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ABSTRACT 

Instrumented indentation is a popular technique used to determine the elastic and 

plastic material properties of small scale structures. In this dissertation, an attempt is 

made to advance the indentation research in three areas:  

 

i) Indentation of non-flat substrates;  

ii) Uniqueness and sensitivity of indentation testing;  

iii) Indentation of anisotropic materials. 

 

Regarding indentation of non-flat substrates, conical indentation of a sphere made of 

isotropic, linear-elastic, perfectly-plastic material and viscoelastic material is 

investigated. For the sphere with time-independent properties, a semi-analytical 

method and a finite element based reverse analysis technique are proposed to 

determine the material properties. It is shown that the methods can predict the material 

properties quite accurately. For the viscoelastic sphere, a semi-analytical method is 

developed to obtain the force-displacement relationship of the sphere. The method can 

be used to obtain the force-displacement relationship of a viscoelastic sphere much 

faster than the finite element simulation, thus saving computational cost for a possible 

reverse analysis. The methodologies proposed for the sphere can inspire similar 

methodologies for other non-flat substrates. 



 xxv

 

Regarding the non-uniqueness and sensitivity due to experimental error of indentation 

testing, it is shown comprehensively that the two phenomena are not independent, 

rather non-uniqueness is an extreme case of sensitivity. A methodology is developed 

to systematically identify the materials which will result in identical force-

displacement relationship. The concept of condition number is employed to quantify 

and rank the sensitivity of different indentation methodologies due to experimental 

error. Thus, guidelines are provided regarding the selection of test conditions to 

improve the sensitivity. The guidelines obtained from the condition number are 

verified by explicit sensitivity analysis. It appears that, in general, indentation tests 

need to be very accurate to determine the material properties accurately.  

 

Regarding indentation of anisotropic materials, various possible dual indentation 

methodologies have been considered for indentation of a transversely isotropic, linear-

elastic, perfectly-plastic material. The methodologies developed for uniqueness and 

sensitivity analysis are applied to the material. It appears that the sensitivity for 

transversely isotropic materials is higher compared to the isotropic materials. 
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Chapter 1 

INTRODUCTION 

Small scale structures such as thin films, micro-fibers and micro-spheres are 

frequently used in many engineering components such as solar panels, MEMS, 

medical devices and so on. Determination of the mechanical properties of such small 

scale structures is a key step in designing such engineering devices. Conventional 

testing methods, such as tensile testing and bending testing are primarily designed for 

much larger scale structures. Thus, with the growing applications of small scale 

structures, there is a need for developing testing methods for determining mechanical 

properties at the micro scale. A popular technique for determining the mechanical 

properties of bulk materials available in small volume is indentation testing (Cheng 

and Cheng, 2004; Green, 2005; Oliver and Pharr, 1992; Johnson, 1987; Jackson et al., 

2010; Yan et al., 2007a, 2007b). Originally, the technique was developed to measure 

material hardness, but in last few decades, methodologies have been developed to 

measure more sophisticated mechanical properties such as elastic and plastic material 

properties through instrumented indentation testing (see the review by Cheng and 

Cheng (2004)).  

Figure 1.1 shows a typical nanoindenter (Hysitron Triboindenter). During an 

indentation experiment (Figure 1.2a and 1.2b), a rigid indenter is pushed into and then 

removed from the surface of a solid substrate, while the indentation force, P, and 

depth of penetration, h, are continuously measured during loading and unloading 

periods. Thus, a “force-displacement relationship” is obtained from the indentation 
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testing (Figure 1.2c). Methodologies are being developed to extract the elastic and 

plastic properties of the substrate material using the force-displacement relationship. 

Two steps are involved in such methodologies. In the first step, a correlation is 

obtained between the force-displacement relationship and the material properties using 

analytical or numerical methods. For example, a finite element model for a particular 

indenter and substrate geometry can be created and the material properties can be 

varied systematically to obtain the force-displacement relationships for a range of 

materials. Based on the results, a regression analysis can be used to express the 

characteristic quantities quantifying the force-displacement relationships in terms of 

the material properties, that is, the constitutive equations for the tested system. This 

step is known as forward analysis. In the second step, the correlation obtained in the 

first step is inverted to express the material properties in terms of the force-

displacement relationship. Since the constitutive equations are now known, the force-

displacement relationship obtained from an actual indentation experiment can be used 

to extract the material properties of the substrate. This step is known as reverse 

analysis. 
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(a) 

 

(b) 

Figure 1.1: A typical nanoindenter (Hysitron Triboindenter): (a) outside view and (b) 
inside view 
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Figure 1.2: (a) Isometric view of a typical indentation experiment (b) Cross-sectional 
view of an indentation experiment (c) force-displacement relationship 
obtained from a typical indentation experiment 

Currently, indentation tests are used to determine the material properties of 

substrates over a wide range of geometries and material types. These include 

substrates with flat surfaces e.g., thin films (Zhao et al., 2007), spherical surfaces e.g., 

living cells (Cao et al., 2004) and cylindrical surfaces e.g., micro-fibers (McAllister et 

al, 2012). Different material types include isotropic (Cao et al., 2005), anisotropic 

(McAllister et al., 2012) and visco-elastic materials (Vandamme and Ulm, 2006). 

However, in some cases, more than one material can yield indistinguishable force-
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displacement relationships (Cheng and Cheng, 1999; Capehart and Cheng, 2003; Tho 

et al., 2004; Alkorta et al., 2005, Chen et al., 2007, Liu et al., 2009, Wang et al., 2010). 

Thus, a unique relationship between the material properties and the force-displacement 

relationship is not guaranteed. In addition, Hyun et al. (2011) found that in certain 

cases, a small experimental error can lead to very large error in the determined 

material properties. Thus, non-uniqueness and sensitivity to experimental error may 

determine the practical effectiveness of indentation testing. A literature review will be 

presented below (sections 1.2-1.7) to elucidate the following scope of improvements 

in indentation research. In summary, the works published in the open literature show: 

1. Most of the methodologies are limited to flat substrates and thus new 
methodologies need to be developed for non-flat substrates. 

2. Sporadic works are available regarding non-uniqueness and sensitivity 
of indentation testing and thus a systematic investigation of these two 
issues for different substrate geometries and material types needs to be 
developed. 

3. Limited works are available for anisotropic material and thus 
methodologies need to be extended to include this material type. 

In section 1.1, selected basic mathematical concepts that will be used in this 

dissertation will be presented. In sections 1.2-1.7, a description of the essential 

concepts involved in an indentation analysis will be presented along with a literature 

review. This will be followed, in section 1.8, by a description of the current work and 

the organization of the remaining chapters. 
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1.1 Useful Mathematical Concepts 

1.1.1 Uniqueness, sensitivity and condition number 

A sensitivity analysis of a system investigates how much perturbation is 

required in the input/solution to produce a particular amount of change in the 

output/data. The sensitivity of a system can be quantified by condition number (Datta, 

2010). The condition number gives a measure of the ratio of the error in the solution to 

the error in the data. Thus, for a system, a large condition number implies that a small 

deviation in the data is cause for a large deviation in the solution. Therefore, a system 

with a large condition number is sensitive to experimental errors and is called ill-

conditioned. Similarly, a small condition number implies that the system is not 

sensitive to perturbations in data (experimental errors) and is well-conditioned. The 

condition number is an inherent property of the system and does not depend on the 

algorithm that is used to solve the system, defined as follows.  

Consider the general system (linear or nonlinear) of equations, , 

where  is the input/solution vector and the output/data vector. With the 

perturbations in the solution and the data, the system of equations can be written as

. For the special case of a linear system, the system of equations,

 can be expressed as , where  is a two-dimensional matrix. With 

perturbations, it becomes . 

There are two definitions of condition number (Higham, 1996; Rheinbodt, 

1976): one relates to the absolute error in the data or the solution, and the other to the 

relative error. Since the relative error tends to be more useful than the absolute error, 

the second condition number is used more widely than the first condition number. For 

( ) f x y

x y

( ) f x + Δx y + Δy

( ) f x y Ax y A

( ) A x + Δx y + Δy
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the system, , the second condition number at a point , of the domain (of 

input, ), is given by: 

  (1.1a) 

with 

  (1.1b) 

where C is a sub-domain enclosing the point  and  denotes the second norm. For 

the linear system, the second condition number reduces to a simpler expression, which 

is given by: 

  (1.1c) 

It can be shown that (Higham, 1996; Rheinbodt, 1976), small  implies  is 

small for a given  and vice versa. Well-conditioned systems have condition 

numbers close to 1, which is the case of tensile testing. 

To illustrate how the condition number can quantify the sensitivity of a system, 

four simple linear systems are considered (Table 1.1). Perturbations were applied to 

the original systems (for all the four examples) by changing the first element of the 

data vector, y, by 1%. The solutions of the original and perturbed systems were 

computed and percentage differences were determined. Table 1.1 shows that the error 

in the solution increases as the condition number increases. The fourth example is of a 

non-unique system and for this system, the condition number is infinity. Figure 1.3 

provides a graphical representation of the four systems. The graphs of the linear 

systems (examples a, b and c of Table 1.1) will be straight lines in the x1-x2 plane and 

the original systems (unperturbed) are plotted in Figures 1.3a, 1.3b and 1.3c, 
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x
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respectively. As the condition number of the system increases, the straight lines get 

closer to each other. For the third example, the straight lines are so close that it 

appears they have overlapped. Finally, in the fourth example, when the two straight 

lines actually overlap, the solution becomes non-unique (a figure for this situation has 

not been shown due to its triviality). Thus, the uniqueness and the extent of the 

sensitivity of a system can be quantified using the condition number and the non-

uniqueness can be considered as an extreme case of a highly sensitive system. These 

concepts will be used later to study the sensitivity due to experimental errors for a 

range of indentation methodologies. 
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Table 1.1: Correlation between condition number and the sensitivity to perturbation in 
four linear systems. 

Example 
System 

 

Solution 
 

Condition 
number 

Percentage 
change in  

the 
solution 

a 

Original 
x1 = 1 
x2 = 1 

1.6400 
x1: 0.25 
x2: 1.25 

Perturbed 
x1 = 1.0025 
x2 = 1.0125 

b 

Original 
x1 = 1 
x2 = 1 

7.7606 
x1: 2.67 
x2: 2.22 

Perturbed 
x1 = 0.9733 
x2 = 1.0222 

c 

Original 
x1 = 1 
x2 = 1 

3.99E6 
x1: 1.995E6 

x2: -
1.997E6 

Perturbed 
x1 = -1.995E4 
x2 = 1.997E4 

d  Non-unique Infinity -- 
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(a) 

 

(b) 
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(c) 

Figure 1.3: Three systems of straight lines (examples a, b and c of Table 1.1: the 
original or unperturbed systems) with increasing condition number and 
sensitivity. As the condition number increases, the straight lines approach 
each other and finally overlap. 

1.1.2 Buckingham PI theorem 

Buckingham PI theorem (Buckingham, 1914) is an important theorem 

regarding dimensional analysis and is used in indentation analysis to reduce the 

computational cost. According to this theorem, if there are n physical variables, and k 

is the rank of the dimensional matrix, then the equation is equivalent to an equation 

involving a set of p = n − k dimensionless parameters constructed from the original 

variables. The theorem is illustrated below by a simple example. 

Consider the problem of the elastic cantilever beam deflection as shown in 

Figure 1.4 with the following parameters: beam length: l, elastic modulus: E and 
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radius of the circular cross-section: r. A point load of magnitude P is applied on the tip 

of the beam and the corresponding tip deflection is . The tip deflection is a function 

of the material properties, geometric parameters and the force. Thus the deflection can 

be written as: 

  (1.2) 

To obtain the functional form of f using finite element simulations, the four parameters 

need to be varied systematically.  

 

Figure 1.4: A cantilever beam problem used for illustrating Buckingham PI theorem. 

The dimensional matrix can be formed from the units of the parameters in Eq. 

(1.2) and is shown in Table 1.2 (M, L and T denote the idices corresponding to mass, 

length and time, respectively, in the units of the parameters). 

Table 1.2: Dimensional matrix of the parameters involved in Eq. (1.2). 

 P l E R 
M 1 0 1 0 0
L 1 1 -1 1 1
T -2 0 -2 0 0

 

 , , ,f P l E R 
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The rank of the above matrix can be computed to be 2 (procedure for 

computing rank of a matrix can be found in standard books on Linear Algebra e.g. 

(Datta, 2010)) and thus according to Buckingham’s PI theorem, there are 5 – 2 = 3 

independent non-dimensional groups. By inspection, three non-dimensional groups 

can be formed as (/l), and (l/R) and, consequently, Eq. (1.2) can be written 

in its non-dimensional form as follows: 

  (1.3) 

Thus, Eq. (1.3) implies that only two non-dimensional parameters need to be varied, 

instead of four, to obtain the functional form of f. In this way, Buckingham PI theorem 

can be used to save computational cost and is used in indentation analyses frequently. 

1.1.3 Solution of a system of nonlinear equations 

In indentation analyses, a system of nonlinear equation arises which needs to 

be solved in order to obtain the material properties from an indentation experiment. 

The solution procedure used in this thesis will be described in this section. 

Consider the set of nonlinear equations: 

  (1.4) 

In this set of equations, the quantities on the left hand side, and the functions f1, f2 and 

f3 are known. The quantities on the right hand side, x1, x2 and x3 are to be determined. 

The functions, f1, f2 and f3 appearing in this thesis are highly nonlinear functions. Non-

linear systems can be solved numerically using an iterative process. The predicted 

solution, , is the one for which the residual or the distance between the 
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vectors  and  is 

minimized. The residual can be defined in various ways, but will be defined in this 

thesis as 

  (1.5) 

The ordinary line search and golden section line search (Arora, 2012) methods 

were impractical to use for solving the nonlinear systems of this thesis because of the 

very high computational cost involved. Although, the Newton-Raphson method 

(Arora, 2012) converged much faster, the convergence was dependent on the initial 

starting point. Further, although the Newton-Raphson method works well for a well-

posed system, it does not converge at all for an ill-posed system. Due to these 

problems, a combination of the three methods was used to solve the set of nonlinear 

equations in the present work. The algorithm is schematically shown in Figure 1.5. At 

first, an ordinary line search is employed to determine the solution. The predicted 

solution is used as an initial guess to a Newton-Raphson algorithm. If the solution 

converges, the algorithm is ended. If it does not converge after 1000 Newton-Raphson 

iterations, a golden section line search is employed thereafter starting from the 

solution of the ordinary line search. 

The system of equations considered may have multiple solutions. Multiple 

solutions can exist either discretely or continuously over a region. In indentation 

analyses, if multiple solutions exist, they were found to exist over a continuous region 

only. In such a case, the Newton-Raphson method does not converge. The golden 

section line search algorithm will converge to one of the multiple solutions, and thus, 

all the solutions cannot be obtained using the proposed algorithm. However, this was 
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found to be sufficient for this study and other methods were employed (will be 

discussed later in Chapter 3) to determine all the solutions. 

 

Figure 1.5: Algorithm used to solve the nonlinear set of equations arising in 
indentation analyses 

1.2 Geometry and Material Properties 

Indenters of various shapes are used in indentation testing and three important 

types: conical, spherical and flat indenters are considered here. A conical indenter can 
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be characterized by the half-angle, , and a spherical indenter can be characterized by 

the radius, Ri (see Figure 1.6). The widely used indenter, the Berkovich indenter can 

be represented by a conical indenter with half-angle,  = 70.3 (Lichinchi et al., 1998). 

 

 

Figure 1.6: The two widely used indenters: a) conical indenter with half-angle  and 
b) spherical indenter with radius Ri. 

Most of the indentation literature is devoted to indentation on substrates with flat 

surfaces. Specific examples of such substrates include thin films (Wang et al., 2010) 

and single crystals (Brookes et al., 1971; Aguilar-Santillan, 2008; Viswanath et al., 

2007). Substrates with spherical shapes (radius will be denoted by Rs) requiring 

material characterization include micron-sized metal coated polymer particles used in 

the manufacturing of anisotropic conductive adhesives (Kristiansen et al., 2001), 

polymer latex particles for controlling the mechanical properties of latex films used in 

the synthetic latex materials (Misawa et al., 1991; Tamai et al., 1989) and living cells 
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(Dao et al., 2003). Micro and nano-fibers (McAllister et al., 2012; Ebenstein and 

Wahl, 2006) are examples of substrates with cylindrical surfaces. 

A suitable material model for many metals or metallic alloys is the isotropic, 

linear-elastic, power-law strain hardening plastic model shown in Figure 1.7a (Dieter 

and Bacon, 1986; Lubliner, 1990).  According to this, the uniaxial stress-strain 

relationship of a material can be expressed as: 

  (1.6) 

where  and  correspond to the stress and the strain, respectively, and E, Y and n 

denote the elastic modulus, the yield strength and the strain hardening exponent of the 

material, respectively. The strength coefficient, K, can be written as . Apart 

from power-law hardening plasticity, another widely adopted model for metal is linear 

strain hardening plasticity, as illustrated in Figure 1.7b (Dieter, 1986). The constitutive 

relation for this material model can be written as: 

  (1.7) 

where Ep is the hardening rate. In the simplified linear-elastic, perfectly-plastic model, 

(Figure 1.7a or 1.7b) the hardening is assumed to be zero, i.e., n = 0 (power-law 

hardening) or Ep = 0 (linear hardening). In this case, the constitutive relation becomes: 

  (1.8) 
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Poisson’s ratios are assumed to be constant in this work for simplicity since they are 

minor factors in indentation testing (Cheng and Cheng, 2004).  

The simplest possible anisotropic material is the transversely isotropic, 

linearly-elastic, perfectly-plastic material. Assuming that x-y is the plane of isotropy 

(Figure 1.7c), we have the following material parameters: Young’s moduli: Ex = Ey, 

Ez; Poisson’s ratio: xz = yz, xy; shear moduli: Gxz = Gyz, Gxy = Ex/(2(1+xy)) and yield 

strength: Y. 

 

Figure 1.7: Three time-independent material models: (a) Isotropic, linear-elastic, 
power-law hardening material (b) isotropic, linear-elastic, linear 
hardening material (c) transversely isotropic, linear-elastic, perfectly-
plastic material (x-y is the plane of isotropy) 
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The material properties of viscoelastic materials are discussed in many text 

books, see for example, (Haddad, 1995). Viscoelastic materials exhibit both elastic 

solid and viscous fluid behavior. The general constitutive equation of a viscoelastic 

material can be written as (where t denotes time): 

 
2 3 2

1 2 3 0 1 22 3 2
... ...

d d d d d
p p p q q q

dt dt dt dt dt

              (1.9) 

Many models of viscoelastic materials are available with various combinations 

of springs (representing elastic behavior) and dashpots (representing viscous 

behavior). The constitutive equations associated with these models retain different 

terms from left and right hand sides of the general constitutive relation, Eq. (1.9). Two 

very simple models are Maxell’s element and Kelvin-Voigt elements which are shown 

in Figure 1.8a and 1.8b, respectively. The most widely used model is the standard 

three parameter model shown in Figure 1.8c. The constitutive relation for this model is 

given by: 

 1 0 1

d d
p q q

dt dt

      (1.10) 

To model a viscoelastic material, the constitutive behavior is divided into 

spherical and deviatoric components, and suitable representation from the above 

described models are assigned to those components. This will be discussed in more 

details in Chapter 2. 
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Figure 1.8: Three selected models for viscoelastic materials: (a) Maxwell element (b) 
Kelvin-Voigt element and (c) standard three parameter model 

1.3 Oliver-Pharr Method 

The force-displacement response obtained from an indentation experiment can 

be characterized by various functions such as the total energy during loading (the area 

under the loading curve), Wt, maximum force, Pm, unloading slope, Su, elastic energy 

(the area under the unloading curve), We,  maximum indentation depth, hm, and 

residual or final depth, hf  (Yan et. al., 2007a, 2007b ; Dao et al., 2003; Ogasawara et 

al., 2009; Cao et al., 2005; Phadikar et al., 2012). These functions are typically 

referred to as “shape functions.” 

The most widely used method for determining the elastic modulus for a flat 

semi-infinite isotropic substrate using indentation technique is the so-called ‘‘Oliver–

Pharr method’’ (Oliver and Pharr, 1992). This method assumes that the initial 

unloading is elastic and thus uses the elastic solution for the problem to express the 

unloading slope, Su, in terms of elastic modulus, Poisson’s ratio and contact radius 



 21

(radius of projected area of contact at maximum depth of penetration). Accordingly, 

the relationship is given by: 

  (1.11a) 

where a is the contact radius at maximum load, E and ν are elastic modulus and 

Poisson’s ratio, respectively, of the substrate material, and β is a correction factor. Er 

is known as the plane strain reduced modulus of the material. One disadvantage of this 

method is the need of the contact radius, a, which is difficult to measure 

experimentally (Chen et al., 2006; Johnson, 1987). A common method to determine 

the contact radius is to use the contact depth, δc, which can be determined from the 

following equation: 

  (1.11b) 

where  is a dimensionless constant which depends on the indenter geometry, for 

example  = 0.75 for a Berkovich indenter (Oliver and Pharr, 1992). However, this 

relationship is not applicable to a range of cases (Cheng and Cheng, 2004; Pharr, 

1998). Moreover, the Oliver-Pharr method does not give any information about the 

inelastic properties of the material. 

Due to these limitations, several authors have attempted to use other shape 

functions to determine the elastic and plastic properties (Cao and Lu, 2004; Xu and Li, 

2005; Yan et al., 2007a, 2007b; Zhao et al., 2006). This will be described next.  

1.4 Single Indentation 

Considering conical indentation of an elastic half-space made of isotropic, 

linear-elastic, power-law strain hardening material, the force-displacement relationship 
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depends on the material properties, such as E, Y and n, and geometrical parameters, 

such as hm and α. The shape functions, i can be written as (Phadikar et al., 2013b): 

  (1.12a) 

where . The superscript ph indicates 

power-law hardening material. Using the above relations, various combinations of the 

shape functions can also be expressed in terms of the material and geometric 

parameters, for example,  

  (1.12b) 

Applying dimensional analysis and Buckingham’s PI theorem (Buckingham, 1914) to 

Eq. (1.12a), the relations can be simplified as follows (Phadikar et al., 2013b): 

  (1.13) 

where  and the 

overhead bar indicates normalized form. In an indentation experiment, the geometrical 

parameters are known. Thus, for fixed geometric parameters ( and hm), Eqs. (1.12a) 

& (1.13) can be written as 

  (1.14a) 

  (1.14b) 

The functions  can be determined using finite element analysis. For this, finite 

element models simulating indentation experiments can be built and shape functions 

can be extracted from the force-displacement relationships by systematically varying 

the material properties. Then by regression analysis, the functions  can be 
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obtained. Once the functions are obtained, three shape functions obtained from a real 

indentation experiment can be selected and substituted in Eq. (1.14a) or (1.14b) to 

determine the three material properties. The procedure is illustrated in Figure 1.9. 

 

Figure 1.9: Procedure for obtaining material properties from an indentation experiment 
(single indentation) 

Eqs. (1.12)-(1.14) represent the relationships between the shape functions and 

material properties for conical indentation of a half-space made of isotropic, linear-
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elastic, power-law strain hardening material. Similar relationship can be derived for 

other indenter/substrate geometries and material models. For isotropic, linear-elastic, 

linear hardening material, the relationship between the normalized shape functions and 

material properties takes the following form (superscript lh indicates linear hardening) 

(Phadikar et al., 2013d): 

  (1.15) 

For transversely isotropic, linear-elastic, perfectly-plastic material, the relationships 

take the following form (Phadikar et al., 2013e): 

  (1.16) 

where, , 

superscript tp stands for transversely isotropic material. For conical indentation of a 

half-space, Eqs. (1.14) – (1.16) are valid for fixed half-angle . It can be shown in 

similar ways that for other indenter/substrate geometries the relationships are valid for 

the following fixed parameters: i) spherical indentation of a half-space: fixed depth-to-

radius ratio, hm/Ri; ii) conical indentation of a sphere: fixed half-angle,  and depth-to-

radius ratio, hm/Rs ; and iii) spherical indentation of a sphere: fixed depth-to-substrate 

radius ratio, hm/Rs and indenter radius-to-substrate radius ratio: Ri/Rs.   

Several research groups (Cheng and Cheng, 1999; Capehart and Cheng, 2003; 

Tho et al., 2004; Alkorta et al., 2005, Chen et al., 2007, Liu et al., 2009, Wang et al., 

2010) have reported that more than one material can result in indistinguishable force-

displacement relationships. Thus, a one-to-one relationship between the material 

properties and the experimentally obtained force-displacement relationship is not 
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guaranteed. Consequently, a single indentation technique described in the previous 

section cannot be used to determine the material properties of a substrate. Several 

researchers have attempted to systematically identify materials that yield identical 

force-displacement relationships and a brief review is presented in the following 

section. That will be followed by a review of dual indentation methodologies which 

are proposed to overcome the limitation of single indentation technique. 

1.5 Non-uniqueness of Force-displacement Relationship 

Different researchers have proposed different methodologies for systematic 

identification of materials with identical force-displacement relationships, for specific 

geometries and material properties. 

Cheng and Cheng (1999), Capehart and Cheng (2003), Tho et al. (2004), 

Alkorta et al. (2005), Chen et al. (2007) and Liu et al. (2009), investigated the non-

uniqueness of force-displacement relationship for conical indentation of flat substrates 

made of isotropic, linear elastic, power law hardening materials. They used the self-

similarity of the specific indentation problem and showed that out of two shape 

functions of the loading curve (loading energy, Wt, and maximum load, Pm), only one 

is independent and can be used to characterize the entire loading curve. Thus, by 

obtaining materials with identical Pm, they obtained materials with identical loading 

curves. However, self-similarity does not exist for other commonly used indentation 

geometries, such as spherical indentation of a half-space (Cao and Lu, 2004; Zhao et. 

al., 2006), conical indentation of a sphere (Phadikar et. al., 2012) and spherical 

indentation of a sphere (Zhou and Lu, 2010). Thus, the methodologies may not be 

applicable for these indentation geometries.  
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As an alternative to identify materials with identical loading curves discussed 

above, various efforts on identifying materials with identical unloading curves have 

been explored. For example, Alkorta et al (2005), Tho et al. (2004), Liu et al. (2008) 

and Chen et al. (2008) showed that the unloading curve can be described by a power 

law expression (known as “potential law,” Oliver and Pharr (1992)) to identify 

materials with identical unloading curves and thus obtained materials with identical 

force-displacement relationship. However, the potential unloading law (Oliver and 

Pharr (1992)), is shown to be valid for conical indentation of a half-space made of 

isotropic materials, but not for other indentation geometries or for anisotropic or 

viscoelastic materials. Cheng and Cheng (1999) showed that for given total loading 

energy, Wt, a correlation exists between elastic energy, We and final depth, hf. Further, 

they demonstrated numerically that materials with identical We also results in identical 

unloading slope, Su. Thus, they showed that out of the three possible shape functions 

describing the unloading curve, only one is independent. Thereby, they obtained 

materials with identical We (or Su and hf) and the materials were found to have 

identical unloading curves. However, a clear explanation of whether identical We (or 

Su and hf) will always result in identical unloading curve was not provided. Capehart 

and Cheng (2003) obtained materials with identical unloading curves by using a 

statistical method utilizing a large number of points in the unloading curve. In addition 

to conical indentation of a half-space made of isotropic, linear elastic, power-law 

strain hardening plastic materials, Liu et al. (2009) considered bilinear hardening 

plastic materials and spherical indentation. For conical indentation of a half-space 

made of linear hardening plastic materials, self-similarity and “potential law” 

descriptions were used for obtaining materials with identical loading and unloading 
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curves, respectively. For spherical indentation of a half-space, they attempted to 

identify materials with identical loading curves by comparing the quantity . 

Although the materials with identical value of C resulted in identical loading curves 

for shallow indentation, the loading curves differed considerably for deep indentation. 

Wang et al. (2010) attempted to identify elastic moduli of a transversely isotropic, 

linear-elastic thin film using finite element based reverse analysis and concluded that 

several materials can result in identical force-displacement relationship. 

Thus, it can be concluded that a general method for obtaining materials with 

identical force-displacement relationship for different material types and indentation 

geometries is not developed yet.  

To overcome the problem of non-uniqueness in single indentation, several 

researchers have proposed dual indentation in which two indenters are utilized instead 

of a single indenter. This will be described next. 

1.6 Dual Indentation 

To address the shortcoming of the single indentation methodology, dual 

indentation methodologies have been proposed by several authors (Table 1.3). In dual 

indentation methodologies, two indenter geometries are utilized giving two additional 

shape functions. Considering conical indentation of a half-space made of isotropic, 

linear-elastic, power-law hardening material, only three equations are needed and the 

premise is that two sets of half-angles will provide distinct displacement responses. 

Thus, it will be possible to uniquely determine the material properties. For two sets of 

fixed geometrical parameters, Eq. (1.14b) can be written as (Phadikar et al., 2013b): 

  (1.17) 

2/m mC P h

, ,  ;    1 5; 1, 2
ph
ijij j

E
G n i j

Y
      

 



 28

where superscripts j = 1 and 2 correspond to test 1 and test 2, respectively. For linear 

hardening material, the relationships become: 

  (1.18) 

For transversely isotropic, linear-elastic, perfectly-plastic material, the relationships 

become: 

  (1.19) 

In a dual indentation technique for isotropic material, three equations from Eq. (1.17) 

are selected, along with two half-angles, α1 and α2, (conical indentation of a half-

space). Thus, for isotropic material, two shape functions can be selected from half-

angle 1 and one shape function can be selected from half-angle 2. Alternately, one 

shape function can be selected from half-angle 1 and two shape functions can be 

selected from half-angle 2. Similarly, for transversely isotropic materials, the shape 

functions can be selected in three ways: i) one shape function from 1and three shape 

functions from 2; ii) two shape functions from 1and two shape functions from 2 

and iii) three shape functions from 1and one shape function from 2. Therefore, there 

are numerous ways to conduct a dual indentation experiment. The shape functions and 

half-angle (for conical indentation of a half-space) or depth-to-radius ratio (for 

spherical indentation of a half-space) combinations selected by previous researchers 

are tabulated in Table 1.3. 
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Table 1.3: Various combinations of shape functions, half-angles (conical indentation) 
and depth-to-radius ratios (spherical indentation) used by previous 
researchers. 

Geometry 
Shape function 

combination 
Ref. 

Conical 

Indentation 

 Le (2008) 

 Chollacoop et. al. (2003) 

 Lan and Venkatesh (2007) 

 Wang et. al. (2005) 

 Swaddiwudhipong et. al. 
(2005) 

 Bucaille et. al. (2003) 

 
 Yan et. al. (2007) 

Spherical 

indentation 

  
 Zhao et. al. (2006) 

 Cao and Lu (2004) 

 Ogasawara (2009) 

 Cao et. al. (2007) 

 

 

However, Chen et al. (2007) showed that certain groups of materials exist 

which result in identical force-displacement relationships even for dual indentation 

testing. They showed that generally materials with low values of E/Y and n fall into 
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this category. Thus, unfortunately a dual indentation technique does not guarantee a 

unique data reduction scheme for all materials.  

Closely related to uniqueness is the issue regarding sensitivity to experimental 

errors (Chollacoop et al., 2003; Lan and Venkatesh, 2007; Le, 2008; Hyun et al., 2011; 

Cao and Lu, 2004a; Cao and Lu, 2004b; Swaddiwudhipong, 2005). In fact, the 

sensitivity due to experimental errors can be quite high for certain cases. For example, 

Le, (2009) reported that an error of order 1% in experimental data can result in an 

error of 70% in the determined material properties. Cao and Lu (2004a) demonstrated 

for selected cases of conical indentation, sensitivity due to experimental error can be 

decreased by selecting indenters with large difference is half-angles. Similarly, for 

spherical indentation, Cao and Lu (2004b) demonstrated that sensitivity can be 

decreased by increasing the difference between two selected depth-to-radius ratios. 

However, no such guidelines are available regarding the selection of shape function 

combinations. Thus, a complete and systematic investigation of the uniqueness and 

sensitivity to experimental error in dual indentation methodologies has not been 

developed.  

Compared to isotropic materials, only limited works have been done on 

determining the material properties of anisotropic materials using indentation. A 

review will be presented next. 

1.7 Indentation of Anisotropic Materials 

The indentation technique is used to characterize small scale anisotropic 

structures such as single crystals (Brookes et al., 1971; Aguilar-Santillan, 2008; 

Viswanath et al., 2007; McCann, 2004; Yeap et al., 2011; Kearney et al., 2006; 

Zambaldi et al., 2006; Zambaldi et al., 2010; Vlassak, 1994), fibers(McAllister et al., 
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2012; Ebenstein and Wahl, 2006), thin films (Wang et al., 2010) and biological 

structures (Cui et al., 1994; Reisinger et al., 2011; Cox et al., 2008; Rosa et al., 2012; 

Carnelli et al., 2011; Swadener et al., 2001; Gindl and Schoberl, 2004; Gindl and 

Gupta, 2002; Fan et al., 2002; Franzoso, 2008). The indentation modulus, M, of a 

general anisotropic material is defined by (Vlassak, 1994), 

  (1.20) 

where Su is the unloading slope and a is the contact radius. For isotropic materials, M 

reduces to the plain strain elastic modulus, Er (see Eq. (1.11a)). Exact and approximate 

simplified expressions of M in terms of the anisotropic material constants have been 

developed for a range of geometries, for example see (Vlassak, 1994; Swadener and 

Pharr, 2001; Delafargue and Ulm, 2004). The mechanical characterizations of 

anisotropic materials using indentation testing include: (i)  measurement of indentation 

moduli along different directions of anisotropy (Viswanath et al., 2007; McCann, 

2004; Yeap et al., 2011; Fan et al., 2002; Franzoso, 2008; Vlassak, 1994; Swadener et 

al., 2001), (ii) measurement of hardness along different directions of anisotropy (Cui 

et al., 1994; Brookes et al., 1971; Aguilar-Santillan, 2008; Viswanath et al., 2007; 

McCann, 2004; Yeap et al., 2011; Franzoso, 2008; McCann, 2004), and (iii) 

investigation of pile up pattern to predict delamination  (Kearney et al., 2006; 

Zambaldi et al., 2012).  

