
Behavior modeling for hybrid robotic vehicles

Chetan Rawal

UD MEEG Technical Report

Number MEEG TR-2011-0001

October 2011

Department of Mechanical Engineering
University of Delaware
Newark, Delaware
URL: http://www.me.udel.edu

BEHAVIOR MODELING FOR HYBRID ROBOTIC

SYSTEMS

by

Chetan Rawal

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Mechanical
Engineering

Spring 2011

c© 2011 Chetan Rawal
All Rights Reserved

BEHAVIOR MODELING FOR HYBRID ROBOTIC

SYSTEMS

by

Chetan Rawal

Approved:
Herbert G. Tanner, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Annette M. Karlson, Ph.D.
Chair of the Department of Mechanical Engineering

Approved:
Michael J. Chajes, Ph.D.
Dean of the College of Engineering

Approved:
Charles G. Riordan, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGEMENTS

I wish to thank my adviser, Dr. Herbert G. Tanner, for his support during all

phases of my research. I owe a lot to him for my concepts in robotics and controls,

in addition to technical writing skills. His guidance has been invaluable in shaping

my career.

Much success in this interdisciplinary work has been possible due to the

contributions of Dr. Jeffrey Heinz in formal language theory. I appreciate his

enthusiasm and support that helped me to learn formal languages concepts and

apply them to hybrid systems.

I acknowledge the joint work with Dr. Herbert Tanner and Ms. Jie Fu

for developing much of chapter 3 of this thesis, that deals with modeling a hybrid

robotic system and abstracting it to a discrete (finite) transition system. I also want

to thank Mr. Nicholaus Lacock who helped me with control programs in C++ that

enabled us to exhibit a demo with a robot fetching a print-out. I also thank Mr.

Luis R. Valbuena for providing us with his robot navigation code.

My committee members, Dr. Herbert Tanner, Dr. Ioannis Poulakakis and

Dr. Jeffrey Heinz, have helped improve my thesis through their useful comments and

questions, and I thank them as well. I thank the Mechanical Engineering staff at the

University of Delaware, especially Ms. Lisa Katzmire, for their friendly approach

and very prompt work. Finally, I thank all my lab-mates, friends and family for

their moral support to me.

This work was financially supported by NSF grants number 0907003 and

1035577.

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

ABSTRACT . viii

Chapter

1 INTRODUCTION . 1

1.1 Motivating example . 3
1.2 Abstractions of hybrid systems . 10
1.3 Parallels between robotics and formal languages 14
1.4 Basic hypothesis . 18
1.5 Contributions . 18

2 LITERATURE REVIEW . 20

2.1 Discrete models of hybrid systems . 21
2.2 Symbolic control synthesis . 23

2.2.1 Environment-driven strategies 25
2.2.2 Control-driven strategies . 26
2.2.3 Top-down vs bottom-up design 27
2.2.4 Automatic design synthesis 27

2.3 Language complexity . 28
2.4 Aims and scope . 29

3 MODELING ROBOT BEHAVIOR 32

3.1 Hybrid robot model . 33
3.2 Asymptotic abstractions of closed loop dynamics 34
3.3 Transition system representation . 37

iv

3.4 Application example: how to fetch a printout 42
3.5 Summary . 50

4 A SYNERGY BETWEEN ROBOTICS AND LINGUISTICS . . . 51

4.1 Preliminaries . 52

4.1.1 The Chomsky hierarchy . 54
4.1.2 The Sub-regular hierarchy . 55
4.1.3 Regular robotic languages . 59

4.2 Position of RRLs within the Sub-regular and the Chomsky hierarchies 63
4.3 Autosegmental patterns . 65
4.4 Automata representation of regular robotic languages 68

4.4.1 Automata for the SL2 languages 68
4.4.2 Automata for the LD-based SLk languages 70
4.4.3 The product automaton . 72

4.5 Summary . 73

5 CASE STUDY . 75

5.1 Coordinate frames and equipment . 75

5.1.1 Coordinate frames . 75
5.1.2 The robot . 77
5.1.3 ViconTM motion capture system 77

5.2 Modeling a mobile manipulator . 78

5.2.1 Inverse kinematics . 81
5.2.2 Simple tasks: fetching a print-out 84

6 CONCLUSIONS AND FUTURE WORK 87

6.1 Conclusions . 87
6.2 Future work . 88

BIBLIOGRAPHY . 90

v

LIST OF TABLES

3.1 Pre (
←·) and Post (

→·) conditions for the discrete states of the
hybrid robotic agent in the example. The sets of atomic propositions
are interpreted as conjunctions, i.e.,
{α2, α3,¬α4} ⇔ α2 ∧ α3 ∧ (¬α4), and 1 indicates a tautology. . . . 44

vi

ABSTRACT

The behavior of a certain class of hybrid robotic systems can be expressed

using formal languages. In this work, we show how languages can be generated from

discrete abstractions of such hybrid systems; that these languages are regular; and

they belong to the star free (SF) class of the Sub-regular hierarchy.

Planning and control of hybrid systems is typically difficult due to the com-

putational cost involved in predicting the system’s future states, since the states can

take infinite values while evolving along the trajectories of continuous dynamics. A

discrete abstraction of the hybrid system can reduce these values to a finite number,

thereby fascilitating the solution to the reachability problem. Abstraction enables

us to focus on planning the system’s overall behavior through controller sequences

observed in the abstract system, instead of dealing with the dynamics associated

with each controller.

The constraints between controllers enable or disable their temporal sequenc-

ing. Similarity of these constraints with those found in formal language theory,

allows us to express controller sequences as strings of symbols forming a formal

language. A formal language analysis of hybrid systems provides an approach for

automatic planning and control design synthesis in single and multi-agent robotic

systems.

The class of hybrid systems considered in this work have convergent con-

tinuous dynamics with parameterized attractors. We model a robot as a hybrid

system, and abstract the hybrid system to a discrete transition system. Plans of

controller sequences generated on the transition system are implementable on the

vii

hybrid system because of a (weak) bisimulation established between the two sys-

tems. Constraints are identified between controllers, that affect their sequencing,

with each constraint forming a sub-regular class of controller sequences. Intersec-

tion of these languages yield (sub)regular robotic languages that express the overall

behavior of the underlying hybrid system.

Other models of robot (motion) control such as motion description languages

and linear temporal logics generate regular and ω−regular languages respectively.

Subregular languages, generated by our classes of hybrid systems, offer structure

that can be exploited to operate on system representations in a way that reigns in

the complexity of the outcome. The technical contribution of this work in the field of

analysis of hybrid systems is that it identifies classes of hybrid robotic systems that

can be abstracted so that their overall behavior can be described using subregular

languages, and characterizes these languages within the Chomsky hierarchy.

This work contributes also to the formal language community by defining

a new class of subregular languages, called the tier-based strictly local languages,

which captures long-distance constraints between symbols. The tier-based language

models have existed in phonology, especially in the form of autosegmental patterns.

However, these models have primarily dealt with expressing certain phonological

patterns on tiers, instead of analyzing the tiers, as our work does here.

This work opens ventures for exploring learning of the regular robotic lan-

guages by using phonological learners. In addition, cooperative behaviors between

homogeneous and heterogeneous robots, by performing intersection of their regu-

lar robotic languages, can be looked into as future work. Formal language theory

also offers algebraic tools for analysis of the languages and automata, which can

be explored for studying optimal plans of hybrid system behavior, and can aid in

composing and decomposing languages.

viii

Chapter 1

INTRODUCTION

Dynamical systems can be classified in terms of the type of equations accord-

ing to which their states evolve. For example, if the state evolution is governed by

continuous differential equations, we obtain a continuous dynamical system. Sim-

ilarly, systems in which the states evolve discretely by exhibiting state jumps are

called discrete dynamical systems. A hybrid dynamical system is the one in which

there are co-existing continuous and discrete states. While the discrete states take

discrete values, continuous states of the hybrid system exhibit both a flow along con-

tinuous equations, and also discrete jumps. The evolution of states, both continuous

and discrete, of a hybrid dynamical system are governed by an interaction between

the discrete and continuous dynamics components so that the two dynamics do not

evolve independent on each other and are “coupled.” We deal with a special class of

hybrid systems in this work, describe how such interactions between continuous and

discrete dynamics occur in these systems, and how such systems can be controlled.

Besides dynamical equations, dynamical systems can be classified in terms of the

type of their state as continuous systems, discrete systems and hybrid systems [39].

The states of a continuous system take values in a continuous space, for example

a Euclidean space or a differentiable manifold, while for a discrete system, states

usually take values in a finite set. According to such characterization, hybrid system

is the one in which the a part of the state is continuous, while another is discrete.

Controlling a robot by manipulation of the continuous dynamical equations

through control inputs might be appropriate for some robotic applications requiring

1

statial accuracy, such as robotic welding or assembly-line applications. The control

objectives for such systems might be formulated as a (single) stabilization problem,

which means that continuous dynamical control laws that make the robot’s behavior

meet the control performance specifications can be designed. The repetitive nature

of tasks within the same environment and the availability of detailed data, enable the

formulation of continuous equations that describe the behaviors for such systems,

without the need for frequent alterations in the equations. However, if a robot is

to carry out multiple tasks under uncertainty, it has to make autonomous decisions

during execution time. In such cases robots should be able to deal with dynamic

environments, ensure safety, adhere to hardware constraints and handle complex

specifications. The design of continuous control objectives for such systems might

not be easily formulated as a single stabilization problem. Such robots are being

increasingly found in military, service and space exploration applications, that call

for a flexible approach for controller design that can allow work under widely varying

parameters.

One approach to designing such a flexible system is by dividing the control

task into a series of subtasks performed by separate closed loop controllers, and

switch among these controllers to accomplish the ultimate goal. The continuous

controllers are designed as specific closed loop dynamical systems, optimized for the

given sub-task. For example, a controller may steer a robot between waypoints,

another might collect measurements, while others communicate, interact with and

manipulate the robot’s physical environment. Though some basic tasks can be

performed through the execution of a single controller, many tasks of interest require

the system to combine different actions and switch between available controllers.

Discrete switchings between these modes of operation enable a much richer behavior

and make the system versatile.

The discrete switchings in such systems do not occur arbitrarily, but are

2

dependent on the continuous dynamics. For example, if a continuous controller gov-

erning a limited-range infrared sensor detects an obstacle in the robot’s navigation

path, it might trigger a discrete switching, which in turn resets the system’s current

dynamical equations to another set of dynamical equations optimized for obstacle

avoidance. Such systems using continuous closed-loop controllers that interact with

discrete dynamics of the system, define a special type of hybrid dynamical systems

in which there are no resets on continuous states. The continuous dynamics of these

hybrid dynamical systems affect which discrete transition can take place, while the

discrete transitions reset the continous parts, possible to an entirely different set of

closed loop equations.

1.1 Motivating example

Consider a mobile robot with an on-board manipulator that needs to fetch a

print-out from a printer. To accomplish this task, the robot should move from its

current initial configuration to the vicinity of the printer, reach out and pick the

stack of paper sheets on the output tray using the manipulator, navigate to the user

who initiated the command, and deliver the printout, again using the manipulator.

In the unlikely case that a single controller for the continuous dynamics can be found

and shown to render the overall dynamical system stable, convergent and provably

algorithmically complete, such a controller performing this function will probably

be very complicated. A more natural approach is to decompose this task into a

series of simpler subtasks, develop controllers for each of these subtasks, and then

integrate them into a closed loop hybrid system that transitions between controllers

to complete a succession of subtasks. Along these lines, the robot would first use a

navigation controller to move into position to access the printer. A common PID

controller could then be used to steer the robot’s arm to reach out and grasp the

printout. Finally, the robot would activate the navigation controller again to go

3

to the user who requested the job, and control its arm once again to hand out the

printed sheets.

Figure 1.1: An example scenario with a robot asked to fetch a printout. This task

requires the system to execute a series of basic controllers. Successful

task execution depends on the ability to sequence the transitions of

the control law switchings in a timely manner. The overall system is

thus hybrid in nature.

Assuming that there exists a navigation controller that enables the robot to

move from point A to point B, and PID controllers to move its onboard manipulator

along a specified workspace path to grasp and release objects, the overall dynamics

are expressed as a sequence of discrete switchings between continuous controllers.

Switching to a controller is not arbitrary, but is enabled only when certain mathe-

matical and logical conditions (will be later denoted the Pre conditions) required

4

for the controller to run are fulfilled. Executing the continuous controller then alters

these conditions and leads the system to a new state that now satisfies another set of

mathematical and logic conditions (denoted Post conditions), from which another

switching may be possible if the current state enables the Pre conditions necessary

for that other controller to be fulfilled. The discrete dynamics are therefore depen-

dent on the continuous dynamics, and because with each discrete switching a new

set of continuous dynamics is enabled, the continuous dynamics are also dependent

on the discrete dynamics. Such behavior makes the system hybrid.

For the hybrid system to be able to switch between different controllers,

we need to ensure that such a switch will result in predictable behavior and is

permitted by the underlying dynamics. One way to guarantee this is by requiring

the states reached upon running a controller to satisfy the Pre conditions of the next

controller scheduled to be activated. Such guarantees can be provided by assuming

that the execution of a controller will cause the system’s states to evolve to some

positive limit set, and all states of that set satisfy the Post of the other controller.

Such constraints give us a special class of hybrid systems with assumptions on the

attractiveness of each controller’s limit set. There are no resets in the continuous

states of the hybrid systems, but only a switching of controllers that drive the current

states to states that satisfy their Post conditions.

The switching behavior between continuous controllers can be described by

means of a graph that contains nodes or vertices, representing the states of the

system, and arrows connecting the vertices, representing execution of each controller.

Such a graphical representation with states as nodes and arrows between states is

commonly used in the theory of computation and formal languages to describe

discrete models of computation. Such graphs are called automata and if there are

finite number of states in the graph, we refer to them as finite state automata.

The finite state automaton for the hybrid system described in the last paragraph is

5

shown in figure 1.2(b), where the transitions between states are labeled by the robot

controllers and the nodes represent different states that mathematically capture the

states of the robot relative to the environment.

(a) A robotic mobile manipulator. (b) The finite state automaton that accepts

only the robot’s admissible behavior.

Figure 1.2: A hybrid robotic system with three basic controllers: navigation con-

troller a; controller for picking an object b; controller for placing the

object c. The symbol # indicates the beginning and end of a motion

plan.

To clarify some of these ideas, we consider a kinematic model for the robot of

figure 1.2(a) that can be realized as follows. Let us assume, that the robot dynamics

are given by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω
︸ ︷︷ ︸

base

,

ẋ′′e = u1

ẏ′′e = u2

ż′′e = u3
︸ ︷︷ ︸

arm

. (1.1)

The platform and arm of the robot are given velocity references as inputs: (v, ω)

are the linear and angular velocity for the base respectively, and (u1, u2, u3) is the

end-effector velocity vector. The coordinates of the point on the platform (base)

where the manipulator is attached is qp , (x, y), while θ is the orientation of the

6

base. The cartesian coordinates of the robot’s end effector, expressed in the body-

fixed coordinate frame can be expressed as qm , (x′′e , y
′′
e , z
′′
e). These coordinates

are local to the robot and are relative to the point where the arm connects with

the base. This body-fixed frame is aligned with the base’s orientation θ. We write

the quantities with a double prime (for example, a′′) to denote the value of the

quantity in the body-fixed coordinates, as opposed to writing a which is means the

value of the variable expressed in the global coordinate frame. The configuration

space for the system is then a sixth dimensional manifold X consisting of the tuples

(x, y, θ, x′′e , y
′′
e , z
′′
e). We can construct a basic navigation controller ua = (v, ω) to

drive the robot from any initial point qp to any other desired configuration qdp in the

obstacle-free workspace as follows:

v = −∂ϕ

∂x
cos θ − ∂ϕ

∂y
sin θ, ω = ϑ− θ,

where ϕ(x, y) is a navigation function [53] —a special artificial potential function

without local minima— and ϑ is the angle of its negated gradient.

As mentioned before, for steering the end-effector (gripper) to a desired lo-

cation, a series of PID controllers typically found in most commercially available

manipulators, can be used for the arm. The input to these controllers is the coordi-

nates of the point p0 = (x′′0, y
′′
0 , z
′′
0) to which the end effector must be steered. The

PID control then steers the arm to this point so that qm = p0. Then, elementary

arm motions can be sequenced to achieve simple pick and place tasks as follows: to

pick, steer the end-effector to the location of the object by specifying the point at

which the object is placed, close the gripper to grasp the object, and return the arm

to a home position; to place, move the end-effector from the home position to the

desired object location, release the object by opening the gripper, and return the

arm to the home position. Of course, numerous issues with regards to sensing, feed-

back, robustness, and repeatability can arise, however these are beyond the scope

7

of this work, and are rarely addressed in the simple control interfaces provided by

robotic arm manufacturers.

Summarizing the controllers that the robot has, we deal with three basic

controllers on the robot, each one specialized in a sub-task:

• ua: a navigation controller for the mobile platform that moves the robot base

to a destination point qdp from any initial obstacle free configuration;

• ub: a controller for the manipulator that steers the arm of the robot to pick

an object from location qo and hold it in a pre-specified “home” position qhm;

• uc: a manipulator controller that releases an object from its gripper at a

desired location.

To complete a task that requires remote manipulation and transport of objects,

we need a plan that would properly sequence these continuous controllers through

discrete switchings.

There could be alternative ways to design a navigation controller, for example,

those based on computer-vision algorithms. Similarly there could be alternative

controllers for the arm. One of the focus of this work is to capture the behavior

of such controllers with a model that would allow planning of more complex tasks

through their automated sequencing. We do not deal with designing or improving

such controllers, but only use the ones already designed, verified and available for use

to do planning and control and achieve goals through proper controller switching.

