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Nature Seen Through Half-Shut Eyes 

A man who takes a magnifying glass into a 
picture gallery and exan'nines the canvases at a 
distance of 3 inches may acquire much interesting 
information about the texture of paint, but he 
does net see the pictures. It is better to stand 
away. If tridial details still intrude, it is 
better to half-shut the eyes. As a final step, 
it is well to shut the eyes completely and think 
about what has been seed. 

* J.L. Synge 
Science, 5 October 1962 
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My Pirst encounter with radismekry and plaotoaaetry was as 
P student reading Sezrs' Opt%es." The lucid e~gpositioil in 
Sears1 book, ably i%lmina.ted by the lectures of Prof. S, Q. 
Dunzlsy, a ~ a ~ ~ n e ~  my interest in the subject, ~~~~~~~~~~~a~~ 
the geometer in me took over as r sought the foundatrans of 
the subject. 
sf ~~~~~~~~~~~ in 1952, and during my first years as a wstkke- 
matics ~ ~ ~ d ~ ~ t ~  student at Scripps Insti$nBionofO~$agh~gsaphy, 
I had the ~ ~ ~ ~ ~ ~ ~ n ~ t ~ t o  dewejbrapmy awakened interest in radi- 
ometry* and to find the foundations of this subject in measure 

of EucIid*s geometry and the axiomatized m b i o n  OB radians 
flux, is the ~ ~ ~ ~ n ~ ~ ~ ~ ~ ~ c h  radiative transfer theory could be 
built, For a few heady years E had the leisure io explore this 
fgsunda..kiors{ses, e.g.* 12l(B], [2ll], I2l.61) muchas the ancient 
geeameters ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ ~  of euclidean ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ d t h e  
beginnings sfnechanics. Foroneneednaekno.wngachabou.e~he 
~ ~ y ~ ~ c ~ l  world beyond what his senses reweal in order to be 
qualified to pusrue radiometry, radiative transfer, and their 
applications to problems of visibility and radiactt energy flow 
in the sea. IA this sense radiometry and probability theory 
are very much alike. While radiometry is the marriage of 
geometry and radianit flux, probability theory is the union 
05 geometry and chance. In both disciplines, the ~ a t ~ ~ ~ a ~ ~ ~ a ~  
vehicle for che physical concept is the notion of a measure. 
Indeed, the parallel between radiative transfer and that 
branch of grabability knownas 'Markov chains' is exact, as I 
showed sometime laterinChapterXII1 ofmymonograph [25l.] on 
radiative transfer theory, 

This volume, then, is the product of a labor 0P Love, 
wherein very deep geoRIf?triC predilections took over my first 
years of scienrific research, years in which for better or 
worse h half-shut my eyes to the multifarious richness ofthe 
real World, and tsiedby thought alone toorder my visual ex- 
periences in a suitable mathematical frame. I was succsssful 
in that effort. For if one carves out ~f the chaos of his 
experience a small enough piece, he can examine it and under- 
stand it, and eventually nake its secrets part of himself 
Once and for all. Butthe priceofthis victoryisquilce dear: 
the remaining portions of the world sweep by and onward while 
o12e remains anchored to a spot, examining a fen grains of 
earth for order and meaning. 

e 

Fallowing graduation fromMassachusetts Institute 

tksei8ry. E'JejrabUalBy I fQUnd that radiGKLegKy, ab&?aU%ifUl Union 

"Sears, F. W., Opt$cs, Addison Wesley, Cambridge, Mass, 
(P943), 3rd ed. 



X PREFACE 

The interested student of radiative transfer theory 
may take the following as a base on which to rest his own 
work. He will then be spared the necessity for remaining 
overly long at a relatively isolated point in the conceptual 
landscape of radiative transfer theory. I f  he can then see 
farther and clearer because of this work, my efforts will 
have done some good. If he feels that the final answer has 
yet to be found in the quest for the foundations, then I 
wish him good luck and a full measure of joy in pursuing 
that quest. 

The final manuscript was typed by Ms. Judy Marshall. 
R.W.P. 

Honolulu, Hawaii 
January 1974 
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2 RADIOMETRY AND PllOTOMETRY VOL. I1 

radiative transfer measurements. We shall stand away frolia 
electromagnetic complexity, and half-shut our eyes as we re- 
construct radiometry. In the next chapter we shall shut our 
eyes completely and think about what we have seen in Vol. 1. 

in Sec. 2.1 with the operational definition of radiant flux. 
It is always good practice to give as many means of visuali- 
zation of a newly defined concept as mutual consistency will 
allow. For this reason, and also to pave the way for a more 
versatile presentation of the concepts of hydrologic optics 
than that of Chapter 1, we develop in Sec. 2.2 the three main 
ways to conceptually view the notion of radiant flux. The 
principal properties of radiant flux, as they are used in geo- 
metrical radiometry, are developed in Sec. 2.3. Then, in 
close succession, the principal derived concepts of radiometry 
are developed: radiance and various forms of irradiance, a- 
long with theorems governing and examples illustrating their 
salient properties. Throughout our development we shall em- 
phasize the geometrical aspects of radiometry rather than 
their physical aspects. The latter aspects, to the degree 
that we shall need to study them in this works are reserved 
for discussion in Sec. 2.1. However, some notice must also 
be taken of the physical aspects of radiometry in preparing 
to construct the bridge between radiometric and photometric 
concepts. Therefore, in Sec. 2.12, we pause to develop those 
concepts of photometry which facilitate the operational defi- 
nition of the notion of luminous flux--the photometric coun- 
terpart to radiant flux. With the radiometric discussions as 
a model, the various derived photometric concepts are then 
readily attained. The chapter closes with some remarks on 
generalized photometric concepts. 

Our present viewpoint of geometrical radiometry and 
photometry may then be summarized in the following definitions 
of these disciplines, which we adopt: Radiometry is the eci- 
ence of the measurement of radiant energy. Geometrical Radi- 
ometry is the union of euclidean geometry and Radiometry: it 
m e a s u ~ e s  and describes the flow of radiant energy of given 
frequency through volumes, across surfaces, aZong lines, and 
at points in space. With this in mind we can go on to say 
that: GeornetricaZ Photometry measures the visual, erythemal, 
photoetectric, or photographic r e s p ~ n ~ e ~  by given receptors, 
to the quantities of geometrical radiometry, with respect to 
different frequencies of radiant energy. 

The outline of this chapter is as follo%s. We begin 

2.1 Radiant Flux 

We now take up the details of an operational defini- 
tion of radiant flux. The heart of the definition we shall 
adopt consists of the postulation of some physical device 
which can sense and record in quantitative detail the pres- 
ence OB light--or radiant energy in general--in a neighbor- 
hood of a point in space. There are several devices available 
for such a purpose. Of those currently available, the photo- 
electric devices are most satisfactory from the point of view 
of sensitivity and quantitative precision. 
to survey this class of devices. 

We pause briefly 



SEC. 2.1 3 

Basic Photoelectric Egfects 

The class uf light-measuring devices known c a ~ ~ e c t ~ v e l y  
88 photaetectmh cekta consists of three broad sets, each see 
being charmzxerized by a distinctive m ~ d e  of inferacti~w -$E 
light with matter ;ana the pgrticular ~omt of e~eciz~isa:, ?e- 
sponse arising from that interaction. These reacpanses zre d e  
neted by the tensls ~~~~~~~~~~~~~ , ~~~~~~~~~~~~~~~ E m-2 
pkolo-oottaic, A cokpariscn of the ~~~~~~~~~~~~~~ fest 

C I ~ C S ~  ~~~~~~~~~ is reaitiiy aaae by DWW 05 ~ i g ~  2-1 

tsf a phoeoemissive CSPZ (OF photoktib~l) Light, imdfeatxd by 
the STPOW, is incident 0x1 a negatively charged e f e c t m d ~ ,  

impact the incident light dislodges e i r ; e t ~ ~  E T - A ~  
surfwe of %he electrode and these are drawn across xha gap 
$0 the relatively positively charged elea;ltraPde within the e%- 
eatent, The seat ai electromotive force is ~~~~~~~~ by 8 bat-, 
tsry or other news and 30 continuously ~~~~~~~~~~~ the sup- 
ply of e1ec"tt"sas on the negative electrocis. The net rest41x 

electrons flowing through a current meter, as shown in the 
figure. The s w a m  of eZecfi~ns, liberated at the eiectrade 

electrodes and thereby completes the circuit, If t h e m  11 no 
incident light on the electrode, then under nosmael eonditiaas, 
there are no electacns liibersted froa the electrode to cam- 
plete the circuit, and there is sonsequen%ly no cu 
istered by the metes. Generally, the greater the 
light incident on the receiving electrode, the ~~~~~~~~n~~~~~~ 
greater is the resultant current in the circuit. By a careful 
calibration, the meter can be made to redid directly the rate 
of incidence of radiant energy on the receiving eleczrada, 
The photoemissive effect just described is the most recently 
discovered of the three effects. It was discovered in crude 
farm in 1887 by Heinrick Hertz as a by-product of his clizsskal 
researches on electromagnetism. Under ~~~~~~~~~t ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ *  
ower the years, it has Ipeco~ie the principal effect used In 
photoeaectric devices. The theory of the photoemk9sive e f h X  
was not evolved until about eighteen years after its di~csver?~. 
The theory of the photoemissive effect itself forms ;a major 
epoch in the history of physics, €or its completion eventually 
required the concept of the photon as introduced by Einstein 
in 1905. 

part (b) of Fig. 2.1. It was found experimentally in 1873 by 
Wflloughby Smith that tha conductivity of the metal ~~~~~~~ 

increases when light is incident on it. This effect can 
therefore be put to use in sensing and recording the presence 
of Bight, in the manner shown in the figure. The greater 
asqoernt of light incident an the selenium cell kesu%Zs in a 
correspondingly greater amount of current flowing through the 
c;urres?% meter. When no light is incident OE the photoconduc- 
tive element, there is under normal conditions a. smell ~~~~~ 

amount of current (the dark curPent] flawing in the circuit. 
The full understanding sf the photoconductive effect on a 
microscopic level was achieved only recently usiarg the ~~~~~- 

Part (a] of the figure depicts the e%aiztrricaI essence 

Oh %he incident light 0 Small but ineZSUtablF2 CU;S"TE?PR'C Sa" 

by the incident light, stzeems aClOSS the gap ~~~~~~~ tea? 

A photoconductive oetl is schematically depicted in 

I 
L 



4 RADIOMETRY AND PHOTOMETRY VOL. 11 

photo 
tlt 

meter 

electromctive force photo voltaic 
(&I 1 element 

- ~~ 

FIG. 2.1 The Basic types of photoelectric cells 

based theory of semiconductors. On the basis of this under- 
standing, one can test and use all manners of semiconductors 
as possible photoconductive materials. 

A photovoltaic cell is schematically depicted in part 
(c) of Fig. 2.1. The photovoltaic element consists of two 
dissimilar substances in close contact (shown slightly sepa- 
rated, for clarity). Light incident on the photovoltaic ele- 
ment generates a difference of electric potential between the 
two basic parts of the element and as a consequence a current 
flows in the circuit. This current is measured by a current 
meter included in the circuit. When no light is incident on 
the element, no electromotive force is normally produced in 
the parts of the element, and consequently no current flows 
in the circuit. Generally, the greater the amount of incident 
light on the element of the cell, the greater the resultant 
potential, and the greater the ensuing current in the circuit. 
The photovoltaic effect antedates both other effects discussed 

. .: 

. 
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Operational Definition oP Radiant Flux 

We now present the operational definition asf rardima 
flux. The brief preliminary excursion into the basic phot@- 
electric effects just coepleted will endow the definition pra- 
cedures below with Q measure of realism that perhaps may m ~ &  
have bean possible had we n5t paused to make so18 ~~~~~~~ with 
plrysicaa reality. However, the logical basis of the defini- 
tion of radiant flux and its manifold prspereiea ~~~~~~~~~ 

subsequently are quite independent ob what r 
ing devices are used in practice. Indeed, Q 
radiometry as used in practice are ail1 esns%ruc%able in ts 
of the basis notion of radiant flux and ~~~r~~~~~~~ gswmtrn- 
601 notions suck os surface areas and solid 
cegt of radiant flux in turn and its few basic ~~~~~~~~~ 
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properties are now so well established that they can actually 
be axiomatized fOT the purpose of developing a self-contained 
discipline of geometrical radiometry. In the present devel- 
opment we shall steer a middle road between these extreme al- 
ternatives. We shall not go so far as to develop in complete 
detail an axiomatic theory of radiometry, but we shall itadi- 
cafe the fundamental properties of radiant flux that would 
occur in such a formulation. THe notion of radiant flux will 
for the most part be handled as an empirically-based concept. 
However, we shall not, beyond the general suggestions given 
in the discussion of photoelectric devices above, fix in any 
detail the form of the device which is used to sense and re- 
cord the incident flow of radiant energy. In sum, we shall 
henceforth agree that we have some light-sensitive device 
which can accurately, quickly, and repeatedly reproduce a 
quantitive measure of the instantaneous flow of radiant ener- 
gy onto some well defined surface which acts as a collecting 
surface for the incident energy. Except for some suggestive 
remarks in Sec. 2.2, the notion of 'radiant energy' will re- 
main undefined in this work. We take it as given. 

Figure 2.2 depicts in more detail, and on a schematic 
level, the basic Porm of a widely used type of radiant flux 
meter. The sequence of events leading to a radiant flux meas- 
urement with the radiant flux meter is generally as follows. 
Radiant energy is incident on the filter of the meter. This 
energy is funneled in from the environment through a set D of 
directions. The filter ideally transmits a set F of frequen- 
cies of the incident energy and does not transmit any other 
frequencies. The transmitted frequencies then pass on to a 
plane collecting surface S. This surface acts to collect a 
representative amount of the transmitted flux from each 

I 

ineidenP radiant 
energy of frequencies F 

I I 1 

FIG. 2.2 Schematic detail of a radiant-flu meter 
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'The definition of radiant flux given above is an oper- 
aPiortal dofinitton in the sense that it may be translated in- 
to a definito sequence of physical operatiofis with a specific 
instrument in a given environment and which culminate in a 
unique nonnegative number QI(S,D,t,F). This type of definition 
can be made to stand out in bel$ relief' from still another 
type which may also be used as effectively as the operational 
definition in establishing the theory of radiometry. This 
alternative definition is known as the constitutioe definition 
of radiant flux which uses only the concepts of the mathema- I 

I tical framework within which radiometry is modeled. In a con- 
stitutive definition there is no immediate appeal to physical 
operations with a specific instrument in a given environment. 
For an example of a constitutive definition of radiant flux 
and the other radiometric quantities, the reader may consult 
Secs. 109 and 131 of reference [ZSl]. 

I 

2.2 The Meaning of 'Radiant Flux' 

subsequent chapters to have in mind some visualizable con- 
struct of radiant flux. By having the reader picture in a 
relatively concrete manner the meaning of the term 'radiant 
flux', the various principles and laws of radiative transfer 
used throughout this work will become more readily understood 
and applied. We hclve already givensthe term 'radiant flux' 
a relatively consreie meaning by adopting an operational def- 
inition of the term. In this section we shall go one step 
further and suggest three ways in which one may visualize ra- 
diant flux directly. What we shall offer, then, are concep- 
tual frameworks within which to view the notion of radiant 
energy and which, especially during theoretical discussions 
of radiative transfer, one may use in a heuristic manner. 

One manner in which radiant flux may be visualized is 
by a means similar to that used in geometrical optics. In 
order to discuss the theory of lenses within geometrical op- 
tics one may use the method of ray tracing. The heart of this 
method resides in the concept of the "light ray" and a few 
simple rules of construction of a ray of light through a lens. 
Corresponding to this notion we have in geometrical radiometry 
the notion of a line of flux. One may thus visualize 
@(S,D,t,F) as proportional to the number of straight or curved 
lines hawing directions lying within the set D where they ter- 
minate on the S U K ~ ~ C ~  S. The time t and set E of frequencies 
are usually fixed or Linderstood during a discussion so that 
the lines of flux constitute a representation of the geomet- 
ric construct of @(S,D,t,F). In this representation, the mag- 
nitude of Q(S,D,t,F) is proportional to the number of such 
lines of flux, the proportionality factor being some fixed 
number of lines per w i t  of radiant flux. One may thus imag- 
ine the radiant energy as a fluid travelling along the lines 
of flux. The closer together the lines are within some re- 
gion, %he greater the radiant flux (i.e.D radiant energy flow) 
through that region. The lines of flux are to be determined 
using the same fommlas of geometrical optics as used in ray 
tracing. Whenever scattering takes place, however, some lines 

It will be helpful during the discussions o€ this and 



gives the time rate iof flow of radiant energy 05 frequencies 
in F crossing surface S, witbin di2ections D at time t, 
is the unit inward normnal to S at x. This is then the seat 
of the meaning of @[S,D,t,F) in terns o€ the photon concept, 
In the precadimg integral, "A", q8Q'' and '@lI1"' denoted area, 
solid m g l e ,  and frequency measures, respectively; and these 

k(x) 

* @or reference purposes, we observe here that the connection 
between the density n and the radiance N is: N(x,S,t,v) = 

hVVn(XBEpt,V). (See (Sa) of ssc. 2.5,) 
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will be explained In greater 
tions of this chapter. 
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detail in the subsequent sec- 

As a special case of the preceding connection, let 
n(x,c,t,v) be constant of magnitude n over S and over a nar- 
row bundle of directions D normally incident on S and let F 
consist of discrete frequencies. Then, using the photon in- 
terpretation of Q(S,U,t,F) just described, we can write: 

"@[§,f3,t9F)" for hvnA(S]Q(D) 1 w (2) 
veF 

In summary, we have discussed three possible aids to 
visualizing the meaning of 'radiant flux'. There is the 
geometric-optics notion of lines of fZm, the electromagnetic- 
theoretic construct sf the PoypItipLg veotor, and the quantum- 
theoretic construct on' the moving photon. A composite pic- 
ture may be made by joining all three of the preceding con- 
cepts. Thus, one may visualize the photon not as a particle 
(i.e.s a mathematical point) beat rather as B spatially small 
wave train of electromagnetit waves of predominantly a single 
frequency and moving along the lines of flux. This concept 
allows light to have at Beast intuitively, the properties of 
both particles and waves, 

2.3 Fundamental 6eometric Properties of Radiant Flux 

In this section we shall assemble the Six properties 
of O(S,D,t,F) on which geometrical radiometry may be based. 
These six properties summarize precisely and explicitly those 
macroscopic properties of light which are customarily impli- 
citly assumed in radiometry, and which are based on extended 
experience with the operational definition of radiant flux. 
By explicitly recognizing and isolating these six properties 
we may attain a unified and relatively rigorous development 
of geometrical radiometry. This fundamental group of six 
properties falls naturally into three pairs of properties, 
corresponding to the frequency, surface, and direction para- 
meters occurring in @(S,D,t,F). 

We begin with the properties of @ associated with the 
frequency parameter F. For every two disjoint sets F1 and FZ: 

These properties hold for arbitrary S,D, and t. The first of 
these is the F-additivity property of @ e  The symbol ''U will 
be used often below to denote the union of two sets of things. 
Here ptFi U F a "  denotes the set of all frequencies in either PI 
or F2. By "disjoint sets" we shall w a n  sets of things which 
have no elements in common. Thus by "two disjoint sets Fl 
and Far' we mean that F 1  and Fa. have no frequencies in common. 

1 .  ._ 

.. 



lt is precisely the propereieg (1) end (2) which permit 
the Pinit P(S,D,t,u) to exist.* When v is understood, we may 
drcrp it from the notation to write: 

and even further, we may write: 

"P(S D) for P (S ,D, t ,u) 

when both \I and t are understood. We call P(§,D,t,v) the 
rnanaehromatic (or spatrat] radiant ftux of frequency v over 
S within f) at time t, per unit frequency interval. The func- 
tion P which assigns to (S,D,P,v) the number P(S,D,t,v) is 
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the monoahPomatics (or s p c 0 t ~ a Z )  m d i a n b  f2w functtion. It 
follows from (31 and a theorem of calculus that: 

Q(S,D,t,F) a \ P[S,D,t,V) dl[V,li , (4) 
F 

The symbol "l" denotes the length measure along the 
frequency spectrum. Thus for the intervsl F consisting of 
all frequencies from frequency W L  to frequency v2, where 
V ~ S V ~ ~  we have l(F) -- v~p-vl. Thus in practical computations 
one can write "dv" for "dl(~J)~~ and (4) is then understood to 
be a Riemann integral.. This is the intended interpretation 
of (4) for use in this work, Howeverp general discussions 
are occasionally greatly facilitated by the retention of the 
length measure, as shown in (4). The symbol "1" is also in- 
terpretable as the length measure along the wavelength spec- 
trum. Furthermore, since both line spectra and continuous 
spectra are represented by the set 05 nonnegative real nuin- 
bers, l can be used to denote either the Lebesgue or Riemann 
measure on that set if continuous spectra are envisioned, or 
the Stieltjes measure, if line spectra are considered. The 
particular choice of the nature of 1 will be clear by conven- 
tion or from the context in each case. Thus, unless specifi- 
cally stated otherwise, l is to bo considered as the usual 
Rienann type length measure used in ordiaary calculus, and we 
conventionally consider continuous spectra. For integrations 
over wavelength space, use the transformation (32) of Sec. 
2.12. 

surfaces, For ewery two disjoint surfaces SI and S2, 
The second pair of properties of Q is associated with 

and 
If A(S) = 0, then. @(S,D,t,F) = 0 (61 

These properties hold for arbitrary D,t and F. The first of 
these is the S-addifivity property of #* The second is the 
S-continuity property of @. 