In addition, multiple attempts have been made to determine the anisotropic 

elastic and plastic material properties. Various researchers, for example see (Amitay-

Sadovsky et al., 1999; Ebenstein and Wahl, 2006; Gindl and Gupta, 2002; Rosa et al., 

2012; Gindl and Schoberl, 2004), attempted to determine Young’s moduli in different 

directions of anisotropy by assuming the indentation modulus, M, to be the same as 

2uS aM
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the isotropic reduced modulus, Er, in different directions. However, only approximate 

values can be obtained through these studies, since the indentation modulus is 

dependent on all the elastic moduli in anisotropic materials. Jiang and Batra (2009) 

considered indentation of an anisotropic elastic half-space of a Face Centered Cubic 

material (having three Young’s moduli), indented by an infinite cylinder and 

determined the three Young’s moduli using indentation in three directions of 

anisotropy.  

Only a limited number of researchers, e.g., (Wang et al., 2010; McAllister et 

al., 2012; Carnelli et al., 2011) have considered indentation of transversely isotropic 

materials. Carnelli et al. (2011) attempted to determine the three elastic parameters by 

indenting in one direction and using a finite element based reverse analysis technique. 

However, they found that several materials can result in identical force-displacement 

relationships. McAllister et al. (2012), performed indentation tests in two directions of 

anisotropy to determine the indentation moduli in their respective directions. Then, 

Young’s moduli in two directions were determined by using an inverse analysis which 

utilizes analytical expressions for the indentation moduli in terms of the three material 

parameters (shear modulus was assumed to be known). Wang et al. (2010) adopted a 

similar approach with a simplified expression of the shear modulus. Yonezu et al. 

(2009) and Yonezu et al. (2010) determined the plastic properties, such as yield 

strengths, in two directions and the strain hardening exponent using spherical 

indentation of an anisotropic half-space (elastic properties were assumed to be 

known). Nakamura and Gu (2007) investigated dual conical-spherical indentation on 

transversely isotropic materials in one direction and attempted to determine five 

independent anisotropic material parameters, such as Young’s moduli and yield 
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strengths in two directions and the strain hardening exponent. However, they 

concluded that the material parameters determined will only be of approximate values. 

Therefore, this method can only be used to gain insights about the anisotropic 

characteristics and a more rigorous study would be required to determine the 

parameters more accurately.  

Thus, systematic dual indentation methodologies along with the uniqueness 

and sensitivity analysis, as described in section 1.6 for isotropic materials, have not 

been developed for anisotropic materials. 

1.8 Outline of the Dissertation Work 

Considering the above scopes for improvement in indentation research, this 

dissertation focuses on the following three aspects:  

i) Investigating selected methods to evaluate indentation on non-flat substrates; 

ii) Systematic analysis of uniqueness and sensitivity; and  

iii) Investigating selected indentation methodologies for anisotropic materials.  

The work is presented in three chapters as described below. 

In chapter 2, conical indentation of a sphere is considered. A sphere can be 

considered as one of the simplest non-flat structures. Two material types, namely 

isotropic, linear-elastic, perfectly-plastic and viscoelastic materials are considered. 

In chapter 3, a general methodology for identifying materials with identical 

force-displacement relationship is presented. The methodology is illustrated for a wide 

range of indentation geometries and substrate material models. 

In chapter 4, a method to demonstrate the relationship between uniqueness and 

sensitivity in indentation testing has been presented. Then, the concept of condition 
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number and explicit sensitivity analysis has been used for systematic investigation of 

sensitivity of different dual indentation methodologies. 

Lastly, concluding remarks and scopes for further improvements are discussed 

in chapter 5. 
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Chapter 2 

INDENTATION OF NON-FLAT SUBSTRATES: CONICAL INDENTATION 
OF A SPHERE 

As discussed in Chapter 1, currently indentation literature is dedicated mostly 

to indentation on flat substrates. However, several authors (Jackson and Green, 2005; 

Lin and Lin, 2006; Malayalamurthi and Marappan, 2008; Sahoo et al., 2009) have 

investigated the indentation of a hemisphere by a flat punch. Moreover, Zhou and Lu 

(2010) investigated indentation of a sphere by a spherical indenter. Examples of 

spherical substrates requiring material characterizations include micron-sized metal 

coated polymer particles used in the manufacturing of anisotropic conductive 

adhesives (Kristiansen et al., 2001), polymer latex particles for controlling the 

mechanical properties of latex films (Misawa et al., 1991; Tamai et al., 1989) used in 

the synthetic latex materials and living cells (Dao et al., 2003). To our knowledge, 

there are no studies on indentation of a sphere by a conical indenter available in the 

open literature. Thus, in this chapter, conical indenter of a sphere made of isotropic, 

linear-elastic, perfectly-plastic material and viscoelastic material are considered. The 

work contained in this chapter is based on our published work Phadikar et al., 2012 

and Phadikar et al., 2013a. 
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2.1 Indentation of a Sphere Made of Linear-elastic, Perfectly-plastic Material 

2.1.1 Theoretical preliminaries 

Isotropic, linear-elastic, perfectly-plastic material can be characterized by two 

material parameters, namely, the elastic modulus, E, and the yield strength, Y, see 

Chapter 1, section 1.2. Two methodologies are proposed to determine the elastic 

modulus and yield strength of a sphere by conical indentation testing. The first method 

is a semi-analytical method which is similar to the “Oliver-Pharr method” (discussed 

in Chapter 1, section 1.3) and utilizes the concept of elastic unloading. The second 

method is a finite element based reverse analysis technique. Both methodologies will 

converge to indentation of a flat half-space when the radius of the substrate is very 

large compared to maximum indentation depth. 

Oliver and Pharr (1992) made the assumption that the indentation response is 

elastic during unloading and used the contact equations of a flat half-space indented by 

a conical indenter to express Young’s modulus in terms of the shape functions. The 

procedure is briefly described here. The classical Galin-Sneddon’s solution for the 

force-displacement and contact depth-displacement relationship of a flat semi-infinite 

substrate indented by a rigid conical indenter is given by Galin (1961) and Sneddon 

(1965): 

  (2.1) 

  (2.2) 

where P, Er, α, h and δc denote the force, reduced modulus, half-angle, displacement 

and the contact depth (Figure 1.2b), respectively. The projected contact radius can be 

expressed in terms of the contact depth as: 
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  (2.3) 

Differentiating Eq. (2.1) with respect to the indentation depth, h, and utilizing Eqs. 

(2.2) and (2.3), 

  (2.4) 

Later various correction factors have been introduced in the above equation to 

incorporate various effects (see the review by Oliver and Pharr (1994)). 

Inspired by the above approach, we adopt the concept of elastic unloading of 

the sphere (of radius Rs) resting on a rigid flat plate and indented by a rigid conical 

indenter, Figure2.1. Similar to the Oliver-Pharr approach, we propose that there exists 

a functional relationship between the unloading slope, projected contact radius and 

reduced elastic modulus: 

  (2.5) 

Eq. (2.5) simplifies to Eq. (2.4) for a flat substrate with (a) = 2a. If the characteristic 

function  can be found, the elastic modulus can be computed by determining Su and 

at experimentally. This is equivalent to using Oliver-Pharr method with a suitable 

correction factor () as follows: 
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Figure 2.1: Conical indentation of a sphere resting on a fixed rigid plate 

Assuming small and elastic displacements, the problem of conical indentation 

of a sphere resting on a rigid flat plate can be solved as superposition of two problems 

as shown in Figure 2.2. The first part is the conical indentation of a hemisphere resting 

on a fixed rigid plate and the displacement of the conical indenter tip is hc 

(Figure2.2b). The second part is a hemisphere-flat punch contact problem where the 

rigid flat punch is fixed and the top surface of the hemisphere is displaced by hs 

(Figure 2.2c). Using Newton’s second and third laws, it is evident that the indentation 

force, P is acting on the two sub-problems as indicated in Figure2.2b and 2.2c. Using 
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superposition, the overall displacement of the conical indenter tip can be expressed as 

the sum of displacements of the two sub-problems, i.e., h = hc + hs.  A solution for the 

first sub-problem, i.e., the indentation of an elastic hemisphere by a conical indenter 

(Figure2.2b), is reported by Fu (2007): 

  (2.7a) 

  (2.7b) 

 

Figure 2.2: Solving the cone-sphere contact problem via superposition: (a) the 
complete problem; (b) the upper half model; (c) the lower half model. 

To the knowledge of the author, two analytical solutions are available in the literature 

for the second sub-problem (indentation of a hemisphere by a flat punch), reported by 
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Hertz (Johnson, 1987) and by Tatara (1989, 1991). Hertz’s solution (Johnson, 1987) 

for this problem is given by: 

  (2.8a) 

  (2.8b) 

Tatara’s solution (Tatara, 1989, 1991) for this problem is given by: 

  (2.9a) 

  (2.9b) 

  

Hertz’s solution is based on small displacement formulation whereas Tatara’s solution 

is based on large displacement formulation. Thus, Tatara’s solution is expected to be 

more accurate than Hertz’s solution as the load (or deformation) is increased. 

Eqs. (2.6)-(2.8) cannot be inverted analytically to form a closed-form force-

displacement (P-h) relationship of the overall system. However, using the above 

relations for two sub-problems, the following numerical algorithm can be used to 

establish the characteristic function defined in Eq. (2.5) for known values of sphere 

radius, Rs, and indenter half angle, α: 

Step 1: Assume a value of the indentation depth for the first sub-problem, hc. 

Step 2: Determine the contact radius, ac, and the ratio P/Er using Eq. (2.7) 

Step 3: Utilizing the computed value of P/Er, determine the deformation of the 

hemisphere, hs using Eq. (2.8) (Hertz’s solution) or Eq. (2.9) (Tatara’s solution). 

Step 4: Determine the total displacement of the indenter, h = hc + hs. 
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Step 5: Repeat Steps 1-4 with a value of indentation depth hc+Δhc in Step 1 where Δhc 

is a very small change in hc. Thus, obtain P/Er + Δ(P/Er) from Step 2 and h+Δh from 

Step 4. 

Step 6: Compute Su/Er using the forward difference formula for numerical 

differentiation as ∆(P/Er) / ∆h 

Step 7: Repeat Steps 1-6 for a range of values of hc. Thus, obtain extended sets of 

Su/Er (from Step 6) and ac (from Step 2) which can be used to develop an empirically 

established function Su/Er = (ac)   

It can be easily shown that Eq. (2.4) is obtained (i.e. (a) = 2a) when the 

algorithm is applied for indentation of a flat substrate. Since the contact radius is 

generally difficult to measure experimentally, Oliver and Pharr (1992) derived a 

formula (Eq. (1.11b), Chapter 1, section 1.3) to compute the contact depth and the 

contact radius. A similar formula cannot be readily derived for the present problem, 

and thus imposes a limitation of the proposed methodology. 

Next, we consider the second method in which a finite element based reverse 

analysis methodology will be utilized. The functional relationships between the 

normalized shape functions (characteristic functions from the force-displacement 

response) and the material properties were determined in Chapter 1, sections 1.4 and 

1.6 for isotropic, linear-elastic, power law and linear strain hardening materials, 

respectively. Since, out of five shape functions, only two are independent, it is not 

possible to determine the material properties for such materials uniquely using single 

indentation. In the present case, since the sphere is made of a linear-elastic, perfectly-

plastic material, it is possible however to determine the material properties uniquely 

using a single indentation test. For this we propose to utilize the following two shape 
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functions: total energy, Wt (from the loading curve) and unloading slope, Su (from the 

unloading curve). The relationships similar to Eq. (1.13) (Chapter 1, section 1.4) can 

be derived and take the following form (Phadikar et al., 2012): 

  (2.10) 

  (2.11) 

where the superscript pp indicates elastic, perfectly-plastic material. The quantity 

hm/Rs appears because the substrate is a sphere and not a half-space. Dividing Eq. 

(2.10) by Eq. (2.11), we obtain: 
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Eqs (2.11) and (2.12) can be used to establish the elastic-plastic properties of a sphere 

using experimentally obtained values of Su, Wt, hm and Rs. This will be discussed in 

section 2.1.3. 

2.1.2 Establishing the functional forms 

2.1.2.1 Finite element model 

Finite element simulations were performed using the commercial finite 

element code ABAQUS (Dassault Systemes, 2009). A two-dimensional axisymmetric 

model was adopted and approximately 24,000 “CAX4R” elements were used to model 

the sphere. A homogeneous material with isotropic, linear-elastic, perfectly-plastic 

material properties was assigned to the substrate sphere. Poisson’s ratio was taken as 

0.2. The sphere is assumed to rest on a fixed rigid plate. Both the flat surface and the 
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indenter are modeled using the “analytical rigid” option in ABAQUS. Coulomb’s 

friction law is used and the friction coefficient between the two pairs of surfaces is 

taken to be 0.2 (Taljat et al, 1998). Due to Poisson’s ratio effect, the surface nodes 

which come into contact with the rigid surface during the loading period continue to 

move away from the axis of symmetry after the initial contact. Thus, frictional force 

acts between the sphere-rigid plate pair as well. Several simulations with refined 

meshes and time increments (i.e., the step size of each simulation increment along the 

load path) were investigated for the convergence study. The model used, shown in 

Figure 2.3, gave the same results as a finer mesh and time increment. Thus, the 

selected refinement is sufficient to capture the mechanism of indentation. This model 

is used for most of the simulations whereas slightly different meshes were adopted for 

simulating large indentation depth-to-radius ratios. The surface nodes of the sphere 

were kept traction free and the nodes along the axis of symmetry were constrained in 

the direction normal to indenter displacement to simulate symmetry conditions.  
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Figure 2.3: Finite element model in ABAQUS, including enlargements of the refined 
meshes (plotted at the same scale) at the top of the sphere (conical 
indentation) and the bottom of the sphere (contact with the rigid surface). 

The model simulates indentation testing by pushing the rigid indenter into the 

sphere to a predefined position, and then bringing it back to the original position.  The 

reaction force at the indenter tip and the indenter displacement are recorded 

continuously over the loading and unloading sequence, similar to a real indentation 

experiment.  Based on the force-displacement relationships obtained, the total energy, 

Wt, and the initial unloading slope, Su, can be obtained. In all cases, Su was computed 
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using the two points, which are associated with the maximum load and 90% of the 

maximum load.  

2.1.2.2 Functional form for the first method (based on unloading slope) 

This algorithm discussed in section 2.1.1 provides the force-displacement 

relationship within the linear-elastic loading range for a sphere subjected to conical 

indentation. To investigate the viability of the algorithm, the force-displacement 

relationship obtained from the algorithm will be compared with the results from finite 

element simulations.  A sphere of radius, Rs = 23 μm with elastic modulus, E= 100 

GPa and Poisson’s ratio,  = 0.2 is considered. The indenter half-angle is taken to be 

. The force-displacement relationships computed using the algorithm and finite 

element simulation are shown in Figure 2.4. Thus, they are in good agreement with 

each other, where (within the resolution of the figure) the two analytical results 

overlap. Thus, the proposed algorithm gives reliable force-displacement relationships. 

75 
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Figure 2.4: Comparison of the force displacement relationship obtained using the 
finite element method and the superposition techniques. For a linear-
elastic material (assumed here), the loading and unloading curves are 
identical. 

As discussed in section 2.1.1, the technique is based on developing a function, 

, that relates the unloading slope, , to the projected contact area, at, and the reduced 

modulus, Er, as defined in Eq. (2.5). The function obtained by the proposed algorithm 

for the sphere and indenter considered in the above paragraph is shown in Figure 2.5. 

If the “Oliver-Pharr method,” Eq. (2.4), is used for this problem, it will predict (at) = 

2at which is also shown in Figure 2.5. Thus, from the graph and Eq. (2.5), it can be 

concluded that the Oliver-Pharr method will significantly under-predict the elastic 

modulus if it is used for evaluating material properties of a spherical substrate. The 

erroneous result is not a surprise, since that method is formulated to evaluate material 

uS
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properties of a flat substrate. As seen from Figure 2.5, for a given at, Hertz’s model 

predicts a slightly smaller (at) compared to Tatara’s model, and thus from Eq. (2.5), 

Hertz’s model will predict slightly larger elastic modulus compared to Tatara’s model. 

The accuracy of the proposed algorithm for predicting elastic modulus will be 

discussed later. 

 

Figure 2.5: The function (at) defined in Eq. (2.5) as function of at, the projected 
contact area for a 75 half-angle indenter indenting a sphere of radius 23 
m. 
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2.1.2.3 Functional forms for the second method (based on reverse analysis) 

To develop the functional forms of Eqs. (2.11) and (2.12), a material set with 

elastic modulus, E, and yield stress, Y, varying from 20 GPa to 220 GPa and 0.2 GPa 

to 0.8 GPa, respectively, was chosen to cover a wide range of E/Y ratios. For 

simplicity, first we assume a fixed indenter (i.e., constant half-angle, ) and various 

indentation depth-to-radius ratios.  In this case, Eqs. (2.11) and (2.12) can be written 

as: 

  (2.13) 

  (2.14) 

An indenter with  half-angle is assumed, which represents the widely 

used Berkovich indenter1. A sphere of radius, Rs = 23 m was chosen and the range of 

0.05 ≤ hm/Rs ≤ 0.20 was investigated. The numerical results are plotted in Figure 2.6. 

The surfaces can be fitted with the following equations: 

  (2.15a)

  (2.15b) 

Here, 

 ; for i = 1, 2, 3, 4 (2.15c) 

                                                 
 
1 The Berkovich and conical indenter with half-angle 70.3◦ are equivalent since they 
have same projected contact area (Cheng and Cheng, 2004; Lichinchi et al., 1998). We 
assume that this equivalency holds for a spherical substrate, at least within the range of 
deformations considered. 
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The coefficients aij are tabulated in Table 2.1.2 

Table 2.1: The coefficients aij used in Eq. (2.15c) 

aij j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -8.903E3 7.831E3 -2.5945E3 4.133E2 -3.465E1 3.770 

i = 2 8.270E -5.380E6 1.335E6 -1.566E5 8.676E3 -2.117E2 

i = 3 2.783E2 -7.716E1 -6.998 3.393 4.4684E-1 9.551E-2 

i = 4 6.34E5 -4.090E5 1.005E5 -1.160E4 6.169E2 -6.416 

 

Solving Eqs. (2.15a) and (2.15b) for E and Y, we get the following closed form 

equations relating E and Y with Su, Wt, hm and Rs: 

  (2.16a) 

  (2.16b) 

Eq. (2.15) assumes a Berkovich indenter tip for a range of indentation depths-to-radius 

ratios. 

                                                 
 
2 In this case 20 coefficients are needed to describe the functions.  This may seem like 
a large number of parameters, and note that we are not striving to develop a 
relationship where the parameters can be interpreted as physical parameters, but we 
are just interested in finding “fitting parameters” that describe the intricate response.  
This method is commonly adopted in reverse analysis, see for example (Cao and Lu, 
2004; Chen et al., 2006; Hyun et al., 2011; Le, 2008). 
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Figure 2.6: Graphs of functions 1 and 1 of Eqs. (2.13) and (2.14) for  = 70.3 

and0.05 < hm/Rs < 0.20: (a)  (b)  1 ,u m
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Next, we keep the depth-to-radius ratio fixed, and use various indenter half-

angles. In this case, Eqs. (2.11) and (2.12) can be written as: 

  (2.17) 

  (2.18) 

These functional forms can be determined using the previously described 

procedure except that in this case α is varied while hm/Rs is kept constant. A depth-to-

radius ratio 0.10 was considered and the range of half-angle was set to 45ο ≤ α ≤ 90ο to 

produce the characteristic functions in Eqs. (2.17) and (2.18). The numerical results 

are plotted in Figure 2.7 and the surfaces can be fitted as:  

  (2.19a) 

  (2.19b) 

where,  

 ; fori = 1, 2, 3, 4 (2.19c) 

and the coefficients  bij are tabulated in Table 2.2. 

Table 2.2: The coefficients bij used in Eq. (2.19c) 

bij j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 6.388 -3.259E1 6.600E1 -6.413E1 3.1645E1 -5.548 
i = 2 -2.098E3 1.221E4 -2.764E4 3.039E4 -1.629E4 3.419E3 
i = 3 -3.196E-1 2.350E-1 -6.717E-1 1.082 -1.262 8.790E-1
i = 4 -5.410 1.035E1 4.642 6.113 -5.642E1 4.834E1 
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Figure 2.7: Graphs of functions 2 and 2 of Eqs. (2.17) and (2.18) for hm/R = 0.10 and 

45ο ≤ α ≤ 90ο: (a)  (b)  

Solving for E and Y, we get following closed form equations relating E and Y with Su, 

Wt, hm and Rs: 
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  (2.20a) 

  (2.20b) 

The overall procedure for obtaining E and Y from a conical indentation experiment on 

a sphere is presented in a flowchart in Figure 2.8. 

If it is not possible to conduct the indentation testing for the range of 

indentation depths or half-angles considered in the flowchart of Figure 2.8 (for 

example, it might be required to do an indentation testing with hm/Rs = 15% and  = 

60), for such cases, a general procedure will be presented next. In this procedure, a 

finite element model needs to be built with experimentally used values of hm, Rs and .  

Since hm, Rs and α are fixed, Eqs. (2.11) and (2.12) can be rewritten as: 

  (2.21) 

  (2.22) 

Once the functional forms are established, properties such as E and Y can be 

determined based on experimentally obtained values for Su and Wt using the following 

steps: 

Step 1: The left hand side of Eq. (2.22) can be determined from the experiment. 

Determine E/Y using function θ, where θ is determined by the finite element 

simulation procedure described above. 

Step 2: Substitute the obtained value of E/Y into the function φ which is determined 

by the finite element simulation. As Su and hm are known from the experiments, 

calculate Y using Eq. (2.21).  
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Step 3: Using the obtained value of Y, compute E using the value of E/Y obtained in 

Step 1. 

The accuracy of the proposed method will be described next.  

 

Figure 2.8: Flowchart of the second methodology (based on reverse analysis) to 
determine material properties of a sphere by conical indentation 

2.1.3 Numerical verification 

To the author’s knowledge, at this time, no comprehensive experimental data 

are available to verify the proposed schemes. Thus, numerical simulations which can 

be regarded as “exact experiments” are used to investigate the validity of the proposed 
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methods. Three sample materials (used by Yan et al., 2007a, 2007b) are used for this 

purpose. The material properties of these materials were excluded from the range of 

the properties that was used to develop the functional forms of Eqs. (2.15) and (2.19). 

Numerical simulations were conducted in which an indenter with  = 70.3ο 

indents the spheres made of the three sample materials. From these simulations (which 

act as “numerical experiments”), the force-displacement relationships are obtained and 

the unloading slope, Su, and the total energy, Wt, are extracted. The elastic modulus 

obtained using the method based on elastic unloading presented in sections 2.1.1-2.1.2  

are tabulated in Table 2.3 along with the original input material properties. Hertz’s 

solution predicts slightly higher elastic modulus than Tatara’s solution (this was 

explained in section 2.1.2). The error in the predicted elastic modulus lies within 12%. 

The elastic modulus, E, and yield strength, Y, obtained using Eq. (2.16) (the second 

method, the finite element based reverse analysis), are also tabulated in Table 2.3. This 

method predicts E and Y quite accurately, with errors less than 3%. 
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Table 2.3: Comparison of input material properties with that obtained using the two 
methods for selected indentation depths 

Input 
Material 

Properties 
hm/Rs 

     Elastic Unloading Functional Form 
from FEA Hertz Tatara 

E (% error) E (% error) E (% error) Y (% error)

Bulk Ti 
E = 130 GPa 
Y = 600 Mpa 

0.06 126 (3.08) 121 (6.92) 128 (1.54) 584 (2.67) 

0.11 135 (3.85) 127 (2.31) 129 (0.77) 588 (2.00) 

0.16 145 (11.5) 133 (2.31) 129 (0.77) 591 (1.50) 

Bulk Ti-Al-Fe 
E = 110 GPa 
Y = 795 MPa 

0.06 107 (2.73) 103 (6.36) 108 (1.82) 780 (1.89) 

0.11 115 (4.55) 109 (0.91) 109 (0.91) 780 (1.89) 

0.16 122 (10.9) 113 (2.73) 108 (1.82) 784 (1.38) 

Bulk Steel 
E = 210 GPa 
Y = 500 MPa 

0.06 198 (5.71) 190 (9.52) 208 (0.95) 493 (1.40) 

0.11 219 (3.81) 204 (2.86) 209 (0.48) 495 (1.00) 

0.16 232 (10.5) 214 (1.90) 209 (0.48) 497 (0.60) 

 

In a similar manner, the accuracy of the proposed methods is evaluated for a 

fixed depth-to-radius ratio of 0.10. The same sample materials are used in the finite 

element simulations to extract Su and Wt for the three selected indenter shapes. The 

half-angles that are chosen are 63.14ο (the cross-sectional area is half of that of the 

Berkovich indenter), 70.3ο (the cross-sectional area is same as the Berkovich indenter) 

and 75.79ο (the cross-sectional area is twice of that of the Berkovich indenter). The 

resultant E based on the method of elastic unloading, and E and Y obtained from Eq. 

(2.20), along with the original input material properties are tabulated in Table 2.4. 

Thus, in this case as well, the proposed reverse analysis method predicts the values of 
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E and Y quite accurately with errors less than 3% for the later approach and the former 

within 8% error. 

Table 2.4: Comparison of input material properties with that obtained using the two 
methods for selected half-angles of indentation. 

Input 

Material 

Properties 

Half-angle

Elastic Unloading 
Functional Form 

from FEA 
Hertz Tatara 

E 

(% error)

E 

(% error)

E 

(% error) 

Y 

(% error)

Bulk Ti 

E = 130 GPa 

Y = 600 MPa 

63.14 126 (3.08) 120 (7.69) 129 (0.77) 589 (1.83)

70.3 134 (3.08) 127 (2.31) 129 (0.77) 587 (2.17)

75.79 140 (7.69) 131 (0.77) 128 (1.54) 585 (2.50)

Bulk Ti-Al-Fe 

E = 110 GPa 

Y = 795 MPa 

63.14 109 (0.91) 103 (6.36) 109 (0.91) 783 (1.51)

70.3 113 (2.73) 107 (2.73) 109 (0.91) 779 (2.01)

75.79 119 (8.18) 112 (1.82) 108 (1.82) 779 (2.01)

Bulk Steel 

E = 210 GPa 

Y = 500 MPa 

63.14 201 (4.29) 191 (9.05) 210 (0.00) 495 (1.00)

70.3 215 (2.38) 202 (3.81) 210 (0.00) 495 (1.00)

75.79 225 (7.14) 211 (0.48) 209 (0.48) 494 (1.20)
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2.1.4 Sensitivity analysis 

Real physical experiments always contain some degree of experimental error. 

To investigate the sensitivity of the proposed methodologies to such errors, we will 

present a sensitivity analysis.  

For the first method, i.e. the method based on elastic unloading, a sphere with 

radius, Rs = 23 m is indented numerically by an indenter with half-angle, α = 70.3o 

with a maximum depth of penetration, hm = 2.3 m (hm/Rs = 0.10). The input material 

properties used are typical for bulk Ti-Al-Fe alloy and are assumed linear-elastic, 

perfectly-plastic. To examine the sensitivity of the first method with respect to Su and 

at, these two output parameters are varied within ±12% and the corresponding errors 

obtained in calculated E are noted. For 12% difference in Su or at, the percentage error 

in calculating E lies between 5-15% i.e. the same order of magnitude as the error 

imposed.  
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Figure 2.9: Sensitivity in determining the elastic modulus, E, with respect to imposing 
a small error in (a) the unloading slope, Su, and (b) the projected contact 
radius, at, using the first method (the method based on elastic unloading). 

For the second method, a sphere with Rs = 23 m is indented numerically by 

an indenter with α = 63.14º up to hm = 2.3 m (hm/Rs = 0.10). The input material is 
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taken as typical properties for steel and linear-elastic, perfectly-plastic material is 

assumed. To examine the sensitivity of the second method with respect to Su and Wt, 

these two output parameters are varied within ±12 % and the corresponding errors 

obtained in calculated E and Y are noted. Figure 2.10 shows that the error in Su does 

not affect the calculated value of Y considerably, whereas the error in Wt does not 

affect the calculated value of E considerably. This may be expected since the 

unloading slope is determined from the elastic unloading behavior and the loading 

work is governed by yielding. Further, it can be noted that for a 12% difference in Su 

(or Wt) the percentage error in calculating E (or Y) lies between 10-15% i.e. the same 

order of magnitude as the error imposed. 
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Figure 2.10: Sensitivity in determining the elastic modulus, E, and the yield strength, 
Y, with respect to imposing a small error in (a) the unloading slope, Su, 
and (b) the total energy, Wt, using the second method (finite element 
based reverse analysis). 
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2.1.5 Synopsis: linear-elastic, perfectly-plastic sphere 

Two methodologies, a semi-analytical method and a finite element based 

reverse analysis technique, are presented as data reduction schemes to determine the 

elastic modulus and yield strength of a sphere via conical indentation.  

In the first method, a relationship between the initial unloading slope, projected 

contact radius and elastic modulus is developed which can be used to obtain the elastic 

modulus based on the experimental data. By comparing the results obtained from the 

proposed method with results from finite element simulations, we show that this 

method predicts the elastic modulus with an error less than 12%.  It was shown that, 

the “Oliver-Pharr method” which is developed for flat surfaces will significantly 

under-predict the elastic modulus if it is applied for a sphere.  

In the second method, finite element simulations are used to correlate the non-

dimensional shape functions with material properties. For the particular scheme shown 

in this work using a Berkovich indenter, the experiment has to be performed by 

keeping the maximum indentation depth between 5% and 20% of the radius of the 

sphere whereas for a non-Berkovich indenter, the maximum indentation depth has to 

be kept at 10% of the radius. A general method is also presented for other indenters 

and depth-to-radius ratios but a finite element software is required for that. By 

comparing the results obtained from the proposed method with results from the finite 

element simulations, it is shown that this method predicts the elastic modulus and 

yield strength with a less than 3% error. 

A sensitivity analysis was conducted in which the shape functions obtained 

from the (numerical) experiment were perturbed to simulate experimental errors, and 

the properties predicted by the two methods were recorded.  The results suggest that 

the error obtained when determining the material properties is of same order of 
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magnitude of error in the experimental data.  In the proposed sensitivity analysis, one 

shape function was perturbed at a time. Some more sophisticated schemes will be 

discussed in Chapter 3. 

2.2 Indentation of a Sphere Made of Viscoelastic Material 

Although several researchers (Cheng et al., 2005; Vandamme and Ulm, 2006; 

Francius et al., 2007; Cheng and Cheng, 2005; Zhou and Lu, 2010) have investigated 

indentation of a flat substrate made of viscoelastic material, to the authors’ knowledge, 

only one study is available in the literature regarding the indentation of non-flat 

viscoelastic substrates (Zhou and Lu (2010)). Their methodology relies on Hertz-type 

solutions (Johnson, 1987), and thus the procedure is limited to shallow indentation 

depths. In this section, we investigate the indentation of a viscoelastic sphere by a 

conical indenter as shown in Figure 2.1, with the ultimate goal of developing a reliable 

evaluation technique for indentation testing of viscoelastic spherical particles. For this 

purpose, a semi-analytical technique is developed for the forward analysis of the 

indentation problem, which is then verified by a geometrically nonlinear finite element 

analysis. The technique will be shown to be applicable for moderate indentation 

depths and can be extended easily for other non-flat substrates as well. 

2.2.1 Viscoelastic solution using the elastic solution 

2.2.1.1 Elastic solution 

Lee and Radok (Lee and Radok, 1960) developed the “method of functional 

equations” for solving viscoelastic indentation problems from a corresponding linear-

elasticity solution. In this approach, the elastic constants in an elastic solution are 

replaced by equivalent viscoelastic operators to obtain the viscoelastic solution. Here, 
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we first determine the elastic solution of the cone-sphere contact problem by 

geometrically nonlinear finite element analysis.  For a particular indenter half-angle, α, 

the indenter force, P, is in general, a function of the indentation depth, h, the radius of 

the sphere, Rs, the elastic modulus, E, and Poisson’s ratio, ν, of the material. Thus, 

  (2.23) 

Applying dimensional analysis and utilizing Buckingham’s PI theorem (see Chapter 1, 

section 1.1.2), the above equation can be written in its non-dimensional form as 

follows: 

  (2.24) 

We assume the following specific form of Eq. (2.24): 

  (2.25) 

In this equation Er is the plane strain reduced modulus (see Chapter 1, section 1.3).  

The validity of the above assumption, as well as the functional form of the 

function f3 will be established using finite element analysis in a later section. The 

reduced modulus Er generally appears in indentation problems where contact 

interference is very small compared to the dimensions of the contacting bodies. 

However, it will be shown later that even for quite large indentation depths, the elastic 

modulus and Poisson’s ratio can be combined into the reduced modulus Er for this 

particular case. 

2.2.1.2 Viscoelastic solution 

Applying the “method of functional equations” (Lee and Radok, 1960) to the 

elastic solution given by Eq. (2.25), the following relationship between force and 
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displacement in Laplace domain can be obtained easily for the corresponding 

viscoelastic problem: 

  (2.26) 

where P(s) is Laplace transform of the loading function (s denotes the Laplace domain 

parameter) and Er(s) is the reduced elastic modulus of the viscoelastic material in 

Laplace domain (it can be determined when the constitutive relation is known and will 

be described in a later section). Eq. (2.26) can easily be inverted to determine the 

indenter displacement as a function of time as follows: 

  (2.27) 

Thus, for a given radius of the sphere, loading history and constitutive equation, Eq. 

(2.27) can be used to determine the indenter displacement as a function of time. It 

follows that the force-displacement relationship for a specific viscoelastic indentation 

problem can thus be obtained. An example will be presented next to illustrate the 

methodology. 

A brief description of the viscoelastic material properties was presented in 

Chapter 1, section 1.7. Here we consider a viscoelastic material with the four-

parameter Kelvin-Voigt deviator creep model (Haddad, 1995) shown in Figure 2.11a 

and 2.11b. In this model, the shear behavior is modeled by the standard three-element 

solid model (Figure 2.11a) where G1 and G2 are the moduli of the two spring elements 

and η is the viscosity of the dashpot element. The bulk behavior is modeled by a linear 

time independent spring (Figure 2.11b) with modulus K. To express the constitutive 
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relation for this model, the stress and strain tensors need to be decomposed into 

deviatoric and spherical (volumetric) components as: 

  (2.28a) 

where the indicial notation is used, with i, j = 1,2,3. 