Our approach however assumes that the available controllers converge the system’s

state to the desired specification points or sets in the state space. These limit sets

might satisfy the pre-conditions of more than one controller and therefore the system

can switch to either depending upon what post-condition will ultimately satisy the

specifications. For example, there must be guarantees that the navigation controller

8

steers the robot to the vicinity1 of a desired point, specified by its coordinates in

the robot’s workspace in finite time. Similarly, the controllers for the arm should be

able to steer the end effector in the vicinity of the desired goal point in finite time.

When such guarantees are provided, the design of the controllers does not interfere

with the planning problem.

The concept of convergence is closely related to stability. Informally, a sys-

tem’s dynamics are said to be (Lyapunov) stable if the states of the system remain

close to an equilibrium point or a positive limit set in the state space, whenever

its states start close to the equillibrium point or set. For a physical system, sta-

bility refers to the system remaining within safety limits (bounds) defined due to

hardware, logical and mathematical constraints. For example, the robot’s velocity

must remain within operation speed limits set by the manufacturer. Convergence

refers to a system’s state approaching an equilibrium point or a limit set as time

progresses. It is possible that the states of the system do not converge to a limit

set, but remain close to it and hence the system being stable but not convergent.

When a system is stable and convergent, it is said to be asymptotically stable. If

we have controllers that provide assurance for stable and convergent behavior, we

can ensure that running a particular controller will steer the robot to a particular

limit set in the system’s state space and stabilize the system at the state until a new

set of controllers stabilizes the system to its own limit set. This limit set can be

mathematically encoded in terms of the conditions that are satisfied upon running

each controller called the post-conditions of the controller. In order to run each con-

troller, however, a set of pre-conditions, encoding the set of parameters needed for

a controller as input, must be satisfied. Provided the pre-conditions of a controller

are met, stability guarantees that the controller will lead the system to its set of

1 By vicinity, we mean that the robot should be reasonably close to the desired
location, upto within an allowable error decided by the system’s designer.

9

post-conditions. This is a useful fact since now, if the pre-conditions of a controller,

say f , are satisfied by the post-conditions of another controller, say e, the system

can switch from controller e to controller f . The system then flows from a state

that satisfies the pre-conditions of the controller e to a state satisfying the post-

conditions of e. At this point, assuming that the pre-conditions of the controller f

are satisfied, switching from controller e to controller f occurs and the continuous

dynamics is reset. Finally, the states evolve along the dynamics of controller f to

reach a state that satisfies the post-conditions of controller f .

This work is not concerned with a thorough characterization of answering

how to guarantee stability or convergence mentioned in the previous paragraphs,

but rather assumes these two properties for the low-level, closed loop dynamics,

and goes on to investigate how the hybrid robotic system can be mapped into an

automaton like the one shown in figure 1.2(b). The process of mapping a detailed

hybrid dynamical system into a purely discrete computation model like the finite

state automaton of figure 1.2(b) is known as (discrete) abstraction. As we shall

see, such mapping enables us to perform planning by considering a purely discrete

system. Since the states in a discrete system only take a finite number of values as

compared to infinitely many values that the states of a continuous system can take,

checking properties, such as ensuring the states evolve only in the “safe regions” of

the state space, for different states of a discrete system only requires a finite number

of steps as compared to checking them on a continuous system.

1.2 Abstractions of hybrid systems

In order to solve the planning and control problem on a hybrid robotic system

with stable continuous dynamics, it is necessary to determine what we can expect

out of the future evolution of the continuous dynamical equations. This typically

gives rise to reachability computations. Checking for reachability on a continuous

dynamical system requires solving the continous equations for all the initial states

10

that the system may possibly take. Since the states of a continous dynamical sys-

tem can take infinitely many values, reachability analysis for a continuous dynamical

system becomes computationally intractable. Discretizing the state space offers a

solution by enabling checking of specifications on a finite number of locations. In

the worst case, this would require exhaustive checking of all possible cases, though

at least the number of locations is finite. For example, in the example of section

1.1, to check whether the system leads to a particular equilibrium set from a given

set of initial conditions, the continuous dynamical equations (1.1) will have to be

solved. The process needs to be repeated for every set of initial and final conditions.

However, if there are stability guarantees of the system’s continuous equations, we

might be able to “predict” accurately, where the system will end up starting from

a given set of initial conditions, without having to solve the continuous equations

(1.1). Stability enables us to discretize the system, for example to a discrete finite

state automaton of figure 1.2(b), by only accounting for the controller index being

activated, along with possible controller switchings, while disregarding the contin-

uous dynamics involved behind execution of each controller. We are therefore able

to reduce the complexity associated with reachability calculations.

Such process of mapping a detailed hybrid dynamical system into a purely

discrete computation model like the finite state automaton of figure 1.2(b) is known

as (discrete) abstraction. Abstraction facilitates automated planning and control

by reducing the complexity of the interacting continuous and discrete dynamics of

the system. Planning and control is then performed on the smaller system and

the results can be implemented on the original system. For abstractions to be of

value, they must relate the larger system and its abstraction through a relationship

that establishes an equivalence between the two systems, since otherwise, there is

no guarantee that a plan charted on the abstract system is implementable on the

original hybrid system. Such an equivalence relationship partitions the continuous

11

state space of the system and groups together states that behave in a “similar”

manner. This leads to discretization of the system where the infinite values that

states can take are reduced to a finite number equal to the number of equivalence

blocks formed by partition. Then, instead of tracking the behavior of the system

from each continuous state, one can track the behavior of whole blocks.

The equivalence between systems is usually established by using two general

approaches. One of them is the partition-based approach in which the state space is

partitioned on the basis of one or some of the properties of the system that “we care

about.” The properties used in partitioning could be spatial, logical or mathematical

properties of the system and all the states that satisfy a desired property are grouped

together into one block of the abstract system. The analysis is then performed on

the partitioned (quotient) system instead of the original system. In the second

approach, equivalence is sought based on the evolution of the states of the system.

All the states that evolve “similarly” according to the system’s dynamics are grouped

together as blocks and the evolution of these blocks is then observed instead of the

observing the behavior of individual states. All the equivalent states grouped in one

block can evolve to the same partition blocks. The two systems are then said to be

related by a bisimulation relation ([45]), in which the abstract system can simulate

the dynamics of the original system and vice-versa. A similar but weaker notion to

that of bisimulation is simulation. One system is said to simulate another system if

the behavior of the former is matched (simulated) by a behavior of the latter system,

but not vice-versa [45]. Thus simulation is in some sence a one-way relationship

between two systems whereas a bisimulation establishes a two-way relationship.

In this work, we use a particular class of hybrid systems that allow for a new

type of abstraction which combines the two approaches of abstractions discussed in

earlier paragraphs. These hybrid systems have a set of asymptotically stable contin-

uous dynamics with parameterized attractors. By means of the parameters of the

12

hybrid system, that determine the location of these attractors, the designer exer-

cises control over the hybrid system forcing certain guards to be activated and thus

determining the macroscopic reachability properties. Switching between different

continuous dynamics (modes) is not arbitrary; for a certain mode to be activated

certain conditions have to be met, and similarly, steady states of continuous dynam-

ics satisfy given specifications. We mathematically characterize and computationally

approximate these pre– and post-conditions without resorting to reachability calcu-

lation. Control is exerted on these hybrid systems by first choosing among a finite

set of closed loop dynamics, and then setting the parameters of this dynamics to

determine the location of the attractors and steer the trajectories to a particular set

and activate the associated guard. Control decisions are hybrid because they involve

the discrete choice of a closed loop vector field, and the selection of an attractor in

a continuous state space. We show that this class of systems admit an observable

bisimulation that gives rise to a discrete transition system which represents faithfully

the vector field transitions and the asymptotic behavior of the hybrid system.

The abstract transition system is constructed using characterizations of at-

traction regions and limit sets of the continuous dynamics of the concrete transition

system, for which stability certificates are assumed. Such certificates can be expected

to have been constructed during earlier phases where the parameterized continuous

controllers are designed for the hybrid system. In this work, instead of constructing

the stability certificates, the focus is on constructing the discrete abstraction after

the stability certificates are provided, and establishing the behavior equivalence be-

tween the concrete system and its abstraction which allows the design of high-level

planning strategies with guaranteed low-level implementation on the concrete hybrid

system. Such work does not suggest ways for controlling the continuous dynamics

of a hybrid system, but rather provides models that capture the abstract behavior

of the closed loop hybrid system, given these continuous controllers. In other words,

13

we do not indicate how a particular system should be controlled at the low level,

but propose ways to organize existing, established low-level control strategies to give

rise to more complex high-level behavior.

1.3 Parallels between robotics and formal languages

Controller sequencing in the particular class of hybrid system we consider

is possible by checking compatibility between the pre-conditions specified by the

parameterized domains of the controlles and post-conditions captured in the limit

sets. All acceptable sequences of controllers form the language for the system. The

strings of controller labels (symbols) in this language can be shown to be accepted by

the finite state automaton, abstracted from the hybrid system. For example, refering

to the automaton of figure 1.2(b), the string of controllers a b a c a b c represents a

valid controller sequence for the hybrid system of the robot of figure 1.2(a), and

therefore is also in the system’s language.

The study of control action strings is not unique to the hybrid systems con-

sidered in this work but is also found in other versions of discrete planning and

control of robots, in the context of symbolic control [4]. Symbolic control involves

control of systems using strings of symbols, which for our case represent stable con-

trollers, to achieve the overall goal. In order for a system to achieve an overall

behavior, the symbols in a string must be connected to each other using some logi-

cal or mathematical conditions. These conditions naturally give rise to constraints

on the concatenation rules for strings. These constraints usually fall under two cat-

egories: local constraints that affect the next symbol for a controller in a string, and

long-distance constraints in which the appearance of a symbol in a string depends

upon a preceding symbol, with these two symbols separated by a substring of other

symbols in the sequence. An example of local constraints could be the concatenation

rule for the example of section 1.1 in which two symbols exhibit local dependencies

owing to the pre– and post-conditions compatibility. In the same example, we could

14

see forbidden strings such as b a a b which represent a controller sequence that asks

the robot to pick up an object, navigate to two points using controllers a, and then

try to pick up another object using a b controller which is impossible since the grip-

per can hold only one object at a time. This string exemplifies the long-distance

behavior between two b controllers, that are long distance separated by controllers

with label a.

Local and long-distance dependencies are also found in patterns of sounds

in some spoken languages [54, 55]. Studies on these constraints help phonologists

understand the properties of languages and therefore predict, model and study the

evolution of speech patterns of these languages. The theories developed by pho-

nologists in this area enable us to apply them to our symbolic control for analysis,

planning and control of systems that generate such patterns. Furthermore, the con-

cept of languages and automata are inter-related since there is a language generated

by each automaton, and given a language, there are procedures that allow construc-

tion of automata that recognize such a language [29,57]. Therefore, a wide realm of

computational tools developed in computer science for the study of formal languages

are available for symbolic control.

In formal language theory, languages are characterized on the basis of subset

relationships of language inclusions that form a hierarchy shown in figure 1.3. This

hierarchy is called the Chomsky hierarchy [9,10]. Each language class in the hierar-

chy has specific algebraic properties with associated expresivity and computational

complexity. In general, languages higher in the hierarchy can express more compli-

cated patterns, and therefore include the ones lower in the hierarchy. However, such

increased expressiveness comes at an increased complexity of the automata describ-

ing the languages [30], and therefore an increased cost of recognizing the languages

using automata, or performing boolean operation on languages. The focus in this

work is to find a language class that offers relatively cheap ways of representing the

15

languages that we see in symbolic control sequences, while being reasonably expres-

sive to capture the local and long-distance constraints that govern the generation of

these languages.

Figure 1.3: The Chomsky hierarchy of language inclusions.

In addition to characterizing complexity and computational costs of language

operations, formal language theory also offers answers to questions such as whether

there exist algorithms to recognize a particular language, whether a particular string

is in a given language, or whether two descriptions of language actually describe the

same language. When there are known algorithms that can provide a definitive

answer to these questions in a finite number of steps, we say that these problems

are decidable. Languages lower in the Chomsky hierarchy offer benefits over the

classes higher in the hierarchy because more problems related to language operations

are decidable [29]. Though regular languages are the lowest class of languages

in the Chomsky hierarchy, there are even smaller sub-classes of languages forming

16

another hierarchy known as Sub-regular (figure 1.4) [54,56]. Sub-regular languages,

in addition to offering all benefits of regular languages in terms of computational

complexity, also provide a narrower domain of properties specific to each sub-class.

These sub-classes capture more accurately the interaction of phonological sounds

when producing words that would be considered correct in some natural language.

Local constraints impose conditions on contiguous sequences of language symbols,

and generate languages that belong to the local branch of the Sub-regular hierarchy.

Likewise, long-distance dependencies impose conditions on subsequences of language

symbols, not necessarily contiguous, and generate languages that belong to the

piecewise branch. With the constraints found in robotics exhibiting local and long-

distance constraints, similar to what has already been studied in computational

linguistics and phonology. An exploration in this area from a dynamical systems

perspective, therefore promices to identify computational tools that facilitate the

analysis of languages that can describe sequences of robotic controllers.

Regular

Non Counting = Star-Free

Piecewise Testable

Strictly Piecewise

contiguous subsequences sequences

Strictly Local

Locally Testable

LTTk,t

Figure 1.4: The Sub-regular hierarchy of language patterns.

17

1.4 Basic hypothesis

In summary, we find that working with hybrid systems with stable continuous

dynamics enables us to discretize the system and deal with a transition system

that retains information about possible controller switchings. Such discretization

becomes possible due to stability guarantees that help us establish equivalence blocks

in the state space of the hybrid system, based on the limit sets to which these

states stabilize. Two controllers can be sequenced if the post-conditions of one

controller, determined by the limit set to which the controller stabilizes, match the

pre-conditions of the next.

The transition system provides information on possible controller sequences

that a robot allows execution for. Therefore, instead of looking into the dynamical

equations governing the evolution of states in the hybrid system, the transition

system allows higher-level planning by focusing on which controller must follow

which, in order to accomplish some task. Implementation of the plan generated by

transition system is guaranteed on the hybrid system due to equivalence established

by the abstraction procedure.

We will see that our hybrid systems can be abstracted to discrete transition

systems that can be represented as a type of automata. These automata define

languages formed from an alphabet of controller symbols, which are concatenated

based on mathematical rules, local and long-distance constraints to yield words.

Thus our study allows the use of formal language theory to analyze systems that

generate strings of languages that obey local and long-distance constraints.

1.5 Contributions

The starting point of the work in this thesis is an abstract representation

of a particular class of hybrid systems with convergent continuous dynamics and

no resets in continuous variables. We establish equivalence between the abstract

18

representation and the underlying hybrid system through a (weak) bisimulation re-

lation. The equivalence enables us to focus on planning the system’s overall behavior

through controller sequences observed in the abstract system, instead of dealing with

the dynamics behind each controller of the hybrid system. We study the languages

generated by the sequences of controllers and identify their place in the Chomsky

and the Sub-regular hierarchies. Based on the benefits identified in finding the low-

est classes in the hierarchies, we aim at characterizing the lowest class that would

effectively capture the constraints of our languages, within the Sub-regular hierar-

chy. More specifically, we show that the local and long-distance constraints generate

sub-regular languages, which when intersected together, give us a new class of sub-

regular languages. This new class can describe the behavior of robots that can be

modeled as hybrid systems with asymptotically stable continuous dynamics and no

resets on continuous states.

19

Chapter 2

LITERATURE REVIEW

Careful attention to a system’s stability is required for the control of con-

tinuous closed-loop dynamical systems, especially when the systems are non-linear

[7,32,46]. Control of hybrid systems requires even greater attention, since switching

between stable continuous controllers can destabilize an otherwise stable dynamical

system [12, 49]. For hybrid and switched systems, it has been shown [27] that re-

strictions must be placed on the structure of the system, as well as on the switching

signals, in order to make the system stable or convergent to a limit set. In many

cases, the original switching signals of the hybrid system must be modified in order

to stabilize the system [38, 48, 49].

Even if a hybrid system can be stabilized, there is significant computational

overhead involved in checking the system for reachability [20, 59, 66]. Reachability

refers to finding states that a system can reach within its state space. We must be

able to verify that the system avoids “unsafe regions” of the state space, regions

that might violate the system’s constraints or control objectives. Owing to the

continuous dynamics of the hybrid system, the hybrid states can reach an infinite

number of locations in the state space. Calculating all the (infinite) reachable points

for the system’s verification is extremely computationally demanding.

Several issues related to stability and reachability in hybrid systems may be

resolved by working with purely discrete equivalent descriptions of these systems,

which provides motivation to the use of symbolic control. Checking for reachability

20

in finite discrete dynamical systems, in the worst case, involves exhaustive checking

of all the (finite) states that a system can be found in. Thus, reachability calculations

for discrete dynamical systems are at least computationally tractable compared

to those for hybrid dynamical systems. Similarly, discrete systems also present a

computationally cheaper stability analysis since the states only need to be checked

for and controlled within a finite number of values. To capitalize on the advantages

offered by discrete dynamical systems, continuous and hybrid dynamical systems

are abstracted to a discrete system and analysis is carried out thereafter on the

discrete system [4, 5, 60]. The discretizations simplify the domain of application

of differential equations by breaking up the workspace or controller dynamics into

simpler components, which when appropriately sequenced together yield a behavior

that satisfies certain specifications.

