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ABSTRACT

In applications of 3-D printing, production rates and product quality are en-

hanced by increased printing speeds. A polymer feedstock is fed through the hot end

of the 3-D printer, which operates at a set temperature. Since some amount of heating

time is necessary for the polymer to become pliant, there is an upper bound on the

flow velocity before it remains too rigid to be extruded. The hot end is comprised of a

cylinder that feeds directly into a tapered nozzle immediately prior to extrusion. In this

study, we model the effects of this geometry in both amorphous and crystalline poly-

mers. We consider the former case, a heat transfer problem, in an idealized tapered hot

end (without cylindrical portion) using separation of variables to provide an analytical

temperature profile. We consider the latter case, a Stefan (moving boundary) prob-

lem, in three geometries (a cylinder, a taper, and a combined system) using the heat

balance integral method to provide an analytical approximation for the temperature

profile. We develop several different conditions based on these temperature profiles

to predict maximum velocity. In amorphous polymers, the model fails to predict the

experimental data due to limitations from the considered geometry. In crystalline poly-

mers, using the exit temperature of the hot end yields a model that adheres well to

the experimental data regardless of the geometry considered.
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NOMENCLATURE

When appropriate, units are listed in terms of length (L), mass (M), time (τ),

and temperature (T ). If a symbol appears both with and without tildes, the symbol

with tildes has units whereas the one without is dimensionless. The location where a

notation is first introduced is also listed.

Variables and Parameters

A: area of heat transfer through the melt front, units L2, (4.3).

a: dimensionless constant used in crystalline model, (4.14).

B(z): dimensionless piecewise constant function used to describe the surface

radius in the combined hot end case, (4.66).

C: coefficient for general solution of an ODE in the amorphous case,

(3.9).

c: a negative proportionality constant, (4.58).

cL: specific latent heat of melting, units L2/τ 2, (4.3).

cP : specific heat capacity of polymer, units L2/ (τ 2T ), (2.1).

D: coefficient for the series solution to the heat equation used in the

amorphous model, (3.15).

f(z): function used to discuss small-Pe asymptotics in the crystalline case,

(4.34).

g(z): function used to discuss small-α asymptotics in the crystalline case,

(4.38).

h(z): function used to discuss large-σ asymptotics in the crystalline case,

(4.43).

H: vertical length of portion of hot end, units L, Assumption 2.
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k: thermal conductivity, units ML/ (τ 3T ), (2.1).

`: integer used to discuss numerics, §4.5.3.

M(a, b, x): confluent hypergeometric functions of the first kind, (3.9).

m: indexing variable, (3.17);

scaling exponent, (4.34).

N : index of largest necessary eigenvalue of the Sturm-Liouville problem

in the amorphous case, (3.25).

n: indexing variable, (3.12);

scaling exponent, (4.38).

P : dummy variable, (4.27a).

Pe: Péclet number, (2.6).

Q: volumetric flow rate, units L3/τ , (2.2).

q (r̃): heat flux, units M/τ 3, (4.3).

R̃ (z̃): radius of outer surface of hot end, units L, Assumption 2.

r̃: radial coordinate, units L, (2.1).

St: Stefan number, (4.7).

s̃ (z̃): melt front radius, units L, §2.

T̃ (r̃, z̃): temperature, units T , (2.1).

t̃: temporal coordinate, units τ , (2.1).

U(a, b, x): confluent hypergeometric functions of the second kind, (3.9).

V (z̃): vertical (flow) velocity, units L/τ , Assumption 4.

w(z): logarithm of the normalized melt front radius, (4.42a).

X(x): function of radial coordinate used in the amorphous case, (3.7).

x: scaled square of normalized radial coordinate, (3.5).

Y (y): function of radial coordinate used in the amorphous case, (3.3).

y: normalized radial coordinate, (2.10).

Z(z): function of vertical coordinate used in the amorphous case, (3.3).

z̃: vertical coordinate, units L, (2.1).

α: dimensionless temperature at heater, (2.8b).
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β: normalized nozzle exit radius, (2.5).

γ: decay constant for the approximate surface radius function used in

the amorphous case, (3.4).

∆T : differential between transition and room temperature, units T , (2.4).

∆z: step in vertical coordinate used to discuss numerics, §4.5.

∆σ: step in normalized melt front radius used to discuss numerics, §4.5.

ζ: dummy variable, (3.36).

η(z): function containing information on the dependence of the melt front

on the surface radius, (4.25b).

Θ(y, z): heat function used in amorphous case, (3.1).

λ: eigenvalue of the Sturm-Liouville problem in the amorphous case,

(3.7a).

µ: some real number, (3.5d).

ν: some real number, (3.7c).

ε: normalized radial position used in the exit temperature condition for

the crystalline model, (4.54).

ε: aspect ratio of cylindrical portion of the hot end, Assumption 2.

ξ: dummy variable, (3.41).

ρ: polymer density, units M/L2, (2.1).

σ(z): normalized melt front radius, (4.9).

ς: dummy variable, (4.27a).

φ: angular coordinate, (2.1).

ϕ: dummy function, (4.2).

dummy variable, (4.35a).

χ: variable used in the exit temperature condition for the crystalline

model, (4.55).

ψ(z): function defined to save computational expense in the crystalline

model, (4.47).

ω: dummy variable, (4.46a).
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Other Notation

0: as subscript on w, z, σ, and ψ, denotes an initial condition for an

asymptotic solution for the melt front developed for the crystalline

model, (4.27).

cyl: as subscript on H, denotes vertical length of the cylindrical portion

of the hot end, Assumption 2.

end: as subscript on z, denotes the vertical position of the exit of the hot

end, (2.5).

g: as subscript on T , denotes the the glass-rubber transition tempera-

ture, §3.1.

i: as subscript on T , denotes the initial temperature, (2.4).

m: as subscript on T , denotes the melting temperature, §4.1.

max: as subscript on R, denotes the maximum of R over the vertical length

of the hot end, Assumption 2;

as subscript on T , denotes (dimensional) temperature of the heater,

(2.8b).

min: as subscript on R and V , denotes the minimum of a function over the

vertical length of the hot end (2.5).

noz: as subscript on H, denotes vertical length of the tapered portion of

the hot end (the nozzle), (2.5).

p: as subscript on q, T , and ϕ, denotes property in pliant region, (2.8b).

r: as subscript on q, T , and ϕ, denotes property in rigid region, (2.8a).

[·]s̃: denotes the magnitude in the discontinuity of · at the melt front,

(4.2).

t: as subscript on T , denotes the extrusion threshold temperature,

(3.27).

∗: as subscript on T , denotes the pliancy transition temperature, (2.4).

〈·〉: denotes the cross-sectional average of ·, (3.27).

·̄: denotes the cumulative cross-sectional average of ·, (3.34).
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+: as subscript on s, denotes the limit as r approaches s from above,

(4.2).

−: as subscript on s, denotes the limit as r approaches s from below,

(4.2).
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Chapter 1

INTRODUCTION

1.1 Motivations

Additive manufacturing (AM) is an area of increasing academic interest in recent

decades. The development of these technologies has been motivated by the increasing

scope of their practical applications in fields such as aerospace, automotive design,

biomedical engineering, energy technologies, and rapid prototyping [1]. There are

various types of AM such as powder bed fusion, where fine particles are fused together

layer-by-layer, and polymerization, where monomers are bound forming polymer chains

of a desired structure. The type of AM of interest in this study is fused deposition

modeling (FDM) (also known as 3-D printing) where a nozzle deposits layers of molten

material onto a substrate.

In applications of 3-D printing, the extrusion rate is a critical factor affecting

the quality of manufactured products. Typically, higher printing speeds are desired

because faster printing means that the temperature of deposited polymer layers will

have been reduced less by ambient conditions when it comes time to deposit the next

layer. This increased sublayer temperature helps facilitate binding to extruded polymer

and thus improves the quality and durability of products [2, 3, 4]. Quicker printing

also reduces processing time [5, 6]. There are several factors that limit the maximum

extrusion velocity. The extruded polymer is heated as it travels through the hot end

of the 3-D printer extruder (Figure 1.1). Therefore, if the velocity of the polymer is

increased, then the heating time, and thus the total heat load delivered to the polymer,

is decreased. This can result in the polymer being too rigid to be extruded through

the tapered nozzle of the hot end by the insertion pump. There are other problems

1



associated with exceeding a maximum extrusion rate, such as the development of what

is known as “shark skin” where the surfaces of deposited layers are distorted by elastic

surface instability [7]. This study will primarily focus on insertion pump failure due to

excess rigidity in the flowing polymer.

Figure 1.1: Cross-section of half of hot end in dimensional coordinates (not to scale).

Light grey is rigid (glass or crystalline) polymer, medium grey is pliant (rubber or

melted) polymer, and dark grey is the heater.

A recent article [8] developed a relationship between the failure (maximum) ve-

locity and hot end temperature for acrylonitrile butadiene styrene (ABS), poly(lactic

acid) (PLA), and poly(lactic acid)-polyhydroxybutyrate copolymer (PLAPHA). In this

study, a master curve was developed that can be used to find the failure velocity for a

particular operating temperature, or vice versa, given a particular set of polymer prop-

erties and hot end specifications. Another article [5] gave a more rigorous description of

the mathematical development of this master curve. The model developed was shown

to agree with experimental data; however, some aspects of the model require further

investigation. First, the model bases failure velocity on temperature averages in the hot
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end. The motivation for these criteria is that below a certain temperature the polymer

viscosity will be too low for extrusion; however, attempts to model failure velocity on

a viscosity-based model showed less agreement with experimental data [5]. Second,

the model ignores the narrowing of the hot end at the nozzle and merely bases failure

conditions on the temperature before the inlet of the nozzle. Third, when consider-

ing the effects of phase changes in crystalline polymers (a Stefan problem), agreement

with experimental data was diminished compared to applying the amorphous model

to these polymers [5]. The amorphous model is designed as a heat transfer problem

that neglects any potential effects of phase changes in the polymer during heating

and thus should be applicable to ABS (an amorphous polymer) but not to PLA or

PLAPHA (crystalline polymers). The focus of this study will be to develop a model

that addresses the latter two concerns.

1.2 Objectives and Overview

We seek to develop models that are not only useful in engineering applications

but also give us a better theoretical understanding of the relevant physical phenom-

ena than current models. This goal entails the development of approximate analytical

solutions to simplified problems rather than sole reliance on numerical solutions. Af-

ter characterizing the temperature profile in each case, we compared different fitting

conditions to experimental data to assess the validity of each model. The conditions

considered are all based on the polymer temperature in part or all of the hot end. Tem-

perature was chosen as a more readily calculable alternative to viscosity, the material

property that is expected to more directly affect the polymer pressure (the state func-

tion that causes insertion pump failure). Since the models considered are correlative,

the physical dependence of viscosity on temperature is sufficient to justify this choice.

All computation was conducted in MATLAB®.

In §2, we describe the physical system in mathematical terms and apply a series

of reasonable assumptions that give way to approximate analytical solutions to the

principal governing equations.
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In §3, we consider the flow of amorphous polymers through a tapered hot end.

This is a heat transfer problem as amorphous polymers do not exhibit a phase transition

during extrusion. We began by simplifying the system using a series of geometric

transformations, which allows for the characterization of the temperature profile using

a standard separation of variables method.

In §4, we consider the flow of crystalline polymers through a cylindrical, tapered,

and combined hot end. This is a type of free boundary problem known as a Stefan

problem since crystalline polymers do exhibit a phase transition during extrusion. After

again utilizing geometric transformations to simplify the problem, we characterize the

temperature profile using the heat balance integral (HBI) method.

This study shows that sole consideration of the tapered portion of the hot end is

not sufficient to estimate a maximum extrusion velocity from the developed threshold

conditions in amorphous polymers. For crystalline polymers, consideration of either the

cylindrical portion of the hot end, the tapered portion of the hot end, or both produces

an empirically accurate model for the maximum extrusion velocity based on the exit

temperature. These results should help engineers to understand the mechanisms of 3-D

printing and optimize printing processes to manufacture better products more quickly.
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Chapter 2

GOVERNING EQUATIONS

The physical model of interest is similar to those of [5, 6] except with a surface

radius that is a function of the vertical space coordinate (Figure 1.1). We consider the

heat transfer through an initially rigid polymer as it flows through an axisymmetric

hot end as governed by the heat equation:

ρcP
∂T̃

∂t̃
= k

[
1

r̃

∂

∂r̃

(
r̃
∂T̃

∂r̃

)
+

1

r̃2
∂2T̃

∂φ2
+
∂2T̃

∂z̃2

]
, (2.1)

where ρ is density, cP is specific heat capacity, k is thermal conductivity, T is temper-

ature, t is time, r is the radial coordinate, φ is the angular coordinate, z is the vertical

coordinate, and tildes denote dimensional quantities.

A full mathematical description of this system would be quite complex and ne-

cessitate numerical solutions [9, 10, 11, 12]. This moves against our goal of a physically

illuminating analytical model. Fortunately, we are not interested in a complete model

but merely a model that predicts the maximum possible extrusion velocity. This sim-

pler goal allows us to apply a number of simplifying assumptions, namely the following:

1. Due to the axisymmetry of the problem, we neglect thermal diffusion in the

angular direction.

2. Due to the small aspect ratio ε = Rmax/Hcyl of the cylindrical portion of the hot

end (and thus the entire hot end), we neglect thermal diffusion in the vertical

direction [5, 6].

3. We are interested in the stationary problem and thus consider the steady-state

flow developed after all transients have decayed away.
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4. We assume that the flow velocity V varies only in the z̃-direction (See Figure 1.1).

This is a realistic assumption near the inlet of the hot end because the inserted

polymer fiber is slightly smaller than the tube, and hence will slide easily inside it.

Once the polymer becomes pliant and liquid-like, it will develop into a Poiseuille

or non-Newtonian flow profile. We ignore the details of the flow profile in the

r̃-direction and assume V (r̃, z̃) is the average velocity at z̃ over r̃ ∈
[
0, R̃ (z̃)

]
.

The former two assumptions are easily justified by the experimental setup of interest,

whereas the latter two are made for mathematical simplicity. Assumptions 1 and 2

reduce the number of independent variables in our problem as T̃
(
r̃, φ, z̃, t̃

)
= T̃

(
r̃, t̃
)
.

By Assumption 3, the overall temperature profile in the extruder is constant and thus

t̃ corresponds to the time that a particular polymer element has been in the extruder

since its insertion. To simplify calculation, we use a reference frame that moves with

the flow of polymer. This is equivalent to the change of variables
(
r̃, t̃
)
→ (r̃, z̃), where

t̃ = z̃/V (z̃) = πR̃2 (z̃) z̃/Q, where Q is the volumetric flow rate (a constant by mass

conservation). It follows that

∂

∂t̃
=

Q

πR̃2 (z̃)

∂

∂z̃
, (2.2)

which relies on Assumption 4. Thus, (2.1) becomes

ρcP
Q

πR̃2(z̃)

∂T̃

∂z̃
=
k

r̃

∂

∂r̃

(
r̃
∂T̃

∂r̃

)
, 0 < r̃ < Rmax. (2.3)

The cylindrical portion of the hot end is of length Hcyl with surface radius

R̃(z̃) = Rmax and the tapered portion of the hot end (the nozzle) is of length Hnoz

with surface radius tapering (linearly) from R̃(Hcyl) = Rmax to R̃(Hcyl +Hnoz) = Rmin

(see Figure 1.1). The heater maintains the surface r̃ = R̃(z̃) at a fixed temperature

T̃ = Tmax for z̃ ∈ [0, Hcyl]; there is no heating in the nozzle, but T̃ ≈ Tmax at r̃ = R̃(z̃)

for z̃ ∈ (Hcyl, Hcyl +Hnoz] due to the high thermal conductivity of materials used to

construct the hot end. Note that Tmax > T∗, where T∗ is the pliancy temperature

defined to be the glass-rubber transition temperature for amorphous polymers or the

melting point for crystalline polymers. The polymer is inserted at z̃ = 0 with T̃ = Ti <

T∗.
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Motivated by these conditions, we scale the problem as follows:

r =
r̃

Rmax

, z =
z̃

Hcyl

, T (r, z) =
T̃ (r̃, z̃)− T∗

∆T
, ∆T = T∗ − Ti. (2.4)

For later convenience, we also introduce the following dimensionless quantities:

β =
Rmin

Rmax

, zend =
Hcyl +Hnoz

Hcyl

. (2.5)

With (2.4), (2.3) becomes

1

R2(z)

∂T

∂z
=

Pe−1

r

∂

∂r

(
r
∂T

∂r

)
, Pe =

ρcPQ

πkHcyl

, (2.6)

where Pe is the Péclet number, the ratio of thermal advection to thermal diffusion.

Note that since Q is constant, Q = πR̃2(0)V (0) = πR2
maxVmin, where V = V (z̃) is the

average flow velocity in the z̃-direction, and thus Pe can be written as

Pe =
ρcPR

2
maxVmin

kHcyl

. (2.7)

Because experimental measurements were made of Rmax and Vmin rather than Q, the

formulation of Pe given in (2.7) is used for computation rather than that of (2.6). The

dimensionless system is shown in Figure 2.1.
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Figure 2.1: Cross-section of half of hot end in dimensionless coordinates (not to scale).

Light grey is rigid (glass or crystalline) polymer, medium grey is pliant (rubber or

melted) polymer, and dark grey is the heater.

The initial and boundary conditions discussed previously become

Tr(r, 0) = −1, (2.8a)

Tp(R(z), z) = α, α =
Tmax − T∗

∆T
> 0, (2.8b)

where subscripts r and p denote rigid and pliant regions, respectively. Furthermore,

due to the axisymmetry of the problem, there is a no-flux boundary condition at the

centerline in accordance with the first law of thermodynamics:

∂T

∂r

∣∣∣∣
r=0

= 0. (2.9)

Lastly, the interface between the rigid and pliant regions gives way to a free boundary

problem for the front r = s(z). This proves to be unimportant in the amorphous case

but will be discussed more thoroughly in §4, as it is significant to the solution for

crystalline polymers when a phase transition occurs.
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In order to simplify calculations, we introduce the change of variables (r, z) →

(y, z) where y = r/R, which transforms (2.6) to

∂T

∂z
− yR′

R

∂T

∂y
=

Pe−1

y

∂

∂y

(
y
∂T

∂y

)
. (2.10)

The transformed initial and boundary conditions for (2.10) are

Tr(y, 0) = −1, (2.11a)

Tp(1, z) = α, (2.11b)

∂T

∂y

∣∣∣∣
y=0

= 0. (2.11c)
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Chapter 3

THE AMORPHOUS CASE

3.1 Solution in a Taper

First, we consider the amorphous case in a tapered hot end, i.e., without a

cylindrical portion (Figure 3.1). We consider the tapered problem to better understand

the behavior in this portion of the hot end before moving onto the real geometry of a

cylinder feeding into a taper. In this model problem, we still consider a system of length

Hcyl rather than the length of the nozzle Hnoz; this choice is equivalent to modeling the

cylindrical portion of the hot end as a taper rather than trying to capture information

about the nozzle itself and is made to allow for comparison to the cylindrical case

considered in [5]. Thus, we still use the scaling z = z̃/Hcyl. In amorphous polymers,

the pliancy temperature T∗ is the glass-rubber transition temperature Tg. Furthermore,

the material properties are not expected to change significantly across the pliancy front

r = s(z) and thus we need not track this moving boundary. For this reason, this section

will not use the subscripts r and p on the variable T .
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Figure 3.1: Cross-section of half of tapered hot end in dimensionless coordinates (not

to scale). Medium grey is amorphous polymer and dark grey is the heater.

In order to characterize the temperature profile, we wish to solve (2.10) subject

to (2.11). We do so by solving an equivalent problem with homogeneous boundary

conditions by defining Θ(y, z) as follows:

Θ(y, z) =
α− T (y, z)

α + 1
, (3.1)

which has the following initial and boundary conditions:

Θ(y, 0) = 1, (3.2a)

Θ(1, z) = 0, (3.2b)

∂Θ

∂y

∣∣∣∣
y=0

= 0. (3.2c)

In hopes of using a standard separation of variables approach, we assume Θ(y, z) =

Y (y)Z(z). With this assumption, (2.10) is equivalent to

Z ′

Z
=

Pe−1

yY

∂

∂y
(yY ′) + y

R′

R

Y ′

Y
. (3.3)

In order for separation of variables to work, both sides of (3.3) must be constant. An

important consequence of this is that R′/R must be a constant (since R is dependent
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on z). With the additional conditions that R(0) = 1 and R(1) = β, we are forced to

approximate the linear taper as

R(z) = e−γz, γ = log β−1. (3.4)

(3.4) implies R′/R = −γ.

For later convenience, we introduce another change of variables (y, z) → (x, z)

where x = y2γ Pe /2. The new system for Θ(x, y) is

∂Θ

∂z
+ 2γx

∂Θ

∂x
= 2γ

∂

∂x

(
x
∂Θ

∂x

)
, (3.5a)

Θ(x, 0) = 1, (3.5b)

Θ

(
γ Pe

2
, z

)
= 0, (3.5c)∣∣∣∣∂Θ

∂x

∣∣∣∣
x=0

≤ µ, for some µ ∈ R, (3.5d)

where (3.5d) is obtained using the following:

0 = lim
y→0

∂Θ

∂y
(y, z) = lim

x→0

√
2γ Pex

∂Θ

∂x
(x, z), (3.6)

which follows from (3.2c).

To use separation of variables in the new coordinate system, we assume Θ(x, z) =

X(x)Z(z). With (3.5), this gives

Z ′

Z
= 2γ

(1− x)X ′ + xX ′′

X
= −2γλ, (3.7a)

X

(
γ Pe

2

)
= 0, (3.7b)

|X ′(0)| ≤ ν, for some ν ∈ R, (3.7c)

where λ is a real and positive constant to be determined. The initial condition (not

described in (3.7)) will be discussed shortly. Observe that the ODE for X is of the

form

xX ′′ + (b− x)X ′ − ax = 0, (3.8)
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which is known as Kummer’s equation. In our case, a = −λ and b = 1 and thus the

general solution is

X(x) = C1M (−λ, 1, x) + C2U (−λ, 1, x) , (3.9)

where M and U are the confluent hypergeometric functions of the first and second

kinds (also known as Kummer’s M and U functions) and C1 and C2 are constants to

be determined. Since U (−λ, 1, 0) is singular, we deduce C2 = 0 and thus

X(x) ∝M (−λ, 1, x) , (3.10)

in order to satisfy (3.7c). The ODE for X in (3.7a) can also be written as(
xe−xX ′

)′
+ λe−xX = 0, (3.11)

which is the canonical form of the ODE for a singular Sturm-Liouville problem. This

tells us that there are infinitely many linearly dependent solutions for X given by the

eigenfunctions

Xn(x) = M (−λn, 1, x) , (3.12)

where we have taken C1 = 1. The eigenfunctions have associated eigenvalues λn

determined by the eigenvalue condition:

M

(
−λn, 1,

γ Pe

2

)
= 0, (3.13)

as per (3.7b). After determining each λn, we can find the respective solutions to the

ODE for Z as given by

Zn(z) ∝ e−2γλnz. (3.14)

By the principle of superposition, (3.12) and (3.14) give the following series solution

for Θ:

Θ(x, z) =
∞∑
n=1

DnXn(x)Zn(z) =
∞∑
n=1

DnM (−λn, 1, x) e−2γλnz, (3.15)

where each Dn is a constant to be determined. Note that this means our initial condi-

tion is given by

1 = Θ(x, 0) =
∞∑
n=1

DnM (−λn, 1, x) . (3.16)
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Sturm-Liouville theory also tells us that our eigenfunctions must satisfy the

following orthogonality relation:∫ γ Pe /2

0

Xm(x)Xn(x)e−x dx = 0, m 6= n, (3.17)

where the weight function e−x can be deduced from (3.11). Thus, if we multiply (3.16)

through by some eigenfunction Xm(x) and the weight function e−x and subsequently

integrate with respect to x over x ∈ [0, γ Pe /2], we obtain∫ γ Pe /2

0

Xm(x)e−x dx =

∫ γ Pe /2

0

Xm(x)e−x
∞∑
n=1

DnXn dx

=

∫ γ Pe /2

0

DmX
2
m(x)e−x dx. (3.18)

It follows that

Dm =

∫ γ Pe /2
0

Xm(x)e−x dx∫ γ Pe /2
0

X2
m(x)e−x dx

=

∫ γ Pe /2
0

M (−λm, 1, x) e−x dx∫ γ Pe /2
0

M2 (−λm, 1, x) e−x dx
. (3.19)

Using [13, Eq. 13.3.21], we obtain∫ γ Pe /2

0

M (−λm, 1, x) e−x dx = xM (1− λm, 2, x) e−x
∣∣γ Pe /2
0

=
γ Pe

2
M

(
1− λm, 2,

γ Pe

2

)
e−γ Pe /2. (3.20)

Using [13, Eq. 13.3.4], we obtain

γ Pe

2
M

(
1− λn, 2,

γ Pe

2

)
= M

(
1− λm, 1,

γ Pe

2

)
−M

(
−λm, 1,

γ Pe

2

)
(3.21)

= M

(
1− λm, 1,

γ Pe

2

)
, (3.22)

where we have used (3.13). Therefore, (3.23) can be written as

Dm =
M
(
1− λm, 1, γ Pe2

)
e−γ Pe /2∫ γ Pe /2

0
M2 (−λm, 1, x) e−x dx

. (3.23)

In summary, the solution is

Θ(x, z) =
∞∑
n=1

DnM (−λn, 1, x) e−2γλnz, (3.24)
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where Dn is given by (3.23) and each respective λn is computed using (3.13).