The S-additivity property is understood as follows. 
Suppose the radiant flux meter has a variable collecting sur- 
face S, so that at one time it can be of extent S I  and at 
another time (very soon after) it can be of exient S2, such 
that Si and S2 are disjoint. Then (5) states that the sum of 
the two separate readings associated with SI and sz equals 
the reading associated with the union SI U S 2  of these surfaces. 
This experimental fact is generally valid, provided of course, 
that U, t, and F are fixed as closely ips practicable through- 
out all three measurements. Statement (5) is the ideal indi- 
cated by accumulated empirical findings. Statement (6) is 
also intuitively clear: positive amounts of flux can only be 
recorded over surfaces of positive area. This relatively in- 
n~cuous pair of properties of 8 csmp+ises the logical root of 
the concepts of irradiance and radiant emittance, to be 



“These properties hold for arbitrary S,t,F. The first of these 
is the D-addCtivity prrrpsPty of Q, the second is the D-copit&%= 
ui$y p z w p e ~ e g  0%” 0. These properties along vith the ~~~~~~~~ 

four will lead to the rigar~us basis for the discussiens k;lE 
radiance, irradiance and related ~adioep.~tric concepts. 

the: most ~ ~ ~ ~ ~ ~ ~ t i ~ g  of all the additivity properties, for it 
shows mast cksirly that ow the Bevel of reality within whish 