2.1 Discrete models of hybrid systems

The need for reigning in complexity is apparent in model checking and veri-

fication of general classes of hybrid systems [23,51], particularly when direct reach-

ability computation is involved [20, 59, 66]. Abstraction offers a way to facilitate

computations by enabling the analysis to be performed on a smaller system, and

allowing the generalization of the conclusions to the larger system.

Working with purely discrete models based on finite state automata helps

alleviate the problem of reachability computation, since in the worst case, the whole

(finite) state space can be searched. One way of obtaining discrete models for hy-

brid systems is through abstraction. Abstractions are consistent when they preserve

properties between two models of different size by establishing equivalence relations

between the states of each system. The relation that links states across different sys-

tems naturally induces partitions in the state space of the larger system, by grouping

together the states that are related to the same state on the smaller system. When

the equivalence relation is a simulation or a bisimulation, each equivalent block in

21

the partition contains states of the system that evolve according to the continu-

ous dynamics in a “similar” fashion. This enables the analysis of the system by

considering blocks of equivalent states, rather than the individual states themselves.

One commonly used equivalence relation that establishes a two-way equiv-

alence between systems of different size is bisimulation [43]. States across two

bisimilar systems are related by an equivalence relation such that the evolution of

states in either system can be matched by a “similar” evolution of equivalent states

in the other system. However, establishing bisimulation relations becomes too de-

manding [2] and for most general classes of hybrid systems, the procedure that is

supposed to create the partitions corresponding to a bisimulation, is undecidable.

Decidability refers to a computational or algorithmic procedure, which, given a hy-

brid system and a desired property, will verify in a finite number of steps whether the

system satisfies the property or not [2]. The survey paper [2] establishes boundaries

on decidability of systems abstracted using bisimulations and shows that one has to

severely restrict either the continuous dynamics of the system [1,50], or the discrete

dynamics [37] in order to be able to abstract the system using a bisimulation.

To be able to use a simpler system for the analysis of a more complex hybrid

system, instead of hunting for a two-way relationship, a less restrictive equivalence

relation known as simulation [43, 44] might be appropriate. Simulation provides

a one-way equivalence between systems and can preserve some desired properties

that the designer cares about when compressing the system’s size, while abstracting

more information than a bisimulation. When a system is abstracted by means

of a simulation relation, a property verified for the abstract system will hold for

the original system. The converse, however, is not necessarily true, as would have

been the case if the equivalence established was bisimilar. Abstractions based on

simulation relationships were described in [63], in a framework similar to that of a

bisimulation in [47].

22

Approximate simulation and bisimulation results for discrete abstractions

also exist [19, 61]. Approximate bisimulation [18] allows the trajectories of the

two related system under the abstraction map to be “close” in a Lyapunov-like

sense, instead of being matched exactly as required by bisimulation. There are

many approaches for discrete abstractions found in literature that fall under two

main categories. One is based on simulation, bisimulation and their approximate

counterparts, while the other is based on partitioning the state space [3, 22, 65].

Discrete abstractions allow the use of symbolic control to be applied to hybrid

systems by considering the discrete partitions as symbols. Planning and control

then involves deciding how and when to switch between symbols, and this gives rise

to symbolic control.

2.2 Symbolic control synthesis

Discrete abstractions for hybrid dynamical systems usually follow a hierar-

chical design that extends from the user interface at the highest abstract level to

robot hardware control at the bottom level (figure 2.1). Broadly, there are three

levels in the design hierarchy [4]:

1. At the top is the specification level that defines the overall behavior of the

system through a directed graph such as a finite state automaton. All paths

in this graph satisfy the specification (they obey all constraints) for the system

and correspond to valid symbol sequences that can be executed on a system.

2. The middle level is the execution level at which the individual paths of the

graph are designed according to constraints between each controller or symbol.

3. The paths are implemented on an actual system at the implementation level

in which the symbols correspond to the actual system dynamics.

Depending on whether the designer builds the system starting with design specifi-

cations and adapting the specifications to the implementation, or whether he builds

23

the system by chosing existing controllers in the implementation level and then

abstracting the controller dynamics to generate valid paths and specifications, the

design methodology can be classified as being top-down or bottom-up, respectively.

SPECIFICATION

EXECUTION LEVEL

IMPLEMENTATION LEVEL

LEVEL

A B C

−→
B =

←−
C

−→
A =

←−
B

Figure 2.1: Figure showing the hierarchical structure in symbolic control designs,

as it would apply to a “fetch-a-printout” example of section 1.1. The

specification level describes the overall abstract behavior of the sys-

tem; the execution level describes feasible sequences of symbols (plans)

depending on whether the post-conditions (
→·) of one symbol satisfy

the pre-conditions (
←·) required by the following symbol; the imple-

mentation level executes the plan on an actual system.

There are several approaches found in literature for a system’s discrete ab-

stractions. All of these approaches can be broadly classified into two categories –

environment driven strategies and control driven strategies [4]. We will first dis-

cuss these strategies for discrete abstractions in sections 2.2.1 and 2.2.2. Top-down

versus bottom-up design synthesis will be discussed next. As we will see, current

24

system designs typically follow a top-down approach. We will examine the benefits

and limitations of each approach and finally examine the steps that can be taken to

overcome some current limitations.

2.2.1 Environment-driven strategies

Environment driven discretization involves partitioning of the system’s work-

space. This is usually done by discretizing the workspace using polygons of appro-

priate shapes [5, 11] that enable construction of stable control objectives for each

polygon. System control strategies evolve within each polygon and the system then

“flows” between adjacent polygons to reach the desired goal. The work in [11]

describes such a control strategy with the workspace discretized into triangular ar-

eas. Although, the work in [11] does not explicitly deal with symbolic control, it

does deal with discretizing the workspace to allow control by sequencing the flow

between adjacent polygons. Such discretization allows the polygons to be considered

as symbols and thereafter perform planning.

The polygons in [11] are chosen by discretizing the free space of the envi-

ronment. Such a design circumvents the control problems [33, 35, 36] related to

navigation in cluttered environments. Simpler polygonal regions, also allow com-

plex control tasks to be described by using logic statements for directing the flow

between these regions. Linear temporal logics [14, 34, 62] use such a control strat-

egy by allowing one to specify the desired temporal behavior of the robot by using

operators like “next,” “until,” and “always.” In this way, one can encode control

objectives that involve prioritizing and sequencing of tasks.

Since environment driven methods are environment specific, when presented

with new environmental settings, the abstraction procedure must be repeated. This

involves defining new polygons, describing a new set of control objectives for each

polygon, and designing new control strategies for the flow of the states between

these polygons. Such a requirement presents a major limitation to the use of these

25

strategies unless the system is to be used in a dynamically static environment.

Moreover, techniques based on environment driven discretization have to rely on

model checking algorithms [17,28] to ensure that the design conforms to the desired

specifications and is implementable on an actual dynamic system. Model checking

involves an exhaustive checking of the system’s state-space and becomes inefficient

for systems with large state spaces [41].

2.2.2 Control-driven strategies

Whereas environment driven strategies discretize the systems’ work environ-

ment, control driven strategies discretize the continuous dynamics of the system.

For example, in the case of a robot navigation problem in which a robot starts at

a point in its workspace and navigates to a set goal point, the overall navigation

trajectory can be discretized using motion primitives like “go forward,” “turn left,”

“turn right,” etc. Execution of these motion primitives in an appropriate sequence

and with the right duration, may steer the robot to its goal.

The technique of discretizing the robot’s behavior in terms of its available

control actions and their associated closed-loop dynamics has been used in the frame-

work of motion description languages (MDLs) [6,13,40] and in an automata based

framework in [15, 16]. Both these approaches use motion primitives as symbols.

Motion description languages compose motion primitives based on time and sensory

data triggers to develop behaviors. In maneuver automata, controllers are sequenced

by checking the compatibility between the states reached by running a particular

controller and the initial state requirements of the following controller [16].

Control driven strategies are capable of handling dynamic environments by

using sensor driven switchings in response to the environmental changes. However,

motion description languages do not specify a procedure to generate a controller

sequencing plan from a given set of primitives, a robotic system and constraints

between the primitives [40]. The design of such a plan involves intervention from

26

the designer and largely depends on the task. Furthermore, a formal basis for design

of each controller has not studied in control driven approaches.

2.2.3 Top-down vs bottom-up design

The approaches using temporal logics and motion description languages are

mostly top-down whereby specifications are designed first, followed by planning

the behavior and ultimately executing the plan on the system. Systems designed by

this approach can usually handle complex specifications by breaking them down into

discrete sub-tasks carried out in sequence. For example, work on linear temporal

logics aims at using human language-like specifications. However, top-down designs

tend to over-simplify the low-level physical dynamics in an attempt to achieve com-

patibility with the designer’s choice of high level specifications. Therefore, plans

generated for controller sequences might sometimes be infeasible if certain aspects

of the concrete continuous dynamics have been abstracted away.

A bottom-up design, on the other hand builds upon existing controllers from

the execution level. This could be desirable for practitioners since they can use

the controllers that they have designed, tested and rely upon from experience. A

bottom-up approach does not require a redesign of controllers and enables automatic

design synthesis. Because the design uses an existing control system with well-

tested controllers, the plans generated by using abstractions of these controllers

are automatically executable on the underlying system, provided the conditions

necessary for activation of each controller are satisfied.

2.2.4 Automatic design synthesis

With most current approaches being either control or environment driven,

there is a need for a design that combines the advantages of both these strategies.

Such a system would be able to capture environmental constraints, handle dynamical

environments, and provide a universal solution that is stable for different tasks and

27

environments. Furthermore, a bottom-up design is needed that would enable the

use of well tested and optimized controllers already existing on a system. Using

existing controllers ensures that the plans generated by their discrete abstractions

are implementable on the original system, provided the plan takes into account the

conditions necessary for execution of each controller.

2.3 Language complexity

Informally, formal languages contain strings of symbols, for which there is

an algorithm that can decide whether the strings are “admissible”. Characteriza-

tions of these languages within the Chomsky hierarchy is useful since it identifies a

domain of applicable computational and algebraic tools to analyze the languages.

Hybrid systems, among many other models of computation, can be thought of as

a dynamical process that generates admissible strings of symbols that define lan-

guages. The fact that a hybrid system can be thought to generate (or accept) strings

of symbols, can be seen, for example, from the abstract representation of the hy-

brid system such as the finite automaton representation of figure 1.2. For example,

the hybrid system represented by the automaton of figure 1.2 accepts the controller

sequences (or strings) a b a c and a b c a that belong to the system’s language. To-

ward characterizing the domain of languages obtained by abstract models, it has

been shown [31] that certain variations of motion description languages are not

regular languages. Furthermore, it has been proved in [31] that extended motion

description languages are context-free. Linear temporal logics, on the other hand,

are accepted by Büchi automata [17,58], a variant of the finite state automata that

accept strings of infinite length. The languages that Büchi automata accept are

called ω-regular languages [67].

While Büchi automata evolve along loops while tracing infinite words, push-

down automata (that generate context-free languages) include a stack. These char-

acteristics make the two models expressive but also more complex as compared to

28

finite state automata. Though the languages they generate are richer than regular

languages accepted by finite state automata, several decision problems on these lan-

guages are significantly more difficult to solve. For example, there is no algorithm

that can answer in finite number of steps, for all inputs, whether two context free

languages are equal, or whether their intersection is empty. Thus these problems

are undecidable for context-free languages, whereas it has been shown [57] that

they are decidable for regular languages. Besides advantages in solving decision

problems, regular languages also offer closure properties on more operations as com-

pared to closure properties of context-free and ω−regular languages. For example,

whereas context-free languages are not closed under intersection and complement,

regular languages are. Also, Büchi automata are not closed under determinization

[67], which means that a non-deterministic Büchi automaton cannot be converted

into an equivalent deterministic Büchi automaton that accepts the same language.

Non-deterministic Büchi automata are more expressive than deterministic Büchi au-

tomata. Finite state automata, on the other hand are closed under determinization,

with both deterministic and non-deterministic finite state automata being equally

expressive. Although regular languages may not be able to express all the type

of specifications that ω-regular [14, 34, 62, 67] or context-free [31] languages can,

they can still capture meaningful constraints and objectives. The work in [15] and

[16] points out that maneuver automata accept regular languages. However, the

expressive power of the resulting models of [15] and [16], when they are subject to

constraints on controller sequencing, offer an unexplored area for research.

2.4 Aims and scope

This work focuses on a bottom-up modeling of hybrid systems that capital-

izes on existing robot controllers. The modeling methodology obviates the need

to redesign controllers and proposes solutions for using the existing controllers to

29

carry out complex tasks. The key feature of this work is the exploitation of paral-

lels between formal language theory and robot (motion) planning. We show that

languages generated by discrete abstractions of our hybrid dynamical models are

sub-regular. Our modeling framework is very similar to Frazzoli’s maneuver au-

tomata [16]. However, this work goes a step further in defining a specific domain in

the Sub-regular hierarchy, so that the well-established theories in formal languages

and computational analysis can be applied efficiently.

We start with recently developed modeling formulations for hybrid systems,

which are based on asymptotic abstractions. The systems considered have con-

vergent (stable) continuous dynamics that can be abstracted to a discrete labeled

transition system [64]. The abstraction captures the evolution of a stable system,

from a certain set of initial conditions to a parameterized destination set, in finite

time. Such finite time abstraction [50] guarantees that after a certain time period,

initial system states in set A have “collapsed” into points in a set B. Asymptotic

abstraction [50] is a generalization of this concept, with time allowed to go to

infinity. The work in this thesis contributes to establishing the properties of the

languages of the machines generated as discrete abstractions of hybrid dynamical

systems representing our class of robotic systems.

We analyze robotic systems modeled as hybrid agents with stable continuous

dynamics by abstracting the system to a labeled transition system that generates

a formal language. A language-theoretic framework allows exploitation of existing

results in formal language theory to bring in a fresh perspective for analysis of

systems whose behaviors can be abstractly described as a sequence of controllers.

Since controller sequences can be viewed as symbols, the analysis of collections

of “admissible” strings are also of relevance in the context of formal languages,

computational linguistics, and phonology.

Particularly, we show that the “regular robotic languages” generated by the

30

abstract systems are an intersection of Sub-regular languages, and as such they

are naturally much “cheaper” to represent compared to possible intersections of

context-free or ω-regular languages [69], [68]. The regular robotic languages belong

to the star free (SF) class of the Sub-regular hierarchy. In the process of showing

subregularity of our robotic languages, we introduce a class of formal languages,

the tier-based strictly local languages (TSL) which describe local and non-local

interactions of symbols in a language. Such a result is not only a contribution in

the field of robotics [52], but also in the computational linguistics domain [26].

31

Chapter 3

MODELING ROBOT BEHAVIOR

For a continuous system, the states of the system change by following contin-

uous dynamical equations, whereas a discrete system exhibits state “jumps.” When

there are interacting continuous and discrete dynamics in the system, we obtain a

hybrid dynamical system.

The robot models that we consider are composed of multiple closed-loop

continuous dynamics. For a controller to be executed, its Pre conditions, which

include the set of logic propositions involving the state of the system, the input

parameters, and the state of the environment, must be satisfied. We assume that

the continuous dynamics within each controller are stable. Stability causes the

execution of each controller to drive the robot’s state to a positive limit set encoded

in the logic propositions - the Post conditions of the controller. Controller switching

occurs if the state of the hybrid system, that satisfies the Post conditions of the last

controller, also satisfies the Pre conditions of the next controller. The Pre for a

controller is evaluated after changing the parameters expressing the input references

for the controller.

In this chapter, we model the robot as a hybrid system and show its abstrac-

tion to a discrete system. In the next section, we formalize the definition of a robot

modeled as a hybrid system. In section 3.2 we will show how with the process of

abstraction we can obtain a discrete transition system that only retains information

about the index of each controller, and the associated parameters. Such an abstrac-

tion then leads to the concept of strings and languages that will be discussed in the

32

next chapter. To make the ideas concrete, we end this chapter with an example of

a hybrid robotic system with planning applied on its abstraction in section 3.4.

3.1 Hybrid robot model

Definition 3.1.1 (Hybrid Robotic System). The hybrid robotic agent is a tuple:

H =
{

H,P,K,AP, f,←· ,→· , s, T
}

, where:

• H = X ×L is a set of hybrid states. It is the cartesian product of a set of

continuous states X ⊆ Rn, and a set of boolean variables L ⊆ {0, 1}r, r ∈ N,

that can capture the discrete variables. Here, 0 and 1 represent false and true

respectively.

• P ⊆ R
m is the set of control parameters.

• K is a set of finite discrete locations. A location k ∈ K indexes a unique

controller for the continuous dynamics.

• f : X ×L ×P×K → TX is a collection of assymptotically stable vector fields,

indexed by k ∈ K and parameterized by p ∈ P

• AP is a set of atomic propositions (αi).

• ←−· : K → 2AP ;
←−
k denotes the pre-condition (Pre) of the controller indexed

by k, giving the set of atomic propositions which if true allow the execution

of k from the state h with the parameter p. We write (h, p) |= ←−k when the

execution of k is possible.

• −→· : K → 2AP ;
−→
k denotes the post-condition (Post) of k, giving the set

of atomic propositions which are true after the continuous dynamics under

controller k have reached the steady state. We write (h′, p) |= −→k for state

h′ ∈ H that is assymptotically reached with controller k for the given parameter

p.

33

• s: H → 2P is the reset map for parameters p. It assigns to each hybrid state h,

an allowable values of parameters from a subset of P, and resets these values

as the hybrid states evolve in the vector field f .

• T : H × P × K → H × P × K is the transition map for controller switching,

according to which (h, p, k)→ (h, p′, k′) iff (h, p) |= −→k and (h, p′) |=←−k′ .