Sturm-Liouville theory tells us that the series in (3.24) converges to the solu-

tion of (3.5a). However, there is no way to compute this infinite series numerically.

Luckily, as λn increases with n, the terms in (3.24) decay to zero with increasing n

as a result of the solution for Zn(z), an exponential decay function. This allows us

to accurately approximate (3.24) with finitely many terms. To determine how many

terms are necessary, we select a level of precision for Θ at a particular point (x, z). We

have continued our analysis by computing Θ(0, 1) to within 10−6. We chose z = 1 in

order to control the error at the exit and x = 0 since this is the coldest point of the exit

cross-section and thus should control whether the polymer flows. The value of 10−6 is

used to balance accuracy with computational efficiency. Observe that

Θ(0, 1) =
∞∑
n=1

DnM (−λn, 1, 0) e−2γλn =
N∑
n=1

Dne
−2γλn +O

(
DN+1e

−2γλN+1
)
. (3.25)

Thus, we need to find N such that

DN+1e
−2γλN+1 ≤ 10−6. (3.26)

To do so, we solve for the minimum value of λN+1 that satisfies (3.26) for any γ and

Pe of interest. We then approximate (3.24) by as many terms as there are eigenvalues

less than to λN+1. With the experimental setup of interest, we need only one or two

terms in any case.

The temperature profile for the median datum is given in Figure 3.2.
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Figure 3.2: Plot of (3.1) with (3.24) for z ∈ {0.008, 0.04, 0.2, 0.6, 1}, where z increases

with line thickness, for the median experimental datum (α,Pe) = (1.44, 1.94). In this

case, N = 2.

Figure 3.2 exhibits some spurious behavior at small z. This is because N is

chosen to ensure convergence of Θ(0, 1) to within 10−6 at z = 1. From (3.24), we see

that Θ(x, z) decays exponentially with z and thus convergence at small z requires more

terms to ensure the same accuracy.

3.2 Average Temperature as Threshold Condition

Now that we have a solution for the temperature profile given by (3.1) with

(3.24), we wish to find a temperature-based threshold condition that predicts when

polymer extrusion is successful. In this section, we consider threshold conditions that

depend on temperature averages. We start with the temperature average constraints

due to their success in similar problems [5].
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3.2.1 Cross-Sectional Average at Exit

The polymer is hottest at the exit of the extruder (z = 1). Thus, it is reasonable

to presume that the threshold condition will have something to do with the temperature

at the exit of the extruder. In particular, we require the following condition to be

satisfied in order for extrusion to occur:

Tt ≤ 〈T 〉(1), (3.27)

where Tt is the threshold temperature to be determined by fitting experimental data

and 〈T 〉(z) is the cross-sectional average across the angular and radial coordinates φ

and r, respectively, at a vertical coordinate z as given by

〈T 〉(z) =

∫ 2π

0

∫ R(z)

0
T (r, z)r dr dφ∫ 2π

0

∫ R(z)

0
r dr dφ

=
2π
∫ R(z)

0
T (r, z)r dr

πR2(z)
= 2

∫ 1

0

T (y, z)y dy

= α− 2(α + 1)

∫ 1

0

Θ(y, z) dy = α− (α + 1)
2

γ Pe

∫ γ Pe /2

0

Θ(x, z) dx. (3.28)

Substituting (3.24) into (3.28) gives

〈T 〉(z) = α− (α + 1)
2

γ Pe

∞∑
n=1

Dn

∫ γ Pe /2

0

M (−λn, 1, x) dxe−2γλnz.

Using [13, Eq. 13.3.18], we obtain∫ γ Pe /2

0

M (−λn, 1, x) dx = xM (−λn, 2, x)|γ Pe /20 =
γ Pe

2
M

(
−λn, 2,

γ Pe

2

)
. (3.29)

Thus, 〈T 〉(z) can be written as

〈T 〉(z) = α− (α + 1)
∞∑
n=1

DnM

(
−λn, 2,

γ Pe

2

)
e−2γλnz. (3.30)

Experimental data of Vmin versus Tmax for ABS was taken from [8]. The experimental

parameters used to scale the physical system (e.g., (Tmax, Vmin)→ (α,Pe)) can be found

in Appendix A. The results of using this condition are shown in Figure 3.3. Note that

Figure 3.3 includes the solution to three different least squares problems (α-intercept,

curve fit, and level set), which will be discussed in more detail later in this section. As
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will be the case for all figures in this section, the areas under the curves correspond to

successful extrusion.

Figure 3.3: Plot of the experimental data (crosses) and (3.27) using the linear and

α-intercept fit (solid curves), the curve fit (dashed curve), and the level set fit (dotted

curve).

Contrary to the results of [5], Figure 3.3 demonstrates that this threshold con-

dition is unable to predict the experimental data. However, Figure 3.3 does exhibit

some important characteristics of the model. Consider the behavior of 〈T 〉 at small

Pe. First, expand (3.13) about Pe = 0 (see [13, Eq. 13.3.2]):

0 = M

(
−λn, 1,

γ Pe

2

)
∼ 1− λn

γ Pe

2
=⇒ λn ∼

2

γ Pe
, Pe→ 0. (3.31)
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Thus, the eigenvalues λn →∞ as Pe→ 0. Now consider Dn for small Pe:

Dn =
M
(
1− λn, 1, γ Pe2

)
e−γ Pe /2∫ γ Pe /2

0
M2 (−λn, 1, x) e−x dx

∼
[
1 + (1− λn) γ Pe

2

] (
1− γ Pe

2

)∫ γ Pe /2
0

(1− λnx)2 (1− x) dx

∼
γ Pe
2

(
1− γ Pe

2

)
∫ γ Pe /2
0

(
1− 2

γ Pe
x
)2

(1− x) dx
= 12

2− γ Pe

8− γ Pe
, Pe→ 0, (3.32)

where we have used the asymptotic solution for λn from (3.31) and the fact that the

variable of integration x in the denominator is small because x ∈ [0, γ Pe /2]. This

shows that each Dn remains bounded as Pe → 0. Since every term in the series in

(3.30) is proportional to Dne
−2γλnz and λn → ∞ as Pe → 0, those terms decay away

as Pe→ 0 and thus

〈T 〉(z) ∼ α, Pe→ 0. (3.33)

This means that the fitted value for Tt corresponds to the α-intercept of the fitted

curves, as demonstrated in Figure 3.3.

Since (3.27) is non-linear (as will be the rest of the developed conditions), we

have multiple choices of least squares problems to solve that are not equivalent. We

chose to solve three different least squares problems. First, as demonstrated by Figures

3.3, 3.4, and 3.5, we observe that the amorphous polymer data appears to be linear in

the (α,Pe)-plane. As shown above, the threshold temperature Tt corresponds to the

α-intercept of the fitted curves (this will be shown for the other amorphous conditions

as well). Ergo, we expect the fitted value of Tt to be close to the α-intercept of a linear

fit of the experimental data. Thus, the first fitting method we consider is imposing

Tt to be the α-intercept of a linear fit and then generate a model-based “fitted” curve

from this value of Tt. This fitting method will be referred to as the “α-intercept” fit.

The next fitting method we consider is the minimization of |ααα− α (PePePe;Tt)|2 over

Tt ∈ R, where ααα is a vector of the experimental α data and α(PePePe;Tt) is some model-

based function for α that depends on the variable Pe and the parameter Tt (obtained

from solving Tt = 〈T 〉(1) for α in this case), where PePePe is a vector of the experimental

Pe data. This is done using lsqcurvefit, a built-in MATLAB non-linear curve fitting
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function. This fitting method will be referred to as the “curve fit.” Note that we forgo

the |PePePe− Pe (ααα;Tt)|2 minimization problem due to its computational complexity.

The last fitting method we consider is the minimization of |Tt · 111− T (ααα,PePePe)|2,

where Tt is a fitting parameter to be determined, 111 is the all ones vector, and T (ααα,PePePe) is

some temperature condition (〈T 〉(1) in this case), where ααα is a vector of the experimen-

tal α data and PePePe is a vector of the experimental Pe data. Since this a one-parameter

least squares problem, the minimization of |Tt · 111− T (ααα,PePePe)|2 is equivalent to taking

the average of T (α,Pe) over each experimental datum (α,Pe), i.e., finding a level set

at T = Tt in (T, α,Pe)-space. For this reason, this fitting method will be referred to

as the “level set” fit. The runtimes to construct Figure 3.3 and the analogous figures

for the remaining conditions (Figures 3.4 and 3.5) were all less than 40 seconds on a

2.60 GHz processor. These quick runtimes indicate that it is not too computationally

expensive to do all three fitting methods.

As evident in Figure 3.3 (and as will be shown in Figures 3.4, and 3.5), each

least squares problem gives slightly different quantitative results, but the qualitative

behavior and ability to predict the experimental data remains the same across all three.

For this reason, when fitting the crystalline polymer data, we will use only one fitting

method for each condition considered. Specifically, we will use the level set fit when

solving one-parameter least squares problems and the curve fit method when solving

two-parameter least squares problems (see §4 for details).

3.2.2 Full Average

In [5], it was shown that extrusion success depends on the average viscosity in

the entire cylinder, where average temperature is used as analog for average viscosity.

Motivated by this work, we require the following condition to be satisfied in order for

extrusion to occur:

Tt ≤ T̄ (1), (3.34)
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where T̄ (z) is the cumulative cross-sectional temperature up to length z as given by

dT̄

dz
= 〈T 〉(z), T̄ (0) = 0. (3.35)

Therefore,

T̄ (z) =

∫ z

0

〈T 〉(ζ) dζ = α− (α + 1)
2

γ Pe

∫ z

0

∫ γ Pe /2

0

Θ(x, ζ) dx dζ. (3.36)

To simplify (3.36), we start by integrating both sides of (3.5a) with respect to z 7→ ζ

over ζ ∈ [0, z] for some fixed z:∫ z

0

[
∂Θ

∂ζ
+ 2γx

∂Θ

∂x

]
dζ = Θ(x, z)−Θ(x, 0) + 2γx

d

dx

∫ z

0

Θ(x, ζ) dζ

=
∞∑
n=1

DnM (−λn, 1, x) e−2γλnz − 1 + 2γx
dθz
dx

, (3.37a)∫ z

0

2γ
∂

∂x

(
x
∂Θ

∂x

)
dζ = 2γx

d2

dx2

∫ z

0

Θ(x, ζ) dζ + 2γ
d

dx

∫ z

0

Θ(x, ζ) dζ

= 2γx
d2θz
dx2

+ 2γ
dθz
dx

, (3.37b)

θz(x) =

∫ z

0

Θ(x, ζ) dζ, (3.37c)

where we have used (3.24). Note that T̄ (z) in terms of θz is

T̄ (z) = α− (α + 1)
2

γ Pe

∫ γ Pe /2

0

θz(x) dx. (3.38)

We have the following second order ODE for θz:

1

x

[
∞∑
n=1

DnM (−λn, 1, x) e−2γλnz − 1

]
= 2γ

d2θz
dx2

+ 2γ
1− x
x

dθz
dx

, (3.39a)

θz

(
γ Pe

2

)
= 0, (3.39b)

where the boundary condition on θz comes from (3.5c). Multiplying (3.39a) through

by xe−x gives

e−x

[
∞∑
n=1

DnM (−λn, 1, x) e−2γλnz − 1

]
= 2γxe−x

d2θz
dx2

+ 2γ(1− x)e−x
dθz
dx

+ 1

= 2γ
d

dx

(
xe−x

dθz
dx

)
. (3.40)
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Next, we integrate (3.40) with respect to x 7→ ξ over ξ ∈ [0, x]:∫ x

0

[
∞∑
n=1

DnM (−λn, 1, ξ) e−ξe−2γλnz − e−ξ
]

dξ

=
∞∑
n=1

Dnxe
−xM (1− λn, 2, x) e−2γλnz − (1− e−x), (3.41a)∫ x

0

2γ
d

dξ

(
ξe−ξ

dθz
dξ

)
dξ = 2γxe−x

dθz
dx

, (3.41b)

where we have again used [13, Eq. 13.3.21]. This gives the following first order ODE

for θz:

2γ
dθz
dx

=
∞∑
n=1

DnM (1− λn, 2, x) e−2γλnz +
1− ex

x
. (3.42)

We again integrate (3.42) with respect to x 7→ ξ except now over ξ ∈ [γ Pe /2, x]:∫ x

γ Pe /2

2γ
dθz
dξ

dξ = 2γθz, (3.43a)∫ x

γ Pe /2

[
∞∑
n=1

DnM (1− λn, 2, ξ) e−2γλnz +
1− eξ

ξ

]
dξ

= log

(
2x

γ Pe

)
− Ei(x) + Ei

(
γ Pe

2

)
−
∞∑
n=1

Dn

λn
M (−λn, 2, x) e−2γλnz, (3.43b)

where Ei is the exponential integral defined as

Ei(x) = −
∫ ∞
1

eξx

ξ
dξ. (3.44)

(3.43b) relies on [13, Eq. 13.3.15]:∫ x

γ Pe /2

M (1− λn, 2, ξ) dξ = − 1

λn
M (−λn, 1, ξ)

∣∣∣∣x
γ Pe /2

= − 1

λn
M (−λn, 1, x) , (3.45)

where we have used (3.13). Thus, θz is given by

θz(x) =
1

2γ

[
log

(
2x

γ Pe

)
− Ei(x) + Ei

(
γ Pe

2

)
−
∞∑
n=1

Dn

λn
M (−λn, 2, x) e−2γλnz

]
. (3.46)
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Substituting (3.46) into (3.38) gives

T̄ (z) = α + (α + 1)
1

2γ

[
1 +

2

γ Pe

(
1− eγ Pe /2

)
+
∞∑
n=1

Dn

λn
M

(
−λn, 2,

γ Pe

2

)
e−2γλnz

]
, (3.47)

which again relies on [13, Eq. 13.3.18]. The results of this condition are shown in Figure

3.4.

Figure 3.4: Plot of the experimental data (crosses) and (3.34) using the linear and

α-intercept fit (solid curves), the curve fit (dashed curve), and the level set fit (dotted

curve).

Observe that Tt is lower in the case of the full average than in the case of the

cross-sectional average for each respective fitting method except for the α-intercept fit

which is, of course, the same for both threshold conditions. This makes sense physically

since the polymer is heated for z ∈ [0, 1] and thus the cross-sectional average at z = 1

will be the hottest in the cylinder, so T̄ < 〈T 〉(1). Therefore, to achieve extrusion given

23



the same data set, Tt must be less in the fully averaged case. Despite this physical

result, Figure 3.4 demonstrates that this threshold condition is also unable to predict

the experimental data, again contrary to the results of [5].

To analyze the behavior of T̄ at small Pe, we use the asymptotic solution for

〈T 〉 from (3.33) in the solution for T̄ from (3.36):

T̄ (z) =

∫ z

0

〈T 〉(ζ) dζ ∼
∫ z

0

α dζ = αz, Pe→ 0. (3.48)

Since (3.34) uses z = 1, this means that the fitted value for Tt corresponds to the

α-intercept of the fitted curves, as demonstrated in Figure 3.4.

3.3 Exit Temperature as Threshold Condition

We expect extrusion to fail if the polymer is too rigid at the exit of extruder.

This motivates a third fitting condition based on the temperature on the centerline at

the exit of the extruder:

Tt ≤ T (0, 1), (3.49)

where T (y, z) is given by

T (y, z) = α− (α + 1)Θ

(
γ Pe

2
y2, z

)
. (3.50)

Substituting (3.24) into (3.50) gives

T (y, z) = α− (α + 1)
∞∑
n=1

DnM

(
−λn, 1,

γ Pe

2
y2
)
e−2γλnz. (3.51)

The results of this condition are shown in Figure 3.5.
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Figure 3.5: Plot of the experimental data (crosses) and (3.49) using the linear and

α-intercept fit (solid curves), the curve fit (dashed curve), and the level set fit (dotted

curve).

Observe that Tt is lower in the case of the centerline exit temperature than in

the case of the cross-sectional average temperature for each respective fitting method

(except for the α-intercept fit). This makes sense physically since the polymer is

heated from y = 1 inward and thus the hot end will be coolest at the centerline for

any particular value of z. So, T (0, 1) < 〈T 〉(1). Therefore, to achieve extrusion given

the same data set, Tt must be less in the centerline exit case.

To analyze the behavior of T at small Pe, we use a similar argument as in §3.2.1

to deduce that every term in the series in (3.51) decays away as Pe→ 0 and thus

T (y, z) ∼ α, Pe→ 0. (3.52)

Again, this means that the fitted value for Tt corresponds to the α-intercept of the

fitted curves, as demonstrated in Figure 3.5.
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Figure 3.5 again shows that this threshold condition is unable to predict the

experimental data. Combined with the results of Figures 3.3 and 3.4, it is clear that we

are unable to predict the amorphous polymer data by considering the tapered portion

of the hot end alone, regardless of the (temperature-based) threshold condition or

fitting method considered. Previous work [5] has shown similar methods to be effective

when considering the cylindrical portion of the hot end alone, i.e., with the tapered

portion ignored. The success of this model over the current model is likely due to

the length of the cylindrical portion relative to the tapered portion, where the former

is much longer. This means the cylindrical model uses a geometry that more closely

aligns with the real system than what has been considered here. For this reason, we

expect that a combined model (i.e., one that incorporates both cylinder and taper)

would be more effective in predicting the experimental data than the tapered model.

Furthermore, the combined model would have an even more realistic geometry than

[5], suggesting that it could improve upon the cylindrical model as well; however, any

discrepancy between the two should be small due to the short length of the tapered

nozzle. This task is left for future work.
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Chapter 4

THE CRYSTALLINE CASE

4.1 Governing Equations

Next, we consider the crystalline case in three geometries: a cylinder, a taper,

and a taper at the end of a cylinder (i.e., the real case). In crystalline polymers,

the pliancy temperature T∗ is the melting temperature Tm. At Tm, the polymer goes

from the crystalline state, where the long polymer chains are arranged in some ordered

structure, to the melted state, where the thermal energy in the system is enough to

disrupt the intermolecular forces holding the polymer structure together resulting in

a liquid-like disordered state. Unlike the amorphous case, the material properties are

expected to change across the melt front r = s(z) separating rigid and pliant regions.

Previous works [5, 6, 8] motivate us to neglect the changes in material properties across

the melt front in this analysis; however, this effect is still realized by accounting for

the latent heat of melting at the front via the Stefan condition (discussion to follow).

Consideration of the melt front gives way to an additional boundary condition

that was unused in the amorphous case:

Tr (s(z), z) = Tp (s(z), z) = 0, s(0) = 1. (4.1)

Recall that Tr denotes the rigid region 0 < r < s(z) (light grey region in Figure 2.1)

and Tp denotes the pliant region s(z) < r < R(z) (medium grey region in Figure 2.1).

Let us also introduce the following notation:

[ϕ(r)]s = ϕp(s+)− ϕr(s−), (4.2)

where ϕ denotes some quantity that depends on r and [ϕ(r)]s denotes the magnitude in

the discontinuity of ϕ at the melt front r = s(z), s+ = limr→s+ r, and s− = limr→s− r.

For example, observe that [T ]s = Tp (s+(z), z)− Tr (s−(z), z) = 0.
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The crystalline case is a Stefan problem, i.e., a heat-transfer-type problem in

which two (or more) regions, each independently governed by the heat equation, are

separated by a free boundary corresponding to a phase transition. In our case, the

free boundary is the melt front r = s(z). In addition to (4.1), the crystalline case has

another boundary condition at r = s(z) known as the Stefan condition. To understand

this condition, consider heat flowing through a melt front of infinitesimal thickness

ds̃ for an infinitesimal duration dt̃. The change in heat flow across the melt front is

balanced by the energy required to melt the crystalline polymer:

[q]s̃A dt̃ = ρcLA ds̃, (4.3)

where qp and qr are the heat fluxes into the melt front from the pliant region and out

of the melt front into the rigid region, respectively, A is the (dimensional) area of heat

transfer through the front, and cL is the specific latent heat of melting. By Fourier’s

law, we know that

[q]s̃ =

[
−k∂T̃

∂r̃

]
s̃

. (4.4)

Using (2.2), we deduce that

ds̃

dt̃
=

Q

πR̃2 (z̃)

ds̃

dz̃
=
R2

maxVmin

R̃2 (z̃)

ds̃

dz̃
. (4.5)

Thus, (4.3) is equivalent to [
−k∂T̃

∂r̃

]
s̃

= ρcL
R2

maxVmin

R̃2 (z̃)

ds̃

dz̃
, (4.6)

which scales to [
St

Pe

∂T

∂r

]
s

= − 1

R2(z)

ds

dz
, St =

∆TcP
cL

, (4.7)

where St is the Stefan number, the ratio of sensible heat to latent heat. Motivated by

[5, 6, 8], we assume [k]s, [ρ]s, [cP ]s ≈ 0 and thus

St

Pe

[
∂T

∂r

]
s

= − 1

R2(z)

ds

dz
. (4.8)

An important result to note from (4.8) is that without a discontinuity in the radial

derivative of the temperature at r = s, then ds/ dz would be identically zero and there
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would be no evolution of the melt front. Also note that the amorphous system can be

thought of as a special case of this Stefan problem where St → ∞ as cL → 0, which

implies [q]s̃ → 0.

As in §2, we introduce the change of variables (r, z) → (y, z) where y = r/R.

Let σ = s/R. Therefore, (4.8) is equivalent to

St

Pe

[
∂T

∂y

]
σ

= −dσ

dz
− R′

R
σ. (4.9)

To summarize the crystalline case, we have the following systems in the rigid

region, in the pliant region, and at the melt front, respectively:

0 < y < σ :
∂Tr
∂z
− yR′

R

∂Tr
∂y

=
Pe−1

y

∂

∂y

(
y
∂Tr
∂y

)
, (4.10a)

∂Tr
∂y

∣∣∣∣
y=0

= 0, (4.10b)

Tr(y, 0) = −1; (4.10c)

σ < y < 1 :
∂Tp
∂z
− yR′

R

∂Tp
∂y

=
Pe−1

y

∂

∂y

(
y
∂Tp
∂y

)
, (4.10d)

Tp(1, z) = α; (4.10e)

y = σ :
St

Pe

[
∂T

∂y

]
σ

= −dσ

dz
− R′

R
σ, (4.10f)

Tr (σ(z), z) = Tp (σ(z), z) = 0, (4.10g)

σ(0) = 1, (4.10h)

where the initial condition on the melt front (4.10h) comes from the fact the polymer

that enters the hot end is completely rigid (i.e., s(0) = 1) and the initial radius is

R(0) = 1.

