 2.3 

into LS-Dyna for the finite element models. All designs used elements with lengths 

equal to 1.0 mm in the X2 direction. All designs used elements that were 5.0 mm in the 

X1 direction. Design 1 used and element size of 5.0 mm for H100 foam in the X3 

direction, while Designs 2A and 2B used elements that were 4.5 mm in the X3 

direction (this ensures a ten-element thickness for the H100 foam for all three models). 

The interlayers in Designs 2A and 2B were divided into 10 elements spanning a total 

of 5.0 mm in the X3 direction (Figure 2.3). The facesheets were assumed linearly 

elastic during loading and were modeled as homogeneous orthotropic materials using 

LS-Dyna Material Type 2, while the foam cores were modeled using Material Type 

63. The polyurethane interlayer and polyurea interlayer used LS-DYNA Material 

Types 7 and 10, respectively. The loading assumed a peak overpressure of 100 MPa.  

 



9 

 
Figure 2.3:  Finite element solution domain and mesh (Bahei-El-Din & Dvorak 

2007) 

The authors concluded that the interlayers provided "significant 

protection" to the foam core and reduced kinetic energy imparted by impulse. Figure 

2.4 shows midspan deflection at the outer and inner surfaces (akin to the top and 

bottom facesheets, as they are referred to by Helmstetter and in the rest of this work), 

thereby demonstrating the advantage of the interlayers in mitigating deflection. 

Overall, the addition of the interlayers dissipated energy and reduced deflections and 

facesheet strains.    

 While this work does not explore foam core composites, the modeling 

techniques serve as a comparison. Both Helmstetter and Bahei-El-Din & Dvorak used 

orthotropic facesheets. 
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Figure 2.4:  Midspan deflection at outer and inner surface (Bahei-El-Din & 

Dvorak 2007) 

2.3.2   Analytical Modeling Comparison to ABAQUS Results 

Hoo-Fatt and Palla’s work (2009) sought to develop analytical equations 

which would match finite element results. The focus was therefore primarily based on 

theory rather than finite element inputs, with ABAQUS models serving as the means 

for comparison. The panels observed were E-glass vinyl ester facesheets separated by 

either H100 or H200 PVC foam cores. Hoo-Fatt and Palla’s work used four-node, 

reduced integration shell elements (ABAQUS element type S4R) for the facesheets 

and continuum 3D, eight-node, reduced integration elements (ABAQUS element type 

C3D8R) for the core. Ultimately, the analytical results were found to conform “fairly 

well” to the ABAQUS model (See Figure 2.5 for an example, where “critical impulse” 

was used as a metric for comparison of analytical results to FEA). 
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Figure 2.5: Variation of critical impulse of failure with varying core material 

properties (Hoo-Fatt and Palla 2009) 

2.4 Work Post-Helmstetter 

Other recent, topical work also relates to foam-core composites. Li et al. 

(2004) discussed the effects of the ratio of facesheet thickness (hf) over core thickness 

(hc) regarding panel design. It was found that as hf/hc increases, the maximum value of 

the displacement at the center of the top facesheet decreases. The work advised that 

hf/hc  should not be less than a critical value for the design criterion (e.g. maximum 

transverse deformation) while remaining as small as possible. Such a comparison may 

serve as a useful future frame of reference for recommended design criteria. 

2.5 Conclusions 

Literature on utilizing advanced composites for blast mitigation focuses 

on facesheets separated by foam cores. Optimized core geometries for anything but 

foam core composite sandwich panels remain as unresearched as they did during 

Helmstetter’s work on the project (2009). Foam core composites are more realistic 

than panels without foam. However, a combination of web stiffener and foam core 

panels is likely the best alternative. In this work, the foam is omitted as a 
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simplification. Hopefully, research on the topic of stiffener design can work in tandem 

with work in foam composites.  

 

 

 

 



13 

Chapter 3 

MODELING BLASTS 

3.1 Introduction 

The fundamentals of blast modeling used herein stem from Gilbert Kinney 

and Kenneth Graham’s Explosive Shocks in Air, published in 1985. Kinney and 

Graham’s text presents governing equations that enable calculation of key parameters 

necessary to model a chemical explosion. Chapter 3 therefore explains these 

equations, their underlying theory, and how this leads to meaningful input for finite 

element software.  

3.2 Blast Effects 

Explosions, in essence, are sudden releases of energy (Kinney & Graham 

1). However, chemical explosions and nuclear explosions are modeled differently. As 

this project seeks to mitigate the effects of blasts caused by chemicals such as TNT or 

ammonium nitrate rather than those caused by nuclear weapons, this chapter explores 

models of chemical explosions. Nuclear weapons, while far more disastrous, have 

remained unused by an aggressor since “Fat Man” wreaked havoc on Nagasaki during 

World War II. By contrast, chemical explosives are far more common and much more 

likely to be used by an aggressor to assault a victim, thus justifying this project’s 

scope. 

Common knowledge holds that an ignited explosive will create a 

destructive “push” on the atmosphere in the vicinity of the explosion. When speaking 
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in terms of blasts, the explosive is known as the “charge,” and the “push” on the 

atmosphere is known as a “blast wave.” As energy is rapidly released from the charge, 

the gases produced by the explosion forcefully propel the surrounding atmosphere 

away from the charge.  Common knowledge also understands that larger charges will 

produce greater blast waves and that the magnitude of the blast wave will dissipate as 

one moves further away from the charge. These parameters are known as charge size 

and standoff distance, respectively, and provide a sizeable amount of the data needed 

to sketch a blast profile. 

As a variety of materials may serve as a charge, logic dictates that 

governing equations should be derived relative to one particular type of explosive. The 

equations presented in Section 3.2.2 hold for 2,4,5-trinitrotoluene, colloquially called 

TNT. As TNT is stable and pure, meaning it can be handled easily and behaves 

reliably in multiple experiments. Therefore, it emerged as the basis upon which to base 

the blast equations and the potential of other types of chemical explosives. Other 

explosives are usually assigned a TNT equivalence, which quantifies the magnitude of 

an explosive’s energy release relative to an equivalent quantity of TNT. One gram of 

TNT releases 4610 J upon detonation.  

3.2.1 Pressure-versus-Time Relationships 

In the most basic sense, an explosive is effective because it creates a 

surcharge pressure above ambient atmospheric pressure very rapidly. At a given 

standoff distance, the pressure-versus-time profile resembles Figure 3.1a. Imagine a 

point that lies some known standoff distance away from a charge. After detonation 

(time zero), a very small amount of time will pass (on the order of milliseconds) 

before the blast wave strikes a point. This is the arrival time (denoted by ta). Instantly 
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thereafter, the pressure felt by the point will escalate to the peak overpressure (denoted 

by p
0
), caused by blast wave propagating toward and finally striking the point. 

However, such a rapid overpressure creates a severe imbalance. The overpressure will 

decay exponentially below ambient atmospheric pressure until it reaches a negative 

pressure, which is something of a rebounding to compensate for the rapid overpressure 

caused by superheated gases. The period of time in which the curve lies above ambient 

atmospheric pressure is known as the duration of the positive phase (denoted by td). 
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(a) 

 

 
(b) 

 

Figure 3.1:  Pressure versus time profile: (a) theoretical curve and (b) 

distribution assumed herein 
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By inspection, the positive pressure caused by the instantaneous spike in 

pressure is far more intense, and therefore much more damaging, than the negative 

pressure phase. Figure 3.1b illustrates the approach to blast profiles utilized in this 

project. The triangular, shaded positive region supplies enough information to 

simulate a blast reasonably.    

3.2.2  Pressure-versus-Time Equations 

Figure 3.1 shows that three parameters can appropriately describe a blast: 

peak overpressure, blast duration, and arrival time. This section enumerates the 

equations by which these parameters are obtained. All equations are reproduced from 

Kinney and Graham’s (1985) text. Note that all equations herein typically take 

Système Internationale units as inputs. The project itself has largely made use of 

Imperial units, therefore necessitating careful conversion and unit consciousness when 

utilizing the equations. 

Equation 3.1 equates the ratio of overpressure to atmospheric pressure to a 

cumbersome expression in terms of Z, the scaled distance (Equation 3.2).   

 

 𝑝0

𝑃𝑎
=

808  1 +  
𝑍

4.5
 

2

 

 1 +  
𝑍

0.048 
2
 1 +  

𝑍
0.32 

2
 1 +  

𝑍
1.35

 
2
 

(3.1) 

   

 𝑍 =
𝑓𝑑 × 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑊
1
3

 (3.2) 

   

 𝑓𝑑 =  
𝜌

𝜌0
 

1/3

=  
𝑃

𝑃0
 

1/3

×   
𝑇0

𝑇
 

1/3

 (3.3) 
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In Equations 3.1 and 3.2,  p
0
 is the peak overpressure, Pa is atmospheric pressure, Z is 

the scaled standoff distance, fd is an atmospheric transmission factor (expressed in 

Equation 3.3 in terms of atmospheric pressures and temperatures), and W is the mass 

of TNT. 

The ratio of positive phase duration over mass of TNT (Eq. 3.4) is similar 

to the ratio of overpressure over atmospheric pressure in that it is dependent upon a 

complicated expression taking scaled standoff distance as the sole parameter. 

 

 𝑡𝑑

𝑊
1
3

=
980  1 +  

𝑍
0.54
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 1 +  
𝑍

0.02 
3

  1 +  
𝑍

0.74 
6

  1 +  
𝑍

6.9 
2
 

(3.4) 

   

 𝑍 =
𝑓𝑡 × 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒

𝑊
1
3

 (3.5) 

   

 𝑓𝑡 = 𝑓𝑑  
𝑎

𝑎0
 

1/3

 (3.6) 

 

In equations 3.4 and 3.5, td is duration of the positive pressure phase, W is the mass of 

TNT, Z is the scaled duration, and ft is an atmospheric transmission factor for time 

(expressed in equation 3.6, where a0 is the speed of sound in the reference atmosphere 

and a is the speed of sound).  