The resets in the parameters p of the hybrid system H, occur when a tran-

sition of controllers occur according to T . One can think of parameters p as a

controlled mechanism for setting the limit sets of the vector field f . There are no

discrete jumps in the continuous dynamics X of the states h that evolve according to

the system’s differential equations. A state h evolves to another state h′ along a vec-

tor f under a controller k parameterized by p, and we write h
k[p]
99K h′. This transition

occurs continuously along the integral curves of f and is not instantaneous.

3.2 Asymptotic abstractions of closed loop dynamics

The closed loop dynamics of the hybrid system of definition 3.1.1 are ab-

stracted based on the assumption that the dynamics are asymptotically stable. We

will first define an equilibrium state and asymptotic stability before discussing what

role it plays in the hybrid system.

Definition 3.2.1 ([32]). A function f(x, t) : Rn × [0,∞) → R
n (with x ∈ R

n,

t ∈ [0,∞)), is said to be locally Lipschitz in the neighborhood of (x0, t0), if it satisfies

the inequality:

‖f(x, t)− f(y, t)‖ ≤ L ‖x− y‖

for all (x, t) and (y, t) in some neighborhood of (x0, t0). The constant L ≥ 0 is called

the Lipschitz constant.

34

The norm ‖·‖, is any norm defined on space R
n. We consider a continuous

dynamical system defined as:

ẋ = f(x, t) (3.1)

where f : [0,∞)×D → R
n is piecewise continuous in time t and locally Lipschitz

in x on [0,∞)× D, and D ⊂ R
n is a domain that contains the origin x = 0. The

function Φt(x) : [0,∞) × D → R
n describes the evolution of the states x of the

system (3.1) with Φt0(x) = x0 and d
dt
Φt(x) = f(x, t).

Definition 3.2.2 ([32]). A state xe ∈ D of the system of (3.1) is an equilibrium

point at t = 0 if

f(xe, t) = 0, ∀t ≥ 0.

Definition 3.2.3 (cf. [32]). An equilibrium state xe of the system of equation

(3.1) is said to be stable in the sense of Lyapunov if for each e > 0, there is a

d = d(e, t0) > 0 such that

‖Φt0(x)− xe‖ < d⇒ ‖Φt(x)− xe‖ < e, ∀t ≥ t0 ≥ 0.

The equilibrium state is said to be asymptotically stable if, in addition to Lyapunov

stability, there is a positive constant c = c(t0), such that

lim
t→∞
‖Φt(x)− xe‖ = 0, ∀ ‖Φt0(x)− xe‖ < c.

Intuitively, stability in the sense of Lyapunov (or Lyapunov stability) implies

that an equilibrium point is stable if a state starting close to the equilibrium point

remains close to it forever. If in addition, the state starting close to the equilibrium

point eventually reaches the equilibrium state, the state is said to be asymptotically

stable. The term asymptotically stable dynamics refers to the closed loop dynamics

of a system such that all the states evolving according these dynamics eventually

approach to an asymptotically stable positive limit set.

35

Definition 3.2.4 (cf. [32]). A state (or a point) hj ∈ H is said to be a positive

limit point of f(hi, p, k) if there is a sequence {tn}, with tn → ∞ as n → ∞, such

that f(hi, p, k)→ hj as n→∞. The set of all limit points of f(hi, p, k), hi ∈ H is

called the positive limit set of f(hi, p, k), denoted L
+(k; p).

Refering to the definition of hybrid system 3.1.1, the stability of continuous

dynamics means that upon running each controller, the state of the system remains

bounded and it evolves toward a particular limit set (definition 3.2.4). This limit set

is captured by the Post conditions of the controllers in definition 3.1.1. When such

a stability property is guaranteed, we can be sure that upon running a controller

k from a state satisfying its Pre conditions, the Post conditions
−→
k , of controller

k, are always satisfied. This is important for being able to abstract the continuous

dynamics of the system, since one can switch between controllers if the Post of the

current controller and the Pre of the next are compatible.

We now explain when two controllers can be concatenated. To be able to do

so, we first define a distance metric for our system.

Definition 3.2.5 ([32]). The distance of a point x ∈ D to a subset A ⊂ D is

denoted dist
(
x,A

)
and is defined as dist

(
x,A

)
, infy∈A ‖y − x‖.

The post-conditions of a vector field associated with controller k can be di-

rectly related to its positive limit set:

Post(k) , {(x, ℓ, p) | (x, ℓ, p) |= −→k , ℓ ∈ L , p ∈ s((x, ℓ)), x ∈ L+(k; p)} (3.2)

The pre-conditions, on the other hand, are associated with the region of attraction

of a limit set L+(k; p):

{

x | ∃ℓ ∈ L , p ∈ s
(
(x, ℓ)

)
: (x, ℓ, p) |=

←

k
}

=
{

x | lim
t→∞

dist
(
Φt(x), L

+(k; p)
)
= 0

}

.

(3.3)

36

The atomic propositions inAP constitute a set of logical predicates that can describe

any Pre or Post of some parameterized vector field, as a well-formed formula which

includes conjunction and negation operators.

In the context of this work, the following assumption is made to show when

two controllers can be concatenated. The notation ∂{S} denotes the boundary of

the set S.

Assumption 1. In the hybrid automaton H of definition 3.1.1, for all h ∈ H and

p ∈ s(h) for which there exist k′ 6= k such that T (h, p, k) = (h, p, k′), there is a

constant d > 0 such that ∀x ∈ L+(k; p), dist
(
x, ∂{x′ | (x′, ℓ, p) |=

←

k′}
)
> d and

dist
(
x, {x′ | (x′, ℓ, p) |=

←

k′}
)
= 0.

What this assumption implies is that limit sets of trajectories have to be

properly contained in the Pre of a controller for the system to be able to activate

this controller. For example, the robot should first move so that an object is well

within the reach of its arm before it reaches out and grasps it; enabling this action

on the boundary of the arm’s workspace forces the arm into kinematic singularities.

A consequence of the above restriction is also that although a controller may be re-

parameterized on the fly (e.g., on the way to the door, decide to go the the center of

the room instead), switching from one controller to another can only happen when

the continuous dynamics have practically settled.

3.3 Transition system representation

With the hybrid system defined, we now move on to defining a transition

system which will serve as an abstraction for the hybrid robot system H of definition

3.1.1. The transition system tracks the transitions between controllers.

Definition 3.3.1 (Finite labeled transition system). T = (Q,ΣT ,∆T ,Q0) consists

of:

• Q is a finite set of states;

37

• ΣT is a finite alphabet;

• ∆T ⊆ Q× ΣT ×Q is the transition relation;

• Q0 ⊂ Q is the set of initial states.

If (v, σ, v′) ∈ ∆T we may write v
σ−→T v′. Let Στ ⊂ ΣT and call the tran-

sitions (v, σ, v′) ∈ ∆T for which σ ∈ Στ , silent. Any input word of the form uσw,

where u, w ∈ Σ∗τ (the Kleene closure of Στ) and σ ∈ ΣT \ Στ will be called a com-

posite transition of T if there are q1, . . . , qn ∈ Q, not necessarily distinct, such that

q1
σ1−→T q2

σ2−→T q3 · · · qn−1
σn−1−→T qn and σ1 · · ·σn−1 = u σw. In this case we write

q1
σ
; qn.

We introduce the notion of a valuation map that will be used to construct

the discrete abstraction of the hybrid system 3.1.1.

Definition 3.3.2 (Valuation map). VM : H×P 7→ V ⊆ {1, 0}|AP| is a function that

maps pairs (h, p) of hybrid states and parameters of H, to binary vectors formed by

evaluating each atomic proposition such that whenever (h, p) |= αi, we write v[i] = 1

to denote that the pair (h, p) evaluates true for the ith predicate αi ∈ AP.

We define a relation R on H × V according to which we say that a state

h ∈ H is related to v ∈ V if there exists a p ∈ s(h) such that (h, p) |= v, in which

case we write (h, v) ∈ R.

The discrete abstraction is now defined in a constructive way as follows:

Definition 3.3.3 (Induced transition system). A hybrid agent H induces a finite

labeled transition system T(H) in which:

1. Q ⊂ V is the range of VM for all (h, p) with h ∈ H and p ∈ s(h);

2. ΣT = K ∪ {τk : k ∈ K};

3. Q0 = {v ∈ V | ∃h ∈ H0, p ∈ s(h) : (h, p) |= v};

38

4. (v, σ, v′) ∈ ∆T if

• σ ∈ K ⊂ ΣT , and there exist pairs (h, p) satisfying VM(h, p) = v for

h ∈ H and p ∈ s(h), and (h′, p) satisfying VM(h′, p) = v′ for h′ ∈ s−1(p),
such that h

σ[p]
99K h′;

• σ = τk′ ∈ ΣT \ K, and there exist pairs (h, p) satisfying VM(h, p) = v for

h ∈ H and p ∈ s(h), and (h, p′) satisfying VM(h, p′) = v′ for p′ ∈ s(h),
such that (h, p, k) −→ (h, p′, k′).

Note that if h can take a transition, then all h′ that can give the same

valuation can take the same transition:

Lemma 1. Suppose that (h, p) and (h′, p′) belong in the preimage of v, that is

VM(h, p) = VM(h′, p′) = v. If (h, p, k) → (h, p, k′) for some k, k′ ∈ K, then

(h′, p′, k)→ (h′, p′, k′).

Proof. Writing VM(h, p) = v implies that a specific combination of atomic propo-

sitions are true at state h when the parameter vector is set to p; without loss of

generality, let this set of propositions that evaluate true be {α1, . . . , αm}. From

(h, p, k) → (h, p, k′) we conclude that (h, p) |=
→

k and (h, p) |=
←

k′. It follows that
→

k⊆ {α1, . . . , αm} ⊇
←

k′. Suppose now that VM(h′, p′) = v; this means that the same

set of atomic propositions that are true when the system is at state h with pa-

rameter p, are also true at state h′ with parameter p′. Therefore, we must have

(h′, p′) |=
→

k and (h′, p′) |=
←

k′. According to the definition of T in definition 3.1.1,

(h′, p′, k)→ (h′, p′, k′) ∈ T .

Consistency between the concrete system and its abstraction is established

in terms of a version of weak bisimulation [45].

Definition 3.3.4 (Weak bisimulation of labeled transition systems). Consider two

(labeled) transition systems over the same input alphabet ΣT , T1 = (Q1,ΣT ,→1, I1)

39

and T2 = (Q2,ΣT ,→2, I2), and let Στ ⊂ ΣT be a set of input symbols that trigger

silent transitions. A binary relation R on Q1 × Q2 is a weak bisimulation if for

every (q1, q2) ∈ R,

1. q1
σ
;1 q

′
1 ⇒ ∃ (q′1, q′2) ∈ R : q2

σ
;2 q

′
2,

2. q2
σ
;2 q

′
2 ⇒ ∃ (q′1, q′2) ∈ R : q1

σ
;1 q

′
1.

Then T1 and T2 are called weakly bisimilar and we write T1≈T2.

Although this definition relates models of the same type (transition systems),

we will abuse it slightly when associating a hybrid system with a transition system.

The objects we will relate across systems as well as the transitions considered in this

relation, do not necessarily coincide with actual states and transition maps of the

underlying dynamical systems; the distinction will be made clear in the following

result.

Theorem 3.3.1. There exists a weak bisimulation R between a hybrid robotic agent

H and its induced finite labeled transition system T(H) and in the sense that:

1. If (h, v) ∈ R ⊂ H×Q and h
k[p]
99K h′, then ∃ v′ ∈ Q, v k

; v′ and (h′, v′) ∈ R.

2. If (h, v) ∈ R ⊂ H × Q and v
k
; v′, then ∃ h′ ∈ H such that h

k[p]
99K h′ and

(h′, v′) ∈ R.

Then we write T≈H.

Proof. To prove the first implication, note that (h, v) ∈ R means by definition that

for some p′ in s(h), the valuation map at VM(h, p′) = v. For generality, assume

that p′ 6= p. Since h
k[p]
99K h′, p must also be in s(h) and (h, p) |=

←

k . Therefore

we trivially have (h, p′, k) −→ (h, p, k),1 and thus by definition 3.3.3 there exists a

1 These type of transitions in H correspond to an on-line re-parameterization of
the controller already activated.

40

silent transition v
τk−→T v′′. The existence of the evolution h

k[p]
99K h′, also suggests

that h ∈ s−1(p) and h′ ∈ s−1(p). Let VM(h′, p) = v′. With VM(h, p) = v′′ and

VM(h′, p) = v′ by definition 3.3.3 there must be a transition v′′
k−→T v′. We thus

have a composite transition v
τk−→T v′′

k−→T v′, which means that v
k
; v′ with

VM(h′, p) = v′ ⇔ (h′, v′) ∈ R.

To establish the second implication, observe that if v
k
; v′, then there must

be q, q′ ∈ Q such that q
k−→T q′. Given that (v, h) ∈ R and that v jumps to q

via a series of silent transitions (in which the hybrid state h is preserved), we can

invoke definition 3.3.3 to ensure the existence of an evolution h
k[p]
99K h′ for some

p ∈ s(h) ∩ s(h′), such that VM(h, p) = q and VM(h′, p) = q′. It remains to show

that (h′, v′) ∈ R. By the same token, q′ jumps to v′ by another series of silent

transitions, in which the hybrid state remains at h′. By definition 3.3.3 therefore,

just as we have p ∈ s(h′) and VM(h′, p) = q′ there should also be a p′ ∈ s(h′) such
that VM(h′, p′) = v′, which shows that (h′, v′) ∈ R.

What theorem 3.3.1 implies, is that a controller switching sequence given as

a succession of T transitions —once interlaced with the corresponding silent transi-

tions that “prepare” the activation of these controllers— yields an acceptable input

trace in the transition system. Conversely, an acceptable input trace in the tran-

sition system, once projected on the set of controller symbols (removing the silent

transitions) gives a controller sequence for the hybrid system that is implementable.

This feature is significant because when one wishes to synthesize motion and control

strategies, planning can be performed on the simpler discrete system without wor-

rying about compatibility with the concrete dynamics. In addition, the bisimilarity

result ensures that none of the reachability capabilities of the hybrid system on the

state space partition created by adding and subtracting Pre and Post sets is lost

in the abstraction: whatever transition between these sets the hybrid system can

perform, the discrete system can match.

41

3.4 Application example: how to fetch a printout

In this section we use the abstraction of the mobile robot of figure 1.2(a) to

show how a control plan can be devised for the robot to pick up a printout and

deliver it to the user who sent it to the printer. In principle, the robot must first

go and appropriately “park” in front of the printer location, where the origin of the

global coordinate frame is set. Then, it should pick the printout which is at ppo, and

hand them over to the user at puo .

The robot is assumed modeled in the form of a hybrid robot agent

Hr =
{

X ,L ,P,K,AP, f,←· ,→· , s, T
}

with the model components defined as follows.

• X = {qp, θ, qm, qo} are the continuous states; (qp, θ) ∈ F1 ⊂ R
2 × S1 is the

mobile platform’s position and orientation, and F1 represents the obstacle

free configuration space. The cartesian position of the manipulator is denoted

qm ∈ W(qp) ⊂ R
3 , with W(qp) being the platform-dependent manipulator

workspace; qo ∈ R
3 is the position of object in the environment.2

• L = {g} is a boolean variable g ∈ {0, 1} expressing the state of the gripper.

If an object is held g⇔ 1, otherwise g⇔ 0.

• p = (pp, po) ∈ P ⊂ R
6 is the set of system parameters: pp ∈ R

2 × S1 is

a position and orientation (pose) reference for the platform; po ∈ R
3 is a

direction of approach to the position reference for the manipulated object.

• K = {a, b, c} is the set of discrete system modes, marking the particular con-

troller activated on the robot. Symbol a corresponds to the platform’s nav-

igation controller that moves the robot from an initial point qip to a desired

2 Typically, qo would be part of another hybrid system representing the environ-
ment, which is composed with the robotic agent in parallel. For the purposes of
this example, however, this variable is lumped together with the robot’s states.

42

configuration qdp . Symbol b corresponds to the action of picking up an object

from location po and holding it in a designated “home” position qhm
′′
, the dou-

ble primes denoting that the home position is soecified with respect to the

robot-fixed coordinates. Symbol c corresponds to placing the held object in a

specified position at location po and returning the arm to qhm
′′
.

• AP is an indexed set of atomic propositions {α1, α2, α3, α4}.

– α1 ⇔ qp ∈ pp +Bε, which when true implies that the platform is close to

its reference position.3

– α2 ⇔ qo ∈ po + Bε, which when true implies that the object is in the

neighborhood of location po.

– α3 ⇔ po ∈ W(qp), which when true suggests that reference location po is

within the reachable workspace of the manipulator if its base is located

at qp.

– α4 ⇔ g, is a binary variable indicating the state of the gripper at the

robot’s end effector.

• f is the vector field given by equation (1.1).

• The Pre and Post conditions for each mode k ∈ K are given in table 3.1.

• s
(
(qp, θ, qm, qo, g)

)
= F1 × R

3.

• T is described generically according to the definition, with the note that there

can be no transitions of the form (h, p, b) → (h, p′, b) or (h, p, c) → (h, p′, c),

because no matter of the choice of p′, the Pre and Post of both b and c

3 Bε is a ball of radius ε that accounts for errors such as robustness, sens-
ing/actuation errors, repeatability errors, etc., inherent in any mechanical sys-
tem. So long as the position qp of the robot’s base is close enough to pp upto
within the error Bε, α1 evaluates as true.