4.2 Additional Approximations

A full solution to (4.10) would require a fully numerical approach. Since we wish

to understand the system’s dependence on parameters, we introduce some additional

approximations that will allow for the development of partially analytical solutions.
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4.2.1 The Quasistationary Approximation

In the rigid region, we apply what is known as the quasistationary approxi-

mation. The quasistationary approximation involves assuming one or more derivative

terms (typically those with respect to time) are negligible compared to the remaining

terms. This is equivalent to assuming the system (or part of the system) is at steady

state, i.e., ∂/∂t → 0 in a subset of the domain. This approximation is often made to

simplify systems with two or more significantly different time scales.

In our case, we take ∂/∂z → 0 (and thus d/ dz → 0), which means the left-hand

side of (4.10a) vanishes. This is equivalent to taking Pe (and thus Vmin) to zero. After

making this simplification, we are left with a second order ODE for Tr with respect to

y:

0 =
1

y

d

dy

(
y

dTr
dy

)
, 0 < y < σ. (4.11)

However, there are three boundary conditions in the rigid region: (4.10b), (4.10c), and

(4.10g). To rectify the overspecification, we ignore the initial condition. This decision

reflects our interest in the solution throughout the interval z ∈ [0, zend]. The solution

to (4.11) subject to (4.10b) and (4.10g) is

Tr ≡ 0, 0 < y < σ. (4.12)

From (4.12), we see that the quasistationary approximation is equivalent to assuming

that the time that the crystalline region takes to reach the melting temperature is

negligible compared to the time it takes for melting to occur. These are the disparate

time scales that correspond to this application of the quasistationary approximation.

It may seem concerning that (4.12) appears to violate our initial condition

(4.10c). However, the two are consistent if a thin layer of thickness O(Pe) is inserted

near z = 0 in which rapid diffusion brings the rigid polymer from the initial condition

to the melting temperature (4.12). Therefore, we expect the rapid diffusion layer ex-

planation to hold when Pe is small. Another consequence of neglecting the evolution

term in (4.10a) is the overestimation of the speed of σ(z) through the rigid region [14].
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This results from the omission of the time needed to raise the polymer to the melting

temperature.

Another simplifying result of the quasistationary approximation is reduction of

the two-phase Stefan problem to a one-phase Stefan problem. More formally, (4.10f)

is replaced by
St

Pe

∂Tp
∂y

∣∣∣∣
y=σ

= −dσ

dz
− R′

R
σ. (4.13)

4.2.2 The HBI Method

In the pliant region, we proceed using the heat balance integral (HBI) method.

In essence, the HBI method simplifies transport problems with moving boundaries by

assuming the governing transport equation is satisfied on average as opposed to at

every point in the domain. More precisely, this method transforms the governing PDE

into an ODE via the following steps:

1. Assume a general field profile.

2. Impose the relevant boundary conditions to fully specify the general profile up

to the moving boundary position.

3. Integrate the governing PDE with respect to the space variable over the relevant

interval. (Note that this integral is referred to as the HBI).

4. Solve the resultant ODE for the moving boundary.

This method was first developed by [15] to approximate a one-phase Stefan problem in

Cartesian coordinates by a quadratic temperature profile. It has since been extended

to other geometries [16], functional forms [17, 18, 19, 20], and solution methods [21, 22].

The HBI method can be understood in analogy to integral methods used to study other

transport phenomena, e.g., the momentum integral in boundary-layer theory [23].

As shown in [5], the quasistationary solution to (4.10d) subject to (4.10e) and

(4.10g) is linear in log y. Due to the number of boundary conditions in these types

of problems, a temperature profile with three degrees of freedom is typically used.

These considerations motivate a temperature profile that is quadratic in log y. For
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later convenience, we assume a profile that is quadratic in (1 − log y/ log σ) as well.

Therefore, the assumed form for Tp is

Tp(y, z) = α

[
a

(
1− log y

log σ

)
+ (1− a)

(
1− log y

log σ

)2
]
, σ < y < 1, (4.14)

where a is a constant to be determined. Note that (4.14) satisfies (4.10e) and (4.10g)

automatically.

The final step is to determine a value of a such that (4.14) satisfies the Stefan

condition (4.13). However, previous studies suggest that there is an alternate form of

the Stefan condition that is more computationally convenient [19, 22, 24]. We start

our derivation of this form with the observation that the temperature along the melt

front is constant for all z. More formally, the total derivative of Tp along y = σ is zero

for any z, i.e.,

0 =
dTp
dz

=
∂Tp
∂z

+
∂Tp
∂y

dσ

dz
, y = σ(z). (4.15)

It follows that

dσ

dz
= −∂Tp

∂z

/
∂Tp
∂y

= −
[

Pe−1

y

∂

∂y

(
y
∂Tp
∂y

)
+
yR′

R

∂Tp
∂y

]/
∂Tp
∂y

, y = σ(z), (4.16)

where (4.10d) has been used to evaluate ∂Tp/∂z (see §4.2.3 for discussion). We also

know from (4.13) that

dσ

dz
= −R

′

R
σ − St

Pe

∂Tp
∂y

, y = σ(z). (4.17)

Equating (4.16) and (4.17) and multiplying through by −∂Tp/∂y gives

St Pe−1
(
∂Tp
∂y

)2

+
R′

R
σ
∂Tp
∂y

=
Pe−1

y

∂

∂y

(
y
∂Tp
∂y

)
+
R′

R
y
∂Tp
∂y

, y = σ(z). (4.18)

Since we are interested in y = σ(z), the following holds for any R of interest:(
∂Tp
∂y

)2

=
St−1

y

∂

∂y

(
y
∂Tp
∂y

)
, y = σ(z). (4.19)

(4.19) gives the desired alternate Stefan condition. The flux condition at the melt front

(4.13) is thus replaced by (4.19). By imposing (4.19) on (4.14), we obtain

a =
−1 +

√
1 + 2 Stα

Stα
, (4.20)
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where the positive root has been taken to satisfy ∂Tp/∂y|y=σ > 0. Physically, we know

that St, α > 0. From this, we deduce the following:

a =
−1 +

√
1 + 2 Stα

Stα
≥ −1 +

√
1

Stα
= 0, (4.21a)

0 < Stα = 2
1− a
a2

=⇒ a < 1, (4.21b)

where we have used (4.20) to solve for Stα in (4.21b). 0 ≤ a < 1 implies both terms

in (4.14) are non-negative.

Now that we have found the coefficients of (4.14), we are brought to Step 3 in

the HBI method. In our case, we integrate the heat equation with respect to y over

y ∈ [0, 1]. However, since the quasistationary approximation in the rigid region results

in Tr ≡ 0 for 0 < y < σ, we need only integrate (4.10d) over y ∈ [σ(z), 1] (note that a

factor of y is multiplied to both sides of (4.10d) since y is a radial coordinate):∫ 1

σ(z)

∂Tp
∂z

y dy =

∫ 1

σ(z)

[
Pe−1

y

∂

∂y

(
y
∂Tp
∂y

)
+
yR′

R

∂T

∂y

]
y dy. (4.22)

As is a common approach [22], the left-hand side of (4.22) is more easily evaluated

after applying Leibniz’s integral rule, from which we deduce∫ 1

σ(z)

∂Tp
∂z

y dy =
d

dz

∫ 1

σ(z)

Tp(y, z)y dy, (4.23)

where we have also applied (4.10g). Therefore, (4.22) is equivalent to

d

dz

∫ 1

σ(z)

Tp(y, z)y dy =

∫ 1

σ(z)

[
Pe−1

y

∂

∂y

(
y
∂Tp
∂y

)
+
yR′

R

∂Tp
∂y

]
y dy. (4.24)

Substituting (4.14) into (4.24) gives the following ODE for σ:

dσ

dz
=

8 Pe−1 η(z)σ log σ

2(1− a) + (2− a) log σ + σ2 [2a(log σ)2 + (2− 3a) log σ − 2(1− a)]
, (4.25a)

η(z) = (1− a) log σ +
Pe

4

R′

R

{
(1− a)

(
1− σ2

)
+
[
2− a

(
1 + σ2

)]
log σ

}
, (4.25b)

where a is given by (4.20). Though some limiting behavior will be discussed in analyt-

ical terms, the complexity of (4.25) precludes a general analytical solution. Thus, we

use numerical solvers (in MATLAB) to compute σ(z) when fitting experimental data.
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4.2.3 Model Shortcomings from Approximations

The solution using the HBI method is valid only over the range of z where σ > 0.

Once σ = 0, the problem reduces to a separation of variables problem similar to that

of §3 with an initial condition determined by the temperature profile at the first value

of z where σ = 0. However, it follows from (4.25) that σ cannot go to zero in finite z.

This can be understood by considering an asymptotic solution to (4.25) in the limit of

small σ. Expanding (4.25) for small σ gives

dσ

dz
∼
[

8 Pe−1(1− a)

2− a
+ 2

R′

R

]
σ log σ. (4.26)

(4.26) can be solved by separation and integration:∫ σ

σ0

dς

ς log ς
∼
∫ z

z0

[
8 Pe−1(1− a)

2− a
+ 2

R′

R

]
dz

=

∫ z

z0

8 Pe−1(1− a)

2− a
dz + 2

∫ R(z)

R(z0)

dP

P
, (4.27a)

log

(
log σ

log σ0

)
∼ 8 Pe−1(1− a)(z − z0)

2− a
+ 2 log

[
R(z)

R (z0)

]
, (4.27b)

σ(z) ∼ exp

{
log σ0

[
R(z)

R (z0)

]2
exp

[
8 Pe−1(1− a) (z − z0)

2− a

]}
, (4.27c)

where σ (z0) = σ0 corresponds to the point at which σ becomes “small.” It is clear

from (4.27c) that σ > 0 for any finite z. In terms of the physics of the system, this is

a shortcoming of the model since it should be possible for the entire polymer to melt

in finite time (and thus finite z).

There is one additional assumption in our application of the HBI method that

was not discussed in the previous section. In (4.16), (4.10d) is used to give an expression

for ∂Tp/∂z at the melt front in terms of ∂Tp/∂y. This substitution requires (4.14) to

satisfy (4.10d) at y = σ(z). Unfortunately, this is not the case. This means that going

from the original form of the Stefan condition in (4.13) to the alternate form in (4.19)

with the assumed temperature profile in (4.14) alters the physical system being studied.

This suggests that an assumed temperature profile other than that of (4.14) would be

more suitable for the HBI method; however, finding such a profile is non-trivial and
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is left for future work. Since the application of the HBI method with (4.14) gives an

accurate description of the experimental data (see §4.6.3,4.7.3,4.8.3), it is reasonable to

assume that the physical transformation that occurs when going from (4.13) to (4.19)

is negligible.

4.3 Temperature Averages

For later convenience, we move forward by re-introducing the temperature av-

erages discussed in the amorphous case. The cross-sectional average at a vertical

coordinate z is given by

〈T 〉(z) = 2

∫ 1

0

T (y, z)y dy = 2

∫ 1

σ(z)

Tp(y, z)y dy, (4.28)

which relies on the fact that T ≡ Tr ≡ 0 when y ∈ [0, σ(z)]. Using (4.14), we deduce

〈T 〉(z) = α

{
1 +

2− a [1 + σ2(z)]

2 log σ(z)
+

(1− a) [1− σ2(z)]

2 [log σ(z)]2

}
. (4.29)

The cumulative cross-sectional temperature up to length z is given by

dT̄

dz
= 〈T 〉(z), T̄ (0) = 0. (4.30)

In this case, we can compute T̄ (z) with

T̄ (z) = 2

∫ z

0

∫ 1

0

T (y, ζ)y dy dζ = 2

∫ z

0

∫ 1

σ(ζ)

Tp(y, ζ)y dy dζ, (4.31)

which again relies on the fact that T ≡ Tr ≡ 0 when r ∈ [0, σ(z)]. Using (4.14), we

deduce

T̄ (z) = α + α

∫ z

0

{
2− a [1 + σ2(ζ)]

2 log σ(ζ)
+

(1− a) [1− σ2(ζ)]

2 [log σ(ζ)]2

}
dζ. (4.32)

Note that (4.32) is useful for comparison to (4.29) whereas (4.30) is more useful for

computational purposes (see §4.5.3). The latter allows σ and T̄ to be integrated simul-

taneously, thus saving computational expense compared to the former.
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4.4 Asymptotics

Here we consider the asymptotic behavior of σ, T , 〈T 〉, and T̄ in the limits of

small and large Pe to simplify later discussion. We will also consider the asymptotic

behavior of σ in the limit of small α for the same end.

The limit of Pe → 0 corresponds to infinitesimally slow flow. This means the

entire polymer will melt for any positive α. In this limit, σ(z) → 0. This can be

understood either by observing that, in limit of small Pe, the right-hand side of (4.25a)

becomes large (and negative) corresponding to rapid decay of σ to zero or by taking

the limit as Pe goes to zero of the right-hand side of (4.27c) directly. Furthermore, this

behavior can be physically understood by realizing that slow flow gives the polymer

time to heat to α throughout, which of course results in full melting. Substitution of

this result into (4.14) gives

Tp(y, z) ∼ α, Pe→ 0. (4.33)

Since (4.29) and (4.32) both describe temperature averages, it follows that 〈T 〉(z) ∼ α

and T̄ ∼ α in this limit as well.

The limit of Pe→∞ corresponds to infinitely fast flow. This means the polymer

will be exposed to heat for only a short time and thus σ will remain close to one.

Motivated by this, we assume σ(z) ∼ 1−Pe−m f(z), where m is a positive constant to

be determined and f is assumed to be small and independent of Pe. By substituting

this melt profile into (4.25) and expanding about f = 0, we obtain, to leading order,

−Pe−m
df

dz
=

8(1− a) Pe−(1+2m)Rf 2

−2(2 + a) Pe−3mRf 3/3
, f(0) = 0. (4.34)

To maintain the independence of f from Pe, we deduce that m = 1/2 in order for

the Pe terms to cancel from both sides of (4.34). We solve (4.34) by separation and
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integration: ∫ f

0

ϕ dϕ =

∫ z

0

8
1− a
2 + a

dζ, (4.35a)

f 2

2
= 12

1− a
2 + a

z, (4.35b)

σ(z) ∼ 1− Pe−1/2 f(z), f(z) = 2

√
6

1− a
2 + a

z, Pe→∞, (4.35c)

which relies on f(z) ≥ 0 to maintain σ(z) ≤ 1. To analyze the behavior of (4.29) in

this limit, we can expand 〈T 〉 about σ = 1 (since 〈T 〉 is can be thought of as a function

of z or σ) to obtain

〈T 〉(z) ∼ α(2 + a)

3
Pe−1/2 f(z), Pe→∞, (4.36)

where d〈T 〉/ dσ|σ=1 = −α(2 + a)/3 explains the proportionality constant. This result

can be understood by observing that Tp = O(1) and that the region of integration in

(4.28) is O(Pe−1/2) by (4.35c). Also, it follows from (4.31) and (4.35c) that

T̄ (z) ∼ 2α(2 + a)

3
Pe−1/2 f̄(z), Pe→∞. (4.37)

The limit of small α corresponds to a heater temperature just above the melting

point. As a result, we expect σ to remain close to one. Therefore, we assume σ(z) ∼

1 − αng(z), where n is a positive constant to be determined and g is assumed to be

small and independent of α. By substituting this melt profile into (4.25) and expanding

about g = 0, we obtain, to leading order,

−αndg

dz
=

8(1− a)α2nRg2

−2(2 + a)α3n PeRg3/3
, g(0) = 0. (4.38)

We must also use

a ∼ 1− Stα

2
, α→ 0, (4.39)

which follows from (4.20). This reduces (4.38) to

−αndg

dz
=

8 Stα2n+1Rg2/2

−6α3n PeRg3/3
, g(0) = 0. (4.40)

37



To maintain the independence of g from α, we deduce that n = 1/2 in order for the α

terms to cancel from both sides of (4.40). We solve (4.40) by separation and integration:

∫ g

0

ϕ dϕ =

∫ z

0

2
St

Pe
dζ, (4.41a)

g2

2
= 2

St

Pe
z, (4.41b)

σ(z) ∼ 1− α1/2g(z), g(z) = 2

√
St

Pe
z, α→ 0, (4.41c)

which relies on g(z) ≥ 0 to maintain σ(z) ≤ 1. Observe that (4.41c) is the small-α

limit of (4.35c).

4.5 Computational Considerations

Since we use numerical methods to solve (4.25) for σ(z), numerical issues were

sure to ensue. In particular, issues arise from the (lower and upper) bounds on the set of

possible σ values given our initial condition. In numerical differential equation solvers,

a value of σ is known at a particular value of z, which are used to find subsequent

values of σ by finding a change ∆σ in σ by evaluating the right-hand side of (4.25a)

at z and multiplying by ∆z. When σ is close to a bound, a ∆z value that is too large

can cause σ + ∆σ to exceed said bound resulting in non-physical results. (Note the

numerical integration techniques used in our calculations, namely MATLAB’s ode45

in the cylinder and tapered cases and ode15s in the combined case where the ODE is

more stiff, are more sophisticated than the schema described here; however, the same

principles are responsible for the numerical issues in these more advanced solvers.) In

this section, we discuss the remedies of this issue at both small and large σ. We also

discuss one technique used to improve the runtime of computing T̄ .

4.5.1 The Limit of Small σ

If σ is small, an overstep by the solver will give σ < 0. Due to the logarithms

in (4.25), this results in complex σ values for subsequent z-steps. One solution to this

issue is to introduce a trap that terminates the numerical integration once a complex
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value of σ occurs. Storing the last real-valued (σ, z) as (σ0, z0), the asymptotic solution

given by (4.27c) can be used to compute σ(z) over the remaining interval (z ∈ [z0, 1]

or z ∈ [z0, zend] depending on the geometry).

However, a simpler solution exists. If we define w(z) = log σ(z), the resultant

ODE for w depends on w and ew, which cannot output complex values for real inputs,

rather than log σ and σ. With this motivation, the ODE used in numerical calculations

is

dw

dz
=

1

σ

dσ

dz
=

8 Pe−1 η(z)eww

2(1− a) + (2− a)w + e2w [2aw2 + (2− 3a)w − 2(1− a)]
, (4.42a)

η(z) = (1− a)w +
Pe

4

R′

R

{
(1− a)

(
1− e2w

)
+
[
2− a

(
1 + e2w

)]
w
}
. (4.42b)

4.5.2 The Limit of Large σ

If σ is large, an overstep by the solver will give σ > 1. This switches the signs

of several terms in (4.25) culminating in an erroneous positive value for dσ/ dz, which

subsequently amplifies the issue. To understand this phenomenon, assume σ(z) =

1 − h(z), where 0 < h(z) � 1. Thus, expansion of (4.25) about h = 0 implies the

leading order ODE for h is

dh

dz
∼ 12 Pe−1

1− a
2 + a

h−1. (4.43)

This implies that
dσ

dz
∼ −12 Pe−1

1− a
2 + a

(1− σ)−1. (4.44)

Recall that that a ≤ 1. Therefore, dσ/ dz = − dh/ dz ≤ 0, which explains why dσ/ dz

should not be positive when σ is near one. In other words, even though σ may get

close to one, it must start to decrease before σ = 1.

To rectify this issue, we return to the use of w, as defined in §4.5.1, since this is

the variable implemented into code. We are interested in w ∼ 0, as is the case when

σ ∼ 1. Thus, we expand (4.42) about w = 0. The resultant ODE is

dw

dz
∼ 12 Pe−1

1− a
2 + a

w−1. (4.45)
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We solve (4.45) by separation and integration:∫ w

w0

ω dω =

∫ z

z0

12 Pe−1
1− a
2 + a

dζ, (4.46a)

w2 − w2
0

2
= 12 Pe−1

1− a
2 + a

(z − z0), (4.46b)

w(z) ∼ −
√
w2

0 + 24 Pe−1
1− a
2 + a

(z − z0), (4.46c)

where the negative root has been taken to satisfy w ≤ 0 and w (z0) = w0 corresponds

to the point at which w becomes “small.” To implement this solution, we introduce a

trap that terminates the numerical integration once a positive value of w (i.e., σ > 1)

occurs. Storing the last negative value of w as w0 and its corresponding value of z

as z0, the asymptotic solution given by (4.46c) can be used to compute w(z) until its

absolute value is again large enough to resume numerical integration. This process is

repeated until z = 1 or z = zend depending on which geometry is being considered.

4.5.3 Expensive Computation

Unrelated to the issues with numerical solvers discussed previously, there are two

concerns regarding computational expense that should be noted. First, consider the

limit of small Pe. Observe from (4.25) and (4.42) that limPe→0 σ
′(z) and limPe→0w

′(z)

do not exist, respectively. Because of this behavior, the ODEs become stiff at ex-

ceedingly small Pe. Thus, the computation in this region becomes too expensive to

visualize the small-Pe limit in figures. For this reason, the curves in the figures in this

section that enter the limit of small Pe will stop before actually reaching Pe = 0.

Second, the use of T̄ (z) has the potential to be very computationally expensive.

A naive approach would be to compute T̄ (z) directly using (4.32). However, this

would require the ODE for σ (or w rather) to be solved over z ∈ [0, `∆z] for every

` ∈ {1, 2, . . . , zend/∆z} for every set of parameters. (Note that we have assumed

uniformly spaced quadrature nodes here to simplify discussion. The same principles
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apply to the adaptive quadrature used in actual computation.) A better approach is

to define a new variable ψ as follows:

dψ

dz
=

2− a (1 + e2w)

2w
+

(1− a) (1− e2w)

2w2
, ψ(0) = 0, (4.47)

and solve the ODE for ψ simultaneously with (4.42) for any particular set of parameters.

It follows that T̄ (z) can be written as

T̄ (z) = α + α

∫ z

0

dψ

dζ
dζ = α + αψ(z). (4.48)

We must also develop an expression to be used for ψ if the issue described in

§4.5.2 arises. This simply becomes

ψ(z) = ψ0 −
∫ z

z0

dψ

dζ
(w(ζ)) dζ, (4.49)

where ψ0 = ψ (z0) and z0 and w(ζ) are as defined in (4.46c). As no analytical solution

exists, (4.49) can be evaluated by numerical integration.

While w is useful numerically, it is not particularly useful for discussion of the

physics of the system. Therefore, we will return to our use of σ, which has a more

tangible physical interpretation, in subsequent sections.

4.6 The Cylindrical Case

4.6.1 Temperature Profile

We start our analysis of the crystalline case by considering flow through a right

circular cylinder. In this case, the surface radius is given by a constant: R(z) = 1.

It follows that y = r and σ = s. Thus, the temperature profile in this case can be

computed using (4.12) and (4.14) with (y, σ) ≡ (r, s), where σ can be computed using

(4.25). In this case, (4.25b) reduces to

η(z) = (1− a) log σ, (4.50)

where a is given by (4.20). Note that we maintain the use of y and σ as opposed to

r and s, respectively, in this section for ease of comparison to the other geometries.
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Furthermore, this notation allows for the general asymptotic arguments made in this

section to hold unchanged for the other geometries of interest. The temperature profile

for the median datum is given in Figure 4.1. When considering the temperature profiles

of the other geometries (see Figures 4.8 and 4.12), it will be useful to track to R(z)

as well; thus, we plot the temperature versus r instead of y in Figure 4.1 for ease of

comparison.

Figure 4.1: Plot of (4.12) and (4.14) with (4.20), (4.25a), and (4.50) (solid curves)

for z ∈ {0.008, 0.04, 0.2, 0.6, 1}, where z increases from right to left, for the median

experimental datum (α,Pe) = (0.333, 3.94) and R(z) = 1 (dashed line). For each z,

the temperature to the left of the r-intercept is zero.

4.6.2 Average Temperature as Threshold Condition

In finding threshold conditions, we proceed using the same average temperature

conditions as in the amorphous case.
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4.6.2.1 Cross-Sectional Average at Exit

First, we consider a threshold temperature defined by the cross-sectional average

temperature at the exit of the extruder as defined in (3.27):

Tt ≤ 〈T 〉(1), (4.51)

where 〈T 〉(z) is given by (4.29).