aaomena of light are not discernable: the light fields are 
coniprlsed sf incoherent electromagnetic fields. ExmpPes are 
~~~n~~~~ can the microscopic level of light ~ ~ e ~ ~ ~ ~ r n ~  which 
illustrate the negation af [7), namely that for some S, O. and 
F, there exist disjoint sets hpx and DO such that: 

The maning of the 5-additivity proparty is ~ ~ r ~ ~ a ~ ~  

radiometry csaventianaaly takes place, the! interference phe- 

Therefore, the left side can be either ar e the right side, 
Furkherm~re, the negation of (8) holds on the microscopic 
level, too. That is, for some S,D,t,F, we have: 

The first of these inequalities may be illustrated by 
means of any diffraction arrangement; the second arises every 
time Aaxwelliara electromagnetic theory is applied to a plane 
electromagnetic wave. In sush a case I? consists of a single 
direction--the direction of propagation--and O(S,D,t,F) is 
computed by means of the Poynting vector Ccf. See. 2.2). It 
is principally through the properties (5) -(8) that one may 
discern the differences betwean the electromagnetic and phe- 
nomenological views of light, as far as logical foam is con- 
cerned. Tnat is, if we assume (5)-(8], then with a few addi- 
tional physical-process and logical reqUiTem%tS which aim 
eomacn. to both the electromagnetic and ~ ~ ~ ~ ~ m e ~ ~ l ~ ~ i ~ ~ ~  views 

theory are logically deducible, This may be seen, for ex 
by studying the results of Reg. [25PI. Thas the e ~ ~ c t Y o ~ ~ $ ~  
netic and the phenomsnolcgical views of Eight necessarily 
part ways in (5]-(8). In a sinilar manner the gheiiomenol~gi- 
ca% and quantum Q ~ Q S S  of light differ at the same two psints 
as above and p ~ s s i b l y  also at property (2). For, in the quam 

of light, the fundamental equations of radiative transfer 

tltlP. theory, as eleCtrQm2ignetiC theOl?y, Yadia52s flux Of 8 

Y 
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single frequency as carried by a single photon (or a pure 
monochromatic wave of light) exists in principle. Therefore, 
it is possible that @(S,D,t,{v))>O for some set P consisting 
of a single frequency v, and that l(F) = 0 at the same time. 
This follows from use of the usual measure of length on the 
frequency domain. If one redefines length on the litequenacy 
domain by adopting a Stieltjes measures e.g., so that isolated 
single frequencies are given nonzero (usually unit) length 
(insteadof the zero length we conventionally slssigned then by 
the usual continuum measure) then (2) would hold on the elec- 
tromagnetic and quantum levels too, and (5)-(8) remain as the 
source of the fundamental distinctiorns between the microscopic 
and the macroscapic views of light. 

2.4 Irradiance and Radiant Emittance 

We now turn to the task of defining the radiometric 
concepts used in radiative transfer in general and hydrologic 
optics in particular. The first two of these are the concepts 
of irradiance and radiamt emittmce. These concepts describe 
the flow of radiant energy per unit area acro§S a surface. 
That is, they describe the area-density of radiant flux. Ir- 
radiance describes the flow onto a unit area; radiant emit- 
tance describes the flew from a unit area. From a strictly 
geometric point of view, this is the only distinction between 
the two concepts. However, radiant emittance occasionally 
has an additional ppiysical connotation associated with it, 
namely that of a flow of radiant flux from a unit area of sur- 
face which encloses an emitting source sf radiant flux, i.e., 
a region manufacturing radiant energy. However, within the 
operational definitions of these concepts, this additional 
connotation does not exist; the connotation exists only in 
the mind of the experimenter. We now turn to the detailed 
definitions of these concepts. 

Definition of Irradiance 

We begin with the concept of irradiance. Imagine a 
radiant flux meter transported to a point x in a natural hy- 
drosol, or in the atmosphere. Let the collecting surface S 
of the meter be placed so that x falls within its small ex- 
panse, and orient the set D of directions of the meter as de- 
sired. A filter is fitted an the meQer so as to pass mono- 
chromatic radiant flux of given frequency v. Hence, the me- 
ter can be made to read P(S,D) directly (with v and t and 
their units understood). Let "A[S)" denote the area of the 
collecting surface S. Then we shall write: 

and call H(S,D) the (empirical) irradiance over S within D. 
In full notation for the unpolarized context, we would write: 

"H (S D, t F] 'I for @ (S D t , F) /A(S) 12) 



From See. 2,3 this becomes: 

It ~ O P I ~ Q W S  from (3) above and a theorem of calculus that: 

and hence from (4) of Sec. 2.3 that: 
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It is easy to see that these integrals can be generalized to 
the case where D in H(x,D,t,w) may vary with x p  and we shall 
understand that (6) and (7) hold in such cases. 

In actual practiceP the size ~f the collecting surface 
S, which serves to accept, diffuse, and transmit the incident 
flux on to the photoelectric element of the meter, ranges 
from the size of P pinhead to that of a dinner plate. These 
extremes are not intended to be precise limits; rather they 
are representative of the extremes that may be encountered in 
natural radiometric environments under ordinary working con- 
ditions. The lower limit cited above begins to approach the 
size where, for very sensitive photoelectric elements, effects 
of diffraction may be noticeable. FOP example, an ordinary 
household stickpin or a h m a n  hair held in a pencil-thin shaft 
of sunlight will cast a shadow with P diffraction pattern 
clearly discernable by the unaided human eye. Hence a very 
small radiant-flux meter collecting-surface can pick up such 
irradiance variations over the shadow. The upper limit cited 
above is dictated by the fact that nZtuTal lighting variations 
become noticeable over such relatively large areal extents: 
changes of lighting with depth in ponds or oceans, shadows 
cast by leaves or fish, edges of dense cloud shadows on the 
ground or a sea surface, etc. Hence by staying within these 
limits and choosing the size of S accordingly, good empirical 
estimates of irradiance can usually be made using the defini- 
tion (1). 

The Meaning of 'Irradiance' 

It is occasionally helpful in both theoretical and ex- 
perimental considerations to keep in miEd the various mean- 
ings of 'radiant flux' discussed in See. 2.2. These may be 
applied directly to the concept of irradiance. Thus H(S,D) 
may be imagined BS proportional to the number of lines of 
flux incident par unit area over S and whose directions at 
their points of intersection with S lie within the set D. 
Further, using the Psynting vector interpretation of radiant 
flux, we see that the dimensions of the vector are precisely 
those of irradiance. Finally, H(S,D) may be viewed as a meas- 
ure of the number of photons per unit area per unit time on S, 
funneling down onto S along the directions of D. In particu- 
lar, using (2) above and (2) of Sec. 2.2 for a monochromatic 
set of n photons over a sinal1 collecting area, and incident 
within a small set D of directions normally on S, we have: 

A further insight into the concept Qf irradiance is 
obtained by considering some of the typical magnitudes of ir- 
radiawse encountered in natural environments. Table I lists 
some of these values. They are order-of-magnitude estimates 
and are not to be used beyond establishing an intuitive feel- 
ing for the meaning of irradiance (see also Sec. 1.2). 



TABLE 11 

As snabher base for comparison and also to extend our 
intuitive Seeling for irradiance and its connection with the 
photon picture of Bight, 1st us calculate the number of phs- 
eons per unit volume, of wavelength A s  required to produce 
H wattpw' at s point of some surface. To fix ideas, suppose 
B thin pencil of photons arrives at each point x of a surface 
S in the direstion of its inward normal 5, and that each pen- 
sill is of the same density comprised of photons of a single 
frequency v. It follows that the photon density n(x,E,t,u) 
has the form 

'According to pioon, Ref. [ I ~ S I ,  at sea 1eve1, far sun zenith, 
clear dry air, the irradiance is nearly 1200 watt/m2. See 
also E2961 for a survey of soliar irradiation measureatants. 
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5 hvv no(x,t) dA(x) - hvvn,A(S) i 
S 

as the radiant flux crossing S normally at time t. Hence 
hvvn, is the irradiance produced by each pencil. Setting 

hvvn, 3 13 watt/m2 
we have : 

W photons no = - 
hvw IR3 

or 

or 
H X  photons 
hv sec x m 2  

nov = - 

For example, settin H = 1 wattfm', A = 550 my, and recalling 
that 21 = 6.6 x 
we have 

Joule sec/photon and v = 3 x 10' m/sec, 

nov = number of photons QE wavelength 550 mp 
per sec. normally incident per square 
meter which produce one watt 

From Table 1 we see that the normal irradiance 02 a 
first magnitude star is ow the order of IO-' watt/m2. If we 
assume this flux to be comprised of photons all of wavelength 
X = 550 m u B  then the number of associated photons producing 
this irradiance is 2.8 x PO" x lo-' = 2.8 x lQ9 photons per 
second normally incident per square meter = 2.8 x lo* photons 
per second normally incident Fer square centimeter. Now a 
human eye's pupil is on the order of a tenth of a square cen- 
timeter in area. Hence when our eyes are directed toward a. 
first magnitude star such as the present one, about 2.8 x loc 
photows per second enter each eye to produce the visual sensa- 
tion of brightness in the brain. 



T e ~ ~ e s k ~ i a l  Caordinate Systems 

Irradiance measurements and other radiometric IeaSuK6P 
ments of hydrologic and netearologic optics during careful ex- 
peiimewtaB investigations are usually nmde with respect to 
either m e  of two te~restrlatZy-ba8~d JDI~oime of refarsnm. 
Each reference frame uses the usual euclidean ~~~~e~~~~~~~~~~~ 
at aoardinaate system with its familiar xyz-axes. The two ter- 
~ ~ s ~ r ~ ~ ~ l y - ~ ~ ~ ~ ~  reference frames are pri aril'$" ~~~~~~~~~~~~~d 
by the way they anchor the directions of the x and 1: axes in 
each case. See Fig. 2.3. The sun-baaad f ~ a m  directs the 
plane determined by the x-axis and z-axis [%he xx pZane] soas 
to contain the center of the sun. (The north-bused frame di- 
rects tine xz plane so as to lie in the plane of the local me- 
ridian circle ora the earth.) In each frame the z-axis is 
pasmUel to the Bacal vtsrtiical direction, (i-e., the local 
~ r ~ ~ i @ ~ t  of the gravitational field), In meteorologic optics 
z is ~~~s~~~~ 8s increasing in the upward directiora, f.e., the 
unlit vector k along the z-axis" In hydrologic optics it is 
mare convemient to measure z as i~creasing in the downward 
direction -k, as shown in Fig. 2.5. In meteorologic optics, 
ll z l l  (or other symbols) deiaotes attitude, in hydrologic optic$, 
'"I@ (or other symbols] denotes depth, when specific reference 
to terrestrial coordinate frames is made. 

The concept ~f ciirection within a reference frame es- 
tablished %or a natural optical medkrua su6h as the atmosphere 
or the: sea is of central importance in hydrologic optics and 
ranks equally in importance with the notion of location. In 
view of this importance it will be well to define with care 
precisely what is meant by "direction", and to develop some 
of the more frequently occurring concepts associated with it. 

Now, to locate an object within a terrestrially-based 
reference frme, it suffiees to give the x,y and z coordinates 
in terms of meters, say. Thus, in the hydrologic optics ref- 
erence frames, the triple of numbers (1, 10, 100) locates a 
point in a natural hydrosol by going one meter along the di- 
rection i from the origin, then 10 meters along the direction 
j, and then 100 meters vertically downward. [Recall that in 
natural hydrosols, z is measured positive in the downward di- 
rection, i.e., in the direction -IC.] Now this point obviously 
lies in a well defined "direction" from the origin af the ref- 
erence frame. lae observe that this "direction" # however ~ ha5 
mthing to do with the distance of (1, 10, 100) Pram the ori- 
gin. Indeed, the points (l/2, 5, 50) and (2, 20, 2OQ) which 
are, respectively, half and twice as far from the origin as 
the original paint, all Lie in the same "direction" from the 
origin. A convenient measure of this cornan "directiontv of 
all three pcsints then wauLdl be established if we chose a 
point some standard fixed distance Zrom the origin and whish 
shares the same "direction" as they do. The abwious choice 
is the paint a unit distance from the origin. Thus. if 
bx,y,zl is a goint in a terrestrial frame of reference, then 
(x,y,z>/(x2+y +z:)'/' is a point a unit distance from the ori- 
gin. We call this latter point the d&rea.tion of (x,y,z) from 
the origin. 
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gravitation field failing 
direction is downwar(! 
gjirectiorn 1 sun 

Y 

hydrologic optics 
sun- based frame 

FIG. 2.3 Sun-based terrestrial frames of reference for 
meteorologic optics and hydrologic optics. 

i 
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In many 0% QUP discussions we §heall reo% need to spec- 
i f y  explicitly the three coordinates of a p i n t .  In such 
cas89 we will simply write: 

or 

where the ordered triplets are the three coordinates ef point 
x, Further we shall ~ ~ ~ r ~ ~ ~ ~ ~ $ ~ ~ ~ ~ l ~  write: 

*:&I9 for gxpy,z)b(x~*y'+z2) 
or 

" E I ~  for ( x ~ . x ~ ~ x ~ ) / ( x ~ ~ + x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  

Hence, throughout this work tine Better "xs' [in either 
lightface or boldface type * as emphasis requires) is generally 
to designate a i5catio1-i and the letter l'&*q is generally 60 
designate a, di.rection. The denotation a% the components of 
x and E will wary so as to permit simplicity and clarity of 
expression. We have already used the three special directiapas 
f, j8 k, which we hove agreed to be the points ~~,O~O),(O,l-,Ol~ 
and (O*Q,l), respectively. 

tians in addition to single directions. For example, certain 
sets E) were a%~etady e ~ ~ ~ ~ ~ t ~ r ~ ~  in aut discussions above. In 
particular, let us denote by "5" the oat of a21 direc%ione 
about the origin. Clearly E is a sphere of unit radius with 
origin as center. Observe that we use amupper case Greek Xi 
(the Greek counterpart to the English letter "X") to designate 
the set of all directions. There are two more sets of dires- 
$ions of very frequent occurrence in practice. First, there 
is the set of alZ upwurd directCon8, i.e., the set of all di- 
rections 4 such that E and k make an angle of less than nine- 
ty degrees. We shall designate this set by ll?+'lm Second. 
there is the eet of aZE downward directions, x.e*, the set of 
all directions E such that t; and k make an angle of greater 
Ohad: ninety degrees. We shall designate this set by a*S-rl. 
The r l + r l  and 1 1 - 1 1  are convenient mnemonics which help distin- 
guish one set from the other. The reader nay recall from vec- 
tor analysis at this point that if t; is in E+ then 6-k > 0, 
i.e., the dot (or scalar) graduct of the vectors 5 and k is a 
positive number; and that if E is in 3_, then c-k is a negs- 
tive number. This is the reason for the plus and minus signs 
in the names llE+t' and rlE-r*. Indeed, it W O U ~ ~  be well to re- 
call that ~ O T  ewery direction E ,  

We wilt1 also wish to consider collections of dipec- 

where 8 is the angle between the lines along which 5 and k 
lie. See Fig. 2.3. For convenience we reproduce below the 
definition ~f the dot product of two unit vectors and tn. 
Suppose we have written: 
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ala29blb2+ cIc2 
"€1 -52ll for 

(a12+b12+c12) 'h(a22+b22+~22) ah 

From analytic geometry it is known that: 

51-52 = cos -L9 
where &is the angle between 5 1  and g2. 

The representation of a unit vector 5 as aR ordered 
triple of numbers takes on deeper meaning when we observe the 
following geometric fact. Let ttla,b,c)tg denote the ordered 
triple representation of 6. Then compute the dat product of 
E with I, j, and k in turn. By the cosine law cited above we 
have : 

E'f = cos dl 
5.3 =.cos 2 p 2  

5"k - cos 4, 
where 9 1 ,  742, and d', are, respectively, the ang,les between 
5 and the positive x, y and z axes. Using the ordered triple 
representations of 5, i, 3, and k, and the definition of the 
dot product, we have: 

5-i = a 
6-f b 

5-k = c 
Hence the components a,b,c of the direction 5 are simply the 
cosines of the angles that 5 makes with the positive x,y and 
z axes, i.e.: 

. s  

a = cos d1 
b 0 S O S ~ ~  

c = cos 4 3  

This leads to the representation: 



SEC. 2.4 

where we h a w  written: 

There is an alte~nate node of representation of a 
unit ve~tor F. This alternate mode attains its greatest util- 
ity in actual eelculation, This is the representation sf 6 
lows. By studying %he sehematic representation erf 0 in Fig. 
2.4 it is clear that since each direstion of 5 has fixed 
knom length %~~~~~~ a unit length] it suffices to uniquely 
specify 5 by the: angle it makes uith the z-axis and the angle 
the plane determined by 5 and k makes with the xz plane. Sug- 
pose we designate the former angle by the latter by 'r$'', 
and i3gree to set e = 0 when E = k. Further, we agree eo have 

when 5 is in the xz plane and f~ have 4 increase to r/2 as 
the plane af 6 and k rotates from the xz plane to the yr plane. 
We let 0 irncrease! in like manner through the next three quad- 
rants, and finally have it measure 27r radians after  ne: COB- 
plete turn in this manner. To summarize this alternate mode 

by CWO eSp@cisklH.g! ~~~~~~~~~~~ aAgleS and 9, $OUnd 53s fol- 

0 increase $0 IT when 4 -k. Further, W@ agree to 4 0 

Y - - 

FIG. 2.4 Angle and direction definitions 
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of representation of 6, we agree to write: 

'i(e,$)ii for E 
whenever 5 is in E ,  and whenever 6 = (a,b,c), 0 - arc cos c, 
and = arc tan b/a, and where the quadrant containing 4 is 
fixed by the signs of a and b. The angle 0 is the polar (or 
ssnith) angte of f, and @ the aaimut.hat angte of 6. 

Representation of Irradiance in Terrestrial Frames 

to the task of specifying irradiance in natural optical media 
such as the atmosphere or the sea. It has become clear after 
much theoretical and experimental work in natural aerosols 
and hydrosols that the type of irradiance which is used most 
often in practice j.s the irradiance On a horizontat surface S 
at point x with a set D of directions which constitutes either 
the hsmiephere Z+ OF 9 of the unit sphere E. To specify 
such irradiances, we return to the definition in (4), and re- 
place flD'q first by "Z+l' and then by tlZ-'r (or by r r + * l  and l l - l t )  . 
Thus M(x,E+) (or H(x,+)) is the irradiance at point x induced 
by upward flowing radiant energy in the directions of E+, and 
H(x,E-) (or H(x,-1) is the irradiance at point x induced by 
downward flowing radiant energy in the directions of 8-. 

A further specialization in notation can take place 
when the medium is stratified. Now, a natural optical medium 
(or a light field) with a teriestrially-based reference frame 
(Fig. 2.3) is said to be stra$ified if and only if the optical 
properties of the medium ( or light field) as functions of co- 
ordinates x,y,z, are independent of the coordinates x and y. 
Thus for stratified light fields we may, for brevity and with- 
out loss of information, replace the general point name "x" 
in H(x,Z+) by "z~', the depth-parameter name. Thus, let us 
agree henceforth in stratified natural optical media to write: 

Let us return now to apply these geometrical results 

and 
"H(Z,+)'~ for H(x,Z,) 

"H(z,-)" for a H(x,Z-) 

We calk H(z,+) the upward irradiance and €J(z,-) the downward 
irradiance. 

H(x,D) after the types H(z,+), is that for which D is an ar- 
bitrarily oriented hemisphere. Thus let us denote by fr5(c)1t 
that part of 9 consisting of a91 unit vectors 5' such that 5' 
and 5 subtend an angle less than ninety degrees. Hence, after 
adapting definition (4) to the case where D is :(e), we have 
H(x,E(E)) as the irradiance at point x OA 8 collecting sur- 
face § with unit inward normal E, such that the irradiance is 
produced by radiant flux incident on S at x along the direc- 
tions within !!(E). See Fig. 2.5. Observe that the irradiance 
H(x,5(k)) is simply H(x,H,) considered earlier, since 
E(k) = 2,; and similarly W(x,E(-le)) = HCx,E-). Now a useful 
fact about such sets of directions as :'(E) is thae they are 

The next most frequently occurring type of irradiance 
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FIG. 2.5 Defining the hemisphere Z&E).d&termined by the 
direction E 

uniquely specibied by giving the single vector E. We take 
advantage of this observation to shorten the irradiance nata- 
tion bx agreeing henceforth in (4), for the case D - 5(F), to 
write : 

W(x, E) 'I for H (x, E (61 ) (11) 

If we restrict attention to a fixed point x, then the totality 
of all values H(x,E) as E varies over 9 is called the irradi- 
ance diatributeon at x. I f  the light field is stratified we 
further agree to write: 

'Yi( z ,e) for H (x, 5) (12) 

Thus in stratified light fields, one nay specify irradiances 
by giving a depth z and the unit inward normal E to a (hypo- 
thetical or real) collecting surface at that depth. 

If one prefers to use the mode of representation of 
E by means of polar and azimuthal angles B and + B  then it will 
bo agreed to write: 

*Whenever wavelength dependence and time dependence is to be 
shown explicitly we would use T-I(x,E(E) ,A)", or '%H(x,E(E) ,t)" 
or "H(x,E(#) ,t,A)" as the ease may be, and in contracted 5- 
notation, as desired. 
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"H(x e, @) for H(x 6) 

VOL. I1 

or 
"H( z e $) " for H( z 5) 

when the light field is stratified. It should be re-empha- 
sized that the direction E(and hence (e,$)) refers to the unit 
inoard normal to the collecting surface S in the operational 
definition of (13) ~ n d  that tho flow of photons is onto S at 
x along the directions of :(E). This is the convention we 
shall adopt when discussing irradiance measurements by COl- 
lecting surfaces on a theoretical level; for the transport 
equations for H(z,.*.) to be introduced later (Chapter 8) are 
written down in an intuitively natural manner if this conven- 
tion is adopted. The convention may be altered if need be 
€or empirical discussions. However, it is perhaps needless 
to point out that the fewer such conventions actually adopted 
for radiometers, the smaller will be the chance of conceptual 
chaos in practice. 

a discussion of the cosine law for irradiance. We agree to 
write: 

One final definition, and then we shall be ready for 

"iT(X,E)" for H(X,S) - H(x,-S) (14) 

and call K(x,E) the net iPradian.ce at x in the direction 5. 

The Cosine Law for Irradiance 

We now consider the property of irradiance which is 
its most important and most frequently used theoretical prop- 
erty. This is the cosine law for irradiance. The law is 
based on the simple geometric fact that the apparent area of 
a small plane surface at a fixed distance along one's line of 
sight varies as the cosine 05 the angle between the line of 
sight and the normal to the surface. If now we direct a 
swarm of photons along the line of sight toward the small sur- 
face then, all other things being equal, the area will inter- 
cept P number of photons proportional to the apparent area, 
i.e., proportional to the cosine of the angle between the di- 
rection of the beam of photons and the surface's normal. 
Hence the area density, i.e., the irradiance of the photons 
on the surface will vary as the cosine of this angle. The 
formal statement of this observation is the cosine 2atl for 
irradiance. We now translate this verbal derivation of the 
cosine law into symbolic form. 

In Fig. 2.6 a small plane surface is denoted by "S". 
An amount P(S,D) of radiant flux is incident on S and arrives 
at each point of S through a very narrow fixed conical solid 
angle D such that the central direction of D is normal to S. 
Since the radiant flux is limited to a relatively narrow bun- 
dle af directions, essentially all the lines of flux are con- 
finedto a cylindrical volume C in the immediate neighborhood 
of S. Let "S'" denote a section of C generated by a plane 
whose normal makes an angle &with the axis of C and such that 

. .. 
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FIG. 2.6 Geometry og the cosine law for irradiance. 

the plane gees through some point x on S. The area A(S') of 
S' is clearly related to the area A(S) of S by the relation: 

A(S') a ACS) sec zP 

Assuming no intervening sources or sinks of radiant flux in 
the region of C between S and S' the flux P(S,D) then also 
crosses SI. Thus we can write: 

P(%,D) = P(S',D) . 
definition, the area 
is : 

demsity H(S',D) of radiant flux across 

In view of the preceding flux sonservation statement and the 
geometric relation between A(Ss] and A(S) we can write: 

.4i(SV,D) = PI§,D)/(A(S) sec d) 

By definition H(S,L)) is PCS,Dg/A(§) and we therefore arrive 
at the statement: 
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This is the empirical form of the ooa6na taw TOP trradianoe. 
A theoretical form of the law is obtained by letting S+{x) 
(and hence S1+Cxl). The result is: 

Here we have used the fast that D was sufficiently narrow so 
that in the limit H(S,D) goes bo K(x,&) 8s S gases to the set 
{XI consisting of point x. Further, W(Ss,D) goes to H(x,E') 
as S goes to {XI. OS course (16) is to be understood to ap- 
ply to a set D of directions with a malt but finite solid 
angle. The limiting case for D+{cl can be handfed naturally 
only after the concept of radiance has been introduced. Fur- 
ther we have replaced "cos 9'' by v l E * E 1 l l  in going from (15) 
to (16). After tho introduction of the concept of vector ir- 
radiance (Sec. 2.8), (16) can readily be generalized to the 
case where the set of incident directions D is arbitrary. 

Radiant Emittance 

We close this sectidn with 5p few comments on the con- 
cept of radiant emittance. As already noted in the introduc- 
tory remarks to this section, the concept of radiant emittance 
is nearly identical to that of irradiance, differing from the 
latter geometrically only by the sense sf flaw of the radiant 
energy across a surface S. Fig. 2.7 schematically depicts 
the geometrical distinction between Irradiance and radiant 

emittance v 

PIG. 2.7 Conceptual distinction between irradiance and 
radiant emittance. P 



"U(S ,n) 1' for P+ (S ,D) /A(S) 

emittance; a given parcel ob radiant easrgy fhwiaag t~ntg, a 
SUPZPC~ S gewerates .kr~czd$ance on S: the parcel flowing 
from the surface S giarseratoce mdiarat emdtta~xco of S. "Pa em- 
phasize this distinction and to have appropriate notation 
available when needed, we need only write "@-(§,D)" to denote 
radiant flux oat0 s ami to write '%*(S,D)" fop radiant flux 
from S. Then we axtend this notation to radiaarat flux by ~ c m s  
of v-(5sD)1' and ~~P+q.S,D)'*. Thus, the definitios (1) sf em- 
pirical irradiance may be written as: 

"'H qs, D) I' feat P' &S ,D) /A( S) (171 

%or maphasis of the "onto" interpretation of the flux; and we 
now go on to write: 

for contrast of the two notions. We call W(S,D) the (empiri- 
cal] radian$ emittam@ over S within D. From cornsiderstion 
of Fig. 2.7 it is clear that in the context af that figure: 

Another distinction between W(S.D) and N(S,D) for a 

Indeed, it is on this level that the concept W[S,D) 
given 5 and D lies on the physical rather than the geometric 
level. 
was originally conceived and arose in connection with the der 
ivation of the complete (or Planckian) radiator wherein radi- 
ant flux is generated within a body and then emitted through 
its boundary. This interpretation will be used in Sec. 2.12 
during the transition from radiometry to photometry. 

metric definition and geometric law considered above for ir- 
radiance now holds analogously for radiant emittance. 
shall henceforth apply the analogous notation for W(S,D) (such 
as W(x,D), W(x,€), ets.) without further explicit definitions. 
Thus for example we write: 

We conclude by observing that every auxiliary geo- 

We 

and SO on. 
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2.5 Radiance 

discuss some of its various forms, and study some of its basic 
geometrical and physical properties of particular use in hy- 
drologic optics. 

for the first time, we may introduce it by saying that radi- 
ance is designed to yield a simple mathematical representation 
of the percept of brightness experienced by the human eye as 
the eye is directed alang various paths of sight. Some intro- 
spection will show that when one directs visual attention to 
a point in his environment, such as a point dn a desk or a 
wall, the brightness sensations of neighboring points of the 
point under scrutiny can be willfully suppressed. The result 
is a possible conscious cssmparison of "brightness" of succes- 
sive neighboring points in one's environment. Now when one 
attempts to simulate this sensation of brightness by means of 
a radiant flux meter, one must introduce a mechanical means 
of directing the 'attention' of the collecting surface along 
a narrow bundle of directions. The collecting surface by it- 
self is obviously incapable of the complex and partly auto- 
matic process that takes place in the eye-brain circuits with- 
in a human head when visual attention is directed along a nar- 
row bundle of directions. Some sort of "blinder", usually in 
the form of a long narrow circular cylinder, must be fitted 
around a circular collecting surface so that its axis is nor- 
mal to the plane bf the collecting surface. The result is a 
radiant flux meter with a relatively narrow conical set II of 
directions along which radiant flux may be incident on a 
plane circular collecting surface S. Such an assembly is de- 
picted in Fig. 2.8, and is called a Padiancs meter. 

The operational definition of the radiometric concept 
of radiance can be given in teams of a radiance meter as fol- 
lows. The radiance meter is taken to a point x in a natural 
optical medium such as the atmosphere or a natural hydrosol. 
The center of the collecting surface is placed so as to be at 
point x. The axis of the cylindrical collecting tube of the 
meter is directed along a direction 5 so that radiant flux 
from the field of view is funneled along the set D in the 
general direction of 5. The sensor component of the radiance 
meter records an incident radiant flux P(S,D) an the collect- 
ing surface. The area A(§) of S and the solid angle Q(D) of 
D are known instrumental constants. The quotient: 

We now define the radiometric concept of radiance, 

For those who are studying the concept of radiance 

P(S ,D) /A(S) n(D1 

is called the (empirical) radiance at x along 5. Radiance, 
therefore, is a nonnegative number which is paired with the 
dimensions of power per area pop solid m g Z e  (per unit fre- 
quency interval), and with convenient units sush as watt8 per 
square meter per 8eePUdi.m (per unit frequency interval). We 
will write: 

c 

"M (S, D) I' for P (S ,D] /A(S) Q (D) (1) 
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A- 
FIG. %.% Schewatic details of a radiance meter 

or in inore complete notation: 

le,( S , D, t , u)If for P (S , D, 0 I u) /A( S) O(D) . 
Since A(5) and G(D) are fixed numbers for a given radiance 
meter, the radiant flux reading can be calibrated directly in 
terms of N(S,D). Experimentation with variously proportioned 
radiance meters indicates that those meters with solid angle 
magnitudes QID) on the order of 1/30 steradians, and with col- 
lecting areas A(§) on the order of that for a circular sur- 
face of a centimeter in diameter, are adequate for radiometry 
in most natural optical media. Of course, the smaller A(S) 
and S(D), the sharper are the radiance maps obtainable (while 
still remaining above the level where diffraction and general 
interference effects set in). 

in (I) of Sec. 2.4. It follows from (I) above that: 
Recall the definition of empirical irradiance H(S,D) 

1 N(S,D) - H(S,D)/OCD) . I (2) 

Corresponding to (4) of Ses. 2.4 we shall write: 

l'N(~,D)" for H(x,D)/Q(D) c 3) 
and 
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where the central direction of D is normal to the plane of S 
at x. We are them led to write: 

"N(x,E)" for lim N(x,D) . 
D+45l 

(4) 

We will occasionaliy use the more complete notations 
"N(S,D, t, F)", "N(x, 5 ,t F]", "N(x,S, t Bv)", etc., for radiance 
when tame and frequency parameters are explicitly required. 
The time symbol "t" and the frequency symbol llvqt nay be in- 
cluded or omitted as needed. In the case of the first of 
those listed above we agree to write: 

"N(S , D, t F] 'I for @ (S ,D, t , F) /A(S) n( D) . 
The quantity N(x,S) is the [theoretical) radiance at x in the 
direction 5. It exists as a mathematical entity by virtue of 
the D-additivity and D-continuity properties of 9 cited in 
(7) and (8) of Sec. 2.3. 

theoretical radiance layer by layer until the primitive con- 
cept of radiant flux @ is recovered. Thus, beginning with 
(4) and using (3): 

It is instructive to disassemble the definition of 

N(x,E) = lim H(x,D)/O(D) 
D-*(51 

Then by means of ,(4) and (1) of Sec. 2.4: 

M(x,E) = lim lim P (S, B) /A( S) fi( D) 

Finally, by means of (3) of Sec. 2.3 we 
tion) : 

~ ( x , ~ , t , v )  = Pim pi. (lim 

= lim p i m  (lie 

S+Ixl D+CEl F+Qvl 

S+{Xl D+Isl F+QVl 

nota- 

* (5) 

This is the basis for the fact that, in the last analysis, att 
radiometric concepta are reducible to the primitive physicat 
concept of radian* ftux embodied by @ and the appropriate geo- 
metrical and analyticaZ notions of limit ami measure. Hence 
all equations of pure and applied radiative transfer are re- 
solvable into expressions containing only one primitive phys- 
ical notion, namely $(S,D,t,F), and auxiliary geometrical and 
analytical concepts. 

* 
[Those who desire radiant energy as the most primitive phys- 

ical notion, may then start with U(S,D,T,F) where T is a fi- 
nite time interval., so that ~(S,D,t,P)=9imT+ItlU(S,D,TyF)/l(~. 
In Vol. I, U was taken as a primitive concept; in this and 
subsequent volumes, U will be derived from # as in (17) of 
Sec. 2.7, e.g.1 

F 
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Now that the definition of radiance has been estab- 
lished tt is on easy matter to return to the definition sf 