43

are incompatible with each other (α4 does not depend on parameters). This

reflects the fact that once the gripper holds something it cannot pick up some-

thing new, and if it has just placed the object somewhere it is not possible to

place the same object somewhere else without picking it up first.

a b c

Pre 1 {α2, α3,¬α4} {¬α2, α3, α4}
Post {α1} {¬α2, α3, α4} {α2, α3,¬α4}

Table 3.1: Pre (
←·) and Post (

→·) conditions for the discrete states of the hybrid

robotic agent in the example. The sets of atomic propositions are in-

terpreted as conjunctions, i.e., {α2, α3,¬α4} ⇔ α2 ∧ α3 ∧ (¬α4), and 1

indicates a tautology.

LetH = X×L. The transition system induced byHr isTr(Hr) = {Q,ΣT ,Q0,∆T}
in which:

• Q = {v|∃h ∈ H, ∃p ∈ s(h) : VT (h, p) = v}

• ΣT = {a, b, c, τa, τb, τc}

• (v, σ, v′) ∈ ∆T if

– σ ∈ {a, b, c}, and there exist a pair (h, p) ∈ H×s(H) with (h, p) |= v and

a h′ ∈ s−1(p), such that h
σ[p]
99K h′ and (h′, p) |= v′.

– σ ≡ τk′ ∈ {τa, τb, τc}, and there exist a pair (h, p) ∈ H × s(H) with

(h, p) |= v and a p′ ∈ s(h) with (h, p′) |= v′, such that (h, p, k) →
(h, p′, k′).

• Q0 = {v ∈ Q | ∃h0 ∈ H0, ∃p0 ∈ s(h0) : VT (h0, p0) = v}.

44

We proceed to show that a meaningful execution in Hr that completes the

desired task has a complete parallel run on Tr. Let us assume that the object to

be manipulated (printout) is at the printer’s output tray denoted pro, which marks

a vector along which the gripper of the robot’s manipulator can grasp the stack

of papers. Suppose that the appropriate “parking spot” for the platform that will

allow the onboard manipulator to pick up papers from the output tray of the printer

is denoted prp. Let the “parking spot” for the platform, next to the desk of the user

who ordered the printout be denoted pup , and the location and orientation on the

desk where the printout is to be delivered, puo . Let the initial parameter assignment

be denoted pi = (pip, p
i
o). In addition, suppose that initially g ⇔ 0 (nothing in the

gripper), and that in this initial state hi, only α1 evaluates true. Also, the initial

value of parameter pio is set outside the workspace of the robot’s arm, so that α3 is

false. This implies that Tr starts at vi = 1000.

45

Figure 3.1: The “fetch the printout” scenario, where the the intermediate desired

configurations for the mobile platform and the manipulator have been

marked.

The reset map can be turned into a mechanism that allows us to control the

execution of the hybrid robotic agent. Control design for the agent, in order for

it to complete the task, is achieved by refining the reset map as in the following

definition:

s(h) =







p1 , (prp, p
i
o) if h = hi,

p2 , (prp, p
r
o) if h = h1 , (prp, q

h
m, p

r
o, 0),

p3 , (pup , p
r
o) if h = h2 , (prp, q

h
m, p

r
p + Cqhm, 1),

p4 , (pup , p
u
o) if h = h3 , (pup , q

h
m, p

u
p + Cqhm, 1),

46

where C is the rotation matrix that maps local manipulator coordinates to the

inertial coordinate system. This refinement of s essentially tells the robot to first

move its platform next the printer at prp, then reach out and pick up the printout at

position pro, then navigate to the user desk at pup , and finally leave the printouts at

position puo .

To see how this works, note that reseting the parameter vector to p1 =

(prp, p
i
o), results in (hi, p

r
p) |=

←
a , which triggers a transition inHr of the form (hi, p

i, a)→
(hi, p

1, a). As a result, the hybrid agent moves to discrete location a and the robot

starts moving to reposition its platform at location prp where the hybrid state will

read

h1 = (prp, q
h
m, q

r
o, 0) .

Just after the transition occurs in Hr the valuation map gives VM(hi, p
r
p) = 0000,

and consequently a silent transition occurs in Tr: 1000
τa→T 0000.

As soon as the robot stabilizes its platform around prp, α1 becomes true again.

System Hr had its hybrid state evolve from hi to h1 due to controller ua parame-

terized by p1:

(hi, a)→ (hi, a)
a[p1]
99K (h1, a) .

During this time the transition system Tr performs the following jumps:

1000
︸︷︷︸

VM (hi,pi)

τa→T 0000
︸︷︷︸

VM (hi,p1)

a→T 1000
︸︷︷︸

VM (h1,p1)

.

The reset map triggers a parameter change and activates pick controller since its

Pre is satisfied. At that point, the reset map dictates that p := p2 = (prp, p
r
o). Then

immediately we have α2 evaluating true, and since pro ∈ W(prp) it will also be that α3

is true as well. The change of parameters triggers a transition in Hr from controller

ua to controller ub, since all the predicates in Pre(b) are true, and parameterized

by p2, controller ub will move the manipulator to grasp the printout and return the

47

arm in its home position qhm. After the maneuver is completed, the hybrid agent

finds itself at state

h2 = (prp, q
h
m, p

r
p + C qhm, 1) ,

Then for the hybrid agent we can write

(h1, a)→ (h1, b)
b[p2]
99K (h2, b) .

Then the reset map suggests that the parameter po changes from pio to pro. This

forces the transition system to first take a silent transition, and then a b-transition:

1000
︸︷︷︸

VM (h1,p1)

τb→T 1110
︸︷︷︸

VM (h1,p2)

b→T 1011
︸︷︷︸

VM (h2,p2)

.

Further reset of parameter and similar description of transitions in the hybrid and

transition system for the goto and place controllers. Once this is completed, the

reset map indicates that p := p3 = (pup , p
r
o), which triggers a transition in Hr from b

back to a and a subsequent motion of the platform from r to pup :

(h2, b)→ (h2, a)
a[p3]
99K (h3, a) ,

where

h3 = (pup , q
h
m, p

u
p + C qhm, 1) .

The transition system now undergoes the following sequence of jumps:

1011
︸︷︷︸

VM (h2,p2)

τa→T 0011
︸︷︷︸

VM (h2,p3)

a→T 1001
︸︷︷︸

VM (h3,p3)

.

Once at h3, the reset map changes po and sets it to puo , that is p := p4 =

(pup , p
u
o). With this parameter assignment, predicate α3 becomes true, and now the

conditions in the Pre of c are satisfied triggering a transition in Hr from a to c.

Right after the reset, the manipulator reaches out to location puo and releases the

printout there before returning back to its home position. If we denote

h4 = (pup , q
h
m, p

u
o , 0) ,

48

we can express the changes in Hr as follows:

(h3, a)→ (h3, c)
c[p3]
99K (h4, c) .

In Tr, on the other hand, we will see the following transitions:

1001
︸︷︷︸

VM (h3,p3)

τc→T 1011
︸︷︷︸

VM (h3,p4)

c→T 1110
︸︷︷︸

VM (h4,p4)

.

hi

h1

h1

h2

h2

h3 h3

h4

a

b
c

Post(a)

Pre(b)

Pre(b)

Post(b)

Pre(c)
Pre(c)

Post(c)

(a) Evolution of the hybrid dynamics.

Post(b)

Pre(b)

Post(c)

Pre(c)Pre(a)

Post(a)

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

τa
τa

a

a

τb b

τc

c

(b) Evolution of the discrete dynamics.

Figure 3.2: The hybrid robotic agent and its abstraction. Continuous evolution

and discrete jumps in the hybrid system are mirrored in the silent

and regular transitions of the transition system. Each state in the

transition system defines a region on the continuous domain where a

specific combination of atomic propositions evaluates true.

The execution of the plan to fetch the printout on the hybrid agent Hr and

its abstraction on the transition system Tr are shown in figure 3.2. To match the

transitions of the two systems, one can associate the silent transitions τk in the

transition system with the jumps between the discrete modes of the hybrid system,

and the continuous evolutions in the hybrid system with the regular transitions in

the transition system.

49

3.5 Summary

Stability-based discrete abstractions translate the continuous-time descrip-

tion of a stable dynamical system into a purely discrete form, enabling behavioral

modeling using discrete models of computation. This type of abstraction discards

the details of state trajectory evolution, preserving only its reachability properties.

Based on these ideas, hybrid systems within a certain class can be abstracted into

finite state transition systems. Such a finite transition system is shown to be observ-

ably bisimilar to the concrete hybrid dynamics it originated from, a fact that ensures

that all input strings that the transition system accepts, have a corresponding im-

plementation on the concrete hybrid system. This result allows motion planning

and behavior design for the hybrid system to be performed on the discrete system,

without concerns about the continuous dynamics of the former.

The transition system exhibits discrete controller transitions executed in a

sequence. Such sequences can be considered to be taken from a set that consists of

all possible controller sequences executable in the actual hybrid system. Analysis of

this set of finite controller sequences leads us to a study of strings of symbols and

the sets they form (stringsets, or languages) from a formal language point of view

as will be done in the next chapter.

50

Chapter 4

A SYNERGY BETWEEN ROBOTICS AND

LINGUISTICS

In this chapter we study strings of controller sequences accepted by the dis-

crete transition system. The sets of strings called “languages” have been mathemat-

ically studied by linguists and computer scientists in formal language theory since

the 1950’s [24]. Since, the discrete transition system 3.3.1 generates sets of strings,

these strings make up a some formal language. This allows us to use the tools de-

veloped in formal language theory to study hybrid robotic systems that generate

languages by means of control switches.

To start with, we first describe controller sequences that are obtained from the

systems that we consider in this work. In the following, we define the term feasible

controller sequence by considering strings of controller sequences s = σ{1}σ{2} . . . σ{n}

accepted by the transition system. These strings do not include silent transitions,

but only the observable transitions.

Definition 4.0.1 (Feasible controller sequence). A controller sequence s = σ{1}

σ{2} . . . σ{n} where σi ∈ ΣT/Στ , i = 1, 2, . . . n, is called a feasible controller sequence

if ∃q0 ∈ Q0, qn ∈ Q and ∃τσ{i} ∈ Στ ∪∅ such that for a σ = τσ{1}σ{1}τσ{2}σ{2} . . .

τσ{n}σ{n}, we can have q1
σ
; qn.

51

A sequence of controllers s = k{1}k{2} . . . k{n} is said to be feasible if for

each k{i} ∈ K, the Post of controller k{i} satisfies the Pre of the next controller

k{i+1} ∈ K. i.e.:

→

k
{i}[p{i}] =

←

k
{i+1}[p{i+1}] ∀i = 1, 2, . . . , n− 1.

Notice that there can be multiple controllers whose pre-conditions are satis-

fied after execution of the last controller, provided an appropriate parameter can be

found. This leads to non-determinism in the trajectories in H and allows the robot

to “select” an appropriate control sequence according to the task specification. The

set of all feasible strings form the language of the system. Although, owing to non-

determinism, there could be many strings that T accepts, all the strings belong to

the same language that we denote L(T) as the language of the transition system.

Definition 4.0.2 (Alphabet and language of the hybrid robotic system ΣT, L(T)).

The language L(T) of a transition system T is the unique set of all feasible controller

sequences. The unique set of all controller transitions is said to form the alphabet

for the language ΣT ⊆ ΣT/Στ .

For example, the alphabet for the example of section 3.4 is ΣT = {a, b, c},
that denote goto, pick and place respectively. We will use the notation {A,B,C}
to mean the same as {a, b, c} in the rest of our treatment.

In this chapter, we analyze the languages L(T) to find their place in the

Chomsky hierarchy. Such analysis enables us to characterize the complexity of

representing and operating on such languages. Furthermore, we also find the position

of these languages within the Sub-regular hierarchy to be able to identify specific

analysis tools that can be applied on these languages.

4.1 Preliminaries

Let Σ represent the alphabet with Σ∗ the Kleene-star of Σ, which is the set

of all possible finite strings (including the empty string ǫ) over Σ. The term ‘word’

52

and ‘sequence’ are used interchangeably and is defined as a generic sequence taken

from Σ∗. The Kleene-star of Σ is closed under the binary operation of concatenation

i.e.: if s1, s2 ∈ Σ∗, then s1s2 ∈ Σ∗. We write Σ≤k to denote the set of all words with

length up to k. The length of a word w ∈ Σ∗ is denoted by |w|, and |w|l represents
the number of times the string l (which is essentially a controller sequence) appears

in the word w. For example, |baaa|ba = 1 and |baaa|aa = 2. The symbols ⋊ and ⋉

denote the start and end of a string respectively. Given a set A, the notation 2A

means the power set of A, that is, the set of all subsets of A.

Definition 4.1.1 (cf. [8]). A deterministic automaton, denoted by G, is a tuple

G = (Q,Σ, δ, I,F)

where:

1. Q is the set of states;

2. Σ us the finite set of events associated with the transitions in G;

3. δ : Q × Σ → Q is the transition function: δ(x, σ) = y means that there is a

transition labeled by event σ ∈ Σ from state x ∈ Q to state y ∈ Q; in general,

δ is a partial function on its domain;

4. I is the initial state;

5. F ⊆ Q is the set of marked states or final states.

The automaton is said to be deterministic because δ is a function over Q×Σ.

In contrast, the transition structure of a nondeterministic automaton is defined by

means of a relation over Q × Σ × Q or, equivalently, a function from Q × Σ to 2Q

[8]. We use the term automaton to refer to a deterministic automaton in this work.

Definition 4.1.2 ([42]). The following is the definition of a regular expression over

an alphabet Σ.

53

1. Any letter of the alphabet is a regular expression.

2. ǫ (the null word) and ∅ (the empty set) are regular expressions.

If ψ and χ are regular expressions, then all of the following are regular expres-

sions:

3. (ψ) ∪ (χ) - the union.

4. (ψ) ∩ (χ) - the intersection.

5. ∼ (ψ) - the complement with respect to the set of all words over Σ, with respect

to Σ∗ i.e., ∼ (ψ) = Σ∗ − (ψ).

6. (ψ) (χ) - the concatenation of (ψ) with (χ).

7. (ψ)∗ - closure, iteration, star closure or Kleene Star.

4.1.1 The Chomsky hierarchy

In this section, we define terms from the Chomsky hierarchy. We will only

focus on automata theoretic definitions here which is also the focus of our work.

Only the definitions that we will be using later for our language analysis have been

presented formally, while an informal description of others is presented to famil-

iarize the reader with the Chomsky hierarchy. Other definitions, including formal

mathematical descriptions can be found in [24] and [8].

Definition 4.1.3 ([24]). A finite state automaton is a five tuple

A = (Q,Σ, δ, q0, F).

1. Q is a finite nonempty set of states;

2. Σ is the finite nonempty set of inputs;

3. δ is a function from Q× Σ into Q called the direct transition function;

54

4. q0 ∈ Q is the initial state;

5. F ⊆ Q is the set of final states.

Definition 4.1.4 (Regular languages). A language is regular if it can be represented

by a regular expression. Regular languages are also defined as the class of languages

accepted by a finite state automata.

Definition 4.1.5 (cf. [24]). A pushdown automaton is a finite state automaton with

an input tape and an auxiliary pushdown stack (or LIFO: last-in, first-out store). A

transition from a given state to a new state occurs by reading an input symbol and a

symbol from top of the pushdown stack and writing n ≥ 0 symbols on the top of the

stack. When n = 0, the top symbol from the stack is erased. Languages accepted by

non-deterministic pushdown automata are called context-free languages.

Definition 4.1.6 (cf. [24]). A Turing machine is simply a finite-state control device

(or a finite state automaton) with a finite but potentially unbounded read-write tape.

Languages accepted by linear bounded Turing machines 1 are called context-sensitive

languages.

Definition 4.1.7 (cf. [24]). A recursively enumerable language is the one for which,

for every word (a string) x, there exists a procedure for recognizing the string x, i.e.,

the procedure should halt after a finite length of time, accepting x, if x is in the

language. If x is not in the language, the procedure might halt, rejecting x, or it

may never halt.

4.1.2 The Sub-regular hierarchy

The Sub-regular hierarchy [56], [54] is a hierarchy of set inclusions of lan-

guages within the regular language class of the Chomsky hierarchy. It consists of

two branches - the local branch the piecewise branch (figure 4.1).

1 Turing Machines with a read-write tape bounded by left and right end markers.
The machine cannot read or write beyond these markers and stays within bounds.

55

Definition 4.1.8 (k-factor). The k factors of a word w ∈ Σ∗ are defined as the set

of k-length contiguous sub-sequences of a word:

Fk(w) :=







v ∈ Σk |∃u, x ∈ Σ∗;w = uvx, if |w| ≥ k

w otherwise.

For example, the 3-factors of PQPPQR are {PQP,QPP, PPQ, PQR}.

Definition 4.1.9 (k-Local Grammar). A k-local grammar is a set of the permissible

k-factors.

GSLk
⊆ Fk({⋊} · Σ∗ · {⋉})

For example, a 2−local grammar is GSL2
= {⋊a, aa, ab, ba, bb, b⋉}. Note that

the 2-factors not in this list {⋊b, a⋉} are the forbidden factors.

Definition 4.1.10 (cf. [54]). A stringset L over Σ is strictly k-local iff there is

some strictly k-local grammar G over Σ (for some k) such that L is the set of all

strings that satisfy G. Hence the all the words in a strictly k-local language can be

generated by the corresponding k-local grammar.

L(GSLk
) := {w ∈ Σ∗ | Fk(⋊ · w ·⋉) ⊆ GSLk

} .