 

Figure 2.11: Assumed constitutive behavior of the viscoelastic material and the 
loading function: (a) standard three-element solid model for deviatoric 
behavior, (b) spring element for spherical (volumetric) behavior, and (c) 
triangular loading 
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The deviatoric and spherical components in terms of stress and strain tensors 

are given by: 

  (2.28b) 

where δij is the Kronecker delta function. In the time (t) domain, the constitutive 

relation for Kelvin-Voigt deviator creep model can be written as (Haddad, 1995): 

  (2.29a) 

  (2.29b) 

Employing Laplace transforms, the constitutive relations take the following form in 

the Laplace domain (Haddad, 1995): 

  (2.30a) 

  (2.30b) 

where 

  (2.30c) 

  (2.30d) 

The reduced modulus in Laplace domain can now be written in terms of viscoelastic 

material properties as follows: 

  (2.31) 
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In this example, a loading-unloading history with maximum force F and time period 

2T applied as a triangular ramp as shown in Figure 2.11c is considered. The loading 

function for this history can be written as:  

  (2.32) 

where F is the peak load, T is the time when the peak load is reached and H(t) is the 

Heaviside function. Taking the Laplace transform of Eq. (2.32) gives 

  (2.33) 

Substituting Er(s) from Eq. (2.31), and P(s) from Eq. (2.33) into Eq. (2.27), we obtain: 

  (2.34) 

By determining the inverse Laplace transform in the above expression, the 

displacement of the indenter can be computed as a function of time. The force-

displacement relationship of the indentation problem can then be obtained by 

combining the loading and displacement history.  

In the next section, we will use finite element analysis to investigate the 

accuracy of the proposed semi-analytical approach. 

2.2.2 Numerical verification 

2.2.2.1 Elastic indentation 

The commercial finite element code ABAQUS (Dassault Systemes, 2009) is 

used to simulate the elastic indentation of the sphere by a conical indenter. The model 
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is the same as that used for linear-elastic, perfectly-plastic material (described in 

Chapter 2, section 1.2) except that visco-elastic material properties were used.  

A sphere of radius Rs = 23 μm and made of a material with Young’s modulus, 

E = 1000 MPa was numerically indented by a conical indenter with half-angle α = 

70.3ο. To investigate the validity of the assumption used in section 2.1, the force-

displacement relationships are plotted in Figure 2.12a for four selected Poisson’s 

ratios up to a maximum indentation depth of 15% of the radius. Clearly there is 

significant difference between these curves. 
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(b) 

Figure 2.12: The (a) original and (b) normalized force-displacement relationships for 
the elastic indentation problem, for selected Poisson’s ratios as obtained 
from geometrically nonlinear finite element analysis 

The same data is represented in Figure 2.12b, where normalized force,

is plotted as a function of the normalized indentation depth, h/Rs as in Eq. (2.25) for 

four selected Poisson’s ratios. Within the resolution of Figure 2.12b, the results 

obtained for the investigated Poison’s ratios essentially overlap on each other, thus 

validating the assumption of writing Eq. (2.24) as Eq. (2.25). By curve-fitting, the 

function f3 in Eq. (2.25) was determined to be: 
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  (2.35) 

The function f3 can be inverted and used in Eq. (2.34) to determine the force-

displacement relationship of the viscoelastic indentation problem.  

As an example, we considered a sphere of radius 23 µm indented by an 

indenter of half-angle 70.3º. The viscoelastic material properties were taken as G1 = 

234.6 MPa, G2 = 25.78 MPa, η = 257.78 Pa-s and K = 687.6 MPa (Dassault Systemes, 

2009). For four values of T (T = 1s, T = 10s, T = 20s and T = 30s) with F = 1000 μN, 

the force-displacement relationships obtained using the proposed semi-analytical 

approach are plotted in Figure 2.13. Since f3 is a fourth order polynomial, Eq. (2.33) 

resulted in four values of the displacement, h, (for a given t, since h is a function of t) 

and the realistic positive values were selected ignoring the negative and imaginary 

roots. The curve fitting as well as other computations involved in solving Eq. (2.34) to 

determine the displacement, h, were performed using the commercial software 

MATLAB (MATLAB, 2011). 

4 3 2

3 4.427 2.079 9.321E-1

4.686E-3 1.025E-5

s s s s

s

h h h h
f

R R R R

h

R

       
          

       
 

 
 



 72

 

Figure 2.13: Comparison of force-displacement relationships obtained using the 
proposed semi-analytical approach and ABAQUS for four selected 
loading times, T. 

2.2.2.2 Viscoelastic indentation 

To verify the semi-analytical approach, we used finite element analysis (using 

ABAQUS) to simulate the viscoelastic problem numerically. The finite element model 

described in section 2.1.2.1 is adopted except that the viscoelastic material properties, 

in the form of Prony series, are used instead of elastic properties. The force-

displacement relationships for the indentation problem with geometry and material 

properties described in section 2.1.2.1 are plotted in Figure 2.13. Figure 2.13 shows 

that the semi-analytical approach captures the loading curve quite accurately. 

Relatively larger error for T = 20s and T = 30s can be due to the increase in inaccuracy 
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of regression used in Eq. (2.35), with increasing depth-to-radius ratio. The semi-

analytical approach cannot capture the unloading part accurately, particularly near the 

end of the unloading curve. This is not surprising since the method of functional 

equations is valid only when the contact radius is a monotonically increasing function 

of time (Lee and Radok, 1960), which is not true during most of the unloading period. 

There is a significant difference between the computational costs involved in 

obtaining the force-displacement relationships using the semi-analytical method and 

the direct finite element simulations. For example, for the case T = 30 s, 

approximately 5 CPU hours was needed to obtain the force-displacement relationship 

using finite element simulation, whereas it took less than 1 CPU second for the semi-

analytical method (excluding the elastic finite element analysis). Computations were 

performed in a DELL Precision T7400 workstation with two Intel(R) Xeon(R) X5472 

@3GHz processors. Thus, the semi-analytical method is a viable method for obtaining 

the force-displacement relationships for viscoelastic spheres. 

2.2.3 Synopsis: indentation of a visco-elastic sphere 

A semi-analytical approach is proposed to obtain the force-displacement 

relationship for conical indentation of a viscoelastic sphere. The proposed approach is 

based on “the method of functional equations” which was developed to obtain the 

viscoelastic solution of a problem from the corresponding elastic solution. The results 

obtained from the semi-analytical method and finite element simulations are compared 

for a specific viscoelastic material model and loading history. The results agree well 

for most of the loading and unloading parts. The proposed approach can easily be 

applied to other loading histories and viscoelastic material models. Since the 

computational cost involved in obtaining the force-displacement relationship is much 
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less for the proposed method compared to finite element simulation, it can be useful 

for the determination of viscoelastic material properties of spherical particles based on 

an indentation test. 

2.3 Summary 

Currently, most of the indentation methodologies have been developed for flat 

substrates. Further, limited works are available for indentation of visco-elastic 

substrates. In this chapter, conical indentation of a sphere made of a linear-elastic, 

perfectly-plastic material and a viscoelastic material have been investigated. 

For the sphere made of linear-elastic, perfectly-plastic material, two 

methodologies are proposed for determining the material properties. The first method 

is similar to the Oliver-Pharr method for flat substrates and utilizes the concept of 

elastic unloading. The second method is a finite element based reverse analysis 

technique. In this method, relationships between two selected shape functions and the 

material properties are established using finite element simulations for a given 

indenter shape. This corresponds to the constitutive equations of the system.  This 

constitutive equation can now be used to obtain the material properties of an unknown 

material from the force-displacement response obtained from indentation testing with 

the relevant indenter shape. It is shown that both the methods can determine the 

material properties quite accurately 

For the sphere made of viscoelastic material, a semi-analytical method is 

proposed to obtain the force-displacement relationship. It is shown that the force-

displacement relationship obtained using the proposed semi-analytical method agrees 

well with the one obtained from a finite element simulation. Further, the 
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computational cost involved in using the semi-analytical method is much lower 

compared to the finite element simulation. 
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Chapter 3 

A GENERAL METHODOLOGY TO IDENTIFY MATERIAL PARAMETERS 
WITH IDENTICAL FORCE-DISPLACEMENT RELATIONSHIP 

In chapter 2, conical indentation of a sphere made of i) isotropic, linear-elastic, 

perfectly-plastic and ii) viscoelastic materials were considered. Only two material 

properties are involved for linear-elastic, perfectly-plastic material (excluding 

Poisson’s ratio). Therefore, it was possible to determine the material properties by 

single indentation technique. However, when hardening is considered (Chapter 1, 

section 1.5), it is not possible to determine the material properties using a single 

indentation technique, because only two of the five shape functions are independent 

and a linear-elastic with plastic hardening is described by three material parameters. 

An interesting phenomenon that evolves due to this is that more than one set of three 

material parameters can describe a single force-displacement relationship.  

Several researchers have attempted to systematically identify the material 

parameters resulting in identical force-displacement relationships and a brief review 

was presented in Chapter 1, section 1.5. To summarize, the developed methodologies 

are limited to specific indenter/substrate geometries and material models. In this 

chapter, we attempted to develop a general and comprehensive methodology for 

identifying such material parameters. The methodology will be applied to identify 

material parameters with identical force-displacement relationship for a wide variety 

of material models such as i) isotropic, linear-elastic, power-law strain hardening 

plastic material; ii) isotropic, linear-elastic, linear strain hardening plastic material; 
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and iii) transversely isotropic, linear-elastic, perfectly plastic material (see Chapter 1, 

section 1.2 for descriptions of these material models). These material properties are 

studied for selected geometries such as i) conical indentation of a half-space; ii) 

spherical indentation of a half-space; iii) conical indentation on a sphere; and iv) 

spherical indentation on a sphere.  

Single indentation test (described in section 1.4, Chapter 1) and the use of the 

corresponding shape functions can provide easy way to determine the material 

properties of a substrate material. However, as discussed in section 1.5, Chapter 1, 

several researchers have shown that for conical indentation of a half-space made of 

isotropic, power-law hardening materials, more than one material parameter can 

correspond to a single force-displacement relationship. Thus relatively complex dual 

indentation is necessary to determine the material properties uniquely. The study 

presented in this chapter will reveal whether single indentation test is sufficient for 

other commonly used indenter/substrate geometries and material types, or dual 

indentation is necessary. Further, this study is helpful in determining a range of the 

material properties of the substrate material from a single indentation test and gaining 

insight into the material parameter sets that result in identical force-displacement 

relationship. The content of this chapter is based on our work reported in Phadikar et 

al, 2013d. 

3.1 Methodology 

In this section, the outline of the general methodology will be described. The 

methodology is based on comparing selected shape functions of the force-

displacement relationships for two sets of material parameters.  
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Schematics of three non-identical loading curves (of possible force–

displacement relationships) with various identical shape functions are considered in 

Figure 3.1: identical values of loading energy, Wt, but different values of maximum 

load, Pm (Figure 3.1a); identical values of Wt and Pm (Figure 3.1b); and identical values 

of Pm, and  (Figure 3.1c). For Figure 3.1c,  is the area under the loading 

curve between h = 0 to h = hm/2 (that is, , subscript l denotes the 

loading curve) whereas  is the area under the loading curve between h = hm/2 and 

h = hm ( ). Similarly, corresponding to the unloading curve, we can 

define  and , where subscript u indicates the 

unloading curve. To the author’s knowledge, loading curves with an inflexion point 

similar to the loading curve of Figure 3.1b have never been obtained from any 

indentation testing (both real experiment and simulation). Thus, we make the 

assumption that if the loading curves of two materials have identical values of Wt and 

Pm, they will have identical loading curves. The validity of this assumption will be 

illustrated through selected examples in later sections. Furthermore, existence of 

loading curves similar to the loading curve of Figure 3.1c with three inflexion points is 

questionable intuitively and has never been obtained from an indentation test to our 

knowledge. Thus, a stronger assumption would be that, if two materials have identical 

values of Pm, , and , they have identical loading curves.  

An approach similar to the loading curves can be constructed to identify 

materials with identical unloading curves, since to the author’s knowledge, unloading 

curves with inflexion point(s) (similar to Figures 3.1b and 3.1c for loading curves) 

have not been obtained from any indentation testing. In this case, similar to the 
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loading curve, the area under the unloading curves (physically the elastic energy), We 

or the areas under two segments of unloading curves, 1 2and e eW W  need to be 

compared. Thus, similar to the previous paragraph, we make the assumption that if 

unloading curves corresponding to two sets of material parameters have identical 

values of Pm and We, they will have identical unloading curves. Similarly, a stronger 

assumption will be that if two sets of material parameters correspond to identical 

values of Pm, 1
eW , and 2

eW , they have identical unloading curves. It follows that, a set 

of shape functions such as We, (Pm, We) and (Pm, , and ) can be compared to 

determine material parameters with identical unloading curves. Thus, material 

parameters resulting in identical force-displacement relationships can be searched for 

by iterating over the material range and comparing either of the sets of shape functions 

such as (Wt, We), (Wt, Pm,We) and ( , , Pm, , ). The computational cost 

involved in the search procedure and the complexity of regression analysis are lowest 

for the set (Wt, We), and highest for the set ( , , Pm, , ) since they are 

proportional to the number of shape functions included. Since the assumptions listed 

above do not involve specific material model or geometry, these are applicable for any 

shape of the indenter/substrate and the material model. Note that, the method identifies 

material parameters that will lead to identical force-displacement relationship but there 

may not be any real material in existence corresponding to such material parameters. 
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Figure 3.1: Schematics of three sets of loading curves with (a) identical Wt but 
different Pm, (b) identical Wt and Pm, and (c) identical Pm, and  

3.2 Iso-lines and Surfaces 

In this section we proceed to quantify the discussion in section 3.1. When the 

set (Wt, We) is compared for obtaining material parameters leading to identical force-

displacement relationships, an existence map of the corresponding materials in the 
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material space can be constructed. The procedures will be explained in this section for 

four selected material models. 

3.2.1 Isotropic, linear-elastic, strain hardening plastic materials 

The isotropic, linear-elastic, strain hardening material models with two kinds 

of hardening, namely linear and power-law hardening are described in Chapter 1, 

section 1.2. Such materials can be characterized by three parameters, namely, elastic 

modulus, E, yield strength, Y, and hardening modulus, Ep, (for linear hardening) or 

hardening exponent, n (for power-law hardening). 

The conditions for two materials (of same material model) having identical Wt 

and We are equivalent to the following conditions (two materials are denoted by 

subscripts 1 and 2): 

  (3.1a) 

  (3.1b) 

The relationships between the normalized shape functions and material properties are 

described in Chapter 1, section 1.4. From Eq. (1.11b), the relationship for the total 

energy, Wt becomes: 

  (3.2a) 

  (3.2b) 

Using Eq. (3.2b), the first condition, Eq. (3.1a) can be written as: 
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which gives the ratio of their yield strengths as follows: 

  (3.4) 

Similar to Eq. (3.2a), the non-dimensional equation for elastic energy, We, can be 

written as: 

  (3.5) 

Combining Eqs. (3.2a) and (3.5), we obtain 

  (3.6) 

Using Eq. (3.6), the second condition, Eq. (3.1b) can be rewritten as: 

  (3.7) 

The functions can be determined via extensive finite element analysis. 

Using the functional form of Eq. (3.6), the quantity Wt/We can be plotted as a surface 

in the  space and the corresponding iso-(Wt/We) lines can be extracted. A 

schematic of a typical iso-(Wt/We) line is shown in Figure 3.2. Since all the materials 

lying on a particular iso-(Wt/We) line have identical value of Wt/We, it follows that any 

two materials selected from a particular iso-(Wt/We) line will satisfy the second 

condition for identical force-displacement relationship, Eq. (3.1b) (or Eq. (3.7)). From 

such an iso-line, pairs of material parameter sets that will lead to identical force-

displacement relationship can be found in the following steps (see Figure 3.2): 

Step 1: Select any two points on a particular iso-(Wt/We) line (as illustrated in Figure 

3.2). This will give two sets of (E/Y) and  that satisfy the second condition of 

identical force-displacement relationship, Eq. 3.7 (or Eq. (3.1b)). 
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Step 2: Determine the ratio r = Y1/Y2 from Eq. (3.4) using the values of (E/Y)1, , 

(E/Y)2 and obtained in Step 1. Since Eq. (3.4) is derived from Eq. (3.1a), the 

parameter sets now satisfy the first condition (Eq. 3.1a) as well. 

Step 3: Assume any value of Y2 and determine Y1 using Y1 = rY2, from Step 2. 

Step 4: Using Y1 and Y2 (obtained in Step 2), and (E/Y)1 and (E/Y)2 (obtained in Step 

1), determine E1 and E2. 

Step 5: For power-law hardening materials, the strain hardening exponents can be 

obtained directly using . For linear hardening materials, the hardening 

moduli can be obtained using the relations, . 

 

Figure 3.2: Schematic of a iso-(Wt/We) line in  space 
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Since Y2 is selected arbitrarily, there exist infinite sets of material parameters 

that lead to identical force-displacement relationship, corresponding to any two points 

of a iso-(Wt/We) line. Thus, it can be said that all materials lying on a particular iso-

(Wt/We) line will have identical force-displacement relationships with the constraint of 

Eq. (3.4).  

The methodology is derived for conical indentation of a half-space. However, 

it can be easily shown that the method is applicable to other geometries such as 

spherical indentation of a half-space, conical indentation of a sphere and spherical 

indentation of a sphere. 

3.2.2 Transversely isotropic, linear-elastic, perfectly plastic material 

For transversely isotropic, linear-elastic, perfectly-plastic material, the 

relationships between the normalized energies, Wt and We, and the material properties 

can be written as follows (see Chapter 1, section 1.4): 

  (3.8) 

  (3.9) 

  (3.10) 

where subscript tp indicates transversely isotropic, elastic, perfectly-plastic material. 

In this case, material parameters leading to identical force-displacement relationships 

can be obtained from iso-(Wt/We) surfaces in three dimensional Ex/Ez-Ez/Gxz-Ez/Y 

space similar to the previous sections. This will be illustrated in a later section (section 

3.4.3). 
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3.3 Functional Forms from Finite Element Analysis 

In Eqs. (1.14)-(1.16), the relationships between normalized shape functions 

and material properties are described. To implement the methodology described in the 

above sections, functional forms of  used in those equations 

need to be found. The functional forms will be required in the later chapters of this 

thesis as well. The functional forms can be obtained by conducting virtual indentation 

testing via finite element simulations similar to Chapter 2, section 2.1.2.1.  

Finite element simulations were performed using the commercial finite 

element program ABAQUS (Dassault Systemes, 2009). The half-space was modeled 

by a two-dimensional axisymmetric model with boundary conditions similar to the 

sphere in section 2.1.2.1. The model shown in Figure 3.3 was selected after a 

convergence study. For the spherical substrate, the model described in Chapter 2, 

section 2.1.2.1 is adopted. The conical or spherical indenters were modeled as two 

dimensional axisymmetric rigid bodies using the “analytical rigid” option in 

ABAQUS. Coulomb’s friction law with friction coefficient 0.15 (Bowden and Tabor, 

2001) is used to model friction between the surfaces.  

,  and  ( 1 5)ph lh tp
i i iG G G i  
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Figure 3.3: Finite element model of a half-space being indented by a spherical indenter 

To develop the functional forms, finite element simulations for a range of 

materials were conducted to extract the shape functions. For isotropic materials, a 

material set with elastic modulus 80  E (GPa)  300 and yield stress 0.1  Y (GPa)  

2.0 was chosen to cover a wide range of E/Y ratios (80  E/Y  1000). For power-law 

hardening materials, the strain hardening exponent was taken to be 0.0  n  0.5, 

which is common for metals (Chen et al., 2007). Similarly, for linear hardening 

materials, the range of Ep was taken such that 0.0  Ep/E  0.5. Poisson’s ratio was 

taken to be constant at 0.3. As previously noted, Poisson’s ratio has only a minor 
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effect on the force-displacement response. For power law hardening materials 

(indicated by the subscript p in the fitting coefficients, ), the following form is 

used: 

  (3.11) 

where ju and ku are the upper limits of j and k, respectively which is different for 

different geometries. The fitting coefficients, are tabulated in Tables A.1-44 for 

various indentation geometries and shape functions in Appendix A, section A.1. 

Similarly for linear hardening materials (indicated by the subscript l in the fitting 

coefficients, ), the following form is used: 

  (3.12) 

The fitting coefficients, are tabulated in Tables A.45-48 for various indentation 

geometries and shape functions in Appendix A, section A.2. 

For transversely isotropic material, the following range of material properties 

was chosen (Vinson, 1999; Bower, 2009): 5  Ex/Ey  45, 1.5  Ey/Gxy  4, 45  Ey/Y  

290. Poisson’s ratios were taken to be constant: xy = 0.2, zx = 0.05. As previously 

noted, Poisson’s ratios are assumed to be constant for simplicity. Considering Eq. 

(1.13), the normalized shape functions of the left hand side were expressed as 

functions of Ez/Ex, Ex/Gxz and Ex/Y for fixed values of α (for conical indentation) or 

hm/R (for spherical indentation). First, the normalized shape functions were used to 

attempt to fit with Ex/Gxz and Ex/Y for selected fixed values of Ez/Ex. Altogether 169 

surface equations (taken from www.zunzun.com) were tried for this purpose. For each 

surface, the values of the normalized shape function were computed at all data points 
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and the percentage differences between the computed and the original values were 

determined. Surfaces with maximum deviations more than 2.5% were rejected. For 

each selected surface, the coefficients of the fitted surface were then used to attempt to 

fit with Ez/Ex. A surface was rejected if all of the coefficients could not be fit with 

coefficient of determination, R2 > 0.95. If none of the surface equations could be 

selected in the above manner, attempts were made by keeping Ex/Gxz or Ex/Y constant, 

instead. The outline is depicted comprehensively in Figure 3.4. Finally, seven surface 

equations (Table A.49) were found to be sufficient for fitting all the normalized shape 

functions with material properties (including results presented in other chapters). For 

conical and spherical indentation, the surface equations used for fitting the normalized 

shape functions are tabulated in Table A.51. The corresponding fitting coefficients are 

presented in Tables A.53-A.88. Some more details regarding the fitting procedure are 

presented in Appendix A, section A.3. 
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Figure 3.4: Schematic of the regression analysis used for expressing the normalized 
shape functions as functions of material properties for transversely 
isotropic materials (Eqs. (1.13)) 

3.4 Results 

The proposed methodologies are applied to selected indenter/substrate 

geometries and material models to investigate the viability of the methodologies for 

identifying material parameters leading to identical force-displacement relationship. 

This will be presented next. 
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3.4.1 Isotropic, linear-elastic, power-law strain hardening plastic material 

To illustrate the proposed methodology for an isotropic, linear-elastic, power-

law strain hardening material model, finite element simulations of a half-space and a 

sphere (radius 23 m) indented by a conical indenter with half-angle 70.3º are 

conducted. For indentation of a half-space, selected iso-(Wt/We) lines extracted using 

the procedures outlined in section 3.1, are plotted in Figure 3.5. Five materials 

parameters with identical values of Wt and We are extracted for each case, and the 

force-displacement and stress-strain relationships of these materials are plotted in 

Figure 3.6 and 3.7, respectively. Figure 3.6 shows that the force-displacement 

relationships overlap. The material parameters are tabulated in Table 3.1. As discussed 

in Chapter 1, section 1.5, various authors (Cheng and Cheng, 1999; Tho et al., 2004; 

Alkorta et al., 2005) have shown that only two shape functions out of five are 

independent for conical indentation of a half-space composed of a isotropic, linear-

elastic, power-law strain hardening plastic material. In the proposed methodology, the 

two independent shape functions are Wt and We. Thus, as expected, material 

parameters with identical Wt and We result in identical force-displacement 

relationships. 

The material parameters leading to identical force-displacement relationship 

can be seen to have different values of elastic modulus (Table 3.1). Since the elastic 

modulus of the substrate material can be determined from Oliver-Pharr method, in this 

section, we will investigate if the range of the material parameters leading to identical 

force-displacement relationship becomes smaller, when the elastic modulus is kept 

constant. The force-displacement relationships in Figure 3.6 do not overlap completely 

and there are some small numerical differences among them. The difference between 

the total and elastic energy for material # 1 and material # 5 (denoted by superscript 1 
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and 5 respectively) for conical indentation of half-space was computed to be 

   2 2
1 5 1 1 5 1/ / 0.08%t t t e e eW W W W W W          . Next a set of material parameters 

(material # 6) was searched in the range of 350 < Y (MPa) < 550 and 0.2 < n < 0.4 by 

keeping the elastic modulus same as material # 1 (E = 300 GPa) that will lead to 

minimum deviation in the total and elastic energy, 

   2 2
1 6 1 1 6 1/ /t t t e e eW W W W W W         . The set with Y = 549 MPa and n = 0.304 

was found to lead minimum deviation of 2.88%. Since this amount of deviation is 

larger than for material # 5, it is concluded that the degree of non-uniqueness 

decreases as elastic modulus is kept fixed. Thus, when the elastic modulus of a 

material is known, the range of the possible values of its yield strength and strain 

hardening exponent that can be obtained from a single indentation test becomes 

smaller. 
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Figure 3.5: Few iso-(Wt/We) lines for conical indentation of a half-space with  = 
70.3 

Table 3.1: Material parameter sets that lead to identical Wt and We for conical ( = 
70.3) indentation of a half-space and a sphere (radius 23 m) modeled 
by linear-elastic, power law hardening plastic material model. Force 
displacement relationships are shown in Figure 3.6. 

Material # 
Half-space Sphere 

E (GPa) Y (MPa) n E (GPa) Y (MPa) n 
1 300.00 1000.0 0.14030 300.00 1000.0 0.16474
2 308.93 772.31 0.22066 310.59 776.49 0.23622
3 315.68 631.37 0.27271 316.68 633.37 0.28580
4 319.63 532.71 0.31149 322.72 537.87 0.32084
5 322.73 461.04 0.34110 328.81 469.73 0.34714
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Figure 3.6: Force-displacement relationships corresponding to five material parameter 
sets that lead to identical Wt and We for conical ( = 70.3) indentation of 
(a) a half-space and (b) a sphere (radius 23 m) modeled by linear-
elastic, power law hardening plastic material model. The curves overlap 
within the resolution of the figure. 
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Figure 3.7: Stress-strain relationships corresponding to five material parameter sets 
that lead to identical Wt and We for conical ( = 70.3) indentation of (a) 
a half-space and (b) a sphere (radius 23 m) modeled by linear-elastic, 
power law hardening plastic material model. 
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For spherical indentation of a half-space, a spherical indenter of radius 3 µm is 

considered and finite element simulations of indentations with depth-to-radius ratios 

of 20% and 100% respectively, are conducted. Iso-(Wt/We) lines are constructed and 

material parameters leading to identical values of Wt and We are extracted from a iso-

line using the procedures outlined in section 3.1. The material parameters are tabulated 

in Table 3.2 and the force-displacement relationships are shown in Figure 3.8. 

Although the unloading curves overlap, the loading curves do not completely overlap. 

This scenario for loading curves was predicted in section 3.1 and schematically shown 

in Figure 3.1a. The difference in loading curves is more prevalent for the larger 

indentation depth. Interestingly, for both 20% and 100% depth-to-radius ratios the 

loading curves have a common intersection point.  

Table 3.2: Material parameter sets that lead to identical Wt and We for spherical (radius 
3 m) indentation of a half-space modeled by linear-elastic, power law 
hardening plastic material model with depth-to-radius ratio of 20% and 
100%. Force displacement relationships are shown in Figure 3.8 

Material # 
Depth-to-radius ratio: 20% Depth-to-radius ratio: 100%
E (GPa) Y (MPa) n E (GPa) Y (MPa) n 

1 300.00 1000.0 0.18131 100.00 1000.0 0.18636
2 314.70 786.74 0.24466 116.78 389.25 0.37741
3 324.25 648.50 0.28894 124.18 248.35 0.43796
4 330.52 550.87 0.32223 128.43 183.47 0.47271
5 335.79 479.70 0.34781 129.45 143.84 0.50000
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Figure 3.8: Force-displacement relationships corresponding to five material sets that 
lead to identical Wt and We for spherical (radius 3 m) indentation of a 
half-space modeled by linear-elastic, power law hardening plastic 
material model with depth-to-radius ratio of (a) 20% and (b) 100%. The 
curves do not overlap completely. The difference in force-displacement 
relationships is clearer for depth-to-radius ratio of 100% than of 20%. 
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For the depth-to-radius ratio of 100%, material parameters leading to identical 

Wt, We and Pm are then searched for, following the methodology outlined in section 

3.1. A reliable method similar to iso-(Wt/We) lines could not be obtained for the three 

shape functions involved and thus a general searching procedure is used. To this end, a 

base material parameter set is first selected and material parameter sets leading to the 

shape functions set (Wt, Pm and We) identical to that of the base material parameter set 

are identified, in a region around the base material parameter set. The base material 

parameter set is selected as having elastic modulus, E = 180 GPa, yield strength, Y = 

1200 MPa and strain hardening exponent, n = 0.3 and the set (Wt, We, Pm) is computed 

using the functional forms presented in section 3.3. A grid of new sets of parameters is 

considered surrounding the base set by varying the parameters, E, Y and n, within 

50% of the original values and the set (Wt, Pm, We) corresponding to those new sets is 

computed. The following quantity is calculated for each of the new sets to quantify the 

difference between the set of shape functions (Wt, Pm, We) for the new sets and the 

base set: 

  (3.14) 

where the superscripts b and n indicate the shape functions for the base material 

parameter set and the new sets, respectively. The new material parameter sets with 

 (1% tolerance) are obtained. Force-displacement relationships corresponding 

to some selected new sets are shown in Figure 3.9 along with that of the base set. The 

parameters corresponding to the new sets are tabulated in Table 3.3. Again, the force-

displacement relationships overlap. The minor differences among the force-
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displacement relationships are probably due to the inaccuracy of regression. These 

differences are likely to be within the margin of experimental errors. 

Table 3.3: Material parameter sets leading to identical Wt, Pm and We for spherical 
(radius 3 m) indentation of a half-space modeled by linear-elastic, 
power law hardening plastic material model with depth-to-radius ratio of 
100%. Force displacement relationships are shown in Figure 3.9. 

Material # E (GPa) Y (MPa) n 
1 177.00 1320.0 0.2800
2 179.00 1260.0 0.2900
3 180.00 1200.0 0.300 
4 181.00 1140.0 0.3100
5 184.00 1080.0 0.3200

 

 

Figure 3.9: Force-displacement relationships corresponding to five material parameter 
sets that lead to identical Wt, Pm and We for spherical (of radius 3m) 
indentation of a half-space modeled by linear-elastic, power-law 
hardening plastic material model with depth-to-radius ratio of 100%. The 
force-displacement relationships almost overlap. 
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For spherical indentation on a sphere, a sphere of radius 23 µm indented by 

another sphere of radius 3 m is considered and finite element simulation with  

maximum indentation depth, hm = 1.15 m is conducted. Iso-(Wt/We) lines are drawn 

and material parameter sets leading to identical values of Wt and We are extracted from 

a iso-line using the procedures outlined in section 3.1. The obtained material 

parameters are tabulated in Table 3.4 and the corresponding force-displacement 

relationships are shown in Figure 3.10a. Similar to spherical indentation of a half-

space, the loading curves do not completely overlap. Thus, as a next step, materials 

with identical Wt, We and Pm are searched for following the methodology outlined in 

section 3.1 similar to spherical indentation of a half-space. Force-displacement 

relationships corresponding to one such set of material parameters are shown in Figure 

3.10b and the material parameters are tabulated in Table 3.4. For these parameters 

sets, the force-displacement relationships overlap. 

Table 3.4: Material parameter sets leading to identical (Wt, We) and (Wt, Pm, We) for 
spherical (radius 3 m) indentation of a sphere (radius 23 m) modeled 
by linear-elastic, power law hardening plastic material model. Force 
displacement relationships are shown in Figure 3.10. 

Material # 
Identical Wt and We Identical Wt, Pm and We 

E (GPa) Y (MPa) n E (GPa) Y (MPa) n 
1 150.00 1000.0 0.15335 177.00 1370.0 0.26000
2 161.60 538.66 0.32969 178.00 1280.0 0.28000
3 170.81 341.63 0.41798 178.00 1200.0 0.30000
4 174.90 249.86 0.46806 178.00 1120.0 0.32000
5 178.23 198.04 0.50000 179.00 1080.0 0.33000
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Figure 3.10: Force-displacement relationships corresponding to five material 
parameter sets leading to (a) identical Wt and We and (b) identical Wt, Pm 
and We, for spherical (radius 3 m) indentation of a sphere (radius 23 
m). Although the curves with identical Wt and We do not overlap, curves 
for with identical Wt, Pm and We do overlap. 
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3.4.2 Isotropic, linear-elastic, linear strain hardening plastic material 

To illustrate the methodology for linear-elastic, linear strain hardening plastic 

materials, finite element simulations of a half-space indented by a conical indenter 

with half-angle 70.3º and a sphere with radius 3 m were conducted. Following the 

procedures outlined in section 3.2, selected iso-(Wt/We) lines are plotted in Figure 3.11 

for conical indentation of a half-space. Five sets of material parameters leading to 

identical values of Wt and We are extracted and the corresponding force-displacement 

relationships are plotted in Figure 3.12. The material parameters are listed in Table 

3.5. Once again, the force-displacement relationships overlap. 

 

Figure 3.11: Iso-(Wt/We) lines for conical ( = 70.3) indentation of a half-space made 
of linear elastic, linear strain hardening plastic material 
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Table 3.5: Material parameter sets leading to identical Wt and We for conical ( = 
70.3) and spherical indentation (radius 3 m) of a half-space modeled 
by linear-elastic, linear hardening plastic material model. Force 
displacement relationships are shown in Figure 3.12. 