the phase density n(x,4,t,w) sf photons in (11 of Sec. 2.2 
and by energy and dimensional arguments conclude that 

c 58) 

which together with (SI connects N(xrSrtrh)) with sowe of the 
PPT& hasic ~~~~~r~~~~ of rladiesnne4Fy (@8 alad ~~~t~~~~~ State- 
aent [Sa) can be cast into terms sf w ~ v ~ ~ ~ ~ ~ ~ ~  X by using the 
transformation (32) of' Sec. 2.12. 

To gain some insight into the magnitudes of radiances 
found in nature, we append Tables 1.2, which are constructed 
frow the graphs in parts PIE, PV of [26] and which form paat 
sf a four-part series of compilations of sky (field) radiance 
distributions. The skier in the present tabulation were 
ing (OSOS hours] skies at 5ea level, covered 40% with seat- 
tered clouds. Two regions of the spectrum are considered: 
Table 1 gives orders of magnitude of field radiance in the 
wavelength interval 1400, 5001 mu, and Table 2 is for the in- 
terval [580,300] mu. The main purpose of: the tables is to 
complete the statement: P'da)r3ight skies [away from the sun) 
have radiances on the order of 1Qn watts/ (m2 x steradian), 
where n 3: ?Ir It is clear that the answer is around n m  -f,Q,1. 
By way of contrast, recall that the radiance over the SUA'S 
disk is on the order of 2 x 10' wattsl(n'x steradian) as SBBR 
just outside the atmosphere, and for a wavelength interval 
lo,-] my (cf., (sa] of See. 1.21. Hence N in the vicinity of 
the SUA runs from 10' to 10' units of radiance. The data 
were taken June 21, 1958 in balloon flights over central Min- 
nesota. For angle conventions, see part (a) of Fig. 2.3. 

Table 1 
Sample Radiances, Morning Skies 

400-500 my, Sea level, sun zenith angle 7Q* 
watts/(m'Xsteradkan) 

- 
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Table 2 

Sample Kadiancesi Morning Skies 
580-700 mu, Sea level, Sun zenith angle - 70' 

watts/(m2 x Steradian) 

sun's azimuth 
Polar 0 

Radiance Distributions 

We have seen how the operational definition of radi- 
ance leads to the theoretical radiance displayed in (4). 
This in turn leads to the construction of a function N which 
assigns to each point x in an optical medium and direction 6 
at that point, a radiance N(x,S) of the natural light field. 
N(x,C) is the number of watts of radiant flux incident per 
unit solid angle, in the direction 5 normal to a unit area at 
x. Implicit in the notation is the time t of the measurement 
and the frequency v of the energy passed by the filter of the 
meter. The totality of a12 values N(x,t;) paired to (x,o as 
x ranges over all points of a selected optical medium X and 
as 5 ranges over the unit sphere E is called the radiance 
function on X x  5 and is denoted by "N". If attention is re- 
stricted to an arbitrary fixed point x and the totality of 
values N(x,S) are considered for all 5 in 5, then that total- 
ity of values is called the radiance distribution at x and is 
denoted by "N(x,*)". 

The radiance function is the most important radiomet- 
ric function in geophysical optics and in particular, in hy- 
drologic optics. For an exhaustive empirical study of radi- 
ance distributions in a natural hydrosol, see the classic 
work of Tyler [298]. The importance of the radiance function 
rests in the fact that from knowledge of the radiance func- 
tion alone, all other radiometric quantities are relatively 
easily calculable. This fact will become increasingly appar- 
ent as the discussion of this work proceeds, and we begin be- 
low with a first example of this fact. (See also Figs. 1.23- 
1.25) 
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Irradiance from Radiance 

As an illustration of the use of the concept of radi- 
ance, and to aid the reader to fix in mimd its definition, we 
shall derive the relation between irradiances of the form 
H(x,6;) introduced in See. 2.4 and radiances N(x,Ej just de- 
fined above. More detailed examples are reserved for Sec. 
z.11. 

We begin with the empirical connection between H(S,Dj 
and N(S,D) ~ ~ ~ ~ ~ ~ i ~ ~ e ~  as B matter of course in equation (29, 
If NCS,D) FB  known, we C ~ A  compute H(S,D) using: 

H(S,D) = N(S,D)SrQD] . 
It should be recalled that D is a narrow comical set of direc- 
tions associated with the radiance meter, and that the central 
direction of the cone is noma1 to the surface S. 

problem, which is formulated with the afd of Fig. 2.9. A 
surface S with inward normal is irradiated by n distinct 
SOUPCBS of flux such that the i-th flux has radiance N(Si,Di] 
and is incident on the points of S through a smakl conical 
set Ili of directions centered on direction Ei. The sets Di 
are pairwise disjoint [iSe.* two overlap) and all lis an 
%he same side of S. What is the resultant irradiance H(S,D) 
produced by this given set of incident irradiances? 

We now apply this general relation ta the following 

FIG. 2.9 Setting up the connection on going from radi- 
ance to irradiance 
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The first step in relating H(S,D) to the n radiances 
is to observe that by successive applications of the D-addi- 
tivity property of radiant flux (equation (7) of Sec. 2.3) we 
can write: 

H(S,D) f H(S,Dl) + HQS,Dz) +...+ H(S,Dn) , 

where "H(S,Di)" denotes the irraldiance on S produced by radi- 
ant flux incident within the set of directions Di. The sec- 
ond step consists in using the cosine law for irradiance 
(equation (15) of Sec. 2.4) to relate H(Si?Di) and H(S,Di), 
for i l,...., n. Thus: 

where 'I 4'-*# denotes the angle between the unit inward normal 
5 to S ana si. 
ditions of the derivation of the cosine law (IS) or (16) of 
Sec. 2.4, are satisfied. Furthermore, we use (4) above to 
permit slight adjustments of the choice of the Si as may be 
requited to meet the cosine law derivation conditions without 
noticeably changing the value of the radiance of the flux on 
Si through Di. Thus, by definition, for every i = l,...,n: 

We have chosen S small enough so that the con- 

and this constitutes the third and final step. By assembling 
the results of these three steps we have the desired connec- 
tion: 

N(Si,Di) cos di Q(Di) (61 
i=l 

When n = 1, we have the intuitively useful special case of 
(6) : 

M(S,D) = N(S',D)Q(D) cos +' , 

where we have written "S'" for S I ,  and now D = D1 in Fig.2.9. 

situations where knowledge of radiance distributions is ap- 
plied to find irradiances on arbitrarily oriented surfaces. 
By using terrestrially based coordinate systems (Sec. 2.4) 
equation (6) can be translated into a workable standard com- 
putation procedure. This task is facilitated by first estab- 
lishing the theoretical counterpart to (6). Thus, let S+{x), 
SO that also Si+fx). Then H(S,D)+H(x,D) and N(Si,Di)+N(X,Di), 
according to (3). Equation (6) then becomes:. 

The connection (6) is a useful relation in practical 
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We now apply (7) to the case where 5 is divided up into w dig- 
joint piaccs Ei, and we then let the ~~~~r w increase indef- 
initely so that each 5i goes to zero. 
at the integral ~Q~~~~~~~~ to (9) : 

In this way we a;rixs 

(81 

R ~ X X ~ P  ohat the ~ p b o i  V Q ~ C F ) ~ ~  denotes that hentisphere 
consisting of directiows 5' which make an angle less than 
ninety degrees with. 6. 
to the collecting surface s at x* 
the discussion of 2.4, equals %he cosine af the angle ~''be- 
tween F and 5'. 
Befare this san be done with c~mplets clarity, we must express 
dQ(5'1 in terms of polar and azimuth a n g h ~ .  
do, taking the opportunity to explicate re the same time the 
notiern ob "'saaYid 

P 

Further, E is the unit inward normal 
RecZD1P also that c * e g ,  by 

Thus (8) may be rewritten in terms of 4. 

This we shall 

Toward this end, Bet us consider a set D 0% directions 
(BA the unit sphere 9. 
curring in practice, i.e., one which consists of a single 

Fig. 2-10 depicts a typical set D oc- 

FPG. 2.10 The unit sphere of directions as the natural 
setting for solid angle measurements. 
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C 

connected part of 9. It is quite natural to characterize the 
"amount of opening" of the set k) by specifying the amount of 
area that D occupies on the unit sphere. Thus, we denote by 
*'Q(D)I' the number representative of the area of D on E. This 
is the standard definition of the measure of a set of direc- 
tions D, the one whish we have been using informally up to 
this point. (For a further discussion of solid angle measure, 
see Note (h) to Table 3, Sec. 2.12.) 

We can now go one step further and characterize Q(D) 
in terms of the polar and azirnuhhal angles and Q, (measured 
in rkdians). Clearly a small rdctawgular patch on 5 about 
the point specified by (e,@) and of lateral extents da and db 
is very nearly of area ds db. But since the sphere E has 
unit radius, db = d8 and da = sin 0 dQI. Hence: 

dQ(5) - sin 8 dB dt$ (9) 

where (e,$) is associated with the direction E (see Sec. 2.4). 
From (9) we obtain: ' I 

I I 
It should be clear that the sadius of E plays no es- 

sential role in dstermining Q(D). In general, if we write 
''Q(D)'' for A(D)/s2, where A(D) is the. area determined by the 
set D on a sphere of radius I, then equation (10) results 
once again for Q(D). We leave the ranges of integration in 
(10) undetailed, as ehe mode of specification of D varies 
widely. The number Q(D) is customarily dimensionless. How- 
ever, when dimensions of QCD) are needed, the system in Table 
3 of Sec. 2.12 may be adopted. The standard unit of a solid 
angle is the steraci5an. It is important for a thorough under- 
standing of solid angle, to make the distinction between the 
set D of directions and its measure Q(D): D is a set of 
points on E, Q(D) is a number describing the size of that 
set. 

ical cap D on : consisting of all directions 5 with polar 
angles less than ot equal to 8. See Fig. 2,11. Then: 

As an example of the use of [lo), consider the spher- 

e 2n 

e1=0 9'10 
Q(D) = J I sin 8' de' d@* 

= Zn(1-cos 8) . (General 0) (11)' 

This formula is frequently used. It is also the ba- 
sis for the following well-known estimate of Q(D) for small 
,e. In (11) let B be small so that O 2  is much smaller than 
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Y 

X 

P 

FIG. 2.11 Solid angle measures of some simple shapes 

(negligible compared to) 8. 
1-(e2/2), by truncating the series expansion of cos B at its 
second term. Under this assumption, (11) becomes: 

Then we can approximate cos 8 by 

(12) Q(D) - re? (Small 0) 

From (11) we also obtain the solid angle measures for various 
special parts of 5 which can be made up from spherical caps, 
Thus : 

(133 Q(D) = 2n (8 = n/2, D is 
a hemisphere) 
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This last formula is, incidentally, a generalization 
of (la), for (11) is recovered by setting O r  - 0. Equation 
(15) can be used to obtain the solid angle measu~a, of a spher- 
ical rectangle bounded by two latitude circles and two longi- 
tude circles of the unit sphere. Thus, if 61 end $ z  &re the 
bounding meridians with @is 4z5 then the rectangle bounded by 
them takes up the fraction (lp2-41)/287 of the spherical seg- 
ment area bounded by latitude circles at 01 and e2. Hence 
from (15): 

NW = (+2-41)(~os el-cos e,) (w e2, 412;42, (16) 
D is a spherical 

rectangle) 
Equation (16) is a further geceralization of (11). The latter 
may be obtained by assuming o 2  = 41 + 2p~ and = 0. Of 
course (16) can also be obtained by direct appeal to (10). 

We now return from the preceding digression on solid 
angles and conclude our discussion of the computation of ir- 
radiance H(x,~), given a radiance distribution N(x.5). It 
remains to cast (8) into e,$ notation. Using (8), and (13) 
of Sec. 2.4 we have: 

where "E(e,4)" is simply another name we shall use for 2(5), 
when (e,4) is explicitly associated with 5. Further, d is 
the angle between 5 and e', where the latter direction is as- 
sociated with (@',+'). Now, cos 4 can be represented by 
means of (8.9) and (e',@') as follows. Recall first of all 
from Sec. 2.4 that if # is a unit vector, then: 

5 = i cos d1 + j cos 4 2  + k cos dzp, , 

where 4 1 ,  zP2, and 
vectors i, j, and le, respectively. Once again, now for 5': 

are the angles between 5 and the unit 

5' = i cos 4 1 '  + j cos 4' + k cos S,' 
Then by the observations in Sec. 2.4: 

COS ZBa 5*5'= COS  COS @'I '+ COS f l 2 ~ 0 S  '+ COS S~COS Js' (18) 

By means of Fig. 2.4, or Fig. 2.10, we see that: 

(19) i cos d l  = sin e cos 4 
cos d 2  = sin e sin $ 
COS = COS e 
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There are three precfrely similar equatfons %CY the ' as- 
sociated with 
fined analytical fsrrrrula involving only arid a',@', in an 
integration aver ?i(e,4). This completes the detailed unfold- 
ing of equation (8). 
practice to conplate H(x,B,b), given N[x,-) at point x. We 
will return to illiiests-ate equatioh (IS), and other formulas, 
in Sec. 2.11, Far the present we continue with the develsp- 
ment of further properties of the caneept of radiance. 

In this way (17j is sast into a welf-de- 

The result ts a formula often used in 

Radiance from Irradiance 

tween the concepts e% radiance and irradiance we now reverse 
the considerations ef the preceding discaassion ;and show that 
from a given irradiance distribution at a point x in an opti- 
cal m ~ d l m ,  one can compute the radiance distribution ;at that 
point. As a consequence of this fact and the results of the 
preceding discussion, we see that radiance and irradiance dis- 
tributions share equal informational coatent, In addition to 
this theoretical consequence, there is aisa one af experimmen- 
talimpart: it is passibbe, at least in principle, to measure 
irradiance distributions in natural hydrosols and aerosols 
and from this data deduce complete information abeut radiance 
distributions. In other words, one cam in principle complete- 
ly document the kight fields ia natural optical media solely 
by means of irradiance distributions. 

We begin the illustration with the simplest possible 
case: we are given that the irradiance distribution H(x,-] 
at point x is generated by a radiance distribution N(x,-) 
which is of uniform radiance N over a small conical set I)' of 
directions of solid angle magnitude Q(D') with central direc- 
tion 5' and with N(x,ED) zero for all other directions. It 
is required t8 find N. Now from (8) we have very closely: 

As a further illustration of the interconnections be- 

HCx,E) - NE*S'n(D'j 1 

N = M(x,S)/E*E'Q(D'l , 
whence : 

where 2 is some specifically chosen vector such that S-E8>>o. 
Suppose next that 6he given irradiance distribution 

is generated by a radiance distribution which is of uniform 
magnitude N I  over a narrow set DI' a% directions with central 
direction 51' and of uniform magnitude N Z  over a narrow set 

of directions with senera1 direction 62' and such that 
h)! and DO' are disjoint and Nix,(') is zero for all other 
darections. From (8) we have now: 

W[X,%) = N15.51 'n(Dl"X(SrE1') + NzS*S2'a(a,')XIS,S2') 
420) 

where x is a function with the property that x(~.E') = 1 OP 0 
according as E' is or is not in :(E), respectively, and where 
5 is any direction in 9. 
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Now we may choose 5 at will Erom a large collection 
of possibilities, and use the given values H(x,E) to try to 
determine the two radiances N1 and Na. Clearly we must gen- 
erally choose two directions 41 and 52 ita order to determine 
Nl and Nz. This is readily seen if we write: 

%or each i = 1,2, and j = l,2, and furthennore, if we write: 

"'HiSv for H(x Si) 

for each i * 1,2. Then equation (20) yields, for 5 ~ 5 1  and 
5152 the two equations: 

HI * NiCix + NzCzi 

Hz N1C;a + MZCZZ 

If we write: 

"C" for 1:;; ? 

then the preceding set of equations can be writteh: 

or, more succinctly, as: 

We have written: 
IIHII 

IINII 
and 

The solution of Equation 

N1 = 
.Ha c2 C2z 'I *-' 

k, 

where we have written: 
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The pattern is now clear as to the means of obtainin 
a radia'nce distribution fro% the generated irradiance distri- 
bution. For, generalizing the two simppe cases just consid- 
ered, we now suppose that a given irradiance distribution at 
pain% x is generated by a radiance distribution at x is 
unifcam and of magnitude Ni over each of n narrow sets Di af 
directions such that Bi' and Dj' are disjoint. and with central 
direction 5'' for each BiSr i= l* ..., n. Hence the set gDl's 
b)~' *.. ,Dnli 0% subsets of 5 is ~ I I  arbitrary partition of 9 
into narrow bundles af directions. From (8) we have: 

' 

H(x,S) a f- NiEoZiln[Di')~(F,Fi.) (26) 
ill 

where 4 is any direction and x(E,Ei') has the same meaning as 
before for the case n = 2. 
"Cji" and Hi exactly as before, but now with i and j ranging 
over the general finite set .[1,2, ..., 191 ob integers. With 
this notational convention (26) becomes: 

We now choose n airections i* 1.2, ..., n and write: 

Hj * f NiCi I Z V  
i=l 

Writing: 

"HI1 for (MI, ...r Hn) 
"N" for INl,..., Mn) 
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we can then cast (27) into matrix form: 

jH;;NCI 
The solution of (28) is given by: 

VOL. I 1  

where C-', the inverse matrix of C, generally exists upon 
suitable choice of the si. 

counterpart to C - *  is given in Example 15 of Sec. 2.11. 
There the full equivalence of li(x,*) and N(x,*) is established. 
The rigorous proof of the equivalence requires relatively ad- 
vanced concepts and for that reason is deferred to Sec. 2.11. 
However, the present discussion has been designed so that the 
practical details involved in the determination of N by H re- 
quire no tools beyond those of the elementary theory of al- 
gebraic equations. 

(29), we can view in a new light the observation that "radi- 
ance is the most basic of radiometric concepts". The radiance 
concept is nost basic in the sense that from it all other ra- 
diometric quantities can be most conveniently derived; it is 
not "most basic" in the sense that there is only a one-way 
computational path from it to every other radiometric quan- 
tity. This brings up the interesting question of: just which 
of the radiometric quantities discussed so far have informa- 
tional content equivalent to radiance? and: just what, in 
the last analysis, characterizes a radiometric concept which 
has equivalent informational content to radiance? These ques- 
tions will be briefly considered in Example 15 of Sec. 2.11. 

The proof of the existence of the general continuous 

As a result of the preceding discussion leading to 

Field Radiance vs Surface Radiance 

There is a distinction that can be made in practice 
between two types of radiance, a distinction which is analo- 
gous to that made in Sec. 2.4 between irradiance and radiant 
emittance. This distinction is depicted with the help of Fig. 
2.12 which shows radiant flux across an hypothetical surface 
S in the indicated direction and within a narrow conical set 
U of directions around a direction 5 normal to S. 

Now, corresponding to the conceptual distinction es- 
tablished between W(S,U) an3 li(S,D) in (17) and (18) of Sec. 
2.4, ne can write: 

and 
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FIG. 2.12 Conceptual distinction between field radiance 
N' and srarface radiance N'. 

We call M-(S,D) the (empirical) field r a d i ~ ~ ~ ~ ~ e ,  and N*(S,D) 
the (empirical) supfaus rdianoe (or epecific radiance, or 
speoifio intensitg). It is quite clear that, in the general 
context of Fig. 2.12: 

(3.21 

Despite the numerical equality, the conceptual distinction 
between field and surface radiance is useful to maintain. In- 
deed, same need for a conceptual distinction inevitably forces 
itself on the attention of careful students of applied radi- 
ative transfer theory where on the one hand emitting surfaces, 
peal or hypothetical, are characterized most naturally by sur- 
face radiance, and where measurements obviously result in 
field radiances. The term "surface" in ''surface radiance" is 
a Prestige of the days when surface radiance was associated 
with the radiant emittance ~f real surfaces enclosing sources 
OP radiant energy. The present interpretation sf "surf2ce", 
hawewer, includes the possibility of hypothetical surfaces 
anywhere in an optical medium. The term in "field 
radiance" denotes the sense of "field af view". In practise, 
whenever possible, one of these two interpretations of radi- 
ance is usually fixed and agreed upon throughout a given dis- 
cussion. Thus, we can omit the *1+1' (or '1-11) superscript from 
'?P when the type of radiance is understood. 
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2.6 An Invariance Property of Radiance 

I In this section we shall discuss a property of the 
concept of radiance which is of central importance from the 
point of view of radiative transfer phenomena. This is the 
so-called n2- law of radiance which states that the quotient 
N/n2 does not change along a path of sight through a trans- 
parent medium in which there is a generally variable index of 
refraction n. The importance of this law rests in the base 
line it establishes for comparison of the behavior of N/n2 
'along lines of sight in non-transparent media, i.e., media 
that scatter and absorb radiant energy such as the atmosphere 
and the seas, and other natural optical media, The law also 
indicates a measure of success in OUT ataempt PQ simulate the 
sensation of brightness by means of a simply defined radiomet- 
ric concept. For it is a matter of daily experience that as 
one approaches or recedes from an object along a line of sight 
thrdugh a very clear homogeneous stretch of atmosphere (so 
that n is constant), the "brightness" of the object does not 
appear to change. For example, the brightness of a small part 
'of a desk blotter does not change as we move away from it in 
a room, keeping attention constantly directed toward the patch. 
Of course, the total fZux entering the eye and originating 
from the patch falls off rapidly with distance (very nearly 
as the square of the distance, as we shall eventually show); 
however, the brightnee8 of the patch does not chaiige with the 
observer's distance. This phenomenon is reproduced in the 
special form of the n2-law where n is constant over the path 
of sight. We now $,how how the n2-law for radiance follows 
from the definition of radiance. We shall divide the discus- 
sion into two main parts. The first part considers the impor- 
tant case in which n is constant along the path of ,sight. 
The second part considers the general case of a variable in- 
dex of refraction. 

, 

The Radiance-Invariance Law 

We begin the derivation of the n2-law for the special 
case where n is constant along a line of sight through a tran) 
parent optical medium. This special case is of sufficient im- 
portance to be given a special name, the radiance-invarianae 
taw. We shall prove the radiance invariance law twice: first 
in as simple a way as possible so as to reveal the geometrical 
essence of the law; then the derivation will be repeated in 
slightly more detail, filling in steps and giving more expla- 
nations on the way. 

2.13. Two holes S and S' of arbitrary shape and about the 
size of collecting surfaces used in radiant f l u  meters are 
cut out of two large pieces of opaque cardboard. 
are then mounted so that they are parallel and separated a 
distance r which is large compared with the linear dimensions 
of the holes. 
along straight lines in the transparent space between the 
cardboards and then on through S'. The holes are arranged so 

The setting for the simple derivation is shown in Fig. 

The pieces 

Light is then directed through S which flows 



, 

PXG. 2.13 BPlustrating the invariance of the radiance 
ob P narrow bundle of light rays in 8 vocuun. 

that for the most past, the lines of flux through both open- 
ings are nearly perpendicular to the planes of the holes. 
The observation is now made that the amount P of radiant flux 
across S, associated with the common bundle of lines of flux 
through S and Ss, is the same as that across SI. 
same number of lines of flux go through both S and S'. With 
this in mind we consider the number: 

Thus the 

P 

in &us ways. 

and then as: 

First as : 

P[S,D) 
9 

P(S' ,D') 

A(S') 
rz 

I n  the first case we observe that A(S1)/rZ is essentially the 
solid angle Q(B) subtended lay S' at each point of S. In the 

Y 
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second case A(S)/r2 is the solid angle Q(D') subtended by S 
at cacli point of S'. "P(S,D)'' and "P(S'!D')'' both denote the 
common radiant flux P, but now in an obviously suggestive way 
by recalling the meanings of S, S', I), I)'. Therefore we have: 

This is the empirical form of the radiance-invariance law. 
The form of the law is "empirical" because kt is couched in 
terms of empirical radiances--radiances directly measurable 
by real radiance meters. 

A somewhat more detailed derivation of the radiance- 
invariance law will now be given. Part (b) of Fig. 2.14 de- 
picts a radiance meter G directed at a surface S at the end 

4 Nr 

No 

S G 

Nr 

FIG. 2.14 A more detailed, and operational, study of 
the radiance-invariance law 



of a clear path of sight e€ length r:. The surface S is nof- 
nanl to the line of sight sand has a uniform surface radiance 
No over its extent im t h ~ !  di;recsion of @. 
its field of view c~mpl%tt?.%y filled by S. The resultant m - 
diance reading is N,, klc! will show that, uniier these candi- 

proof is to examine the same diagram [b) from two distinct 
points of view. These points of view are schematicaP%y de- 
picted in parts &I) and (t) of Fig. 2,14. We consider part 
(a] first. Mere the radiance mter's reading Np is seen ta 
be the quotient P,/bi,i6,, wirere: Pr is the radiant P ~ U X  ~ ~ i g i n -  
acing S and ~ n ~ ~ ~ e ~ ~  O P ~  the collecting su~f;ece 0% P.0, 
and which has fMni.leled through the ssfid angle of magnitude 
no, defined as shown. On the other hand, part (c) views this 
flux $as an amepunt Po sent to area A. in G and as emitted from 
those points of Sr within G's field of view. The emitting 
surface SI conparising G's field of view is of variable magmi- 
tude ArB and the emitted flux from each point of Sr is within 
the bundle of directions crP solid angle defined as shown. 
Hence, No is the quotient PQjArsbr. The definitions of Po and 

The meter C, has 

t i ~ r ~ ~  have, for r r  No 6 Np. Tlae basic ides 0% the 

Pf h?iglY at Once in the pr.tsViOu§ p3.OOf] that: 

Po = P, . 
Further, we have the g e ~ ~ s l e ~ ~ i e  observation that: 

On the basis of these two facts, we see that, by virtue of 
the defining equations: 

we have : 

Observe how we have implicitly used the distinction between 
field and surface radiance and the connection (32) of Sec. 
2.5 in order to interpret No operationally at surface S, 
which then is N, for r = 0. 

The Operational Meaning of Surdace Radiance 

One final aatter must be resolved before the radiance- 
invariance law is fully established. This is the matter of 
assigning a meaning to the? surface radiance of a surface at a 
point x in a direction other than the normal direction to S 
at x. Observe that this problem does not 3rise with field ra- 
diance, since field radiance is defined by the C O W ~ I I ~ ~ Q I I  of 

1 
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using thc fixed collecting area of a r6diance meter, which is 
assembled so that it is perpendicular to the axis of the me- 
ter. In the cas0 of surfaces such &$ a portion of the earth's 
surface, a desk top or a wall, or a given cloud boundary, how 
shall we assign a surface radiance to radiant flux leaving 8 
point on such surfaces in directions other than the perpandi- 
cular direction to the surface at that point? The path to 
the answer is guided by the manner in which such surface-radi- 
ance information is first of all to be interpreted and second- 
ly how it is to be used. In the first case we really have 
very little choice as to the manner of interpretation of the 
radiance information, We have already committed ourselves to 
work solely with operational concepts: measurable fluxes, 
areas and solid angles. Hence, if we heard someone say: "The 
surface radiance of flux of wavelength 550 my at point ]: on 
wall A is 2 watts/(m2 x steradian) in every direction 30 from 
the normal to A at x", our first impulse, after this d8ta has 
been mentally assimilated, would be to attempt 8 verificition 
by directing a radiance meter toward x on A so that the axis 
of the meter makes an angle of 30° with the normal to A at x. 
If we were challenged to defend such a procedure, we would 
cite the argument leading to the radiance-invariance law a- 
bove. However, i€ the challenger were particularly tenacious, 
he would point out that the argument establishing the law 
holds only for directions of sight normal to A at x. At this 
juncture we must concede that he is right. 

The preceding objection to our justification for as- 
signing an operational meaning to oblique surface radiance is 
logically unassailable. However, we have one more matter to 
consider which will add strength to the justification. We 
now consider the second aspect of the question posed above, 
namely: how is the information of oblique surfate radiance 
to be used? The answer, based on considerable practical and 
theoretical experience, is that such oblique surface radiance 
information is to be used to calculate irradiances,scalar, 
vector, or of the ordinary variety, at points optically acces- 
sible to the surface which emits the surface radiance. Or 
again, the surface radiance information will be used to obtain 
path functions, and various attenuation functions used in hy- 
drologic optics or meteorologic optics and these determina- 
tions will be made at points optically accessible to the sur- 
face. The pertinent fact that emerges as these uses of the 
surface radiance information are paraded before the mind's 
eye is the following: without exception, the information 
ueed aan atwaysJ be in the form of field radiance valuea of 
the radiometric field in the direction of point x on eurfaoe 
A. In short, surface radiance per #e while of great concep- 
tual and theoretical worth, is never really used in actual 
practical calculations--only the directly observable field ra- 
diance values are used in such calculations. We are there- 
fore motivated to aseign an oporationaz value of eurfaoe ra- 
dianoe to a uurfaae A at x in the gerraral outward direotion 
5 by mean8 of ths corroeponding field radianor reading N(y,i$) 
obtainsd when tho radianoe mater is at some point y and io 
direotad at x so that the unit inward norma2 to the oottecting 
surface of the meter is E. The point y is to be anywhere a- 
long a aleup path of sight from x in the direction [ 80 that 
tho radianoe-invarianos law holds. 



sa 

For concepteaal definiteness in the preceding cmpren- 
tian, one can imagipre an hypothetical surface Sr normal to 5 

Nydx,c), (as No in the derivation of the radiance-invariance 
law). Mow while the radiance-invariance law allows us to con- 
clude that the radiance reading will remain unchanged as dis- 
tance r varies from 0 a: S, to larger values from 51, there 
still is a conceptual gap that must $a filled betweera the sur- 
face radiance of Sr axid the surface radiance of ST’, the pro- 
jection sf S, on60 the oblique suFface under consideration 
(!sn e.g., W abaws;). And this gap, we have agreed, is to be 
filled. by means of the preceding convention. Equation (21 
and every result ktcducegd from it, shall heneeforth be inter- 
preted with this convention implicitly undesstaad. 

BS in ( b ~ )  of Fig. 2.14, which is assigned the surface h a a i a a w  

The w2-Law for Radiance 

The intuitive basis for the nr-law, to which we now 
turn, becoms clear upon consideratian of Fig. 2.13. This 
figure shows a narrow bundle of lines of flux coursing through 
empty space. The two holes in the cardboard arrangement used 
above were so much inessential material scaffolding which can 
be remowed now that the idea of the derivation has been ex- 
plained. What is left after this is done is the concept of a 
narrow Boundbe of tines of flux coursing through space in such 
a way that at each section the product AQ of the normal cross 
sectional area A of the bundle and solid angle fi of the bundle 
is a fixed quantity. This invariance of AQ io a purely geo- 
metric concept. Physical eonsiderations enter subsequently 
at the point where we assert the invariance of the radiant 
flux through a variable section of the bundle of lines of 
flux. By combining these physical and geometric considera- 
tions, the desired radiance-invariance law is obtained for a 
light. beam in a vacuum. Me now inquire: how are these phys- 
ical and geometrical considerzbions to be modified in the case 
af B light beam coursing through matter such as air or water? 
The physical considerations governing the radiant flux content 
of the beam must take into account the scattering and absorp- 
tion phenomena. all along the extent of the beam. These phe- 
nomena affect the radiant flux content of the beam in complex 
and subtle ways. The full study of these effects is reserved 
for the theory of Part Two of this work. We shall limit BUT 
present inquiry to sets of adjoining transparent media. Any 
alterations of the radiant. flux content of the beam are then 
limited to the interfaces of these media. If we now repeat 
OUT query above for the case of contiguous transparent media 
which are distinguished from each other only by their variou5 
indices of refraction, then the answer to the query is given 
in the form of the nz-law for radiance. The derivation of 
this law for the simplest case will now be given. 

Figure 2.15 depicts a beam of radiant flux lines insi- 
dent on the interface H betweem two transparent optical media 
X I  and XZ. Let us agree that the central axis of the beam is 
normally incident on the interface, that it arrives from med- 
ium XI, and that the beam passes on through the interface Y 
and enters medium X2. For example, X1 may be a part of the 



FIG. 2.15 When a bundle of light rays is suddenly 
squeezed into a narrower bundle--without changing its flux 
content--the radiance of the bundle increases proportionately. 
This essentially is what happens, e.g., at the air-water sur- 
face of natural hydrosols (flux losses to one side). 

atmosphere, and X 2  a part of the hydrosphere, so that Y is 
the air-water interface. In general, X I  has some index of re- 