The final parameter needed is arrival time. With overpressure and 

atmospheric pressure already known, arrival time is given by the following integral:  
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𝑡𝑎 =
1

𝑎𝑥
  

1

1 +
6𝑝0

7𝑃𝑎

 

1
2

𝑑𝑟
𝑟

𝑟𝑐

 (3.7) 

where ax is the speed of sound in the undisturbed atmosphere (340.4 m/s used herein), 

r is the distance from the center of the charge to the point of interest, and rc is the 

radius of the charge. As charge radius appears in the integral, the shape of the charge 

matters. For the purposes of this project, the TNT is assumed spherical (a la the black 

bombs of cartoon fame), the geometry of which can be found by using the mass and 

density of TNT.   

 Equations 3.1 through 3.7 highlight the criteria necessary to obtain the key 

components of a blast. Mass of TNT and standoff distance are somewhat obvious. As 

the remaining factors all relate to the atmosphere in which the blast is occurring, 

altitude is the final necessary input. Values of Pa, fd, and ft for altitudes varying from 

400 meters below sea level to 6000 meters above sea level come from a table, “The 

U.S. Standard Atmosphere,” in Kinney and Graham’s book (1985), and an altitude of 

zero (sea level) is assumed throughout this work. 

3.3  MATLAB Modeling 

Once a panel has been drawn in AutoCAD and mapped in FEMAP (as 

explained in Chapter 4), it must be loaded. The equations found in Section 3.2.2 

provide the basis for modeling a blast load profile on a panel. MATLAB code was 

selected as an easy way to load the ABAQUS model. A series of programs written in 

MATLAB took standoff distance, mass of TNT, and altitude as inputs, calculated a 

peak overpressure (as a point load), arrival time, and duration for each node, and 
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printed the output in ABAQUS syntax in a diary file. Refer to Figure 3.2 for a 

graphical representation of the rationale.  

 

Figure 3.2:  Generation of blast load on surface 

 ABAQUS accepts concentrated load input that varies in magnitude with 

time as follows: 

time 1, normalized magnitude 1, time 2, normalized magnitude 2… 

The normalized magnitude refers to dividing the magnitude of the concentrated load at 

its corresponding time by the magnitude of the concentrated load when it reaches its 

peak over the time interval. In that sense, the peak overpressure would have a 

normalized magnitude of 1 occurring at the arrival time. ABAQUS linearly 

interpolates the load between inputs. Refer to Figure 3.3 for a graphic representation 

of the meaningful data points (obtained as discussed in Section 3.2.2). At the instant 
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the charge detonates, the time is equal to zero and the normalized magnitude is equal 

to zero. Likewise, when the overpressure has peaked, the time is equal to the arrival 

time and the normalized magnitude is equal to one. The time “just before” arrival was 

determined by subtracting 10
-6

 seconds from the arrival time, which was judged to be 

a sufficiently small interval. Finally, when the positive pressure phase has ended, the 

time is equal to the arrival time plus the blast duration and the normalized magnitude 

is back down to zero.  

 

 

Figure 3.3:  Parameters Needed to Write ABAQUS Load Input 

From Figure X, it is evident that the profile can be described in ABAQUS 

syntax as follows: 

0, 0, “just before” arrival time, 0, arrival time, 1, arrival time + blast duration, 0 
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The differing peak magnitude at each node is accounted for in a different portion of 

the ABAQUS model.  

 Therefore, if one can calculate the arrival time, blast duration, and 

overpressure for each point upon a panel’s facesheet, one has a reasonably realistic 

profile to enter into ABAQUS for simulation. Figure 3.4 shows the schematic of 

MATLAB files that obtain those parameters from the inputs of mass of TNT, standoff 

distance, and altitude above sea level. MATLAB files may be found in Appendix A. 

The file BLAST.m is the highest level function m-file, which calls the other files and 

ultimately prints the data. The file tableXIV.m finds the atmospheric pressure and 

transmission factors for distance and time using a Table XIV in Kinney and Graham 

(1985). Equations 3.1, 3.2, 3.4, and 3.5 are applied by explosionOverpressure.m, 

scaledDistance.m, duration.m, and scaledTime.m, respectively.   
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Figure 3.4:  Schematic of MATLAB files used to generate outputs from inputs 

Special files written for each panel analyzed (the different panels analyzed 

in the parametric study are discussed in Chapter 4) called the network of files in 

Figure 3.4 to obtain the load input for each node on each panel’s surface, keeping 

mass of TNT and altitude constant but varying standoff distance for each node. The 

initial standoff distance is taken to be a dimension orthogonal from the center of the 

top facesheet, and varies for each node using the Pythagorean Theorem. Using a 

matrix of the top facesheet’s node numbers, the programs then printed code in 
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ABAQUS syntax in diary files. The diary files may then be copied into the 

corresponding portions of the ABAQUS input file for amplitude data and concentrated 

load data.  
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Chapter 4 

CONSTRUCTING FINITE ELEMENT MODELS 

4.1 Introduction 

The reader will find the methodology used to create the finite element 

models used to assess core geometries in this chapter. The general methodology is 

based on Helmstetter’s research (2009), but makes several alterations to the model 

after the discovery of a significant input error. After addressing the error and exploring 

alternative modeling techniques to find a simulation with an equivalent deflection, the 

chapter then discusses the means taken to construct the models for the parametric 

study addressed in Chapter 5.  

4.2 Model Generation 

The following sections discuss model generation, which beings with 

generating the geometry, proceeds to mapping the model (stipulating the geometry of 

the finite element mesh), and ends with preparing the ABAQUS input files.   

4.2.1 Drawing and Mapping 

The seven models were drawn in AutoCAD for importation into FEMAP. 

After creating surfaces in FEMAP, stitching the surfaces into solid elements, defining 

material properties (Table 4.1), placing a finite element mesh of solids using “hex 

mesh solids,” and placing a fixed boundary condition on the bottom facesheet, 

FEMAP then exported each model into ABAQUS input files.  
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The element dimensions varied for the facesheet elements and stiffener 

elements. Helmstetter (2009) suggested the facesheet and stiffener dimensions, based 

on a study by Lee et al (2004) suggesting a 5:1 facesheet thickness to stiffener 

thickness ratio. Therefore, the mesh size was chosen to accommodate the smallest 

dimension, which was the stiffener thickness of 0.05 inches. Facesheets consisted of 

elements that were 0.05 inches x 0.05 inches x 0.1 inches. The web stiffeners 

consisted of elements that were 0.05 inches x 0.1 inches x 0.1 inches. The mesh size 

was chosen to decrease the time needed to run the models.   

The element type for all elements save for the brittle elements was 

*ELASTIC, TYPE=ENGINEERING CONSTANTS. This defines orthotropic 

behavior and allows the user to input elastic moduli, shear moduli, and Poisson’s 

ratios in the principal directions (Dassault Systémes 2007). The values for the 

aforementioned input may be found in Table 4.1. 

In laboratory conditions the panel rested on a rigid surface and lateral 

movement was restrained using clamps. Therefore, the boundary condition was taken 

to be fixed along the bottom facesheet due to laboratory conditions (Helmstetter 

2009). 

The loads were input as concentrated loads with units of force using the 

*CLOAD command. Each *CLOAD can reference an amplitude, enabling the 

magnitude of the concentrated load to vary with time (as described in Chapter 3). The 

amplitudes and concentrated loads were generated using MATLAB and copied into 

the ABAQUS analysis file.   
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Table 4.1: Material properties for FEM input file 

Material Properties 

  Elastic Modulus (psi) 

  E1 E2 E3 

Facesheets:  3673806 3673806 1952208 

Stiffeners:  3440000 3440000 1800000 

  Shear Modulus (psi) 

  G12 G23 G13 

Facesheets:  752746 759998 759998 

Stiffeners:  800000 435000 435000 

  Poisson's Ratio 

  v12 v23 v13 

Facesheets:  0.12 0.29 0.29 

Stiffeners:  0.324 0.28 0.28 

  Density (lbs
2
)/in

4
 

Facesheets:    0.000175   

Stiffeners:    0.000112   

4.2.2 Imperfection Files 

Mode shape files are used to implement geometric imperfections, which 

insures that that the stiffeners buckle as they likely will under a blast load. ABAQUS’s 

*FREQUENCY, EIGENSOLVER=LANCZOS command was used to create 

imperfections by performing modal analyses of the structure using eigenvalue 

extraction to calculate the natural frequencies and the corresponding mode shapes. In 

most cases, specifying ten mode shapes insured that one of them matched a likely 

deformed shape, representing initial imperfections of the model (Helmstetter 2009).  

The facesheet/stiffener interface was modeled using *MPC and PIN connections for 

the mode shape file. Physically, this represents a multi-point constraint with pin 

connections between nodes. This makes the global displacements equal, but leaves the 

rotations (if they exist) independent of each other (Dassault Systémes 2007). 
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4.3 Helmstetter’s FEM 

Helmstetter investigated several different alternative modeling techniques, 

ultimately selecting a model that best fit his experiments as described in Helmstetter 

2009. The analysis file contained CONN3D2 elements (a connection between two 

elements analyzed in three dimensions with all six degrees of freedom) at the web 

stiffener/facesheet interface to simulate the reduction in stiffness due to delamination 

at this interface, as observed in a high-speed video of the experiment.    