Material # 
Conical indentation Spherical indentation 

E (GPa) Y (MPa) Ep (GPa) E (GPa) Y (MPa) Ep (GPa)
1 300.00 1000 109.37 300.00 1000 99.648 
2 304.61 761.54 114.42 307.07 767.68 108.68 
3 307.99 615.99 117.95 312.28 624.55 114.95 
4 310.54 517.56 120.56 316.15 526.91 119.56 
5 312.48 446.40 122.55 319.07 455.82 123.04 
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Figure 3.12: Force-displacement relationships corresponding to five material 
parameter sets leading to identical Wt and We for (a) conical ( = 70.3) 
and (b) spherical (radius 3m) indentation of a half-space modeled by 
linear-elastic, linear hardening plastic material model. The curves overlap 
within the resolution of the figure. 
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3.4.3 Transversely isotropic, linear-elastic, perfectly plastic material 

Finally, to illustrate the methodology for transversely isotropic, linear-elastic, 

perfectly-plastic material, finite element simulations of a half-space indented by a 

conical indenter with half-angle 70.3 and a spherical indenter with radius 3 m are 

conducted. An iso-(Wt/We) surface is plotted in Figure 3.13 for each case and five 

material parameter sets leading to identical values of Wt and We are extracted. The 

material parameters are listed in Table 3.7 and the corresponding force-displacement 

relationships are plotted in Figure 3.14. The force-displacement relationships almost 

overlap. 
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Figure 3.13: A iso-(Wt/We) surface for (a) conical ( = 70.3) and (b) spherical (radius 
3 m) indentation of a half-space made of transversely isotropic, linear-
elastic, perfectly plastic material. 
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Table 3.6: Material parameter sets leading to identical Wt for conical ( = 70.3) and 
spherical (radius 3m) indentation of a half-space modeled by 
transversely isotropic, linear-elastic, perfectly-plastic material model. 
Poisson’s ratios are assumed to be constant: xz = 0.05 and xy = 0.2. 
Force displacement relationships are shown in Figure 3.14 

Material 
# 

Conical Indentation Spherical Indentation 
Ez 

(GPa) 
Ex 

(GPa) 
Gxz 

(GPa) 
Y 

(MPa) 
Ez 

(GPa) 
Ex 

(GPa) 
Gxz 

(GPa) 
Y 

(MPa) 
1 55.000 10.000 4.8958 35.336 187.50 5.0000 3.1451 45.454 
2 112.17 7.4896 2.7235 37.636 174.24 6.1277 3.0638 43.769 
3 96.341 4.9406 3.2937 41.195 332.70 7.6689 2.0451 42.605 
4 173.23 7.2177 2.0162 38.290 256.18 8.5394 2.2772 41.889 
5 142.31 3.7805 2.3628 45.275 107.89 10.9394 3.6465 40.516 
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Figure 3.14: Force-displacement relationships corresponding to five material 
parameter sets that lead to identical Wt and We for (a) conical ( = 70.3) 
and (b) spherical (radius 3 m) indentation of a half-space made of 
transversely isotropic, linear-elastic, perfectly plastic material model. The 
curves almost overlap on each other. 
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3.5 Application to Experiments in the Literature 

The proposed methodologies are applied to a real indentation experiment, and 

material parameter sets with force-displacement relationship identical to the 

experimentally obtained force-displacement relationship are obtained. This will be 

presented in this section. 

Taljat et al. conducted spherical indentation experiments on A533-B steel. The 

radius of the indenter and the maximum indentation depth were 0.788 mm and 0.226 

mm respectively. They presented the force-displacement relationship obtained from 

the indentation experiment, as well as the stress-strain curve of A533-B steel obtained 

from a separate compression test. Zhao et al., conducted regression analysis of the 

stress-strain curve reported by Taljat et al., and reported that it can be modeled as a 

isotropic, linear-elastic, power-law hardening material with material properties of, 

elastic modulus, E = 210 GPa, yield strength, Y = 400 MPa and strain hardening 

exponent, n = 0.127. 

The spherical indentation experiments are simulated using the finite element 

model described in section 4.1 and the material properties described in the above 

paragraph. The substrate is modeled as a half-space. The Poisson’s ratio is taken to be 

0.3. The force-displacement relationships obtained from the experiment as well as 

from the present simulation are shown in Figure 3.15, showing reasonable agreement.  
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Figure 3.15: Comparison of force-displacement relationships obtained from 
experiment (Taljat et al., 1998) and simulation for spherical (radius 0.788 
mm) indentation of a half-space 

To identify material parameter sets leading to force-displacement relationship 

identical to the experimental force-displacement relationship shown in Figure 3.15, a 

material set with elastic modulus, 80  E (GPa)  300, yield stress 0.1  Y (GPa)  2.0 

and strain hardening exponent, 0.0  n  0.5 is considered. The maximum load, Pm, 

total energy, Wt, elastic energy, We, and the ratio, Wt/We for the experimental material 

were computed to be, 2263.5 N, 21.9 J, 0.79 J and 27.8, respectively. Since the force-

displacement relationships obtained from the experiment and the simulation are almost 

identical, the force-displacement relationship obtained from the simulation is used for 

the computations of the shape functions mentioned above for accuracy. Following the 

procedure outlined in section 3.1, selected iso-lines are plotted in Figure 3.16 which 
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includes the iso-line corresponding to the experimental material. Five material 

parameter sets leading to values of Wt and We identical to that of the experimental 

material are extracted from the iso-line corresponding to the experimental material. 

The force-displacement relationships corresponding to the material parameter sets are 

plotted in Figure 3.17a and the parameters are tabulated in Table 3.7. The force-

displacement relationships almost overlap. Next, as done previously, material 

parameter sets with identical Wt, We and Pm are searched for following the 

methodology outlined in section 3.1 and 3.4.1. The force-displacement relationships 

corresponding to such sets are plotted in Figure 3.17b and the parameters are tabulated 

in Table 3.7. Again, the force-displacement relationships overlap. 

 

Figure 3.16: Iso-(Wt/We) lines corresponding to the geometry of indentation 
experiment performed by Taljat et al. (1998). The iso-line corresponding 
to the experimental material is indicated. 
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Table 3.7: Material parameter sets leading to identical (Wt, We) and (Wt, Pm, We) with 
that of the experimental (Taljat et al., 1998) material. Force displacement 
relationships are shown in Figure 3.17. 

Material # 
Identical Wt and We Identical Wt, Pm and We 

E (GPa) Y (MPa) n E (GPa) Y (MPa) n 
1 500.00 1000.0 0.11568 207.00 410.00 0.12000
2 518.60 864.34 0.15022 208.00 393.00 0.13000
3 532.44 760.64 0.17891 209.00 377.00 0.14000
4 541.37 676.71 0.20392 211.00 360.00 0.15000
5 545.28 605.87 0.22635 213.00 345.00 0.16000
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Figure 3.17: Comparison of the experimentally (Taljat et al., 1998) obtained force-
displacement relationship and the force-displacement relationships of 
five material parameter sets leading to (a) Wt and We and (b) Wt, Pm and 
We identical to the experimental material 
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3.6 Summary 

In instrumented indentation, several material parameter sets can give rise to 

identical force-displacement relationships (although there may not be any real 

materials corresponding to such sets). In this chapter, a general method is presented to 

systematically obtain sets of material parameters with identical force-displacement 

relationships. The method serves as a tool to verify the existence and systematic study 

of non-uniqueness of force-displacement relationships for selected indentation 

geometries and material models. 

The method is based on attempting to represent the force-displacement 

relationship with a few (two or three) shape functions and then comparing the selected 

shape functions to identify material parameter sets with identical values of those shape 

functions.  

The method is illustrated by obtaining sets of materials with identical force-

displacement relationship for wide range of indenter/substrate geometries and material 

models. It can thus be concluded that single indentation cannot provide unique 

material properties for a wide range of indenter/substrate geometries and material 

types. Thus alternate methodologies such as dual indentation technique are necessary. 

It is shown that in most cases two shape functions, the loading energy, Wt, and the 

unloading energy, We, of two materials can be compared to guarantee identical force-

displacement relationship. In such cases, an existence map of such materials can be 

created using the concept of iso-(Wt/We) lines and surfaces for visual demonstration of 

such materials in the material space. In some cases, such as spherical indentation with 

high depth-to-radius ratio, materials with identical force-displacement relationships 

could be obtained by comparing the loading energy, Wt, maximum load, Pm and the 

unloading energy, We instead of just Wt and We. The methodologies are applied to a 
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real indentation experiment reported in the literature, to identify materials with force-

displacement relationship identical to the experimental material.  
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Chapter 4 

ASSESMENT OF THE SENSITIVITY OF INDENTATION TESTING USING 
CONDITION NUMBER AND SENSITIVITY ANALYSIS 

In the previous chapters, we showed that several materials can result in 

identical force-displacement relationships when more than two material properties are 

involved.  Therefore a single indentation technique cannot be used to determine the 

material properties uniquely. To overcome this difficulty, dual indentation 

methodologies can be utilized as discussed in Chapter 1, section 1.6. However, dual 

indentation methodologies can be quite sensitive to experimental error; that is, a small 

deviation in the experimental measurement can lead to a significant deviation in the 

determined material properties from the original material properties. Examples of 

common sources of error in an indentation experiment includes include instrument 

compliance (Van Vliet et al., 2004), imperfect indenter tip (Field and Swain, 1995), 

substrate surface roughness (Kim et al., 2007), size effect arising from increase in the 

density of dislocations (Huang et al., 2006), presence of small degree of material 

inhomogeneity (Higuchi et al., 2010) and thermal drift (Feng and Ngan, 2002). A 

range of combinations of shape functions, half-angles (conical indentation) and depth-

to-radius ratios (spherical indentation) have been used for dual indentation tests in the 

literature. However, a systematic study to select combinations that minimize the 

sensitivity to experimental error is not available in the open literature. In this chapter, 

a systematic study of the sensitivity of indentation testing for isotropic and 
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transversely isotropic materials will be presented. A broader review of the background 

of this chapter can be found in Chapter 1, section 1.6. 

In this chapter, conical and spherical indentation of a half-space composed of 

isotropic, linear-elastic, power-law hardening material or transversely isotropic, linear 

elastic, perfectly-plastic material is considered. In section 4.1, a methodology is 

presented to understand the uniqueness and sensitivity of an indentation system using 

condition number. In section 4.2, condition numbers are computed for isotropic 

materials for a range of dual indentation tests. Various combinations of shape 

functions, half-angles and depth-to-radius ratios are considered and the combinations 

are ranked according to the sensitivity of experimental error. In section 4.3, an explicit 

sensitivity analysis is presented to verify the findings using the condition number and 

to derive some further insights regarding sensitivity. In section 4.4, sensitivity of dual 

indentation testing of transversely isotropic materials is discussed. The work contained 

in this chapter is based on our work reported in Phadikar et al, 2013b, 2013c and 

2013e. 

The finite element models and the functional forms of used in this chapter are 

described in Chapter 3, section 3.3. 

4.1 Application of Condition Number to Indentation Technique 

In this section, a method will be presented first to determine the material 

properties of an isotropic, linear-elastic, power-law hardening material based on a 

conical dual indentation test. Then, the uniqueness and sensitivity of the determined 

material properties to experimental error will be discussed in a manner similar to the 

examples of Chapter 1, section 1.1.1. 
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As discussed in section 1.4, for conical indentation of a half-space composed 

of isotropic, linear-elastic, power law hardening material, several authors have shown 

that only two of the five shape functions listed in Eq. (1.12) are independent. Thus, for 

a single indentation test, two materials (materials 1 and 2) will have identical force-

displacement relationships if both of them have the same values of maximum load, Pm 

and unloading slope, Su. That also holds if they have the same Pm and the same Pm/Su. 

Thus, the two conditions for identical force-displacement relationship can be written 

as (subscripts 1 and 2 correspond to two materials): 

  (4.2a) 

  (4.2b) 

Using the relation of normalized Pm in Eq. (1.14b), Chapter 1, section 1.4, the first 

condition can be written as: 

  (4.3) 

The above relationship can be used to obtain the ratio of the yield strengths of the two 

materials, as follows: 

  (4.4) 

The two materials can be made to satisfy the second condition, Eq. (4.2b), by deriving 

non-dimensional relations involving Pm and Su in Eq. (1.14b), which gives 

  (4.5) 

Eq. (4.2b) can be rewritten using Eq. (4.5) as: 
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  (4.6) 

From Eq. (4.5), iso-Pm/(Suhm) lines can be drawn in the E/Y – n space and for  = 50, 

such lines are shown in Figure 4.1a. Since all the materials lying on a particular iso-

Pm/(Suhm) line correspond to identical value of Pm/(Suhm), it follows that any two 

materials selected from a particular iso-Pm/(Suhm) line will satisfy the second condition 

for identical force-displacement relationship, Eq. (4.6). From Figure 4.1a, pairs of 

materials having identical force-displacement relationship can be obtained in the 

following steps: 

Step 1: Select any two points on a particular iso- Pm/(Suhm) curve (as illustrated in 

Figure 4.1a). Thus obtain (E/Y) and n of two materials that satisfy the second 

condition of identical force-displacement relationship (Eq. (4.2b)). 

Step 2: Determine the ratio r = Y1/Y2 from Eq. (4.4) using (E/Y)1, n1, (E/Y)2 and n2 

obtained in Step 1. Since Eq. (4.4) is derived from Eq. (4.2a), the materials now satisfy 

the first condition (Eq. 4.2a) as well. 

Step 3: Assume any value of Y2 and determine Y1 using Y1 = rY2, from Step 2. 

Step 4: Using Y1 andY2, and (E/Y)1 and (E/Y)2 obtained in Step 1, determine E1 and E2. 

Since Y2 is selected arbitrarily, there are an infinite number of materials having the 

same force displacement relationship corresponding to any two points of an iso-

Pm/(Suhm) line. 

For dual indentation testing, two different half-angles are used. Using the same 

approach discussed above, the iso-lines for the other indenter can be generated. In 

Figures 4.1b, 4.1c and 4.1d, iso-lines corresponding to indenters with  = 80, 70 and 

60, respectively are shown together with the iso-lines from  = 50. These iso-lines 

can be used to determine the material properties of a material based on a dual 
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indentation test using the following procedure (described for 1 = 50 and 2 = 80): 

conduct the dual indentation test with 1 = 50 and 2 = 80. Obtain the force-

displacement relationships and thereby the quantities Pm/Suhm for the two tests. Draw 

the two particular iso-lines corresponding to the two tests in the E/Y-n space using 

finite element analysis and the procedure described in the previous paragraphs. Since 

both the iso-lines correspond to the same material, the intersection of the two lines will 

give the values of E/Y and n for the material. The elastic modulus, E can be 

determined using the commonly used “Oliver-Pharr method” (Oliver and Pharr, 1992). 

Thereafter, the yield strength, Y can be calculated using the values of E and E/Y. 

 

 

(a) 

 



 120
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(d) 

Figure 4.1: Selected iso-(Pm/Suhm) lines for (a) α = 50°; (b) α = 50° and α = 80°; (c) α 
= 50° and α = 70°; (d) α = 50° and α = 60°. As the iso-lines from two 
tests approach each other, the system becomes increasingly sensitive to 
experimental errors. 

The concept of condition number and the method of iso-Pm/(Suhm) lines can be 

used to demonstrate the sensitivity of dual indentation techniques due to experimental 

error. Figures 4.1b, 4.1c and4.1d can be compared with Figures1.3a, 1.3b, 1.3c. Here 

E/Y and n are equivalent to the elements of (solution), and values of Pm/(Suhm) 

corresponding to two different indentation tests are equivalent to the elements of 

(data) in Chapter 1, section 1.1.1. The sensitivity of the determined material properties 

x

y
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due to experimental error and the condition number of the system increase as the iso-

lines get closer to each other, similar to the discussion of linear systems in section 

1.1.1 (Figure 1.3). For a clearer illustration, in Figure 4.2, the iso-lines passing through 

the point E/Y = 500, n = 0.25 corresponding to the four indenter half- angles are 

shown. As the difference between the half-angle decreases, the iso-lines become closer 

which means that the indentation tests will be more sensitive to the experimental error 

and thus the viability of the determined material parameters will be questionable. 

Although, condition numbers are not explicitly computed for the examples presented 

in this section, it can be understood from the discussion in section 1.1.1, that as the 

indentation system becomes increasingly sensitive and approaches non-uniqueness, 

the condition number of the system will increase. 



 124

 

Figure 4.2: Selected iso-(Pm/Suhm) lines passing through the point E/Y = 500, n = 0.25 
for four selected conical indenters 

 

Condition numbers can be computed for the indentation systems and different 

dual indentation tests can be ranked according to the sensitivity due to experimental 

error. This will be discussed next. 

4.2 Condition Numbers of Single and Dual Indentation Techniques 

So far, the uniqueness and sensitivity of indentation systems have been 

discussed in qualitative terms. We will now attempt to quantify them using the 

concept of condition numbers. To compute the condition numbers for indentation 
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systems, indentation tests are to be simulated numerically and the functional 

relationships between the shape functions (data of the system) and material properties 

(solution of the system) need to be established. Such relationships between the 

normalized shape functions and the material properties are described in Eqs. (1.14)-

(1.15) (Chapter 1, section 1.4) for isotropic materials. The functional forms of 

 are described in section 3.3, Chapter 3 and sections A.1 and A.2, 

Appendix A for various indentation geometries. 

4.2.1 Modified condition number 

A brief overview of the condition number is provided in section 1.1.1. 

Considering large differences in the numerical values among the material properties 

(elastic modulus, E, yield strength, Y, and strain hardening exponent, n), a new 

definition of the condition number is introduced in this section. In this definition, the 

relative change is measured on an element by element basis which is given by (for 

vector z): instead of  used in the original definition (Eq. (1.1)). Here 

the definition of the “./” operation is 

  (4.8) 

Consider the equation y = f(x), where  denotes the material property vector3, 

, and  denotes the vector of shape functions, . As 

discussed further in the paragraph following Eq. (4.9), the modified condition number 

accommodating the new definition of relative change is given by 

  (4.9a) 

                                                 
 
3 The material properties that are used in this expression are the original properties 
used in the FE model, and not the ones that are obtained from reverse analysis. 

 and ph lh
i iG G

. /Δz z /Δz z

     1 2 3 1 2 3 1 1 2 2 3 3. / , , ... . / , , ... / , / , / ... /k k k km m m m n n n n m n m n m n m n m n

x

 , ,E Y nx y  shape functionsy

31 / ( , , )m u C  f z
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with 

  (4.9b) 

where z is the point in material space where the condition number is computed and C 

is a user-defined domain enclosing z.  

A small m implies that the relative error of the material properties, 
 

is small for a given error in shape functions, , and vice versa. It can be 

understood as follows: from Eq. (4.9a), a small m implies large . Note that 

in Eq. (4.9b), 
 
is denoted as  and  is denoted as 

. From Eq. (4.9b), 
 
roughly denotes the maximum 

value of . Thus, for a given , a large  implies a 

small . It follows that a small m results in small  for a given  

.  

4.2.2 Computational procedure 

The computational procedure of the modified condition number, m, for an 

indentation test will be described in this section.  

The relationships between the normalized shape functions and the material 

properties, Eq. (1.14b) (the functional forms are presented in section 3.3), represent 

the mapping between the space of material parameters (input space) and the space of 

shape functions (output space). The specific material for which the condition number 

is computed is considered as the origin of the input space and denoted by 

. The set of shape functions corresponding to that material is  

considered as the origin of the output space. The perturbation region or the subdomain, 

C, (in Eq. (4.9)) enclosing the origin of the input space is selected as: 

     3
 in 

, , sup  in [ 0, ; ( ) ( ) . / ( ) ( ). /
C

u C t t    
x

f z f x f z f z x z z

. / ,Δx x

. /Δy y

3( , , )u Cf z

. /Δx x ( ). /x z z . /Δy y

 ( ) ( ) . / ( )f x f z f z  3 , ,u Cf z

. / / . /Δy y Δx x . /Δy y  3 , ,u Cf z

. /Δx x . /Δx x

. /Δy y

 0 0 0, ,E Y nz
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A uniform grid is constructed in the input perturbation region which consists of 

50 x 50 x 50 = 125000 material points. Using the mapping equations (Eqs. (1.14b)), 

the corresponding output perturbation region is determined. For both the input and 

output perturbation region, the relative differences (Eq. (4.8)) between the grid points 

and the origin are computed. For each grid point in the input perturbation region, the 

ratios of the relative differences in output and input region yield the parameter t of Eq. 

(4.9b). The maximum value of the parameter t is . Its reciprocal, m (Eq. 

(4.9a)) gives the value of the condition number at the material point. 

Dimensional analysis shows that the condition number only depends on E/Y 

and n, instead of three material parameters independently. Thus, denoting the 

functional relation by J, 

  (4.10) 

For a given indentation geometry, the condition numbers have been calculated at 45 

points of the E/Y – n space, numerically, with E0/Y0 = 100, 200, 300, 400, 500, 600, 

700, 800, 900 and n0 = 0.05, 0.15, 0.25, 0.35, 0.45. The average condition number for 

a particular indentation geometry is determined from these 45 cases, and used as the 

condition number for the indentation geometry, . 

4.2.3 Condition numbers for single indentation 

In the previous sections, we have discussed that for single indentation, several 

materials can result in identical force-displacement relationship. Thus, the condition 

number for the single indentation technique should be infinite since it is a non-unique 

system (Datta, 2010). To investigate this, we computed the average modified 

   1 2 30.9 1.1 ; 1 3; , ,i i iC z z z i z z z     z

 3 , ,u Cf z

,m

E
J n

Y
    

 

avg
m
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condition number, , for conical indentation with α = 70° and spherical indentation 

with hm/R = 20%. The resulting condition numbers are tabulated in Table 4.1. As 

discussed in section 1.1.1, well-conditioned systems have a condition number close to 

1. In this case, the condition numbers are quite large but finite. The condition numbers 

are finite since the subdomain, C is numerically discretized and the computation 

therefore does not account for all the infinite points. Also, the force-displacement 

relationships are not truly non-unique, but there are very small differences among the 

force-displacement relationships of different materials (Tho et al., 2004; Alkorta et al., 

2005). Consequently, finite but very large condition numbers are obtained. 

 

 

Table 4.1: Condition numbers for single indentation technique for various 
combinations of shape functions 

Shape function 
combination Conical Indentation Spherical Indentation 

 88.6 87.0 

 131 131 

 125 100 

 99.8 94.2 

 109 117 

 106 105 

 88.6 44.0 

 445 76.4 

 153 50.9 

 165 44.2 
 

avg
m

avg
mκ

, ,u e fS W h

, ,m e fP W h

, ,m u fP S h

, ,m u eP S W

, ,t e fW W h

, ,t u fW S h

, ,t u eW S W

, ,t m fW P h

, ,t m eW P W

, ,t m uW P S
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4.2.4 Condition numbers for dual indentation 

Next, the condition numbers for dual indentation is presented. First, condition 

numbers will be presented for a range of shape function combinations and then for 

various combinations of half-angles and depth-to-radius ratios. For dual conical 

indentation, the condition numbers were computed for indenters with α1 = 50° and α2 

= 80°. These half-angles may be considered as the limits of the range of half-angles 

that are of practical use. For spherical indentation, condition numbers were computed 

for indentation tests with (hm/R)1 = 10% and (hm/R)2 = 40%. A simple calculation 

shows that there are one hundred ways in which three shape functions can be selected 

from two half-angles (or depth-to-radius ratios). In fifty of them, two shape functions 

are selected from α1 or (hm/R)1 and one shape function is selected from α2 or (hm/R)2. 

In the other fifty combinations, one shape functions is selected from α1 or (hm/R)1 and 

two shape functions are selected from α2 or (hm/R)2.The condition numbers of those 

combinations are arranged in ascending order and are listed in Table 4.2 and 4.3. The 

condition numbers ranges from about 5.8 to 322 for dual conical indentation and from 

7.6 to 253 for spherical indentation. Thus the dual indentation tests are highly 

dependent on the shape function combination used. Interestingly, condition numbers 

for many combinations of the shape functions for dual indentation are of the same 

order as single indentation technique. Small differences in condition number between 

two combinations may exist due to inaccuracy of regression. Thus, no conclusions can 

be drawn about the effectiveness of the combinations involved for such cases. Only a 

few combinations have condition numbers less than 10 and thus it appears only few 

combinations may result in moderate sensitivity behavior.  

For dual spherical indentation, a part of the loading curve from indentation test 

with higher depth-to-radius ratio (hm/R)2 is identical to the loading curve from 
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indentation with lower depth-to-radius ratio (hm/R)1 (assuming constant radius). 

However, the unloading curves appear to contain significant information. The 

combinations containing the unloading energy, We from depth-to-radius ratio (hm/R)1 

have lower condition numbers (e.g. ranks 1-5 of Table 4.2), whereas combinations 

containing Wt’s from both depth-to-radius ratios have higher condition numbers (e.g. 

ranks 81, 95, 99). This is corroborated by the fact that, unloading curves of the 

materials which lead to identical force-displacement relationship for depth-to-radius 

ratio (hm/R)2 are significantly different for indentation with depth-to-radius ratio 

(hm/R)1. For example, the maximum difference between elastic energies for the five 

material parameter sets (tabulated in Table 3.2) which lead to identical force-

displacement relationship for (hm/R)2 = 20% was computed to be 0.74% for (hm/R)2 = 

20% whereas it was computed to be 10.2% for (hm/R)1 = 10%.  
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Table 4.2a: Condition numbers for various combinations of shape functions of dual 
conical indentation arranged in ascending order (rank 1-50). 

Combination 
# 

Shape 
function 

combination 

Condition 
number 
( ) 

Combination 
# 

Shape 
function 

combination 

Condition 
number 
( ) 

1  5.629 26  12.20 

2  5.825 27  17.22 

3  5.862 28  17.46 

4  5.870 29  17.47 

5  6.687 30  17.72 

6  6.697 31  24.85 

7  7.681 32  26.79 

8  7.747 33  26.91 

9  7.880 34  27.04 

10  7.908 35  27.31 

11  9.287 36  29.29 

12  9.349 37  32.19 

13  9.446 38  33.41 

14  9.513 39  34.06 

15  10.10 40  34.08 

16  10.17 41  34.53 

17  10.56 42  34.73 

18  10.59 43  36.31 

19  10.64 44  36.93 

20  10.67 45  39.99 

21  11.71 46  40.65 

22  11.73 47  42.72 

23  11.81 48  42.80 

24  11.82 49  47.04 

25  12.11 50  48.61 

avg
m

avg
m

1 2 2, ,e u eW S W 1 1 2, ,u e tS W W
1 1 2, ,e u eW S W 1 1 2, ,m e mP W P
1 1 2, ,e m eW P W 1 1 2, ,m e tP W W
1 1 2, ,t e eW W W 1 1 2, ,t e mW W P
1 2 2, ,e m eW P W 1 1 2, ,t e tW W W
1 2 2, ,e t eW W W 1 2 2, ,e e fW W h
1 1 2, ,m u eP S W 1 2 2, ,t m fW P h
1 1 2, ,t u eW S W 1 2 2, ,m m fP P h

1 2 2, ,m u eP S W 1 2 2, ,t t fW W h
1 2 2, ,t u eW S W 1 2 2, ,m t fP W h
1 2 2, ,m m eP P W 1 2 2, ,e u fW S h

1 2 2, ,m t eP W W 1 1 2, ,u e uS W S
1 2 2, ,t m eW P W 1 2 2, ,t u fW S h
1 2 2, ,t t eW W W 1 1 2, ,m u uP S S
1 2 2, ,e m uW P S 1 1 2, ,t u uW S S

1 2 2, ,e t uW W S 1 2 2, ,m u fP S h
1 2 2, ,m m uP P S 1 1 2, ,t e uW W S
1 2 2, ,t m uW P S 1 1 2, ,e f uW h S

1 2 2, ,m t uP W S 1 1 2, ,m e uP W S
1 2 2, ,t t uW W S 1 1 2, ,t f uW h S
1 1 2, ,m u mP S P 1 1 2, ,m f uP h S
1 1 2, ,t u mW S P 1 1 2, ,u e fS W h

1 1 2, ,m u tP S W 1 1 2, ,t m uW P S
1 1 2, ,t u tW S W 1 2 2, ,m e fP W h
1 1 2, ,u e mS W P 1 2 2, ,t e fW W h
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Table 4.2b: Condition numbers for various combinations of shape functions of dual 
conical indentation arranged in ascending order (rank 51-100). 

Combination 
# 

Shape 
function 

combination

Condition 
number 
( )

Combination 
# 

Shape 
function 

combination 

Condition 
number 
( )

51  53.50 76  100.0 

52  54.55 77  100.9 

53  56.32 78  101.0 

54  57.44 79  102.5 

55  58.92 80  103.7 

56  64.48 81  110.1 

57  65.06 82  113.1 

58  65.51 83  113.9 

59  65.77 84  117.6 

60  66.87 85  120.7 

61  69.92 86  131.6 

62  72.57 87  134.0 

63  73.07 88  168.2 

64  74.57 89  174.2 

65  76.10 90  179.2 

66  77.20 91  183.4 

67  77.48 92  194.0 

68  77.86 93  205.9 

69  79.58 94  225.7 

70  82.01 95  292.1 

71  82.64 96  312.3 

72  83.89 97  322.1 

73  89.59 98  390.5 

74  94.21 99  393.3 

75  98.65 100  852.1 

avg
m

avg
m

1 1 2, ,t u fW S h 1 1 2, ,u f uS h S
1 1 2, ,m u fP S h 1 2 2, ,f u fh S h

1 2 2, ,u u eS S W 1 1 2, ,m f mP h P
1 2 2, ,e t fW W h 1 1 2, ,m f tP h W
1 2 2, ,e m fW P h 1 2 2, ,u m fS P h

1 2 2, ,f u eh S W 1 1 2, ,t f tW h W
1 2 2, ,u t uS W S 1 1 2, ,f u fh S h
1 1 2, ,t e fW W h 1 1 2, ,t f mW h P

1 1 2, ,m e fP W h 1 1 2, ,e f mW h P
1 1 2, ,u f eS h W 1 2 2, ,e f tW h W
1 2 2, ,u m uS P S 1 2 2, ,f m fh P h
1 2 2, ,u e fS W h 1 2 2, ,f t fh W h
1 1 2, ,t f eW h W 1 2 2, ,f e fh W h
1 2 2, ,u u fS S h 1 1 2, ,t f fW h h

1 2 2, ,f t uh W S 1 1 2, ,t m eW P W
1 2 2, ,u t eS W W 1 1 2, ,m f fP h h
1 2 2, ,u m eS P W 1 1 2, ,e f fW h h
1 1 2, ,m f eP h W 1 2 2, ,u t mS W P

1 2 2, ,f t uh W S 1 2 2, ,e t mW W P
1 2 2, ,f m eh P W 1 1 2, ,t m tW P W

1 1 2, ,e f eW h W 1 1 2, ,t m fW P h
1 2 2, ,f t eh W W 1 1 2, ,t m fW P h

1 1 2, ,u f tS h W 1 2 2, ,m t mP W P
1 1 2, ,u f mS h P 1 2 2, ,t t mW W P
1 2 2, ,u t fS W h 1 1 2, ,f m th P W
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Table 4.3a: Condition numbers for various combinations of shape functions of dual 
spherical indentation arranged in ascending order (rank 1-50). 

Combination 
# 

Shape 
function 

combination 

Condition 
number 
( ) 

Combination 
# 

Shape 
function 

combination 

Condition 
number 
( ) 

1  7.657 26  20.42 

2  7.684 27  20.55 

3  7.735 28  21.43 

4  7.901 29  27.05 

5  8.447 30  31.06 

6  8.568 31  31.10 

7  10.23 32  32.76 

8  10.31 33  33.43 

9  11.25 34  34.56 

10  12.41 35  46.39 

11  12.42 36  50.41 

12  12.54 37  51.22 

13  12.73 38  51.98 

14  13.18 39  54.26 

15  14.00 40  56.41 

16  14.08 41  57.29 

17  14.13 42  58.57 

18  14.13 43  60.69 

19  15.24 44  62.43 

20  15.27 45  62.89 

21  15.58 46  63.04 

22  16.83 47  63.64 

23  16.96 48  65.83 

24  16.99 49  68.65 

25  19.67 50  68.88 

avg
m

avg
m

1 2 2, ,e u eW S W 1 1 2, ,m u tP S W
1 1 2, ,e u eW S W 1 2 2, ,m t uP W S
1 2 2, ,e m eW P W 1 2 2, ,m m eP P W
1 2 2, ,e t eW W W 1 2 2, ,t t eW W W

1 1 2, ,m e eP W W 1 1 2, ,e f eW h W
1 1 2, ,t e eW W W 1 2 2, ,u t mS W P
1 1 2, ,u e mS W P 1 2 2, ,e m tW P W
1 2 2, ,e m uW P S 1 2 2, ,m t eP W W
1 1 2, ,t e mW W P 1 2 2, ,u t eS W W
1 1 2, ,t u mW S P 1 1 2, ,u f eS h W
1 2 2, ,t m uW P S 1 2 2, ,e e fW W h

1 2 2, ,t u eW S W 1 2 2, ,f u eh S W
1 1 2, ,t u eW S W 1 1 2, ,u f mS h P

1 1 2, ,m e mP W P 1 1 2, ,t f mW h P
1 1 2, ,m u mP S P 1 1 2, ,t m uW P S
1 2 2, ,m u eP S W 1 1 2, ,t e uW W S
1 2 2, ,m m uP P S 1 2 2, ,f m uh P S
1 1 2, ,m u eP S W 1 2 2, ,t m fW P h
1 1 2, ,u e tS W W 1 1 2, ,u f tS h W
1 2 2, ,e t uW W S 1 1 2, ,m f tP h W
1 1 2, ,t e tW W W 1 2 2, ,u u eS S W
1 2 2, ,t t uW W S 1 1 2, ,f t eh W W
1 1 2, ,t u tW S W 1 1 2, ,t f tW h W
1 2 2, ,t m eW P W 1 2 2, ,u e fS W h

1 1 2, ,m e tP W W 1 2 2, ,f t eh W W
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Table 4.3b: Condition numbers for various combinations of shape functions of dual 
spherical indentation arranged in ascending order (rank 51-100). 