Continuing the example of section 3.4, the language of GSL2
is all words

which do not contain the forbidden factors. As a regular expression, this language

is aΣ∗b. The set of all strictly k-local languages forms the language class denoted

LSLk
. In other words,

LSLk
= {L(G) | GSLk

⊆ Fk({⋊} · Σ∗ · {⋉}}.

56

Definition 4.1.11 (cf. [54]). A language is said to be locally k-testable (LTk) iff

any two words in the language have exactly the same set of k-factors. The formal

definition is below:

L ∈ LTk iff ∀w, v ∈ Σ∗, whenever

Fk(⋊ · w ·⋉) = Fk(⋊ · v ·⋉)

then either v, w ∈ L or v, w /∈ L.

While SLk languages can forbid some sequences from occuring in a language,

they cannot require some sequence to occur. This is one example of the additional

expressivity of the LTk class has over the SLk class.

Definition 4.1.12 (cf. [54]). A language is said to be locally threshold k-testable

up to t (LTTk,t) iff deciding whether a word belongs to the language depends only on

its multiset of k-factors up to some maximum counting threshold t. In other words,

languages may distinguish words with the same set of k-factors, provided they have

different number of occurances of these factors (up to some threshold t).

∃k, t such that ∀w, v ∈ Σ∗, if

∀l ∈ Fk(⋊ · w ·⋉) ∪ Fk(⋊ · v ·⋉)

either |w|l = |v|l or both |w|l ≥ t and |v|l ≥ t

then w ∈ L⇔ v ∈ L.

The proper inclusion relationships between these three classes (SL, LT, LTT)

are summarized in Figure 4.1 [42].

While k-factors capture adjacency relationships, subsequences capture long-

distance relationships between symbols.

Definition 4.1.13 (cf. [55]). A subsequence of a word is defined as permutations

of the strings formed from the symbols of the word while retaining their relative

ordering. Hence a subsequence w of string v is a partial order over Σ∗ defined as:

w ⊑ v iff w = σ1σ2 . . . σn and v ∈ Σ∗σ1Σ
∗σ2Σ

∗ . . .Σ∗σn

57

where σi ∈ Σ.

For example, if v = PQPPQR, then P ⊑ v, QR ⊑ v, PPR ⊑ v and so on.

Definition 4.1.14 (cf. [55]). For w ∈ Σ∗, we define the subsequences of length k

of a word w as the k-subsequences Pk(w).

Pk(w) := {v ∈ Σk|v ⊑ w}

Similarly we can also define subsequencs of length up to k as:

P≤k(w) := {v ∈ Σ≤k|v ⊑ w}

For example, P3(PQPPQR) = {PQP, PQQ, PPP, PQR, PPR,QQR,QPQ,
QPR,QPP}.

Definition 4.1.15 (cf. [55]). A string w belongs in a Strictly k-Piecewise (SPk)

Language if its k-subsequences are a subset of the permissible k-subsequences that

define the grammar of the SPk language.

GSPk
⊆ P≤k(Σ

∗)

L(GSPk
) = {w ∈ Σ∗ | P≤k(w) ⊆ GSPk

}
LSPk

= {L(G) | G ⊆ P≤k(Σ
∗)}

.

For example, let Σ = {a, b, c} andGSP2
= {ǫ, a, b, c, aa, ab, ac, ba, bb, bc, cb, cc}.

GSP2
is the set of permissible subsequences up to length 2. Note that the only for-

bidden sequence is ca. Then the language of this grammar is all words which do not

contain this forbidden subsequence (i.e a is not permitted after c so bbcbbbbbbbbbabbb

does not belong to this language). As a regular expression, we can write this lan-

guage as ∼ (Σ∗cΣ∗aΣ∗).

Simon [56] introduced the Piecewise Testable languages.

58

Definition 4.1.16 (cf. [55]). A word w belongs in a Piecewise k-Testable (PTk)

language iff deciding whether it belongs to the language depends only on its subse-

quences up to length k P≤k(w).

L ∈ PTk iff ∀w, v ∈ Σ∗, whenever

P≤k(w) = P≤k(v)

then either v, w ∈ L or v, w /∈ L.

The class of PTk languages properly includes the strictly k-piecewise lan-

guages (figure 4.1).

Definition 4.1.17 (cf. [42]). A language is star free (SF) if it can be represented

by a star free regular expression, a regular expression that can be written without the

use of the Kleene-Star “∗”. 2 The mathematical definition for the star free class is

as follows:

L ∈ SF if ∃n such that ∀u, v, w ∈ Σ∗

if uvnw ∈ L, then uvn+1w ∈ L.

Star free languages are a super-class of the local and piecewise branches of

the Sub-regular hierarchy (figure 4.1). In other words, the languages that belong to

either of the PTTk,t or the LTk classes also belong to the star free class, though the

converse is not true.

4.1.3 Regular robotic languages

Constraints in controller sequencing naturally arise due to Pre-Post com-

patibility. In general, the following constraints, each defining a different language

are seen to be generated from the hybrid systems that we consider.

2 The class of star free languages is sometimes called the non-counting languages.
There are several equivalent definitions of this class, including automata theo-
retic and algebraic ones [42].

59

1. Adjacency constraints: The Pre and Post conditions of controllers impose

adjacency constraints between controllers. Such adjacency relationships nat-

urally gives rise to an SL2 grammar of feasible controller pairs. For example,

for a robot capable of navigating (controller A), picking up objects (B) in its

workspace and placing (C) them elsewhere, AB, BA, AA and BC belong to

the SL2 grammar whereas pairs like BB, CC do not. This happens due to the

inability of the robot’s end effector or gripper to grasp another object while

one picking operation has just been completed or place an object just after a

preceding place control action. However, we can see that with AB, BA and BC

within the SL2 grammar, the sequence BAAAB belong to the SL2 language

whereas it does not form a feasible controller sequence since there must be a

C controller that “frees” the gripper before another B can be executed. We

denote the class of SL2 languages generated by SL2 grammars of controller

pairs as LSL2
.

2. Long Distance (LD) Constraints: In addition to the adjacency relationships

there could be long distance dependencies between two or more controllers.

This happens due to inability of a controller to change the value of enough

predicates so that the Pre of the other controller can be satisfied. The example

3.4 exemplifies this constraint with a long distance constraint between B and C

which says that there must be a C between adjacent Bs and vice-versa. These

long distance dependencies can be captured using what we call the LD-based

SL2 grammar GLD generating the languages LLD. The SL2 behavior arises

in our case since we only consider the long distance constraints between pairs

of controllers. There could be more than two controllers that exhibit coupled

LD behavior, but we keep such SLk based LD languages for arbitrary k as

future work.

To define the LLD we first introduce a projection function ELD acting on a

60

string w as the (sub-)string containing only the symbols/controllers that are

LD dependent. ELD ignores all other symbols from the string w other than the

LD constrained symbols that “we care about.” Let T be this set of controllers

that exhibit LD dependencies and define the grammar GLD ⊆ T × T . Then,

with w = σ1σ2 . . . σn,

ELD(w) = v1v2 . . . vn where vi = σi iff σi ∈ T
ǫ otherwise.

(4.1)

The empty string ǫ serves to “erase” the controllers that are not long distance

dependent. The language of a grammar is defined as

L(GLD) = {w ∈ Σ∗ | F2(ELD(w)) ⊆ GLD}. (4.2)

The LD-based SL2 languages LLD are defined as the languages generated from

the LD constraints.

LLD,T = {L(GLD) | GLD ⊆ T 2}.

It is to be noted that LLD,T are not SL2 languages, but LD-based SL2 lan-

guages which means that the substrings of LD dependent controllers T of the in-

put string follow an SL2 grammar. The strings satisfying GLD are of the form

U∗1 v1U
∗
2 v2U

∗
3 v3 . . . vnU

∗
n with vi ∈ T . It is then seen that GLD ⊆ GSL2 when we

observe that any of the U∗i ∈ (Σ − T)∗ can be the empty symbol ǫ. We use the

notations LLD,T and LLD interchangeably to denote the LD-based SL2 languages.

The class of hybrid systems we consider only exhibits these two constraints

in general. Thus the languages generated by an intersection of these two constraints

form a regular robotic language.

Definition 4.1.18 (Regular robotic languages (RRLs)). Regular robotic languages

are the class of languages generated by the finite transition system of definition 3.3.1.

They are defined as any finite intersection of languages from LSL2
∪ LLD,T .

61

Example 1. Referring back to the example in section 3.4, the Pre-Post compat-

ibility between two controllers naturally define an SL2 grammar that can be derived

by looking at table 3.1. The language for the hybrid system can be generated by

considering that the controllers follow the following constraints.

• Starting string constraint:

For example, strings beginning with A∗C are not in the language since to

activate the C, we need α4 to evaluate as true, and that can only be affected

using a B controller.

• SL2 pattern based on Pre and Post conditions: For example, controllers A

and B can be concatenated iff the Post of A satisfies the Pre of B. Similar

argument holds for other combinations of controllers.

• Long distance dependency constraints:

For example, there must be a C between two Bs: again a restriction due to the

α4 predicate since the robot cannot pick two objects at the same time.

The Pre-Post based SL2 grammar for our example is the set (⋊⋉,⋊A,⋊B,

AA,AB,BC,AC,CA,CB,C⋉, B⋉, A⋉). However, the language of the robot is

not derived from this grammar since otherwise invalid strings like BABACAC or

CAAB would belong to the language. The first one violates the long-distance depen-

dency constraints while the latter violates the starting string constraint.

From these constraints, the regular robotic language for our robot can be writ-

ten in the form of a regular expression

L = A∗(BA∗CA∗)∗(ǫ ∪ B)A∗ (4.3)

which denotes a robot capable ot picking and placing objects in its workspace any

number of times. Also, by definition of regular languages, the language considered

here is indeed expressible as a regular expression and is hence a regular language.

62

In section 4.2, we show that regular robotic languages are star free languages.

It is also shown in section 4.2 that the robotic languages are neither locally threshold

testable nor piecewise testable.

4.2 Position of RRLs within the Sub-regular and the Chomsky hierar-

chies

Since the robotic languages can be expressed by finite state automata (FSA),

they fall under the regular class of languages in the Chomsky hierarchy. Here we are

interested in exploring the Sub-regular class of languages. We first show that regular

robotic languages are star free languages. We then show by counter-examples that

words in a regular robotic pattern belong neither to the local nor the piecewise

branches of the Sub-regular hierarchy (figure 4.1).

Theorem 4.2.1. The regular robotic languages belong to the star free class of the

Sub-regular hierarchy.

Proof. The robotic language we have is

RRL = {L1 ∩ L2 ∩ L3 · · · ∩ Ln|Li ∈ LSL2
∪ LLD,T for i = 1, 2, . . . , n} (4.4)

Since the star free class is closed under intersection [42] and it is known that LSL2

is a sub-class of star free it only remains to be shown that LLD,T is star free.

An intersection of these languages will then also be star free by the closure under

intersection property.

Consider any language L in LLD,T . By definition there is some set of long

distance dependent controllers T and GLD ⊆ T 2 such that L = L(GLD). It follows

that any word w in L is of the form

w = (Σ− T)∗v1(Σ− T)∗v2 . . . vn(Σ− T)∗

63

where vi ∈ T . But (Σ− T)∗ =∼ (Σ∗T Σ∗) and Σ∗ =∼ ∅ since ∅ is the empty set.

Using these two relationships, we can write w as:

w =∼ (∼ ∅T ∼ ∅)v1 ∼ (∼ ∅T ∼ ∅)v2 . . . vn ∼ (∼ ∅T ∼ ∅)

which is a regular expression without the Kleene-star. Hence, the languages LLD,T

are star free.

Regular

Non Counting = Star-Free

Piecewise Testable

Strictly Piecewise

contiguous subsequences sequences

Regular

Robotic

Languages

Strictly Local

Locally Testable

LTTk,t

Figure 4.1: Location of regular robotic languages within the Sub-regular hierarchy.

Theorem 4.2.2. The robotic patterns do not belong to the local branch of the Sub-

regular hierarchy.

Proof. It is sufficient to prove this theorem with a counter-example. Referring to

the definition of the locally threshold testable class, we observe that ∀k and any t,

consider w = AkBAkBAkCAk /∈ L and v = AkBAkCAkBAk ∈ L. Then, we have

Fk(⋊ · w ·⋉) = Fk(⋊ · v ·⋉) and ∀l ∈ Fk(⋊ · w ·⋉) it is the case that |w|l = |v|l
To better understand this argument, take for example l = Ak−1B which is a

k−factor of both v and w, and we see that |w|Ak−1B = |v|Ak−1B = 2. Therefore, two

64

words v and w have the same k-factors and the same number of them, but do not

both belong to the example robotic language. Therefore, by definition of the LTT

class, this language is not in LTT. Also, it is to be noted that since the the LT and

the SL classes are sub-classes of the LTT class, we have actually proved that the

robotic languages do not belong to any of these classes and hence, do not belong to

the local branch fo the Sub-regular hierarchy.

Theorem 4.2.3. The regular robotic languages do not belong to the piecewise branch

of the Sub-regular hierarchy.

Proof. Again, to prove this theorem, we use a counter-example and it suffices to

show that the languages do not belong to the piecewise testable class for any k, since

the strictly piecewise class is a subclass of piecewise testable class (see figure 4.1).

Consider w = Ak(BAkBAkCAkCAk)k /∈ L and v = Ak(BAkCAkBAkCAk)k ∈ L.

But, we can see that P≤k(w) = P≤k(v). Hence, even though the two words have

exactly the same k-subsequences (for any k), not both the words are in the language

and are therefore not piecewise testable by definition.

4.3 Autosegmental patterns

In this section, we aim to show some parallels between a branch of phonology

called the autosegmental phonology. We present a rather informal description of

autosegmental phonology here and show how such a theory can be appropriately

applied to regular robotic languages. The work in this section can be treated as an

inspiration to carry out a more formal future work in this area.

Autosegmental phonology ([21]) treats phonological representations as multi-

dimensional, having several tiers. This study of phonology, essentially breaks up

strings of phonological patterns into (autonomous) phonological tiers according to

some property of interest. For example, one might be interested in studying the

65

vowel sounds in a word, without regards to the consonents, so that the phonolog-

ical tier of interest in the Finnish word päivää ‘hello’, simply the vowels in order

without the consonants: äiää [26]. There are two tiers in this example that can be

represented as shown in figure 4.3. The tiers are connected with association lines

to show the relationship between them. In the case of figure 4.3, this relationship

shows the position of the vowels from which the upper tier is formed.

p ä i v ä ä

ä i ä ä

Figure 4.2: Autosegmental tiers of the finnish word päivää.

While phonologists use autosegments to describe phonological language rules,

we can exploit the concept to describe long distance and other constraints arising due

to interacting controllers. The local and long-distance constraints found in regular

robotic languages form autonomous languages, i.e., each constraint defines a lan-

guage that can be constructed independently, without a knowledge of the language

constructed by the other constraints. The contribution of each of the languages

formed by the constraints, can be shown on tiers, which simplify the analysis of the

language. With such a logical decomposition of the language into tiers, we see that

a simple cross product of the automata, accepting the language on each tier, gives

us the robotic language. Such representation allows us to look at the individual

languages and their intersection on a single representation.

We now move on to see how regular robotic languages can actually be cap-

tured by autosegmental patterns.

Definition 4.3.1. We define an SL2 base tier as the set of all controllers that

exhibit adjacency constraints (see section 4.1.3) for an SL2 language. In other

66

words, the set of controllers that define a language from the class LSL2
, form the

SL2 base tier.

There are as many base tiers, as the the SL2 languages forming the regular

robotic language (4.4).

Definition 4.3.2. An LD based SL2 tier T is defined as the set of controllers that

exhibit long-distance dependencies, which describe a language from the class LLD,T

defined in equation (4.2).

We have already seen that an intersection of languages in LSL2
∪LLD,T gives

us regular robotic languages (4.4). This implies that intersection of all the languages

on the tiers in the autosegmental domain gives regular robotic languages.

Figure 4.3 shows some example strings and how the the idea of the tiers for

our fetch-a-printout example enable us to identify invalid strings in the language.

The LD based tier consists of the symbols B and C. The first two strings in the figure

violate the starting string and long distance constraints (see example 1) respectively.

Although the examples in figure 4.3 show only two tiers, it is possible to have

multiple tiers with each of them addressing a different set(s) of constraints. Violation

of constraints in any of the tiers puts the string out of the particular language.

67

A A C A A B

✗ C B

A B C A B A A B

B C ✗ B B

A B A A C A A B

B C B

X

Figure 4.3: Figure describing how autosegments enable a clear understanding of

acceptable words.

4.4 Automata representation of regular robotic languages

This section serves to translate the regular expressions and the languages for

the constraints discussed in section 4.1.3 to an automata theoretic framework.

4.4.1 Automata for the SL2 languages

A Strictly 2-Local language naturally arises due to interacting ←−· and −→· of

the hybrid system H. Hence, the set of propositions for the robot example given in

68

table 3.1 are a basis to construct an SL2 grammar. For example, the SL2 grammar

for our fetch-a-printout example can be derived from table 3.1:

G = {⋊A,⋊B,AA,AB,BA,AC,CA,CB,BC,C⋉, B⋉, A⋉,⋊⋉}. (4.5)

We can define an automaton that would accept the language of the SL2

grammars generated from the adjacency constraints as:

Definition 4.4.1 (SL2 Automaton). An automaton accepting an SL2 language gen-

erated by the Pre-Post conditions can be defined as a five tuple AB = (QB,ΣB, IB,FB, δB) .

• ΣB = ΣT /Στ is the set of controllers that define transitions between the states

of the automaton.

• QB = {q ⇔ ∃y ∈ ΣB ∪ {⋊} such that yq ∈ G } are the set of states. We

mark the states according to the last transition that is taken in the automaton.