Material properties and connection properties used during the early phase 

of this project matched Helmstetter exactly. However, further review of Helmstetter’s 

finite element code revealed that the density input was a weight density rather than a 

mass density. As ABAQUS has no units of its own – rather, one must use a consistent 

set of units – absolute uniformity must be carefully checked. The original input of 

lb/in
3
 not only needs to be divided by gravity, but gravity with units of in/s

2
 to 

maintain the integrity of pounds and inches: 

1 𝑙𝑏𝑓 = 1 𝑙𝑏 ∗ 32.2
𝑓𝑡

𝑠2
= 1𝑙𝑏 ∗ 386.4

𝑖𝑛

𝑠2
 

This oversight necessitated changes in the construction of the model. The 

CONN3D2 elements which affixed the tops of the stiffeners to the blast-absorbing 

facesheet did not supply adequate stiffness to model Helmstetter’s point-load 

ABAQUS load case once the decreased density was correctly input.  

Removing the CONN3D2 elements required an exploration into 

alternative connections modeling at the interface between the tops of the stiffeners and 

the bottom of the top facesheet. A simple solution to boost the panel’s stiffness was to 

model it as a fixed connection, merging coincident nodes.  

Bulk viscosity, brittleness, and mode shape alterations were also tested in 

ABAQUS. Bulk viscosity had hitherto been left at its default setting. Some 
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exploration into its effect on the model was explored by doubling it and adjusting it to 

compensate for density (it was ultimately deemed inapplicable in this case). Prior to 

focusing on discerning an appropriate model, the exact form of the brittle command 

was another frontier of this project. With stiffeners that are much less dense, the 

possibility of ignoring the brittle command was also explored. Finally, differences 

were observed if the mode shape files were varied. A summary of results can be seen 

in Table 4.2. The comparison was the 94 J experiment in Helmstetter (2009). Time 

constraints limited comparisons to the 151 J experiment (Helmstetter 2009). 
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Table 4.2:  Deflections for alternative modeling strategies 

Control 

Maximum 

Deflection 

(inches) 

Percent 

Difference 

94 J Experiment 0.7 N/A 

Analytical Models 

Maximum 

Deflection 

(inches) 

Percent 

Difference 

Original Model with Incorrect Density 0.289 58.68% 

Original Model with Corrected Density 0.949 35.60% 

Fixed connections between stiffeners and facesheets 0.826 18.03% 

Stiffeners have no brittle portions     

Fixed connection mode shape     

Fixed connections between stiffeners and facesheets 0.826 18.02% 

Stiffeners have no brittle portions     

Bulk viscosity 1 is doubled while bulk viscosity 2 remains unchanged     

Fixed connections between stiffeners and facesheets 0.826 18.03% 

Stiffeners have no brittle portions     

Bulk viscosity 2 is doubled while bulk viscosity 1 remains unchanged     

Fixed connections between stiffeners and facesheets 0.829 18.38% 

Stiffeners have no brittle portions     

Bulk viscosity 2 compensates for density while bulk viscosity 1 remains      

*JOIN command on the stiffener-facesheet interface 0.921 31.64% 

Stiffeners have no brittle portions 

 

  

*JOIN mode shape 

 

  

Fixed connections between stiffeners and facesheets 0.781 11.55% 

All stiffeners save for the outermost have brittle centers     

Fixed connection mode shape (mode 10)     

Fixed connections between stiffeners and facesheets 0.601 14.14% 

All stiffeners have brittle centers     

Fixed connection mode shape (mode 10)     

Fixed connections between stiffeners and facesheets 0.763 8.98% 

All stiffeners have brittle centers     

Original model mode shape (mode 10)     
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4.4 Selected Analysis File 

The analysis file references an imperfection file with multi-point 

constraint pins. As in Helmstetter’s model, the C3D8 elements were changed into 

C3D8R (continuum 3D, 8 node, reduced integration) elements for the ABAQUS input 

file itself. Brittle commands were applied to elements at the center of each panel to 

insure they failed (Helmstetter 2009). As the panels were to be elongated and the 

geometries were to vary, brittle commands were applied to the centermost elements of 

all the stiffeners. This is the modeling technique used in the analysis described by the 

last entry in Table 4.2. 
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Chapter 5 

PARAMETRIC STUDY 

5.1 Introduction 

This chapter discusses the comparison of various core geometries, a key 

element that Helmstetter (2009) mentioned in his assessment of future research. The 

results of the parametric study are presented and interpreted by several metrics. The 

moment transferred through the panel is fitted to a nonlinear equation to gain a rough 

idea of the effect of stiffener height and stiffener spacing. 

5.2 Parameters 

Throughout the project, the thicknesses of the facesheets, the thicknesses 

of the stiffeners, and the overall depth of the panel element in question were all kept 

constant (at 0.25 inch, 0.05 inch, and 2.0 inches, respectively). Therefore, the variables 

to be studied were web spacing (Sw), height (H), and therefore the ratio between the 

two (Sw/H).  

Early in the project, the varying heights and stiffener spacings presented in 

Table 5.1 were selected for evaluation. Notably, the model corresponding to H = 1 

inch and Sw = 1.5 inches (bolded in Table 5.1) matches the stiffener configuration of 

Helmstetter’s model.  From there, spacing and heights were chosen to create stiffener 

spacings varying from 1 inch to 3 inches, and stiffener heights varying from 0.75 inch 

to 2 inches. In most models, each height or spacing can be compared to another model 

in which one of those values is the same and the other varies (this is not true at the 
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limits of the ranges of the parameters, where only one model exists with Sw = 1 inch 

and one model exists for H = 2 inches). Additionally, three values of Sw /H (1.333, 1.5, 

and 2.0) facilitate comparisons of panels with the same ratio and enables exploration 

into the effect of that variable.  

Table 5.1:  Web spacings, heights, and Sw/H ratios investigated 

PARAMETRIC STUDY 

    Web Spacing, Sw (in) 

    1 1.5 2 3 

H
ei

g
h

t 
(i

n
) 0.75 1.333333 2 - - 

1 - 1.5 2 - 

1.5 - - 1.333333 2 

2 - - - 1.5 

 

Throughout the remainder of the paper, the models will be referenced by a 

number. Starting in the top corner of Table 5.1 and moving from left to right, the 

models are numbered Model 1 through Model 7. For example, Model 2 has stiffener 

heights of 0.75 inch and spacings of 1.5 inches, while Model 3 has stiffener heights of 

1 inch and spacings of 1.5 inches. 

The model in Helmstetter (2009) contained facesheets that were 9 inches 

by 2 inches wide and 0.25 inches thick. The 2 inch width and 0.25 thickness remained 

for these models. The length was increased from 9 inches to 18 inches. This made the 

geometry a bit more manageable, as 18 is divisible by each of the web spacings. It also 

enabled the largest panel element to have the same number of stiffeners as 

Helmstetter’s model.  
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 5.3 Loading 

Table 5.2 shows equivalent weights of TNT for each panel’s top facesheet 

that imparts a similar impulse to Helmstetter’s 94 J test, which had an impulse of 6.8 × 

10
6
 lb∙s. The MATLAB blast programs were modified to compute a total impulse from 

the overpressures and durations. The standoff distance was held constant and the 

charge size was increased by trial and error until the impulse was equivalent. The 

differences in charge size are due to slight differences (+/- 0.05) in the panel lengths 

from drawing them in AutoCAD.  

Table 5.2: Equivalent TNT masses associated with Helmstetter’s 94 J 

experiment 

Model Number Charge Size at 25 cm (9.84 in) Standoff Distance 

1 47.19 kg (104.04 lb) TNT 

2 47.03 kg (103.68 lb) TNT 

3 47.03 kg (103.68 lb) TNT 

4 46.74 kg (105.25 lb) TNT 

5 47.11 kg (103.86 lb) TNT 

6 47.03 kg (103.68 lb) TNT 

7 47.03 kg (103.68 lb) TNT 

 

As the blast load is distributed and the panels are twice as long, it would 

be difficult to compare the results to Helmstetter’s model. The rapid nature of blasts 

made impulse more appropriate for the purposes of subjecting the panels to a similar 

loading event than equivalent force or some arbitrary combination of charge size and 

standoff distance.   
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5.4  Results 

The following assessment section begins with a discussion of the models’ 

accuracy. Then, the models are compared on several metrics, including total load 

under stiffeners, total moment along the bottom facesheet, equivalent stress (derived 

from moment), equivalent stress as a percentage of total load sustained, and equivalent 

stress normalized by volume. The moment and equivalent stress would likely be future 

design parameters. The other metrics are ways of comparing each panel’s efficacy to 

the others in terms of load mitigation (when compared to total load sustained) and 

economics (when compared by volume).  

5.4.1 Deformed Shape 

While the input connections at the stiffener/facesheet interface seemed to 

hone the deflection output from the finite element model within a decent percentage of 

the actual deflection for the purposes of a parametric study, it should be noted that a 

blast load delivering identical impulse did not produce a similar deflected shape. The 

stiffeners buckled and fractured immediately after the onset of the load. The stiffeners 

fractured in the first frame of the analysis. The time step corresponding to the first 

frame for each model is shown in Table 5.3. Therefore, the analyses presented herein 

are probably insufficient for practical use, but are still an effective tool in the search 

for a geometric optimum.  
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Table 5.3: Time step of initial frame 

Model Time Step 

1 1.0005 E-04 

2 1.0001 E-04 

3 1.0001 E-04 

4 1.0000 E-04 

5 1.0001 E-04 

6 1.0004 E-04 

7 1.0000 E-04 

5.4.2 Total Loads at Stiffener Bases 

After the stiffeners buckled, the total loads at the bases of the stiffeners 

were probed in ABAQUS. Each stiffener was one element thick (0.05 inches) and 20 

elements deep (each being 0.1 inches). The maximum principal stress was obtained 

from each element’s centroid. It was assumed that the majority of the stress would be 

axial at the stiffeners’ bases. Refer to Table 5.4 to see that the value used herein 

(maximum principle) was largely driven by S33. The sum of all 20 stresses from each 

stiffener can then be multiplied by the stiffener’s cross-sectional area to get a point 

load at each stiffener location, which is imparted into the bottom facesheet. The sum 

of all the stiffeners present in an 18 inch length of panel represents the total load that is 

being imparted into the bottom facesheets, which in turn are assumed fixed to the 

structure the panels are protecting (this may not exist in reality, but as the laboratory 

tests were fixed, it is the only boundary condition that can be used for comparison). 