Combination 
# 

Shape 
function 

combination

Condition 
number 
( )

Combination 
# 

Shape 
function 

combination 

Condition 
number 
( )

51  71.23 76  97.28 

52  71.58 77  98.35 

53  72.30 78  99.38 

54  73.19 79  102.1 

55  74.12 80  102.4 

56  75.28 81  106.6 

57  76.39 82  111.3 

58  76.71 83  115.7 

59  77.21 84  118.2 

60  77.26 85  118.8 

61  78.96 86  123.1 

62  79.58 87  123.1 

63  79.67 88  134.7 

64  79.83 89  149.1 

65  80.52 90  166.0 

66  80.57 91  187.5 

67  82.42 92  192.2 

68  82.65 93  204.0 

69  85.57 94  211.8 

70  85.76 95  243.3 

71  87.50 96  253.1 

72  88.95 97  254.2 

73  93.93 98  255.1 

74  94.28 99  282.0 

75  95.87 100  295.1 

avg
m

avg
m

1 1 2, ,m f mP h P 1 2 2, ,u u fS S h
1 2 2, ,f t eh W W 1 1 2, ,m e fP W h

1 2 2, ,u m uS P S 1 1 2, ,t e fW W h
1 1 2, ,u e uS W S 1 2 2, ,t u fW S h
1 2 2, ,t t fW W h 1 1 2, ,f u uh S S

1 2 2, ,u e mS W P 1 2 2, ,m u fP S h
1 1 2, ,f m eh P W 1 1 2, ,m e uP W S

1 2 2, ,m m fP P h 1 2 2, ,t e fW W h
1 2 2, ,f t uh W S 1 2 2, ,e t fW W h
1 2 2, ,u t uS W S 1 1 2, ,f e th W W
1 1 2, ,t u uW S S 1 1 2, ,t m eW P W

1 1 2, ,u e fS W h 1 1 2, ,u f fS h h
1 2 2, ,f m eh P W 1 2 2, ,m e fP W h

1 2 2, ,e m fW P h 1 2 2, ,f u fh S h
1 2 2, ,u m fS P h 1 1 2, ,t m mW P P
1 1 2, ,m u fP S h 1 1 2, ,t m tW P W

1 2 2, ,u t fS W h 1 1 2, ,t f fW h h
1 1 2, ,e f uW h S 1 1 2, ,m t fP W h
1 1 2, ,e f mW h P 1 1 2, ,m f fP h h
1 1 2, ,u m uS P S 1 2 2, ,f e fh W h
1 2 2, ,e u fW S h 1 1 2, ,e f fW h h

1 1 2, ,f t uh W S 1 2 2, ,f m fh P h
1 2 2, ,m f tP h W 1 2 2, ,f t fh W h
1 1 2, ,t u fW S h 1 2 2, ,t t mW W P

1 1 2, ,f m uh P S 1 2 2
1, ,m mP W P
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We considered four half-angles, 50°, 60°, 70° and 80° to determine how 

sensitivity depends on the combination of the half-angles (for conical indentation). 

Table 4.2 and 4.3 show that the shape function combination giving the lowest 

condition number is . Thus, for various choices of α1 and α2 among the four 

angles, condition numbers are computed for the shape function combination 

 and are tabulated in Table 4.4. We can see from Table 4.4 that the 

condition number decreases as the difference between half-angle increases (for 

example, the 50-80 combination has lower condition number than the 50-60 

combination). Thus, the sensitivity of indentation tests can be decreased by increasing 

the difference between the half-angles. Table 4.4 also shows that for an identical 

difference between the two half-angles, the sensitivity of the system decreases as the 

smaller angle increases. For spherical indentation, we considered four depth-to-radius 

ratios, 10%, 20%, 30% and 40%. The condition numbers for the shape function 

combination  are tabulated in Table 4.4. The following observations are 

made with respect to the effect of depth-to-radius ratios on the sensitivity: i) sensitivity 

can be decreased by increasing the difference between the depth-to-radius ratios and 

ii) sensitivity can be decreased for the smaller depth-to-radius ratio for identical 

difference in depth-to-radius ratios. The conclusions regarding the effect of half-angles 

and depth-to-radius ratio combinations on sensitivity have been demonstrated for 

selected cases by previous researchers (Cao and Lu, 2004a, Cao and Lu, 2004b, Chen 

et al., 2007) and here we have shown them to be valid for a wider range.  

 

2 1 1, ,e u eW S W

2 1 1, ,e u eW S W

2 1 1, ,e u eW S W
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Table 4.4: Condition numbers for various choices of half-angles (for conical 
indentation) and depth-to-radius ratios (for spherical indentation) for the 
shape function combination  

Conical Indentation Spherical Indentation 

α1 α2  (hm/R)1 (hm/R)2  

50 80 5.62 10% 40% 7.66 
60 80 7.17 10% 30% 9.67 
50 70 9.45 20% 40% 12.9 
70 80 10.7 10% 20% 15.1 
60 70 15.8 20% 30% 20.9 
50 60 16.6 30% 40% 24.4 

 

4.3 Sensitivity Analysis 

Condition number quantifies the sensitivity of indentation testing but does not 

give information about the actual amount of error that can occur in the determined 

material properties due to experimental error. Therefore, although the condition 

number can give guidelines about the relative sensitivity behavior of different 

indentation protocols, explicit sensitivity analysis is required to evaluate the practical 

reliability of indentation methodologies. This will be considered in the following 

section. 

4.3.1 Analysis procedure 

In a sensitivity analysis scheme, the material properties are first determined via 

the (numerically) correct shape functions. These will be denoted by Ets, Yts and nts, 

where ts indicates the “true solution” (e.g. the solution obtained with the reverse 

analysis based on the numerically correct, unperturbed shape functions). Next, the 

shape functions are slightly perturbed, simulating an experimental error, and the 

material properties are determined. These will be denoted by Eps, Yps and nps, where ps 

 2 1 1
e u eW ,S ,W

avg
mκ

avg
mκ
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indicates the perturbed solution. The quantity, δmp, is defined below to measure in the 

difference between the true and perturbed solutions (material properties): 

  (4.11) 

In different sensitivity analysis schemes, the perturbations are imposed on the 

shape functions in different ways. A popular scheme is the so called "one factor at a 

time" (One Factor scheme) (Chollacoop et al., 2003; Lan and Venkatesh, 2007; Le, 

2008).  In this scheme, one shape function is varied while the two others are kept 

constant. However, in a real experiment, errors may occur in all the shape functions 

simultaneously. Thus, the One Factor scheme is ineffective to capture the errors that 

may occur in a real experiment. In an alternative scheme (Hyun et al., 2011), all shape 

functions are increased or decreased uniformly by the same percentage amount 

(Uniform Factors scheme). However, neither does this scheme realistically represent 

errors as they occur in a real experiment since it appears unlikely that all measured 

data contain the same amount of error. A more effective sensitivity analysis scheme is 

to vary all the shape functions simultaneously by different amounts but keeping all of 

them within in a fixed limit (Cao and Lu, 2004a; Swaddiwudhipong et al., 2005). This 

is known as a Monte Carlo sensitivity analysis scheme. To the author’s knowledge, so 

far the experimental errors in the shape functions from indentation testing have been 

reported to be within 5.1% (Wang et al., 2005; Chollacoop et al., 2003). We 

investigated sensitivity for three error ranges of 1%, 5% and 10% with step sizes 

of 0.5%, 2.5% and 5% respectively. For example, for the ±5% error range, each of the 

three shape functions is perturbed with 5 errors: 5%, -2.5%, 0%, 2.5% and 5% which 

gives a total of 125 possible combinations. The perturbations will be denoted as 

2 2 2ts ps ts ps ts ps

mp ts ts ts

E E Y Y n n

E Y n


       
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follows: a perturbation of 5%, 2.5% and 0% error in the three selected shape functions 

respectively, will be denoted as (5, 2.5, 0). The procedure for the sensitivity analysis is 

as follows: 

Step 1: A specific material (material properties denoted by Ets, Yts and nts) is 

considered for sensitivity analysis. Finite element simulations of a dual indentation 

test (conical or spherical) for this material are conducted to obtain numerically correct 

shape functions. 

Step 2: Reverse analysis and the algorithm outlined in section 1.1.3 (Figure 1.5) are 

used to determine the material properties using the shape functions obtained in the 

previous step. This gives the material properties based on the reverse analysis. 

Step 3: Impose perturbations on the numerically correct shape functions (as obtained 

in step 1) according to Monte Carlo scheme, simulating the experimental errors. 

Compute the material properties Eps, Yps and nps for all perturbations combinations. 

The combination which gives the largest δmp is recorded along with the associated 

solution Eps, Yps, nps for that particular combination. 

Step 4: Finally, determine the differences (expressed in percentage) between the true 

and perturbed elastic modulus, yield strength and strain hardening exponent. These 

percentage differences illustrate how much the material properties can deviate for a 

given uncertainty in the experimental measurements of the shape functions. 

4.3.2 Sensitivity of dual indentation techniques 

In the following sections, the sensitivity analysis procedure described in the 

previous section is applied to various dual indentation scenarios. These studies will 

reveal the practical effectiveness of the various dual indentation methodologies. The 
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material considered has the following properties: elastic modulus, Ets = 180 GPa, yield 

strength, Yts = 300 MPa and strain hardening exponent, nts = 0.25.  

4.3.2.1 Dual conical indentation (1 = 50, 2 = 80) 

To test how well the condition number, , correlates to the sensitivity 

analysis, the sensitivity analysis is applied for three shape functions combinations 

(Table 4): (i) ,  = 5.8248; (ii) , = 42.715; and (iii)

, = 322.06.  

The results of the sensitivity analysis for the shape function combination 

 are tabulated in Table 4.5, where the (unperturbed) reverse analysis 

results are included for comparison. For small experimental error (perturbations of 

1%), this dual indentation method predicts the material properties quite well. 

However, for larger experimental error, significant errors in the determined material 

properties can occur. For example, the deviation in the material properties is more than 

40% for the error combination of (-5, 2.5, 5). The One Factor and Uniform Factors 

schemes do not predict as large a deviation in material properties as that predicted by 

the Monte Carlo sensitivity analysis procedure. This confirms that these two schemes 

are not able to capture the full regime of sensitivity behavior. It is interesting to note 

that the error case (-5, 2.5, 5) gives larger deviation than the error cases (10, 10, 10) or 

(-10, -10, -10). In the first error case, both positive and negative perturbations are 

present whereas in the two later error cases, perturbations are of the same sign. This 

large sensitivity due to the presence of perturbations of different signs has been 

observed earlier (Hyun et al., 2011).  

avg
m

 2 1 1, ,e u eW S W avg
m  2 1 1, ,f u eh S W avg

m

 2 1 1, ,f t mh W P avg
m
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Table 4.5: Errors in calculated material properties based on Monte Carlo, One Factor 
and Uniform Factors sensitivity analysis for conical dual indentation with 
α1 = 50° and α2 = 80° and shape function combination 

 2 1 1, , , 5.8248avg
e u e mW S W   .   

Sensitivity 

Analysis 

Material 

props 

Percentage error in determined 

material properties 

Monte  

Carlo 

 
0% 

 1% 

(1, -1, 1) 

 5% 

(-5, 2.5, 5) 

 10% 

(-5, 10, -10)

E -0.152 -1.40 8.96 -6.27 

Y 0.727 4.67 -45.7 -54.6 

n -0.735 -4.51 41.9 50.7 

One  

Factor 

 (10, 0, 0) (0, 10, 0) (0, 0, 10)  

E -1.32 1.09 9.94  

Y 24.7 -13.1 0.616  

n -17.9 15.3 1.48  

Uniform  

Factors 

 (10, 10, 10) (-10, -10, -10)   

E 9.83 -10.1   

Y 10.8 -9.35   

n -0.735 -0.734   

 

The results that are obtained by applying the Monte Carlo sensitivity analysis 

procedure on the shape function combinations with larger condition numbers, 

,  = 42.715 and ,  = 322.06 are tabulated in Table 4.6. 

For the combination , when no perturbations are imposed on the shape 

functions, the dual indentation technique can determine the material properties quite 

5.8248avg
m 

 2 1 1, ,f u eh S W avg
m  2 1 1, ,f t mh W P avg

m

 2 1 1, ,f u eh S W
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accurately. However, a small error in the experimental measurement can create large 

errors in the determined material properties. For the combination , even 

with the exact values of the shape functions, the deviations in the determined material 

properties are very large. This seems to be due to the very large condition number: the 

problem is close to non-uniqueness and more than one material gives almost identical 

values of the shape functions. Due to the numerical fluctuations, the code picks up a 

material other than the original material. The sensitivity analysis results suggest that 

this is not a suitable dual indentation technique as suggested by large . 

From these examples, the correlation between the condition number and the 

Monte Carlo sensitivity analysis can be seen clearly. For the three shape function 

combinations considered, as the condition number increases, the sensitivity to the 

experimental errors increases.  

 

 

 

 

 

 

  

 

 

 2 1 1, ,f t mh W P

avg
m



 142

Table 4.6: Errors in calculated material properties based on Monte Carlo sensitivity 
analysis procedure for conical dual indentation with α1 = 50° and α2 = 

80° and shape function combination  2 1 1, , , 42.715avg
f u e mh S W    and 

 2 1 1, , , 322.06avg
f t m mh W P   .  

Shape 

Function 

Material

props 

Percentage error in determined 

material properties 

 

 

 
0% 

 1% 

(-1, -1, 1) 

 5% 

(-5, 5, 5) 

 10% 

(-10, 5, 5) 

E -0.050 -1.75 -2.79 1.67 

Y -1.27 49.6 181 189 

n 0.800 -34.2 -99.2 -99.9 

, 

 

 
0% 

 1% 

(1, -0.5, 1)

 5% 

(0, 2.5, 5) 

 10% 

(-10, 5, 10)

E -7.27 37.4 73.4 -35.1 

Y -33.3 158 155 183 

n 32.0 -100 -100 -88.7 

 

4.3.2.2 Dual spherical indentation: (hm/Ri)1 = 10%, (hm/Ri)2 = 40% 

A similar study is done for spherical indentation to verify the correlation 

between the condition number and spherical indentation. The three shape function 

combinations (Table 4.3c and 4.3d) considered are: (i) , = 7.6837; (ii)

, = 65.825; and (iii) , = 253.09. 

The results of the sensitivity analysis for the shape function combination 

 are tabulated in Table 4.7, where the (unperturbed) reverse analysis 

  ,2 1 1
f u eh ,S ,W

= 42.715avg
mκ

 2 1 1
f t mh ,W ,P

= 322.06avg
mκ

 2 1 1, ,e u eW S W avg
m

 2 1 1, ,t t fW W h avg
m  2 1 1, ,f e fh W h avg

m

 2 1 1, ,e u eW S W
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results are included for comparison. For experimental error within 1%, this dual 

indentation method can predict the material properties with errors less than 10%. 

However, for larger experimental error, significant errors are obtained. Neither the 

One Factor nor Uniform Factors schemes predict the largest deviation in the material 

properties as predicted by the Monte Carlo sensitivity analysis procedure. 

For the combination ,  = 65.825 and ,  = 

253.09, the results of the Monte Carlo sensitivity analysis are tabulated in Table 4.8. 

The dual indentation technique with the shape function combination , will 

perform well if there are no errors in the experimental measurement. However, a slight 

error in the experimental measurement can create large deviation in the determined 

material properties. For the combination , even when the exact values of 

shape functions are used, the deviations in the determined material properties are very 

large. Thus this is not a suitable dual indentation technique, as suggested by the large 

value of .  

 

 

 

 

 

 

 2 1 1, ,t t fW W h avg
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m
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avg
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Table 4.7: Errors in calculated material properties based on Monte Carlo, One Factor 
and Uniform Factors sensitivity analysis procedure for spherical dual 
indentation with (hm/Ri)1 = 10% and (hm/Ri)2 = 40% and shape function 
combination  2 1 1, , , 7.6837avg

e u e mW S W   .  

Sensitivity 

Analysis 

Material 

props 

Percentage error in determined 

material properties 

Monte  

Carlo 

 
0% 

 1% 

(1, -1, 1) 

 5% 

(-5, 2.5, 5) 

 10% 

(-5, 10, -10)

E 1.33 1.83 7.20 7.40 

Y 3.12 9.45 -47.4 67.3 

n -2.12 -7.03 41.4 -44.9 

One  

Factor 

 (10, 0, 0) (0, 10, 0) (0, 0, 10)  

E 3.76 -0.657 11.6  

Y -19.8 37.3 4.07  

n 20.5 -25.1 -0.508  

Uniform  

Factors 

 (10, 10, 10) (-10, -10, -10)   

E 11.5 -8.80   

Y 13.4 -7.19   

n -2.12 -2.12   

 
 

7.6837avg
m 
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Table 4.8: Errors in calculated material properties based on Monte Carlo sensitivity 
analysis procedure for spherical dual indentation with (hm/Ri)1 = 10% and 
(hm/Ri)2 = 40% and shape function combination 

 2 1 1, , , 65.825avg
t t f mW W h    and  2 1 1, , , 253.09avg

f e f mh W h   . 

Shape 

Function 

Material

props 

Percentage error in determined 

material properties 

 

 

 
0% 

 1% 

(-1, -1, 1) 

 5% 

(-5, -5, 5) 

 10% 

(0, -10, 10) 

E -2.23 -8.80 -29.3 -38.3 

Y 2.21 23.3 125 178 

n -0.912 -16.3 -82.4 -100 

, 

 

 
0% 

 1% 

(1, 0.5, 1)

 5% 

(2.5, 2.5, 0) 

 10% 

(-10, -10, 5)

E -0.890 10.2 65.6 -70.8 

Y 21.0 139 175 -71.9 

n -18.7 -99.1 -94.8 91.3 

 

Thus for spherical indentation as well, as the condition number increases, the 

sensitivity to experimental errors increases. 

4.3.2.3 Dual spherical indentation: (hm/Ri)1 = 10% and 1%, (hm/Ri)2 = 100% 

In the previous section it was seen that, for dual spherical indentation with 

(hm/Ri)1 = 10%, (hm/Ri)2 = 40%, when conducted even with the best shape function 

combination , large deviation in the material properties results for the 

5% error range. So, we considered two indentation protocols by increasing the 

  ,2 1 1
t t fW ,W ,h

= 65.825avg
mκ

 2 1 1
f e fh ,W ,h

= 253.09avg
mκ

 2 1 1, ,e u eW S W
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difference between the depth-to-radius ratios further, in hope of obtaining indentation 

protocols with moderate sensitivity due to experimental error4.  

For dual spherical indentation with (hm/Ri)1 = 10%, (hm/Ri)2 = 100%, and shape 

function combination , the condition number is computed to be 4.1113. 

With same shape function combination, the dual indentation with (hm/Ri)1 = 1%, 

(hm/Ri)2 = 100% has a condition number of 2.6237, which is even smaller. The results 

obtained by applying the Monte Carlo sensitivity analysis procedure for these cases 

are tabulated in Table 4.9. These techniques will give good results when the 

experiments are conducted perfectly; and the sensitivity behaviors have improved 

compared to the previous case ((hm/Ri)1 = 10%, (hm/Ri)2 = 40%). However, for the dual 

indentation with (hm/Ri)1 = 10%, (hm/Ri)2 = 100%, the error in the determined material 

properties can be more than 30% for 10% error range. For the combination (hm/Ri)1 = 

1%, (hm/Ri)2 = 100%, the error can be around 20% for 10% error range. 

 

                                                 
 
4 Depth-to-radius ratio of 100% can be achieved by using a spherical indenter of 
sufficiently small radius (Ri). If Ri is large, indentation depth will be large which may 
result in cracking (Chen et al., 2007) thus making the indentation analysis incorrect. 
Similarly depth-to-radius ratio of 1% can be achieved by keeping Ri large. If Ri is 
small, indentation depth will be small which will result in surface roughness effect 
(Kim et al., 2007) and size effect (Xu and Li, 2006), thus making the indentation 
analysis incorrect. 

 2 1 1, ,e u eW S W
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Table 4.9: Errors in calculated material properties based on Monte Carlo sensitivity 
analysis procedure for spherical dual indentation with (hm/Ri)1 = 10%; 

(hm/Ri)2 = 100%; shape function combination  2 1 1, , , 4.1113avg
e u e mW S W    

and (hm/Ri)1 = 1%; (hm/Ri)2 = 100%; shape function combination 

 2 1 1, , , 2.6237avg
e u e mW S W   . 

Shape 

Function 

Material

props 

Percentage error in determined 

material properties 

(hm/Ri)1 = 10% and  

(hm/Ri)2 = 100%
 

 

 

 

 
0% 

 1% 

(1, -1, 1)

 5% 

(5, -5, 5) 

 10% 

(10, -10, -5) 

E 1.78 3.08 8.33 -0.283 

Y -1.52 -4.63 -17.2 -37.7 

n 2.20 4.84 15.7 32.9 

(hm/Ri)1 = 1% and  

(hm/Ri)2 = 100%
 

 

 

 

 
0% 

 1% 

(1, -1, 1)

 5% 

(5, -5, 5) 

 10% 

(10, -10, 10)

E 0.778 1.86 5.77 9.88 

Y -1.76 -3.74 -11.3 -22.4 

n 2.15 4.04 11.2 21.8 

 

4.3.2.4 Dual conical-spherical indentation: 1 = 80, (hm/Ri)2 = 100%; and 
(hm/Ri)1 = 1%, 2 = 50 

Finally, we considered the possibility of using a combination of conical and 

spherical indentation to reduce the sensitivity due to experimental error. Liu et al, 

(2008) demonstrated that sharp and blunt half-angles of conical indentation may be 

considered equivalent to high and low depth-to-radius ratio of spherical indentation, 

respectively. Thus, we considered two combinations: i) combination of blunt half-

  ,2 1 1
e u eW , S ,W

= 4.1113avg
mκ

  ,2 1 1
e u eW , S ,W

= 2.6237avg
mκ
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angle, 1 = 80 and high depth-to-radius ratio, (hm/Ri)2 = 100% and ii) combination of 

low-depth-to-radius ratio, (hm/Ri)1 = 1% and sharp half-angle, 2 = 50. For these two 

cases, the condition numbers for the shape function combination are 

computed to be 4.1599 and 4.7386, respectively. The results of Monte Carlo 

sensitivity analysis for these two cases are tabulated in Table 4.10. It can be seen that 

this technique will give good results when the experiments are conducted perfectly. 

However the sensitivity due to experimental error has increased compared to the case 

with (hm/Ri)1 = 1%, (hm/Ri)2 = 100%.  
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Table 4.10: Errors in calculated material properties based on Monte Carlo sensitivity 
analysis for dual conical-spherical indentation with α1 = 80°, (hm/Ri)2 = 
100%; and (hm/Ri)1 = 1%, α2 = 50° with shape function combination 

 2 1 1, ,e u eW S W . Condition numbers are 4.1599 and 4.7386 respectively. 

Shape 

Function 

Material

props 

Percentage error in determined 

material properties 

α1 = 80° and 
(hm/Ri)2 = 100% 

, 

 

 0% 
 1% 

(1, -1, 1)

 5% 

(5, -5, 5) 

 10% 

(10, -10, 10) 

E 0.192 1.26 5.58 11.5 

Y -1.90 -4.38 -13.8 -28.5 

n 2.12 4.33 12.9 27.1 

(hm/Ri)1 = 1% and 
α2 = 50° 

, 

 

 0% 
 1% 

(1, -1, 1)

 5% 

(-5, 5, -5) 

 10% 

(-10, 10, -10)

E 0.696 1.80 -5.13 -9.83 

Y -0.499 -3.14 13.9 29.1 

n 0.409 3.17 -14.3 -29.4 

 

4.3.2.5 Sensitivity behavior across material range 

As discussed in section 1.1.1, the condition number and thereby the sensitivity 

of a dual indentation technique due to experimental error depends on the material 

being considered. Based on our investigation of various dual indentation protocols 

presented in previous section, the dual spherical indentation with (hm/Ri)1 = 1% and 

(hm/Ri)2 = 100% and shape function combination is found to be least 

sensitive to experimental errors. To investigate the effectiveness of this dual 

 2 1 1
e u eW ,S ,W

= 4.1599avg
mκ

 2 1 1
e u eW ,S ,W

= 4.7386avg
mκ

 2 1 1, ,e u eW S W
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indentation technique over a range of materials, the Monte Carlo sensitivity analysis 

(±5% error range) is applied to this technique for 9 materials, which are situated in a 

rectangular grid of the E/Y-n space considered (see Table 4.11). For some materials, 

the deviation in the determined material properties from the actual material properties 

can be seen to be quite high (more than 80%), whereas for some materials, the 

deviation is about 10%. Since the actual material properties of the tested material are 

not known a priori, the reliability of the determined material properties from an 

indentation test is therefore questionable. Thus, it is more suitable to construct a 

confidence domain (Moussa et al., 2014) where a range of material parameter sets is 

determined in which the actual material properties will lie. Nevertheless, caution has 

to be exercised in doing an indentation test to ensure that experimental errors are 

sufficiently small. 

Table 4.11: Errors in calculated material properties based on Monte Carlo sensitivity 
analysis for 9 selected materials spanning the E/Y-n space for spherical 
dual indentation with (hm/Ri)1 = 1% and (hm/Ri)2 = 100% and shape 
function combination . 

Material Properties 
 

Error case

Percentage error in 

E 
(GPa) 

Y 
(MPa) 

E/Y n E Y n 

180 1200 150 0.45 (-5, 5, -5) -7.30 23.6 -9.83 
180 360 500 0.45 (-5, 5, -5) -3.29 18.3 -5.98 
180 189 950 0.45 (5, -5, 5) 20.8 -8.72 0.358 
180 1200 150 0.25 (-5, 5, -5) -4.95 15.3 -17.8 
180 360 500 0.25 (5, -5, 5) 5.39 -11.6 11.2 
180 189 950 0.25 (-5, 5, 5) 5.84 16.9 -11.7 
180 1200 150 0.05 (5, -5, 5) 3.86 -11.3 88.2 
180 360 500 0.05 (-5, 5, -5) -2.79 11.9 -76.9 
180 189 950 0.05 (5, 2.5, -5) -7.35 -9.98 39.1 

 2 1 1, ,e u eW S W
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4.4 Sensitivity of Dual Indentation for Transversely Isotropic, Linear-elastic, 
Perfectly-plastic Materials 

A literature review regarding the available indentation methodologies for 

determining the material properties of anisotropic materials is presented in Chapter 1, 

section 1.7. Systematic dual indentation protocols with selected combinations of shape 

functions, half-angles (for conical indentation) and depth-to-radius ratios (for spherical 

indentation) can be developed for transversely isotropic, linear-elastic, perfectly-

plastic material and is described in sections 1.4 and 1.6. Sensitivity behavior of such 

dual indentation protocols due to experimental error is investigated using the concept 

of condition number similar to that previously presented for isotropic materials. For 

this analysis, the functional forms of  used in Eqs. (1.16) of section 1.7 

are required and are described in section 3.3, Chapter 3. 

4.4.1 Condition numbers and sensitivity 

In section 4.2, the concept of condition number was used to assess the 

sensitivity of dual indentation methodologies for isotropic materials. As the condition 

number increased, sensitivity of the indentation system due to experimental error 

increased. The grid for computing the modified condition number, m consisted of 200 

points for each material parameters thus in total, 8 x 106 grid points were used (there 

were three material parameters). For transversely isotropic material, since there are 

four material parameters, 200 points for each material parameter would imply in total, 

1.6 x 109 points. With such a large number of grid points, a typical computation of m 

requires a CPU time of around 20 hours (in a DELL OPTIPLEX 990 personal 

computer with Intel Core ™ i5-2500 3.30 GHz Processor), and thus it will take around 

330 days to do all the computations required for this study (around 400). Instead, 50 

grid points are used, which resulted in CPU time of around 5 minutes. The average 

( 1 5)tp
iG i  
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modified condition number,  is computed by taking average over the following 64 

(4 x 4 x 4) material points: Ez/Ex=10, 20, 30, 40; Ex/Gxz= 2, 2.5, 3, 3.5; Ex/Y= 45, 115, 

185, 255. 

Considering the conical indenter (and similarly for spherical indentation), the 

four shape functions required to obtain the material properties can be selected from 

two indentation geometries in three ways: i) selecting one shape function from half-

angle 1 and three shape functions from half-angle 2; ii) two from 1 and two from 

2; and iii) three from 1 and one from 2. Since five shape functions can be obtained 

from each test, a simple calculation shows that altogether 200 such combinations of 

shape functions are possible. Shape functions selected from half-angle 1and 2 

((hm/R)1 and (hm/R)2 for spherical indentation) will be denoted by superscripts 1 and 2, 

respectively, similar to the case of isotropic materials. 

For isotropic materials, as discussed in section 4.2.5, the sensitivity of the dual 

indentation tests to experimental error can be decreased by increasing the difference 

between half-angles (for conical indentation) or depth-to-radius ratios (for spherical 

indentation). The condition numbers for various combinations of half-angles and 

depth-to-radius ratios are tabulated in Table 4.12. Similarly, for transversely isotropic 

materials, condition number decreases as the difference between half-angles or depth-

to-radius ratios increases. 

 

 

avg
m
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Table 4.12: Condition numbers for various combinations of half-angles (conical 
indentation) and depth-to-radius ratios (spherical indentation). As the 
difference between half-angles or depth-to-radius ratio increases, 
sensitivity to experimental error decreases. 

Conical Indentation 
 

Spherical Indentation 
 

1 2  (hm/Ri)1 (hm/Ri)2  

50 80 11.14669 20% 40% 10.49528 
60 80 12.3324 20% 60% 9.320865 
70 80 17.7795 20% 80% 8.935374 

 

For 1 = 45, 2 = 80 (conical indentation) and (hm/Ri)1 = 1%, (hm/Ri)2 = 

100% (spherical indentation), condition numbers for various combinations of shape 

functions are tabulated in Table 4.13 (only selected combinations are shown for 

brevity). The half-angles and depth-to-radius ratios are selected to consider maximum 

possible differences among themselves. The shape functions Su and We occur 

frequently in the first few combinations, and the shape function hf occurs frequently in 

the last few combinations (similar to isotropic materials, section 4.2.5). Further, the 

condition numbers are more than 10. From the definition of the condition number, 

using a large number (e.g. 200) of grid points would result in even larger values. The 

condition number,  for two combinations giving minimum condition numbers, 

for conical indentation and for spherical indentation 

(Table 4.14)) are computed to be 23.2 and 27.6, respectively. From section 4.2.5, the 

dual indentation tests with , can determine the material properties accurately 

only when the experimental error is in the order of 1%. Thus, indentation tests of 

transversely isotropic materials are in general more sensitive to experimental errors 

compared to isotropic materials.  

 1 1 2 2
t e u eW ,W , S ,W  1 1 2 2

u e m eS ,W ,P ,W
avg
m2κ avg

m2κ

avg
m

 2 1 1 2, , ,m e u eP W S W  1 1 2 2, , ,u e m eS W P W

6avg
m 
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In the present study, it is assumed that both the indentations (for dual 

indentation) are performed perpendicular to the plane of isotropy. Several researchers 

(McAllister et al., 2012; Ebenstein and Wahl, 2006) have attempted two indentation 

tests along two different directions (perpendicular and parallel to the plane of 

isotropy). It is likely that the elastic modulus in the direction of the indentation will 

affect the response in that direction more strongly. Therefore, the sensitivities of such 

dual indentation tests are expected to be less than the sensitivity of the tests which 

consider two indentations along the same direction. Such dual indentation scenarios 

were not considered here due to computational limitations, as three-dimensional 

models are required to simulate indentation parallel to the plane of isotropy.  
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Table 4.13: Condition numbers for various combinations of shape functions arranged 
in ascending order 

Combination # 

Conical indentation 
1 = 45, 2 = 80 

Spherical indentation 
(hm/Ri)1 = 1%, (hm/Ri)2 = 

100% 
Shape 

function 
combination 

 Shape function 
combination 

 

1  11.06  12.47 

2  12.38  13.28 

3 12.68  13.38 
4 12.94  14.41 
5 13.70  14.77 
6 13.99  15.05 
7 14.06  15.07 

8 14.15  16.15 

9  14.17  16.15 

10  14.36  16.30 

: : : : : 
98 27.91  31.20 

99  27.98  31.40 

100  28.27  31.45 

101  28.50  31.56 

102 28.62  31.65 

: : : : : 

196 69.89  90.68 

197  79.33  98.52 

198  104.4  112.25 

199  110.5  165.23 

200 121.6  183.30 
 

avg
mκ

avg
mκ

1 1 2 2, , ,u e m eS W P W 1 1 2 2, , ,m e u eP W S W

1 1 2 2, , ,m u m eP S P W 1 1 1 2, , ,m u e eP S W W

1 1 2 2, , ,u e m uS W P S 1 1 2 2, , ,t e u eW W S W
1 1 2 2, , ,u e u eS W S W 1 1 2 2, , ,u e u eS W S W
1 1 2 2, , ,u e t eS W W W 1 1 1 2, , ,t u e eW S W W
1 2 2 2, , ,m m u eP P S W 1 2 2 2, , ,e t u eW W S W

1 1 2 2, , ,m u u eP S S W 1 2 2 2, , ,e m u eW P S W
1 1 2 2, , ,m u t eP S W W 1 1 2 2, , ,m e u fP W S h

1 1 2 2, , ,t u m eW S P W 1 1 2 2, , ,t e u fW W S h
1 1 2 2, , ,m u f eP S h W 1 1 1 2, , ,m u e uP S W S

1 2 2 2, , ,u t m eS W P W 1 1 1 2, , ,m u f mP S h P
1 1 2 2, , ,u f t fS h W h 1 1 2 2, , ,m f m uP h P S
1 1 2 2, , ,t f m eW h P W 1 1 2 2, , ,m u t fP S W h
1 1 2 2, , ,t f t uW h W S 1 1 2 2, , ,t e m fW W P h
1 2 2 2, , ,u t u fS W S h 1 1 2 2, , ,t e t fW W W h

1 2 2 2, , ,u t m fS W P h 1 2 2 2, , ,f t m uh W P S
1 2 2 2, , ,e t m fW W P h 1 2 2 2, , ,u t m fS W P h

1 2 2 2, , ,f t m fh W P h 1 1 2 2, , ,e f t mW h W P

1 2 2 2, , ,m t m fP W P h 1 1 2 2, , ,t m t mW P W P

1 2 2 2, , ,t t m fW W P h 1 2 2 2, , ,f t m fh W P h
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4.5 Summary 

A systematic investigation of the uniqueness and sensitivity to experimental 

error for dual indentation methodologies is presented in this chapter. The observations 

can be summarized as follows. 

The concept of condition number and iso-(Pm/Suhm) lines are used to provide a 

comprehensive quantitative description of the uniqueness and sensitivity issues in 

indentation tests. In fact, non-uniqueness may be considered an extreme case of 

sensitivity for experimental errors. The concept of condition number is used to rank 

different choices of half-angles (dual conical indentation), depth-to-radius ratios (dual 

spherical indentation) and shape functions in terms of sensitivity due to experimental 

error. While condition numbers are easier to compute than performing sensitivity 

analyses and can provide a preliminary guideline about the sensitivity of an 

indentation technique, they are not a complete substitute for the sensitivity analysis. 