fraction n1 and X p  an index of refraction n2 in the immediate 
neighborhood of the interface. Our current goal is to relate 
the radiance of the beam in X I  to the radiance of the beam in 
X 2  in the immediate vicinity of Y. Before going into the de- 
tails of the derivation it is instructive to anticipate the 
result intuitively. We ask: which of the three main quanti- 
ties P, A or i2 of the definition of radiance N will change 
from one side of Y to the other? Clearly, the radiant flux 
content P will be affected to some extent by reflection of 
some of the lines of flux back into XI. The area A of the 
beam will remain essentially unchanged arbitrarily close to 
each side of Y. Finally, the solid angle magnitude R of the 
beam will change from one side to another because of refrac- 
tion of the lines of flux transmitted across the surface Y. 
For the moment we ignore the change of P, this change yield- 
ing a relatively small change in N and one which will even- 
tually vanish as the derivation proceeds to its final stages. 
Ilence the principal change in N that is wrought on the radiant 
flux is traceable to the abrupt change in the il of the beam as 
it crosses Y. For example, if X1 and X2 are respectively, air 
and water, then as a glance at Fig. 2.15 would show, i l l ,  the 
solid angle magnitude of the beam in air, is greater than i 1 2 ,  
the solid angle magnitude of the transmitted beam in water. 
Since P and A are essentially unchanged during the passage of 



That is: 

Now starting with the equal irradiances HI and H2 of the beam 
on each side of Y, we have, for the reasons discussed above: 
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Squaring each side, we obtain: 

nr20a2 - nZ2ez2 . 
Multiplying each side by 'R we obtain: 

We now use (3) with this to get: 

This is the desired form of the n2-2ao for rcrdCanae. 
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It is now an easy matte;. to gradually generalize (4) 
to the following more general settings: (a) passage through 
an arbitrary finite number of transparent contiguous media 
and going on to the limit of continuously varying n; (b) 

. oblique rather than normal incidence of the beam on Y; (c) 
~ 

inclusion of a transmittance factor to allow for scattering 
and absorption losses from P. Generalizations (a) and (b) 
result in no change in the form of (4). Generalization (c) 
results in a multiplicative factor T included on the left 
side of (4). This factor will be considered at great length 
in Sec. 3.10 in the discussions of beam transmittance. Spe- 
cific suggestions for these generalizations are given in Sec. 
12 of Ref. [251] e See also [98]. Henceforth, whenever radi- 
ances are related within media of differing indices of refrab 
tion, it w i Z l  be understood that N/n2 rather than N wiZZ be 
used, even though "N" only appeurs in the equations. 

2.7 Scalar Irradiance, Radiant Energy, and Re,lated Concepts 

The radiometric concepts studied in this section are 
those of scalar irradiance, radiant energy, and related radi- 
ometric concepts. The first of these concepts is designed to 
quantitatively describe the volume density of radiant energy 
in a way which is amenable to operational methods of deter- 
mination. In addition to the notion of scalar irradiance, we 
shall develop in this section several closely related notions 
which together with scalar irradiance comprise a set of useful 
measures of the volume density of radiant energy. The first 
of these is radiant density. 

Kadiant Density 

The notion of radiant density is one of several con- 
cepts designed to give a measure of the radiant energy per 
unit volume at a point. Consider a steady beam of radiant 
flux normally incident on surface S at point x at time t, as 
shown in Fig. 2.16. Let the field radiance of the beam at 
this instant be N, its cross sectional area be A, and its 
solid angle be R. The amount of radiant flux incident on S 
at time t is then NAR. An instant t later, the flux of the 
beam will have moved on a distance r = vt, and the flux will 
have swept out a cylindrical volume of magnitude V = Avt. 
During this time the beam has been steadily pouring an amount 
of radiant energy into the volume at the rate of NAG watts. 
Hence the radiant energy content of the beam is NARt, and its 
average content per unit volume is NARt/Avt = NR/v. 

at time t by an arbitrary finite number of narrow beams of 
radiance N,, i= l,.-., n, and corresponding solid angles Ri. 
Then the radiant energy u(x,t) per unit volume at x is given 
at time t, by means of the D-additivity of 4 (equation (7), 
Sec. 2.3): 

Suppose that point x were simultaneously irradiated 
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FIG. 2.16 Setting up the connection between radiance 
and radiant density 

The transition to the continuous case is immediate. Toward 
this end, let US continue to write "u(x,t)" for the radiant 
density, i.e., we shall also write: 

The units of u(x,t] are joutss/m'. 
field or surface interpretation sf radiance in this defini- 
tion. 

We may use either the 

Scalar Irradiance 

Let us go an to write: 
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u(x,t)v(x,t) = h(x,tl (4) 

By virtue of (3) it follows that in this equation the field 
interpretation of u(x,t) is to be understood, and that while 
the units of u(x,t) are joules/ma, those of h(x,t) are watts/m2. 
Hence, the term "irradiance" in the name "scalar irradiance" 
is appropriate. The reason for the modifier "scalar" will 
also become clear subsequently after vector irradiance has 
been defined in (2) of Sec. 2.8. A generalization of (3) is 
obtained by replacing B by a subset D of E. In that case we 
would write: 

%(x,D,t)" for N(x,E,t) dQ(5) . 
D 
I 

The radiant density associated with h(x,D,t) is u(x,D,t) and 
(4) holds for these two quantities. 

Spherical Irradiance 

We shall now show why scalar irradiance is singled 
out as an alternate (and an actually preferred) description 
of the radiant density at a point in a radiant flux field. 
Consider the light field at a point x in a natural optical 
medium at time t. Let N(x,*) be the radiance distribution at 
x. Now imagine a small spherical collecting surface S of ra- 
dius r in the field so that it5 center is at x. We then ask: 
what is the average amount of radiant fZur incident per unit 
area over S? 

To answer this question it is useful. to conceptually 
decompose the great number of radiant flux streams at x into 
a discrete set of flows. Two such flows are shown in Fig. 
2.17. The lines of flux of one of these flows along the d i -  
rection E,- have been fitted with little direction cone? of 
solid angie magnitude Qi. 
direction ti is Ni. Then the irradiance at x on a planc ' i ? " -  

mal to is NiQi. If the sphere is small, say the size O C  -2 
ping pong ball, then for most natural light fields in the air 
and sea, Ni will not vary in the region of space taken up by 
the volume of the sphere. From this we see that we can treat 
the radiance function N as a constant with respect to loca- 
tion in the vicinity of the sphere and of value Ni for the 
direction 5-. It follows that the amount of radiant flux in- 
cident on tke sphere contributed by the stream of flux in the 
direction E,i is (nji2i)nr2. This estimate is based on the 

Suppose the radiance at x in the 

, 
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FIG. 2.17 Computing the radiant flux intercepted :,y a 
spherical collector in a general light field 

assumption that the amount of flux of a narrow beam intercept- 
ed b y  a curved hemispherical surface is the same as the a m o ~ m  
intercepted by the great-circle area associated with tile hemi- 
sphere. 
parent media using the concepts of vector analysis xn< jtclies 
Theorem. For the present the reader's intuition will rcadi.iy 
allow this assumption to stand even for the case of turb-d 
media as long as r is kept very small. The "line of flu::" l r ;  
terpretation will help the intuition considerably xn this inat- 
ter. 

The assumption is rigorously defensible for t ~ a n s  -. 

The main task in answering the above queszion has :iow 
It remains only to add up all the contrihu- been dispatched. 

tions by the various beams of flux, using as justification 
Equation (71 of Sec. 2.3. The result is: 
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I1 
-7 

nrZ 1, N ~ S I ~  
l a 1  

'The average radiant flux per unit area of the sphere S is 
then obtained by dividing this quantity by 4 m 2 .  
ignate this average by writing: 

Let US des- 

''h4rr(x,t)" for 2 NiRi (51 
i=l 

and agree to call it sphericaL irradiance. We shall retain 
this terminology and notation for the continuous formulation. 
That i?, we shall write: 

Definition (6) is the basis for an operational determination 
of scalar irradiance using a spherical collecting surface S. 
For the average radiant flux per unit area on S is readily 
measurable and this amount differs multiplicatively from 
u(x,t) by a fixed numerical factor. Hence, by only slight 
changes in optical design, the same photoelectric devices 
used to determine H and N can be directed to obtain scalar 
irradiance h. Therefore it is spherical irradiance or scalar 
irradiance which is directly measurable by photoelectric de- 
vices. The concept of radiant density u(x,t) is by way of 
contrast a theoretical concept related to the empirically- 
based concept h(x, t) by means of (4). 

Hemispherical Irradiance 

One of the most useful mathematical models of light 
fields in natural waters is the exact two-flow model to be 
considered in detail in Chapter 8. A radiometric concept 
which arises in that theory, and one which also has been found 
of intrinsic interest to experimenters, is the concept of hemi- 
spherical scalar irradiance. We now discuss this concept. 

surface S with center x which is exposed to flux from only 
one hemisphere of Z. Let N(x.0) be the radiance distribution 
at x. Let us say that light is incident on the sphere in the 
direction of :(E). We ask: what is the average amount of ra- 
diant flux incident per unit area over S? Clearly every point 
of S is in principle exposed to the light field over :(E,). 
Fig. 2.18 (b) shows how an obliquely incident beam with a di- 
rection in :(E) can come close to illuminating the "north 
pole" of the little spherical surface. If we divide up 5(5) 
into pieces analogously to the manner used in deriving the ex- 
pressions above for spherical and scalar irradiance, then it 
becomes clear that the integral of N(x,*) over :(E) yields 
the appropriate scalar or spherical irradiance component. 

Figure 2.18 (a) depicts asmall spherical collecting 



SEC. 2.7 W L A T E D  RADIOMETRIC. CONCEPTS 59 

4 

I I 
FIG. 2.18 Details for a shielded spherical radiant flux 

collector 

t 
, -  
I T  

1 ,  

Thus, using field radiance let us write: 

and analogously, we write: 

t~h4,,[xr.E,t)tt for $ N(x,€',t) dn(€') (8) 
:(E) 

We call hq,(x,€,t) the homiephorioat irradianao at x, over 
the hemisphere P(t), at time t. Further, h(x,S,t] is the as- 
sociated hem,{6pherioat ecatar irPad5onoe. It is clearly a 
special case of h(x,D,t) defined after (3) above. Methods of 
measuring heaispherical irradiances will be discufsed in Chap- 
ter 13. It follows immediately from (3) and (7) that: 

An analogous connection to that displayed in (9) also holds 
between hqn(x,kE,t] and hqn(xlt). 
hqw(x,E,t) into the family of radiometric concepts is aotivabed 
exactly for the empirical reasons that motivated the intro- 
duction of its full spherical companion h4,(x,t). 

The introduction of 

.#, 

c 
i ,  
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When we are working in stratified light fields (Sec. 
2.4) then it is possible to drop without loss of generality 
the tqxft and "y" coordinate symbols from the notation and re- 
tain only the depth coordinate symbol '*z" in the notation. 
In such contexts we agree to write: 

"h( z, 5, t) I t  or "h( z, e,9, t)" for h(x ,5, t) . (10) 

In particular, if E is k or -k, which occurs in the important 
case of the two-flow theory (Sec. 8.3), then we agree further 
to write: 

tth(z¶*,t)Bt for h(z,fk,t) , (111 

where we read upper signs together and then lower signs to- 
gether to obtain two separate definitions. As usual; when 
the light field does not appreciably change in time, or when 
time is understood, we shall drop "t" from the notation. Ap- 
plications Qf these concepts are taken up in Sec. 13.9. 

Radiant Energy over Space 

The discussion of this section is now continued by 
officially noting two interpretations of the term "radiant 
energy". The first interpretation centers on the simple con- 
nection that exists between scalar irradiance and radiant en- 
ergy. Suppose X is a subset of an optical medium over which 
at time t there is defined a scalar irradiance function h €or 
a given frequency v. Let "!J(X,t)" denote the radiant energy 
content of X at time t. That is, by the definition of u(x,t), 
we agree to write: 

I '  

and from (4): 

whsre "V" is the volume measure of the optical medium. As a 
s pcial case, if v[x,t) and u(x,t) are independent of x atld t 
t R en (13) becomes: 

where, far this case, we have written: 

I'KJ(X)B* for U(X,t) 

"h" for h(x,t) 

"v" for v (x , t) 
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Radiant Energy over Time 

T h e m  is still one mlore interpretation that can be 
mode ai the tern "radiant energy". The preceding interpreta- 
tion ~f (121 is asseaceioted with the energy content QE a given 
region X at time t. 
ob the total energy iacident on or leaving 3 surface S over 
an interval T of time. For this interpretation we write,e.g.: 

T h e m  is a complementary ~ ~ t ~ ~ ~ r e ~ % ~ ~ ~ n  

i.e., U-(S,T) is the radiant energy incident on S over the 
time inferval T. The hemisphere of incident radiant flux at 
each x ES a(<), with 5 normal to S at x, in the inward sense. 
A csmplementary definition can be made for U6(X,T) using ra- 
diant emittance. 

It is worthwhile isolating the important concept, 0c- 
curring in (171, of radiant flux acmss a generat surface S 
rather than just a collecting surface of the kind encountered 
in the sections above. Thus we write: 

where is the unit inward normal to S at x. 
inition of P*(S,t) can be phrased. 
and 11..1( can be dropped whenever AO confusion results, and al- 
so the # I t t B  can be omitted for brevity. 

A similar def- 
As usual, the 5igns ''+" 

Scalar Radiant Emittance 

We conclude this section with the definition of the 
notion of scalar radiant emittance, 
face-counterpart to scalar irradiance h defined in (3). 
let us write: 

This concept is the sur- 
Thus, 



c 
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w(x,t) is the scalar radiant emittance at x at time t. This 
concept is useful in describing certain sources of radiant 
flux distributed continuously over some region of an optical 
medium. The emittance counterparts to hemispherical scalar 
irradiance emittance can now be defined fer w(x,t). These 
definitions would exactly parallel those in (5), (6), (7), 
(8), (lo), (11) , and therefore need not be given in detail at 
this time. 

2.8 .Vector Ieradiance 

The radiomnetric concept of vector irradiance, which 
will now be considered, constitutes an interesting and useful 
corn lementary concept to that of scalar irradianee. Whereas 
scalar irradiance in essence measures the volume density of 
radiant energy at a point and does so without emphasis on the 
directions of incidence of the component flows but only thdir 
magnitudes, vector irradiance in contrast gives a neasura of 
the direction of the preponderant flow of radiant energy at 
the point without emphasis on the magnitude of the various 
component flows. Besides serving to complement the geometric 
properties of scalar irradiance in this way, vector irradiance 
forms a rigorous tool in deriving the transfer equations for 
scalar irradiance, and also 8 powerful means of measuring pre- R 

cisely and directly the absorption properties of real optical 
media. The basis for the latter means (the divergence rela- 
tion for H) is considered in Chapter 8 and some of its appli- 
cations are discussed in Chapters 6 and 13. In this section 
emphasis will be on introducing and explicating the geometric 
and physical meanings of vector irradiance. 

8 

A .Mechanical Analogy 

The notion of vector irradiance can be introduced by 
means of an analogy with the vectorial treatment of forces in 
static mechanics. Figure 2.19 (a) depicts a force diagram 
familiar to beginning students in static mechanics. A parti- 
cle at point P is subject simultaneously to two steady forces 
of magnitude F1 and Fa along directions El and Sa. In order 
to esteblish equilibrium of the particle--i.e., to b8lance 
out Fl and Eta SQ that the particle is stationary, another 
force oE magnitude Fst must be applied along direction 6s'. 
The magnitude FS and direction Sr of the equivalent force that 
may replace P I  and F g  is found by means of the familiar para- 
llelogram of forces shown in Fig. 2.19 (b). The required bal- 
ancing magnitude is then -Fr'and its direction is -€<, which 
Eollows directly from Newton's Third Law. The central obser- 
vation to be made here is that, for the purpose of static 
equilibrium, two forces Ft(- FlEi) and Fa(- FzCP) can be re- 
placed by a single force Pa (-  FIE^] which serves as a rnraharr 
iaat equivalent of the set of forces consisting of PI and F2 
together. Thus, PS is, for the purposes of an.equilibrim 
Computation, equivalent to Ft+F2. 

diant flux which are flowing along directions E 1  and #2 with 
Consider ~ Q W  a point P irradiated by two beams of ra- 
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FIG. 2.19 The parallelogram law in mechanics 

radiance biL and Mz, respectively, as in Fig. 2.20 (a). Each 
radiance has a fixed saall solid angle Q. Now whereas the 
mechanical context of Fig. 2.19 (a) is meaningful in teras of 
sets 0€ directed farces and equivalent single forces, the con- 
text of Fig. 2.20 (a) is meaningful in terms of sets of direc- 
ted radiances and equivalent single radiances. In the mechan- 
ical setting, a single force could, for the purpose of an e- 
quilibrium computation, replace the two given farces by a sin- 
gle force Fa. We now ask: can we replace the two directed 
radiances Nl and ?12 by a single equivalent radiance N I T  

question can even be entertained, the sense of "equivalent" 
must be defined. Clearly, the replacing radiance can be 
"equivalent" in any one of several desirable ways. For exam- 
ple, if it is required that the replacing radiance produce 
the same scalar irradiance at P, then there are many possible 
candidates for NJ. Xf on the other hand it is required that 
the replacing radiance produce the same net irradiance on an 
arbitrary collecting surface at P, then there is generally 
one and only one radiance N 3  that can replace N1 and Nz in 
this sense. Observe that the replacing radiance Ng must be 
equivalent to X I  and Nz in this sense not just for one fixed 
position of a collecting surface at P; if that were the case, 
then 141 could be chosen from any of an infinize number of ra- 
diances. Rather, N3 is to produce the same effect fo+ at1 
possible orientations of a collecting surface at P. The anal- 
ogy here with the mechanical context is essentially exact: in 
the mechanical context P3 establishes the same net force on 

Some thought will show that before the preceding 
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FIG. 2.20 The parallelogram law in radiometry 

any particle at P as does F1 and F2; in the radiometric con- 
text 1Y3 is to establish the same net irradiance on any sur- 
face at P as does N1 and N z -  It is a simple matter now to 
prove that the parallelogram law may also be used for the ra- 
diometric context to solve the analogous problem in that set- 
ting. Thus, the requisite replacing radiance N 3  and its as- 
sociated direction E 3  of flow follow from a parallelogram con- 
struction as in Fig. 2.20 (b). In particular, if we write: 

and 

then N 1 + N 2  is the requisite vector radiance provided it has a 
solid angle R. For if 6 is the inward unit normal to a col- 
lecting surface S at P, then we have by (6) of Sec. 2.5: 

5.5iNi + E.52N2 

as the expression for the total net irradiance on S produced 
by the two beams. This sum may be written: 

E * N I R  + C;*N,R 
or, as: 

S*(Ni + N21Q 

This representation suggests that if we direct a radiance 
beam of solid angle St at P and along the direction of N 1  + N 2  
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and wrth the magn&tudhi of M I  * tJ2, then this single beam will 
produce the same nee irradiance across S zt P as the two given 
beams. The vector Hi + M z p  which we have denoted by "N3" in 
Fig. 2.20 (b), is found exactly as in any vectorial addition 
ope rat ion. 

The observations just made can be generalized to the 
case of any fk~iite set of beams irradiating a point x in a 
radiometric enwironment. T5vard this end, suppose that the 

i;l,...a Ek and that, Easr generality, they hawe generally dig- 
tinct solid m g % e s ,  Q I ~ ~ . . ~  S)ke respectively. Then by repeat- 
ed use a€ (6) ob Sec. 2.5, the net irradiance produced on a 
surface S with unit inward normal E at x is: 

V&BjOUS beams have %;sdiafiCes M I ,  ..., Nk along dike3CriOnS 

S*klN,Ql + 50'EzWanz + . a .  9 E*Sk,NkQk . 

Suppose we write: 
k 

"M(X)'t for y S,N,Q, 
Clearly H(x) is a. vec 
sions of irradiance. 

is the net irradiance 
set WI,.. ., Nk of rad 
considered above B(x) 
the  actor Zmwiiance 

" J J J  
j =1 

or and its magnitude IH[x>( has dimen- 
Furthermore H(x) has the property that: 

5.HtXl 

on the surface S at x produced by the 
ances at x. In the introductory example 
was SkNla + E z N ~ Q .  We shall call H(x) 
associated with the discrete radiance 

distribution Na, ..., Nk. 

General Definition of Vector Irradiance 

We now can go one step further in the development of 
the idea of vector irradiance. Instead of a discrete finite 
set of radiances HI,..., Nk at x, we consider a general radi- 
ance distribution N(x,*). Instead o€ the Einite summation 
m e r  the sets of directions of the radiances in (a), we use 
the continuous counterpart to the sum, namely an integral 
over all the directions 5 at x. Thus Pet us write: 

and where, in turn, the integral uses Pield radiance and is 
t~ be understood as, an ordered triple of integrals, as is cus- 
tomary in vector analysis, That is, we have written: 
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S-H(x) = IH(x) I cos d 

M U  I0m.T RY AN L1 PHOTOMETRY 

(8) 

VOL. I 1  

i_ - I - N[X,L) cosd1 dij(~.), JN(x,s) cos42 d~(t;) .\N(X,C) c o s 4  ~ Q ( E )  
i 

I 

(3) 
arid where dl, 292, and f l 3  are as defined in Sec. 2.5 (cf., 
e.g., (18) of Sec.2.5). W e  call H(x) the vector irradiance at 
x. Ihe alternate form (3) of the integral in (2) is the form 
in which H(x) is computed in actual practice. The integral 
in ( 2 )  is a compact symbol for the ordered triple of integrals 
in (3). A researcher requiring the direction and magnitude 
of H(x) at x knowing N(x,-) at 'chat point, computes the three 
components of H(x) in accordance with (3). Thus, if we write: 

"tli(x]" for N(x,E) cos 9; dQ(5) 
Je 

for i = 1.2,3, then: 
H(x) =. (131 (XI I Ijz(x) ,H3 

The magnitude of IH(x)l of H(x) is: 

and the direct 

(ti 1 (XI 

(lI1'(x) + H22(~) + tij2(x) 

I I 

where "Ili(x) 1'' denotes the magnitude of H(x), QS given by (6), 
and rrd'i denotes the angle between 5, and the direction of 
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i.a., IH(x>l ics the m ~ + i ~ ~ m  of the sat-oj at& net irrodiances 
Rjx,P;) at x, aJkers tho net tPrcldiavrca H(x,S) ai; x CiCrOQS s in 
the d-irectim sf E <a 08 defiaed in f14J cf See. 2.4. The 
psodaf of (8) is imediete, since (8Be stripped sf all physi- 
cal ccnnotations, siap8y constitutes an elementary theorem in 
vector analysis, Equation [SI is the more deep of the two 
and follows from the observation that each i+i(x), i = l,2,3., 
can be written out in fkpkL fora as: 

= H(X.i] - M(x,-i) - 8(x,i) , ClOI 

where the first e~~aabity results from writing : as the union 
sf two disjoint hemispheres :(E) and E(-t;) and where the see- 
ond equality follows from two applications of (8) of Ssc. 
2.5. In a similar way we show that: 

In this way we  inc cover the physical significance of the three 
components Hl(x), Hz(x!, and H~(x) of H(x). 
Nl(x) is the net irradzaneo across a plane at x whose inward 
normal. is the coordinate unit vector i along the x axis. Con- 
tinuing on our way to establish (93, we ~ C J W  examine E*H(x) 
directly: 

For example, 



and-now (9) follows immediately from this. The maximum value 
of H(x, 5) occurs when d =  0. From this, we have (9). Thus 
IH(x) I is simply the net irradiance across that surface S at 
x whose unit inward normal is the same as the direction of 
H(x) - 

The results (8)-[14) are of importancx in both theo- 
retical and experimental radiative transfer. An intuitive 
feeling for H(x) and for equaticfns (8) ani! (14) may be ob- 
tained by imagining an experimeneal &-\:ice of the kind sche- 
matically depicted in Fig. 2.21 'The device has two coli.ect - 
ing surfaces S, and S- placed so that S, and S.. together re- 
ceive radiant flux from every direction ir? ?. Further, the 
unit inward notrnal €J to S+, m a y  be represented by a wire with 
a pointer welded to one knd, and the whole arrow fastened to 
the material collecting surface:; 9s shown schematically in 
Fig. 2.21. The meter for the device is wired to read 
H(x,<)-H(x,-(), i.e., the recorded irradiance on S, minus the 
recorded irradiance on S-. A device so constructed is called 
a subtracting janus p l a k ,  (where "janus" has the same etymol- 
ogy as "January") and may be used to empirically determine 
H(x) in natural optical media. To operat? the device, one 

rhis sequence oi five equ;itioii'-. LS justiflcil analoeousiy to 
the sequences culminating in (10). (ll), and (12). Now, how- 
ever, we have included more detalled steps. Clearly, (13) 
subsumes (10)-(12). In view of (13). we may write (8) as: 

(14) 

--..."----.+.--- I___. 
T. ., PJ.C. 2.21 Schematic of a subtracting Janus plate, used 

in rnc:;suriniig the vector .irradir.i;c+: field. 



where 5 is in s(L;~), and so -5 is in E C - C ~ ] ~  the comp~.sme:ht 
of 5[Ka) with respect to 5. Thus for every -6 in one 
computes H(x,-E) using the already tabulated value @ ( x , & ) ~  
the angle lp , and IMfx) I . 
cosine law for irradiance by casting its basic form (8) into 
one which comes as close as possible to its special counter- 
part (16) of Sec. 2.4. Thus Let "P" denote the unit vector 
associated with H(x), i.e., m is the direction qf E{x) as c o r  
puted by (7). Then, by [114), we have H(x,~s%) = iti(x)/ which 
is the maximum net irradiance at x. Further, in (34), 
cos zP= 5-m; hence (14) becomes: 

We conclude the present discussion 8% the gznes'al 

Clearly (16) of Sec. 2.4 is a special case 0% (3.6) above when 
radiant flux is incident on x in accordawe with thrj ~astric- 
tions an the earlier equation. 

t 

i 
4 
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2.9 Radiant Intensity 

The concept of radiant intensity, the last of the set 
of basic radiometric concepts to be introduced in this chap- 
ter, is designed to give a measure of the solid angle density 
of radiant flux. Thus radiant intensity is a dual concept to 
irradiance in the sense that the latter gives a measure Of 
the area density of radiant flux while the former gives a 
measure of the solid angZe density of radiant flux. At one 
time the concept of radiant intensity enjoyed the place now 
occupied by radiant flux. 
lamp there were very few Crtificial extended light sources. 
The controlled artificial point source, such as a candle's 
flame, was the sole basis for radiometric standards and its 
sadiant output was conveniently measured in terms of intensity. 
However, with the passing of years the numbers of extended 
artificial light sources increased and the classical mode of 
use of radiant intensity has become correspondingly less fre- 
quent than that of radiant flux. Eventually radiance for the 
most part usurped the once centrally disposed radiant inten- 
kity concept. Despite this displacement of radiant intensity's 
status, it appears that there will always exist times when its 
use arises naturally. For example when emitting 'point 
sources' are considered, the use of radiant intensity seems 
automatically indicated. This useful aspect of radiant inten- 
sity will be discussed during its sysftematic development, to 
which we now turn. 

In the days of the candle and gas 

Operational Definition of Empirical Radiant Intensity 

In presenting the concept of radiant intensity we 
shall be guided by operational considerations so as to give 
the concept a secure footing relative to the other radiometric 
concepts already defined. Thus our first encounter with the 
notion of radiant intensity is in the following context: in 
the operational definition of P(S,D) (See. 2.3), a radiant 
flux meter with collecting surface S and collecting directions 
D and monochromatic filter passing a single frequency v re- 
cords an associated amount P(S,D) of radiant flux incident on 
S through the set of directions D. Once the datum P(S,D) is 
obtained, then one conceptual path leads, as in Sec. 2.4, to 
irradiance H(S,D), i.e., the area density of P(S,D) over S; 
another path leads to J(S,D), i.e., the solid angle density 
of P(S,D) over D, where we have written: 

"J(S,D)" for P(S,D)/Q(D) . (1) 

We call J(S,D) the (empirical) radiant intensity of P(S,D) 
over D on S. The dimensions of radiant intensity are radiant 
flux per solid angle (per unit frequency interval), and con- 
venient units are watts/steradian (per unit frequency inter- 
Gal). In full notation for the unpolarized context, we would 
@rite : 

"J( SI D, t , F)" for @(S ,D, 1: , F) /Q (D) 

P 



or: 

IP.3 IS 9 D, k * w) for P (S > D , t ,u$ /O(D) * (2) 

Howewer, we shall need omLy to employ the briefer natation in 
most of our discussions, 

An exaaination BE the operational definition of empir- 
ical radiant intaasity, s arized in (1) a will show that 
there is no restriction on the set of directions D. That is, 
D may be ari arbitrary fixed set of directions along which the 
radiant flux funnels down s n t ~  the points of the collhecting 
surface S. Ian practice, however, a radiance meter is the de- 
vice used ts estimate the radiant intensity af the light field 
at a paint in an optical medium. Ira such an instrument, the 
set D is a relatively narrow conical bundle 0% directie~ns 
whose axis is perpendicular to the collecting surface S of the 
aeter. The c ~ n ~ ~ t i o n  between field radiance N(S,D), and ra- 
d i m e  intensity in such a context, follows from fl) and is 
readily stated'. 

J(S,Dl = MCS,DIWW (31 

The connection between J(S,D) and N[S,n) can be generalized 
to take into account radiant flux which c r ~ s s e s  S ol-rliiquely 
within the narrow se$ of directions D. The geometric setting 
is essentially that depicted in Fig. 2.6, the setting far the 
cosine law for irradiance. 

turn to [l) and within the setting of Fig. 2.6, compute P(Sf,5] 
is@., the radiant flux over SI: 

To establish the generalized version of Is), we re- 

The reason for the equality of P(S',D) and P(S,D) seems from 
the hypothesized setting af Pig. 2.6, and the arguments pre- 
sented earlier. Therefore, from (1): 

But: 

J(S' ,D) * P(S' ,D)/Q[D) - NIS,D)A(S) . 

A(S) = A(S') cos @ , 

Hence : 
J(S',D) = N(S,D]A(S') cos -d . 

By the radiance invariance law: 

N[S',D) = N(S,D) 
Hence : 

e41 
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whenever the inward unit normal C' to S' makes an angle ZP 
with the central direction 5 of D, as in Fig. 2.S, Eq. (4) 
should be compared with the special case (6) of Sec. 2.5. It 
is worthwhile re-emphasizing that relations (3) and (4) are 
relations among ernpipioal radiometric quantities, i.e., ra- 
diometric quantities obtained with the use of a radiance me- 
ter of finite solid angle opening Q(D), and finite collecting 
surface area A(S). The more finely-honed theoretical radio- 
metric concepts come later with the help of the various addi- 
tive and continuity properties of 8 postulated in Sec. 2.3. 
The empirical concepts serve to establish the bridge between 
theoretical constructs and the immediately given physical 
realities. The empirical concepts serve also to block out in 
rough form the incipient analytical structures of the theoret- 
ical relations. 

Field Intensity vs. Surface Intensity 

There is a distinction that can be made in practice 
between two types of radiant intensity, a distinction that is 
exactly analogous to the distinction made in Sec. 2.5 between 
field and surface radiance. Indeed, by referring to Fig.2.12 
wherein is depicted the two types of radiance, N+(S,D) and 
N-(S,D), which in turn are defined as in (30) and (31) of Sec. 
2.5, we are led to write: 

and 

in complete analogy to the definitions of W(S,D) and H(S,D) 
in (17) and (18) of Sec. 2.4. We call J-(S,D) the fieZd in- 
tensity and J+(S,D) the surface intensity over D within s. 
The utility of this distinction and the basis for the names 
of these concepts rest once again on the remarks for N+(S,D) 
and N-(S,D) in Sec. 2.5. In actual practice in natural opti- 
cal media it is the surface intensity which is used with 
greatest frequency. However, in these settings it is the 
field intensity (or rather radiance) which, in the final anal- 
ysis, must be measured before the surface intensity is ob- 
tained. The basic quantitative connection between the two 
types of radiant intensity is analogous to that between sur- 
face and field radiance in (22) of Sec. 2.5: 

1 I 

It follows from (30) of Sec. 2.5 and (5) above that: 

and from (31) of Sec. 2.5 and (6) above that: 

N-(S,D) = H(S,D)/R(D) = J-(S,D)/A(S) . (91 
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Henceforth we shall drop the "+" and y n - q T  SUpt2rSCPl~tS 
from the symbol t'J'r whea it is clear from the context [or Irn- 
materiial] which interpretation of radiant intensity is to be 
used in reading B statlemerae using the concept of radiant in- 
tensity. Occasionally, however, especially for the gu+posa 
of emphasizing a delicate point in a discussion, ?.he plus and 
minus ~ ~ ~ ~ n ~ ~ ~ ~ s  will be reattached to Inn general, the 
following rule may. be observed in regard eo the base s)%nbolo 