Figure 5.1 presents these results as a bar graph, showing Sw/H = 1.333 inches light 

gray, Sw/H = 1.5 inches dark gray, and Sw/H = 2 inches black.  
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Table 5.4: Stress values from ABAQUS probe for a sample element 

Stress Output Stress (psi) 

Max. Principal: 21416.7 

S11:  -521.828 

S22:  561.614 

S33:  21403.1 

S13:  28.1055 

S12:  -499.53 

S23:  -215.696 

 

 

 

Figure 5.1:  Sum of stresses in bottom elements at stiffener bases. 

The magnitude of the load obtained from element probing probably does 

not paint the most accurate portrait of model efficacy. The following sections assess 

the panel behavior by other metrics.  

5.4.3 Maximum Moment  

While a summation of point loads sustained over the 18 inch sections of 

panel provides a quick idea of the load imparted into the protected structure, it does 
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not paint an entirely accurate picture the panel’s efficacy. After the stiffeners buckle, 

the bottom facesheet can be thought of as a beam with the point loads at the stiffener 

bases as the load. In that sense, a moment diagram may be obtained for each panel. 

Figure 5.2 shows the seven moment diagrams graphed against each other. From 5.2, 

one will note that Models 2, 4, and 6 (Sw/H=2) all have the lowest profiles, with 

Models 4 and 6 appearing nearly like reflections of each other. Figure 5.3 shows the 

maximum moment for each model.  

 

 

 

Figure 5.2: Moment along bottom facesheet due to stiffener loads 
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Figure 5.3: Maximum moment at bottom facesheet 

5.4.4 Total Reaction  

Another important factor that will play an important role in panel design 

will be a protected structure’s ability to supply a reaction stress to the panel’s bottom 

facesheet in order to maintain equilibrium. Figure 5.4 expresses this concept. Each 

point load, P, was obtained by summing the stresses probed from ABAQUS as 

described in Section 5.4.1. P represents the sum of centroidal element stresses 

resolved over the area. The maximum moment was obtained by simple static analysis 

of the bottom facesheet. An equivalent uniformly distributed load, w, can be obtained 

from the maximum moment by the following equation: 

 
𝑤𝐿2

8
= 𝑀𝑚𝑎𝑥  (5.1) 
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Figure 5.4  Method of obtaining a distributed load 

As the pressure is not in fact uniform, the value for w is an approximation 

used for comparison. Once obtained, the seven uniformly distributed pressures 

calculated behind the bottom facesheet were graphed in Figure 5.5.  

 

 

 

Figure 5.5: Approximate magnitude of reaction stress at bottom facesheet 
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5.4.5 Total Reaction Normalized by Total Blast Overpressure 

Another metric for studying a model’s efficiency is the factor by which it 

reduces the magnitude of the peak overpressure. The MATLAB codes that loaded the 

models were modified to obtain a total load for each panel by summing the matrix of 

overpressures (magnitudes shown in Table 5.5). The small differences in peak 

overpressure magnitude in the table are due to slight variation (+/- 0.05 inches) in 

panel length which occurred when the models were drawn in AutoCAD (as part of the 

researcher’s learning curve). The total percentage by which each panel reduces the 

load is shown in Table 5.5 and graphed in Figure 5.6. The values for the reaction in 

Table 5.5 are calculated from the maximum moment as described by Figure 5.5. 

Table 5.5: Magnitudes of Overpressure for Each Model 

Model Peak Overpressure (ksi) Reaction(ksi) Percent Reduction 

Model 1 216.57 4.90 97.74% 

Model 2 218.46 1.85 99.15% 

Model 3 218.46 3.58 98.36% 

Model 4 219.13 1.43 99.35% 

Model 5 217.89 2.49 98.86% 

Model 6 218.46 1.47 99.33% 

Model 7 218.46 3.46 98.42% 
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Figure 5.6:  Percent reduction in peak overpressure 

 

Figure 5.6 shows that the spread is small. The worst is above 97%, while 

all models with Sw/H = 2 reduce the overpressure by 99%. If peak overpressure is 

divided by the reaction (p
0
/w), a load reduction factor can be obtained. Figure 5.7 

presents that data. In this case, the spread is more defined. One can see that Model 4 

reduces the load by a factor 100 times greater than Model 1.  
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Figure 5.7: Overpressure Reduction Factor, Given by Reaction/Overpressure 

5.4.6 Total Reaction Normalized by Core Volume 

Another key parameter is determining an optimum value is economics, 

which for the purposes of panel design will be largely impacted by the amount of 

material used. Dividing by volume is thus a means to assess the efficacy of a given 

volume of panel when configured into the geometries studied. Table 5.6 shows the 

volumes of panels, while Figure 5.8 shows the reaction normalized by panel volume. 
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Table 5.6: Core Volumes 

Model Panel Section Volume (in
3
) 

Model 1 1.35 

Model 2 0.9 

Model 3 1.2 

Model 4 0.9 

Model 5 1.35 

Model 6 0.9 

Model 7 1.2 

 

 

Figure 5.8: Reaction Normalized by Core Volume 
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The criteria in Sections 5.4.1 to 5.4.6 are presented in Table 5.7 ranked by 

the geometry which performed the best in each category. For the reader’s 

convenience, Table 5.8 presents model numbers and corresponding Sw/H ratios. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

R
e

ac
ti

o
n

/V
o

lu
m

e
 (

w
/V

)



45 

Table 5.7: Summary of Metrics Used to Assess Optimum Design 

METRIC: 
Total 

Load 
Max. 

Moment 
Reaction 

p
0  

Reduction, 

Percent 

p
0
  

Reduction, 

Percent 
w/V 

 M
o

d
el

 R
a

n
k

in
g
 6 4 4 4 4 6 

4 6 6 6 6 4 

2 2 2 2 2 2 

5 5 5 5 5 5 

7 7 7 7 7 7 

3 3 3 3 3 3 

1 1 1 1 1 1 

Table 5.8: Model numbers and corresponding Sw/H ratios 

Model Sw/H 

1 1.33 

2 2 

3 1.5 

4 2 

5 1.33 

6 2 

7 1.5 

Models with Sw/H = 2 occupy the top three positions by each metric. This 

was the highest ratio evaluated. Perhaps better performance could be obtained by 

further exceeding this. Additionally, while Model 4 ranks the highest in most 

categories, Model 6 is victorious in two very important categories: total load sustained 

and reaction normalized by volume. The latter metric is important in assessing 

efficiency, as it accounts for economics. Notably, Model 6 is also a boundary, as it has 

the largest web spacing (of 3 inches) with Sw/H = 2. 

The lowest Sw/H ratio was 1.33, which was shared by Models 1 and 5. 

However, while Sw/H = 1.5 models behaved similarly to one another, a great disparity 
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was noticed between Model 1 and 5. While Model 1 was easily the worst, Model 5 

offered greater resistance for any model with Sw/H < 2, going so far as to be nearly 

identical to Model 2 when normalized by core volume, suggesting there is potentially 

a significant benefit to the large web spacing (3 inches) of Model 5.    

5.6 Data Analysis 

The data suggests that the ratio of web spacing-to-height is an important 

parameter. An expression for the maximum moment as a function of simple geometric 

input like stiffener spacing and stiffener height would greatly reduce the complexity of 

analysis.  

Assuming the ratio governs, the two should be related non-linearly by 

some equation in the form: 

 𝑦 = 𝐾𝑥1
𝛼𝑥2

𝛽  (5.2) 

The sign of the exponents α and β will indicate if a ratio can be used as an 

indicator for optimum behavior. In this case, y would be the maximum moments, x1 

would be the stiffener spacing, and x2 would be the stiffener height. The constant K 

and exponents α and β will be determined through matrix operations. Therefore: 

 𝑀𝑚𝑎𝑥 = 𝐾𝑆𝑤
𝛼𝐻𝛽  (5.3) 

Taking the natural logarithm of both sides: 

 ln 𝑀𝑚𝑎𝑥 = 𝛼 ln 𝑆𝑤 + 𝛽 ln 𝐻 + ln 𝐾 (5.4) 

In matrix form to accommodate the seven values: 

 

 
 
 
 
ln 𝑆𝑤1

ln 𝐻1 ln 𝐾1

ln 𝑆𝑤 2

⋮
ln 𝐻2

⋮
ln 𝐾2

⋮
ln 𝑆𝑤 7

ln 𝐻7 ln 𝐾7 
 
 
 

 
𝛼
𝛽

ln 𝐾
 =  

 
 
 
 
ln 𝑀𝑚𝑎𝑥 1

ln 𝑀𝑚𝑎𝑥 2

⋮
ln 𝑀𝑚𝑎𝑥7 

 
 
 

 (5.5) 
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Defining A, B, and C by as the following: 

 

𝐴 =

 
 
 
 
ln 𝑆𝑤1

ln 𝐻1 ln 𝐾1

ln 𝑆𝑤 2

⋮
ln 𝐻2

⋮
ln 𝐾2

⋮
ln 𝑆𝑤 7

ln 𝐻7 ln 𝐾7 
 
 
 

, 𝐶 =  
𝛼
𝛽

ln 𝐾
 , and 𝐵 =  

 
 
 
 
ln 𝑀𝑚𝑎𝑥 1

ln 𝑀𝑚𝑎𝑥 2

⋮
ln 𝑀𝑚𝑎𝑥 7 

 
 
 

  

An equation for the vector C can be found using least-squares by:  

 𝐶 =  𝐴𝑇𝐴 −1(𝐴𝑇𝐵) (5.6) 

The MATLAB script in Appendix A returned the following values: 

   𝛼 = −2.2469 

   𝛽 =  1.9697 

    𝐾 = 645.43 

Therefore, maximum moment as a function of stiffener spacing and height is given by:  

 
𝑀𝑚𝑎𝑥  𝑆𝑤 , 𝐻 = 645.43  

𝐻1.97

𝑆𝑤
2.25  (5.7) 

 The moment is therefore a surface in Sw and H. Figures 5.9 and 5.10 

offer alternative views of the moment.  Obviously, Equation 5.7 is specific to this 

particular load scenario. The constant K is likely a more complicated function of the 

load applied. Therefore, the equation is mostly helpful in ascertaining the effect of 

stiffener spacing and height. The output suggests that another data analysis performed 

after collection of more data points may make the ratio converge upon (H/Sw)
2
 times 

some value that is a function of the load.  
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Figure 5.9: Surface Created by Equation 5.7 

 

Figure 5.10: Surface Created by Equation 5.7 (Detail to Show Moments) 

The figures show the probed moment values as asterisks straddling the 

surface.  Obviously, the lower values of either parameter (e.g. heights or spacings 
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equal to zero) cannot be trusted, as either case effectively means a solid block of 

panel. Further work is necessary to determine the bounds of the equation.  