Here, we use the same symbol for the states and the controllers so that if the

last transition taken in the automaton is B, then the system reaches state B.

• IB ⊆ QB are the initial states. For our transition systems, these are the

states that allow transitions that can satisfy the ←−· of any controller with only

a change of parameter. In other words, all the states that allow the execution

of a controller by only taking a silent transition (and not a concrete transition)

are the initial states.

• FB = QB are the final states. Assuming the robotic system can stop after

execution of any controller, we have all states as final states.

• δB(q1, q2) = q2 ⇔ −→q1 |p1 = ←−q2 |p2 for some p1, p2 ∈ P is the transition function

that is based on the Pre-Post compatibility between two controllers.

For the grammar of equation (4.5), this definition gives us the automaton

shown in figure 4.4.

69

B CA
B

A

C

B

C

A

A

Figure 4.4: SL2 base tier automaton for the grammar (4.5)

It can be seen from figure 4.4 that all A transitions get the machine only to

state A. In other words, the machine keeps track of the last transition seen. This is

a property unique to automata that accept SL2 languages.

4.4.2 Automata for the LD-based SLk languages

The LD-based SLk tier is basically a projection of the the base language that

contains only the symbols that exhibit long-distance dependencies. The LD-based

SLk tier represents LD-based SLk languages LLD,T (equation (4.2)). The automata

that accept these languages are defined below.

Definition 4.4.2 (LD based strictly k-local automata). For a tier

T ⊆ ΣB,

the LD based strictly k-local automata can be defined as a five tuple

AT = (QT ,ΣT , IT ,FT , δT) ,

where

• QT = T ∪ {⋊} are the set of states that are marked by the symbols in the tier

and a start symbol ⋊.

• I = {⋊} is the start state.

70

• FT = QT are the final states, assuming all states are final.

• δT (q, a) = a⇔ a ∈ T and qa ∈ G
δT (q, a) = q ⇔ a /∈ T is the transition function that only allows a transition

to another state marked by the last controller run on the system, if the con-

troller being run belongs to the tier. Otherwise, the machine takes a self-loop

transition to the same state (for controllers that do not belong in the tier).

The difference between the SL2 automata and the LD based SLk automata

should be noted. While in the former, the states can be determined by looking at

only the last transition of the system, the states of the latter are determined by the

last transitions that belong to the tier. Transitions not in the LD tier do not change

the state of the LD based SLk automata.

Figure 4.5 shows the automaton for the example of section 3.4. The LD-based

grammar for this example is:

GLD = {⋊B,BC,CB,C⋉, B⋉,⋊⋉} ⊆ GB (4.6)

B C

⋊

B

C

B

A

A A

Figure 4.5: Tier based automaton.

At this point, we have all the ingredients to obtain the robotic type patterns

we have been seeking. The languages are described by the product automaton

described below.

71

4.4.3 The product automaton

The regular robotic languages are an intersection of SL2 and tier based SL2

patterns as shown in equation (4.4):

RRL = {L1 ∩ L2 ∩ L3 · · · ∩ Ln|Li ∈ LSL2
∪ LLD,T for i = 1, 2, . . . , n}

Since the product of automata generating these patterns gives us a language that is

the intersection of these patterns ([8, page 84]), the product of the SL2 automata

and the tier-based SL2 automata gives us the product automaton that describes

regular robotic languages.

Here we define the product of two automata G1 = (Q1,Σ1, δ1,Γ1, I1,F1) and

G1 = (Q2,Σ2, δ2,Γ2, I2,F2). The languages accepted by each automaton is denoted

L(G1) and L(G2) respectively. The definition for the product can be generalized

for more than two automata following the same syntax as for the product of two

automata.

Definition 4.4.3 (cf. [8]). The product of two automata G1 and G2 is defined as:

G1 ×G2 = (Q1 ×Q2,Σ1 ∩ Σ2, δ, I1 × I2,F1 ×F2) (4.7)

where

f((q1, q2), σ) :=







(f1(q1, σ), f2(q2, σ)) if σ ∈ Γ1(q1) ∩ Γ2(q2)

undefined otherwise.






. (4.8)

For the example of section 3.4, the automaton that describes the regular

robotic language (4.3) is a product of the two automata in figures 4.4 and 4.5. The

product automaton for this example is shown in figure 4.6.

72

A⋊

AB

AC

BB

CC

B

A

C

C

B

A

B

A

A

A

Figure 4.6: The product automaton.

It can be seen that the language accepted by this automaton is

L = A∗(BA∗CA∗)∗(ǫ ∪ B)A∗

as intended.

4.5 Summary

Representing strings of controller sequences in terms of languages offers the

benefit of applying computational analysis and formal language theory to the sys-

tems that generate these controller sequences. We have shown that regular robotic

languages can be expressed as regular expressions, which corroborates the fact that

the languages are indeed regular. Regular languages can be accepted by finite state

automata without the use of any additional memory, as is required by automata

accepting richer classes of languages in the Chomsky hierarchy. This requires less

computational effort when performing operations on regular robotic languages.

73

Furthermore, in our quest to find the smallest known class to which regular

robotics languages belong, we have been able to prove that this class is the star free

languages. Star free languages offer many useful properties such as closure under in-

tersection, union and concatenation that can be exploited to study interactions with

other robotic languages, thereby opening doors to a study of multi-robot planning

using a linguistics framework. Additionally, star free expressions can be represented

by a wide number of equivalent tools including automata, logic formulas, etc., as

described in [42], which widens the horizons for study of hybrid robotic systems

with asymptotically stable continuous dynamics.

Lastly, we have shown that our languages can be represented in terms of

autosegmental tiers, similar to those seen in autosegmental phonology. Although

we did not explore this area in detail, the parallels between linguistics and robotics

that we have drawn in this area offer an additional tool to exploit for the analysis

of robotic systems that generate regular robotic languages. In the least, we have

been able to decompose the star free robotic language into SLk based ones that offer

immediate benefits in terms of automata operations. For example, SLk languages

are learnable by a special class of language learners called string extension learners

[25].

74

Chapter 5

CASE STUDY

In this chapter we apply the ideas developed so far to control an actual robot,

modeled as a hybrid system. We express the ideas through a physical realization of

the example introduced in section 1.1 of chapter 1, and explained in section 3.4 of

chapter 3. We use the same notation as used in the previous chapters. Therefore,

we would recommend that the reader refers to the sections mentioned above before

proceeding with this case study.

5.1 Coordinate frames and equipment

We use three cartesian coordinate frames, that will described shortly, for this

case study. The two major hardware components that we use in our experiments are

a physical robot and a motion capture system that provides feedback on cartesian

coordinates of the robot and elements in the workspace environment. Each of these

are briefly introduced in this section.

5.1.1 Coordinate frames

We use three orthogonal cartesian coordinate frames CFglobal, CFrotated and

CFlocal, to express different quantities as we proceed in this case study. Unit vectors

(i, j,k), (i′, j′,k′) and (i′′, j′′,k′′) are assumed along the three orthogonal directions

of coordinates CFglobal, CFrotated and CFlocal respectively (see figure 5.1). Also we

express a, a′ and a′′ to denote the representation of a, with respect to the frames

CFglobal, CFrotated and CFlocal respectively.

75

Refering to figure 5.1, the global coordinate frame CFglobal is fixed at a point

in the workspace where we perform the experiments, with the k direction pointing

perpendicular outward from the ground, and the i and j directions arbitrarily fixed

at the origin Og. The origin Og is an arbitrarily chosen point in the workspace. The

robot-fixed coordinate frame CFlocal has its origin Ol fixed at the point where the

arm connects with the base on the robot. The j′′ direction of frame CFlocal is parallel

to the k direction of CFglobal, while the i′′ direction in CFlocal extends parallel to

the robots base towards the forward direction of motion.

Workstation WorkstationWorkstation

Workstation

User User User

User

i′

k′

i

j

k,j′
Og

θ

Robot

i′′
k′′

j′′Ol

po
θo

Figure 5.1: Coordinate frames: CFglobal with unit vectors (i, j,k) and origin O;

CFlocal with origin at O’ and unit vectors (i′′, j′′,k′′); and CFrotated

with (O, i′, j′,k′) as the origin and unit vectors respectively.

We use a third coordinate frame CFrotated, with the origin Og, that coincides

76

with the origin of the coordinate frame CFglobal. The coordinate frame CFrotated is

used to aid in the inverse dynamics calculations while calculating the robot’s pose

for a desired end-effector position in section 5.2.1. The unit vectors of CFrotated are

parallel to those of CFglobal with k′ = j′′ = k, i′ = i′′ (figure 5.1).

5.1.2 The robot

The physical robotic system that we use in our experiments is the “Corobot”

developed by Coroware Inc. It is a mobile platform with an on-board robotic arm

capable of reaching out and grasping objects (figure 5.2). The Corobot uses a

skid-steer mechanism to change direction of motion. Three degrees of freedom are

available in the arm, which moves in a plane perpendicular to the robots base: two

to control the lower and upper limbs of the manipulator, and one degree of freedom

provided at the wrist for a roll action. We assume the robot’s base to be parallel to

the ground at all times.

The corobot uses pre-written C and C++ libraries associated with the Player

project. The Player environment is a user-interface that interacts with the sensors

and motor encoders to drive the robot. To control the robot’s base position, Player

accepts linear and angular velocity commands (v, ω) and the kinematics of the base

are ẋ = v cos θ, ẏ = v sin θ, θ̇ = ω. The arm can be controlled by specifying the

coordinates of the end effector as (x′, y′, φ) where (x′, y′) are coordinates of the end-

effector in the body-fixed coordinates CFlocal, and φ is the orientation of the gripper.

We fix the input φ to a constant value of 90o or π/2c for picking up and delivering

an object. Hence, φ remains constant and we will not use it during subsequent

controller design.

5.1.3 ViconTM motion capture system

The position of the robot and the elements in the environment (the printer,

print-out, etc.) are tracked using an infra-red motion capture system built by

77

ViconTM . This system consists of infrared cameras that capture real-time data

from reflective markers glued to the surface of the robot. Different objects are dis-

tinguished from each other using different patterns of these infra-red markers on

each object. The ViconTM system then returns the three dimensional position coor-

dinates of each of the markers in a real-time stream. The coordinates are specified

with respect to a user-specified global coordinate frame that can be calibrated and

changed in any area within theirline-of-sight of the infrared cameras. Relevant po-

sition data from the ViconTM system is used by the corobot while running each

controller, making it a closed-loop dynamical system.

5.2 Modeling a mobile manipulator

We denote qp as the set of planar cartesian coordinates of the point on robot

platform (base) where it is attached to the onboard arm. Hence qp , (x, y), and the

angle of orientation of the base with respect to the global x-direction is denoted θ.

This is the angle between the i and i′ unit vectors as shown in figure 5.1.

78

i′

j′

Gripper tracking markerReflective marker
for Vicon motion
capture system

dg

hb

Figure 5.2: The Coroware Corobot used in our case study

The lengths of the lower and upper arm of corobot are denoted l1 and l2

respectively, and their angles with respect to the horizontal plane are denoted θ1 and

θ2 respectively (see figure 5.3). The robot accepts two dimensional coordinate data

x′′e , y
′′
e expressed in CFlocal, as an input to steer its arm to the desired location. (The

arm moves only along a plane with the z′′e coordinate remaining equal to zero.) The

coordinates of the end effector with respect to CFlocal are hence, qm , (x′′e , y
′′
e , 0).

The points qm lie in the workspace of the robot’s arm denoted by W(qp). The

workspace of the arm is a function of the robot’s base position since the workspace

changes with respect to CFglobal as the robot moves around.

To realize the motion and manipulation plan described in the example of

section 3.4, we design three controllers; one for navigating the base, denoted as the

textttgoto controller; and the other two pick and place for controlling the robot’s

arm to pick and place the stack of print-out.

79

• goto: The navigation controller ua is designed by following a potential field

approach. The input to the controller is the set of position and orientation

values pp = (xp, yp, θp) that form a parameter of the hybrid robotic system

(see section 3.4 for the description of the hybrid system). The controller steers

the robot to the specified point with the specified orientation upto within an

allowable error captured as Bε, the ball of radius ε.

• pick: The arm controller ub for picking up objects accepts the input po =

(x′′oi, y
′′
oi, z

′′
oi, x

′′
of , y

′′
of , z

′′
oi) which specifies two (way)points defining a vector of

arm motion to pick up an object, and forms another parameter for the hybrid

system as explained in section 3.4. For the arm to be able to pick an object,

the fore-arm of the robot should be aligned along the vector of approach from

(x′′oi, y
′′
oi, z

′′
oi) to (x

′′
of , y

′′
of , z

′′
of), as specified by po. The controller grips the object

upon reaching (x′′of , y
′′
of , z

′′
of) and returns to its pre-specified “home” position

qhm
′′
.

• place: The arm controller uc for placing objects is very similar to the pick

controller and uses the same parameter po = (x′′oi, y
′′
oi, z

′′
oi, x

′′
of , y

′′
of , z

′′
of) defining

the final position (x′′of , y
′′
of , z

′′
of) to drop the object, as well as the initial posi-

tion (x′′oi, y
′′
oi, z

′′
oi) to specify a vector of approach before the object is released.

The difference between ub and uc is that uc opens the gripper after reaching

(x′′of , y
′′
of , z

′′
of), to release an object held in the gripper, while ub closes the grip-

per to grasp an object. The gripper returns to its home position qhm
′′
after

releasing the object.

The system described above can be brought into the form of the hybrid

robotic agent of definition 3.1.1. For the Corobot, this system is Hr as defined in

section 3.4. Section 3.4 also shows how a meaningful execution in Hr that completes

the desired task, has a parallel run on the abstract finite transition system Tr. We

80

show here how the process described in the example of section 3.4 is physically

realized on the Corobot.

5.2.1 Inverse kinematics

Before we proceed with showing how the plan sketched in section 3.4 can be

executed on the Corobot to fetch a print-out, we have to introduce some mathemat-

ical preliminaries to find out the position and orientation qp of the robot’s base, so

that it can grasp and release objects placed at a specified location po. The six-tuple

po defines two points that determine the direction of gripper motion to pick or place

objects in the workspace. These points, through inverse kinematics, can be used to

calculate the desired position for the robot base qp, which is subsequently used to

assign a valuation to the predicate α3 ⇔ po ∈ W(qp). This predicate is required to

be true in order for the robot to be able to run the pick and place controllers as

seen from table 3.1.

The inverse kinematics problem that we address here can be stated as follows.

If L ≡ (xi, yi, zi) andM ≡ (xf , yf , zf) are two points defining a vector po in the global

coordinate system of the robot’s workspace, find the position and orientation of the

robot base so that:

1. The two points L and M are in the workspace of the arm; i.e., po ∈ W(qp).

2. The gripper remains parallel to the vector po as it moves along it.

The first condition requires that the robot be at an appropriate position and

orientation qp, such that the points po can be reached by the the robot’s gripper.

Since the arm moves in a plane, for the two points to be in W(qp), the base should

be aligned such that its arm moves in the same plane on which the points lie. Thus

the base orientation θ must be θo as shown in figure 5.1.

For the second condition, the robot arm configuration must be similar to the

configuration shown in figure 5.3. The figure shows the arm configuration in the

81

plane of the arm’s motion, just before the Pick or place controllers can be activated.

Essentially, the gripper must approach point (xi, yi, zi) with the angle θ3, as defined

by the angle θ2 that po makes with the horizontal. It must be noted that, with the

base fixed, as the arm moves along vector po, the angle θ3 will change. It must also

be noted that the depth of the gripper dg (see figure 5.2) provides an upper bound

to the length of vector po to avoid interference of the object with the gripper. Then,

since we have po ≤ dg << l1, l2, the variation in the angle θ3 of arm’s approach will

remain small and can be ignored.

θ3

θ1

l1 l2

Ol

i′

k′

j′ (x′0, y
′
0, z

′
0)

(x′1, y
′
1, z

′
1)

G

H

H ≡ (x′

2
, y′

2
, z′

2
)

LH = da

θ2

(xi, yi, zi)

(xf , yf , zf)

|zf − zi|

L

M

N

Figure 5.3: Figure showing alignment of Corobot’s gripper with the approach

vector po.

The inverse kinematics problem then reduces to finding three quantities:

1. The angle of orientation θo along which the robot must align itself, so that

upon alignment θ = θo (figure 5.1).

2. The angle of orientation (θ2) of po in the vertical plane (figure 5.3). Upon

alignment with the gripper, we would need θ3 = θ2 (the gripper is aligned

with vector po) (figure 5.3).

3. The coordinates of the point xo, yo, zo at which the origin O′ of the robot must

lie such that predicate α3 is satisfied.

82

The desired angle of orientation for the robot is easy to calculate. On a plane

perpendicular to the direction k, θo can be calculated as (see figure 5.1)

θo = tan−1
(
yf − yi
xf − xi

)

. (5.1)

To find θ2, considering triangle LMN in figure 5.3, we see that

sin θ2 =
MN
LM

⇔ θ2 = sin−1
|zf−zi|√

(yf−yi)2+(xf−xi)2
.

(5.2)

Finally, we need the position Ol of the origin of the base on the robot. We

start with finding the coordinates (x′2, y
′
2, z
′
2) of point H , assumed to be the end

point of the gripper (figure 5.3). We assume that point H is desired at a distance

of da from the point L (the starting piont of the vector po) (figure 5.3). To proceed

with our calculations, it is convinient to use the coordinate frame CFrotated. As

a reminder, quantities expressed with a prime notation, e.g., (x′2, y
′
2, z
′
2), represent

the values of H expressed in CFlocal, whereas the same quantities without a prime

notation, i.e., (x2, y2, z2), are the corresponding values of H in global coordinates

CFglobal.