Thus different sensitivity analysis techniques are used to gain deeper insight. 

Some dual indentation protocols with shape function combinations such as 

 are even more ineffective than single indentation 

protocols. The Monte Carlo sensitivity analysis procedure is demonstrated to be more 

effective in taking into account the errors occurring in a real experiment than both the 

One Factor (shape functions varied one at a time) and the Uniform Factors (all shape 

functions increased or decreased by same amount) scheme.  

For isotropic materials, the most effective (least sensitive) dual indentation technique 

is suggested to be spherical dual indentation with (hm/Ri)1 = 1% and (hm/Ri)2 = 100% 

and shape function combination . It appears that many dual indentation 

protocols are reliable when the experimental error is within ±1%. However, for the 

error range of ±5%, all three material properties cannot be determined with moderate 

   2 1 1 2 1 1, ,  and , ,f e f f m fh W h h P h

 2 1 1, ,e u eW S W
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sensitivity even using the best dual indentation technique. New dual indentation 

protocols need to be developed to overcome the problem of sensitivity to experimental 

error. 

Based on the computed condition numbers, it appears that indentation of 

transversely isotropic material is, in general, more sensitive to experimental errors 

compared to isotropic materials (when both indentations are along the direction 

perpendicular to the plane of isotropy). This result is likely related to the need for four 

material properties to be determined from the force-displacement relationships instead 

of three (for isotropic materials). By comparing the computed condition numbers, it 

appears that if dual indentation tests are conducted along the same direction of 

anisotropy, the experiments need to be highly accurate for determining the material 

properties accurately. Thus, dual indentation techniques with two tests performed in 

two different directions of anisotropy need to be investigated as a means for reducing 

the sensitivity due to experimental error. 
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Chapter 5 

CONCLUDING REMARKS AND FUTURE WORK 

In this thesis, contributions have been made to advance the evaluation of 

indentation testing in three areas: 

1. Geometry: Most indentation techniques are limited to flat substrates. This 
thesis attempts to extend this geometric limitation and investigate indentation 
of a spherical object. Methodologies for other non-flat substrates can be 
developed following a similar approach. 

2. Reliability: Non-uniqueness and sensitivity due to experimental errors of 
indentation testing are important practical problems. An investigation of these 
two issues for selected indentation geometries and material types are presented. 
Different indentation protocols are ranked according to sensitivity. The results 
suggest that indentation tests need to be very accurate to measure the material 
properties accurately. 

3. Material properties: Few studies have been conducted to advance the 
understanding of indentation of anisotropic materials. A study of sensitivity 
due to experimental error of selected indentation protocols for transversely 
isotropic, linear-elastic, perfectly-plastic material is presented in this thesis.  

5.1 Concluding Remarks 

Some of the key observations from this work are as follows: 

5.1.1 Geometry 

To expand the prevailing indentation testing of flat surfaces, conical 

indentation of a sphere made of isotropic, linear-elastic, perfectly-plastic material was 

considered. Two methodologies were proposed to determine the material properties. 

The first methodology was based on finite element based reverse analysis technique, 
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which is typically used to determine the material properties of flat substrates using 

indentation testing. The second methodology was a semi-analytical method in which 

the problem was divided into two sub-problems and the analytical solutions of those 

two contact problems were utilized. In this method, the concept of elastic unloading 

was used to determine the elastic modulus similar to the Oliver-Pharr method for flat 

substrates.  

As an extension of the work on conical indentation of a half-space, a semi-

analytical method to determine the force-displacement relationship for conical 

indentation of a viscoelastic sphere was discussed in this thesis. The proposed 

technique is based on the method of functional equations that was developed to obtain 

the viscoelastic solution of a problem from the corresponding elastic solution. In the 

work of Vandamme and Ulm (2006), the Galin-Sneddon’s analytical solution for the 

elastic problem was utilized. However for the conical indentation of a sphere, no such 

analytical solution is available. Thus for this problem, the elastic solution of the 

problem was obtained from finite element analysis.  

5.1.2 Reliability 

When using a material model that includes plastic hardening during yielding, 

several materials can give identical force-displacement relationships. A methodology 

was presented to systematically identify the material parameter sets that will give 

identical force-displacement relationships. The methodology is based on comparing a 

limited set of shape functions of the force-displacement relationship. The methodology 

was illustrated for various indentation geometries and material models. It was 

concluded that a single indentation test, although simpler compared to a dual 
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indentation test, cannot be used to determine the material properties of a material 

uniquely. 

Sensitivity to errors in the experimental measurements of an indentation test 

determines the practical usefulness of the experiment. This work illustrated that non-

uniqueness of force-displacement relationship and sensitivity due to experimental 

error are not independent phenomena in that non-uniqueness is an extreme case of 

sensitivity. Selected test conditions (such as shape functions, half-angles and depth-to-

radius ratios) resulting in different amount of sensitivities were ranked using condition 

numbers. This results in a set of guidelines for the experimentalists involving suitable 

selection of geometrical parameters and shape functions to improve the reliability of 

the experiment. It appears that, in general, the indentation experiments need to be very 

accurate to determine the material properties accurately. Since the reliability of the 

determined material parameter set depends on the actual material properties, which are 

not known a priori, it is suggested that a confidence domain is used to evaluate the 

reliability of the determined material parameter set.  

5.1.3 Material properties 

Dual indentation of transversely isotropic, linear-elastic, perfectly-plastic 

material was considered. Condition numbers for several dual indentation protocols 

were computed. Similar to isotropic materials, and for transversely isotropic materials 

as well, the experiments need to be highly accurate to determine the material 

properties accurately. Further, the values of the computed condition numbers suggest 

that sensitivity for transversely isotropic materials is more than that for isotropic 

materials (assuming both indentations are performed along the direction perpendicular 

to the plane of isotropy). This might be due to the fact that for transversely isotropic, 
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linear-elastic, perfectly-plastic materials, more material parameters are involved 

compared to isotropic, linear-elastic, and power-law hardening materials. 

In addition to the specific findings listed above, we also found that dimensional 

analysis (Buckingham PI theorem) can be a very important tool to reduce the 

computational costs involved in indentation analysis. In this work, the relationships 

between the shape functions of the force-displacement relationship and the material 

properties were determined numerically using extensive finite element simulations. 

The computational cost involved in such finite element analyses could be reduced 

greatly by using the non-dimensional forms of such relationships. 

5.2 Suggested Future Work 

The following directions for future studies may be noted: 

In section 2.1, conical indentation of a sphere made of linear-elastic, perfectly-

plastic material was considered. It was shown that the basic principle involved in the 

finite element based reverse analysis methodologies remain the same for flat and non-

flat substrates. Consequently, the proposed methodologies can be extended for other 

non-flat substrates as well. For example, for conical indentation of an infinitely long 

cylinder (e.g. micro-fiber), non-dimensional relationships between the shape functions 

and the material properties can be derived for fixed values of half-angle and depth-to-

radius ratio, using a procedure similar to that outlined in section 2.1.2.3. The obtained 

relationships can be inverted to express the material properties in terms of shape 

functions using a procedure similar to that outlined in section 2.1.2.3. Thus, an 

algorithm similar to that depicted in Figure 2.8 can be obtained for determining the 

material properties of a micro-fiber. However, a three-dimensional model would be 
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required for this case instead of the axisymmetric two-dimensional model, resulting in 

a significant increase in computational cost. 

The method presented in section 2.2, to obtain the force-displacement 

relationship for conical indentation of a viscoelastic sphere, can be easily extended to 

other indenter/substrate geometries for which no analytical solutions are available. For 

example, for spherical indentation of a cylinder, the elastic solution can be obtained 

using finite element simulations and regression analysis using a procedure similar to 

as outlined in section 2.2.1.1. Then, the method of functional equations can be applied 

to obtain the corresponding viscoelastic solution using a procedure similar to that 

outlined in section 2.2.1.2. 

The method presented in Chapter 3 for identifying materials with identical 

force-displacement relationships, was shown to be independent of any specific 

indentation geometry or material model. Consequently, the method can be extended to 

more complicated indentation geometries and material models. For example, for 

conical indentation of a half-space made of viscoleastic material, the non-dimensional 

relationships between the shape functions and the material properties can be obtained 

using procedures similar to that described in section 1.4. Thereafter, a fixed material 

can be considered and the materials with force-displacement relationship identical to 

that of the fixed material can be obtained by comparing the shape functions using a 

procedure similar to that outlined in section 3.4.1. However, the regression analysis 

will be more extensive for this case. 

In this work, indentation of transversely isotropic materials along only one 

direction of anisotropy was considered. Dual indentation with indentation on two 

different directions of anisotropy may reduce the sensitivity and could be a subject of 
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future study. For example, for transversely isotropic, elastic, perfectly-plastic 

materials, four shape functions need to be selected from indentation tests in both 

directions. Then, a procedure similar to that outlined in section 4.4.1 can be used to 

determine the condition numbers and assess the relative sensitivity due to 

experimental error. A three-dimensional model would be required instead of the two-

dimensional axisymmetric model, again resulting in a significant increase in 

computational cost. 

In Chapter 4, sensitivity of indentation methodologies which utilize only the 

force-displacement relationship from an indentation test is considered. Several 

indentation methodologies (Tabor, 1951; Taljat et al., 1998; Kang et al., 2013; Xu and 

Chen, 2010) have been developed which utilize the projected contact radius at 

maximum depth of penetration to extract the material properties. Sensitivity of such 

methodologies can be a subject of future study. The constitutive relationships between 

the contact radius and the material properties can be obtained using a procedure 

similar to as presented in section 3.3, where the relationships between the shape 

functions and the material properties are derived. Then, the condition number for 

different combinations can be computed and Monte Carlo sensitivity analysis can be 

carried out to assess the sensitivity similar to as done in Chapter 4 for force-

displacement relationship based methodologies. 

Similar to dual indentation tests for time-independent materials discussed in 

Chapter 4, recently a multi-curve method (Zhai and McKenna, 2014) has been 

proposed for efficient extraction of the material properties of time-dependent 

materials. In this method, several force-displacement relationships with different 

indentation and loading rates are utilized. Application of condition number for suitable 
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selection of the indentation and loading rates for minimizing sensitivity due to 

experimental error can be a subject of future study. For this, condition numbers for 

various combinations of indentation and loading rates can be computed utilizing the 

relationship between the material properties and force-displacement relationship. 

However, the computational cost involved in this case will be much higher compared 

to the present work since the number of material parameters involved in modeling 

time-dependent materials can be much larger than for time-independent materials. 

It is discussed that the deviation in the determined material properties from the 

actual material properties depends on the actual material properties which are not 

known a priori in an indentation test. Therefore, instead of determining a single 

material parameter set, Moussa et al. (2014) proposed the construction of a confidence 

domain for the material parameters (assuming experimental error to be within a fixed 

amount) in which the actual material properties will lie. Relationship of such 

confidence domain with the condition number of the adopted methodology and its 

extension to transversely isotropic materials can be a subject of future study. A 

reasonable speculation is that the confidence domain will become narrower as 

condition number decreases. The procedure for the study will be similar to the 

procedure adopted in establishing the correlation between condition number and 

Monte Carlo sensitivity analysis (section 4.3.2). 

5.3 Summary 

The work presented in this dissertation expands the scope of instrumented 

indentation technique for determining the mechanical properties for a wider range of 

substrate geometries (e.g. spherical substrates) and material types (e.g. viscoelastic 

and transversely isotropic materials). Furthermore, it provides cautions and guidelines 
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to the experimentalists regarding proper utilization of the indentation test data for 

determining the mechanical properties with improved accuracy. 

The work opens up opportunities for future researchers to expand the utility of 

indentation technique for reliable characterization of a large number of material 

systems. 
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Appendix A 

FUNCTIONAL FORMS AND FITTING COEFFICIENTS 

The fitting coefficients used in the regression analysis for various 

indenter/substrate geometries and material models are tabulated in this appendix. 

A.1 Isotropic, Linear-elastic, Power-law Strain Hardening Plastic Materials 

The normalized shape functions are related to the normalized material 

properties for fixed indenter/substrate geometry. As discussed in Chapter 1, section 

1.4, the fixed geometric parameter(s) for various indentation geometries are as 

follows: i) conical indentation of a half-space: indenter half-angle, α; ii) spherical 

indentation of a half-space: depth-to-indenter radius ratio, hm/Ri; iii) conical 

indentation of a sphere: indenter half-angle, , and depth-to-substrate radius ratio, 

hm/Rs ; and iii) spherical indentation of a sphere: depth-to-substrate radius ratio, hm/Rs 

and indenter radius-to-substrate radius ratio: Ri/Rs. Following Eq. (3.11), the following 

functional form is used for regression: 

  (A.1) 

where ju and ku are upper limits of j and k which and are different for different shape 

functions and indenter/substrate geometries. The subscript p indicates power-law 

hardening material. The fitting coefficients , are tabulated in the following tables 

for various indentation geometries. 
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A.1.1 Conical indentation of a half-space 

The fitting coefficients for various shape functions are tabulated in this section 

for the range of half-angles used in the study, α = 50º, 60º, 70º and 80º. 

Table A.1: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for α 
= 50° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -8.635E-14 -3.249E-13 1.873E-13 -3.899E-14 9.296E-14 2.216E-14 
i = 2 4.508E-10 7.556E-10 -4.200E-10 6.442E-11 -3.047E-10 -7.046E-11
i = 3 -7.188E-07 -6.762E-07 3.357E-07 1.200E-08 3.956E-07 8.671E-08 
i = 4 6.129E-04 2.054E-04 -9.416E-05 -1.059E-04 -2.640E-04 -5.225E-05
i = 5 -1.961E-01 1.255E-01 5.070E-02 1.308E-01 1.046E-01 1.654E-02 
i = 6 1.760E+01 -1.657E+01 1.695E+00 -3.516E+00 1.800E+00 4.000E+00 

 

Table A.2: Fitting coefficients for Eq. (A.1) for the normalized maximum load, Pm, for 
α = 50° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -1.599E-10 2.119E-10 -1.013E-10 2.042E-11 -1.200E-12 7.144E-14
i = 2 4.692E-07 -6.217E-07 2.976E-07 -6.026E-08 3.467E-09 -2.274E-10
i = 3 -5.133E-04 6.795E-04 -3.258E-04 6.638E-05 -3.660E-06 2.790E-07
i = 4 2.503E-01 -3.308E-01 1.592E-01 -3.288E-02 1.615E-03 -1.659E-04
i = 5 -4.628E+01 6.212E+01 -3.012E+01 6.714E+00 -1.683E-01 5.035E-02
i = 6 2.229E+03 -3.066E+03 1.541E+03 -3.495E+02 3.300E+01 1.153E+01
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Table A.3: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, for 
α = 50° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -1.378E-08 1.898E-08 -9.454E-09 2.016E-09 -1.550E-10 -8.556E-14
i = 2 3.678E-05 -5.082E-05 2.542E-05 -5.450E-06 4.221E-07 1.320E-10
i = 3 -3.664E-02 5.070E-02 -2.545E-02 5.492E-03 -4.295E-04 5.174E-08
i = 4 1.631E+01 -2.261E+01 1.141E+01 -2.486E+00 1.976E-01 -1.870E-04
i = 5 -2.474E+03 3.519E+03 -1.841E+03 4.187E+02 -3.611E+01 3.167E+00
i = 6 8.883E+04 -1.352E+05 7.660E+04 -1.898E+04 1.745E+03 -2.504E+01
 

Table A.4: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
α = 50° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -1.207E-11 1.559E-11 -6.994E-12 1.355E-12 -8.467E-14 -6.843E-15
i = 2 3.171E-08 -4.113E-08 1.850E-08 -3.642E-09 2.332E-10 2.185E-11
i = 3 -3.011E-05 3.934E-05 -1.773E-05 3.572E-06 -2.380E-07 -2.703E-08
i = 4 1.232E-02 -1.640E-02 7.389E-03 -1.543E-03 1.115E-04 1.639E-05
i = 5 -1.678E+00 2.538E+00 -1.158E+00 2.626E-01 -2.448E-02 -5.094E-03
i = 6 6.437E+01 -9.840E+01 5.276E+01 -8.790E+00 3.270E+00 7.952E-01

Table A.5: Fitting coefficients for Eq. (A.1) for the normalized final depth, hf, for α = 
50° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -6.551E-12 8.918E-12 -4.432E-12 9.580E-13 -7.643E-14 2.506E-15
i = 2 1.767E-08 -2.412E-08 1.202E-08 -2.604E-09 2.073E-10 -7.558E-12
i = 3 -1.687E-05 2.324E-05 -1.170E-05 2.561E-06 -2.041E-07 8.656E-09
i = 4 6.515E-03 -9.197E-03 4.759E-03 -1.069E-03 8.569E-05 -4.698E-06
i = 5 -8.322E-01 1.269E+00 -7.084E-01 1.693E-01 -1.326E-02 1.186E-03
i = 6 1.324E+01 -3.548E+01 2.727E+01 -8.265E+00 5.562E-01 8.514E-01
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Table A.6: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, for 
α = 60º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 8.699E‐09 ‐9.101E‐09 2.962E‐09 ‐3.563E‐10 3.262E‐11 ‐1.976E‐12

i = 2 ‐2.637E‐05 3.015E‐05 ‐1.155E‐05 1.856E‐06 ‐1.649E‐07 5.808E‐09
i = 3 2.896E‐02 ‐3.580E‐02 1.537E‐02 ‐2.847E‐03 2.491E‐04 ‐6.328E‐06

i = 4 ‐1.398E+01 1.838E+01 ‐8.521E+00 1.702E+00 ‐1.459E‐01 3.063E‐03

i = 5 2.761E+03 ‐3.765E+03 1.818E+03 ‐3.747E+02 2.878E+01 4.105E+00

i = 6 ‐1.539E+05 2.138E+05 ‐1.052E+05 2.197E+04 ‐1.734E+03 ‐2.296E+01

 

Table A.7: Fitting coefficients for Eq. (A.1) for the normalized unloading energy, We, 
for α = 60º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 7.170E‐13 ‐9.694E‐13 8.655E‐13 ‐2.410E‐13 7.086E‐14 ‐1.621E‐14

i = 2 ‐3.901E‐09 5.376E‐09 ‐3.830E‐09 9.245E‐10 ‐2.205E‐10 5.182E‐11

i = 3 6.100E‐06 ‐8.467E‐06 5.595E‐06 ‐1.231E‐06 2.508E‐07 ‐6.434E‐08

i = 4 ‐3.845E‐03 5.210E‐03 ‐3.410E‐03 6.892E‐04 ‐1.228E‐04 3.939E‐05

i = 5 1.358E+00 ‐1.440E+00 9.080E‐01 ‐1.598E‐01 2.044E‐02 ‐1.259E‐02

i = 6 ‐8.062E+01 9.686E+01 ‐4.993E+01 1.607E+01 2.961E+00 2.113E+00

 

Table A.8: Fitting coefficients for Eq. (A.1) for the normalized total energy, We, for α 
= 70º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐1.440E‐11 1.960E‐11 ‐9.639E‐12 1.749E‐12 5.684E‐14 1.377E‐13

i = 2 4.462E‐08 ‐6.129E‐08 3.076E‐08 ‐5.835E‐09 ‐1.573E‐10 ‐4.519E‐10

i = 3 ‐5.078E‐05 7.036E‐05 ‐3.618E‐05 7.200E‐06 2.281E‐07 5.801E‐07

i = 4 2.478E‐02 ‐3.437E‐02 1.827E‐02 ‐3.906E‐03 ‐2.692E‐04 ‐3.718E‐04

i = 5 ‐4.260E+00 5.998E+00 ‐3.086E+00 9.594E‐01 2.505E‐01 1.269E‐01

i = 6 2.179E+02 ‐3.089E+02 1.582E+02 ‐4.594E+01 1.134E+00 1.244E+01
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Table A.9: Fitting coefficients for Eq. (A.1) for the normalized maximum load, Pm, for 
α = 70º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐3.051E‐10 3.333E‐10 ‐1.193E‐10 1.478E‐11 1.750E‐14 4.195E‐13

i = 2 7.440E‐07 ‐8.062E‐07 2.832E‐07 ‐3.266E‐08 ‐8.893E‐10 ‐1.367E‐09
i = 3 ‐6.505E‐04 6.998E‐04 ‐2.419E‐04 2.585E‐05 1.916E‐06 1.748E‐06

i = 4 2.508E‐01 ‐2.684E‐01 9.278E‐02 ‐9.811E‐03 ‐1.602E‐03 ‐1.121E‐03

i = 5 ‐4.150E+01 4.465E+01 ‐1.496E+01 2.335E+00 8.918E‐01 3.843E‐01

i = 6 2.889E+03 ‐3.295E+03 1.222E+03 ‐1.885E+02 3.425E‐01 3.587E+01

 

Table A.10: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for α = 70º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 4.901E‐09 ‐1.002E‐08 6.346E‐09 ‐1.467E‐09 9.283E‐11 ‐4.415E‐13

i = 2 ‐1.126E‐05 2.431E‐05 ‐1.600E‐05 3.853E‐06 ‐2.649E‐07 2.416E‐09

i = 3 1.043E‐02 ‐2.260E‐02 1.510E‐02 ‐3.754E‐03 2.820E‐04 ‐4.503E‐06

i = 4 ‐4.612E+00 9.581E+00 ‐6.358E+00 1.613E+00 ‐1.317E‐01 3.544E‐03

i = 5 7.678E+02 ‐1.566E+03 1.037E+03 ‐2.643E+02 1.845E+01 6.346E+00

i = 6 ‐9.521E+03 4.120E+04 ‐3.530E+04 1.022E+04 ‐7.723E+02 ‐5.983E+01

 

Table A.11: Fitting coefficients for Eq. (A.1) for the normalized unloading energy, We, 
for α = 70º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐2.453E‐11 2.716E‐11 ‐9.773E‐12 1.493E‐12 3.693E‐14 ‐2.680E‐14

i = 2 6.699E‐08 ‐7.427E‐08 2.658E‐08 ‐4.139E‐09 ‐1.320E‐10 8.764E‐11

i = 3 ‐6.629E‐05 7.364E‐05 ‐2.609E‐05 4.230E‐06 1.735E‐07 ‐1.130E‐07

i = 4 2.872E‐02 ‐3.215E‐02 1.111E‐02 ‐1.963E‐03 ‐9.974E‐05 7.402E‐05

i = 5 ‐4.586E+00 5.682E+00 ‐1.826E+00 3.990E‐01 1.824E‐02 ‐2.689E‐02

i = 6 3.035E+02 ‐3.811E+02 1.471E+02 ‐1.765E+01 8.793E+00 5.761E+00
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Table A.12: Fitting coefficients for Eq. (A.1) for the normalized final depth, hf, for α = 
70º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 4.181E‐12 ‐5.603E‐12 2.704E‐12 ‐5.531E‐13 4.169E‐14 2.422E‐15

i = 2 ‐1.280E‐08 1.699E‐08 ‐8.109E‐09 1.639E‐09 ‐1.221E‐10 ‐7.729E‐12
i = 3 1.468E‐05 ‐1.930E‐05 9.103E‐06 ‐1.817E‐06 1.340E‐07 9.502E‐09

i = 4 ‐7.761E‐03 1.010E‐02 ‐4.704E‐03 9.259E‐04 ‐6.798E‐05 ‐5.665E‐06

i = 5 1.841E+00 ‐2.371E+00 1.091E+00 ‐2.116E‐01 1.580E‐02 1.706E‐03

i = 6 ‐1.472E+02 1.873E+02 ‐8.525E+01 1.608E+01 ‐1.396E+00 7.467E‐01

Table A.13: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for α 
= 70.3º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐3.593E‐10 4.494E‐10 ‐1.902E‐10 3.152E‐11 ‐1.580E‐12 1.468E‐13
i = 2 1.021E‐06 ‐1.286E‐06 5.497E‐07 ‐9.224E‐08 4.625E‐09 ‐4.790E‐10

i = 3 ‐1.061E‐03 1.348E‐03 ‐5.835E‐04 9.946E‐05 ‐4.927E‐06 6.123E‐07

i = 4 4.849E‐01 ‐6.222E‐01 2.736E‐01 ‐4.765E‐02 2.205E‐03 ‐3.911E‐04

i = 5 ‐9.049E+01 1.176E+02 ‐5.249E+01 9.600E+00 ‐2.407E‐01 1.332E‐01

i = 6 4.980E+03 ‐6.548E+03 2.970E+03 ‐5.470E+02 2.895E+01 1.248E+01

 

Table A.14: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
α = 70.3º 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐2.318E‐10 2.832E‐10 ‐1.195E‐10 2.041E‐11 ‐1.038E‐12 ‐2.688E‐14

i = 2 6.548E‐07 ‐8.020E‐07 3.390E‐07 ‐5.813E‐08 2.938E‐09 8.852E‐11

i = 3 ‐6.741E‐04 8.280E‐04 ‐3.510E‐04 6.054E‐05 ‐3.030E‐06 ‐1.150E‐07

i = 4 3.043E‐01 ‐3.751E‐01 1.594E‐01 ‐2.778E‐02 1.369E‐03 7.585E‐05

i = 5 ‐5.537E+01 6.903E+01 ‐2.935E+01 5.224E+00 ‐2.559E‐01 ‐2.774E‐02

i = 6 2.787E+03 ‐3.466E+03 1.492E+03 ‐2.557E+02 2.241E+01 5.985E+00
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Table A.15: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for α 
= 80° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 2.722E-11 -2.778E-11 7.208E-12 -5.355E-14 -2.054E-13 5.265E-13
i = 2 -7.070E-08 7.272E-08 -1.914E-08 6.676E-10 3.425E-10 -1.716E-09
i = 3 6.863E-05 -7.283E-05 2.070E-05 -2.105E-06 2.077E-07 2.195E-06
i = 4 -3.074E-02 3.496E-02 -1.120E-02 2.085E-03 -7.685E-04 -1.423E-03
i = 5 5.094E+00 -5.908E+00 2.073E+00 3.910E-02 7.161E-01 5.220E-01
i = 6 -2.515E+02 2.910E+02 -1.050E+02 -3.733E+00 -1.749E+01 2.890E+01

Table A.16: Fitting coefficients for Eq. (A.1) for the normalized maximum load, Pm, 
for α = 80° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -1.507E-10 2.606E-10 -1.638E-10 4.275E-11 -4.140E-12 1.614E-12
i = 2 3.749E-07 -6.486E-07 4.117E-07 -1.083E-07 1.050E-08 -5.282E-09
i = 3 -3.426E-04 5.894E-04 -3.771E-04 9.872E-05 -8.833E-06 6.765E-06
i = 4 1.309E-01 -2.237E-01 1.464E-01 -3.768E-02 1.829E-03 -4.371E-03
i = 5 -1.994E+01 3.447E+01 -2.283E+01 7.460E+00 1.409E+00 1.592E+00
i = 6 9.495E+02 -1.671E+03 1.117E+03 -3.819E+02 -1.241E+01 8.575E+01

Table A.17: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for α = 80° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -1.403E-08 1.729E-08 -7.520E-09 1.335E-09 -8.029E-11 3.620E-13
i = 2 2.991E-05 -3.739E-05 1.673E-05 -3.154E-06 2.246E-07 -2.204E-09
i = 3 -2.127E-02 2.749E-02 -1.300E-02 2.696E-03 -2.299E-04 1.991E-06
i = 4 5.306E+00 -7.406E+00 3.887E+00 -9.190E-01 9.012E-02 1.510E-03
i = 5 -2.613E+02 5.321E+02 -3.883E+02 1.200E+02 -1.998E+01 1.307E+01
i = 6 -6.170E+03 -5.708E+03 1.202E+04 -5.159E+03 9.535E+02 -1.680E+02
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Table A.18: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
α = 80° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 5.702E-11 -7.232E-11 3.130E-11 -4.907E-12 7.638E-13 -1.381E-14
i = 2 -1.520E-07 1.951E-07 -8.542E-08 1.317E-08 -2.292E-09 6.096E-11
i = 3 1.444E-04 -1.886E-04 8.393E-05 -1.244E-05 2.607E-06 -1.126E-07
i = 4 -5.831E-02 7.804E-02 -3.591E-02 4.750E-03 -1.399E-03 1.125E-04
i = 5 1.042E+01 -1.323E+01 6.682E+00 -5.485E-01 3.372E-01 -6.702E-02
i = 6 -5.632E+02 7.023E+02 -3.468E+02 5.127E+01 1.167E+01 2.596E+01

Table A.19: Fitting coefficients for Eq. (A.1) for the normalized final depth, hf, for α = 
80° 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 4.088E-12 -3.903E-12 1.054E-12 -4.648E-14 -7.805E-15 4.271E-15
i = 2 -1.142E-08 1.061E-08 -2.666E-09 4.879E-11 2.868E-11 -1.347E-11
i = 3 1.155E-05 -1.032E-05 2.289E-06 7.113E-08 -3.924E-08 1.640E-08
i = 4 -4.998E-03 4.141E-03 -6.742E-04 -1.249E-04 2.484E-05 -9.714E-06
i = 5 7.709E-01 -4.978E-01 -3.538E-02 6.106E-02 -7.126E-03 2.926E-03
i = 6 -4.138E+00 -2.787E+01 3.001E+01 -9.535E+00 5.687E-01 5.548E-01

A.1.2 Spherical indentation of a half-space 

The fitting coefficients for various shape functions are tabulated in this section 

for the range of depth-to-radius ratios used in the study, (hm/Rs) = 1%, 10%, 20%, 

30%, 40% and 100%. 
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Table A.20: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for (hm/Rs) = 1% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 1.893E‐09 ‐2.378E‐09 1.080E‐09 ‐2.183E‐10 1.869E‐11 ‐3.082E‐13

i = 2 ‐6.215E‐06 7.538E‐06 ‐3.269E‐06 6.280E‐07 ‐5.239E‐08 9.554E‐10
i = 3 7.920E‐03 ‐9.192E‐03 3.737E‐03 ‐6.612E‐04 5.247E‐05 ‐1.106E‐06

i = 4 ‐4.947E+00 5.447E+00 ‐2.026E+00 3.119E‐01 ‐2.212E‐02 5.820E‐04

i = 5 1.570E+03 ‐1.642E+03 5.508E+02 ‐6.769E+01 3.547E+00 ‐1.339E‐01

i = 6 ‐2.250E+05 2.263E+05 ‐6.900E+04 6.218E+03 ‐1.123E+02 4.320E+01

i = 7 1.065E+07  ‐1.049E+07 3.009E+06 ‐2.018E+05 ‐5.504E+03  ‐7.981E+02

 

Table A.21: Fitting coefficients for Eq. (A.1) for the normalized unloading energy, We, 
for (hm/Rs) = 1% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 -2.000E-11 2.033E-11 -5.242E-12 -2.958E-13 1.768E-13 -9.639E-15
i = 2 7.219E-08 -7.675E-08 2.251E-08 -1.457E-10 -5.034E-10 3.298E-11
i = 3 -1.014E-04 1.129E-04 -3.711E-05 2.056E-06 5.003E-07 -4.382E-08
i = 4 6.865E-02 -8.026E-02 2.911E-02 -2.708E-03 -1.913E-04 2.826E-05
i = 5 -2.247E+01 2.756E+01 -1.085E+01 1.311E+00 1.340E-02 -8.875E-03
i = 6 3.197E+03 -4.089E+03 1.720E+03 -2.386E+02 5.413E+00 9.807E-01
i = 7 -1.469E+05 1.932E+05 -8.439E+04 1.253E+04 -2.642E+02 1.842E+02

Table A.22: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for 
(hm/Rs) = 10% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 4.436E‐11 ‐6.276E‐11 3.043E‐11 ‐6.565E‐12 8.523E‐13 5.280E‐13

i = 2 ‐1.147E‐07 1.617E‐07 ‐7.701E‐08 1.656E‐08 ‐2.535E‐09 ‐1.709E‐09

i = 3 1.037E‐04 ‐1.452E‐04 6.649E‐05 ‐1.404E‐05 2.967E‐06 2.165E‐06

i = 4 ‐3.935E‐02 5.506E‐02 ‐2.284E‐02 4.297E‐03 ‐1.943E‐03 ‐1.370E‐03

i = 5 6.497E+00 ‐9.245E+00 4.066E+00 1.193E‐01 1.053E+00 4.615E‐01

i = 6 ‐2.982E+02 4.376E+02 ‐2.146E+02 ‐1.260E+00 ‐1.390E+01 4.152E+01
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Table A.23: Fitting coefficients for Eq. (A.1) for the normalized maximum load, Pm, 
for (hm/Rs) = 10% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 8.723E‐10 ‐1.331E‐09 7.645E‐10 ‐1.976E‐10 2.094E‐11 6.369E‐13

i = 2 ‐1.849E‐06 2.856E‐06 ‐1.665E‐06 4.369E‐07 ‐4.753E‐08 ‐2.491E‐09
i = 3 1.365E‐03 ‐2.134E‐03 1.260E‐03 ‐3.344E‐04 3.806E‐05 3.672E‐06

i = 4 ‐4.293E‐01 6.799E‐01 ‐4.022E‐01 1.058E‐01 ‐1.401E‐02 ‐2.565E‐03

i = 5 5.113E+01 ‐8.390E+01 5.186E+01 ‐1.142E+01 3.478E+00 8.838E‐01

i = 6 6.714E+02 1.185E+01 ‐6.969E+02 2.025E+02 ‐3.140E+01 9.763E+01

 

Table A.24: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for (hm/Rs) = 10% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 6.752E‐08 ‐9.577E‐08 4.988E‐08 ‐1.139E‐08 1.003E‐09 ‐1.683E‐11

i = 2 ‐1.571E‐04 2.233E‐04 ‐1.165E‐04 2.662E‐05 ‐2.334E‐06 4.139E‐08

i = 3 1.307E‐01 ‐1.861E‐01 9.723E‐02 ‐2.219E‐02 1.925E‐03 ‐3.616E‐05

i = 4 ‐4.692E+01 6.717E+01 ‐3.518E+01 8.009E+00 ‐6.836E‐01 1.417E‐02

i = 5 6.741E+03 ‐9.755E+03 5.135E+03 ‐1.159E+03 8.925E+01 9.254E+00

i = 6 ‐2.614E+05 3.918E+05 ‐2.124E+05 4.860E+04 ‐3.636E+03 ‐5.147E+01

 