5.7 Error Analysis 

Table 5.9 shows the moment values obtained from Equation 5.7, the 

moments obtained through probing values from the ABAQUS model, and the percent 

difference. The high percent difference in Model 5 suggests further fitting work may 

show some other parameter which accounts for model performance. Figure 5.11 shows 

the graph of theoretical moment value versus the probed moment value to help assess 

the fit graphically. The error analysis gives an R
2
 value of 0.748. The spreadsheet used 

to determine correlation may be found in Appendix B. 

Table 5.9: Theoretical Moments, Probed Moment, and Percent Difference 

Model No. Fitted  Mmax (kip-in) Probed Mmax (kip-in) % Difference 

Model 1 360.57 397.27 9.24% 

Model 2 144.99 149.92 3.29% 

Model 3 255.51 289.70 11.80% 

Model 4 133.87 115.58 15.82% 

Model 5 297.53 201.93 47.34% 

Model 6 119.63 118.97 0.56% 

Model 7 210.84 280.11 24.73% 
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Figure 5.11: Correlation of Theoretical Moment to Probed Moment 

5.8 Conclusion 

Probing the ABAQUS models gave values for maximum principal stresses 

at the bases of each of the stiffeners. When manipulated to give point loads at the 

stiffener bases, the stress values were transformed into point loads along the bottom 

facesheet, which facilitated analyzing the bottom facesheet as a beam and finding a 

maximum moment along the panel’s base. One can calculate a resultant pressure at the 

panel’s base necessary to keep the panel in static equilibrium, which is in turn an 

approximation of the stress to which the protected structure is subjected. The stresses 

and moment values could then be compared to other criteria, such as blast 

overpressure and core volume. Using a nonlinear least-squares fit to the data, an 

equation was obtained to fit the moment as a surface above the plane of stiffener 
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spacing versus height. The values obtained by this equation correlate with an R
2
 value 

of 0.748.  

Models with a higher spacing-over-height ratio performed better under 

blast loading. Model 6 performed the best when compared to volume of material it 

uses in its core. Models with larger web spacing and web-to-height ratios would be 

necessary to discern whether efficiency would be further increased if these parameters 

were increased.  
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Chapter 6 

CONCLUSIONS 

6.1 Summary of Work 

Threats of terrorist attack have motivated further investigation into 

sacrificial structures. Composite materials offer an innovative solution to the problem, 

given their high strength-to-weight ratios and ability to be fabricated into a variety of 

shapes. However, the complex nature of both composite mechanics and blast profiles 

makes analytical analysis of composite sandwich panels very difficult. Finite element 

software shows promise in panel analysis.  

Blast and impulse load mitigation through composite sandwich panels has 

been researched for several years, and the literature on the topic is vast. However, as 

the variation in material properties and geometries is seemingly endless, the topic 

allows for plenty of avenues of exploration among researchers. A review of literature 

conducted in work by Helmstetter suggested more research should be done in panels 

constructed of facesheets separated by web stiffeners. Literature post-Helmstetter 

suggests that the topic of modeling these types of panels still leaves much to be 

desired, validating the need for further research.  

The ability to generate a blast profile that comes near to simulating reality 

greatly advances the credibility of a finite element model meant to simulate a panel’s 

behavior under a blast load. MATLAB was used to apply the complicated equations 

that govern blast behavior as described by Kinney and Graham, apply them to the 
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nodes on a panel surface, and print diary files that can quickly and easily be copied 

into ABAQUS input files.  

The erroneous density present in Helmstetter’s previous finite element 

model required a further study of modeling methodology. The study ultimately 

concluded that using mode shape files with pin connections atop the stiffeners and 

loaded models that use fixed connections atop stiffeners reproduces a deflection within 

8% of Helmstetter’s 94 J experiment. The parametric study models utilized this 

approach.  

A parametric study was conducted to provide a series of models with 

varying stiffener spacing to stiffener height ratios for cross comparison. The 

parameters were studied under a simulated blast load due to a chemical explosion that 

imparts an equivalent impulse to Helmstetter’s 94 J experiment.  

6.2 Conclusions 

Finite element models that do not deflect downward (as was observed 

herein) as expected may be questionable. While the models are not recommended for 

application in industry, they are assumed to be accurate enough for the purposes of a 

parameterized geometric analysis.  

Among the models investigated, the models with Sw/H ratios equal to 2 

consistently outperformed models with lower ratios. Several metrics were used to 

reach this conclusion. Perhaps the most important metric was the moment along the 

bottom facesheet, which was obtained by probing stress values in the bottom elements 

of the web stiffeners and treating the resultant force as a concentrated load acting 

along a beam. This moment could also be used to obtain an approximate distributed 
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load, which in turn can be compared to the peak overpressure (as the units are the 

same).  

Web height divided by web spacing seems to be the most important 

parameter that affects blast mitigation potential.  Specifically, a nonlinear least-

squares analysis suggests that the moment at the base of a panel is dependent on 

(H/Sw)
2
 times some function of the overpressure. 

6.3 Future Work 

Helmstetter’s suggestions for future work included subjecting the finite 

element model to a realistic blast loading profile and conducting a parametric study, 

both of which were accomplished herein. However, other work suggested in the past 

remain unaddressed. No lab tests for determining accurate stiffnesses, poison’s ratios, 

and shear moduli of the stiffeners and facesheets were conducted. The bottom 

facesheet’s boundary condition remained fixed rather than free to deflect, which 

overestimates the boundary condition stiffness assuming the panel is supported by a 

structural member with non-infinite stiffness. 

No model validation under either a controlled chemical explosion or under 

a testing apparatus capable of impacting a nearly-equivalent load has been carried out 

for this work. An underlying reason for carrying out this study was the hypothesis that 

a finite element model that accurately simulates panel behavior under a point load 

impulse will also simulate panel behavior under a blast profile. Experiments of this 

nature would put this hypothesis into perspective.  

The downward deflection of the top facesheet toward the bottom facesheet 

was not observed in the blast load analyses like it was in the Helmstetter’s experiment 

and finite element model. This further suggests the need for experimental testing, 
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which would indicate whether the tendency of the top facesheets to ricochet back 

toward the charge as they did in the finite element models is accurate behavior or the 

result of a modeling error.   

Furthermore, the facesheets are currently perfectly elastic. The high strain 

observed in the experiments certainly suggests that the facesheets eventually exhibit 

inelastic behavior.  

Finally, more data points would validate Equation 5.7. Simply testing a 

model with an arbitrary stiffener spacing and height within the range tested here and 

comparing its maximum moment to the predicted value would shed light on its 

validity.  
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APPENDIX A: MATLAB FILES 

Codes 1 through 6 are files that work together (as explained in Section 

3.4) to load the top facesheets of the finite element models. Codes 7, 8, and 9 are 

examples of the codes that loaded individual models (shown here is model 1). Code 10 

is a model that performed the matrix manipulations from Equation 5.6 in order to 

obtain Equation 5.7. 

 

Code 1: BLAST.m 
function blastData = BLAST(W,Da,Alt) 

  
% BLAST(W,Da,Alt) finds the blast overpressure and duration of a 

blast 
% INPUTS (example):  
%   W = mass of TNT, kg  
%   Da = standoff distance, m 
%   Alt = altitude, m 
% OUTPUTS: 
%   p0 = peak overpressure, psi 
%   td = duration, milliseconds 
%   ta = arrival time, seconds 
% CALLS: 
%   tableXIV.m 
%   scaledDistance.m 
%   explosionOverpressure.m 
%   duration.m 

  
% Find necessary parameters of the equation: 
Pafdft = tableXIV(Alt); 
Pa = Pafdft(1); 
fd = Pafdft(2); 
ft = Pafdft(3); 
Z = scaledDistance(fd,Da,W); 
rcharge = chargeRadius(W); 
% Overpressure 
p0 = explosionOverpressure(Pa,Z); 
p0psi = p0*0.0145037738; 
% Duration 
scaledDuration = duration(Z,1); 
td = scaledTime(W,scaledDuration,ft); 
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% Arrival Time 
OneoverMx = sqrt(1/(1+(6*p0)/(7*Pa))); 
ax = 340.4; % m/s 
ta = (1/ax)*(OneoverMx*Da - OneoverMx*rcharge); 

  
% Create vector blastData for use in other programs 
blastData = [p0psi td ta]; 

  
end 

 

Code 2: tableXIV.m 
function Pafdft = tableXIV(Altitude) 