We will fit this condition to experimental data of Vmin versus Tmax for PLA

taken from [8]. (Note that this data corresponds to relatively small values of α.)

But before discussing the results of this fit, it should be noted that PLA is a semi-

crystalline polymer. This means over certain temperature ranges, the polymer behaves

amorphously. In particular, experimenters do not see the melt phase expected for

crystalline polymers after extrusion. We expect that this is because the polymer is

extruded with only a thin layer of melt on the outer surface, which rapidly cools to

the amorphous-like, semi-crystalline state. This explanation is supported by (4.41c),

which tells us that the melt front only achieves penetration depths of order O(α1/2)

when alpha is small. This phenomena will be discussed further after Figures 4.8 and

4.12 and is sufficient justification for using the crystalline model for a semi-crystalline

polymer such as PLA.

The experimental parameters used to scale the physical system (e.g., (Tmax, Vmin)→

(α,Pe)) can be found in Appendix A. Given that T∗ = Tm = 155◦C, we use only that

data for which Tmax ≥ 170◦C to ensure that melting has taken place; this decision is

motivated by previous works [5, 6]. The results of this condition are shown in Fig-

ure 4.2. As will be the case for all figures in this section, the area under the curve

corresponds to successful extrusion.
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Figure 4.2: Plot of experimental data (crosses) and (4.51) (solid curve).

Figure 4.2 makes it clear that this threshold condition is unable to predict the

experimental data. However, the figure does exhibit some important facets of the

solution. First, observe that as Pe→ 0, the solid curve approaches α = Tt as predicted

in §4.4.

Second, as Pe→∞, we replace the right-hand side (4.51) with (4.36) evaluated

at z = 1, which gives,

Tt =
α(2 + a)

3
Pe−1/2 f(1) =⇒ Pe =

[
(a+ 2)f(1)

3Tt

]2
α2, Pe→∞. (4.52)

Physically, infinite Pe corresponds to infinitely fast feed speed. Thus, to maintain a

temperature above the threshold, the heating temperature α must become infinite as

well. Ergo, Pe → ∞ corresponds to α → ∞, which implies a → 0 from (4.20). Thus,

Pe versus α approaches a concave-up quadratic as Pe becomes large, as demonstrated

in Figure 4.2.
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Lastly, the fit in Figure 4.2 looks to defy the data to an unreasonable degree

despite the nature of least squares regression. This is an amplification of the poor fit

that results from the variables chosen to plot the data. Recall that we are fitting the

data by minimizing |Tt · 111− 〈T 〉(1;ααα,PePePe)|2, which is equivalent to finding a contour

line of 〈T 〉(1;α,Pe) that most closely matches the data in (〈T 〉(1), α,Pe)-space. This

is why the fit looks visually worse than if we had used a more traditional least squares

approach, say minimizing |PePePe− Pe (ααα;Tt)|2, which is precluded by the complexity of

the problem. This argument holds for all other visually poor fits.

4.6.2.2 Full Average

Next, we consider a threshold temperature defined by the average temperature

across the entire cylinder as defined in (3.34) and (3.35):

Tt ≤ T̄ (1), (4.53a)

dT̄

dz
= 〈T 〉(z), T̄ (0) = 0. (4.53b)

The results of this condition are shown in Figure 4.3.
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Figure 4.3: Plot of experimental data (crosses) and (4.53a) (solid curve).

Again, Figure 4.3 makes it clear that this threshold condition is unable to predict

the experimental data. However, the figure does exhibit the features predicted in §4.4.

First, observe that as Pe → 0, the solid curve goes to α = Tt. Second, as Pe → ∞,

the right-hand side (4.53a) goes to (4.37) evaluated at z = 1, which gives the same

result as (4.52) except with f(1) replaced f̄(1), which is still positive. Thus, a similar

physical argument results in Pe versus α approaching a concave-up quadratic as Pe

becomes large, as demonstrated in Figure 4.3.

Last, we again see that Tt is lower in the case of the full average than in the

cross-sectional average. This is for the same reasons as discussed in §3.2.2.

4.6.3 Exit Temperature as Threshold Condition

Failure of the average temperature conditions in the crystalline case motivates

the use of an exit temperature condition as in §3.3. However, we are unable to use

the condition given in (3.49) since T (0, 1) = 0 for any set of parameters, a result of
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the quasistationary approximation and asymptotic behavior of (4.25). In analogy to

(3.49), we use the following condition:

Tt ≤ T (ε, 1), (4.54)

where ε > 0 is a second fitting parameter to be determined. For emphasis, note that ε

is a value of y with corresponding value of r given by εR(1); of course, this distinction

is moot in the case of the cylinder, but will be important in subsequent geometries.

Using (4.14), we obtain

Tt ≤ α
[
aχ+ (1− a)χ2

]
, χ = 1− log ε

log σ(1)
, (4.55)

where χ has been defined for later convenience.

As a result of the quasistationary approximation, the crystalline solution is

identically zero and the temperature is non-negative throughout the domain. In keeping

with this theoretical consideration, it seems appropriate to restrict Tt ≥ 0, which forces

ε ≥ σ(1) for any experimental datum. The results of this condition and its asymptotic

behavior are shown in Figure 4.4.

(a) (b)

Figure 4.4: (a) Plot of experimental data (crosses) and (4.54) with non-negative Tt

(solid curve). (b) Asymptotic behavior of (4.54) with non-negative Tt.

As discussed in §4.4, the α-intercept in Figure 4.4a agrees with the fitted value

of Tt. Unfortunately, we again see poor agreement between the model and the data;
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however, unlike the average temperature conditions, this threshold condition appears

to have negative concavity even at large Pe. This can be understood by considering

the asymptotic behavior at large α. Expanding (4.20) about large α gives

a ∼
√

2

St
α−1/2, α→∞. (4.56)

Substituting this result into (4.55) for large α gives

Tt ∼ α

(√
2

St
α−1/2χ+ χ2

)
=

√
2

St
α1/2χ+ αχ2, α→∞, (4.57)

which is a quadratic in α1/2χ. Since Tt = O(1), we deduce that χ = O
(
α−1/2

)
. It

follows that

σ(1) ∼ ε
(
1 + cα−1/2

)
, α→∞, (4.58)

where c is a negative constant. This shows that σ(1) → ε as α → ∞. If Pe → ∞

as α → ∞, then (4.35c) implies σ(1) → 1 and thus ε → 1. This forces Tt → 0 for

all parameter values. This means σ(1) must remain bounded away from one and thus

Pe must be bounded from above. Since Pe increases with increasing α, this means Pe

must asymptote to a constant as α→∞. It follows that the fit curve must be concave

down as demonstrated in Figure 4.4b. Another argument for this behavior follows from

the fact that a→ 0 as α→∞. This means the leading order of (4.25) is independent

of α in this limit. Therefore, σ(1) asymptotes to a constant as α→∞. Physically, this

means that the melt front position becomes independent of the temperature at high

enough temperatures, as is evident in Figure 4.4b.

Since the concavity does not force a poor fit in Figure 4.4, it forces us to seek

other explanations. In coding this model, there were some difficulties with the sen-

sitivity of the computed fitting parameters to their respective initial guesses. This

indicates that several local minima could exist. This issue was remedied with the use

of MulitStart, a built-in MATLAB object that is used to solve optimization problems

over a range of initial guesses to find the global minimum. However, one local minimum

of note was at Tt = 0, which suggests that the true global minimum may occur for
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negative Tt. This motivates the relaxation of the Tt ≥ 0 restriction. This could allow

for the fitted value of ε to be less than σ(1). Note that we still restrict Tt ≥ − St−1 /2

to maintain χ ∈ R; as shown below, this restriction does not hinder the model to the

same degree as Tt ≥ 0. The results of this condition, with the restriction removed, are

shown in Figure 4.5.

Figure 4.5: Plot of experimental data (crosses) and (4.54) with unrestricted Tt (solid

curve).

With the restriction removed, there is significant improvement to the fit of the

experimental data. Furthermore, the code consistently returned the same (negative)

value of Tt, suggesting that this is indeed the global minimum. We are now tasked

with justifying the use of a negative value of Tt. To understand what is happening in

this computation, a temperature profile for an example set of parameters is given by

Figure 4.6. This figure shows both the modeled temperature profile, i.e., with Tr ≡ 0,

and a temperature profile with the solution for Tp extended into the crystalline region.
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Figure 4.6: Plot of modelled temperature profile from (4.12) and (4.14) (solid curves)

and extension of melt solution into the crystalline region (dashed curve) using the

median experimental datum (α,Pe) = (0.333, 3.94).

Figure 4.6 shows that, from a computational perspective, the code is merely

imposing the threshold condition in the crystalline region by approximating the tem-

perature profile with Tp for a small distance into the crystalline region. Given the

success of the data fit, this suggests that the temperature profile in the crystalline

region can be approximated well by extending the temperature profile from the melt

region. Note that this approximation cannot be exact since there must be a disconti-

nuity in the derivative of the temperature at the melt front to drive its evolution (see

§4.1).

Another feature of note from Figure 4.6 is the minimum in the extended melt

solution. This contradicts the intuition that the temperature should increase mono-

tonically from the centerline to the outer surface. This would not normally concern
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us since we truncate the the melt solution (4.14) with (4.12) at the melt front, but

here we consider extending the melt solution into the crystalline region. Fortunately,

ε does not extend past the monotonically increasing part of (4.14), so the existence of

the minimum does not affect our analysis.

As discussed in §4.4, the right-hand side of (4.55) trends to a value of α > 0;

however, the left-hand side is now negative. Ergo, this inequality is strict in this limit.

This results in a minimum in the fitted curve in Figure 4.5 since the curve corresponds

to the set of (α,Pe) values where equality holds for (4.55). Physically, this means that

for a slow enough flow velocity, extrusion will occur for any heating temperature. This

results from the fact that the threshold temperature that the polymer must surpass is

negative whereas α > 0.

Using (4.39) in (4.55) gives

Tt ∼ αχ+
St

2
α2χ2, α→∞, (4.59)

which is a quadratic in αχ. Again since Tt = O(1), we deduce that χ = O (α−1). This

implies that σ(1) must be very close to one. Using (4.41c) in (4.55) gives

χ ∼ log ε

g(1)
α−1/2 ∝ −Pe1/2 α−1/2, α→∞. (4.60)

So, for χ = O (α−1) to be true, Pe must be proportional to α−1. In other words, for

small heating temperatures, σ(1) must be very close to one for (4.55) to fail. This only

occurs when both α→ 0 and Pe→∞. The asymptotic behavior for large α is similar

to the case where Tt is restricted to be non-negative. The theory for small- and large-α

asymptotics discussed here are corroborated by Figure 4.7.
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(a) (b)

Figure 4.7: (a) Plot of asymptotic behavior of (4.54) at small α with unrestricted Tt

(solid curve). (b) Plot of experimental data (crosses) and asymptotic behavior of (4.54)

at large α with unrestricted Tt (solid curve).

Returning to our discussion of the small-α asymptotics, the model tells us that

if the heating temperature is very close to the melting point, then almost any flow

velocity will result in successful extrusion. This, of course, does not make sense from

a physical perspective and thus the model cannot be used to extrapolate to arbitrarily

small α. However, this failing is not cause to dismiss the model as it has been shown

to be very successful when α is in the region where experimental data is collected and

manufacturing processes operate.

4.7 The Tapered Case

4.7.1 Temperature Profile

We continue our analysis of the crystalline case by considering flow through a

linear taper. As in the amorphous case, we consider the tapered problem to better

understand the behavior in this portion of the hot end before moving onto the more

realistic combined case. As in §3, we still consider a system of length Hcyl for compari-

son to §4.6 and still use the scaling z = z̃/Hcyl. In this case, the surface radius is given
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by a linear function:

R(z) = 1− (1− β)z. (4.61)

The temperature profile in this case can be computed using (4.12) and (4.14), where

σ can be computed using (4.25). In this case, (4.25b) reduces to

η(z) = (1− a) log σ − Pe

4

1− β
1− (1− β)z

{
(1− a)

(
1− σ2

)
+
[
2− a

(
1 + σ2

)]
log σ

}
,

(4.62)

where a is given by (4.20). The temperature profile for the median datum is given in

Figure 4.8.

Figure 4.8: Plot of (4.12) and (4.14) with (4.20), (4.25a), and (4.62) (solid curves)

for z ∈ {0.008, 0.04, 0.2, 0.6, 1}, where z increases from right to left, for the median

experimental datum (α,Pe) = (0.333, 3.94). For each z, the temperature to the left

of the r-intercept is zero. The value of R(z) given by (4.61) is indicated in each case

by a dashed line to show the narrowing of the nozzle. (Note for z = zend, R (zend) is

indistinguishable from T (r, zend).)
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From Figure 4.8, we see that at first the heat penetration depth into the polymer

increases, reaches a maximum, and subsequently decreases. This is likely the result

of a crystalline core of some fixed radius less than one. Initially, there is further heat

penetration because of the increased heating outside of the core. At some point, the

edge of the nozzle gets closer to the core causing the range of heating to narrow and

eventually go to zero. In other words, the melt front radius initially decreases faster

than the surface radius, but after some z the surface radius decreases faster than

the melt front radius causing the two to eventually intersect, leaving the unmelted

crystalline core.

Note that Figure 4.8 tells us that heat is only able to penetrate a small distance

into the polymer before extrusion. This supports the observation made in §4.6.2.1 that

there should only be a thin layer of melt after extrusion.

4.7.2 Average Temperature as Threshold Condition

In finding threshold conditions, we proceed using the same average temperature

conditions as in the previous cases.

4.7.2.1 Cross-Sectional Average at Exit

First, we consider a threshold temperature defined by the cross-sectional average

temperature at the exit of the extruder as defined in (3.27):

Tt ≤ 〈T 〉(1), (4.63)

where we compute 〈T 〉(z) with (4.29). The results of this condition are shown in Figure

4.9.
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Figure 4.9: Plot of experimental data (crosses) and (4.63) (solid curve).

As in §4.6.2.1, the cross-sectional average as threshold temperature is unable

to predict the experimental data. This can be explained using the same asymptotic

arguments as before.

4.7.2.2 Full Average

Next, we consider a threshold temperature defined by the average temperature

across the entire cylinder as defined in (3.34) and (3.35):

Tt ≤ T̄ (1), (4.64a)

dT̄

dz
= 〈T 〉(z), T̄ (0) = 0. (4.64b)

The results of this condition are shown in Figure 4.10.
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Figure 4.10: Plot of experimental data (crosses) and (4.64a) (solid curve).

As in §4.6.2.2, the full average as threshold temperature is unable to predict

the experimental data. This can be explained using the same asymptotic arguments

as before.

4.7.3 Exit Temperature as Threshold Condition

Failure of the average temperature conditions in the tapered crystalline case

motivates the use of the exit temperature condition given by (4.54):

Tt ≤ T (ε, 1). (4.65)

The results of this condition are shown in Figure 4.11.
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Figure 4.11: Plot of experimental data (crosses) and (4.65) (solid curve).

As in §4.6.3, the exit as threshold temperature is able to predict the experimental

data. We again rely on the same justification for Tt < 0 as before. Note that the curve

in Figure 4.11 appears to have a cusp at the minimum; however, the curve is indeed

smooth as can be shown with mesh refinement.

4.8 The Combined Case

4.8.1 Temperature Profile

Lastly, we analyze the crystalline case by considering flow through the real

geometry: a right cylinder feeding into a linear taper as in Figure 2.1. In this case, the

surface radius is given by a piecewise linear function:

R(z) = 1−B(z)(z − 1), (4.66a)

B(z) =

0, 0 ≤ z ≤ 1,

1−β
zend−1

, 1 < z ≤ zend.

(4.66b)
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The temperature profile in this case can be computed using (4.12) and (4.14), where

σ can be computed using (4.25). In this case, (4.25b) reduces to

η(z) = (1− a) log σ − Pe

4

B(z)

1−B(z)(z − 1)

{
(1− a)

(
1− σ2

)
+
[
2− a

(
1 + σ2

)]
log σ

}
,

(4.67)

where a is given by (4.20). The temperature profile for the median datum is given in

Figure 4.8.

Figure 4.12: Plot of (4.12) and (4.14) with (4.20), (4.25a), and (4.67) (solid curves)

for z ∈ {0.008, 0.04, 0.2, 0.6, zend}, where z increases from right to left, for the median

experimental datum (α,Pe) = (0.333, 3.94). For each z, the temperature to the left of

the r-intercept is zero. The dashed line shows the width of the cylinder for the first

four curves; at z = zend, the width of the nozzle R (zend) is indistinguishable from the

curve T (r, zend).

Observe that Figure 4.12 looks much like Figure 4.1 for z < 1. For z > 1, we

see the same phenomena as in Figure 4.8. In particular, note that Figure 4.12 shows
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that the heat penetration depth and thus melt front depth will be small at extrusion,

further corroborating the observation made in §4.6.2.1 that there should only be a thin

layer of melt after extrusion.

4.8.2 Average Temperature as Threshold Condition

In finding threshold conditions, we proceed using the same average temperature

conditions as in the previous cases.

4.8.2.1 Cross-Sectional Average at Exit

First, we consider a threshold temperature defined by the cross-sectional average

temperature at the exit of the extruder as defined in (3.27):

Tt ≤ 〈T 〉 (zend) , (4.68)

where we compute 〈T 〉(z) with (4.29). The results of this condition are shown in Figure

4.13.

Figure 4.13: Plot of experimental data (crosses) and (4.68) (solid curve).
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Due to the failure of the cross-sectional average as threshold temperature in

§4.6.2.1 and §4.7.2.1, it is no surprise that the same asymptotic limitations exist in the

combined case.

4.8.2.2 Full Average

Next, we consider a threshold temperature defined by the average temperature

across the entire cylinder as defined in (3.34) and (3.35):

Tt ≤ T̄ (zend) , (4.69a)

dT̄

dz
= 〈T 〉(z), T̄ (0) = 0. (4.69b)

The results of this condition are shown in Figure 4.14.

Figure 4.14: Plot of experimental data (crosses) and (4.69a) (solid curves).

Similarly, the failure of the full average as threshold temperature in §4.6.2.2 and

§4.7.2.2 and the asymptotic limitations therein explain the poor fit here as well.
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4.8.3 Exit Temperature as Threshold Condition

Failure of the average temperature conditions in the tapered crystalline case

motivates the use of the exit temperature condition given by (4.54):

Tt ≤ T (ε, zend) . (4.70)

The results of this condition are shown in Figure 4.15.

Figure 4.15: Plot of experimental data (crosses) and (4.70) (solid curve).

As expected from the analogous results of §4.6.3 and §4.7.3, the exit as threshold

temperature is able to predict the experimental data. We again rely on the same

justification for Tt < 0 as before. Also note that the curve in Figure 4.15 is indeed

smooth at the minimum, as in Figure 4.11. Similar asymptotic arguments also apply

except with χ = [1− log ε/ log σ(1)] replaced with [1− log ε/ log σ (zend)].

Given the three successful models, this one is the most faithful to the system

of interest; however, this accuracy comes with computational expense. The figures in
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sections §4.6 and §4.7 all took between 15 and 25 seconds to construct on a 2.60 GHz

processor, with the tapered models taking slightly more time than the cylindrical ones

for any condition. The figures in this section all took over 80 seconds to construct. This

time difference is a result of the ODE stiffness in the combined case. While the tapered

and combined problems are academically interesting, their lack of added accuracy

means the cylindrical model is likely the most useful in engineering applications.
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Chapter 5

CONCLUSIONS AND AREAS OF FUTURE RESEARCH

In order to optimize 3-D printing production processes, engineers must first

understand the maximum rate at which the polymer construction material can be

extruded. This quantity is useful in improving product quality and product processing

time. The polymer feedstock is heated as it moves through the hot end of the printer

and increases in pliancy throughout. The inverse relationship between flow velocity and

heating time naturally gives way to an upper bound on the flow velocity. Above this

velocity, the polymer does not become sufficiently pliant, thus increasing the required

pressure beyond what the pump can feasibly produce. This causes the printer to jam

and extrusion to fail.

After applying several simplifying assumptions justified by the physical systems

of interest, we modeled the system using the heat equation in a moving cylindrical

coordinate system. We first considered the flow of amorphous polymers in a taper,

which is a relatively simple boundary value problem. We then considered crystalline

polymers in three geometries: a cylinder, a taper, and a cylinder feeding into a taper.

Since crystalline polymers exhibit a crystal-melt transition, this is a type of moving

boundary problem known as a Stefan problem, where the moving boundary in this case

is the melt front s(z).

After several geometric transformations, the amorphous problem is solvable us-

ing a standard separation of variables approach. This results in two ODEs, one for

each space variable, given by (3.7). The separable solution is a series solution given by

(3.1) with (3.24).

Again relying on geometric transformations, the crystalline problem was solved

using a quasistationary approach in the crystalline region and the HBI method in the
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melt region. These approximations gave an expression for the temperature field, as in

(4.12), (4.14), and (4.20), that is coupled to the ODE for the melt front (4.25). This

ODE must be solved numerically, but (4.27c) and (4.46c) give an analytical approxi-

mations that can be used in the limits of small and large normalized melt front radius,

respectively.

Given a solution for the temperature field, we were tasked with translating the

solution into a velocity upper bound. We examined three temperature-based condi-

tions. Temperature was chosen as a more readily calculable alternative to viscosity,

the material property that is expected to more directly affect extrusion success/failure.

Success in the case of amorphous polymers in a cylinder in [5] motivated imposing a

constraint on the cross-sectional average of the exit temperature. As shown in Figures

3.3, 4.2, 4.9, and 4.13, this condition was unable to predict the data. In amorphous

polymers, this is likely due to the large cylindrical portion of the hot end that is ne-

glected combined with the use of a curved taper instead of a linear one. In crystalline

polymers, this is due to the wrong concavity for large values of Pe. Since the overall

shape of the curve did not match the data, the introduction of additional degrees of

freedom is unlikely to improve the fit.

Moving forward, a similar constraint using the average temperature throughout

the hot end was tested. This condition was again successful for amorphous polymers

in a cylinder in [5]. As shown in Figures 3.4, 4.3, 4.10, and 4.14, this condition was

also unable to predict the data. This is due to similar reasons as the failure of the

cross-sectional average condition.

The last condition considered for amorphous polymers was based on the center-

line temperature at the exit, which again failed to predict the data as shown in Figure

3.5. We are unable to impose this condition on crystalline polymers because in this

case the centerline temperature at the exit will allays be zero for any set of parameters.

This is a a result of the quasistationary approximation, which tells us that the temper-

ature in the crystalline region is zero, and the asymptotic behavior of the melt front

near the centerline, which tells us that the melt front will not go to zero in finite z.
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An analogous constraint is considered with an additional degree of freedom: a distance

ε from the centerline. From a mathematical perspective, we expect the fitted thresh-

old temperature Tt to be non-negative since the crystalline temperature is identically

zero (again an artifact of the quasistationary approximation). However, this proved

unsuccessful in the cylindrical case as shown in Figure 4.4a.

Combined with some numerical observations, the failure of the fit for non-

negative Tt motivated the relaxation of this restriction to allow Tt < 0. The results of

these fits, as given in Figures 4.5, 4.11, and 4.15, were quite good. Thus, the model

works in the region where the experimental data was collected. However, the negative

threshold temperature resulted in some non-physical asymptotic behavior in the limit

of small α. In particular, we expect an α-intercept to exist, as shown in the other

figures. The use of negative Tt is justified in Figure 4.6. Negative Tt arises from an

extension of the melt solution for a small distance into the crystalline region. For mod-

erate values of (α,Pe), the fitted extension aligns well with the solution profile. Outside

those regimes, the extension does not match the profile, explaining the spurious results.

That being said, this model remains useful as demonstrated by its correct behavior in

the range where experimental data is collected and manufacturing processes operate.