Table A.25: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
(hm/Rs) = 10% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐4.454E‐11 5.006E‐11 ‐1.485E‐11 7.876E‐13 7.194E‐13 ‐1.337E‐13

i = 2 1.427E‐07 ‐1.660E‐07 5.473E‐08 ‐5.691E‐09 ‐1.807E‐09 4.273E‐10

i = 3 ‐1.635E‐04 1.947E‐04 ‐6.807E‐05 9.453E‐06 1.689E‐06 ‐5.383E‐07

i = 4 8.314E‐02 ‐1.007E‐01 3.581E‐02 ‐6.120E‐03 ‐7.236E‐04 3.442E‐04

i = 5 ‐1.725E+01 2.279E+01 ‐7.794E+00 1.669E+00 1.097E‐01 ‐1.211E‐01

i = 6 1.434E+03 ‐1.913E+03 7.529E+02 ‐1.025E+02 3.568E+01 2.409E+01
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Table A.26: Fitting coefficients for Eq. (A.1) for the normalized final depth, hf, for 
(hm/Rs) = 10% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 8.622E‐12 ‐9.998E‐12 3.915E‐12 ‐6.088E‐13 3.934E‐14 3.226E‐15

i = 2 ‐2.224E‐08 2.588E‐08 ‐1.020E‐08 1.611E‐09 ‐1.099E‐10 ‐1.028E‐11
i = 3 2.081E‐05 ‐2.436E‐05 9.698E‐06 ‐1.571E‐06 1.154E‐07 1.273E‐08

i = 4 ‐8.574E‐03 1.015E‐02 ‐4.116E‐03 6.953E‐04 ‐5.657E‐05 ‐7.783E‐06

i = 5 1.484E+00 ‐1.796E+00 7.568E‐01 ‐1.375E‐01 1.303E‐02 2.474E‐03

i = 6 ‐8.271E+01 1.048E+02 ‐4.762E+01 9.332E+00 ‐1.284E+00 6.019E‐01

 
 

Table A.27: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for 
(hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐3.057E‐11 4.190E‐11 ‐2.192E‐11 4.924E‐12 ‐1.339E‐13 2.732E‐13

i = 2 8.814E‐08 ‐1.209E‐07 6.379E‐08 ‐1.443E‐08 2.146E‐10 ‐8.755E‐10

i = 3 ‐8.744E‐05 1.200E‐04 ‐6.455E‐05 1.490E‐05 2.157E‐07 1.088E‐06

i = 4 3.229E‐02 ‐4.352E‐02 2.459E‐02 ‐6.114E‐03 ‐6.933E‐04 ‐6.633E‐04

i = 5 ‐3.119E+00 3.732E+00 ‐1.747E+00 1.037E+00 6.195E‐01 2.076E‐01

i = 6 6.641E+01 ‐4.942E+01 ‐4.469E+00 ‐1.857E+01 ‐2.891E+00 2.629E+01

 

Table A.28: Fitting coefficients for Eq. (A.1) for the normalized maximum load, Pm, 
for (hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐1.407E‐09 1.724E‐09 ‐7.298E‐10 1.276E‐10 ‐8.104E‐12 4.928E‐13

i = 2 3.788E‐06 ‐4.665E‐06 1.989E‐06 ‐3.509E‐07 2.174E‐08 ‐1.564E‐09

i = 3 ‐3.682E‐03 4.567E‐03 ‐1.968E‐03 3.514E‐04 ‐2.049E‐05 1.914E‐06

i = 4 1.568E+00 ‐1.953E+00 8.491E‐01 ‐1.533E‐01 7.321E‐03 ‐1.134E‐03

i = 5 ‐2.757E+02 3.422E+02 ‐1.464E+02 2.722E+01 ‐7.506E‐02 3.362E‐01

i = 6 1.422E+04 ‐1.757E+04 7.417E+03 ‐1.309E+03 7.561E+01 6.235E+01
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Table A.29: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for (hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐3.100E‐08 3.420E‐08 ‐1.208E‐08 1.576E‐09 ‐9.730E‐11 ‐9.933E‐13

i = 2 8.448E‐05 ‐9.480E‐05 3.453E‐05 ‐4.776E‐06 3.038E‐07 2.923E‐09
i = 3 ‐8.346E‐02 9.582E‐02 ‐3.630E‐02 5.374E‐03 ‐3.524E‐04 ‐3.280E‐06

i = 4 3.628E+01 ‐4.264E+01 1.680E+01 ‐2.648E+00 1.784E‐01 1.747E‐03

i = 5 ‐6.474E+03 7.727E+03 ‐3.127E+03 5.173E+02 ‐4.043E+01 7.845E+00

i = 6 3.370E+05 ‐4.034E+05 1.640E+05 ‐2.720E+04 2.024E+03 ‐6.940E+01

 

Table A.30: Fitting coefficients for Eq. (A.1) for the normalized unloading energy, We, 
for (hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐3.050E‐11 4.082E‐11 ‐1.828E‐11 3.954E‐12 ‐1.592E‐13 ‐8.135E‐14

i = 2 8.535E‐08 ‐1.143E‐07 5.090E‐08 ‐1.122E‐08 4.153E‐10 2.618E‐10

i = 3 ‐8.822E‐05 1.178E‐04 ‐5.171E‐05 1.172E‐05 ‐3.846E‐07 ‐3.276E‐07

i = 4 4.214E‐02 ‐5.593E‐02 2.351E‐02 ‐5.534E‐03 1.617E‐04 2.022E‐04

i = 5 ‐7.380E+00 1.093E+01 ‐4.173E+00 1.081E+00 ‐4.561E‐02 ‐6.462E‐02

i = 6 3.429E+02 ‐5.175E+02 2.239E+02 ‐2.680E+01 2.176E+01 1.040E+01

 

Table A.31: Fitting coefficients for Eq. (A.1) for the normalized final depth, hf, for 
(hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 1.075E‐11 ‐1.469E‐11 7.078E‐12 ‐1.383E‐12 8.843E‐14 3.316E‐15

i = 2 ‐3.140E‐08 4.260E‐08 ‐2.038E‐08 3.960E‐09 ‐2.528E‐10 ‐1.049E‐11

i = 3 3.373E‐05 ‐4.543E‐05 2.158E‐05 ‐4.165E‐06 2.656E‐07 1.281E‐08

i = 4 ‐1.605E‐02 2.148E‐02 ‐1.013E‐02 1.944E‐03 ‐1.242E‐04 ‐7.620E‐06

i = 5 3.151E+00 ‐4.202E+00 1.974E+00 ‐3.771E‐01 2.461E‐02 2.287E‐03

i = 6 ‐1.807E+02 2.402E+02 ‐1.125E+02 2.092E+01 ‐1.617E+00 6.730E‐01
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Table A.32: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for (hm/Rs) = 30% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 2.666E‐08 ‐3.170E‐08 1.277E‐08 ‐1.989E‐09 9.397E‐11 7.973E‐13

i = 2 ‐7.722E‐05 9.219E‐05 ‐3.724E‐05 5.795E‐06 ‐2.723E‐07 ‐2.205E‐09
i = 3 7.908E‐02 ‐9.479E‐02 3.837E‐02 ‐5.953E‐03 2.761E‐04 2.196E‐06

i = 4 ‐3.351E+01 4.025E+01 ‐1.627E+01 2.499E+00 ‐1.118E‐01 ‐9.565E‐04

i = 5 5.507E+03 ‐6.605E+03 2.649E+03 ‐3.960E+02 1.307E+01 6.740E+00

i = 6 ‐2.868E+05 3.451E+05 ‐1.390E+05 2.095E+04 ‐8.116E+02 ‐6.180E+01

 

Table A.33: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
(hm/Rs) = 30% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 2.429E‐11 ‐3.128E‐11 1.423E‐11 ‐2.201E‐12 1.917E‐13 ‐5.281E‐14

i = 2 ‐6.143E‐08 8.067E‐08 ‐3.767E‐08 5.726E‐09 ‐5.162E‐10 1.687E‐10

i = 3 5.225E‐05 ‐7.070E‐05 3.460E‐05 ‐5.051E‐06 4.789E‐07 ‐2.087E‐07

i = 4 ‐1.629E‐02 2.304E‐02 ‐1.263E‐02 1.640E‐03 ‐1.613E‐04 1.261E‐04

i = 5 2.433E+00 ‐2.553E+00 1.817E+00 ‐1.553E‐01 ‐1.511E‐03 ‐3.874E‐02

i = 6 ‐1.230E+02 1.420E+02 ‐7.323E+01 2.615E+01 1.333E+01 5.745E+00

 

Table A.34: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for 
(hm/Rs) = 40% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 3.746E‐11 ‐5.038E‐11 2.361E‐11 ‐4.734E‐12 6.509E‐13 1.026E‐13

i = 2 ‐1.083E‐07 1.466E‐07 ‐6.912E‐08 1.399E‐08 ‐2.086E‐09 ‐3.239E‐10

i = 3 1.172E‐04 ‐1.602E‐04 7.613E‐05 ‐1.556E‐05 2.620E‐06 3.942E‐07

i = 4 ‐5.690E‐02 7.956E‐02 ‐3.842E‐02 7.877E‐03 ‐1.664E‐03 ‐2.327E‐04

i = 5 1.094E+01 ‐1.560E+01 8.242E+00 ‐1.436E+00 6.006E‐01 6.883E‐02

i = 6 ‐5.713E+02 8.088E+02 ‐4.309E+02 8.750E+01 ‐7.512E+00 1.598E+01

 

jk
p

jk
p

jk
p



 190

Table A.35: Fitting coefficients for Eq. (A.1) for the normalized maximum load, Pm, 
for (hm/Rs) = 40% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐8.870E‐11 6.149E‐11 ‐4.711E‐12 ‐3.506E‐12 1.466E‐12 1.236E‐13

i = 2 1.770E‐07 ‐7.581E‐08 ‐3.269E‐08 1.901E‐08 ‐5.267E‐09 ‐3.870E‐10
i = 3 ‐4.140E‐05 ‐1.056E‐04 1.180E‐04 ‐3.562E‐05 7.426E‐06 4.641E‐07

i = 4 ‐9.607E‐02 1.964E‐01 ‐1.209E‐01 2.844E‐02 ‐5.108E‐03 ‐2.667E‐04

i = 5 5.205E+01 ‐7.965E+01 4.308E+01 ‐8.341E+00 1.742E+00 7.489E‐02

i = 6 ‐4.872E+03 6.904E+03 ‐3.477E+03 6.895E+02 ‐4.095E+01 3.496E+01

 

Table A.36: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for (hm/Rs) = 40% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐6.967E‐09 7.873E‐09 ‐3.335E‐09 6.880E‐10 ‐5.990E‐11 ‐2.639E‐13

i = 2 1.619E‐05 ‐1.770E‐05 7.275E‐06 ‐1.508E‐06 1.384E‐07 5.853E‐10

i = 3 ‐1.210E‐02 1.225E‐02 ‐4.659E‐03 9.759E‐04 ‐1.017E‐04 ‐3.466E‐07

i = 4 2.210E+00 ‐1.361E+00 1.728E‐01 ‐6.003E‐02 2.053E‐02 ‐9.052E‐05

i = 5 5.781E+02 ‐1.018E+03 5.539E+02 ‐1.030E+02 1.758E+00 5.526E+00

i = 6 ‐7.909E+04 1.174E+05 ‐5.928E+04 1.155E+04 ‐6.533E+02 ‐3.053E+01

 

Table A.37: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
(hm/Rs) = 40% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐1.019E‐11 9.076E‐12 ‐1.832E‐12 2.760E‐13 1.029E‐15 ‐3.628E‐14

i = 2 2.297E‐08 ‐1.859E‐08 1.922E‐09 ‐2.880E‐10 ‐1.983E‐11 1.151E‐10

i = 3 ‐1.642E‐05 1.037E‐05 2.313E‐06 ‐3.436E‐07 3.254E‐08 ‐1.408E‐07

i = 4 2.765E‐03 6.397E‐04 ‐3.836E‐03 5.624E‐04 ‐8.017E‐06 8.373E‐05

i = 5 1.864E+00 ‐2.183E+00 1.735E+00 ‐2.542E‐01 ‐1.220E‐02 ‐2.505E‐02

i = 6 ‐2.156E+02 2.862E+02 ‐1.473E+02 4.191E+01 9.085E+00 3.538E+00
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Table A.38: Fitting coefficients for Eq. (A.1) for the normalized final depth, hf, for 
(hm/Rs) = 40% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐6.381E‐12 7.472E‐12 ‐2.996E‐12 4.747E‐13 ‐2.171E‐14 2.236E‐15

i = 2 1.703E‐08 ‐2.001E‐08 8.071E‐09 ‐1.291E‐09 5.918E‐11 ‐7.123E‐12
i = 3 ‐1.632E‐05 1.931E‐05 ‐7.869E‐06 1.280E‐06 ‐5.867E‐08 8.773E‐09

i = 4 6.793E‐03 ‐8.152E‐03 3.392E‐03 ‐5.690E‐04 2.594E‐05 ‐5.265E‐06

i = 5 ‐1.201E+00 1.486E+00 ‐6.456E‐01 1.150E‐01 ‐5.079E‐03 1.593E‐03

i = 6 7.537E+01 ‐9.863E+01 4.571E+01 ‐9.247E+00 2.730E‐01 7.739E‐01

 

Table A.39: Fitting coefficients for Eq. (A.1) for the normalized unloading slope, Su, 
for (hm/Rs) = 100% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐9.087E‐10 0.000E+00 ‐3.194E‐10  7.585E‐10 ‐3.190E‐10 3.770E‐11 ‐2.161E‐13 
i = 2 2.112E‐06 0.000E+00 8.431E‐07  ‐1.891E‐06 7.947E‐07 ‐9.456E‐08 5.479E‐10 
i = 3 ‐1.528E‐03 0.000E+00 ‐9.829E‐04  1.790E‐03 ‐7.299E‐04 8.636E‐05 ‐4.393E‐07 
i = 4 1.588E‐01 0.000E+00 7.158E‐01  ‐8.569E‐01 3.121E‐01 ‐3.514E‐02 ‐1.562E‐05 
i = 5 2.490E+02 0.000E+00 ‐3.545E+02 2.587E+02 ‐7.192E+01 7.417E+00 2.751E+00 
i = 6 ‐3.148E+04  0.000E+00 3.642E+04 ‐2.308E+04 5.297E+03 ‐4.665E+02  6.325E+00

 

Table A.40: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, for 
(hm/Rs) = 100% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 -1.722E-12 0.000E+00 6.176E-13 5.705E-13 -2.655E-13 6.528E-15 -5.436E-15 
i = 2 4.976E-09 0.000E+00 -2.734E-09 -9.475E-10 6.100E-10 -4.577E-12 1.717E-11 
i = 3 -5.043E-06 0.000E+00 3.872E-06 3.153E-07 -4.982E-07 -1.328E-08 -2.090E-08 
i = 4 1.998E-03 0.000E+00 -2.326E-03 1.575E-04 1.796E-04 1.863E-05 1.234E-05 
i = 5 8.592E-02 0.000E+00 5.245E-01 -7.419E-02 -3.510E-02 -8.850E-03 -3.656E-03 
i = 6 8.856E+00 0.000E+00 -2.147E+01 1.748E+01 5.453E+00 2.058E+00 5.085E-01 
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A.1.3 Conical indentation of a sphere 

The fitting coefficients for various shape functions are tabulated in this section 

for the range of depth-to-radius ratios used in the study, (hm/Rs) = 1%, 10%, 20%, 

30%, 40% and 100%. 

Table A.41: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, for 
= 70.3 and(hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 9.591E‐14 0.000E+00 ‐8.898E‐14  4.805E‐14 ‐8.403E‐15 2.491E‐16 ‐9.906E‐17 
i = 2 ‐3.206E‐10 0.000E+00 2.987E‐10  ‐1.616E‐10 2.822E‐11 ‐7.459E‐13 3.645E‐13 
i = 3 4.177E‐07 0.000E+00 ‐3.912E‐07  2.120E‐07 ‐3.692E‐08 7.825E‐10 ‐5.400E‐10 
i = 4 ‐2.666E‐04 0.000E+00 2.508E‐04  ‐1.363E‐04 2.366E‐05 ‐2.695E‐07 4.134E‐07 
i = 5 8.512E‐02 0.000E+00 ‐8.036E‐02 4.383E‐02 ‐7.632E‐03 ‐8.698E‐05 ‐1.751E‐04 
i = 6 ‐1.216E+01  0.000E+00 1.160E+01 ‐6.263E+00 1.191E+00 1.052E‐01  4.108E‐02

Table A.42: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, 
for = 70.3 and(hm/Rs) = 20% 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.834E‐14 0.000E+00 ‐1.691E‐14  8.648E‐15 ‐1.658E‐15 3.368E‐17 3.374E‐17 
i = 2 ‐5.976E‐11 0.000E+00 5.486E‐11  ‐2.786E‐11 5.425E‐12 ‐1.037E‐13 ‐1.245E‐13 
i = 3 7.463E‐08 0.000E+00 ‐6.819E‐08  3.425E‐08 ‐6.845E‐09 1.229E‐10 1.852E‐10 
i = 4 ‐4.445E‐05 0.000E+00 4.051E‐05  ‐1.997E‐05 4.183E‐06 ‐7.447E‐08 ‐1.427E‐07 
i = 5 1.273E‐02 0.000E+00 ‐1.177E‐02 5.583E‐03 ‐1.281E‐03 2.998E‐05 6.104E‐05 
i = 6 ‐1.376E+00  0.000E+00 1.554E+00 ‐6.637E‐01 1.805E‐01 ‐1.119E‐02  ‐1.449E‐02

 

A.1.4 Spherical indentation of a sphere 

The fitting coefficients for various shape functions are tabulated in this section 

for the range of depth-to-radius ratios used in the study, (hm/Rs) = 1%, 10%, 20%, 

30%, 40% and 100%. 
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Table A.43: Fitting coefficients for Eq. (A.1) for the normalized total energy, Wt, 
forhm/Ri = 38.33% and hm/Rs = 5%. 

 
 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 8.593E-20 0.000E+00 -6.564E-20 2.842E-20 -2.973E-21 1.480E-21 -1.920E-21 
i = 2 -7.718E-16 0.000E+00 7.020E-16 -3.694E-16 6.188E-17 -9.092E-18 8.774E-18 
i = 3 2.155E-12 0.000E+00 -2.055E-12 1.129E-12 -2.031E-13 2.108E-14 -1.694E-14 
i = 4 -2.853E-09 0.000E+00 2.769E-09 -1.547E-09 2.845E-10 -2.424E-11 1.801E-11 
i = 5 2.024E-06 0.000E+00 -1.971E-06 1.107E-06 -2.039E-07 1.453E-08 -1.153E-08 
i = 6 -7.767E-04 0.000E+00 7.496E-04 -4.200E-04 7.581E-05 -3.926E-06 4.579E-06 
i = 7 1.471E-01 0.000E+00 -1.376E-01 7.602E-02 -1.286E-02 -9.866E-05 -1.123E-03 
i = 8 -1.062E+01 0.000E+00 8.816E+00 -4.345E+00 7.034E-01 3.562E-01 1.654E-01 
i = 9 1.662E+02 0.000E+00 -8.059E+01 9.093E+00 5.899E+00 -7.205E+00 7.214E+00 

Table A.44: Fitting coefficients for Eq. (A.1) for the normalized elastic energy, We, 
forhm/Ri = 38.33% and hm/Rs = 5%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 -2.472E-18 0.000E+00 2.696E-18 -1.625E-18 3.424E-19 -2.761E-20 4.422E-22 
i = 2 1.109E-14 0.000E+00 -1.220E-14 7.385E-15 -1.563E-15 1.261E-16 -2.087E-18 
i = 3 -2.130E-11 0.000E+00 2.358E-11 -1.432E-11 3.037E-12 -2.443E-13 4.190E-15 
i = 4 2.289E-08 0.000E+00 -2.541E-08 1.545E-08 -3.273E-09 2.613E-10 -4.673E-12 
i = 5 -1.501E-05 0.000E+00 1.662E-05 -1.009E-05 2.128E-06 -1.678E-07 3.176E-09 
i = 6 6.086E-03 0.000E+00 -6.690E-03 4.043E-03 -8.465E-04 6.561E-05 -1.357E-06 
i = 7 -1.457E+00 0.000E+00 1.583E+00 -9.513E-01 1.970E-01 -1.497E-02 3.639E-04 
i = 8 1.794E+02 0.000E+00 -1.920E+02 1.149E+02 -2.352E+01 1.744E+00 -5.965E-02 
i = 9 -8.018E+03 0.000E+00 8.498E+03 -5.062E+03 1.043E+03 -6.589E+01 5.716E+00 

A.2 Isotropic, Linear-elastic, Linear-hardening Material 

Similar to Eq. (A1.1), the following function is used to relate the normalized 

shape functions to the material properties, following Eq. (3.12): 

  (A.2) 

where l indicates linear hardening. The fitting coefficients are tabulated in the 

following tables for two different indenter geometries. 

jk
p

jk
p

54 4
5

0 0

, ;    1 5
j

lh jk k
ii l

j k

E E
G n n i

Y Y




 

          
   





 194

A.2.1 Conical indentation of a half-space 

Fitting coefficients for two shape functions, Wt and We are tabulated in this 

section for  = 70.3. 

Table A.45: Fitting coefficients for Eq. (A.2) for the normalized total energy, Wt, for 
= 70.3. 

 j = 0 j = 1 j = 2 j = 3 j = 4 

i = 1 ‐2.594E‐09 3.195E‐09 ‐1.374E‐09 3.053E‐10 ‐8.113E‐11 
i = 2 6.328E‐06 ‐7.779E‐06 3.308E‐06 ‐7.403E‐07 2.191E‐07 
i = 3 ‐4.628E‐03 5.582E‐03 ‐2.246E‐03 5.202E‐04 ‐2.194E‐04 
i = 4 ‐3.188E+00 4.378E+00 ‐2.488E+00 1.281E+00 1.017E‐01 
i = 5 1.953E+02 ‐2.475E+02 1.186E+02 ‐4.024E+01 1.428E+01 

 

Table A.46: Fitting coefficients for Eq. (A.2) for the normalized elastic energy, We, 
for = 70.3. 

 j = 0 j = 1 j = 2 j = 3 j = 4 

i = 1 5.815E‐10 ‐8.438E‐10 5.749E‐10 ‐2.356E‐10 1.564E‐11 
i = 2 ‐1.737E‐06 2.426E‐06 ‐1.603E‐06 6.547E‐07 ‐4.315E‐08 
i = 3 1.867E‐03 ‐2.498E‐03 1.626E‐03 ‐6.879E‐04 4.474E‐05 
i = 4 ‐4.106E‐01 2.399E‐01 3.915E‐01 3.698E‐01 ‐2.214E‐02 
i = 5 3.186E+01 ‐2.215E+01 ‐1.739E+01 1.099E+01 5.680E+00 

 

A.2.2 Spherical indentation of a half-space 

Fitting coefficients for two shape functions, Wt and We are tabulated in this 

section for (hm/Rs) = 3%. 
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Table A.47: Fitting coefficients for Eq. (A.2) for the normalized total energy, Wt, 
forhm/Rs = 3%. 

j = 0 j = 1 j = 2 j = 3 j = 4 

i = 1 ‐2.432E‐08 3.063E‐08 ‐1.363E‐08 3.293E‐09 ‐8.686E‐10 
i = 2 6.885E‐05 ‐8.577E‐05 3.750E‐05 ‐8.861E‐06 2.384E‐06 
i = 3 ‐6.817E‐02 8.346E‐02 ‐3.536E‐02 8.211E‐03 ‐2.461E‐03 
i = 4 3.326E‐01 2.673E+00 ‐4.767E+00 4.563E+00 1.228E+00 
i = 5 1.131E+02 ‐3.151E+02 3.237E+02 ‐2.274E+02 9.837E+01 

Table A.48: Fitting coefficients for Eq. (A.2) for the normalized elastic energy, We, 
forhm/Rs = 3%. 

j = 0 j = 1 j = 2 j = 3 j = 4 

i = 1 ‐1.585E‐09 ‐5.784E‐10 3.325E‐09 ‐2.045E‐09 8.774E‐11 
i = 2 ‐1.014E‐06 7.475E‐06 ‐1.143E‐05 6.102E‐06 ‐2.929E‐07 
i = 3 6.072E‐03 ‐1.316E‐02 1.400E‐02 ‐6.927E‐03 3.751E‐04 
i = 4 ‐2.244E+00 3.404E+00 ‐1.864E+00 4.089E+00 ‐2.393E‐01 
i = 5 ‐1.438E+02 1.515E+02 ‐1.095E+02 ‐3.038E+01 8.579E+01 

A.3 Transversely Isotropic, Linear-elastic, Perfectly-plastic Material 

The procedure to obtain the functional forms of the equations relating 

normalized shape functions with material properties for transversely isotropic, linear-

elastic, perfectly-plastic material is discussed in section 3.3 and depicted in Figure 3.4. 

In that procedure, one of Ez/Ex, Ex/Gxz and Ex/Y is kept fixed and a surface is selected 

to express the normalized shape function with the rest of the two parameters. As stated 

in section 3.3, seven equations (tabulated in Table A.49) were found to be sufficient 

for all the indenter/substrate geometries considered in this study. The variables x, y 

and z of the equations in Table A.49 can be either ofEz/Ex, Ex/Gxz or Ex/Y. Such 

assignments will be identified by three “xyz-selection” numbers and are tabulated in 
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Table A.50. The coefficients of the selected surface are expressed as polynomials of 

the fixed parameter, z, as follows: 

  (A.3) 

where ju is the degree of the polynomial (upper limit of j). For different half-angles 

(conical indentation) and depth-to-radius ratios (spherical indentation), the equation of 

the surface, fixed parameters and the degree of the polynomials are tabulated in Table 

A.51. The coefficients  for the polynomials are tabulated in Table A.53-88. 

Table A.49:Equations of the seven surfaces used in the regression analysis (Figure 
3.4) for transversely isotropic, linear-elastic, perfectly plastic material. 
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Table A.50:The assignment of x, y and z of the equations in Table A.49 to the non-
dimensional material properties groups (Ez/Ex), (Ex/Gxz) and (Ex/Y). 

xyz-selection # x y z 

1  

2  
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Table A.51: The equations used in the regression analysis for various shape functions 
for conical indentation of a half-space 

Half-angle 
Normalized 

shape 
function 

Equation #
(of Table 

A.49) 

xyz-
selection # 
(of Table 

A.50) 

Degree of 
polynomial 
(ju) of Eq. 

(A1.3) 

45 

 4 1 6 

 4 1 6 

 1 3 6 

 6 1 7 

 4 1 6 

50 
 4 1 6 

 6 1 7 

60 
 4 1 6 

 6 1 7 

70 
 1 1 6 

 6 1 7 

80 

 1 1 6 

 1 1 6 

 5 3 6 

 6 1 7 

 5 3 6 

 
 
 
 
 
 

 3
t x mW E h

 3
m x mP E h

 u x mS E h

 3
e x mW E h

 3
f x mh E h

 3
t x mW E h

 3
e x mW E h

 3
t x mW E h

 3
e x mW E h

 3
t x mW E h

 3
e x mW E h

 3
t x mW E h

 3
m x mP E h

 u x mS E h

 3
e x mW E h

 3
f x mh E h
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Table A.52: The equations used in the regression analysis for various shape functions 
for spherical indentation of a half-space. 

Depth-to-
radius 
ratio 

Normalized 
shape 

function 

Equation #
(of Table 

A.49) 

xyz-
selection # 
(of Table 

A.50) 

Degree of 
polynomial 
(ju) of Eq. 

(A1.3) 

1% 

 6 1 7 

 6 1 7 

 7 3 7 

 6 1 6 

 6 1 6 

20% 
 5 3 7 

 6 1 7 

40% 
 4 1 6 

 6 1 7 

 
60% 

 4 1 6 

 6 1 7 

 
80% 

 4 1 6 

 6 1 7 

 
 
 

100% 

 4 1 6 

 4 1 6 

 1 3 6 

 6 1 7 

 4 1 6 
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 u x mS E h

 3
e x mW E h

 3
f x mh E h

 u x mS E h

 3
e x mW E h

 3
m x mP E h

 3
e x mW E h

 3
m x mP E h

 3
e x mW E h

 3
m x mP E h

 3
e x mW E h

 3
t x mW E h

 3
m x mP E h

 u x mS E h

 3
e x mW E h

 3
f x mh E h
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Table A.53: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for = 45. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.889E-15 -2.223E-12 1.078E-09 -2.786E-07 4.137E-05 -3.557E-03 -1.828E+00 
i = 2 7.507E-17 -8.632E-14 4.055E-11 -9.994E-09 1.376E-06 -1.029E-04 3.526E-03 
i = 3 -2.643E-16 3.062E-13 -1.450E-10 3.602E-08 -4.994E-06 3.742E-04 -1.282E-02 

Table A.54: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized maximum load, Pm, for = 45. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 4.671E‐15 ‐5.651E‐12 2.828E‐09 ‐7.558E‐07  1.161E‐04 ‐1.025E‐02  ‐1.500E+00 
i = 2 5.894E‐16 ‐6.636E‐13 3.002E‐10 ‐6.943E‐08  8.613E‐06 ‐5.463E‐04  1.470E‐02 
i = 3 ‐1.840E‐15 2.025E‐12 ‐8.955E‐10 2.031E‐07 ‐2.493E‐05 1.596E‐03  ‐4.514E‐02 

Table A.55: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized unloading slope, Su, for = 45. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐2.971E‐08 4.269E‐06 ‐2.416E‐04 7.063E‐03  ‐1.244E‐01 1.991E+00  2.880E+00 
i = 2 3.083E‐08 ‐4.177E‐06 2.145E‐04 ‐5.267E‐03  6.821E‐02 ‐7.485E‐01  ‐1.204E+00 
j = 3 ‐6.029E‐11  8.519E‐09  ‐4.548E‐07  1.120E‐05  ‐1.301E‐04  1.179E‐04  9.514E‐03 

j = 4 ‐8.893E‐09  1.134E‐06  ‐5.269E‐05  1.065E‐03  ‐8.926E‐03  7.785E‐02  6.108E‐01 

j = 5 1.153E‐12  ‐1.713E‐10  9.824E‐09  ‐2.741E‐07  3.884E‐06  ‐2.632E‐05  3.696E‐05 

j = 6 8.087E‐10  ‐9.557E‐08  3.813E‐06  ‐4.899E‐05  ‐2.921E‐04  5.167E‐03  ‐9.700E‐02 

j = 7 ‐2.056E‐15  3.037E‐13  ‐1.729E‐11  4.753E‐10  ‐6.539E‐09  4.239E‐08  ‐6.677E‐08 

j = 8 ‐8.116E‐11  1.257E‐08  ‐7.618E‐07  2.299E‐05  ‐3.624E‐04  2.992E‐03  ‐9.964E‐03 

j = 9 1.454E‐11  ‐2.235E‐09  1.348E‐07  ‐4.076E‐06  6.533E‐05  ‐5.459E‐04  1.768E‐03 

i = 10 ‐2.502E‐14 3.549E‐12 ‐1.974E‐10 5.674E‐09 ‐9.523E‐08 8.576E‐07  ‐1.446E‐06 
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Table A.56: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for = 45. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

i = 1 ‐5.833E‐19 9.852E‐16 ‐6.864E‐13 2.580E‐10 ‐5.702E‐08  7.515E‐06 
i = 2 ‐2.737E‐20 ‐7.645E‐17 1.132E‐13 ‐5.888E‐11 1.570E‐08  ‐2.342E‐06

i = 3 ‐1.388E‐18 1.756E‐15 ‐9.290E‐13 2.662E‐10 ‐4.479E‐08  4.464E‐06 
i = 4 7.521E‐20 ‐7.604E‐17 2.797E‐14 ‐3.694E‐12 ‐2.977E‐10  1.492E‐07 
i = 5 1.922E‐19  ‐2.358E‐16 1.200E‐13 ‐3.273E‐11 5.160E‐09  ‐4.705E‐07

i = 6 8.419E‐20 ‐1.125E‐16 6.306E‐14 ‐1.921E‐11 3.447E‐09  ‐3.675E‐07

 

j = 6 j = 7 

i = 1 ‐5.612E‐04 1.957E‐02 
i = 2 1.913E‐04 ‐7.143E‐03

i = 3 ‐2.504E‐04 6.547E‐03 
i = 4 ‐1.740E‐05 7.766E‐04 
i = 5 2.323E‐05 ‐5.013E‐04

i = 6 2.215E‐05 ‐6.268E‐04

Table A.57: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized final depth, hf, for = 45. 