  
% (Table XIV, p. 259, Kinney & Graham, 1985)  
% tableXIV(Altitude) finds the Pa, fd, and ft for a given altitude 
% INPUTS: 
%   Altitude = distance above/below sea level, m 
% OUTPUTS: 
%   Pa = U.S. Standard Atmospheric pressure, mbar 
%   fd = Distance transmission factor at altitude, dimensionless 
%   ft = Time transmission factor at altitude, dimensionless 

  
% Round the altitude value to the nearest 200 m  
roundFactor = floor(Altitude/200); 
difference = abs(Altitude - 200*roundFactor); 
if difference <= 100 
    Altitude = Altitude - difference; 
else 
    difference2 = 200 - difference; 
    Altitude = Altitude + difference2; 
end 

  
% Table XIV: The U.S. Standard Atmosphere (1976) 
% [Altitude (m), Pressure (mbar), fd (Distance), ft (time)] 
TableXIV = [-400 1056 1.011 1.016; 
    -200 1038 1.007 109; 
    0 1013.25 1.000 1.000; 
    200 989 0.993 0.991; 
    400 966 0.987 0.983; 
    600 943 0.981 0.974; 
    800 921 0.975 0.966; 
    1000 899 0.968 0.958; 
    1200 877 0.962 0.948; 
    1400 856 0.956 0.940; 
    1600 835 0.945 0.932; 
    1800 815 0.943 0.923; 
    2000 795 0.937 0.915; 
    2200 775 0.930 0.907; 
    2400 756 0.924 0.899; 
    2600 738 0.918 0.891; 
    2800 719 0.912 0.882; 
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    3000 701 0.904 0.874; 
    3200 684 0.900 0.866; 
    3400 666 0.893 0.858; 
    3600 649 0.886 0.850; 
    3800 633 0.881 .0842; 
    4000 617 0.875 0.834; 
    5000 541 0.843 0.796; 
    10000 265 0.698 0.613]; 

  
for i = 1:25 
    if Altitude == TableXIV(i,1) 
        Pafdft = [TableXIV(i,2) TableXIV(i,3) TableXIV(i,4)]; 
        break 
    elseif Altitude > 10000 
        error('Altitude out of bounds') 
    end 
end 

  
% * According to The Guinness Book of World Records, the highest town 

in the world is Wenzhuan at altitude 5099.304 m  
end 

 

Code 3: scaledDistance.m 
function Zd = scaledDistance(f,Da,W) 

  
% (Eq. 7-4, Kinney & Graham, 1985) 
% INPUTS: 
%   f = transmission factor (distance or time), dimensionless 
%   Da = actual standoff distance (m) 
%   W = equivalent mass of TNT (kg) 
% OUTPUTS: 
%   Zd = scaled distance 

  
Zd = (f*Da)/(W^(1/3)); 

  
end 

 

Code 4: explosionOverpressure.m 
function p0 = explosionOverpressure(Pa,Z) 

  
% (Eq. 6-2, Kinney & Graham, 1985) 
% explosionOverpressure.m calculates the peak overpressure needed for 

the 
% instantaneous overpressure decay function 
% INPUTS: 
%   Z = scaled distance, from scaledDistance.m 
%   Pa = ambient atmospheric pressure 
% OUTPUTS: 
%   p0 = explosion overpressure 
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numerator = Pa*(808*(1+(Z/4.5)^2)); 
denominator = 

(sqrt(1+(Z/0.048)^2)*sqrt(1+(Z/0.32)^2)*sqrt(1+(Z/1.35)^2)); 
p0 = numerator/denominator; 

  
end 

 

Code 5: duration.m 
function scaledDuration = duration(Z,W) 

  
% (Eq. 6-10, Kinney & Graham, 1985) 
% duration.m calculates the maximum duration of the blast for the 

decay 
% function 
% INPUTS: 
%   Z = scaled distance (from scaledDistance.m) 
%   W = mass of TNT (kg) 
% OUTPUTS: 
%   td = duration of the positive pressure phase (milliseconds) 

  
scaledDuration = 

(W^(1/3))*(980*(1+(Z/0.54)^10))/((1+(Z/0.02)^3)*(1+(Z/0.74)^6)*sqrt(1

+(Z/6.9)^2)); 

  
end 

 

Code 6: scaledTime.m 
function td = scaledTime(W,scaledDuration,ft); 

  
% (Eq. 7-9, Kinney & Graham, 1985) 
% INPUTS 
%   W = mass of TNT, kg  
%   scaledDuration = scaled duration, milliseconds 
%   ft = time transmission factor, dimensionless 
% OUTPUTS 
%   td = actual duration of the positive pressure phase 

(milliseconds) 

  
td = (W^(1/3))*(scaledDuration/ft); 

  
end 

 

Code 7: model1Floading.m 
function [] = model1Floading(W,Da,Altitude) 

  
% model1Floading.m generates a point loads (from blast equations) for  

% each surface node of the top face sheet Model 1: 
% H = 0.75" Sw = 1.0 " 
% INPUTS:  
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%   W = mass of TNT, kg  
%   Da = standoff distance, m 
%   Alt = altitude, m 
% OUTPUTS: 
%   Abaqus 6.71 code for a point load at each load using *CLOAD, psi 

  
% (Conversions: 0.10 in = 0.00254 m & 0.05 in = 0.00127 m) 

  
% MODEL INFO: For each row, there are 179 nodes 
xNumberNodes=179; 

  
% Find furthest distances in x and y (y constant for all models) 
distx = xNumberNodes*0.00127; % 
disty = 10*0.00254; 

  
% English units for area - needed to find kips from ksi 
Area = 0.1*0.05; 
AreaMatrix = ones(xNumberNodes,11)*(Area); 
side = ones(xNumberNodes,1)*(Area/2); 
top = ones(1,11)*(Area/2); 
AreaMatrix(:,1) = side; 
AreaMatrix(1,:) = top; 
AreaMatrix(1,1) = (Area/4); 

  
% Find p0 for 1/4 of panel and use symmetry later 
for i = 1:11 
    for j=1:xNumberNodes 
        yNodeDist = disty - 0.00254*(i-1); 
        xNodeDist = distx - 0.00127*(j-1); 
        nodeDistance = sqrt(sqrt(Da^2+yNodeDist^2)^2+xNodeDist^2); 
        blastData = BLAST(W,nodeDistance,Altitude); 
        p0psi(j,i) = blastData(1); 
        td(j,i) = blastData(2); 
        p0(j,i) = p0psi(j,i)*AreaMatrix(j,i); 
    end 
end 

  
% make p0 map 
p0Q2=fliplr(p0); 
p0Q3=flipud(p0); 
p0Q4=fliplr(p0Q3); 
p0brillante=zeros(2*xNumberNodes-1,21); 
p0brillante(1:xNumberNodes,1:11)=p0; 
p0brillante(1:xNumberNodes,12:21)=p0Q2(1:xNumberNodes,2:11); 
p0brillante(xNumberNodes+1:2*xNumberNodes,1:11)=p0Q3; 
p0brillante(xNumberNodes+1:2*xNumberNodes,12:21)=p0Q4(1:xNumberNodes,

2:11); 

  
for i=1:21 
p0vector((i-1)*2*xNumberNodes+1:i*2*xNumberNodes,1)=p0brillante(:,i); 
end 



62 

  
% Create proper ABAQUS output 
for i=1:7518 
    nodeList(i)=model1Matrix(i); 
    fprintf('*CLOAD, OP=NEW, amplitude=Amp-%.0f\n',i) 
    fprintf('%.0f,    2,     -%f\n',nodeList(i),p0vector(i)) 
end 

  
end 

 

Code 8: model1Ftimedata.m 
function [] = model1Ftimedata(W,Da,Altitude) 

  
% model1Ftimedata.m creates a time profile (arrival/duration)  
% each surface node of the top facesheet Model 2: 
% H = 0.75" Sw = 1.0 " 
% INPUTS:  
%   W = mass of TNT, kg  
%   Da = standoff distance, m 
%   Alt = altitude, m 
% OUTPUTS: 
%   Abaqus 6.71 code time history suing *AMPLITUDE, seconds 

  
% MODEL INFO: For each row, there are 179 nodes (half of total) 
xNumberNodes=179; 

  
% Find furthest distances in x and y (y constant for all models) 
distx = xNumberNodes*0.00127;  
disty = 10*0.00254; 

  
% Find p0 for 1/4 of panel and use symmetry later 
for i = 1:11 
    for j=1:xNumberNodes 
        yNodeDist = disty - 0.00254*(i-1); 
        xNodeDist = distx - 0.00127*(j-1); 
        nodeDistance = sqrt(sqrt(Da^2+yNodeDist^2)^2+xNodeDist^2); 
        blastData = BLAST(W,nodeDistance,Altitude); 
        td(j,i) = blastData(2)/1000; 
        ta(j,i) = blastData(3); 
    end 
end 

  
% Make td map 
tdQ2=fliplr(td); 
tdQ3=flipud(td); 
tdQ4=fliplr(tdQ3); 
tdbrillante=zeros(2*xNumberNodes-1,21); 
tdbrillante(1:xNumberNodes,1:11)=td; 
tdbrillante(1:xNumberNodes,12:21)=tdQ2(1:xNumberNodes,2:11); 
tdbrillante(xNumberNodes+1:2*xNumberNodes,1:11)=tdQ3; 
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tdbrillante(xNumberNodes+1:2*xNumberNodes,12:21)=tdQ4(1:xNumberNodes,

2:11); 

  
for i=1:21 
tdvector((i-1)*2*xNumberNodes+1:i*2*xNumberNodes,1)=tdbrillante(:,i); 
end 