One clear solution to improve the results for small α would be to eliminate the

quasistationary approximation and use a more refined HBI method to consider the

full two-phase Stefan problem. This, of course, would increase the complexity of the

problem significantly. Authors tend avoid the use of cylindrical coordinates [16] or use

a semi-discretized approach [25] due to the potential for singularities to occur along the

centerline. A more robust solution for the crystalline region would necessitate a Taylor

series in z, among other complications, due to the form of its boundary conditions. A

solution of the form in [26], an exponential approach, may be able to resolve the issues

regarding the initial condition that arise from a Taylor series or related functional

forms. Another approach that may retain some simplicity and provide some accuracy

is a Megerlin method in which we assume the heat equation is satisfied along the melt

front [14]. Alternatively, the two-phase problem could be solved using the HBI method
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via a fully numerical approach. These considerations are left as subjects for future

research.

The crystalline model could also be improved by considering different functional

forms for the temperature profile in Step 1 of the HBI method. As discussed in §4.2.3,

imposing the Stefan condition on the assumed temperature profile in Step 2 of the

HBI method required the heat equation to be satisfied along the melt front. While

the assumed temperature profile was able to predict the experimental data, it does not

satisfy the heat equation along the melt front. This means we have modeled a slightly

different physical system. Thus, finding a functional form that does satisfy the heat

equation along the melt front could provide additional physical insights.

For the amorphous case, the model could be improved by considering the more

physically realistic geometry of a cylinder feeding into a taper. In the hot end, the

cylindrical portion is much longer than the tapered portion. The success of [5] in mod-

eling amorphous polymers using just the cylindrical portion suggests that a combined

model would be much more successful than a purely tapered model.

Additional refinements for both the amorphous and crystalline polymers could

come from the relaxation of the assumptions listed in §2. Furthermore, additional

threshold conditions could be considered, such as the viscosity-based conditions used

in [5].

In conclusion, our results show the behavior of amorphous polymers cannot be

predicted with a temperature-based constraint without consideration of the cylindrical

portion of the hot end whereas crystalline polymers are predicted well when using an

exit temperature constraint in several relevant geometries. In particular, given a desired

velocity of crystalline polymer flow, our solution is able to provide the heating tem-

perature necessary for successful extrusion, even if beyond the range of commercially

available equipment. As shown in Figures 4.5, 4.11, and 4.15, there are diminishing

returns on the velocity bound from temperature increases. This agrees with physical

intuition since heat takes time to diffuse through the polymer making the bound un-

reachable at higher speeds. This insight will help engineers to design better and more
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productive 3-D printers.
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Appendix A

EXPERIMENTAL PARAMETERS

In this appendix, we list the experimental parameter values used for compu-

tation. Some values come from literature sources, whereas others come directly from

laboratory measurements. Other parameters calculated from these experimental values

are also listed.

In Table A.1, we list the parameters for the hot end. As discussed in §2, ε =

O (10−2) is small, thus validating Assumption 2.

Table A.1: Device parameters.

[5] [8] Measured Calculated

Hcyl (mm) 30 — — —

Hnoz (mm) — — 2 —

Rmax (mm) — 1.5875 — —

Rmin (mm) — — 0.175 —

Ti (◦C) 20 — — —

β — — — 0.1102

γ — — — 2.2051
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In Table A.2, we list parameters for the ABS polymer, the polymer used in the

amorphous case §3. As expected, the experimental data lies in the regime of relatively

small Pe.

Table A.2: ABS parameters.

[5] [8] Calculated

cP [J/(kg·K)] — 2100 —

k [W/(m·K)] 0.205 — —

Pe — — [0.218, 3.26]

Tmax (◦C) — [175, 245] —

T̃t (◦C) — — [98, 173]

Tt — — [−0.0239, 0.908]

T∗ = Tg (◦C) — 100 —

Vmin (mm/s) — [0.23, 3.44] —

α — — [0.938, 1.81]

∆T (K) — — 80

ρ (kg/m3) 1100 — —
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In Table A.3, we list parameters for the PLA polymer, the polymer used in the

crystalline case §4. As noted in §4, this model only uses those experiments with high

enough Tmax values that we think we may be in the melt regime, i.e., those with Tmax

sufficiently greater than Tm. Here the experimental data lies in the regime of relatively

small Pe and α.

Table A.3: PLA parameters.

[8] [27] Calculated

a — — [0.678, 0.889]

cL (kJ/kg) — 91 —

cP [J/(kg·K)] 1700 — —

k [W/(m·K)] 0.13 — —

Pe — — [2.21, 5.08]

St — — 2.52

Tmax (◦C) [170, 230] — —

T̃t (◦C) — — [150, 182]

Tt — — [−0.0396, 0.197]

T∗ = Tm (◦C) 155 — —

Vmin (mm/s) [1.61, 3.70] — —

α — — [0.111, 0.556]

∆T (K) — — 135

ε — — [0.288, 0.999]

ρ (kg/m3) 1250 — —
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Appendix B

AMORPHOUS MODEL IMPLEMENTATION

In this appendix, we display the MATLAB code used to implement the amor-

phous model from §3. First, we will list the equations referenced in the code. Some

equations are in a different form than those given in the body whereas others are merely

repeated here for ease of comparison to the code.

B.1 Variables

The following are variable definitions used in the main script in order of appear-

ance:

∆T = T∗ − Ti, (B.1)

β =
Rmin

Rmax

, (B.2)

γ = log β−1, (B.3)

λN+1 = min
n∈N

{
λn+1 : Dn+1e

−2γλn+1 ≤ 10−6
}
, (B.4)

α =
Tmax − T∗

∆T
, (B.5)

Pe =
ρcPR

2
maxVmin

kHcyl

. (B.6)

B.2 Functions

Here we describe all the functions defined in the code in alphabetical order.
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B.2.1 AlphaFitCross

AlphaFitCross defines the function to be curve fitted using the cross-sectional

average temperature condition in FitData. AlphaFitCross returns Tt = 〈T 〉(z) solved

for α using (B.12) to evaluate 〈T 〉(z):

α =
Tt + 〈Θ〉(z)

1− 〈Θ〉(z)
. (B.7)

AlphaFitCross is called by FitData and calls ThetaCross.

B.2.2 AlphaFitExit

AlphaFitExit defines the function to be curve fitted using the exit temperature

condition in FitData. AlphaFitExit returns Tt = T (x, z) solved for α using (B.13) to

evaluate T (x, z):

α =
Tt + Θ(x, z)

1−Θ(x, z)
. (B.8)

AlphaFitExit is called by FitData and calls ThetaExit.

B.2.3 AlphaFitFull

AlphaFitFull defines the function to be curve fitted using the full average

temperature condition in FitData. AlphaFitFull returns Tt = T̄ (z) solved for α

using (B.14) to evaluate T̄ (z):

α =
Tt + Θ̄(z)

1− Θ̄(z)
. (B.9)

AlphaFitFull is called by FitData and calls ThetaFull.

B.2.4 Dn

Dn defines the coefficient Dn from (3.23):

Dn =
M
(
1− λn, 1, γ Pe2

)
e−γ Pe /2∫ γ Pe /2

0
M2 (−λn, 1, x) e−x dx

. (B.10)

Dn is called in ThetaCross, ThetaExit, and ThetaFull and calls M.
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B.2.5 eVals

eVals computes a vector of eigenvalues using the eigenvalue condition (3.13):

λn : n-th smallest λ satisfying M

(
−λ, 1, γ Pe

2

)
= 0. (B.11)

eVals returns a vector of eigenvalues less than or equal to λN+1 from (B.4). eVals is

called in ThetaCross, ThetaExit, and ThetaFull and calls M.

B.2.6 FitData

FitData determines the fitting parameter Tt for all three fitting methods (α-

intercept, curve fit, and level set) for a particular fitting condition (cross-sectional

average, full average, or exit temperature). FitData is called in the main script

and calls AlphaFitExit, AlphaFitExit, AlphaFitFull, ThetaCross, ThetaExit, and

ThetaFull.

B.2.7 M

M defines Kummer’s M function (see discussion in §3.1). M is called in Dn, eVals,

ThetaCross, ThetaExit, and ThetaFull.

B.2.8 MakeFigure

MakeFigure plots the experimental data and all three fitted curves (α-intercept,

curve fit, and level set) for a particular fitting condition (cross-sectional average, full av-

erage, or exit temperature) and computes the runtime of this construction. MakeFigure

is called in the main script and calls ThetaCross, ThetaExit, and ThetaFull.

B.2.9 ThetaCross

ThetaCross computes 〈Θ〉(z) defined as:

〈Θ〉(z) =
α− 〈T 〉(z)

α + 1
=
∞∑
n=1

DnM

(
−λn, 2,

γ Pe

2

)
e−2γλnz, (B.12)

where (3.30) is used to evaluate 〈T 〉(z). ThetaCross is called in AlphaFitCross,

FitData, and MakeFigure and calls Dn, eVals, and M.
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B.2.10 ThetaExit

ThetaExit computes Θ(x, z) defined as:

Θ(x, z) =
α− T (x, z)

α + 1
=
∞∑
n=1

DnM (−λn, 1, x) e−2γλnz, (B.13)

where (3.51) is used to evaluate T (x, z). ThetaExit is called in AlphaFitExit, FitData,

and MakeFigure and calls Dn, eVals, and M.

B.2.11 ThetaFull

ThetaExit computes Θ̄(z) defined as:

Θ̄(z) =
α− T̄ (z)

α + 1
=− 1

2γ

[
1 +

2

γ Pe

(
1− eγ Pe /2

)
+
∞∑
n=1

Dn

λn
M

(
−λn, 2,

γ Pe

2

)
e−2γλnz

]
, (B.14)

where (3.47) is used to evaluate T̄ (z). ThetaFull is called in AlphaFitFull, FitData,

and MakeFigure and calls Dn, eVals, and M. Note that in computation we use the

following expansion in (B.14) to avoid numerical error at small Pe:

2

γ Pe

(
1− eγ Pe /2

)
=

2

γ Pe
− 2eγ Pe /2

γ Pe
. (B.15)

B.3 Code

1 %% Amorphous Polymer in a Taper

2 %

3 % |Amorph Tap.m | fits experimental amorphous polymer data to the

4 % tapered amorphous model

5 % |Amorpth Tap.m | calls |FitData | and |MakeFigure |

6 %

7 % Functions:

8 % |AlphaFitCross | sets up (B.7) to be curve fitted for the cross-

9 % sectional average condition

10 % |AlphaFitExit | sets up (B.8) to be curve fitted for the exit
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11 % temperature condition

12 % |AlphaFitFull | sets up (B.9) to be curve fitted for the ful

13 % average condition

14 % |Dn | defines the coefficients $D n$ from (B.10)

15 % |eVals | computes a vector of eigenvalues using (B.11) less than

16 % or equal to $\lambda {N+1}$ from (B.4)

17 % |FitData | determines the threshold temperature $T t$ for a

18 % particular theshold condition

19 % |M | defines Kummer's $M$ function

20 % |MakeFigure | plots the experimental data and fitted curves

21 % |ThetaCross | computes $\langle\Theta\rangle(z)$ from (B.12)

22 % |ThetaExit | computes $\Theta(x,z)$ from (B.13)

23 % |ThetaFull | computes $\bar{\Theta}(z)$ from (B.14)

24 %

25 % Variables:

26 % |alphaData | is the experimental data for $\alpha$ from (B.5)

27 % |beta |is $\beta$ from (B.2)

28 % |cond | is a string specifying which theshold condition is being

29 % considered

30 % |cP | is the specific heat capacity in J/g-K

31 % |DeltaT | is the difference between the initial temperature $T i$

32 % and the glass-rubber transition temperature $T *=T g$

33 % in $ˆo\text{C}$ from (B.1)

34 % |gamma | is $\gamma$ from (B.3)

35 % |Hcyl | is the height of the cylindrical portion of the hot end in

36 % mm

37 % |k | is the thermal conductivity in J/s-m-K

38 % lambdaMin is the upper limit for an eigenvalue to contribute to

39 % the sum in $\Theta(0,1)$, i.e., $\lambda {N+1}$ from (B.4)

40 % |PeData | is the experimental data for $\text{Pe}$ from (B.6)

41 % |plotTimeCross | is the runtime needed to construct the figure

42 % for the cross-sectional average condition

43 % |plotTimeExit | is the runtime needed to construct the figure for

44 % the exit temperature condition

45 % |plotTimeFull | is the runtime needed to construct the figure for
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46 % the full average condition

47 % |rho | is the density in g/cc

48 % |Rmax | is the maximum nozzle radius in mm

49 % |Rmin | is the minimum nozzle radius in mm

50 % |TmaxData | is the experimental data $T {\max}$ in $ˆo\text{C}$

51 % |Tg | is the glass-rubber transition temperature $T *=T {\rm g}$

52 % in $ˆo\text{C}$

53 % |Ti | is the initial temperature in $ˆo\text{C}$

54 % |TtCross | is a vector of the threshold temperature for the

55 % cross-sectional averagecondition for each fitting method

56 % |TtExit | is a vector of the threshold temperature for the exit

57 % temperature condition for each fitting method

58 % |TtFull | is a vector of the threshold temperature for the full

59 % average condition for each fitting method

60 % |VminData | is the experimental data for $V {\min}$

61 % in $ˆo\text{C}$

62 %%

63 % Experimental value from [5]

64 %%

65 Hcyl = 30; %mm

66 %%

67 % Experimental values from [8]

68

69 cP = 2.1; %J/g-K

70 k = 0.205; %J/s-m-K

71 rho = 1.1; %g/cc

72 Rmax = 3.175/2; %mm

73 Ti = 20; %ˆoC

74 Tg = 100; %ˆoC

75 DeltaT = Tg-Ti; %K

76 %%

77 % Measured value

78

79 Rmin = 0.35/2; %mm

80 %%
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81 % Compute $\beta$ and $\gamma$

82

83 beta = Rmin/Rmax;

84 gamma = log(betaˆ(-1));

85 %%

86 % Set $\lambda {N+1}$

87

88 lambdaMin = 3.84;

89 %%

90 % Experimental data for ABS through $0.35$ mm nozzle from [8]

91

92 TmaxData = [245;245;245;240;235;230;230;230;225;220;215;210;205;200;...

93 195;190;190;190;185;180;175]; %ˆoC

94 VminData = [3.44;3.37;3.43;3.13;3.05;2.83;2.80;2.83;2.51;2.25;2.05;...

95 1.85;1.64;1.32;1.05;0.76;0.74;0.75;0.54;0.39;0.23]; %mm/s

96 %%

97 % Scale experimental data

98

99 alphaData = (TmaxData-Tg)/DeltaT;

100 PeData = cP*rho*Rmaxˆ2*VminData/(k*Hcyl);

101 %% Cross-Sectional Average Condition

102 %%

103 cond = 'Cross';

104 TtCross = FitData(cond,gamma,lambdaMin,alphaData,PeData);

105 plotTimeCross = MakeFigure(cond,TtCross,gamma,lambdaMin,alphaData,...

106 PeData);

107 fprintf(['Plotting runtime is %f seconds for the cross-sectional '...

108 'average condition.\n'],plotTimeCross);

109 %% Full Average Condition

110 %%

111 cond = 'Full';

112 TtFull = FitData(cond,gamma,lambdaMin,alphaData,PeData);

113 plotTimeFull = MakeFigure(cond,TtFull,gamma,lambdaMin,alphaData,...

114 PeData);

115 fprintf(['Plotting runtime is %f seconds for the full average '...
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116 'condition.\n'],plotTimeFull);

117 %% Exit Temperature Condition

118 %%

119 cond = 'Exit';

120 TtExit = FitData(cond,gamma,lambdaMin,alphaData,PeData);

121 plotTimeExit = MakeFigure(cond,TtExit,gamma,lambdaMin,alphaData,...

122 PeData);

123 fprintf(['Plotting runtime is %f seconds for the exit temperature '...

124 'condition.\n'],plotTimeExit);

125 %%

126 function alphaFitCross = AlphaFitCross(Tt,z,gamma,lambdaMin,Pe)

127 % |AlphaFitCross | sets up (B.7) to be curve fitted for the

128 % cross-sectional average condition

129 % |AlphaFitCross | is called by |FitData |

130 % |AlphaFitCross | calls |ThetaCross |

131 %

132 % Input variables:

133 % |gamma | is a scalar of $\gamma$ from (B.3)

134 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

135 % |Pe | is an array of $\rm Pe$ from (B.6)

136 % |Tt | is a scalar of $T t$

137 % |z | is a scalar of the $z$-coordinate

138 %

139 % Output variable:

140 % |alphaFitCross | is an array of $\alpha$ computed from (B.7)

141 %

142 % Internal variables:

143 % |thetaCross | is an array of $\langle\Theta\rangle(z)$ values

144 % from (B.12)

145

146 thetaCross = ThetaCross(z,gamma,lambdaMin,Pe);

147 alphaFitCross = (Tt+thetaCross)./(1-thetaCross);

148 end

149

150 function alphaFitExit = AlphaFitExit(Tt,x,z,gamma,lambdaMin,Pe)
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151 % |AlphaFitExit | sets up (B.8) to be curve fitted for the exit

152 % temperature condition

153 % |AlphaFitExit | is called by |FitData |

154 % |AlphaFitExit | calls |ThetaExit |

155 %

156 % Input variables:

157 % |gamma | is a scalar of $\gamma$ from (B.3)

158 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

159 % |Pe | is an array of $\rm Pe$ from (B.6)

160 % |Tt | is a scalar of $T t$

161 % |x | is a scalar of the $x$-coordinate

162 % |z | is a scalar of the $z$-coordinate

163 %

164 % Output variable:

165 % |alphaFitExit | is an array of $\alpha$ computed from (B.8)

166 %

167 % Internal variables:

168 % |thetaExit | is an array of $\Theta(x,z)$ values from (B.13)

169

170 thetaExit = ThetaExit(x,z,gamma,lambdaMin,Pe);

171 alphaFitExit = (Tt+thetaExit)./(1-thetaExit);

172 end

173

174 function alphaFitFull = AlphaFitFull(Tt,z,gamma,lambdaMin,Pe)

175 % |AlphaFitFull | sets up (B.9) to be curve fitted for the full

176 % average condition

177 % |AlphaFitFull | is called by |FitData |

178 % |AlphaFitFull | calls |ThetaFull |

179 %

180 % Input variables:

181 % |gamma | is a scalar of $\gamma$ from (B.3)

182 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

183 % |Pe | is an array of $\rm Pe$ from (B.6)

184 % |Tt | is a scalar of $T t$

185 % |z | is a scalar of the $z$-coordinate
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186 %

187 % Output variable:

188 % |alphaFitFull | is an array of $\alpha$ computed from (B.9)

189 %

190 % Internal variables:

191 % |thetaFull | is an array of $\bar{\Theta}(z)$ values from (B.14)

192

193 thetaFull = ThetaFull(z,gamma,lambdaMin,Pe);

194 alphaFitFull = (Tt+thetaFull)./(1-thetaFull);

195 end

196

197 function dn = Dn(gamma,Pe,lambdan)

198 % |Dn | defines the coefficient $D n$ from (B.10)

199 % |Dn | is called by |ThetaCross|, |ThetaExit|, and |ThetaFull |

200 % |Dn | calls |M |

201 %

202 % Input variables:

203 % |gamma | is a scalar of $\gamma$ from (B.3)

204 % |lambdan | is a scalar of $\lambda n$ from (B.11)

205 % |Pe | is an scalar of $\rm Pe$ from (B.6)

206 %

207 % Output variable:

208 % |dn | is an scalar of $D n$ computed from (B.10)

209 %

210 % Internal variables:

211 % |denominator | is an scalar of the denominator of (B.10)

212 % |integrand | is a function handle of the integrand of the integral

213 % in the denominator of (B.10)

214 % |numerator | is an array of the numerator of (B.10)

215

216 numerator=M(1-lambdan,1,gamma*Pe/2)*exp(-gamma*Pe/2);

217 integrand=@(x) M(-lambdan,1,x).ˆ2.*exp(-x);

218 denominator=integral(integrand,0,gamma*Pe/2);

219 dn=numerator./denominator;

220 end
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221

222 function lambda = eVals(gamma,lambdaMin,Pe)

223 % |eVals | computes a vector of eigenvalues using (B.11) less than or

224 % equal to $\lambda {N+1}$ from (B.4)

225 % |eVals | is called by |ThetaCross|, |ThetaExit|, and |ThetaFull |

226 % |eVals | calls |M |

227 %

228 % Input variables:

229 % |gamma | is a scalar of $\gamma$ from (B.3)

230 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

231 % |Pe | is an scalar of $\rm Pe$ from (B.6)

232 %

233 % Output variable:

234 % |lambda | is an array eigenvalues from (B.11)

235 %

236 % Internal variables:

237 % |lambda1 | is a scalar of $\lambda 1$ from (B.11)

238 % |lambda2 | is a scalar of $\lambda 2$ from (B.11)

239 % |lambdaGuess | is a scalar of the initial guess for |lambda1 |

240 % |lambdaRange | is the interval $[\lambda 1,\lambda {N+1}]$

241 % |m | is a function handle of the eigenvalue condition (B.11)

242

243 m = @(lambda) M(-lambda,1,gamma*Pe/2);

244

245 % Find first eigenvalue

246 lambdaGuess = 2/(gamma*Pe);

247 lambda1 = fzero(m,lambdaGuess);

248

249 try

250 % Try and find second eigenvalue

251 lambdaRange = [lambda1+eps,lambdaMin];

252 lambda2 = fzero(m,lambdaRange);

253 lambda = [lambda1 lambda2];

254 catch

255 % Return 1st eigenvalue if there is only one less than |lambdaMin |
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256 lambda = lambda1;

257 end

258 end

259

260 function Tt = FitData(cond,gamma,lambdaMin,alpha,Pe)

261 % |FitData | determines the threshold temperature $T t$ for a particular

262 % theshold condition

263 % |FitData | is called in the main script

264 % |FitData | calls |AlphaFitCross|, |AlphaFitExit|, |AlphaFitFull|,

265 % |ThetaCross|, |ThetaExit|, and |ThetaFull |

266 %

267 % Input variables:

268 % |alpha | is an array of the $\alpha$ from (B.5)

269 % |cond | is a string specifying which theshold condition is being

270 % considered

271 % |gamma | is a scalar of $\gamma$ from (B.3)

272 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

273 % |Pe | is an array of the $\rm Pe$ from (B.6)

274 %

275 % Output variable:

276 % |Tt | is a vector storing the fitted $T t$ using the $\alpha$-

277 % intercept, curve fit, and level set fitting methods, respectively

278 %

279 % Internal variables:

280 % |curveFitFun | is a function handle of (B.7), (B.8), or (B.9)

281 % to be fitted in the curve fit method

282 % |linFitParams | is a vector of the parameters from the linear fit of

283 % the data

284 % |options | is used to set the options for |lsqcurvefit |

285 % |PeMat | is a matrix with a column of ones and a coulmn of the

286 % $\rm Pe$ from (B.6)

287 % |x | is a scalar of the $x$-coordinate where the theshold condtion

288 % is imposed

289 % |z | is a scalar of the $z$-coordinate where the theshold condtion

290 % is imposed
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291

292 % Pre-allocate size of |Tt |

293 Tt = zeros(3,1);

294

295 % $\alpha$-intercept fitting method

296 PeMat = [ones(size(Pe)),Pe];

297 linFitParams = (PeMat'*PeMat)\PeMat'*alpha;

298 Tt(1) = linFitParams(1);

299

300 options = optimoptions('lsqcurvefit','Display','off');

301 if strcmp(cond,'Cross')

302 % For cross-sectional average condtion

303 z = 1;

304

305 % curve fitting method

306 curveFitFun = @(Tt,Pe) AlphaFitCross(Tt,z,gamma,lambdaMin,Pe);

307 Tt(2) = lsqcurvefit(curveFitFun,Tt(1),Pe,alpha,...

308 -Inf,Inf,options);

309

310 % level set fitting method

311 Tt(3) = mean(alpha-(alpha+1).*ThetaCross(z,gamma,lambdaMin,...

312 Pe));

313

314 elseif strcmp(cond,'Full')

315 % For full average condtion

316 z = 1;