Knowing the values of θo and θ2 from equations (5.2) and (5.1), we proceed

as follows. The coordinates of point L in CFrotated are computed as








x′i

y′i

z′i







= R ·








xi

yi

zi







. (5.3)

where R is the rotation matrix

R =








i.i′ j.i′ k.i′

i.j′ j.j′ k.j′

i.k′ j.k′ k.k′







=








cos θ sin θ 0

0 0 1

− sin θ cos θ 0







. (5.4)

83

Next, for θ = θo and θ3 = θ2, the coordinates of point H are computed

geometrically as (figure 5.3)

y′2 = y′i

z′2 = z′i + da · sin θ2
x′2 = x′i − da · cos θ2.

(5.5)

Denoting hb the height of base from the ground (figure 5.2), the coordinates

of Ol can be found as:

y′0 = y′1 = y′2

z′0 = hb

z′1 = z′2 + l2 · sin θ3
x′1 = x′2 − l2 · cos θ3
θ1 = sin−1

(z′
1
−z′

0
)

l1

x′0 = x′1 − l1 · cos θ1.

(5.6)

These coordinates of Ol can be found in CFglobal by using the coordinate

transformation: 






x0

y0

z0







= RT ·








x′0

y′0

z′0







. (5.7)

5.2.2 Simple tasks: fetching a print-out

With our experiments, we want to show how an appropriate switching stategy

for in a transition system can be implemented on a underlying hybrid system such

as the Corobot robotic platform. To show this, we encode each controller, ua, ub

and uc as C++ functions that accept the parameters pp for controller ua, and pm for

the arm controllers ub and uc as input. These C++ functions implement the part

of the hyrbid system Hr that closes the loop around the continuous dynamics. In

the main body of the algorithm, the function calls give rise to controller sequencing

and transitions in the transition system Tr.

84

Since transitions in system Tr have a parallel run in Hr, we plan our task

using the transition system Tr. To fetch a printout, the pseudo-code of the main

program looks like the following:

START % Marks the beginning of the main program.

ua(p
r
p) % prp = (xrp, y

r
p, θ

r
p) is the robot’s base position at the printer.

ub(p
r
o) % pro = LrM r is the vector along the stack of print-out.

ua(p
u
p) % prp = (xup , y

u
p , θ

u
p) is the base position at user location.

uc(p
r
o) % puo = LuMu is the vector defining the delivery place for the print-out.

ua(p
h
p) % php = (xrp, y

r
p, θ

r
p) is the parking position for the corobot.

STOP % End of program

Figure 5.4: The “fetch the printout” scenario, implemented on a Corobot.

85

The experiments were conducted in the Cooperative Robotics Lab of the Uni-

versity of Delaware, the floor plan of which looks like the one in figure 5.4 1. To fetch

a print-out from the printer located at prp = (xrp, y
r
p, θ

r
p), the controller ua is run by a

function call that executes the closed loop dynamics for navigation. After the robot

reaches the printer location, the post-condition of the goto controller is satisfied

and the C++ function for ua returns the command to the main program. Next, the

parameter is reset to pro so that the pre-condition of controller ub is satisfied, and the

robot picks up the stack of print-out, thereafter returning the command from the

ub function to the main program. The program proceeds with the sequence ua uc ua

to deliver the print-out and return to its parking location.

1 This is the same as figure 3.1

86

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this work we start with a hybrid dynamical system with asymptotically

stable dynamics and parameterized attractors that can be abstracted to a purely

discrete, finite transition system. We show that the discrete transition system is

weakly bisimilar to the hybrid system it originated from. This result allows motion

planning and behavior design for the hybrid system to be performed on the discrete

system, without concerns about the continuous dynamics of the former.

Having the continuous dynamics of the hybrid system abstracted, we can

focus our attention to sequences of controllers that lead to an overall behavior of

the system. The finite transition system, induced by the hybrid system, can be

represented by a directed graph such as a finite state automaton that accepts a reg-

ular language of sequences of controllers that can be executed on the hybrid system.

Controller sequencing is possible only when the Pre conditions necessary for the

execution of each controller are satisfied by the Post conditions of the preceeding

controller(s) in the sequence. Local and long-distance constraints arise due to such

Pre and Post condition compatibility between controllers, and each constraint

defines a class of language that can be analyzed using formal language theory. We

identify that the local constraints for controller concatenation can be captured by

strictly local languages of the Sub-regular hierarchy, while the long-distance con-

straints are captured by, what we define as, the tier-based strictly local languages.

87

An intersection of languages from these two classes give us regular languages of

strings of controller sequences that can be executed on the hybrid system. We call

this class of languages, regular robotic languages. Regular languages exhibit supe-

rior decidability and closure results than other language classes in the Chomsky

hierarchy, which offer computational advantages when performing operations with

them.

In addition to showing that the classes of robotic languages are (sub)regular,

this work identifies that regular robotic languages belong to the star free class of the

Sub-regular hierarchy. Such a result identifies a unique domain of existing results

on closure properties and set operations corresponding to star free languages, that

can be applied to regular robotic languages as well. Such findings open doors for

future work on studying compositions, decompositions and language learning using

regular robotic languages.

6.2 Future work

Several subregular languages including the strictly local languages have been

studied in terms of admitting the construction of efficient algorithms (learners) that

can identify them in the limit from positive data [25]. These learning algorithms

are promising for identifying languages in the class that we study, especially if we

apply them to the local and tier-based local language patterns. Showing that regular

robotic languages are learnable in a string extension learning framework offers an

immediate future area of research with the benefits of enabling a robotic system to

construct models of external processes in its environment by observing a sequence

of events in it. This work would be a step toward further automation of a planning

and control design synthesis.

Furthermore, the concepts of languages and automata, presented in this work,

pave the way for an algebraic analysis of regular robotic languages. A mathematical

study of the finite state machines for the subregular patterns would give new insights

88

on the kinds of mathematical and set operations that can be performed on such

patterns. Such mathematical analysis of hybrid systems from a viewpoint of the

controller strings they admit, can be useful for composing and decomposing models

that describe behaviors of groups of homogeneous or heterogeneous robotic systems,

working in teams.

Finally, we were able to identify some parallels between regular robotic lan-

guages and autosegmental patterns seen in computational phonology. A deeper

study of autosegmental phonology can help apply trajectory optimization rules on

strings of hybrid system controllers, based on sound-pattern optimizations studied

by linguists.

89

BIBLIOGRAPHY

[1] R. Alur and D.L. Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[2] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas. Discrete abstractions
of hybrid systems. Proceedings of the IEEE, 88(7):971–984, July 2000.

[3] Rajeev Alur, Thao Dang, and Franjo Ivančić. Predicate abstraction for reach-
ability analysis of hybrid systems. ACM Transactions on Embedded Computer
Systems, 5:152–199, February 2006.

[4] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.J. Pappas.
Symbolic planning and control of robot motion. Robotics and Automation Mag-
azine, IEEE, 14(1):61–70, 2007.

[5] C. Belta, V. Isler, and G.J. Pappas. Discrete abstractions for robot motion plan-
ning and control in polygonal environments. IEEE Transactions on Robotics,
21(5):864–874, 2005.

[6] R.W. Brockett. On the computer control of movement. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 534–540
vol.1, April 1988.

[7] W.L. Brogan. Modern Control Theory. Prentice Hall, 2 edition, 1991.

[8] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[9] N. Chomsky. Three models for the description of language. IEEE Transactions
on Information Theory, 2(3):113–124, September 1956.

[10] Noam Chomsky. On certain formal properties of grammars. Information and
Control, 2(2):137–167, 1959.

[11] D.C. Conner, A.A. Rizzi, and H. Choset. Composition of local potential func-
tions for global robot control and navigation. In Proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol-
ume 4, pages 3546–3551 vol.3, 2003.

90

[12] R.A. Decarlo, M.S. Branicky, S. Pettersson, and B. Lennartson. Perspectives
and results on the stability and stabilizability of hybrid systems. Proceedings
of the IEEE, 88(7):1069–1082, July 2000.

[13] Magnus Egerstedt. Motion Description Languages for Multi-Modal Control in
Robotics, volume 4, pages 75–89. Springer Berlin / Heidelberg, 2003.

[14] G.E. Fainekos, H. Kress-Gazit, and G.J. Pappas. Temporal logic motion plan-
ning for mobile robots. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 2020–2025, 2005.

[15] E. Frazzoli and F. Bullo. On quantization and optimal control of dynamical
systems with symmetries. In Proceedings of the IEEE Conference on Decision
and Control, volume 1, pages 817–823, Las Vegas, NV, December 2002.

[16] E. Frazzoli, M. A. Dahleh, and E. Feron. Maneuver-based motion plan-
ning for nonlinear systems with symmetries. IEEE Transactions on Robotics,
21(6):1077–1091, December 2005.

[17] Paul Gastin and Denis Oddoux. Fast LTL to büchi automata translation.
In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Computer Aided
Verification, volume 2102 of Lecture Notes in Computer Science, pages 53–65.
Springer Berlin / Heidelberg, 2001.

[18] A. Girard and G.J. Pappas. Approximation metrics for discrete and continuous
systems. IEEE Transactions on Automatic Control, 52(5):782–798, 2007.

[19] A. Girard and G.J. Pappas. Hierarchical control system design using approxi-
mate simulation. Automatica, 45(2):566–571, 2009.

[20] Antoine Girard and Colas Le Guernic. Zonotope/hyperplane intersection for
hybrid systems reachability analysis. In Magnus Egerstedt and Bud Mishra,
editors, Hybrid Systems: Computation and Control, volume 4981 of Lecture
Notes in Computer Science, pages 215–228. Springer Berlin / Heidelberg, 2008.

[21] John Anton Goldsmith. Autosegmental phonology. Ph.D. dissertation, Mas-
sachusetts Institute of Technology. Department of Foreign Literatures and Lin-
guistics., 1976.

[22] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with
PVS. In Orna Grumberg, editor, Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 72–83. Springer Berlin / Heidelberg,
1997.

91

[23] Sumit Gulwani and Ashish Tiwari. Constraint-based approach for analysis of
hybrid systems. In Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, volume 5123 of Lecture Notes in Computer Science, pages 190–203.
Springer Berlin / Heidelberg, 2008.

[24] M.A. Harrison. Introduction to formal language theory, volume 312. Addison-
Wesley, 1978.

[25] Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 897–906, Up-
psala, Sweden, July 2010. Association for Computational Linguistics.

[26] Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. Tier-based strictly local
constraints for phonology. Submitted, 2011.

[27] J.P. Hespanha. Uniform stability of switched linear systems: extensions
of LaSalle’s invariance principle. IEEE Transactions on Automatic Control,
49(4):470–482, 2004.

[28] Gerard J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23:279–295, May 1997.

[29] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison Wesley, 2 edition,
November 2000.

[30] John E. Hopcroft and Jeffrey D. Ullman. Formal languages and their relation to
automata. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1969.

[31] D. Hristu-Varsakelis, M. Egerstedt, and P.S. Krishnaprasad. On the structural
complexity of the motion description language MDLe. In Proceedings of the
42nd IEEE Conference on Decision and Control, volume 4, pages 3360–3365
vol.4, 2003.

[32] H.K. Khalil. Nonlinear systems, volume 3. Prentice Hall New Jersey, 2002.

[33] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
The International Journal of Robotics Research, 5(1):90–98, 1986.

[34] Marius Kloetzer and Calin Belta. A fully automated framework for control of
linear systems from ltl specifications. In João Hespanha and Ashish Tiwari,
editors, Hybrid Systems: Computation and Control, volume 3927 of Lecture
Notes in Computer Science, pages 333–347. Springer Berlin / Heidelberg, 2006.

92

[35] Y. Koren and J. Borenstein. Potential field methods and their inherent limi-
tations for mobile robot navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1398–1404 vol.2, April 1991.

[36] B.H. Krogh. A generalized potential field approach to obstacle avoidance con-
trol. In Proceedings of the International Robotics Control Conference, pages
1150–1156, 1984.

[37] G. Lafferriere, G. J. Pappas, and S. Yovine. A new class of decidable hybrid
systems, volume 1569. Springer, 1999.

[38] D. Liberzon. Switching in systems and control. Springer, 2003.

[39] J. Lygeros. Lecture notes on hybrid systems. In Notes for an ENSIETA work-
shop, 2004.

[40] V. Manikonda, P.S. Krishnaprasad, and J. Hendler. A motion description lan-
guage and a hybrid architecture for motion planning with nonholonomic robots.
In Proceedings of the IEEE International Conference on Robotics and Automa-
tion, volume 2, pages 2021–2028, May 1995.

[41] Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State Ex-
plosion Problem. Ph.D. dissertation, Carnegie Mellon University, Department
of Computer Science, May 1992.

[42] Robert McNaughton and Seymour A. Papert. Counter-Free Automata. Se-
ries#65. The MIT Press, 1971.

[43] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[44] Robin Milner. An algebraic definition of simulation between programs. In
Proceedings of the 2nd International Conference on Artificial Intelligence, pages
481–489, Stanford, CA, USA, September 1971. Stanford University.

[45] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, 1st edition, June 1999.

[46] K. Ogata. Modern control engineering. Prentice Hall, 2009.

[47] G.J. Pappas. Bisimilar linear systems. Automatica, 39(12):2035–2047, 2003.

[48] S. Pettersson and B. Lennartson. Stability and robustness for hybrid systems.
In Proceedings of the 35th IEEE Conference on Decision and Control, volume 2,
pages 1202–1207 vol.2, December 1996.

93

[49] S. Pettersson and B. Lennartson. Stabilization of hybrid systems using a min-
projection strategy. In Proceedings of the 2001 American Control Conference,
2001.

[50] J.L. Piovesan, H.G. Tanner, and C.T. Abdallah. Discrete asymptotic abstrac-
tions of hybrid systems. In Proceedings of the 45th IEEE Conference on Deci-
sion and Control, pages 917–922, 2006.

[51] André Platzer and Edmund Clarke. Computing differential invariants of hybrid
systems as fixedpoints. Formal Methods in System Design, 35:98–120, 2009.

[52] Chetan Rawal, Herbert G. Tanner, and Jeffrey Heinz. (Sub)regular robotic
languages. Submitted, 2011.

[53] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial poten-
tial functions. IEEE Transactions on Robotics and Automation, 8(5):501–518,
October 1992.

[54] J. Rogers and G.K. Pullum. Aural pattern recognition experiments and the sub-
regular hierarchy. In Proceedings of 10th Mathematics of Language Conference,
pages 1–7, 2007.

[55] James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David
Wellcome, and Sean Wibel. On languages piecewise testable in the strict sense.
In Christian Ebert, Gerhard Jäger, and Jens Michaelis, editors, The Mathe-
matics of Language, volume 6149 of Lecture Notes in Computer Science, pages
255–265. Springer Berlin / Heidelberg, 2010.

[56] Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata The-
ory and Formal Languages, volume 33 of Lecture Notes in Computer Science,
pages 214–222. Springer Berlin / Heidelberg, 1975.

[57] M. Sipser. Introduction to the Theory of Computation. International Thomson
Publishing, 1996.

[58] Fabio Somenzi and Roderick Bloem. Efficient Büchi automata from LTL formu-
lae. In E. Emerson and A. Sistla, editors, Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 248–263. Springer Berlin /
Heidelberg, 2000.

[59] Olaf Stursberg and Bruce H. Krogh. Efficient representation and computation
of reachable sets for hybrid systems. In O. Maler and A. Pnueli, editors, Pro-
ceedings of the 6th international conference on Hybrid systems: computation
and control, pages 482–497, Berlin, Heidelberg, 2003. Springer-Verlag.

94

[60] P. Tabuada. Symbolic sub-systems and symbolic control of linear systems. In
44th IEEE Conference on Decision and Control., pages 18–23, 2005.

[61] P. Tabuada. Approximate simulation relations and finite abstractions of quan-
tized control systems. Hybrid Systems: Computation and Control, pages 529–
542, 2007.

[62] P. Tabuada and G.J. Pappas. Linear time logic control of discrete-time linear
systems. IEEE Transactions on Automatic Control, 51(12):1862–1877, 2006.

[63] H. Tanner and G.J. Pappas. Simulation relations for discrete-time linear sys-
tems. In Proceedings of the IFAC World Congress on Automatic Control, pages
1302–1307, 2002.

[64] Herbert G. Tanner, Chetan Rawal, Jie Fu, Jorge L. Piovesan, and Chaouki T.
Abdallah. Finite asymptotic abstractions for hybrid systems with stable con-
tinuous dynamics. Discrete Event Dynamic Systems (submitted) 2010.

[65] Y. Tazaki and J. Imura. Finite Abstractions of Discrete-time Linear Systems
and Its Application to Optimal Control. In 17th IFAC World Congress, pages
10201–10206, 2008.

[66] C.J. Tomlin, I. Mitchell, A.M. Bayen, and M. Oishi. Computational techniques
for the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001,
2003.

[67] Moshe Vardi. An automata-theoretic approach to linear temporal logic. In
Faron Moller and Graham Birtwistle, editors, Logics for Concurrency, volume
1043 of Lecture Notes in Computer Science, pages 238–266. Springer Berlin /
Heidelberg, 1996.

[68] Moshe Y. Vardi. An automata theoretic approach to automatic program verifica-
tion. Yorktown Heights, N.Y. : International Business Machines Inc., Thomas
J. Watson Research Center, 1986.

[69] Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of
some basic operations on regular languages. Theoretical Computer Science,
125(2):315–328, 1994.

95