  
% Make ta map 
taQ2=fliplr(ta); 
taQ3=flipud(ta); 
taQ4=fliplr(taQ3); 
tabrillante=zeros(2*xNumberNodes-1,21); 
tabrillante(1:xNumberNodes,1:11)=ta; 
tabrillante(1:xNumberNodes,12:21)=taQ2(1:xNumberNodes,2:11); 
tabrillante(xNumberNodes+1:2*xNumberNodes,1:11)=taQ3; 
tabrillante(xNumberNodes+1:2*xNumberNodes,12:21)=taQ4(1:xNumberNodes,

2:11); 

  
for i=1:21 
tavector((i-1)*2*xNumberNodes+1:i*2*xNumberNodes,1)=tabrillante(:,i); 
end 

  
% Create data JUST BEFORE the arrival time to curb linear 

interpolation 
for i = 1:7518 
    taminus(i) = tavector(i) - 0.000001; 
end 

  
% Create the point where the blast returns to zero 
for i = 1:7518 
totaltime(i) = tavector(i)+tdvector(i); 
end 

  
% MODEL INFO: 7518 nodes for the top facesheet 
for i = 1:7518 
fprintf('*Amplitude, name=Amp-%.0f, DEFINITION=TABULAR, time=TOTAL 

TIME\n',i) 
fprintf('0, 0, %f, 0, %f, 1, %f, 

0\n',taminus(i),tavector(i),totaltime(i)) 
end 

 

Code 9: model1Matrix.m 
function model1node = model1Matrix(nodeplace) 

  
% model1Matrix.m is the node map profile for Model 1: 
% H = 0.75" Sw = 1.0 " 
% INPUTS: 
%   nodeplace, a place assigned by the loading program 
% OUTPUTS: 
%   model1node, the node number for assignment 
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A=[ 1; 
    2; 
    4; 
    6; 
    7; 
         . 
         . (file truncated) 
         . 
 66875; 
66876; 
66877]; 

  
model1node=A(nodeplace); 
end 

 

Code 9: hephastus_94J_impulse 
% hephaestus_94J_inpulse.m creates diary files for the loading and  
% time data for each of the seven models, F series, for conditions  
% producing an equivalent impulse to Helmstetter's 94 J test. 

  
warning off MATLAB:m_warning_end_without_block 

  
A1 = 47.189026; %kg TNT 
A2 = 47.0345194; %kg TNT 
A3 = 46.738262; %kg TNT 
A4 = 47.1112259; %kg TNT 
B = 0.25; % m 
C = 0; % ft above sea level 

  
% MODEL 1F 
diary model1F_loads_94J.txt 
model1Floading(A1,B,C) 
diary off 
diary model1F_times_94J.txt 
model1Ftimedata(A1,B,C) 
diary off 

  
% MODEL 2F 
diary model2F_loads_94J.txt 
model2Floading(A2,B,C) 
diary off 
diary model2F_times_94J.txt 
model2Ftimedata(A2,B,C) 
diary off 

  
% MODEL 3F 
diary model3F_loads_94J.txt 
model3Floading(A2,B,C) 
diary off 
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diary model3F_times_94J.txt 
model3Ftimedata(A2,B,C) 
diary off 

  
% MODEL 4F 
diary model4F_loads_94J.txt 
model4Floading(A3,B,C) 
diary off 
diary model4F_times_94J.txt 
model4Ftimedata(A3,B,C) 
diary off 

  
% MODEL 5F 
diary model5F_loads_94J.txt 
model5Floading(A4,B,C) 
diary off 
diary model5F_times_94J.txt 
model5Ftimedata(A4,B,C) 
diary off 

  
% MODEL 6F 
diary model6F_loads_94J.txt 
model6Floading(A2,B,C) 
diary off 
diary model6F_times_94J.txt 
model6Ftimedata(A2,B,C) 
diary off 

  
% MODEL 7F 
diary model7F_loads_94J.txt 
model7Floading(A2,B,C) 
diary off 
diary model7F_times_94J.txt 
model7Ftimedata(A2,B,C) 
diary off 

 

Code 10: regressionFit.m 

% regresstionFit.m fits a nonlinear least squares regression to the  
% panel geometry (web spacing and height) based on maximum moment  
% INPUTS: Sw (ins) 
%         H (ins) 
%         Mmax (kip-in) 
% OUTPUTS: alpha (exponent on Sw) 
%          beta (exponent on H) 
%          K (constant) 
%          Graph of moment as a surface in Sw and H 

  
close all 
clear all 
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% Web Spacings 
Sw1 = 1; 
Sw2 = 1.5; 
Sw3 = 1.5; 
Sw4 = 2; 
Sw5 = 2; 
Sw6 = 3; 
Sw7 = 3; 
Sw = [Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7]'; 

  
% Stiffener Heights 
H1 = 0.75; 
H2 = 0.75; 
H3 = 1; 
H4 = 1; 
H5 = 1.5; 
H6 = 1.5; 
H7 = 2; 
H = [H1 H2 H3 H4 H5 H6 H7]'; 

  
% Maximum Moment from Probe 
M1 = 397.2728107; 
M2 = 149.9206643; 
M3 = 289.7020811; 
M4 = 115.580612; 
M5 = 201.9273382; 
M6 = 118.9713259; 
M7 = 280.1077387; 

  
Mmax = [M1; M2; M3; M4; M5; M6; M7]; 

  
LnSw = log(Sw); 
LnH = log(H); 
LnM = log(Mmax); 
K = ones(7,1); 

  
A = [LnSw LnH K]; 

  
C = (A'*A)\(A'*LnM); 

  
disp('Values') 
alpha1 = C(1) 
beta = C(2) 
K = exp(C(3)) 

  
for i=1:7 
MTheoretical(i) = [Sw(i)^alpha1*H(i)^beta*K]; 
end 

  
disp('Theoretical Moments:') 
MTheoretical' 
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[SwAxis,HAxis]=meshgrid(1:0.01:3,0.75:0.01:2); 

  
hold on 
surf(SwAxis,HAxis,SwAxis.^alpha1.*HAxis.^beta.*K,'EdgeColor','none') 
XLABEL('Stiffener Spacing') 
YLABEL('Stiffener Height') 
ZLABEL('Maximum Moment') 
alpha(0.5) 

  
for i = 1:7 
    

plot3(Sw(i),H(i),Mmax(i),'marker','*','color','b','MarkerSize',10); 
end 
hold off 
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APPENDIX B: ERROR ANALYSIS 

The table below is the statistical analysis performed on the theoretical and probed moments. 

 

   
Summation, Summation, (ti-t) (mi-m) Summation, 

 
Theoretical Measured Theoretical Measured     (mi-m)(ti-t) 

 
360.5744 397.27281 20452.22784 30746.47542 143.01129 175.3467 25076.56118 

 
144.9869 149.92066 5267.30688 5184.780116 -72.57621 -72.0054 5225.880593 

 
255.5141 289.70208 1440.277317 4593.586118 37.950986 67.776 2572.165991 

 
133.8706 115.58061 7004.436947 11309.3589 -83.69251 -106.345 8900.31973 

 
297.5253 201.92734 6393.951144 399.9497371 79.962186 -19.9987 -1599.143233 

 
119.6349 118.97133 9589.935153 10599.68172 -97.92821 -102.955 10082.17538 

 
210.8356 280.10774 45.25944846 3385.105232 -6.727514 58.18166 -391.4179298 

 
  

 
          

 
  

 
          

 
  

 
          

AVG: 217.563114 221.92608 
     

        

  
VARIANCE: 7170.484962 9459.848176 

 

σMWMF =  7123.791673 

  

STD. 
DEVIATION:  84.67871611 97.26175084 

     
 

R =  0.864957687 
    

  
R2= 0.7481518 
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APPENDIX C: FINITE ELEMENT CODES 

  

FEM Code 1: Mode Shape File (model 1 shown) 

*NODE, NSET=GLOBAL 

       1,        18.2,-3.578268E-8,   1.0500002 

       2,       18.15,-3.568245E-8,   1.0500002 

       3,         0.8,-2.012776E-9,        0.15 

. 

. 

. 

  102242,       18.15,   1.8999999,   0.9000004 

  102243,       18.15,   1.8999999,   0.9500004 

  102244,       18.15,   1.8999999,   1.0000005 

*ELEMENT, TYPE=C3D8, ELSET=P2 

      1,    247,    476,    477,    246,    495,    325,    485,    494 

      2,    240,    469,    470,    239,    247,    476,    477,    246 

      3,    233,    462,    463,    232,    240,    469,    470,    239 

. 

. 

. 

   9646,   8579,   8792,   8785,   8572,   8927,   8727,   8726,   8563 

   9647,   8572,   8785,   8778,   8565,   8563,   8726,   8725,   8925 

   9648,   8565,   8778,   8723,   8510,   8925,   8725,   8905,   8922 

*ELEMENT, TYPE=C3D8, ELSET=P1 

  27699,  17328,  17329,   9015,   8966,  19135,  18401,  28549,  26274 

  27700,   8966,   9015,   9016,  19132,  26274,  28549,  28550,  25918 

  27701,  19132,   9016,   9017,   8968,  25918,  28550,  28551,  25562 

. 

. 

. 

 117146, 102242,  65040,  64684, 102243,  75187,  63609,  63608,  75186 

 117147, 102243,  64684,  64328, 102244,  75186,  63608,  75092,  75185 

 117148, 102244,  64328,  67304,  66856,  75185,  75092,  67305,  66857 

*MPC 

    PIN,     4543,     73466 

    PIN,     4598,     56652 

    PIN,     4597,     57008 
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. 

. 

. 

    PIN,       58,     57189 

    PIN,       59,     56833 

    PIN,       10,     73285 

*ELSET, ELSET=OUT_CONT, GENERATE 

1,360,1 

81449,117148,1 

** Femap with NX Nastran Property 1 : Core 

*ORIENTATION, NAME=S0, DEFINITION=COORDINATES, 

SYSTEM=RECTANGULAR 

        1.,        0.,        0.,        0.,        1.,        0. 