317

318 % curve fitting method

319 curveFitFun = @(Tt,Pe) AlphaFitFull(Tt,z,gamma,lambdaMin,Pe);

320 Tt(2) = lsqcurvefit(curveFitFun,Tt(1),Pe,alpha,...

321 -Inf,Inf,options);

322

323 % level set fitting method

324 Tt(3) = mean(alpha-(alpha+1).*ThetaFull(z,gamma,lambdaMin,...

325 Pe));
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326 elseif strcmp(cond,'Exit')

327 % For exit temperature condtion

328 x = 0;

329 z = 1;

330

331 % curve fitting method

332 curveFitFun = @(Tt,Pe) AlphaFitExit(Tt,x,z,gamma,lambdaMin,Pe);

333 Tt(2) = lsqcurvefit(curveFitFun,Tt(1),Pe,alpha,...

334 -Inf,Inf,options);

335

336 % level set fitting method

337 Tt(3) = mean(alpha-(alpha+1).*ThetaExit(x,z,gamma,lambdaMin,...

338 Pe));

339 else

340 % Throw error for any other value of |cond |

341 error('Unknown theshold condition');

342 end

343 end

344

345 function m = M(a,b,z)

346 % |M | defines Kummer's $M$ function

347 % |M | is called by |Dn|, |eVals|, |ThetaCross|, |ThetaExit|, and

348 % |ThetaFull |

349 %

350 % Input variables:

351 % |a | is an array of the first argument of $M$

352 % |b | is an array of the second argument of $M$

353 % |z | is an array of the third argument of $M$

354 %

355 % Output variable:

356 % |m | is an array of $M$

357

358 m = hypergeom(a,b,z);

359 end

360
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361 function plotTime = MakeFigure(cond,Tt,gamma,lambdaMin,alpha,Pe)

362 % |MakeFigure | plots the experimental data and fitted curves for a

363 % particular fitting condition and computes the runtime of this

364 % construction

365 % |MakeFigure | is called in the main script

366 % |MakeFigure | calls |ThetaCross|, |ThetaExit|, and |ThetaFull |

367 %

368 % Input variables:

369 % |alpha | is an array of the $\alpha$ from (B.5)

370 % |cond | is a string specifying which theshold condition is being

371 % considered

372 % |gamma | is a scalar of $\gamma$ from (B.3)

373 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

374 % |Pe | is an array of the $\rm Pe$ from (B.6)

375 % |Tt | is a vector storing the fitted $T t$ using the $\alpha$-

376 % intercept, curve fit, and level set fitting methods, respectively

377 %

378 % Output variable:

379 % |plotTime | is a scalar of the runtime needed to construct the

380 % figure

381 %

382 % Internal variables:

383 % |alphaLim | is a vector of the $\alpha$-limits of the figure

384 % |alphaPlot | is a matrix of $\alpha$ values to be plotted by contour

385 % |i | is a scalar indexing the fitting methods

386 % |linFitParams | is a vector of the parameters from the linear fit of

387 % the data

388 % |linSpec | is a cell array of line specifications for the fitted

389 % curves

390 % |PeMat | is a matrix with a column of ones and a coulmn of the

391 % $\rm Pe$ from (B.6)

392 % |PeLim | is a vector of the $\rm Pe$-limits of the figure

393 % |PePlot | is an vector of $\rm Pe$ values from (B.6) to be used in

394 % plotting

395 % |plotRes | is a scalar specifying the size of |PePlot |
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396 % |ThetaPlot | is a vector of the size of |PePlot | of (B.12), (B.13),

397 % or (B.14) depending on what condition is being considered

398 % |x | is a scalar of the $x$-coordinate where the theshold condtion

399 % is imposed

400 % |z | is a scalar of the $z$-coordinate where the theshold condtion

401 % is imposed

402

403 tic;

404

405 plotRes = 31;

406 PePlot = linspace(eps,max(Pe),plotRes);

407

408 if strcmp(cond,'Cross')

409 % For cross-sectional average condtion

410 z = 1;

411 ThetaPlot = ThetaCross(z,gamma,lambdaMin,PePlot);

412 elseif strcmp(cond,'Full')

413 % For full average condtion

414 z = 1;

415 ThetaPlot = ThetaFull(z,gamma,lambdaMin,PePlot);

416 elseif strcmp(cond,'Exit')

417 % For exit temperature condtion

418 x = 0;

419 z = 1;

420 ThetaPlot = ThetaExit(x,z,gamma,lambdaMin,PePlot);

421 else

422 % Throw error for any other value of |cond |

423 error('Unknown theshold condition');

424 end

425

426 figure;

427 hold on;

428

429 % Plot data

430 scatter(alpha,Pe,'+k');
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431

432 % Plot linear fit of the data

433 PeMat = [ones(size(Pe)),Pe];

434 linFitParams = (PeMat'*PeMat)\PeMat'*alpha;

435 fplot(@(alpha) (alpha-linFitParams(1))/linFitParams(2),'k-',...

436 [0,max(alpha)+0.05]);

437

438 % Plot fitted curves

439 linSpec = {'k-','k--','k:'};

440 for i = 1:size(Tt)

441 alphaPlot = (Tt(i)+ThetaPlot)./(1-ThetaPlot);

442 plot(alphaPlot,PePlot,linSpec{i});

443 end

444

445 % Plot specifications

446 xlim([min([Tt;0.05])-0.05,max(alpha)+0.05]);

447 ylim([0,max(Pe)+0.3]);

448 xlabel('\fontname{cambria math} \alpha','fontsize',18);

449 ylabel('\fontname{cambria math} Pe','fontsize',18);

450

451 % Display $T t$ values on figure

452 PeLim = get(gca,'ylim');

453 alphaLim = get(gca,'xlim');

454 text(alphaLim(1)+0.05*(alphaLim(2)-alphaLim(1)),PeLim(2)-0.05...

455 *(PeLim(2)-PeLim(1)),['$\alpha$-Intercept: '...

456 '$T {\mathrm{t}} = ',num2str(Tt(1),'%.6f'),'$'],...

457 'FontSize',18,'interpreter','latex');

458 text(alphaLim(1)+0.05*(alphaLim(2)-alphaLim(1)),PeLim(2)-0.15*...

459 (PeLim(2)-PeLim(1)),['Curve Fit: '...

460 '$T {\mathrm{t}} = ',num2str(Tt(2),'%.6f'),'$'],...

461 'FontSize',18,'interpreter','latex');

462 text(alphaLim(1)+0.05*(alphaLim(2)-alphaLim(1)),PeLim(2)-0.25*...

463 (PeLim(2)-PeLim(1)),['Level Set: '...

464 '$T {\mathrm{t}} = ',num2str(Tt(3),'%.6f'),'$'],...

465 'FontSize',18,'interpreter','latex');
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466

467 hold off

468

469 plotTime = toc;

470 end

471

472 function thetaCross=ThetaCross(z,gamma,lambdaMin,Pe)

473 % |ThetaCross | computes $\langle\Theta\rangle(z)$ from (B.12)

474 % |ThetaCross | is called by |AlphaFitCross|, |FitData|, and

475 % |MakeFigure |

476 % |ThetaCross | calls |Dn|, |eVals|, and |M |

477 %

478 % Input variables:

479 % |gamma | is a scalar of $\gamma$ from (B.3)

480 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

481 % |Pe | is an array of $\rm Pe$ from (B.6)

482 % |z | is a scalar of the $z$-coordinate where the theshold condtion

483 % is imposed

484 %

485 % Output variable:

486 % |thetaCross | is an array of $\langle\Theta\rangle(z)$ from (B.12)

487 %

488 % Internal variables:

489 % |i | is a scalar indexing the rows of |Pe |

490 % |j | is a scalar indexing the columns of |Pe |

491 % |lambda | is a vector of the eigenvalues from (B.11)

492 % |n | is a scalar indexing the terms in the sum in (B.12)

493

494 % Pre-allocate size of |thetaCross |

495 thetaCross = zeros(size(Pe));

496

497 for i = 1:size(Pe,1)

498 % Iterate over rows of |Pe |

499 for j = 1:size(Pe,2)

500 % Iterate over columns of |Pe |
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501

502 % Determine eigenvalues

503 lambda = eVals(gamma,lambdaMin,Pe(i,j));

504

505 % Compute |thetaCross |

506 if ~isempty(lambda)

507 % Cases where some terms in sum are not small

508

509 for n = 1:length(lambda)

510 % Iterate over terms in sum

511 thetaCross(i,j) = thetaCross(i,j)+...

512 Dn(gamma,Pe(i,j),lambda(n)).*...

513 M(-lambda(n),2,gamma*Pe(i,j)/2).*...

514 exp(-2*gamma*lambda(n)*z);

515 end

516 else

517 % Cases where all terms in sum are small

518

519 % Compute smallest eigenvalue

520 lambda = fsolve(@(lambda) M(-lambda,1,...

521 gamma*Pe(i,j)/2),0,optimoptions('fsolve',...

522 'Display','off'));

523

524 % |thetaCross | is equal to the first term

525 thetaCross(i,j) = Dn(gamma,Pe(i,j),lambda).*...

526 M(-lambda,2,gamma*Pe(i,j)/2).*...

527 exp(-2*gamma*lambda*z);

528 end

529 end

530 end

531 end

532

533 function thetaExit=ThetaExit(x,z,gamma,lambdaMin,Pe)

534 % |ThetaExit | computes $\Theta(x,z)$ from (B.13)

535 % |ThetaExit | is called by |AlphaFitExit|, |FitData|, and
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536 % |MakeFigure |

537 % |ThetaExit | calls |Dn|, |eVals|, and |M |

538 %

539 % Input variables:

540 % |gamma | is a scalar of $\gamma$ from (B.3)

541 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

542 % |Pe | is an array of $\rm Pe$ from (B.6)

543 % |x | is a scalar of the $x$-coordinate where the theshold condtion

544 % is imposed

545 % |z | is a scalar of the $z$-coordinate where the theshold condtion

546 % is imposed

547 %

548 % Output variable:

549 % |thetaExit | is an array of $\Theta(x,z)$ from (B.13)

550 %

551 % Internal variables:

552 % |i | is a scalar indexing the rows of |Pe |

553 % |j | is a scalar indexing the columns of |Pe |

554 % |lambda | is a vector of the eigenvalues from (B.11)

555 % |n | is a scalar indexing the terms in the sum in (B.13)

556

557 % Pre-allocate size of |thetaExit |

558 thetaExit = zeros(size(Pe));

559

560 for i = 1:size(Pe,1)

561 % Iterate over rows of |Pe |

562 for j = 1:size(Pe,2)

563 % Iterate over columns of |Pe |

564

565 % Determine eigenvalues

566 lambda = eVals(gamma,lambdaMin,Pe(i,j));

567

568 % Compute |thetaExit |

569 if ~isempty(lambda)

570 % Cases where some terms in sum are not small
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571

572 for n = 1:length(lambda)

573 % Iterate over terms in sum

574 thetaExit(i,j) = thetaExit(i,j)+...

575 Dn(gamma,Pe(i,j),lambda(n)).*...

576 M(-lambda(n),1,x).*exp(-2*gamma*lambda(n)*z);

577 end

578 else

579 % Cases where all terms in sum are small

580

581 % Compute smallest eigenvalue

582 lambda = fsolve(@(lambda) M(-lambda,1,...

583 gamma*Pe(i,j)/2),0,optimoptions('fsolve',...

584 'Display','off'));

585

586 % |thetaExit | is equal to the first term

587 thetaExit(i,j) = Dn(gamma,Pe(i,j),lambda).*...

588 M(-lambda,1,x).*...

589 exp(-2*gamma*lambda*z);

590 end

591 end

592 end

593 end

594

595 function thetaFull=ThetaFull(z,gamma,lambdaMin,Pe)

596 % |ThetaFull | computes $\bar{\Theta}(z)$ from (B.14)

597 % |ThetaFull | is called by |AlphaFitFull|, |FitData|, and

598 % |MakeFigure |

599 % |ThetaFull | calls |Dn|, |eVals|, and |M |

600 %

601 % Input variables:

602 % |gamma | is a scalar of $\gamma$ from (B.3)

603 % |lambdaMin | is a scalar of $\lambda {N+1}$ from (B.4)

604 % |Pe | is an array of $\rm Pe$ from (B.6)

605 % |z | is a scalar of the $z$-coordinate where the theshold condtion
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606 % is imposed

607 %

608 % Output variable:

609 % |thetaFull | is an array of $\bar{\Theta}(z)$ from (B.14)

610 %

611 % Internal variables:

612 % |i | is a scalar indexing the rows of |Pe |

613 % |j | is a scalar indexing the columns of |Pe |

614 % |lambda | is a vector of the eigenvalues from (B.11)

615 % |n | is a scalar indexing the terms in the sum in (B.14)

616 % |sumTerm | is the sum in (B.14)

617

618 % Pre-allocate size of |sumTerm |

619 sumTerm = zeros(size(Pe));

620

621 for i = 1:size(Pe,1)

622 % Iterate over rows of |Pe |

623 for j = 1:size(Pe,2)

624 % Iterate over columns of |Pe |

625

626 % Determine eigenvalues

627 lambda = eVals(gamma,lambdaMin,Pe(i,j));

628

629 % Compute |sumTerm |

630 if ~isempty(lambda)

631 % Cases where some terms in sum are not small

632

633 for n = 1:length(lambda)

634 % Iterate over terms in sum

635 sumTerm(i,j) = sumTerm(i,j)+...

636 Dn(gamma,Pe(i,j),lambda(n)).*...

637 M(-lambda(n),2,gamma*Pe(i,j)/2)./lambda(n).*...

638 exp(-2*gamma*lambda(n)*z);

639 end

640 else
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641 % Cases where all terms in sum are small

642

643 % Compute smallest eigenvalue

644 lambda = fsolve(@(lambda) M(-lambda,1,...

645 gamma*Pe(i,j)/2),0,optimoptions('fsolve',...

646 'Display','off'));

647

648 % |sumTerm | is equal to the first term

649 sumTerm(i,j) = Dn(gamma,Pe(i,j),lambda).*...

650 M(-lambda,2,gamma*Pe(i,j)/2)./lambda...

651 .*exp(-2*gamma*lambda*z);

652 end

653 end

654

655 % Compute |thetaFull |

656 thetaFull = -1./(2*gamma).*(1+2./(gamma.*Pe)...

657 -2*exp(gamma.*Pe/2)./(gamma.*Pe)+sumTerm);

658 end

659 end
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Appendix C

CRYSTALLINE MODEL IMPLEMENTATION

In this appendix, we display the MATLAB code used to implement the crys-

talline models from §4. As in Appendix B, we start by listing the equations referenced

in the code.

C.1 Variables

The following are variable definitions used in the main script in order of appear-

ance:

∆T = T∗ − Ti, (C.1)

β =
Rmin

Rmax

, (C.2)

St =
∆TcP
cL

, (C.3)

zend =
Hcyl +Hnoz

Hcyl

, (C.4)

α =
Tmax − T∗

∆T
, (C.5)

Pe =
ρcPR

2
maxVmin

kHcyl

, (C.6)

a =
−1 +

√
1 + 2 Stα

Stα
. (C.7)

C.2 Functions

Here we describe all the functions defined in the code in alphabetical order.
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C.2.1 AlphaFitExit

AlphaFitExit defines the function to be curve fitted using the exit temperature

condition in FitData. AlphaFitExit returns Tt = Tp(ε, 1) solved for α using (C.11)

to evaluate Tp(ε, 1):

α = w(z)

(
1−
√

1 + 2 StTt
)

log ε+ StTtw(z)

St[log ε− w(z)]2
. (C.8)

AlphaFitExit is called by FitData.

C.2.2 B

B defined the function B(z) from (4.66b):

B(z) =

0, 0 ≤ z ≤ 1,

1−β
zend−1

, z > 1.

(C.9)

B is called in the main script.

C.2.3 FitData

FitData determines the fitting parameters Tt and ε for all three fitting condi-

tions (cross-sectional average, full average, and exit temperature) for a particular ge-

ometry. FitData is called in the main script and calls AlphaFitExit, TCross, TExit,

TFull, and wOfz. When fitting the data to the average temperature conditions (cross-

sectional and full), FitData minimizes |Tt · 111− T (ααα,PePePe)|2 (i.e., the level set fitting

method). When fitting the data to the exit temperature condition, FitData minimizes

|ααα− α (PePePe;Tt)|2 (i.e., the curve fit fitting method). (Note that more discussion on these

fitting methods can be found in §3.2.1.) To ensure that the solution to the exit temper-

ature optimization problem is indeed the global minimum, FitData uses a MultiStart

object to solve the problem for several initial guesses of the fitting parameters.
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C.2.4 MakeFigure

MakeFigure plots the experimental data and fitted curves for a particular fitting

condition and geometry and computes the runtime of this construction. MakeFigure

is called in the main script and calls TCross, TExit, and TFull.

C.2.5 TCross

TCross computes 〈T 〉(z) using (4.29) with the change of variables σ → w from

§4.5:

〈T 〉(z) = α

{
1 +

2− a
[
1 + e2w(z)

]
2 log σ(z)

+
(1− a)

[
1− e2w(z)

]
2w2(z)

}
. (C.10)

TCross is called in FitData and MakeFigure and calls wOfz.

C.2.6 TExit

TExit computes Tp(z) using (4.14) with the change of variables σ → w from

§4.5:

Tp(y, z) = α

{
a

[
1− log y

w(z)

]
+ (1− a)

[
1− log y

w(z)

]2}
. (C.11)

TExit is called in FitData and MakeFigure and calls wOfz.

C.2.7 TFull

TFull computes T̄ (z) using (4.48) with the change of variables σ → w from

§4.5:

T̄ (z) = α[1 + ψ(z)]. (C.12)

TFull is called in FitData and MakeFigure and calls wpsiOfz.

C.2.8 wpsiOfz

wpsiOfz computes w(z) and ψ(z) as defined in §4.5. wOfz is called by TFull

and has several nested functions: Derivatives, dpsidz, dwdz, psiSplice, wEvents,

and wSplice.
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C.2.8.1 Derivatives

Derivatives creates a vector of the ODEs for w(z) and ψ(z). Derivatives is

called in the mainwpsiOfz and in wSplice and calls dpsidz and dwdz

C.2.8.2 dpsidz

dpsidz defines the ODE to be solved for ψ(z). dpsidz is called in Derivatives.

dpsidz returns ψ′(z) from (4.47):

dψ

dz
=

(1− a) (1− e2w) + [2− a (1 + e2w)]w

2w2
, (C.13)

where ψ(0) = 0 is the initial condition.

C.2.8.3 dwdz

dwdz defines the ODE to be solved for w(z). dwdz is called in Derivatives.

dwdz returns w′(z) from (4.42):

dw

dz
=

8 Pe−1 η(z)eww

2(1− a) + (2− a)w + e2w [2aw2 + (2− 3a)w − 2(1− a)]
, (C.14a)

η(z) = (1− a)w +
Pe

4

R′

R

{
(1− a)

(
1− e2w

)
+
[
2− a

(
1 + e2w

)]
w
}
, (C.14b)

where R and R′ are defined for each geometry. For the cylindrical case,

R(z) = 1, (C.15a)

R′(z) = 0. (C.15b)

For the tapered case,

R(z) = 1− (1− β)z, (C.16a)

R′(z) = −(1− β). (C.16b)

For the combined case,

R(z) = 1−B(z)(z − 1), (C.17a)

R′(z) = −B(z), (C.17b)
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where B(z) is defined in (C.9). Also note that w(0) = 0 is the initial condition;

however, since w = 0 is a solution to (C.14), we define w(0) to be a small negative

number. Increasing the magnitude of this number was able to resolve some numerical

issues.

C.2.8.4 psiSplice

psiSplice is used as a patch to solve for ψ over ranges of z when w is too close

to zero. It is called in the main wpsiOfz and in wSplice. The splicing function is

given by (4.49):

ψ(z) = ψ0 −
∫ z

z0

dψ

dζ
(w(ζ)) dζ, (C.18)

where ψ0 = ψ (z0) is where wEvents terminates integration and w(ζ) are as defined in

(C.19) (see derivation in §4.5.3). (C.18) is used to compute ψ(z) for a z where w(z) is

enough less than zero to resume integration. psiSplice is called in the main wpsiOfz

and inwSplice and calls dpsidz and wSplice.

C.2.8.5 wEvents

wEvents terminates the integration of the ode solver if w becomes to close to

zero to be computed accurately (see discussion in §4.5.2). wEvents is called in the

main wpsiOfz and in wSplice. After wEvents terminates integration, wSplice and

psiSplice are used as a patch w(z) and ψ(z) until w is again far enough from zero to

resume integration.

C.2.8.6 wSplice

wSplice is used as a patch to solve for w over ranges of z when w is too close to

zero. It is called in psiSplice, the main wpsiOfz, and wSplice and calls Derivatives

and wSplice. The splicing function is given by (4.46c):

w(z) = −
√
w2

0 + 24 Pe−1
1− a
2 + a

(z − z0), (C.19)
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where w0 = w (z0) is where wEvents terminates integration (see derivation in §4.5.2).

(C.19) is used to solve for a value of z where w(z) is enough less than zero to resume

integration. wSplice the resumes integration in a similar fashion to wpsiOfz.

C.2.9 wOfz

wOfz computes w(z) as defined in §4.5. wOfz is called by TCross and TExit and

has several nested functions: dwdz, wEvents, and wSplice.

C.2.9.1 dwdz

dwdz defines the ODE to be solved for w(z). dwdz is called in the main wOfz

and in wSplice. dwdz returns w′(z) from (C.14), where R and R′ are defined for each

geometry (see definitions in §C.2.8.3). Also note that w(0) = 0 is the initial condition;

however, since w = 0 is a solution to (C.14), we define w(0) to be a small negative

number. Increasing the magnitude of this number was able to resolve some numerical

issues.

C.2.9.2 wEvents

wEvents terminates the integration of the ode solver if w becomes to close to

zero to be computed accurately (see discussion in §4.5.2). wEvents is called in the

main wOfz and in wSplice. After wEvents terminates integration, wSplice is used as

a patch until w is again far enough from zero to resume integration.