~~~~~~~s rr4'8 * ~ , ~ ~  are omitted from qqJv' and 
""N" them the osssciated statement or term in which "J" and 
N appear is valid under bo%$ surface and field inteepseta- 

t ians e 

P T J ~  and aipg'e : 

I @  1) 

Theoretical Radiant Intensity 

Stppposs now that in the operational definition (1) 
the set of directions D becones smaller and smaller, such 
that it always contains the direction 5 and such that the flow 
of radiant energy. is ~ n t ~  S. Then write: 

The existence of this rimit is guaranteed by the D- 
additive and D-continuity prope~ties of 8 postulated in See. 
2.3. The sadiant intensity J(S,E) is called the (theoretical) 
radian& CPetemiey in the direction 5 on S. It is important 
to note that ~ Q I P - Z Q ~ O  values of JCS,5) are necessarily asso- 
ciated with surfaces S which Rave nan-zero area A(S). This 
fact is based on the S-continuity property of QI recorded in 
Sec. 2.3. Thus, by S-continuity and S-additivity of Ip we 
have : 

lim J[S,S) - 0 (11) 
S-CiX) 

for every x in S. However, 5nce again by S-continuity and 
S-additivity of 9, we have from (1), [4), [ B O )  and the defi- 
nition of N(x,S): 

where C;' (x) is the unit inward (or outward]* normal to S e  at 

From (10) and the fundamental theorem of calculus we 
x. See Pig. 2.6. 

obtain: 

*Recall our convention on field intensity and sur~scs inten- 
sity stated above. 
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From (4) and (12) we have for similar reasons: 

VOL. I 1  

where c'(x) is the unit inward (or outward) normal to S at x 
and is in Z(S). 

At this point it would be instructive to view (12) in 
terms of (5) of Sec. 2.5. Furthermore, one can compare (14) 
with its 'dual' in (8) of Sec. 2.5. This 'duality' stems 
from a comparison of what is held constant and what is varied 
in (8) of Sec. 2.5 and (14) above. In (8) of Sec. 2.5, x in 
S is held fixed while t; varies over all directions in E(s). 
In (la), 5 in Z(5) is held fixed while x varies over all 
points in S. Furthermore, while the integration in (8) of 
Sec. 2.5 was limited for physical reasons to a hemisphere 
:(E) at x, the integration in (14) is limited, for similar 
reasons, to an S over which ['(XI also stays within ?(E). 
Hence the duality between H(x,E(c]) and J(S,E;) is quite deep 
and complete. 

Radiant Intensity and Point Sources 

As noted in the introductory statements of this sec- 
tion, radiant intensity first arose as a measure of the direc- 
tional radiant flux output of spatially very small emitters 
of flux. We shall now show that this feature of radiant in- 
tensity can still be employed within the operational point of 
view adopted in the present development of geometrical radio- 
metry. The net result of this observation will be the recov- 
ery of the original conceptual feature of radiant flux but in 
a manner which will, it is hoped, now be operationally.mean- 
ingful I 

We begin by defining the notion of a point source of 
radiant flux. A part Y of an optical medium X is a (radiomet- 
ric) point source with respect to point x in X if the set 
D(Y,x) of directions subtended at x by the points of Y is such 
that Q(D(Y,x))c 1/30. The basis for this definition rests 
in two facts, one empirical, and the other theoretical. 

angle openings such that Q(D) 5 1/30 have been found to be 
adequate for the practical purposes of geophysical optics to 
distinguish the radiance variations occurring in natural opti- 
cal media. Hence any part Y of an optical medium X which can 
be encompassed by the field of view of a radiance meter locat- 
ed at point x in X is radiometrically a 'point source' of 
flux. It might be that Y is a ship or an extensive wheat 
field, or a large patch of ocean surface, or a great cumulus 
cloud. As long as these objects (they can be either opaque 
solids, surfaces, or certain well-defined nearly transparent 
volumes of water or air) fall within the field of view of a 

The empirical fact is that radiance meters with solid 



standard radisnce metert they are considered 'point s~~ur'ces' 
with respect to that meter, 

SOUTCC' is based is that B part Y of X p  sucla thnt 

on a surface about paint x will vary, tag within one pe~ceint, 
inversely as the square of the distance from x 60 Y whenever 
II is some definitely localizable object such as a ship, or 
patch of sky or ocean surface, etc. Ira short, according to 
the preceding definition, Y will be a p i n t  source of flux 
omly if the inverse square law and cosine law for irradiance 
holds with respect to it 60 within one percent. (See Example 
5, See. 2.11,) le might be ~f interest $0 take mote of the 
logical strucs.ure of kks preceding statement. 1~ particular, 
we do not 8596Kt that "if a. pare Y of X is such that the in- 
v e r s ~  square law and cosine law hold with respect to it, then 
Y is io radiometsic paint murce1$. By considering a spherical 
bsdy Y, the rsas5~ for this may be seen fcf., Example 4, Sec. 
2*11]. Finally, we shall henceforth assume that i~ the deter- 
mination of the surface radiance of a point ~ourcey, she soEd 
angle opening of the radiance Peter tzn be adjusted so as to 

 he second fact ow which the. definition of 'paint 

ik(u(ysX)] % b/.aCb, ha5 the Q%Olpcrt.y that the irradl5nCC? from 

fit exactly the set DCt',x). 
Consider naw a radiometric poimt saurce Y in a medium 

X. For definiteness, 1st the point source Y be a spherical 
region of radius a within a wacuum and which steadily emits 
radiant flux. Further, Y is such that it can be observed 
from all directions. Suppose it is required LO estimate the 
radiant flux output of Y but the measurements are constrained 
fop various reasons to rake place a distance r not less than 
a units from the center y of Y. Figure 2.22 (a) depicts the 
present situation. By adjusting the meter's solid angle 

I ,D Y ni J 

Y F 

FIG. 2.22 Operational definition of 8 point spurce 
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opening so that the set D of directions from x to Y just fills 
the field of view, the field radiance N(§,D) associated with 
Y is read directly from the meter. Here S is the collecting 
surface of the meter. By the radiance invariance law (1) of 
Sec. 2.6, it follows that N(S,D) = Pd(S',D') where S' and D' 
are as shown in Fig. 2.22 (b), and are completely analogous 
to the observed surface and direction sets shown in Fig.2.14. 
Hence the radiant flux output of Y across the projected sur- 
face S' of Y and within the set D' of directions is estimable 
as : 

N(Sp ,D')A(S'] Q(D') 

after using the measured radiance N(S,D) for N(S',D'). 
Now we hove agreed to write: 

"N(S' ,D')'' for P(S' ,D')/A(S')Q(D*) 

where P(S',D') is the desired radiant flux output of Y in the 
direction D'. Since this radiance may be written as: 

S(Sr ,D']/A(S') 

we can now set: 

P[S',D') = J(S',D')Q(D') I) 

At this juncture the reader should first observe how 
the number N(S',D') 'belongs' to Y; that is, it is (by the 
radiance invariance law) independent of the mode of measure- 
ment. Secondly, it should be noted that of the two numbers 
A(§') and Q(D'), the area A(S') 'belongs' to Y whereas n(D') 
depends on the mode of measurement (i.e.? the distance r be- 
tween x and y). It follows that the product N(§',D')A(S') 
'belongs' to Y. But this product is simply J(§',D'), the ra- 
diant intensity (watts per steradian) of S' in the directions 
within D' from x to y. Hence the number J(S',D') is an intrh 
sic property of Y in the sense that it is independent of the 
mode of measurement. Finally, by recalling that the dimen- 
sions of J(S',D') contain no linear (i.e., length) terms, it 
becomes manifest that J(S',U') can be conceptually associated 
with the radiant flux output of the point y (the center of Y) 
in the direction 5 (the central direction of D'). In this 
way we arrive at the classical conception of radiant intensity 
as the radiant flux emitted by a point x per unit solid angle 
abotat a given direction 6. 

We can now use (13) as a basis for the classical for- 
mula relating the radiant intensity and radiant flux output 
of the point source Y. Since Y is a sphere, the projected 
area A(S') of Y on a plane normal to a direction 6 is indepen- 
dent of the direction 5. More generally, in the point source 
context, we will agree to write: 

"J(x,E)" for J(S' , E )  
"P(x,U')" for P(S' ,DC) 



1.e. 5 

whenever S a  is the projection of part (or all of) the bound- 
ary of the point SOUPCB Y on s plane normal to [, and x is 
some point within Y. Then, with this ~ n ~ ~ ~ 5 ~ ~ n ~ i ~ g ~  (13) be- 
came L : 

where (for terrestrially-based coordinaess systems) we! have 

the ~sdia~it intensity output of Y is independent of E over D', 
then we can make the following statement: 

Used (9) of SeC. 2.5, ihwd hOQe written "[8,@)*' for E. If 

If D' = 3, then, 

where we have written: 

and 

Equation (17) is the customary form of the connection 
between the radiant intensity J(x) af a (directionally) uni- 
formly emitting point source at x and its total power output 
P(x). By retracing the deEinitionS of "P(x)" and "J(x)" the 
reader will see that the emitting object referred to is not a 
geometric point but rather a small finite past Y of an optical 
rnediwn X, and that x is a point of X in or near Y. In this 
way we conceptually simplify the description of point S O M ~ C ~ S  
to the form exhibited in (17) without contradicting the basic 
tenets of radiometry, in particular the S-continuity sf Q 
in Sec, 2.3. 

Cosine Law for Radiant Intensity 

The cosine law for radiant intensity (Lambert's law) 
can be stated as follows (cf., Fig. 2.6): If' $he ~urface ru- 
dCanee N(S',C) of pQiP2t source surface S' de independent of 
direction 5 in E(s'), where 5' Ca the unzt oaeewmd nomat to 
S' at ys then *he surf~oe in$eneit.y J(S',E) of S' varierr a8 
the cosine of the angle b e t w e n  5' end 5, i.e.: 

(18) 

L 



 he ~~~~~ sf ~~~~~~~~~~ (18) rdprae on (4). For by hy- 
pothasia we now Call WFlt(PI 

N(S',D) N(S~,D*I 

where D' is B narrow COWPCES: set of directions whose central 
direction E' is normal to S , 8s in Fig. 2.6. Hence (4) be- 
comes : 

S(S',D) = s(s@,no) co5 9 
Letting D and D' become smaller m d  smaller with limit {€I 
and { e 1 ] ,  respectively, we arrive at (3.8)- 

we have ~ ~ l ~ b ~ ~ ~ ~ ~ l y  ~~~a~~~~ rehe notation of Fig, 
2.6, despite the fact that (18) Con be Written With h S S  
primes  or^^^$ 'gSs" and "'E", for the purpos~ of encouraging a 
detailed ~ o m ~ ~ ~ ~ s ~ r n  of (161 of Sec. 2.4 and (18) above. Close 
study will again reveal %ha inte sting$ duality between inten 
sity J and i r ~ ~ ~ ~ ~ ~ ~  a corn arisen of 
(8) sf See. 2.5 and 
rent duality between o inquire whethor 
%he cosine law Is% I- it)p be gezUWiliZed to 8 
€ o m  which would con B. statement to the general- 
ized sssinre law for ~ ~ ~ ~ ~ i ~ ~ ~ e  in the form of (8) or (16) of 
Sac. 2.8. It turns sut that am exact dual statement to (8) 
~f Ssc. 2.8 can indeed be made for radiant intensity. Now, 
since the basis for %he ~ ~ ~ ~ ~ ~ l i ~ e ~  cosine law for irradiance 
can be virawed 9s smbeadisd in (8) of Sec. 2.5, we should ex- 
pect the basis for the ~ e ~ ~ ~ ~ ~ ~ % ~ ~  cosine law for radiant in- 
tensity to rest in (14) abavs. #e ~ Q W  show that this expac- 
tation is correct. We begin with deriving B result, of inter- 
mediate pnerality, fran (143, a result which protides an iri- 
terestia$ insight into the structure of the clrissical Laabett 
1BW. 

The region 
Y may be of arbitrary shape. Suppose further that froe, van- 
tage point x, Y is a point source and that the observed sur- 
face radiance sf its ~ ~ ~ ~ d ~ r ~  surface is independent of the 
dirsctim of observatisrm of Y. For simplicity, we assume 
that eho'paths of sight Prom x to p ints of Y lie in P vacuum, 
The current geometric situation is apicted in Fig. 2.23. 
Let NES,D) and PI(S',D') be the observed surface radiances 
seen front two ertbitrrry ~~~~~~~ points x and x' at both of 
which Y BS 8 point source. The surfaces S,S' and direction 
sets D end D' A ~ Q  8s ohown in the figure. 
jection of Y on a plan@ normal to the axis of the radiance 
meter laert~d et x. Similarly for 3'. Then by hypothesis 
and by tho radiance ~ ~ v ~ ~ ~ ~ n ~ e  law: 

on th P s recur- 

beet Y be 8 ~egion of an optical medium X. 

Thus S is the pro- 

N(S,D) - M(S',D') . 
This radiance equality can be written in terms of radiant in- 
tensity: 

c 

(191 
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FIG. 2.23 Establishing the Cosine Baw for radiant inten- 
sity in the context sf point sources. 

Since the x and x a  are arbitrary locations subject 
only to the requirement that V is a point source with respect 
to these points, we arrive at the following slight generaliea- 
t P ~ n  of the eosins law for radiant intensity: 

If a part Y of an opticaZ medium X has miform surface 
radiance for aE% dipectioras and glt points on the bound- 
a1.4 of Y, and Y is a point source with respect to points 
x %n some subsee Xo of X, and if the paths of sight from 
poines of X, $0 Y tie 3% a vucuum, then the quotione 
J(S,D)/A(S) is inuorian% for every point x in X,, z h ~ e  
S and D a m  def;inad as in Fig. 2.23. 

It is clear how the classical form of Lambert's law 
(18) fo1lows from this new statement and its anallytic form 
(19); one now lets Y be a plane surface and lets KO be all the 



VOL. 11 

appropriate poinrs of X lying to one side of S. 

(19), one which has considerable intuitive vazrae. Let "N" de- 
note the hypothesized fixed radiance associated with Y. Then 
(19) implies that: 

It is of interest to note still one more variant of 

(20) 

i.e*, that J(S,D) varies directly as the projected area A(S) 
of Y on a plane perpendicular to the central direction 5 of 
I). This may be compared with (31. From (20) we can deduce by 
inspection the direct aquare law--or are4 Zaw--for radiant in- 
tensity which states that: f o ~  apeas uhieh ape radiometric 
po-tnt 8ouree8 with respect to 50mc o h e m a t i o n  point, the as- 
soaiated intensitlg varies directly aa $he apparent (projected) 
area of the surface a8 seen from that point. If the area is 
compared with geometrically similar areas, then the associated 
radiant intensity varies directly as the square of a common 
transverse dimension of these areas. This observation brings 
to light still another facet in the duality between irradiance 
and radiant intensity, the dual law for irradiance in this 
case being the inversa square law. 

Generalized Cosine Law for Radiant Intensity 

The preceding discussions on point sources and radiant 
intensiLy lead us to formulate several useful alternative ver- 
sions of the classical Lambert law for radiant intensity. 
During those discussions it was observed how the concepts of 
irradiance and intensity played the roles of dual concepts in 
a sense made clear in those discussions, This duality of ir- 
radiance and intensity is capable of being expressed in a pre- 
cise fashion and on a level of generality comparable to that 
established for the general cosine law for irradiance (8) of 
Sec. 2.8. We now pause briefly in our developments of geo- 
metrical radiometry to establish this interesting generaliza- 
tion of Lambert's law. In doing so we round out and make for- 
mal the recurrent theme of duality between surface intensity 
J and irradiance H encountered throughout this section. 

each point x of the closed boundary surface S of Y the surface 
radiance is uniform over Che hemisphere E(C'(x)) where S'(x) 
is the unit outward normal to S at x. Let "N(X)" denote the 
common value of the uniform radiance distribufaon at x on X 
over the set E(<'[x)). Observe that the variation of the val- 
ues NCx) over S is left to be quite arbitrary. For the pres- 
ent discussion the only restriction on the radiance function 
is that it be uniform over E(E'(x)) at each point x of S. 
Some approximate physical realizations of such a region Y are: 
an opaque irregularly shaped body painted with matte paints 
such that the paints have an arbitrary spatial pattern over S; 
a luminous, dense region of space such as the sun which, for 
practical purposes, has a directionally nearly uniform radiance 

Let Y be a region of an optical nedium X such that at 
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distribution at each boundary paint, but which still may be 
mottled with lighter or darker regions; the moon's su*face 
Toraps still another example. However, when each of these ob- 
jects is examined with extreme accuracy of radiometric detail. 
din mind, a wealth of departures f r m  these ideals is encoun- 
tered, 

Now returning to Equatiorl (lag) and using the present 
radiance function in %he integral, we csmsides the particular 
integral : 

Our studies 
believe that we may 
when going from (8) 
fare, we are led to 

Pd~x)E-~"x) dACx) s (211 
s 

of the duality between J and I-! led us to 
be able to do for J what we did for H 
of Sec. 2.5 to (2) of Sec. 2.8, There- 
take (21) as a base and write: 

"JtS) " for C22) 

We call JCS) the lasetor intensity for S. The defini- 
s 

tion of the integral is based on the notion of an ordered tri- 
ple of integrals, using the form (3) of Sec. 2.8 as a model. 

real nmbers as x I  y, and z components, and so a n6n zero wag- 
nitude \3(%)1 and a direction J(S)/iJ(S)(. This observation 
will allow us to state succinctly the radiant intensity analog 
to (8) of Sec. 2.8. However, before doing sa, we explore one 
further facet of J(S) . 
S for which JCS) is defined. I2 a direction E is chosen, then 
the boundary S of Y can be partitioned into two parts SCZ) and 
S(-S1 (or "S+" and "S-" for short) with the properties that 
S(6;) consists of a11 points x of S such that €-S'(x) > 0, and 
§[-E) consists of all points x of S such that E*E'(x) < 0. 
There is generally, for all surfaces of use in practical radi- 
ometry, a closed curve C OD S such that 5*5'(x) = 0 for every 
x on C. C is the boundsry between S+ and S-. Observe how 
S(E) and S(-E] in the present context have their counterparts 
in the sets :(E), E(-S) used in the vector irradiance context. 