*SOLID SECTION, ELSET=P1, MATERIAL=M1, ORIENTATION=S0 

** Femap with NX Nastran Property 2 : Facesheets 

*SOLID SECTION, ELSET=P2, MATERIAL=M2, ORIENTATION=S0 

*MATERIAL, NAME=M1 

*ELASTIC, TYPE=ISOTROPIC 

  3440000.,     0.324,        0. 

*DENSITY 

   0.000112 

*MATERIAL, NAME=M2 

*ELASTIC, TYPE=ENGINEERING CONSTANTS 

3673806.,3673806.,1952208.,0.12,0.29,0.29,752746.,759998. 

759998.,0. 

*DENSITY 

   0.000175 

*CONDUCTIVITY, TYPE=ORTHO 

        0. 

*BOUNDARY 

 8966,    1 

 8966,    2 

 8966,    3 

 8966,    4 

 8966,    5 

 8966,    6 

. 

. 

. 

28448,    1 

28448,    2 

28448,    3 

28448,    4 
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28448,    5 

28448,    6 

** Load Step 1 ------------------------------------------------------- 

*STEP, INC=100 

Untitled 

*FREQUENCY, EIGENSOLVER=LANCZOS 

    10, , , , ,  

*NODE PRINT, FREQUENCY=1 

    U, 

*FILE FORMAT, ASCII 

*NODE FILE, FREQUENCY=1 

    U, 

*BOUNDARY, OP=NEW 

 8966,    1 

 8966,    2 

 8966,    3 

 8966,    4 

 8966,    5 

 8966,    6 

. 

. 

. 

28448,    1 

28448,    2 

28448,    3 

28448,    4 

28448,    5 

28448,    6 

*END STEP 
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FEM Code 2: ABAQUS Loaded Model (model 1 shown) 

*NODE, NSET=GLOBAL 

       1,        18.2,-3.578268E-8,   1.0500002 

       2,       18.15,-3.568245E-8,   1.0500002 

       3,         0.8,-2.012776E-9,        0.15 

       4,        18.1,-3.558222E-8,   1.0500002 

       5,         0.8, -1.34185E-9,        0.35 

. 

. 

. 

  102240,       18.15,   1.7999999,   1.0000005 

  102241,       18.15,   1.8999999,   0.8500003 

  102242,       18.15,   1.8999999,   0.9000004 

  102243,       18.15,   1.8999999,   0.9500004 

  102244,       18.15,   1.8999999,   1.0000005 

*ELEMENT, TYPE=C3D8R, ELSET=P4 

      1,    247,    476,    477,    246,    495,    325,    485,    494 

      2,    240,    469,    470,    239,    247,    476,    477,    246 

      3,    233,    462,    463,    232,    240,    469,    470,    239 

      4,    226,    455,    456,    225,    233,    462,    463,    232 

      5,    212,    441,    442,    211,    219,    448,    449,    218 

. 

. 

. 

    356,   8597,   8802,   8795,   8590,   8596,   8803,   8796,   8589 

    357,   8590,   8795,   8788,   8583,   8589,   8796,   8789,   8582 

    358,   8576,   8781,   8774,   8569,   8575,   8782,   8775,   8568 

    359,   8569,   8774,   8719,   8917,   8568,   8775,   8909,   8918 

    360,   8583,   8788,   8781,   8576,   8582,   8789,   8782,   8575 

*ELEMENT, TYPE=C3D8R, ELSET=P2 

    824,  67596,  63241,  67508,    489,  67597,  63240,  67572,     39 

    825,  63241,  62885,     42,  67508,  63240,  62884,  67642,  67572 

    826,  62885,  62529,  67678,     42,  62884,  67615,    100,  67642 

    827,  62529,  67623,  67511,  67678,  67615,  67578,  67644,    100 

    828,  67623,  61817,    315,  67511,  67578,  67613,    102,  67644 

. 

. 

. 

   9644,   8593,   8806,   8799,   8586,   8929,  70518,   8961,   8561 

   9645,   8586,   8799,   8792,   8579,   8561,   8961,  70520,  70551 

   9646,   8579,   8792,   8785,   8572,  70551,  70520,   8726,  70672 

   9647,   8572,   8785,   8778,   8565,  70672,   8726,  70522,   8925 

   9648,   8565,   8778,   8723,   8510,   8925,  70522,  70523,  70548 
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*ELEMENT, TYPE=C3D8R, ELSET=P1 

  27699,  17328,  17329,   9015,   8966,  19135,  18401,  28549,  26274 

  27700,   8966,   9015,   9016,  19132,  26274,  28549,  28550,  25918 

  27701,  19132,   9016,   9017,   8968,  25918,  28550,  28551,  25562 

  27702,   8968,   9017,   9018,  19130,  25562,  28551,  28552,  25206 

  27703,  19130,   9018,   9019,   8970,  25206,  28552,  28553,  24850 

. 

. 

. 

 117144,  62893,  63612,  65396, 102241,  75087,  75088,  63610,  75188 

 117145, 102241,  65396,  65040, 102242,  75188,  63610,  63609,  75187 

 117146, 102242,  65040,  64684, 102243,  75187,  63609,  63608,  75186 

 117147, 102243,  64684,  64328, 102244,  75186,  63608,  75092,  75185 

 117148, 102244,  64328,  66676,  66228,  75185,  75092,  66677,  66229 

*ELSET, ELSET=OUT_CONT, GENERATE 

1,360,1 

81449,101866,1 

*SURFACE, NAME=SURF1, TYPE=ELEMENT 

P1 

P2 

P4 

*CONTACT 

*CONTACT INCLUSIONS 

SURF1 

*Amplitude, name=Amp-1, DEFINITION=TABULAR, time=TOTAL TIME 

0, 0, 0.000024, 0, 0.000025, 1, 0.034052, 0 

*Amplitude, name=Amp-2, DEFINITION=TABULAR, time=TOTAL TIME 

0, 0, 0.000024, 0, 0.000025, 1, 0.034307, 0 

*Amplitude, name=Amp-3, DEFINITION=TABULAR, time=TOTAL TIME 

0, 0, 0.000024, 0, 0.000025, 1, 0.034563, 0 

. 

. 

. 

*Amplitude, name=Amp-7516, DEFINITION=TABULAR, time=TOTAL TIME 

0, 0, 0.000024, 0, 0.000025, 1, 0.034563, 0 

*Amplitude, name=Amp-7517, DEFINITION=TABULAR, time=TOTAL TIME 

0, 0, 0.000024, 0, 0.000025, 1, 0.034307, 0 

*Amplitude, name=Amp-7518, DEFINITION=TABULAR, time=TOTAL TIME 

0, 0, 0.000024, 0, 0.000025, 1, 0.034052, 0 

*ORIENTATION, NAME=S0, DEFINITION=COORDINATES, 

SYSTEM=RECTANGULAR 

        1.,        0.,        0.,        0.,        1.,        0. 

*SOLID SECTION, ELSET=P1, MATERIAL=M1, ORIENTATION=S0 
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*SOLID SECTION, ELSET=P2, MATERIAL=M2, ORIENTATION=S0 

*SOLID SECTION, ELSET=P4, MATERIAL=M4, ORIENTATION=S0 

** Femap with NX Nastran Material 4 : Brittle Cracking 

*MATERIAL, NAME=M4 

*ELASTIC, TYPE=ISOTROPIC 

  1800000.,     0.324,        0. 

*BRITTLE CRACKING, TYPE=STRAIN 

3600, 0, 

1, 0.002, 

*BRITTLE SHEAR, TYPE=RETENTION FACTOR 

1, 0, 

1, 0.002 

*BRITTLE FAILURE, CRACKS=1 

0.002, 

*DENSITY 

   0.000112 

*MATERIAL, NAME=M1 

*ELASTIC, TYPE=ENGINEERING CONSTANTS 

3440000,3440000,1800000,0.324,0.28,0.28,800000,435000 

435000,0. 

*DENSITY 

   0.000112 

*MATERIAL, NAME=M2 

*ELASTIC, TYPE=ENGINEERING CONSTANTS 

3673806.,3673806.,1952208.,0.12,0.29,0.29,752746.,759998. 

759998.,0. 

*DENSITY 

   0.000175 

*CONDUCTIVITY, TYPE=ORTHO 

        0.,        0.,        0.,        0. 

*BOUNDARY 

 8966,    1 

 8966,    2 

 8966,    3 

 8966,    4 

 8966,    5 

 8966,    6 

. 

. 

. 

28448,    1 

28448,    2 

28448,    3 
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28448,    4 

28448,    5 

28448,    6 

** Load Step 1 ------------------------------------------------------- 

*IMPERFECTION, FILE=model1E_mode_shape, STEP=1 

9, 0.03 

*STEP 

*Dynamic, Explicit, ELEMENT BY ELEMENT 

,.02,,  

*Bulk Viscosity 

0.06, 1.2 

*BOUNDARY, OP=NEW 

 8966,    1 

 8966,    2 

 8966,    3 

 8966,    4 

 8966,    5 

 8966,    6 

. 

. 

. 

28448,    1 

28448,    2 

28448,    3 

28448,    4 

28448,    5 

28448,    6 

*CLOAD, OP=NEW, amplitude=Amp-1 

1,    2,     -6.477557 

*CLOAD, OP=NEW, amplitude=Amp-2 

2,    2,     -12.983632 

*CLOAD, OP=NEW, amplitude=Amp-3 

. 

. 

. 

*CLOAD, OP=NEW, amplitude=Amp-7516 

66875,    2,     -13.012157 

*CLOAD, OP=NEW, amplitude=Amp-7517 

66876,    2,     -12.983632 

*CLOAD, OP=NEW, amplitude=Amp-7518 

66877,    2,     -6.477557 

*OUTPUT, FIELD, NUMBER INTERVALS=200, VARIABLES=ALL 

*END STEP 