C.2.9.3 wSplice

wSplice is used as a patch to solve for w over ranges of z when w is too close to

zero. It is called in the main wOfz and in wSplice and calls dwdz and wSplice. The

splicing function is given by (C.19), where w0 = w (z0) is where wEvents terminates

integration (see derivation in §4.5.2). (C.19) is used to solve for a value of z where

w(z) is enough less than zero to resume integration. wSplice the resumes integration

in a similar fashion to wOfz.
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C.3 Code

1 %% Crystalline Polymer

2 %

3 % |Cryst.m | fits experimental crystalline polymer data to the

4 % cylindrical, tapered, and combined crystalline model

5 % |Cryst.m | calls |B|, |FitData|, and |MakeFigure |

6 %

7 % Functions:

8 % |AlphaFitExit | sets-up (C.8) to be curve fitted for the exit

9 % temperature condition

10 % |B | defines $B(z)$ from (C.9)

11 % |FitData | determines the threshold temperatures $T t$

12 % and $\epsilon$ for all three threshold condtions for a

13 % particular geometry

14 % |MakeFigure | plots the experimental data and fitted curves

15 % |TCross | computes $\langle T\rangle(z)$ from (C.10)

16 % |TExit | computes $T(x,z)$ from (C.11)

17 % |TFull | computes $\bar{T}(z)$ from (C. 12)

18 % |wpsiOfz | computes $[w(z),\psi(z)]$ for the combined case

19 % |wOfz | computes $w(z)$ for the cylindrical and tapered cases

20 %

21 % Variables:

22 % |aData | is the experimental data for $a$ from (C.7)

23 % |alphaData | is the experimental data for $\alpha$ from (C.5)

24 % |beta |is $\beta$ from (C.2)

25 % |cond | is a string specifying which theshold condition is being

26 % considered

27 % |cL | is the specific latent heat in J/g

28 % |cP | is the specific heat capacity in J/g-K

29 % |DeltaT | is the difference between the initial temperature $T i$

30 % and the glass-rubber transition temperature $T *=T g$

31 % in $ˆo\text{C}$ from (C.1)

32 % |dRdz | is function handle of $Rˆ{\prime}(z)$ of the geometry of

103



33 % interest

34 % |epsilonComb | is $\epsilon$ for the exit temperature condition in

35 % the combined case

36 % |epsilonCyln | is $\epsilon$ for the exit temperature condition

37 % in the cylindrical case

38 % |epsilonTap | is $\epsilon$ for the exit temperature condition

39 % in the tapered case

40 % |Hcyl | is the height of the cylindrical portion of the hot end in

41 % mm

42 % |Hnoz | is the height of the nozzle of the hot end in mm

43 % |k | is the thermal conductivity in J/s-m-K

44 % |PeData | is the experimental data for $\rm Pe$ from (C.6)

45 % |plotTimeComb | is a vector of the runtime needed to construct the

46 % figures for the cross-sectional average, total average, and

47 % exit temperature conditions, respectively, in the combined

48 % case

49 % |plotTimeCyln | is a vector of the runtime needed to construct the

50 % figures for the cross-sectional average, total average, and

51 % exit temperature conditions, respectively, in the cylindrical

52 % case

53 % |plotTimeTap | is a vector of the runtime needed to construct the

54 % figures for the cross-sectional average, total average, and

55 % exit temperature conditions, respectively, in the tapered

56 % case

57 % |R | is function handle of $R(z)$ of the geometry of interest

58 % |rho | is the density in g/cc

59 % |Rmax | is the maximum nozzle radius in mm

60 % |Rmin | is the minimum nozzle radius in mm

61 % |St | is the $\rm St$ (C.3)

62 % |TmaxData | is the experimental data $T {\max}$ in $ˆo\text{C}$

63 % |Tm | is the melting temperature $T *=T {\rm m}$ in $ˆo\text{C}$

64 % |Ti | is the initial temperature in $ˆo\text{C}$

65 % TtComb is a vector of the threshold temperature for the cross-

66 % sectional average, total average, and exit temperature

67 % conditions, respectively, in the combined case
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68 % TtCyln is a vector of the threshold temperature for the cross-

69 % sectional average, total average, and exit temperature

70 % conditions, respectively, in the cylindrical case

71 % TtTap is a vector of the threshold temperature for the cross-

72 % sectional average, total average, and exit temperature

73 % conditions, respectively, in the tapered case

74 % |VminData | is the experimental data for $V {\min}$

75 % in $ˆo\text{C}$

76 % |zEnd | is $z {\rm end}$ from (C.4)

77 % |zExit | is the $z$-coordinate at the exit of the geometry of

78 % interest

79 %%

80 % Experimental value from [6]

81 %%

82 Hcyl = 30; %mm

83 %%

84 % Experimental values from [8]

85

86 cP = 1.7; %J/g-K

87 k = 0.13; %J/s-m-K

88 rho = 1.25; %g/cc

89 Rmax = 3.175/2; %mm

90 Ti = 20; %ˆoC

91 Tm = 155; %ˆoC

92 DeltaT = Tm-Ti; %K

93 %%

94 % Experimental value from [27]

95

96 cL = 91; %J/g

97 %%

98 % Measured values

99

100 Hnoz = 2; %mm

101 Rmin = 0.35/2; %mm

102 %%
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103 % Compute $\beta$, $\rm St$, and $z {\rm end}$

104

105 beta = Rmin/Rmax;

106 St = DeltaT*cP/cL;

107 zEnd = (Hcyl+Hnoz)/Hcyl;

108 %%

109 % Experimental data for PLA through $0.35$ mm nozzle from [8]

110

111 TmaxData = [230;230;230;225;220;215;210;205;200;195;190;190;190;185;...

112 180;175;170;165;160;155;150;150;150]; %ˆoC

113 VminData = [3.69;3.70;3.67;3.59;3.40;3.26;3.12;3.05;2.87;2.72;2.48;...

114 2.43;2.46;2.25;2.06;1.87;1.61;1.28;0.93;0.67;0.40;0.41;0.41]; %mm/s

115 %%

116 % Scale experimental data

117

118 alphaData = (TmaxData-Tm)/DeltaT;

119 PeData = cP*rho*Rmaxˆ2*VminData/(k*Hcyl);

120 %%

121 % Remove data for temperatures below $170 ˆo\text{C}$ to ensure melting

122 % has taken place (as

123 %

124 % the melting point of the polymer is $155ˆo\text{C}$)

125

126 PeData(alphaData<(170-Tm)/DeltaT)=[];

127 alphaData(alphaData<(170-Tm)/DeltaT)=[];

128 %%

129 % Compute $a$ for each datum

130

131 aData=(-1+sqrt(1+2*St.*alphaData))./(St.*alphaData);

132 %% Cylindrical Case

133 %%

134 zExit=1;

135 R=@(z) 1; % From (C.15a)

136 dRdz=@(z) 0; % From (C.15b)

137
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138 [TtCyln,epsilonCyln]=FitData(zExit,R,dRdz,St,alphaData,aData,PeData,...

139 'ode45');

140

141 plotTimeCyln=zeros(3,1);

142 plotTimeCyln(1)=MakeFigure('Cross',TtCyln(1),zExit,R,dRdz,St,...

143 alphaData,PeData,eps,...

144 'ode45');

145 fprintf(['Cylinder: Plotting runtime is %f seconds for the cross-' ...

146 'sectional average condition.\n'],plotTimeCyln(1));

147 plotTimeCyln(2)=MakeFigure('Full',TtCyln(2),zExit,R,dRdz,St,...

148 alphaData,PeData,eps,...

149 'ode45');

150 fprintf(['Cylinder: Plotting runtime is %f seconds for the total ' ...

151 'average condition.\n'],plotTimeCyln(2));

152 plotTimeCyln(3)=MakeFigure('Exit',[TtCyln(3),log(epsilonCyln)],...

153 zExit,R,dRdz,St,alphaData,...

154 PeData,0.5,'ode45');

155 fprintf(['Cylinder: Plotting runtime is %f seconds for the exit ' ...

156 'temperature condition.\n'],plotTimeCyln(3));

157 %% Tapered Case

158 %%

159 zExit=1;

160 R=@(z) 1-(1-beta)*z; % From (C.16a)

161 dRdz=@(z) -(1-beta); % From (C.16b)

162

163 [TtTap,epsilonTap]=FitData(zExit,R,dRdz,St,alphaData,aData,PeData,...

164 'ode45');

165

166 plotTimeTap=zeros(3,1);

167 plotTimeTap(1)=MakeFigure('Cross',TtTap(1),zExit,R,dRdz,St,...

168 alphaData,PeData,0.25,...

169 'ode45');

170 fprintf(['Taper: Plotting runtime is %f seconds for the cross-' ...

171 'sectional average condition.\n'],plotTimeTap(1));

172 plotTimeTap(2)=MakeFigure('Full',TtTap(2),zExit,R,dRdz,St,...
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173 alphaData,PeData,0.1,...

174 'ode45');

175 fprintf(['Taper: Plotting runtime is %f seconds for the total ' ...

176 'average condition.\n'],plotTimeTap(2));

177 plotTimeTap(3)=MakeFigure('Exit',[TtTap(3),log(epsilonTap)],zExit,R,...

178 dRdz,St,alphaData,PeData,0.5,...

179 'ode45');

180 fprintf(['Taper: Plotting runtime is %f seconds for the exit ' ...

181 'temperature condition.\n'],plotTimeTap(3));

182 %% Combined Case

183 %%

184 zExit=zEnd;

185 R=@(z) 1-B(z,beta,zEnd)*(z-1); % From (C.17a)

186 dRdz=@(z) -B(z,beta,zEnd); % From (C.17b)

187

188 [TtComb,epsilonComb]=FitData(zExit,R,dRdz,St,alphaData,aData,...

189 PeData,'ode15s');

190

191 plotTimeComb=zeros(3,1);

192 plotTimeComb(1)=MakeFigure('Cross',TtComb(1),zExit,R,dRdz,St,...

193 alphaData,PeData,0.25,'ode15s');

194 fprintf(['Combined: Plotting runtime is %f seconds for the cross-' ...

195 'sectional average condition.\n'],plotTimeComb(1));

196 plotTimeComb(2)=MakeFigure('Full',TtComb(2),zExit,R,dRdz,St,...

197 alphaData,PeData,0.15,'ode15s');

198 fprintf(['Combined: Plotting runtime is %f seconds for the total ' ...

199 'average condition.\n'],plotTimeComb(2));

200 plotTimeComb(3)=MakeFigure('Exit',[TtComb(3),log(epsilonComb)],...

201 zExit,R,dRdz,St,alphaData,PeData,0.5,'ode15s');

202 fprintf(['Combined: Plotting runtime is %f seconds for the exit ' ...

203 'temperature condition.\n'],plotTimeComb(3));

204 %%

205 function alphaFitExit=AlphaFitExit(param,wz,St)

206 % |AlphaFitExit | sets-up (C.8) to be curve fitted for the exit

207 % temperature condition
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208 % |AlphaFitExit | is called by |FitData |

209 %

210 % Input variables:

211 % |param | is a vector of the fitting parameters $[T t,\log\epsilon]$

212 % |St | is a scalar of $\rm St$ from (C.3)

213 % |wz | is an array of $w(z)$

214 %

215 % Output variable:

216 % |alphaFitExit | is an array of $\alpha$ computed from (C.8)

217

218 alphaFitExit=wz.*(param(2)*(1-sqrt(1+2*St*param(1)))+...

219 St*param(1)*wz)./(St*(param(2)-wz).ˆ2);

220 end

221

222 function b=B(z,beta,zEnd)

223 % |B | defines $B(z)$ from (C.9)

224 % |B | is called in the main script

225 %

226 % Input variables:

227 % |beta | is a scalar of $\beta$ from (C.2)

228 % |z | is an array of $z$-coordinates

229 % |zEnd | is a scalar of the $z {\rm end}$ from (C.4)

230 %

231 % Output variable:

232 % |b | is an array of $B(z)$ computed from (C.9)

233

234 if 0<=z && z<=1

235 b=0;

236 elseif 1<z

237 b=(1-beta)/(zEnd-1);

238 else

239 error('B(z) undefined at z');

240 end

241 end

242
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243 function [Tt,epsilon] = FitData(z,R,dRdz,St,alpha,a,Pe,odeSolver)

244 % |FitData | determines the threshold temperatures $T t$ and $\epsilon$

245 % for all three threshold condtions for a particular geometry

246 % |FitData | is called in the main script

247 % |FitData | calls |AlphaFitExit|, |TCross|, |TExit|, |TFull|, and

248 % |wOfz |

249 %

250 % Input variables:

251 % |a | is an array of the $a$ from (C.7)

252 % |alpha | is an array of the $\alpha$ from (C.5)

253 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

254 % |odeSolver | a string specifying which ode solver to use ('ode45' or

255 % 'ode15s')

256 % |Pe | is an array of the $\rm Pe$ from (C.6)

257 % |St | is a scalar of $\rm St$ from (C.3)

258 % |R | is a function handle of $R(z)$

259 % |z | is a scalar of the $z$-coordinate where the theshold condtions

260 % are imposed

261 %

262 % Output variables:

263 % |Tt | a vector of the threshold temperature for the cross-sectional

264 % average, total average, and exit temperature conditions,

265 % respectively

266 % |epsilon | is a vector storing the fitted $\epsilon$ from the exit

267 % temperature condition

268 %

269 % Internal variables:

270 % |lowBnd | is the lower bound for fitting parameters for the exit

271 % temperature condition

272 % |numRuns | is the number of starting guess for the |optimProblem |

273 % object

274 % |modelFun | is the function handle to be fitted with the exit

275 % temperature condition

276 % |ms | is the |MultiStart | object for the exit temperature condition

277 % |optimProbelm | is the optimization problem object for the exit
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278 % temperature condition

279 % |param | is $[T t,\epsilon]$ for the exit temperature condition

280 % |paramGuess | is the inital guess for fitting parameters for the

281 % exit temperature condition

282 % |upBnd | is the upper bound for fitting parameters for the exit

283 % temperature condition

284 % |xData | is the independent variable for fitting the exit

285 % temperature condition

286 % |yData | is the dependent variable for fitting the exit temperature

287 % condition

288

289 % Pre-allocate size of |Tt |

290 Tt = zeros(3,1);

291

292 % Cross-sectional average condition

293 Tt(1) = mean(TCross(z,R,dRdz,alpha,a,Pe,odeSolver));

294

295 % Full average condition

296 Tt(2)=mean(TFull(z,R,dRdz,alpha,a,Pe,odeSolver));

297

298 % Set up exit temperature optimization problem

299 modelFun=@(param,wz) AlphaFitExit(param,wz,St);

300 paramGuess=[-1/(2*St);log(eps)];

301 xData=wOfz(z,R,dRdz,a,Pe,odeSolver);

302 yData=alpha;

303 lowBnd=[-1/(2*St);log(eps)];

304 upBnd=[min(alpha);0]-eps;

305 optimProblem=createOptimProblem('lsqcurvefit','x0',paramGuess,...

306 'objective',modelFun,'lb',lowBnd,'ub',upBnd,'xdata',xData,...

307 'ydata',yData);

308 ms=MultiStart('Display','off');

309 numRuns=50;

310

311 % Exit temperature average condition

312 param=run(ms,optimProblem,numRuns);
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313 Tt(3)=param(1);

314 epsilon=exp(param(2));

315 end

316

317 function plotTime=MakeFigure(cond,param,z,R,dRdz,St,alpha,Pe,minPe,...

318 odeSolver)

319 % |MakeFigure | plots the experimental data and fitted curves for a

320 % particular fitting condition and computes the runtime of this

321 % construction

322 % |MakeFigure | is called in the main script

323 % |MakeFigure | calls |TCross|, |TExit|, and |TFull |

324 %

325 % Input variables:

326 % |a | is an array of the $a$ from (C.7)

327 % |alpha | is an array of the $\alpha$ from (C.5)

328 % |cond | is a string specifying which theshold condition is being

329 % considered

330 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

331 % |minPe | is the minimum $\rm Pe$ plotted on the fitted curve

332 % |odeSolver | a string specifying which ode solver to use ('ode45' or

333 % 'ode15s')

334 % |param | is a scalar of $T t$ or vector of $[T t,\epsilon]$

335 % depending on the threshold condition

336 % |Pe | is an array of the $\rm Pe$ from (C.6)

337 % |St | is a scalar of $\rm St$ from (C.3)

338 % |R | is a function handle of $R(z)$

339 % |z | is a scalar of the $z$-coordinate where the theshold condtions

340 % are imposed

341 %

342 % Output variable:

343 % |plotTime | is a scalar of the runtime needed to construct the

344 % figure

345 %

346 % Internal variables:

347 % |aPlot | is a matrix of $a$ values to be plotted
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348 % |alphaLim | is a vector of the $\alpha$-limits of the figure

349 % |alphaPlot | is a matrix of $\alpha$ values to be plotted

350 % |PeLim | is a vector of the $\rm Pe$-limits of the figure

351 % |PePlot | is a matrix of $\rm Pe$ values to be plotted

352 % |plotRes | is a scalar to specify the resolution of the figure

353 % |TPlot | is a matrix of $T$ values from (C.10), (C.11), or (C.12)

354 % depending on what condition is being considered

355

356 tic;

357

358 plotRes=51;

359

360 % |contour | accepts matrices, |meshgrid | constructs these matrices

361 % from vectors of $\alpha$ and $\rm Pe$ constructed with linspace

362 % over the relevent range of these variables for |plotRes |

363 % points

364 [alphaPlot,PePlot]=meshgrid(...

365 linspace(eps,max(alpha)+0.05,plotRes),...

366 linspace(minPe,max(Pe)+0.3,plotRes));

367

368 aPlot=(-1+sqrt(1+2*St.*alphaPlot))./(St*alphaPlot);

369

370 if strcmp(cond,'Cross')

371 % For cross-sectional average condtion

372 TPlot = TCross(z,R,dRdz,alphaPlot,aPlot,PePlot,odeSolver);

373 elseif strcmp(cond,'Full')

374 % For full average condtion

375 TPlot = TFull(z,R,dRdz,alphaPlot,aPlot,PePlot,odeSolver);

376 elseif strcmp(cond,'Exit')

377 % For exit temperature condtion

378 TPlot = TExit(param(2),z,R,dRdz,alphaPlot,aPlot,PePlot,...

379 odeSolver);

380 else

381 % Throw error for any other value of |cond |

382 error('Unknown theshold condition');
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383 end

384

385 figure;

386 hold on;

387

388 % Plot data

389 scatter(alpha,Pe,'+k');

390

391 % Plot fitted curve

392 contour(alphaPlot,PePlot,TPlot,...

393 'LevelList',[param(1) param(1)],'LineColor','k');

394

395 % Plot specifications

396 xlim([0,max(alpha)+0.05]);

397 ylim([0,max(Pe)+0.3]);

398 xlabel('\fontname{cambria} \alpha','fontsize',18);

399 ylabel('\fontname{cambria} Pe','fontsize',18);

400

401 % Display fitting parameter values on figure

402 PeLim=get(gca,'ylim');

403 alphaLim=get(gca,'xlim');

404 text(alphaLim(1)+0.05*(alphaLim(2)-alphaLim(1)),...

405 PeLim(2)-0.1*(PeLim(2)-PeLim(1)),...

406 ['$T {\mathrm{t}} = ',num2str(param(1),'%.6f'),'$'],...

407 'FontSize',18,'interpreter','latex');

408 if strcmp(cond,'Exit')

409 text(alphaLim(1)+0.05*(alphaLim(2)-alphaLim(1)),...

410 PeLim(2)-0.2*(PeLim(2)-PeLim(1)),...

411 ['$\epsilon = ',num2str(exp(param(2)),'%.6f'),'$'],...

412 'FontSize',18,'interpreter','latex');

413 end

414

415 hold off;

416

417 plotTime=toc;
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418 end

419

420 function tCross=TCross(z,R,dRdz,alpha,a,Pe,odeSolver)

421 % |TCross | computes $\langle T\rangle(z)$ from (C.10)

422 % |TCross | is called by |FitData | and |MakeFigure |

423 % |TCross | calls |wOfz |

424 %

425 % Input variables:

426 % |a | is an array of the $a$ from (C.7)

427 % |alpha | is an array of the $\alpha$ from (C.5)

428 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

429 % |odeSolver | a string specifying which ode solver to use ('ode45' or

430 % 'ode15s')

431 % |Pe | is an array of the $\rm Pe$ from (C.6)

432 % |R | is a function handle of $R(z)$

433 % |z | is a scalar of the $z$-coordinate where the theshold condtions

434 % are imposed

435 %

436 % Output variable:

437 % |tCross | is an array of $\langle T\rangle(z)$ from (C.10)

438 %

439 % Internal variables:

440 % |wz | is an array of $w(z)$

441

442 wz=wOfz(z,R,dRdz,a,Pe,odeSolver);

443 tCross=alpha.*(1+(2-a.*(1+exp(2*wz)))./(2*wz)...

444 +((1-a).*(1-exp(2*wz)))./(2*wz.ˆ2));

445 end

446

447 function tExit=TExit(logy,z,R,dRdz,alpha,a,Pe,odeSolver)

448 % |TExit | computes $T {\rm p}(y,z)$ from (C.11)

449 % |TExit | is called by |FitData | and |MakeFigure |

450 % |TExit | calls |wOfz |

451 %

452 % Input variables:
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453 % |a | is an array of the $a$ from (C.7)

454 % |alpha | is an array of the $\alpha$ from (C.5)

455 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

456 % |logy | is a scalar of $\log y$

457 % |odeSolver | a string specifying which ode solver to use ('ode45' or

458 % 'ode15s')

459 % |Pe | is an array of the $\rm Pe$ from (C.6)

460 % |R | is a function handle of $R(z)$

461 % |z | is a scalar of the $z$-coordinate where the theshold condtions

462 % are imposed

463 %

464 % Output variable:

465 % |tExit | is an array of $T {\rm p}(y,z)$ from (C.11)

466 %

467 % Internal variables:

468 % |wz | is an array of $w(z)$

469

470 wz=wOfz(z,R,dRdz,a,Pe,odeSolver);

471 tExit=alpha.*(a.*(1-logy./wz)+(1-a).*(1-logy./wz).ˆ2);

472 end

473

474 function tFull=TFull(z,R,dRdz,alpha,a,Pe,odeSolver)

475 % |TFull | computes $\bar{T}(z)$ from (C.12)

476 % |TFull | is called by |FitData | and |MakeFigure |

477 % |TFull | calls |wpsiOfz |

478 %

479 % Input variables:

480 % |a | is an array of the $a$ from (C.7)

481 % |alpha | is an array of the $\alpha$ from (C.5)

482 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

483 % |odeSolver | a string specifying which ode solver to use ('ode45' or

484 % 'ode15s')

485 % |Pe | is an array of the $\rm Pe$ from (C.6)

486 % |R | is a function handle of $R(z)$

487 % |z | is a scalar of the $z$-coordinate where the theshold condtions
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488 % are imposed

489 %

490 % Output variable:

491 % |tFull | is an array of $\bar{T}(z)$ from (C.12)

492 %

493 % Internal variables:

494 % |psiz | is an array of $\psi(z)$

495

496 [~,psiz]=wpsiOfz(z,R,dRdz,a,Pe,odeSolver);

497 tFull=alpha.*(1+psiz);

498 end

499

500 function [wz,psiz]=wpsiOfz(zEval,R,dRdz,a,Pe,odeSolver)

501 % |wpsiOfz | solves the differential equations for $w(z)$ and $\psi(z)$

502 % |wpsiOfz | is called by |TFull |

503 % |wpsiOfz | calls |Derivatives|, |dpsidz|, |dwdz|, |psiSplice|,

504 % |wEvents|, and |wSplice |

505 %

506 % Input variables:

507 % |a | is an array of the $a$ from (C.7)

508 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

509 % |odeSolver | a string specifying which ode solver to use ('ode45' or

510 % 'ode15s')

511 % |Pe | is an array of the $\rm Pe$ from (C.6)

512 % |R | is a function handle of $R(z)$

513 % |zEval | is a scalar of the $z$-coordinate

514 %

515 % Output variables

516 % |psiz | is an array of $\psi(z)$

517 % |wz | is an array of $w(z)$

518 %

519 % Internal variables:

520 % |aExt | is a scalar $a$ from (C.7) to be used externally in

521 % |dpsidz|, |dwdz|, and |wSplice |

522 % |funs | is a vector of |[w;psi] |
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523 % |funs0 | is a vector of the the inital condition |[w0;psi0] |

524 % |funse | is a vector of |[we;psie]|, the value of |funs | when

525 % |wEvents | occurs

526 % |odeOptions | are the options for the ODE solver

527 % |PeExt | is a scalar $\rm Pe$ from (C.6) to be used externally in

528 % |dwdz | and |wSplice |

529 % |psi0 | is a scalar of the initial condition for the $\psi$ ODE:

530 % $\psi(0)=0$

531 % |w0 | is a scalar of the initial condition for the $w$ ODE

532 % |ze | is a vector of $z$ values when wEvents occurs

533 % |zInterval | is the $z$-interval of the solution

534 %

535 % Nested functions:

536 % |Derivatives | defines a vector $[wˆ{\prime}(z);\psiˆ{\prime}(z)]$

537 % to be solved

538 % |dpsidz | is defines $\psiˆ{\prime}(z)$ from (C.13)

539 % |dwdz | is defines $wˆ{\prime}(z)$ from (C.14)

540 % |psiSplice | deinfes the splice function for $\psi(z)$ given by

541 % (C.18) if integration is stopped by |wEvents |

542 % |wEvents | handles the event where $w\rightarrow0$; this is

543 % problematic if a step in $z$ overshoots $w=0$ giving $w>0$, which

544 % is not physically realizable

545 % |wSplice | defines the splice function for $w(z)$ given by (C.19) if

546 % integration is stopped by |wEvents | and then resumes integration

547

548 % Define initial conditions

549 % Since $w(z)=0$ is an (incorrect) solution to (C.14), |w0 | is

550 % taken to be a small negative number (determined by trial and

551 % error)

552 w0=-1e-4;

553 psi0=0;

554 funs0=[w0;psi0];

555

556 % Pre-allocate size of |wz | and |psiz |

557 wz=zeros(size(Pe));
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558 psiz=zeros(size(Pe));

559

560 % Create event to handle events where $w\rightarrow0$

561 odeOptions=odeset('Events',@wEvents);

562

563 % These loops cannot be vectorized due to the use of |contour | in

564 % |MakeFigure |

565 for i=1:size(Pe,1)

566 % Iterate over rows of Pe

567 for j=1:size(Pe,2)

568 % Iterate over columns of Pe

569

570 aExt=a(i,j);

571 PeExt=Pe(i,j);

572 zInv=[0,zEval];

573

574 if strcmp(odeSolver,'ode45')

575 [~,funs,ze,funse,~]=ode45(@Derivatives,zInv,funs0,...