 
 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 6.739E‐15 ‐7.065E‐12 2.842E‐09 ‐5.366E‐07  4.484E‐05 ‐1.083E‐03  ‐1.066E+00 
i = 2 2.699E‐16 ‐1.372E‐13 ‐9.660E‐12 1.699E‐08  ‐3.357E‐06 1.891E‐04  5.223E‐03 
i = 3 ‐8.855E‐15 8.950E‐12 ‐3.500E‐09 6.611E‐07 ‐6.218E‐05 3.024E‐03  ‐7.918E‐02 
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Table A.58: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 2.36E‐14 ‐2.85E‐11 1.42E‐08 ‐3.79E‐06  0.0005822 ‐0.0523652  2.8522068 
i = 2 1.53E‐15 ‐1.73E‐12 7.92E‐10 ‐1.90E‐07  2.55E‐05 ‐0.0018658  0.0645295 
i = 3 ‐6.21E‐15  7.56E‐12  ‐3.78E‐09  9.99E‐07  ‐0.0001483  0.0120847  ‐0.467896 

i = 4 ‐4.58E‐17  5.16E‐14  ‐2.37E‐11  5.70E‐09  ‐7.66E‐07  5.64E‐05  ‐0.001987 

i = 5 7.28E‐16  ‐9.62E‐13  5.17E‐10  ‐1.45E‐07  2.24E‐05  ‐0.0018504  0.0698096 
i = 6 4.77E‐19  ‐5.38E‐16  2.47E‐13  ‐5.92E‐11  7.95E‐09  ‐5.85E‐07  2.07E‐05 

i = 7 ‐1.09E‐17  2.73E‐14  ‐2.05E‐11  7.05E‐09  ‐1.25E‐06  0.0001131  ‐0.004564 

i = 8 ‐2.84E‐18  ‐5.58E‐16  2.52E‐12  ‐1.32E‐09  3.04E‐07  ‐3.52E‐05  0.0018591 

i = 9 ‐1.99E‐19  2.46E‐16  ‐1.25E‐13  3.36E‐11  ‐5.12E‐09  4.42E‐07  ‐1.97E‐05 

i = 10 2.01E‐18 ‐2.03E‐15 7.77E‐13 ‐1.37E‐10 9.44E‐09 1.47E‐07  ‐3.66E‐05 

 

Table A.59: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized maximum load, Pm, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.93E‐13 ‐2.06E‐10 8.94E‐08 ‐2.04E‐05  0.0026457 ‐0.2000544  9.3081339 
i = 2 2.92E‐15 ‐3.45E‐12 1.67E‐09 ‐4.30E‐07  6.22E‐05 ‐0.0048998  0.1802284 
i = 3 ‐1.25E‐13  1.26E‐10  ‐5.07E‐08  1.05E‐05  ‐0.0011815  0.0711491  ‐2.004859 

i = 4 ‐1.53E‐16  1.68E‐13  ‐7.56E‐11  1.79E‐08  ‐2.38E‐06  0.0001741  ‐0.006078 

i = 5 3.75E‐14  ‐3.71E‐11  1.46E‐08  ‐2.92E‐06  0.0003141  ‐0.0174052  0.4187966 

i = 6 1.63E‐18  ‐1.82E‐15  8.28E‐13  ‐1.98E‐10  2.63E‐08  ‐1.92E‐06  6.61E‐05 

i = 7 ‐3.98E‐15  3.94E‐12  ‐1.54E‐09  3.07E‐07  ‐3.26E‐05  0.0017528  ‐0.039352 

i = 8 1.02E‐15  ‐1.03E‐12  4.09E‐10  ‐8.22E‐08  8.86E‐06  ‐0.0005052  0.0135734 

i = 9 1.23E‐18  6.53E‐17  ‐6.42E‐13  2.74E‐10  ‐4.73E‐08  3.75E‐06  ‐0.000124 

i = 10 ‐1.45E‐16 1.33E‐13 ‐4.71E‐11 8.13E‐09 ‐7.13E‐07 3.07E‐05  ‐0.000585 
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Table A.60: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized unloading slope, Su, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐8.77E‐08 1.37E‐05 ‐0.0008671 0.0287606  ‐0.5667772 10.086864  6.113212 
i = 2 2.98E‐08 ‐4.45E‐06 0.0002681 ‐0.0085136  0.1609952 ‐2.7142624  ‐0.098368 
i = 3 3.05E‐10  ‐4.70E‐08  2.78E‐06  ‐7.89E‐05  0.001081  ‐0.0048307  0.038376 

i = 4 ‐1.87E‐09  2.62E‐07  ‐1.56E‐05  0.0005389  ‐0.0122161  0.2697575  ‐0.011075 

i = 5 ‐2.18E‐13  3.82E‐11  ‐2.55E‐09  8.15E‐08  ‐1.29E‐06  8.69E‐06  ‐6.75E‐05 

i = 6 ‐8.56E‐11 1.28E‐08 ‐7.29E‐07 2.00E‐05 ‐0.0002686 0.001441  ‐0.003288 

 

Table A.61: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐1.67E‐16 2.21E‐13 ‐1.23E‐10 3.75E‐08  ‐6.81E‐06 0.0007485  ‐0.047884 
i = 2 4.25E‐17 ‐5.64E‐14 3.15E‐11 ‐9.65E‐09  1.77E‐06 ‐0.0002001  0.0135129 
i = 3 ‐4.70E‐18  5.65E‐15  ‐2.91E‐12  8.57E‐10  ‐1.61E‐07  2.03E‐05  ‐0.001682 

i = 4 ‐7.58E‐19  1.07E‐15  ‐6.55E‐13  2.27E‐10  ‐4.97E‐08  7.09E‐06  ‐0.000647 

i = 5 1.84E‐18  ‐2.34E‐15  1.25E‐12  ‐3.60E‐10  6.13E‐08  ‐6.22E‐06  0.0003623 

i = 6 ‐3.24E‐18 4.22E‐15 ‐2.28E‐12 6.54E‐10 ‐1.07E‐07 9.70E‐06  ‐0.000426 

 
 j = 7 

i = 1 1.532309 
i = 2 ‐0.47968 
i = 3 0.081405 

i = 4 0.032929 

i = 5 ‐0.01043 

i = 6 0.003758 
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Table A.62: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized final depth, hf, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 5.90E‐11 7.52E‐10 ‐8.38E‐07 6.04E‐05  ‐0.0019004 0.0309202  0.7332771 
i = 2 ‐1.88E‐10 2.95E‐08 ‐1.85E‐06 5.90E‐05  ‐0.0010024 0.0086618  ‐0.046889 
i = 3 1.12E‐12  ‐2.65E‐10  2.34E‐08  ‐1.03E‐06  2.45E‐05  ‐0.0003258  0.0021757 

i = 4 3.00E‐11  ‐4.87E‐09  3.14E‐07  ‐1.01E‐05  0.0001641  ‐0.0012125  0.0034537 

i = 5 ‐1.89E‐15  4.71E‐13  ‐4.37E‐11  2.01E‐09  ‐5.06E‐08  7.14E‐07  ‐4.84E‐06 

i = 6 ‐1.29E‐13 2.57E‐11 ‐1.87E‐09 6.26E‐08 ‐9.26E‐07 3.53E‐06  4.41E‐05 

 

Table A.63: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for(hm/R) = 1%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐6.277E‐16 7.832E‐13 ‐4.090E‐10 1.173E‐07  ‐2.065E‐05 2.394E‐03  ‐1.970E‐01 
i = 2 6.711E‐17 ‐1.913E‐14 ‐3.856E‐11 3.042E‐08  ‐9.620E‐06 1.579E‐03  ‐1.375E‐01 
i = 3 ‐9.913E‐17  9.367E‐14  ‐2.731E‐11  ‐8.536E‐10  2.196E‐06  ‐5.182E‐04  5.561E‐02 

i = 4 ‐4.126E‐17  5.049E‐14  ‐2.428E‐11  5.614E‐09  ‐5.559E‐07  ‐7.883E‐06  6.216E‐03 
i = 5 ‐2.653E‐18  7.530E‐15  ‐6.608E‐12  2.810E‐09  ‐6.655E‐07  9.137E‐05  ‐7.102E‐03 

i = 6 2.896E‐17 ‐3.954E‐14 2.222E‐11 ‐6.590E‐09 1.095E‐06 ‐9.849E‐05  3.961E‐03 

 
 j = 7 

i = 1 1.330E+01 
i = 2 5.599E+00 
i = 3 ‐2.784E+00 
i = 4 ‐4.354E‐01 
i = 5 2.712E‐01 
i = 6 ‐8.198E‐03 
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Table A.64: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized maximum load, Pm, for(hm/R) = 1%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 7.938E‐15 ‐1.017E‐11 5.392E‐09 ‐1.524E‐06  2.452E‐04 ‐2.192E‐02  9.104E‐01 
i = 2 7.433E‐15 ‐8.521E‐12 3.963E‐09 ‐9.536E‐07  1.242E‐04 ‐8.015E‐03  1.423E‐01 
i = 3 ‐7.160E‐15  8.623E‐12  ‐4.280E‐09  1.128E‐06  ‐1.686E‐04  1.400E‐02  ‐5.581E‐01 

i = 4 ‐3.884E‐15  4.689E‐12  ‐2.334E‐09  6.175E‐07  ‐9.297E‐05  7.860E‐03  ‐3.352E‐01 

i = 5 ‐6.431E‐16  7.901E‐13  ‐4.016E‐10  1.091E‐07  ‐1.707E‐05  1.544E‐03  ‐7.620E‐02 

i = 6 3.986E‐15 ‐4.865E‐12 2.453E‐09 ‐6.597E‐07 1.015E‐04 ‐8.866E‐03  4.010E‐01 

 
 j = 7 

i = 1 2.830E+00 
i = 2 6.710E+00 
i = 3 5.518E+00 
i = 4 4.950E+00 
i = 5 1.669E+00 
i = 6 ‐6.932E+00 

 

Table A.65: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized unloading slope, Su, for(hm/R) = 1%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.601E‐08 ‐3.885E‐06 3.674E‐04 ‐1.796E‐02  4.967E‐01 ‐7.897E+00  7.482E+01 
i = 2 3.247E‐08 ‐5.701E‐06 4.173E‐04 ‐1.645E‐02  3.756E‐01 ‐4.894E+00  2.989E+01 
i = 3 ‐1.090E‐08  2.355E‐06  ‐2.061E‐04  9.507E‐03  ‐2.499E‐01  3.744E+00  ‐2.969E+01 

i = 4 1.508E‐11  ‐1.319E‐07  1.886E‐05  ‐1.087E‐03  3.209E‐02  ‐5.161E‐01  4.898E+00 

i = 5 1.585E‐09  ‐3.273E‐07  2.768E‐05  ‐1.243E‐03  3.197E‐02  ‐4.701E‐01  3.668E+00 

i = 6 ‐6.585E‐09 1.196E‐06 ‐9.047E‐05 3.680E‐03 ‐8.661E‐02 1.174E+00  ‐8.490E+00 

 
 j = 7 

i = 1 ‐1.674E+02 
i = 2 ‐1.113E+02 
i = 3 9.661E+01 
i = 4 ‐1.442E+01 
i = 5 ‐1.178E+01 
i = 6 2.543E+01 
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Table A.66: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for(hm/R) = 1%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐9.210E‐15 ‐9.041E‐12 1.517E‐08 ‐7.014E‐06  1.542E‐03 ‐1.760E‐01  9.489E+00 
i = 2 2.343E‐14 ‐2.175E‐11 7.349E‐09 ‐9.534E‐07  ‐2.337E‐05 1.968E‐02  ‐1.954E+00 
i = 3 4.833E‐14  ‐5.156E‐11  2.209E‐08  ‐4.836E‐06  5.675E‐04  ‐3.415E‐02  9.808E‐01 

i = 4 4.771E‐15  ‐4.990E‐12  2.060E‐09  ‐4.240E‐07  4.552E‐05  ‐2.678E‐03  1.352E‐01 

i = 5 9.008E‐16  ‐8.595E‐13  3.021E‐10  ‐4.467E‐08  1.303E‐06  3.704E‐04  ‐3.961E‐02 

i = 6 ‐1.878E‐14 1.965E‐11 ‐8.181E‐09 1.716E‐06 ‐1.880E‐04 9.850E‐03  ‐1.881E‐01 

 

Table A.67: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized final depth, hf, for(hm/R) = 1%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 5.760E‐14 ‐6.478E‐11 2.883E‐08 ‐6.348E‐06  6.926E‐04 ‐2.961E‐02  7.434E‐01 
i = 2 ‐8.201E‐14 8.710E‐11 ‐3.671E‐08 7.748E‐06  ‐8.394E‐04 4.082E‐02  ‐3.967E‐01 
i = 3 3.615E‐14  ‐3.454E‐11  1.265E‐08  ‐2.204E‐06  1.804E‐04  ‐5.188E‐03  ‐7.931E‐02 

i = 4 1.441E‐14  ‐1.527E‐11  6.431E‐09  ‐1.359E‐06  1.482E‐04  ‐7.415E‐03  9.237E‐02 
i = 5 ‐6.018E‐15  5.817E‐12  ‐2.180E‐09  3.984E‐07  ‐3.666E‐05  1.555E‐03  ‐2.067E‐02 

i = 6 ‐1.270E‐15 1.213E‐12 ‐4.204E‐10 5.836E‐08 ‐7.284E‐07 ‐5.417E‐04  4.019E‐02 

 

Table A.68: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for(hm/R) = 100%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 4.116E‐15 ‐4.829E‐12 2.332E‐09 ‐5.989E‐07  8.806E‐05 ‐7.429E‐03  ‐1.661E+00 
i = 2 8.703E‐17 ‐1.012E‐13 4.809E‐11 ‐1.197E‐08  1.658E‐06 ‐1.233E‐04  4.023E‐03 
i = 3 ‐2.897E‐16 3.348E‐13 ‐1.580E‐10 3.911E‐08 ‐5.401E‐06 4.033E‐04  ‐1.351E‐02 
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Table A.69: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized maximum load, Pm, for(hm/R) = 100%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 7.598E‐15 ‐8.875E‐12 4.262E‐09 ‐1.086E‐06  1.581E‐04 ‐1.311E‐02  ‐1.422E+00 
i = 2 5.118E‐17 ‐5.817E‐14 2.710E‐11 ‐6.656E‐09  9.169E‐07 ‐6.848E‐05  2.263E‐03 
i = 3 ‐3.805E‐16 4.133E‐13 ‐1.827E‐10 4.237E‐08 ‐5.514E‐06 3.937E‐04  ‐1.299E‐02 

Table A.70: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized unloading slope, Su, for(hm/R) = 100%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐1.837E‐09 8.271E‐07 ‐9.245E‐05 4.665E‐03  ‐1.268E‐01 2.314E+00  3.443E+00 
i = 2 ‐8.997E‐09 1.072E‐06 ‐3.787E‐05 ‐1.038E‐04  3.442E‐02 ‐8.795E‐01  ‐4.966E‐01 
i = 3 1.415E‐11  ‐5.274E‐09  4.743E‐07  ‐1.778E‐05  3.288E‐04  ‐4.193E‐03  3.708E‐03 

i = 4 6.500E‐09  ‐9.227E‐07  4.786E‐05  ‐1.040E‐03  5.735E‐03  1.221E‐01  1.780E‐01 

i = 5 ‐1.933E‐13  3.506E‐11  ‐2.328E‐09  7.208E‐08  ‐1.124E‐06  1.100E‐05  ‐1.056E‐05 

i = 6 ‐1.343E‐09  1.961E‐07  ‐1.077E‐05  2.703E‐04  ‐2.879E‐03  3.748E‐03  ‐4.124E‐02 

i = 7 1.459E‐15  ‐2.090E‐13  1.151E‐11  ‐3.059E‐10  4.080E‐09  ‐2.804E‐08  4.423E‐08 
i = 8 ‐1.001E‐11  2.901E‐09  ‐2.442E‐07  8.811E‐06  ‐1.513E‐04  1.508E‐03  ‐2.629E‐03 

i = 9 1.676E‐11  ‐2.523E‐09  1.463E‐07  ‐4.099E‐06  5.728E‐05  ‐3.979E‐04  8.094E‐04 

i = 10 ‐2.272E‐13 3.017E‐11 ‐1.532E‐09 3.747E‐08 ‐4.525E‐07 2.206E‐06  ‐5.066E‐06 

 

 
 
 
 
 
 
 
 
 
 

ij
tp

ij
tp



 208

Table A.71: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for(hm/R) = 100%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐5.382E‐18 6.827E‐15 ‐3.636E‐12 1.056E‐09  ‐1.818E‐07 1.875E‐05  ‐1.101E‐03 
i = 2 2.143E‐18 ‐2.710E‐15 1.438E‐12 ‐4.157E‐10  7.116E‐08 ‐7.294E‐06  4.252E‐04 
i = 3 7.594E‐21  9.482E‐17  ‐1.154E‐13  5.547E‐11  ‐1.394E‐08  1.961E‐06  ‐1.503E‐04 

i = 4 ‐1.508E‐19  1.993E‐16  ‐1.116E‐13  3.443E‐11  ‐6.352E‐09  7.077E‐07  ‐4.505E‐05 

i = 5 1.229E‐19  ‐1.505E‐16  7.600E‐14  ‐2.044E‐11  3.160E‐09  ‐2.827E‐07  1.397E‐05 

i = 6 ‐3.056E‐19 3.513E‐16 ‐1.631E‐13 3.883E‐11 ‐4.917E‐09 2.951E‐07  ‐3.511E‐06 

 
 j = 6 

i = 1 3.027E‐02 
i = 2 ‐1.156E‐02 
i = 3 5.216E‐03 
i = 4 1.335E‐03 
i = 5 ‐3.241E‐04 
i = 6 ‐2.929E‐04 

 

Table A.72: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized final depth, hf, for(hm/R) = 100%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 8.772E‐15 ‐8.910E‐12 3.581E‐09 ‐7.160E‐07  7.166E‐05 ‐2.773E‐03  ‐1.051E+00 
i = 2 ‐3.541E‐15 3.650E‐12 ‐1.493E‐09 3.075E‐07  ‐3.301E‐05 1.659E‐03  ‐2.042E‐02 
i = 3 2.923E‐15 ‐2.708E‐12 9.148E‐10 ‐1.272E‐07 3.277E‐06 8.269E‐04  ‐6.931E‐02 

 

Table A.73: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for = 50. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 2.499E‐15 ‐2.944E‐12 1.429E‐09 ‐3.697E‐07  5.499E‐05 ‐4.747E‐03  ‐1.768E+00 
i = 2 1.145E‐16 ‐1.309E‐13 6.117E‐11 ‐1.503E‐08  2.070E‐06 ‐1.559E‐04  5.413E‐03 
i = 3 ‐3.988E‐16 4.616E‐13 ‐2.186E‐10 5.441E‐08 ‐7.580E‐06 5.736E‐04  ‐1.985E‐02 
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Table A.74: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for = 50. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐2.700E‐18 3.694E‐15 ‐2.155E‐12 6.970E‐10  ‐1.356E‐07 1.601E‐05  ‐1.088E‐03 
i = 2 5.212E‐19 ‐8.414E‐16 5.691E‐13 ‐2.093E‐10  4.539E‐08 ‐5.848E‐06  4.237E‐04 
i = 3 ‐8.725E‐19  1.201E‐15  ‐6.918E‐13  2.167E‐10  ‐4.002E‐08  4.409E‐06  ‐2.756E‐04 

i = 4 7.713E‐20  ‐6.296E‐17  1.056E‐14  5.147E‐12  ‐2.605E‐09  4.793E‐07  ‐4.233E‐05 

i = 5 1.402E‐19  ‐1.725E‐16  8.812E‐14  ‐2.422E‐11  3.883E‐09  ‐3.676E‐07  1.962E‐05 

i = 6 ‐7.230E‐20 6.408E‐17 ‐1.763E‐14 ‐2.045E‐13 1.038E‐09 ‐2.177E‐07  1.952E‐05 

 
 j = 7 

i = 1 3.506E‐02 
i = 2 ‐1.419E‐02 
i = 3 8.122E‐03 
i = 4 1.598E‐03 
i = 5 ‐4.912E‐04 
i = 6 ‐7.284E‐04 

 

Table A.75: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for = 60. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 4.465E‐15 ‐5.240E‐12 2.535E‐09 ‐6.537E‐07  9.716E‐05 ‐8.443E‐03  ‐1.573E+00 
i = 2 2.658E‐16 ‐3.080E‐13 1.459E‐10 ‐3.635E‐08  5.083E‐06 ‐3.898E‐04  1.389E‐02 
i = 3 ‐1.022E‐15 1.179E‐12 ‐5.561E‐10 1.379E‐07 ‐1.916E‐05 1.454E‐03  ‐5.073E‐02 
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Table A.76: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for = 60. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐7.090E‐18 9.784E‐15 ‐5.725E‐12 1.847E‐09  ‐3.570E‐07 4.190E‐05  ‐2.844E‐03 
i = 2 2.215E‐18 ‐3.232E‐15 1.993E‐12 ‐6.741E‐10  1.357E‐07 ‐1.644E‐05  1.143E‐03 
i = 3 ‐2.159E‐18  2.814E‐15  ‐1.537E‐12  4.564E‐10  ‐7.988E‐08  8.354E‐06  ‐5.033E‐04 

i = 4 ‐1.768E‐20  7.790E‐17  ‐7.932E‐14  3.700E‐11  ‐9.383E‐09  1.353E‐06  ‐1.077E‐04 

i = 5 2.368E‐19  ‐2.986E‐16  1.558E‐13  ‐4.352E‐11  7.049E‐09  ‐6.719E‐07  3.645E‐05 

i = 6 6.249E‐20 ‐8.375E‐17 5.013E‐14 ‐1.732E‐11 3.683E‐09 ‐4.767E‐07  3.553E‐05 

 
 j = 6 

i = 1 9.277E‐02 
i = 2 ‐3.799E‐02 
i = 3 1.511E‐02 
i = 4 4.000E‐03 
i = 5 ‐9.625E‐04 
i = 6 ‐1.315E‐03 

 

Table A.77: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized total energy, Wt, for = 70. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.470E‐14 ‐1.667E‐11 7.721E‐09 ‐1.886E‐06  2.619E‐04 ‐2.098E‐02  9.858E‐01 
i = 2 1.960E‐16 ‐2.274E‐13 1.079E‐10 ‐2.695E‐08  3.774E‐06 ‐2.908E‐04  1.069E‐02 
i = 3 ‐6.332E‐15  6.814E‐12  ‐2.941E‐09  6.502E‐07  ‐7.801E‐05  4.938E‐03  ‐1.424E‐01 

i = 4 ‐8.827E‐18  1.004E‐14  ‐4.646E‐12  1.120E‐09  ‐1.499E‐07  1.091E‐05  ‐3.763E‐04 

i = 5 1.437E‐15  ‐1.508E‐12  6.299E‐10  ‐1.333E‐07  1.503E‐05  ‐8.677E‐04  2.184E‐02 

i = 6 9.869E‐20  ‐1.125E‐16  5.213E‐14  ‐1.257E‐11  1.678E‐09  ‐1.213E‐07  4.135E‐06 

i = 7 ‐1.175E‐16  1.218E‐13  ‐5.012E‐11  1.040E‐08  ‐1.145E‐06  6.397E‐05  ‐1.546E‐03 
i = 8 5.861E‐17  ‐6.385E‐14  2.775E‐11  ‐6.117E‐09  7.187E‐07  ‐4.313E‐05  1.108E‐03 

i = 9 ‐2.334E‐19  2.726E‐16  ‐1.283E‐13  3.110E‐11  ‐4.091E‐09  2.815E‐07  ‐8.569E‐06 

i = 10 ‐7.446E‐18 7.884E‐15 ‐3.302E‐12 6.922E‐10 ‐7.568E‐08 4.059E‐06  ‐8.447E‐05 
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Table A.78: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for = 70. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐1.960E‐17 2.769E‐14 ‐1.662E‐11 5.498E‐09  ‐1.085E‐06 1.288E‐04  ‐8.750E‐03 
i = 2 4.001E‐18 ‐6.044E‐15 3.919E‐12 ‐1.409E‐09  3.035E‐07 ‐3.935E‐05  2.915E‐03 
i = 3 ‐4.977E‐18  5.863E‐15  ‐2.866E‐12  7.595E‐10  ‐1.204E‐07  1.195E‐05  ‐7.486E‐04 

i = 4 1.075E‐18  ‐1.136E‐15  4.549E‐13  ‐7.794E‐11  1.859E‐09  1.277E‐06  ‐1.820E‐04 

i = 5 2.041E‐18  ‐2.325E‐15  1.087E‐12  ‐2.698E‐10  3.847E‐08  ‐3.183E‐06  1.466E‐04 

i = 6 ‐2.001E‐18 2.243E‐15 ‐1.029E‐12 2.483E‐10 ‐3.357E‐08 2.454E‐06  ‐7.795E‐05 

 
 j = 7 

i = 1 2.849E‐01 
i = 2 ‐1.035E‐01 
i = 3 2.659E‐02 
i = 4 8.968E‐03 
i = 5 ‐3.217E‐03 
i = 6 ‐1.600E‐04 

 

Table A.79: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized unloading slope, Su, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐8.774E‐08 1.374E‐05 ‐8.671E‐04 2.876E‐02  ‐5.668E‐01 1.009E+01  6.113E+00 
i = 2 2.981E‐08 ‐4.453E‐06 2.681E‐04 ‐8.514E‐03  1.610E‐01 ‐2.714E+00  ‐9.836E‐02 
i = 3 3.054E‐10  ‐4.703E‐08  2.782E‐06  ‐7.889E‐05  1.081E‐03  ‐4.831E‐03  3.838E‐02 

i = 4 ‐1.869E‐09  2.622E‐07  ‐1.562E‐05  5.389E‐04  ‐1.222E‐02  2.698E‐01  ‐1.108E‐02 

i = 5 ‐2.184E‐13  3.816E‐11  ‐2.547E‐09  8.154E‐08  ‐1.285E‐06  8.687E‐06  ‐6.753E‐05 

i = 6 ‐8.565E‐11 1.275E‐08 ‐7.288E‐07 1.999E‐05 ‐2.686E‐04 1.441E‐03  ‐3.288E‐03 
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Table A.80: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for = 80. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐1.672E‐16 2.211E‐13 ‐1.231E‐10 3.754E‐08  ‐6.814E‐06 7.485E‐04  ‐4.788E‐02 
i = 2 4.253E‐17 ‐5.635E‐14 3.147E‐11 ‐9.649E‐09  1.774E‐06 ‐2.001E‐04  1.351E‐02 
i = 3 ‐4.702E‐18  5.650E‐15  ‐2.913E‐12  8.574E‐10  ‐1.613E‐07  2.029E‐05  ‐1.682E‐03 

i = 4 ‐7.583E‐19  1.073E‐15  ‐6.546E‐13  2.272E‐10  ‐4.969E‐08  7.093E‐06  ‐6.468E‐04 

i = 5 1.838E‐18  ‐2.343E‐15  1.248E‐12  ‐3.604E‐10  6.126E‐08  ‐6.218E‐06  3.623E‐04 

i = 6 ‐3.236E‐18 4.224E‐15 ‐2.278E‐12 6.535E‐10 ‐1.066E‐07 9.700E‐06  ‐4.261E‐04 

 
 j = 7 

i = 1 1.532E+00 
i = 2 ‐4.797E‐01 
i = 3 8.141E‐02 
i = 4 3.293E‐02 
i = 5 ‐1.043E‐02 
i = 6 3.758E‐03 

Table A.81: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized unloading slope, Su, for(hm/R) = 20%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐5.225E‐10 8.513E‐08 ‐4.768E‐06 7.393E‐05  2.989E‐03 ‐1.638E‐01  4.739E+00 
i = 2 6.782E‐10 ‐1.171E‐07 7.933E‐06 ‐2.619E‐04  4.026E‐03 ‐7.693E‐03  ‐9.865E‐01 
i = 3 ‐6.499E‐13  5.299E‐11  2.238E‐10  ‐1.602E‐07  7.588E‐06  ‐1.853E‐04  2.099E‐03 

i = 4 ‐1.751E‐10  2.961E‐08  ‐1.994E‐06  6.760E‐05  ‐1.180E‐03  8.414E‐03  6.951E‐02 

i = 5 ‐2.867E‐14  4.790E‐12  ‐3.224E‐10  1.124E‐08  ‐2.185E‐07  2.410E‐06  ‐1.562E‐05 

i = 6 3.088E‐12 ‐5.014E‐10 3.286E‐08 ‐1.115E‐06 2.081E‐05 ‐2.087E‐04  1.074E‐03 

 
 j = 7 

i = 1 7.731E+00 
i = 2 ‐1.961E+00 
i = 3 1.396E‐02 
i = 4 2.788E‐01 
i = 5 1.376E‐06 
i = 6 ‐3.066E‐03 
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Table A.82: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for(hm/R) = 20%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.330E‐18 5.394E‐15 ‐7.419E‐12 3.744E‐09  ‐9.719E‐07 1.406E‐04  ‐1.110E‐02 
i = 2 5.566E‐18 ‐1.021E‐14 7.408E‐12 ‐2.818E‐09  6.159E‐07 ‐7.871E‐05  5.620E‐03 
i = 3 ‐3.399E‐17  4.255E‐14  ‐2.219E‐11  6.236E‐09  ‐1.019E‐06  9.727E‐05  ‐5.104E‐03 

i = 4 3.611E‐19  ‐7.486E‐17  ‐2.068E‐13  1.461E‐10  ‐4.271E‐08  6.534E‐06  ‐5.314E‐04 

i = 5 3.299E‐18  ‐4.141E‐15  2.161E‐12  ‐6.058E‐10  9.821E‐08  ‐9.189E‐06  4.613E‐04 

i = 6 2.219E‐18 ‐2.700E‐15 1.370E‐12 ‐3.769E‐10 6.109E‐08 ‐5.942E‐06  3.356E‐04 

 
 j = 7 

i = 1 4.033E‐01 
i = 2 ‐1.873E‐01 
i = 3 1.224E‐01 
i = 4 1.978E‐02 
i = 5 ‐9.914E‐03 
i = 6 ‐9.552E‐03 

 

Table A.83: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized maximum load, Pm, for(hm/R) = 40%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.977E‐14 ‐2.324E‐11 1.128E‐08 ‐2.930E‐06  4.399E‐04 ‐3.850E‐02  ‐1.287E‐01 
i = 2 ‐1.477E‐15 1.400E‐12 ‐4.958E‐10 7.732E‐08  ‐3.961E‐06 ‐1.998E‐04  2.033E‐02 
i = 3 2.174E‐15 ‐1.887E‐12 5.552E‐10 ‐4.506E‐08 ‐7.468E‐06 1.579E‐03  ‐8.208E‐02 
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Table A.84: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for(hm/R) = 40%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐2.807E‐17 3.658E‐14 ‐2.004E‐11 5.992E‐09  ‐1.061E‐06 1.125E‐04  ‐6.784E‐03 
i = 2 1.506E‐17 ‐1.933E‐14 1.040E‐11 ‐3.046E‐09  5.259E‐07 ‐5.410E‐05  3.147E‐03 
i = 3 ‐3.000E‐18  3.914E‐15  ‐2.162E‐12  6.592E‐10  ‐1.210E‐07  1.361E‐05  ‐8.994E‐04 

i = 4 ‐2.332E‐18  2.957E‐15  ‐1.567E‐12  4.505E‐10  ‐7.607E‐08  7.620E‐06  ‐4.302E‐04 

i = 5 ‐3.290E‐19  3.859E‐16  ‐1.824E‐13  4.389E‐11  ‐5.476E‐09  2.902E‐07  2.631E‐06 

i = 6 1.099E‐18 ‐1.368E‐15 7.090E‐13 ‐1.986E‐10 3.260E‐08 ‐3.180E‐06  1.768E‐04 

 
 j = 6 

i = 1 1.912E‐01 
i = 2 ‐8.521E‐02 
i = 3 2.911E‐02 
i = 4 1.132E‐02 
i = 5 ‐6.866E‐04 
i = 6 ‐4.720E‐03 

 

Table A.85: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized maximum load, Pm, for(hm/R) = 60%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.497E‐14 ‐1.757E‐11 8.485E‐09 ‐2.179E‐06  3.202E‐04 ‐2.694E‐02  ‐7.838E‐01 
i = 2 4.722E‐16 ‐5.318E‐13 2.429E‐10 ‐5.759E‐08  7.491E‐06 ‐5.115E‐04  1.471E‐02 
i = 3 ‐1.529E‐15 1.728E‐12 ‐7.929E‐10 1.892E‐07 ‐2.484E‐05 1.723E‐03  ‐5.128E‐02 
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Table A.86: Polynomial fitting coefficients for the coefficients of the surface for the 
normalized elastic energy, We, for(hm/R) = 60%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐8.430E‐18 1.132E‐14 ‐6.430E‐12 2.009E‐09  ‐3.748E‐07 4.214E‐05  ‐2.701E‐03 
i = 2 3.847E‐18 ‐5.075E‐15 2.832E‐12 ‐8.690E‐10  1.592E‐07 ‐1.761E‐05  1.111E‐03 
i = 3 ‐2.816E‐18  3.631E‐15  ‐1.968E‐12  5.829E‐10  ‐1.025E‐07  1.084E‐05  ‐6.570E‐04 

i = 4 ‐4.368E‐19  5.803E‐16  ‐3.265E‐13  1.012E‐10  ‐1.876E‐08  2.104E‐06  ‐1.350E‐04 

i = 5 3.432E‐19  ‐4.233E‐16  2.173E‐13  ‐6.022E‐11  9.742E‐09  ‐9.270E‐07  4.898E‐05 

i = 6 1.287E‐19 ‐1.881E‐16 1.155E‐13 ‐3.870E‐11 7.680E‐09 ‐9.131E‐07  6.177E‐05 

 
 j = 7 

i = 1 8.045E‐02 
i = 2 ‐3.260E‐02 
i = 3 1.885E‐02 
i = 4 4.045E‐03 
i = 5 ‐1.173E‐03 
i = 6 ‐1.956E‐03 

 

Table A.87: Polynomial fitting coefficients for the coefficients of the surface for the 
normalized maximum load, Pm, for(hm/R) = 80%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 1.057E‐14 ‐1.238E‐11 5.963E‐09 ‐1.525E‐06  2.227E‐04 ‐1.853E‐02  ‐1.180E+00 
i = 2 1.049E‐16 ‐1.203E‐13 5.617E‐11 ‐1.369E‐08  1.848E‐06 ‐1.330E‐04  4.151E‐03 
i = 3 ‐4.057E‐16 4.654E‐13 ‐2.182E‐10 5.372E‐08 ‐7.385E‐06 5.485E‐04  ‐1.821E‐02 
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Table A.88: Polynomial fitting coefficients for the coefficientsof the surface for the 
normalized elastic energy, We, for(hm/R) = 80%. 

 j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 ‐3.799E‐18 5.198E‐15 ‐3.011E‐12 9.601E‐10  ‐1.829E‐07 2.103E‐05  ‐1.382E‐03 
i = 2 1.970E‐18 ‐2.624E‐15 1.477E‐12 ‐4.566E‐10  8.421E‐08 ‐9.363E‐06  5.941E‐04 
i = 3 ‐2.158E‐18  2.767E‐15  ‐1.488E‐12  4.357E‐10  ‐7.535E‐08  7.773E‐06  ‐4.534E‐04 

i = 4 ‐2.485E‐19  3.335E‐16  ‐1.892E‐13  5.897E‐11  ‐1.096E‐08  1.227E‐06  ‐7.817E‐05 

i = 5 2.194E‐19  ‐2.702E‐16  1.382E‐13  ‐3.801E‐11  6.073E‐09  ‐5.670E‐07  2.919E‐05 

i = 6 1.488E‐19 ‐2.025E‐16 1.163E‐13 ‐3.655E‐11 6.809E‐09 ‐7.567E‐07  4.730E‐05 

 
 j = 7 

i = 1 4.231E‐02 
i = 2 ‐1.747E‐02 
i = 3 1.226E‐02 
i = 4 2.301E‐03 
i = 5 ‐6.775E‐04 
i = 6 ‐1.354E‐03 
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