Returning now to (14) we choose a 5, de%emine the as- 
sociated s+ and S- as just described, and then evaluate: 

How J(S) is a bopla fide vector. As such it has three 

Figure 2.24 depicts a typical region Y with baundary 

Suppose we write: 
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I. E 
FIG. 2.24 Establishing the general Cosine law for rad. 

ant intensity. 

We are now ready to state the generalized cosine law 
for radiant intensity. 

Let N(x) be u u n i f o m  radiance distribution over the 
hemisphere E(E'(x)) at each point x of the boundary 5 
of a region Y in an optical medium, where s'(x) is the 
unit outward norma2 to S at X. Than the vector (sur- 
face) radiant intensity J(S) a8 defined in ( 2 2 1  ha8 the 
property that: 

where "IJ(S) I If denotes the magnitude of J(S) and "4 I' 

denotes the angZe between 5 and tlaa direction of J(S). 
Furthermore : 



The parallel of (24) and (25) with the irradiance case 
in (8) and (9) of Ssc. 2.8 is exact. In particular, from (23) 
we can now write: 

I I 

L J 

where P is the direction of JCs). This is the radiant inten- 
sity counterpart to (16) of s e ~ ~  2.8. The special case (18) 
of Lmbnbsrt's law wow follaws upan applying ta (26) the condi- 
tions stated for [le). In particular Y now degenerates into 
H planey we let Nix) = 0 on S.., and N(x) be constant on S+. 
It should be noted in passing that (24) holds for regions in- 
cluding non-paint saurces. The duality between J and H n5w 
becoaes clear upon ccsmparison of, say (24) above with (16) of 
Sec. 2.8: a point x in the irradiance context is replaced by 
a surface S in the intensity coatext; the set E(E3 in the ir- 
radiance context is replaced by the paint 4 in the intensity 
context. 

2-10 Polarized Radiance 

nition of polarized radiance. The develsptnent shall take as 
a point of departure the n0tiosn of empirical radiance Bntso- 
duced in Sec. 2.5. The details of the development shall be 
kept to a minimum, as we will not in this work make extensive 
use of the concept of polarized radiance. For a somewhat more 
detailed theoretical discussion of polarized radiance suitable 
for geophysical applications, the reader is referred to Chap- 
ter XI1 of Ref. [251]. 

measure polarized radiance, a few comments may be ffiade OR the 
reason for wanting to measure polarized radiance in natural 
optical media. The first and most important reason is that 
the systematic documentation of the state of polarization of 
submarine (and atmospheric) light fields increases our store 
of basic optical knowledge of the world in which we live. For 
those of a Bore practical turn of mind, it may suffice to add 
that knowledge of the kind and amount of polarization extant 
in a natural light field could yield efficient means of in- 
creasing visibility in both the atmosphere and the sea. For, 
the contrast of objects seen against a sky or underwater back- 
gsaund is occasionally increased when viewed through a rnates- 
ial which can transmit polarized light in various amounts de- 
pending on how the material is held and oriented. If we pos- 
sess systematic tabulations of polarized light fields and 
some workable theoretical models of such fields, these empir- 
ical observations can be more deeply explored and applied, 
Finally, there is the question, still not fully resolved-- 
especially for the hydrologic optics branch of geophysical op- 
tics--of whether and to what extent polarized light is used by 
creatures in navigating, in foraging, and in their biological 
growth cycles. 

In this section we shall develop an operational defi- 

Before going into the technical detailis of how to 
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in order to help resolve such questions and in order 
to add to our knowlcdgc of the light fields in natural hydro- 
501s in a systematic manner, wo must develop a precise but 
workable means of measuring and theorizing about polarized 
light fields. A small I J U ~  definite beginning in this direc- 
tion will be attempted in this section and subsequenely in 
Chapter 4 wherein the equation of transfer for the polarized 
radiance vector is used to derive a theoretical model of po- 
larized light fields in natural optical media. 

One final comment is in order. It will be recalled 
that our approach to hydrologic optics is through the tenets 
of radiative transfer theory and, as a consequence, we are 
committed to study the natural light Cields on a phenomenolog- 
ical level. In pasticular, as pointed out in Sec. 2.0, we 
have agreed to adopt those instruments of investigation which 
make quantitatively precise, all of the optical phenomena vis- 
ible to the human eye. One may then--in view of this obser- 
vation--argue that in extending the capabilities of our in- 
struments to detect and measure polarized light fields we are 
transcending the bounds originally set down b3 us when we em- 
barked on the development of the concepts of radiometry. It 
may be observed, however, that whenever it is deemed necessary 
to extend the radiative transfer phenomena of concern to hy- 
drologic optics in particular, or geophysical optics in gen- 
eral, the extension will be made solely on its merits to add 
to the descriptive power of these branches of radiative trans- 
fer theory.* In the present discussion, the extension of the 
radiometric concept of radiance to the polarized level not 
only fulfills this general criterion, but interestingly 
enough, still keeps the collection of radiometric concepts 
within that small, select circle of concepts which are direct- 
ly observable b the unaided eye. For indeed, the polariza- 
tion of the ligit of the sky or a submariiie light field is 
directly observable to the unaided (but practiced) human eye. 
The physiological basis for this capability of direct obser- 
vation is the dichroic nature of either the material compris- 
ing the yellow spot of the retina or perhaps that of certain 
of the optic nerve fibers themselves. (Dichroic materials are 
also found in natural deposits, e.g., in the form of tourma- 
line crystals, and were already used in the early devices for 
detecting polarized light.) It is the small but adequate 
amount of dichroic material in the retina which thus permits 
the unaided eye to detect and the brain to record the presence 
of linearly polarized light in a natural light field. This 
innate ability of the eye to detect polarized light was re- 
ported by Haidinger in 1846, and the elusive but yet visually 
observable pattern seen by Ehe eye is known as Baidinger's 
brush. An informative description of how to facilitate the 
detection of Waidinger's brush in skylight is given by Min- 
naert in Ref. [182]. 

*The case for an extension of the classical scalar theory to 
the polarized level ultimately involves no less than the con- 
sistency of the classical scalar theory in the context of po- 
larized light fields. See (17) 05 Sec. 13.11. 
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FIGrn 2.25 Schematic details of a radi2mce meter fitted 
with a polarizer P and a variable wave plate W, for measuring 
polarized radiance distribution. 

Operational Definition of Polarized Radiance 

The operational definition of polarized radiance we 
shall adopt has been chosen for its inherent simplicity and 
its amenability to be linked with the classical Stakes vector 
for polarized light. Thus the polarized radiance vector will, 
on the one hand, be tied directly to observable qualities of 
natural light fields and, on the other, be rigorously repre- 
sentable by means of concepts extant in the electromagnetic 
picture of light. 

We begin with a radiance meter, as described in Sec. 
2.5, and adjoin to the meter, at the base of the tube, a po- 
larizer P and a variable wave plate W. The order in which 
the emtering light encounters these devices is important and 
is depicted in Fig. 2.251: the light is te encounter the var- 
iable wave plate first, and the polarizer second; then it 
passes OD through the filter to the photoelement below. This 
relative placement of W and P is the essential point to ob- 
serve here; where! the filter is relative to W and B is, how- 
ever, immaterial as far as ideal detectability of poloriaed 
f l u  is concerned. 

The polarizer P, which is made Prom a dichroic crystal 
or B sheet of polaroid, is merunted so that it is rotatable 
about the axis of the cylindrical tube of the radiance  mete^. 
The orientation of the optic axis of the polarizer is impor- 
tant in what follcws; therefore it is essential that some 
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means be provided for the clear marking of the position of 
the optic axis relative to the radiance meter's tube, or some 
other fixed part of the radiance meter. Further, if absolute 
a adiance measurements are desired, the transmittance of P 
over the spectrum is required. The ideal transmittance of P 
is 1/2 for unpolarized light. 

The wave plate can be made of some negatively doubly 
refracting material such as calcite, and is assembled (at 
least for the introductory discussion below) so that a wide 
range of optical path lengths is available at the twist of a 
knob. For example, a Babinet compensator type of arrangement 
may be employed. Later on, when the radiance meter is readied 
for field use, the wave plate may be replaced by an attachment 
fashioned from a single sheet of some good grade of circularly 
polarizing material or' known transmittance over the spectrum. 
The ideal transmittance of W is 1, and that sf circularly po- 
larizing material, 1/2. The fact that a circular polarizing 
material can be used in lieu of a variable wave plate will be- 
come clear after the observable radiance vector has been de- 
fined. 

The next step in the present operational definition of 
polarized radiance is to take the radiance meter, set for fre- 
quency v, to a point x in the environmentt and direct it so 
that flux enters the tube along the direction 5 at time t. 
Then one systematically varies the angle Q of the polarizer's 
optic axis, starting from the vertical plane, with a given 
fixed retardation € 2 0  of the wave plate. (See Fig. 2.26) 
In fact one varies $ from 0 radians [so that the optic axis 
is in the vartical plane) and increases $ clockwise (when 
seen looking into the tube from the front of the tube, i.e., 
lookinn along the direction of travel of the photons) to n 

that the optic axis is again in the vertical 
this is dohe, one should note how the recorded 
with $ and that the variation is of period n. In 
for E = 0 and a general light field, the variation 
turns out to be representable in the form: 

3 [I + Q cos 2 q  + u sin 2q , 1 

radian: (so 
plane). As 
flux varies 
particular, 
of radiance 

where we have written: 

"I" for 2E 

"Q" for ZAN cos 2 4 ~ ~  

"U" for 2hN sin 2Q0 

where, in turn, we have written: 

"AN" for (Nmax - Nmin)/2 I 
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FIG. 2.26 How to measure and record the standard obser- 
vable radiance vector. 

and whore "NmaX" and "Nmin" denote, respectively, the maximum 
and minimum radiance readings when JI is varied from JI = 0 to 
d, = II. qo is the angle of occurrence of the maximum reading 
Nmax 

on W and with Q varying over the interval [b),~], shows the 
full form of the radiance variation t~ be: 

Further experimentation, with now a genera1 e-setting 

$ 4 Q cos ZJI 4 (V cos E-v sin E) sin 29 ] Cl) 

where Y is determinable by a simple trigonometric arnalgrsis of 
the recorded curves.obtained by fixing i$ # 0 and varying E. 
$See, e.g., Ref. [19SJ). If this reading is obtained at point: 
x, for the direction 5 at time t, for frequency v, and with a 
P-settimg 41, and a W-setting E, then we will agree to denote 

i 
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it by llN(x,C,e,v,J),~)", or, if x,C,t, and w are understood, 
we will denote it simply by 'W($9~)'e, for short. The devel- 
opment of the empirical basis of this quantity (using the "S", 
"D", "F" notation for radiant flux) is parallel to the un- 
polarized radiance case o€ Sec. 2.5, and therefore need not 
be repeated here. Expression (1) constitutes the desired 
operational definition of the polarized radiance 
N(X,S,t,V,4J,E). 

The Standard Stokes and Standard Observable Vectors 

The operational definition (1) for polarized radiance 
and the experimental considerations leading to it draw out 
the remarkable fact that the most general polarized radiance 
field can be characterized by four functions, I,Q,U and V 
whose values are determined once a selection of $,E along 
with x,E,t and v are given. In view of the potentially infi- 
nite variety of specific forms that polarized radiance fields 
can assume, this is indeed a remarkably simple characteriza- 
tion and representation of the entire class of possible fields. 
This theoretical characterization of the polarized light field 
by I,Q,U, and V was Eirst systematically studied by Stokes in 
1852. We shall write: 

"S" for (I,q.u,v) 
and call S the standad Stokes vector. S is a function which 
assigns to each choice of $ s ~ B  along with xrErt, and v, an 
ordered quadruple of radiance numbers obtained as described 
above. 

There is an alternate method of quantitatively docu- 
menting a polarized light field. Instead of obtaining I,Q,U, 
and V as described above, one may obtain four direct readings 
N($,E) for the following four special pairs of settings J, and 
E. We write: 

"1Ntt for N(O,O] 

"2N" for N[n/2,0) 

" JN" for N (~/4,0) 

'I N" for M (n/ 4 n/ 2) 

We then go on to form an ordered quadruple from these numbers; 
we write: 

and call p1 the standard observabze vector. N is a function 
which assigns to each choice of x,C,t, and v the four numbers 
shown. Observe how N requires use of W only for the setting 
sN. Readers familiar with the concepts of polarized light 
will see that each N(rr/4, n/2) can be obtained by means of a 
single reading using a piece of circularly polarizing material. 



To tie in %he§& conrentions with e l ~ ~ ~ ~ ~ ~ ~ ~ ¶ ~ t i c  con- 
~ ~ ~ ~ i ~ r n ~ ~  rectk1H first that the optic axes of P a ~ d  W lie iwi- 
tially in the standard preferred orientation, i.e., they lie 
iw 8 vertical plans. Now the E-vector in vertically polariaad 
light by c o ~ ~ ~ ~ ~ ~ o ~  lies in a vertical plane as it. 6rosseo 
~~~~~~ ~~r~~~~~~~~~~ to %he direction of travel. [Recall 

ield is a transverse field.) In 945* linearly po- 
t the E-vector lies in a plane tilted 945' from 

B vertical plane containing the direction of travel of the 
ray associated wish the electric field E. The + direction of 
the 945" is measured clockwise as one looks along the direc- 
tion of travel of the ray. Finally, right circularly polear- 
i%ed light is by convention that light associated with an E- 

Rose tip describes ea clockwise circular ~iiotie~~ on a 
gy plane perpendicular to its direction a% travel as 

seea cn %he fneident side of the plane, The most general 
I%&.$ Pield CXA be resolved in'to its linear am3 sab%iptical 
~ ~ ~ ~ ~ ~ ~ ~ ~ $ .  This is the BotaPdmxeion ~~~~~5~~~~~ $haor~om of 
Stsskss L1 
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'\ Analytlc Idink Between S and N \ 

The connectlon between the two vector5 6 and N is eas- 
i l y  established by means of 
definition of iN, i * 1,2,3,4, we have: 

(l).. On the basis of (1) and the. 

a 
2 N = - [ I  + Q ]  

N = A [ I  - Q ]  2 

N - + [ I + U ]  

N = -  1 [I - V I  
2 

From this set of equations we may construct the matrix @ 
which transforms S into M. Thus let us write: 

Then : 

where : 

\ o  0 0 -1 1 

/ I  1 - 1  l \  

0 0 2 0  
@-l = i -l -l l 1 

\ o  0 0 - 2 J  

As an example of the use of (31, we obtain the following rep- 
resentation of vertically polarized radiance in terms of 
Stokes vectors: 



The reader will find it instruefive ta use (3) to csbtein a 
]List sf Stokes vector representations of the seven speciaK 
~~~~~~~~1~ wscters giwen above. 

Standard and Local RefeQeasee Frsaes 

up to this paint in the exposition of the polarized 

place in a terres~rial ~~~~~i~~~~ system. In particular %he 
$-setting of the polarized radiance n e e m  was such that if 
@ = (It, then the optic axis of the polarizer P of the mktter is 
in a vertical plane. (See Pig, 2.24 (a),) Such a fr 
reference for polarized r~ridkancs ~e~~~~~~~~~~ we call a @tan- 
dard Peforena9 fP.amc. we? now introduce 8 second ~~~~~e~~~ 
fraw--the LOQUE rafeawnaa f~tme--whose main virtue and rea- 
son for being is that tat each point in m optical medi 
permits a simple means of experimenta1 ~ e ~ ~ ~ ~ n ~ ~ ~ o ~  a% the 
polarized v d u s  scatrering function. ~ ~ r ~ h e ~ ~ ~ ~ ~ ~  %has inatre- 
duction of eke focal reference f r m e  ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ y  facilitate5 
the f5mulrstfon and h5ndEiasg Q% the various f ~ r m ~  of the 
transfer equation ip the polarized eontexe. 

an optical meBiblm, two directions S p  and E saust $a giwen (in, 
say, P terrestrial coordinate system] such that t;' and 5 
uniquely determine a plane. Tn other wordr, the only require- 
Dent on 5' and E is that they not be collinear. We shall call 

and the plane they determine teapether with a point x, the 
ptane of scattering. See Fig. 2.27. 

the incident polarized radiance is measured as follows: 
the radiance meter at x so as to allow the flux in the direc- 
tion 6' to enter the meter's collecting tube. With the $- 
setting at 0 with respect to the meter's tube, rotate the en- 
tire radiance meter around 6' so that the optic axis the 
polarizer P lies in that plane A' through E' and perpendicu- 
lar to the seatteriPag plane. With the radiance meter so ori- 
ented, perform the four operations leading to iN, i s P,2,5,4. 
Designate the Zocat obse~vabZe vector lay "N4t'' where qs$"q de- 
notes the angle through which the vertical plane through 
must be rotated otoekwise around <'--when looking along the 
direction of T'--so as to become coincident with the plane A'. 
Thus $' varies from 0 to n ;  similarly with $I for the radiance 
determination in the scattered direction 5. Ian general it 
can be shown (Sec. 111, Ref. 62511) that the standard abser- 
vable vector I is related to a local observable vector H4 by 
means of the equation: 

raaiance v e c t ~ r  a n  ~~~r~~~~~~~ activity PIW iapiicitiy taken 

TO establish' a 1ocaI.reference frame at a paint w in 

E D  and 6, Pt?3geCtiVe1y, the i?Zdde?Xt 4nd s@Qt$63P@d direCtiOns, 

Once a glans of scattering is determined by x,Ss and E, 
place 

where we have written: 
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\- 

FIG. 2.27 The plane of scattering, and associated angle 
conventions. 

. . F 
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TIIUS. in particular, the inverse X-r[$~ of ZC~I is ebtainad 
simply by replacing 4 by -6 in X(6). 

The following example will illustrate the use of IS]. 
Fig. 2.26 (b) depicts a besap of +45@ linearly polarized sadi- 
ant flux proceeding along direction at point x. Hence 
N = l/2[NsN,2N,N). The reference frame is now swilechsd from 
the standard reference f r m e  at x to a local referenee frame 
at x defined by a rotation 0 of magnitude ~ 4 5 "  around E. 1x1 
order to find the components of the given beam 05 polarized 
flux in this new frame, we first note that: 

Hence : 

1 -(2N,O,N,N) 2 -  
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that is, N4 0 is vertically polarized radiance in the new 
frame of rezerence, as was to be expected. 

The primary advantage of introducing local reference 
frames and their corresponding local observable radiance vec- 
tors lies in the fact that the volume scattering matrix ob- 
tained in most natural optical media can be given a simple 
standard form whenever such frames are used. The general re- 
lation (4) permits the resultant scattering matrix to be fit- 
ted into discussions using the standard observable radiances. 

Radiant Flux Content of Polarized Radiance 

Having extended the concept of radiance to the polar- 
ized context, the question now arises as to the necessary con- 
nection that exists between the readings rof a radiance meter 
with and without polarization attachmelts. Specifically, let 
N be (IN12N,3N,4N)r the observable radiance vector (in either 
standard or local form) at a point and a given direction at 
that point. Further, let N be the simultaneous radiance read- 
ing of the meter at the same point and same direction with 
the polarizer P and wave plate W removed. What is the con- 
nection between N and N? This question, interestingly, can- 
not be answered within the theoretical framework of radiative 
transfer p e p  se; of course it can be answered on the empirical 
level quite easily. However, to establish the desired theo- 
retical connection one must appeal to some relatively finer- 
grained picture of light phenomena, Such as electromagnetic 
theory. On such a more fundamental level both and the com- 
ponents of N are representable in terms of the principal con- 
struct on that level: the electromagnetic wave. The desired 
connection can be established by suitably relating these elec- 
tromagnetic representations of N and the iN. On that level 
the desired connection is readily forthcoming (see, e.g., Ref. 
[43]) and is of the form: 

(7) 

This relation is interpreted as described above and 
under the assumption that P has ideal transmittance 1/2 for 
unpolarized flux and W has ideal transmittance 1. 

Of course these ideals are not attained in practice. 
However, with (7) as a starting point, the associated practi- 
cal version is readily established. The customary operational 
definition of the transmittance of the polarizer assembly is 
as follows. We write: 

Further, N($,Q) is, as the notation implies, the radiance 
reading with the W setting E equal to 0 (or W removed entire- 
ly) and with P in place and with optic axis rotated an amount 
9 ,  in the usual way. For example, it follows from (l), in 
the case of linearly polarized radiance that N($,O) varies 

P 



2.81 $%mples IXIustrating the Radiametric Concepts 

r p ~ ~ c a ~   io^^^^^ and, before goling om to the discussion of 
photometry, we consider some examples which may serve to il- 

the relations among then. The contents of this section are 
intended to serve a mul.tipas purpose. First of all we take 
the ~ ~ ~ ~ r t ~ ~ ~ ~ ~  05 collecting together SOIQ worked examples 
in geometrical radiometry which illustrate the theory devel- 
oped above; secondly, various special topics af only limited 
interest to hydrologic optics per 8.9 are considered on the 
basis of their intrinsic radiometric merits; and finally the 

results needed as a matter ai? course in the later ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ s  

In this section, we conclude our discussion of g e ~ m e t -  

lUSeri3?ts in SQme depth the V6kriOU.S radiOlW?tTiC c0nCept.S- dsnd 

SW2tiOa Sea"YeS as a rC?pQS%tOr)P for Certain SpieCiEd. PadiOBnf3tPk 

of thio WOfk, 

E X ~ W ~ X ~  1: Radiance the sun and  MOO^ 

We illustrate the use of the empirical radiance Oefini- 
eien [I] of Sec. 2.5 by using id: to compute the empirical 
field radiances of the sun and moon. Now in (1) of Sec. 2.5, 
S is the area collecting the flux P(S,Dt) funneling down the 
set lii of directions from either the sun or the moon. Wenee 
S may be chosen at will and we fix it in this sxamgXe as a 
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FIG. 2.28 Approximate angular subtense of the sun at 
the earth. 

square nexer of plane surface just outside the atmosphere and 
whose normal when extended goes through the center of the sun 
or moon. For the purpose of computing N(S,D) we choose D to 
be the solid conical set of directions from any point on the 
collecting surface to and within the limb of the sun or moon. 
See Fig. 2.28. We consider first the case of the sun. 

The sun is a nearly spherical body with diameter nearly 
864,000 miles and at a distance of about 93,000,000 miles from 
the earth. 
sun at the earth’s surface is very nearly: 

It follows that the half-angle subtense 8 of the 

= 4.65 X1O-j radians 



'At sea level under a clean dry atmosphere, H[S,D] an the OF- 
der of 472 ratts/m2. See also Table 2, Sms, 1.2. 
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Hence, by (12) of Sec. 2.5, the solid angle subtense n(D) of 
the moon is: 

Q(D) = ~(4.38)’ x 
= 6.00 xlO-’ steradians . 

Using the adopted estimate we obtain: 

N(S,D) = H(S,D)/Q(D) 
= 7.75~10-~/6.O0 x10-5 

= 13 watts/m‘x steradian (2) 

This may be used as an overali average radiance of the full 
moon’s disk as seen at sea level on a clear night and over 
the wavelengths of the visible spectrum. An extensive litera- 
ture exists with reference to lunar photometry and radiometry. 
See, e.g., [SI. 