576 odeOptions);

577 elseif strcmp(odeSolver,'ode15s')

578 [~,funs,ze,funse,~]=ode15s(@Derivatives,zInv,funs0,...

579 odeOptions);

580 else

581 errors('Unknown odeSolver');

582 end

583 % If w is too small to be accurately computed with the ODE

584 % solver, integration is stoped and |wSplice | is used to

585 % compute $w(z)%, this event is handled using

586 % |odeOptions |

587

588 % Assign |wz(i,j) | and |psiz(i,j) | depending on if

589 % |wEvents | occurred

590 if isempty(ze)

591 % If no event occurred, use ODE solution

592 wz(i,j)=funs(end,1);
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593 psiz(i,j)=funs(end,2);

594 else

595 % If event occurred, use |wSplice | and |psiSplice |

596 % solutions

597 funse(abs(imag(funse))<1e-27)=...

598 real(funse(abs(imag(funse))<1e-27));

599 % Neglect imaginary part of the elements of |funse | if

600 % they are small

601 if ~isreal(funse(1))

602 % Throw error otherwise

603 error('we is complex');

604 end

605 if ~isreal(funse(2))

606 % Throw error otherwise

607 error('psie is complex');

608 end

609 wz(i,j)=wSplice(zEval,ze,funse);

610 psiz(i,j)=psiSplice(zEval,ze,funse);

611 end

612 if abs(imag(wz(i,j)))<1e-27

613 % Neglect imaginary part of |wz(i,j) | if it's small

614 wz(i,j)=real(wz(i,j));

615 else

616 % Throw error otherwise

617 error(['sz(',num2str(i),',',num2str(j),...

618 ') is complex']);

619 end

620 if abs(imag(psiz(i,j)))<1e-27

621 % Neglect imaginary part of |psiz(i,j) | if it's small

622 psiz(i,j)=real(psiz(i,j));

623 else

624 % Throw error otherwise

625 error(['psiz(',num2str(i),',',num2str(j),...

626 ') is complex']);

627 end
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628 end

629 end

630

631 function derivatives=Derivatives(z,funs)

632 % |Derivatives | creates a vector of ODEs to be solved

633 % |Derivatives | is called in the main |wpsiOfz | and |wSplice |

634 % |Derivatives | calls |dpsidz | and |dwdz |

635 %

636 % Input variables:

637 % |funs | is a vector of |[w;H] |

638 % |zEval | is a scalar of the $z$-coordinate

639 %

640 % Output variable:

641 % |derivatives | is a vector of ODEs to be solved

642

643 derivatives=zeros(2,1);

644 derivatives(1)=dwdz(z,funs(1));

645 derivatives(2)=dpsidz(funs(1));

646 end

647

648 function psiPrime=dpsidz(w)

649 % |dpsidz | sets up the ODE for $\psi$ to be solved

650 % |dpsidz | is called by |Derivatives |

651 %

652 % Input variable:

653 % |w | is an array of $w(z)$

654 %

655 % Output variables:

656 % |psiPrime | is an array of $\psiˆ{\prime}(z)$ from (C.13)

657 %

658 % Internal variables:

659 % |denominator | is an array of the denominator from (C.13)

660 % |numerator | is an array of the numerator from (C.13)

661 %

662 % Externally-scoped variables:
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663 % |aExt | is a scalar $a$ from (C.7) defined in the main |wpsiOfz |

664 % |PeExt | is a scalar $\rm Pe$ from (C.6) defined in the main

665 % |wpsiOfz |

666

667 numerator=(1-aExt).*(1-exp(2*w))+(2-aExt*(1+exp(2*w))).*w;

668 denominator=2*w.ˆ2;

669 psiPrime=numerator./denominator;

670 end

671

672 function wPrime=dwdz(z,w)

673 % |dwdz | sets up the ODE for $\w$ to be solved

674 % |dwdz | is called by |Derivatives |

675 %

676 % Input variables:

677 % |w | is an array of $w(z)$

678 % |z | is an array of the $z$-coordinate

679 %

680 % Output variables:

681 % |wPrime | is an array of $wˆ{\prime}(z)$ from (C.14)

682 %

683 % Internal variables:

684 % |denominator | is an array of the denominator from (C.14a)

685 % |eta | is an array of $\eta$ from (C.14b)

686 % |numerator | is an array of the numerator from (C.14a)

687 %

688 % Externally-scoped variables:

689 % |aExt | is a scalar $a$ from (C.7) defined in the main |wpsiOfz |

690 % |PeExt | is a scalar $\rm Pe$ from (C.6) defined in the main

691 % |wpsiOfz |

692

693 eta=(1-aExt)*w+PeExt*dRdz(z)/(4*R(z))*((1-aExt)*(1-exp(2*w))+...

694 (2-aExt*(1+exp(2*w))).*w);

695 numerator=8*PeExt.ˆ(-1).*eta.*w;

696 denominator=2*(1-aExt)+(2-aExt).*w...

697 +exp(2*w).*(2*aExt*w.ˆ2+(2-3*aExt)*w-2*(1-aExt));
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698 wPrime=numerator./denominator;

699 end

700

701 function psi=psiSplice(zEval,z0,funs0)

702 % |psiSplice | computes $\psi(z)$ when the solver is stopped

703 % |wEvents |

704 % |psiSplice | is called in the main |wpsiOfz | and |wSplice |

705 % |psiSplice | calls |dpsidz | and |wSplice |

706 %

707 % Input variables:

708 % |funs0 | is a vector of the the inital condition |[w0;psi0] |

709 % |zEval | is an array of the $z$-coordinate at which $\psi(z)$

710 % is evaluated

711 % |z0 | is a scalar the inital position for the $w(z)$ function

712 % given by final value computed using the ode solver before the

713 % solver was stopped by |wEevents |

714 %

715 % Output variables:

716 % |psi | is an array of $\psi$ from (C.18)

717 %

718 % Internal variables:

719 % |integrand | is a function handle of the integrand from (C.18)

720 % |zDummy | is the dummy variable of integration

721

722 integrand=@(zDummy) dpsidz(wSplice(zDummy,z0,funs0(1)));

723 psi=funs0(2)+integral(integrand,z0,zEval,'ArrayValued',true);

724 end

725

726 function [value,isterminal,direction] = wEvents(z,funs)

727 % |wEvents | handles the event where computed value of $w$ goes to 0

728 % by stopping the solver

729 % |wEvents | is called in the main |wpsiOfz | and |wSplice |

730 %

731 % Input variables:

732 % |funs | is a vector of |[w;psi] |
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733 % |z | is a scalar of the $z$-coordinate

734 %

735 % Output variables:

736 % |value | is the variable that goes to zero

737 % |isterminal | stops the integration of the ode solver

738 % |direction | specifies from which direction value goes to zero;

739 % |direction = 0 | corresponds to any direction

740

741 value = funs(1);

742 isterminal = 1;

743 direction = 0;

744 end

745

746 function [w,psi]=wSplice(zEval,z0,funs0)

747 % |wSplice | computes $w(z)$ when solver is stopped by |wEvents |

748 % when $w$ goes to 0

749 % |wSplice | is called in |psiSplice|, the main |wpsiOfz|, and

750 % |wSplice |

751 % |wSplice | calls |Derivatives | and |wSplice |

752 %

753 % Input variables:

754 % |funs0 | is a vector of the the inital condition |[w0;psi0] |

755 % |zEval | is an array of the $z$-coordinate at which $\psi(z)$ is

756 % evaluated

757 % |z0 | is a scalar the inital position for the $w(z)$ function

758 % given by final value computed using the ode solver before the

759 % solver was stopped by |wEevents |

760 %

761 % Output variables:

762 % |psi | is an array of $\psi$ from (C.18)

763 % |w | is an array of $w$ from (C.19)

764 %

765 % Internal variables:

766 % |funseSplice | is a array of |[w,psi] | values when |wEvents |

767 % occurs
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768 % |funsStart | is the final value of |[w;psi] | before restarting

769 % the ODE solver after $w$ goes to 0

770 % |funszSplice | is a array of |[w,psi] | values when |wEvents |

771 % occurs

772 % |psiStart | is the final value of $\psi$ before restarting the

773 % ODE solver after $w$ goes to 0

774 % |psizSplice | is a vector of $\psi$ values when |wEvents | occurs

775 % |w0 | is the inital condition for the $w(z)$ function given

776 % by final value computed using the ODE solver before

777 % the solver was stopped by |wEevents |

778 % |wFun | is a function handle of $w(z)$ from (C.19)

779 % |wRestart | is the target value of $w$ before resuming

780 % integration after $w$ goes to 0

781 % |wStart | is the final value of $w$ before resuing integration

782 % after $w$ goes to 0

783 % |wzSplice | is a vector of $w$ values when |wEvents | occurs

784 % |zeSplice | is a vector of $z$ values when |wEvents | occurs

785 % |zInvSplice | is the $z$-interval of the solution after

786 % resuming integration after $w$ goes to 0

787 % |zStart | is the final value of $z$ before resuming integration

788 % after $w$ goes to 0

789 %

790 % Externally scoped variables:

791 % |aExt | is a scalar $a$ from (C.7) defined in the main |wpsiOfz |

792 % |odeOptions | are the options for the ODE solver defined in the

793 % main |wpsiOfz |

794 % |PeExt | is a scalar $\rm Pe$ from (C.6) defined in the main

795 % |wpsiOfz |

796

797 % Define the value of $w$ which is far enough below 0 to

798 % restart integration (determined by trial and error)

799 wRestart=log(1-1e-3);

800

801 w0=funs0(1);

802
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803 % Given $z 0$ and $w 0$, this finds the next value of $z$ (and

804 % corresponding value of $w$) where $w$ far enough below 0 to

805 % restart integration;

806 % |[w(zStart);H(zStart)]=[wStart;HStart] | is the new initial

807 % condition for integration

808 wFun=@(z) -sqrt(w0ˆ2+24*(1-aExt)/(2+aExt)*PeExtˆ(-1)*(z-z0));

809 [zStart,wStart]=fsolve(@(z) wRestart-wFun(z),z0,...

810 optimoptions('fsolve','Display','none'));

811 psiStart=psiSplice(zStart,z0,funs0);

812

813 % If |wStart>-1e-4|, then the ODE solver goes to the $w=0$

814 % solution; in this case use the original initial condition

815 % that was used as close enough to zero

816 if wStart>-1e-4

817 wStart=-1e-4;

818 end

819

820 funsStart=[wStart;psiStart];

821 zInvSplice=[zStart,zEval];

822

823 if strcmp(odeSolver,'ode45')

824 [~,funsSplice,zeSplice,funseSplice,~]=...

825 ode45(@Derivatives,zInvSplice,funsStart,odeOptions);

826 elseif strcmp(odeSolver,'ode15s')

827 [~,funsSplice,zeSplice,funseSplice,~]=...

828 ode15s(@Derivatives,zInvSplice,funsStart,odeOptions);

829 else

830 errors('Unknown odeSolver');

831 end

832 % If w is too small to be accurately computed with the ODE

833 % solver, integration is stoped and |wSplice | is used to

834 % compute $w(z)%, this event is handled using |odeOptions |

835

836 % Assign |wzSplice(i,j) | and |psizSplice(i,j) | depending on if

837 % |wEvents | occurred
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838 if isempty(zeSplice)

839 % If no event occurred, use ODE solution

840 [wzSplice,psizSplice]=funsSplice(end,:);

841 else

842 % If event occurred, use |wSplice | and |psiSplice | solutions

843 funseSplice(abs(imag(funseSplice))<1e-27)=...

844 real(funseSplice(abs(imag(funseSplice))<1e-27));

845 % Neglect imaginary part of the elements of |funse | if they

846 % are small

847 if ~isreal(funseSplice(1))

848 % Throw error otherwise

849 error('weSplice is complex');

850 end

851 if ~isreal(funseSplice(2))

852 % Throw error otherwise

853 error('psieSplice is complex');

854 end

855 [wzSplice,psizSplice]=wSplice(zEval,zeSplice,funseSplice);

856 end

857 if abs(imag(wzSplice))<1e-27

858 % Neglect imaginary part of |wz(i,j) | if it's small

859 wzSplice=real(wzSplice);

860 else

861 % Throw error otherwise

862 error(['wzSplice(',num2str(i),',',num2str(j),...

863 ') is complex']);

864 end

865 if abs(imag(psizSplice))<1e-27

866 % Neglect imaginary part of |psiz(i,j) | if it's small

867 psizSplice=real(psizSplice);

868 else

869 % Throw error otherwise

870 error(['psizSplice(',num2str(i),',',num2str(j),...

871 ') is complex']);

872 end
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873 w=wzSplice;

874 psi=psizSplice;

875 end

876 end

877

878 function wz=wOfz(zEval,R,dRdz,a,Pe,odeSolver)

879 % |wOfz | solves the differential equations for $w(z)$

880 % |wOfz | is called by |TCross | and |TExit |

881 % |wOfz | calls |dwdz|, |wEvents|, and |wSplice |

882 %

883 % Input variables:

884 % |a | is an array of the $a$ from (C.7)

885 % |dRdz | is a function handle of $Rˆ{\prime}(z)$

886 % |odeSolver | a string specifying which ode solver to use ('ode45' or

887 % 'ode15s')

888 % |Pe | is an array of the $\rm Pe$ from (C.6)

889 % |R | is a function handle of $R(z)$

890 % |zEval | is a scalar of the $z$-coordinate

891 %

892 % Output variable:

893 % |wz | is an array of $w(z)$

894 %

895 % Internal variables:

896 % |aExt | is a scalar $a$ from (C.7) to be used externally in

897 % |dpsidz|, |dwdz|, and |wSplice |

898 % |odeOptions | are the options for the ODE solver

899 % |PeExt | is a scalar $\rm Pe$ from (C.6) to be used externally in

900 % |dwdz | and |wSplice |

901 % |w | is a vector of $w$ values

902 % |w0 | is a scalar of the initial condition for the $w$ ODE

903 % |we | is a vector of the value of $w$ when |wEvents | occurs

904 % |ze | is a vector of $z$ values when wEvents occurs

905 % |zInterval | is the $z$-interval of the solution

906 %

907 % Nested functions:
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908 % |dwdz | is defines $wˆ{\prime}(z)$ from (C.14)

909 % |wEvents | handles the event where $w\rightarrow0$; this is

910 % problematic if a step in $z$ overshoots $w=0$ giving $w>0$, which

911 % is not physically realizable

912 % |wSplice | defines the splice function for $w(z)$ given by (C.19) if

913 % integration is stopped by |wEvents | and then resumes integration

914

915 % Define initial conditions

916 % Since $w(z)=0$ is an (incorrect) solution to (C.14), |w0 | is

917 % taken to be a small negative number (determined by trial and

918 % error)

919 w0=-1e-4;

920

921 % Pre-allocate size of |wz |

922 wz=zeros(size(Pe));

923

924 % Create event to handle events where $w\rightarrow0$

925 odeOptions=odeset('Events',@wEvents);

926

927 % These loops cannot be vectorized due to the use of |contour | in

928 % |MakeFigure |

929 for i=1:size(Pe,1)

930 % Iterate over rows of Pe

931 for j=1:size(Pe,2)

932 % Iterate over columns of Pe

933

934 aExt=a(i,j);

935 PeExt=Pe(i,j);

936 zInv=[0,zEval];

937

938 if strcmp(odeSolver,'ode45')

939 [~,w,ze,we,~]=ode45(@dwdz,zInv,w0,odeOptions);

940 elseif strcmp(odeSolver,'ode15s')

941 [~,w,ze,we,~]=ode15s(@dwdz,zInv,w0,odeOptions);

942 else
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943 error('Unknown odeSolver');

944 end

945 % If w is too small to be accurately computed with the ODE

946 % solver, integration is stoped and |wSplice | is used to

947 % compute $w(z)%, this event is handled using

948 % |odeOptions |

949

950 % Assign |wz(i,j) | and |psiz(i,j) | depending on if

951 % |wEvents | occurred

952 if isempty(ze)

953 % If no event occurred, use ODE solution

954 wz(i,j)=w(end);

955 else

956 % If event occurred, use |wSplice | solution

957 if abs(imag(we))<1e-27

958 % Neglect imaginary part of |we | if it's small

959 we=real(we);

960 else

961 % Throw error otherwise

962 error('we is complex');

963 end

964 wz(i,j)=wSplice(zEval,ze,we);

965 end

966

967 if abs(imag(wz(i,j)))<1e-27

968 % Neglect imaginary part of |wz(i,j) | if it's small

969 wz(i,j)=real(wz(i,j));

970 else

971 % Throw error otherwise

972 error(['wz(',num2str(i),',',num2str(j),...

973 ') is complex']);

974 end

975 end

976 end

977
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978 function wPrime=dwdz(z,w)

979 % |dwdz | sets up the ODE for $\w$ to be solved

980 % |dwdz | is called in the main |wOfz | and |wSplice |

981 %

982 % Input variables:

983 % |w | is an array of $w(z)$

984 % |z | is an array of the $z$-coordinate

985 %

986 % Output variables:

987 % |wPrime | is an array of $wˆ{\prime}(z)$ from (C.14)

988 %

989 % Internal variables:

990 % |denominator | is an array of the denominator from (C.14a)

991 % |eta | is an array of $\eta$ from (C.14b)

992 % |numerator | is an array of the numerator from (C.14a)

993 %

994 % Externally-scoped variables:

995 % |aExt | is a scalar $a$ from (C.7) defined in the main |wOfz |

996 % |PeExt | is a scalar $\rm Pe$ from (C.6) defined in the main

997 % |wOfz |

998

999 eta=(1-aExt)*w+PeExt*dRdz(z)/(4*R(z))*...

1000 ((1-aExt)*(1-exp(2*w))+(2-aExt*(1+exp(2*w))).*w);

1001 numerator=8*PeExt.ˆ(-1).*eta.*w;

1002 denominator=2*(1-aExt)+(2-aExt).*w...

1003 +exp(2*w).*(2*aExt*w.ˆ2+(2-3*aExt)*w-2*(1-aExt));

1004 wPrime=numerator./denominator;

1005 end

1006

1007 function [value,isterminal,direction] = wEvents(z,w)

1008 % |wEvents | handles the event where computed value of $w$ goes to 0

1009 % by stopping the solver

1010 % |wEvents | is called in the main |wpsiOfz |

1011 %

1012 % Input variables:
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1013 % |w | is a vector of $w$

1014 % |z | is a scalar of the $z$-coordinate

1015 %

1016 % Output variables:

1017 % |value | is the variable that goes to zero

1018 % |isterminal | stops the integration of the ode solver

1019 % |direction | specifies from which direction value goes to zero;

1020 % |direction = 0 | corresponds to any direction

1021

1022 value=w;

1023 isterminal=1;

1024 direction=0;

1025 end

1026

1027 function w=wSplice(zEval,z0,w0)

1028 % |wSplice | computes $w(z)$ when solver is stopped by |wEvents |

1029 % when $w$ goes to 0

1030 % |wSplice | is called in the main |wpsiOfz | and |wSplice |

1031 % |wSplice | calls |dwdz | and |wSplice |

1032 %

1033 % Input variables:

1034 % |w0 | is a scalar of of the the inital condition $w 0$

1035 % |zEval | is an array of the $z$-coordinate at which $\psi(z)$ is

1036 % evaluated

1037 % |z0 | is a scalar the inital position for the $w(z)$ function

1038 % given by final value computed using the ode solver before the

1039 % solver was stopped by |wEevents |

1040 %

1041 % Output variable:

1042 % |w | is an array of $w$ from (C.19)

1043 %

1044 % Internal variables:

1045 % |w0 | is the inital condition for the $w(z)$ function given

1046 % by final value computed using the ODE solver before

1047 % the solver was stopped by |wEevents |
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1048 % |weSplice | is a array of $w$ values when |wEvents | occurs

1049 % |wFun | is a function handle of $w(z)$ from (C.19)

1050 % |wRestart | is the target value of $w$ before resuming

1051 % integration after $w$ goes to 0

1052 % |wStart | is the final value of $w$ before resuing integration

1053 % after $w$ goes to 0

1054 % |wzSplice | is a vector of $w$ values when |wEvents | occurs

1055 % |zeSplice | is a vector of $z$ values when |wEvents | occurs

1056 % |zInvSplice | is the $z$-interval of the solution after

1057 % resuming integration after $w$ goes to 0

1058 % |zStart | is the final value of $z$ before resuming integration

1059 % after $w$ goes to 0

1060 %

1061 % Externally scoped variables:

1062 % |aExt | is a scalar $a$ from (C.7) defined in the main |wpsiOfz |

1063 % |odeOptions | are the options for the ODE solver defined in the

1064 % main |wpsiOfz |

1065 % |PeExt | is a scalar $\rm Pe$ from (C.6) defined in the main

1066 % |wpsiOfz |

1067

1068 % Define the value of $w$ which is far enough below 0 to

1069 % restart integration (determined by trial and error)

1070 wRestart=log(1-1e-3);

1071

1072 % Given $z 0$ and $w 0$, this finds the next value of $z$ (and

1073 % corresponding value of $w$) where $w$ far enough below 0 to

1074 % restart integration; |w(zStart)=wStart | is the new initial

1075 % condition for integration

1076 wFun=@(z) -sqrt(w0ˆ2+24*PeExtˆ(-1)*(1-aExt)/(2+aExt)*(z-z0));

1077 [zStart,wStart]=fsolve(@(z) wRestart-wFun(z),z0,...

1078 optimoptions('fsolve','Display','none'));

1079

1080 % If |wStart>-1e-4|, then the ODE solver goes to the $w=0$

1081 % solution; in this case use the original initial condition

1082 % that was used as close enough to zero
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1083 if wStart>-1e-4

1084 wStart=-1e-4;

1085 end

1086

1087 zInvSplice=[zStart,zEval];

1088

1089 if strcmp(odeSolver,'ode45')

1090 [~,wSpliceVec,zeSplice,weSplice,~]=ode45(@dwdz,...

1091 zInvSplice,wStart,odeOptions);

1092 elseif strcmp(odeSolver,'ode15s')

1093 [~,wSpliceVec,zeSplice,weSplice,~]=ode15s(@dwdz,...

1094 zInvSplice,wStart,odeOptions);

1095 else

1096 error('Unknown odeSolver');

1097 end

1098 % If w is too small to be accurately computed with the ODE

1099 % solver, integration is stoped and |wSplice | is used to

1100 % compute $w(z)%, this event is handled using |odeOptions |

1101

1102 % Assign |wzSplice | depending on if |wEvents | occurred

1103 if isempty(zeSplice)

1104 % If no event occurred, use ODE solution

1105 wzSplice=wSpliceVec(end);

1106 else

1107 % If event occurred, use |wSplice | solution

1108 if abs(imag(weSplice))<1e-27

1109 % Neglect imaginary part of |weSplice | if it's small

1110 weSplice=real(weSpliceVec);

1111 else

1112 % Throw error otherwise

1113 error('weSplice is complex');

1114 end

1115 wzSplice=wSplice(zEval,zeSplice,weSplice);

1116 end

1117 if abs(imag(wzSplice))<1e-27
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1118 % Neglect imaginary part of |wz(i,j) | if it's small

1119 wzSplice=real(wzSplice);

1120 end

1121 w=wzSplice;

1122 end

1123 end
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