€or the angular size of the sun as seen from earth evidently 
also holds for the moon. For more detailed radiometric infor- 
mation on the radiant energy output of the sun, the reader may 
consult, e-g., Sec. 1.1 and Refs. [185] and [l28]. Detailed 
discussion is made of the estimates of the solar irradiances 
in the latter refeiences. 

In conclusion we note that the rule of thumb adopted 

Example 2: Radiant Intensity of the Sun and Moon 

The present example illustrates the use of the concept 

We begin by computing the radiant intensity of the 
of radiant intensity as defined in (1) of Sec. 2.9. 

hemisphere S of the sun visible from the earth. Let €, be the 
unit vector pointing from the center of the sun to the center 
of the earth. Then the radiant intensity J(S,{) of S in the 
direction 5 is given by (14) of Sec. 2.9, where N(x,C) is the 
surface radiance of the sun in the direction 5 at a point x 
on S. In Example 1 we estimated the field radiance of S for 
radiant flux in the wavelength interval from 400 to 700 milli- 
microns. NOW, by the radiance invariance law (2) of Sec. 2.6, 
the estimate of Example 1 may be taken as the surface radiance 
of the sun over S, the radiance N(x,5) being sensibly indepen- 
dent of x on S. Then if “N” denotes this fixed surface radi- 
ance, (14) of Sec. 2.9 yields: 

J(S,C) = N\ E.€’(x) dA(x1 
S 

= NA(S’) 
where A(S’) is the area of the projection S’ of S on a plane 
perpendicular to 5. The area A(S’) is readily determinable. 
From the data in Example 1, we have: 
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Using this ecstieate of A(S') and the ertiairate of N(S,D] 
for the sun given in 1Exaepl.e I, we have: 

5[9,5] = e: x 1 5 6 x  1,s xlEBl@ 
= X.2x 1 0 2 5  wattsPsteradian (3) 

as the radiant intemsity of a hemisphere of the sun Pasing 
the earth and aver the visible spectrum. 

The sun is sadiametricafly a paint source CSec. 2-91 
with respect to points on the earth and may thus be imagined 
tcs be compressed to i%s rentex- x. ~ ~ ~ ~ ~ e ~ ~ ~ e ~  we may evi- 
dently assume rlaat J(S,E) io independent of 5;. Hence (17) of 
Sec. 2.9 is applicable, and we can estimate the total radiant 
flux rstltptat of the sun over the visible spectrum to be: 

P(x) J. 47rJ(S,c) 

5 1.5 X I 0 2 6  watts. 

Turning now to the case of the moan, we have a slight8.g 
more interesting geometrical situation arising from the  OS- 
sible phases of the moon. Pig. 2.29 depicts this situation. 
If "S'11 now denotes the projection of a lunar hemisphere on a 
plane normal to the direction E, then we have by means of (14) 
of See, 2.9: 

J(S,C) 3 (1 + cos e) 

where N is the surface radiance of the lighted hemisphere of 
the moono as estimated*, e.g., in Example 11, and 8 is the 
phase angle of the moon as described in Fig. 2.29. Thus at 
full moon, B = 5 and J(S,E) is in particular NACS). To esti- 
mate this product we first compute: 

A(S') = n(l.Q5)2 x 106 (mile5)Z 

= n(l,OS)* E (1.6)' x €0' x lo6 (meters)' 

= 8 . 9 X l O E 2  (meters)* . 

"The precise analysis of the gradation of the radiance distri- 
bution over the sunlit heanisphese of the m o m  is a delicate 
problem. The estimate here is deliberately kept simple in 
order to first emphasize the radiometric geometry essentials. 
A source reference on radiometry of the maan and planets is 
E81 * 



100 RADIOMETRY AND PHOTOMETRY VOL. I.1 

Sun's rays 

t 

Eatth 

FIG. 2.29 Simple phase diagram foi the earth-moon system 

Using 13 watts/(m2 XGsteradian) for N (justified by means of 
the radiance invariance law) we have: 

NA(S') - 1.3 x10 x 8.9 x 1.2 x 10'' watts/steradian 

as the radiant intensity of the surface of the full moon over 
the visible spectrum. Hence Tor any phase 0, the correspond- 
ing radiant intensity of the lighted surface S of the moon in 
direction 5 (Fig. 2.29) is: 

J(S,E) = 0.6 xlO"(1 + cos e) watts/steradian (4) 

We conclude this example by computing the total radiant 
flux content of the reflected radiant flux from the moon, over 
the visible spectrum. Using the radiant intensity estimate 
just made, and assuming N to be independent of direction S, 
and the moon to be a point source at its center x as seen from 
the earth, we then integrate J(x.5) over all directions to ob- 
tain the requisite radiant flux, according to (15) of Sec. 2.9. 
Thus if "x" denotes the center of the moon and D 1  is now E, 
Equation (15) of Sec. 2.9 becomes: 

NA(S') 
2 

sin 0 dB de 2nNA(S) 
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H(x,D,t,w) dlbw) (5) 
F 

which follows from (5) of Sec. 2.4 by means of a theorem of 
elementary calculus. Then by (7) of 'Sec. 2.4 we have: 

Next, from (8) of Sec. 2.5: 

H(x,D,t,F) = N(x,S' ,t,F)E.S' dn(C') 
D 
I 

where we now explicitly use the fact that wavelengths are 
over the visible spectrum F: Since D is small and the sun's 

6 field radiance is uniform of magnitude N over D we can esti- 
mate H(x,D,t,F) fairly accurately by means of the equality: 

H(x,D,t,F) = NS'oS(x)Q(D) , 

where N and Q(D) were estimated for the sun in Example 1. 
Furthermore, c(x) is the unit inward normal to the earth's 
surface at x, and 5' is the direction from the center of the 
sun to the center of the earth. Using this representation of 
H(x,D,t,F) in the preceding integral for @(S,D,t,F), we ar- 
rive at the expression: 

= NA(S')R(D) (6) 

where A(S') is the area of the projection S' of S on a plane 
normal to the direction 6' of the sun's rays. 

As a specific example, we use N and n(D) as in Example 
1, and let S be the sub solar hemisphere of the earth. Then: 

A(s') = ~ ( 4 ) ~  x106 (miles)2 

= ~ ( 4 ) ~  x (1.6)2x 106x lo6 

= 1.3 x 1014 (meters)2 
Hence : 

@(S,D,t,F) = 8 %  106x 1.3 x 1014 x 6.78~ lo-' 
= 7 x 1 0 ' ~  watts (7) 
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FIG. 2.31 Deriving the 1rradianc;e Distance-Law for 
spheres and disks 

where we have written: 

"A" for na2 9 

i.e., A is the area 
is the area of proje 
From (14) of Sec. 2. 
write: 

of a great circle of S; alternatively A 
,ction of S on a plane perpendicular to 5. 
9 applied to the present case, we may 

(9) I I Hr = J/r2 

where we have written: 

"J" for AN . 

It is to be particularly noted that Hr varies precisely 
as the inverse square of the distance r, where a s r .  If r = a, 
then: 
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d 
D 

them we have found that: 

or : 

1 i 
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From this we find first of all that Hr', unlike Hr of Example 
4, does not vary precisely as the inverse square of r, where 
r z 0 .  Iiowever, in the special case of r = 0, we have: 

Hot = nN . (131 

Further, in the other extreme, i.e., when r is very much lar- 
ger than a, Hr' varies very nearly as the inverse square of r. 

and Hrt, we arrive at the basis for the definition of a point 
source given in Sec. 2.9. Suppose then we compare Hr and Hrt 
which are, respectively, the irradiances produced by a sphete 
of radius a and a circular disk of radius a both of uniform 
radiance N. Toward this end we form the difference: 

By examining more closely the difference between Hr 

Hr - Hr4 = J[$ - 
and then form the relative difference: 

This ;elative-difference expression is the basis for 
the following statements: The relative differenoe between 
the irradiande Pf, and H,' is 26388 than 1% whenever r>lOa. 
Mor& genera2ty: the irradiance produced by a finite object of 
uniform radiance decrease8 as the inverse square of the dis- 
tance from that object, within an erp.or of 1 percent, when- 
ever the distance from the object i8 more than 10 times great- 
er than the object's largest t ~ a n s v e ~ s ~  linear dimeirsion. 
This alternate statement follows readily from rhe preceding 
analysis. Some further study is made in Example 6 of related 
questions. Observe that the associated solid angle of the 
circular cone of half angle 1/10 radian is very nearly 
n(l/10)2 = */lo0 1/30 steradian, in which lies the origin of 
the solid angle number used in the point source criterion of 
Sec. 2.9. 

Example 6: Irradiance Distance-Law for General Surfaces 

We devote this example to the elucidation of the corn- 
mon denominator of Examples 4 and 5; the net result being the 
formula for the irradiance distance-law for a general surface 
S of uniform radiance N viewed, as in Fig. 2.32, from an ex- 
ternal vantage point x along a set of paths defined by a col- 
lection D of directions, each path of which lies in a vacuum. 

Examples 4 and 5, with (8) of Sec. 2.5, but now proceeds as 
follows: 

The derivation of the required H(x,C) begins, as in 

P 



Let Ips write, ad %log: 

"M" fer H[X,S) * 

With this, we have attained the required sesulf: 

I I 
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This formula for H reduces to the expressions for Hr and Hr' 
when the function e(.) is suitably prescribed for all @ from 
0 to 2r. In particular 9 is a constant function in the pre- 
ceding two cases. More importantly, the reader should observe 
the remarkable fact that the irradiance H depends only on tho 
in*egrat over the outline C of S, as may be seen by studying 
the central projection of S onto the background plane P (of 
Fig. 2.32) which is perpendicular to 5. Hence it is literally 
immaterial to H what the longitudinal structure of S is as 
regards the computation of H at a fixed point x, as long as S 
has the given outline C on P, and also has uniform radiance N. 
Of course the shape of S is important when it is decided to 
let x vary, and indeed the distance-law for H(x,C) depends 
critically on the longitudinal shape of S and in this context 
takes its most general form displayed in the above equation 
for H. 

An alternate form of the distance-law for irradiance 
is obtained when we write: 

"pll for j 58 dn(6') 
D 

Hence : 

I I 

When the size fi of D is small--e.g., when S is a point source 
at x, then we have, very nearly: 

n = gn 
and in this special case (15) yields: 

H = N R .  (16) 

If A is the projected area of S then in this case we 
have very nearly: 

Q = A/rZ 
where r is the distance from x to S. In this way we return to 
the inverse square law for H in the limit of large r (or small 

Still one more form for H, i.e., H(x,C), is obtainable 
using the concept of vector irradiance introduced in Sec.2.8. 
Thus we have 

A) * 

(17) 

where in the present case we have written: 
r 
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An 
is 

92" corollary we have: 

E09 

1x1 particular, if S is an infinite plane, then at all dia- 
tan~es r from S, S subtends a half angle 8 = r/Z. Hence 
H = rrN for all P in such a case. 

Exanple 7: ~ ~ r ~ B ~ ~ ~ ~ ~  via Line Integrals 

The present example is designed to let us idvestigate 
in greater depth the irradiance integral (14) of Exmple 6 
which showed that the irradiance produced at a fixed point x 
by an arbitrary surface of uniform radiance depended only on 
the sprgutar outline of S as seen at the point x. Our goal in 
this example will be to cast equation (143 into explicit line 
integral form over the curve C which defines the outline of S. 

Figure 2.33 (a) is a recanstructim of Figure 2.32 
with surface S omitted. What is left is the geometric essence 
of the irradiance calculations done in Example 6. Speeifi- 
cally, we have retained the central projection of S on plane 
ad through point x. The boundary 6 of this projection of S on 
k is a closed curve characterized by @ems of the function 
e(*) which assigns to each 4, 0 S $ C 2 a  an angle e[$), which 
determines point y an C as shown in Fig. 2.33, We denote by 
"0" the foot af the perpendicular Bropped an P ZIWA x. Hur- 

ta the variable point y on C. 

ilk the form: 

th%r, "F(@)" Will denote the distance ffOA the fixed pC?ht X 

With these prelimina~ie~ established, we can write [I$) 

The integral was rewritten this way to make use of the fact 
that : 

r(@) sin @(@I dd8 ~ 
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P/ 

FIG. 2.33 Setting for calculating irradiances via line 
integrals. 



The triple box gradadct of wsctozs in the integrand say be re- 
ed s~ that we obtain far 4: (or CBl> Lni Fig. 2.32: 

C ~ ~ ~ ~ ~ ~ n g  this with (I§] we deduce- that: 
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where n(e) is the unit normal to the plane containing arc A, 
and directed such that: 

n(e) = s x  5' , 

when A is traversed as shown in the figure. Further, r(4) = a 
for all 4. The contribution to Q over the arc B of C is 
clearly: 

The integrals over A and B were evaluated immediately by not- 
ing that over A, a x  5' is a fixed unit vector, namely n(8); 
and over B, a x  5' xis the unit vector 5, the unit inward nor- 
mal to the plane of arc B. The aTC lengths of A and B are 
each an. Hence for the present case: 

Q - 5 ( E  + n(e)) . 
Observe that if 8 = 0, then, n(e) = -5, and Q - 0. If e = n, 
then a(*) = 5, and Q = ~ 5 .  If L is of uniform radiance N, 
then, by (15) or (191: 

NT 
2 H N 5'Q = - (1 + S-n(e)) . 

Example 8: Solid Angle Subtense of Surfaces 

The integral form of the solid angle subtense Q(D) of 
a set D of directions, as given in (10) of Sec. 2.5, will now 
be recast into a form which arises when the solid angle sub- 
tense of specific surfaces (either real OF hypothetical) are 
under consideration. Thus, consider the surface S depicted 
in Fig. 2.34 (a) where S is shown viewed from an external van- 
tage point x. Let ItD(S,x)" denote the set of all directions 
from points of S to x. Our present goal is to derive the ex- 
pression for Q(D(S,x)) (or "Q(S,x)" for short) in the form of 
a surface integral over S. 

placed by "D(S,x)''. The result is: 
We begin by ietting "D" in (10) of Sec. 2.5 be re- 

Q(S,x) = I sin 6 dB d$ 
D(S 9x1 

Y 

T 



t 
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The conventions for measuring 6 and Q are summarized in Fig. 
2.34 (a). In particular the details of the integration over 
a part of S about a point y on S are depicted in part (b) of 
Fig. 2.34. Points y and x determine a direction E(y,x), as 
shown. It may be seen from part (b) of Fig. 2.34, that the 
relation between a small patch of S of area A(y) about y is 
related to its projection's area A' on a plane perpendicular 
to S(y,x) by the formula: 

A'(y) - A(y)n(y)-E(y,x) (PO, by choice of S) 

where n(y) is the unit outward normal to S at y. Hence the 
solid angle subtense of the patch of S about y is: 

The entire solid angle subtense of S at x is obtained by add- 
ing up all these solid angle subtenses of the component patches 
comprising S: 

It is of interest to observe that the set function Q(*,x) is 
non-negative valued, S-additive,and S-continuous (compare 
these properties with those of the radiometric concepts in 
Sec. 2.3). Thus for every x and pair St, S Z  surfaces with 
disjoint sets D(x,Sl) and D(S2,x) we have: 

which is the S-additivity property; further: 

If A(S) = 0, then Q(S,x) = 0 . 
In other words, the latter statement, the S-continuity prop- 
erty for B(-,x), asserts that B(S,x) > 0 only if A(S)> O.* It 
follows from these additivity and continuity properties of B 
and the calculus that the ratio n(S,x)/A(S) has a limit as 
S+{yl, where y is some point of S. Indeed: 

*The converse clearly does not hold; thus, give a counterex- 
ample for: If Q(S,x) = 0, then A(S) = 0. 
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Then, in view of the radiance invariance law (2) of Sec. 2.6: 

N(YsE') N(x,E') s 

it is clear that H(x,E) is also represented by the integral: 

This may be written in the farm: 

which, by (22) is reducible to: 

Equation (23) is the desired surface integral representation 
of H(x,S). Suppose we write: 

This is the surface radiance counterpart to the field radiance 
definition of H(x) in (2) of See, 2.8. Then (23) becomes: 

H(x,S) E*H(ssx) (24) 

Equation (24) suggests that the condition imposed at the out- 
set, namely that D[S,x) be less than a hemisphere, can evi- 
dently bo relaxed. In that event (24) is generalitrble to: 

n x ? E )  = Eea(s,x) , (25) 

tho proof of which is left to the reader, 
If wa assuma that tho point x is 4nrJ;dr li closed sur- 

face S, then (23) still holds but with n(y) now baing intor- 
pmted, if desired, as an inward unit normal from y to x. In 
that crso, H(S,x) of (24) formally reduces to H(x) in (2) of 
Scc. 2.8. These observations suggest that the true field ra- 
diance counterpart to (25) is: 

g(x,E) = EoH(x,D) (26) 
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FIG. 2.35 A radiant flux calculation for two disjoint 
surf aces. 

If we write 

n(x) *s(y,x) E(y,x) *n(i)) "K(y ,x) I' for 
rz (Y ,XI 

Then, more succinctly, 

i 1 

Observe that K(-,-) is a symmetric function, i.e., for every 
x and y, 

K(x,Y) = KIYIx) * 

If the areas A(X) and A(Y) of X and Y are small--say when each 
is a point source with respect to any point on the other--then 
(29) yields the useful approximate relation: 

P(Y,X) = N(Y,X) K(YJ) A(Y) A(X) (30) 

where x and y are some fixed points of X and Y, respectively 
and "N(Y,X)" denotes the surface radiance of Y in the directicn 

, 
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similar in shape to S is related to that of S by the equation: 

A(S’) = C12 
where C is a constant and 1 is some given linear dimension of 
S. In this way we return to the direct square law for J in 
the limit of large r (or small. A). That is, using this esti- 
mate of AIS’) in (33), we obtain the present counterpart to 
the inverse square estiqate of irradiance; and as it stands 
by itself, the preceding equation is the dual to the relation 
fi * A/r2 used to estimate solid angle subtenses of point 
sources. 

using the concept of vector area introduced in Sec. 2.9. Thus 
we have : 

Still one more form for J, i.e., J(S,E), is obtainable 

r 

which is the dual to (l7), and where in the present case we 
have writ ten: 

Ilyrl for N! S’(x) dA(x) . 
S 

I .  

As a corollary we have: 

which is the dual to (18). 

Example 12: On the Possibility of Inverse nth Power 
Irradiance Laws 

The cumulative evidence of the preceding examples, be- 
ginning with Example 4, shows the predominant role played in 
radiometry by the inverse square law for irradiance. The law 
is evident in various guises in formulas (8) and (9) for 
spherical surfaces, in the point-source criterion of Example 
5, in the discussion of Example 6, in (211, (22) , (29), and 
finally, its dual (the direct square law for radiant intensity) 
is evident in the discussions of Example 11. All of this evi- 
dence appears to lead inexorably to the generalization that 
the distance fall-off of irradiance produced by flux from all 
real surfaces of uniform radiance must eventuaZZy (i.e., for 
large enough distance r) assume the inverse-square behavior 
with r. This guess is essentially correct. However, the re- 
sult of Example 5 shows that for intermediate distances r, the 
irradiance decrease with r need not be exactly an inverse 
square type of decrease. A question of some interest now a- 
rises as to necessary conditions that may govern the rate of 
such decrease. For example, can a surface S be found such 
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I 

FIG. 2.36 Attempting to generalize the inverse square 
law for irradiance. 

t 

c 
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so that: 
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is the necessary connection between r and e(r), where a is 
some fixed length associated with S. In the case of a spher- 
ical surface S and for the case of n = 2, a is simply the ra- 
dius of S. in general if the surface's divides all of space 
into twu separate parts (as, e.g., a plane or a paraboloid of 
revolution) then we agree that a is the distance from the ver- 
tex v of S to some inside point x, the center of S, where y 
is, by agreement, outside of S. 

On the basis of relation (36) a graphical construction 
procedure can be evolved for the requisite surface S. First 
choose n, with n > O  and choose a, with a >  0. Then select a 
set of distances rl,rZs ..., rk. such that acrl c r2 c... <rk. 
Equation (36) may now be used to compute the associated an- 
gles O(rl], O(r2), .,., O(rk). These angles sre used in the 

5 following manner. At each point yi which lies a distance ri 
from the center x along the axis of revolution of S, draw 
two straight lines making angles *O(ri) with the direction -6, 
(see Fig. 2.37). If the ri have been spaced sufficiently 
closely together, then one may visually detect the envelope 
of the lines just drawn, i.e., the curve which is tangent to 
each straight line of the family just constructed. This en- 
velope is the cross section of the desired surface s; i.e., 
by spinning this envelope around the direction 5, the requi- 
site S is formed. 

procedure yields information about how the surfaces S vary in 
shape as a function of the power n. Thus let the parameter a 
be fixed. Then for every n in the range 0 < n C 2, we find that 
the associated surface S(n) is unbounded. The closer n is to 
0, the more of a conical shape is exhibited by S(n) about its 
vertex. The limiting curve S(0) is a degenerate infinite cone 
8 = a/Z, Of the kind depicted in (b) of Fig. 2.36. The 
c?oser n is to 2, the more spherical is the shape of S(n) in 
the neighborhood of the vertex. The limiting curve S(2) is a 
sphere of radius a. The constructions of the surfaces S(n) 
for n > 2  at first present rather puzzling anomalies. By choos- 
ing thz range of the values r;, ..., r sufficiently small 
and having the ri closely packed togetker, one can construct 
the surfaces S(3), S(4), ..., within small regions around 
their vertices. In each case where n >  2, there is a critical 
distance r from the center x beyond which the envelope con- 
struction 8egenerates. 
corresponding critical distance ro. 

These graphical experiments in constructing the surface 
S(n) for which rhe inverse nth power law for irradiance holds, 
especially in the case of n r 2 ,  indicate the need for a rela- 
tively precise analytical approach to the problem of deter- 
mining S(n). We shall now briefly direct some attention to 
such an approach. 

Some experimentation with the preceding construction 

The larger n is, the smaller is the 
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Figure 2.38 SjhGWS an xy coordinate f u m e  in which the 
cross section of surface S(w) is depicted hy curve Cln). The 
irradiance meter is ~~~~~~~~ to be 8% a point on the y-axis 
a distance r from the origin 8 of the frame, The unit inward 
nomaPP 5 to the cahlectiag surface of the meter is directed 
along the positive directioss of the y-axis, The origin of the 
frame serves as the center ob CQn), and %he v o ~ t e r  of C(n] is 
a psiat olyl the y-axis a $ i s % m ~ ~ o  a front the origin. The curve 
C(n) is represented by some function y(*)* Our primary goal 
is to obtain the differemtiad equation fer the funastioar y(-) 
of the GUIhVB Cfn). The startiap_E; point is equgotiow (’95) in 
the form: 

1 i 
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We have essentially reached our goal. Equation (37) is the 
differential equation for C(n). 
the solution of (37) we shall rearrange it into the form: 

With an eye toward expediting 

Equation (381, as it stands, has the Gestalt of a Clairaut 
equation, an equation which is readily solvable in parametric 
form: 

I t 
(39) 

This equation also has a singular solution of the form 

I I 

which represents straight lines of slope to. 
solutions evidently can yield the degenerate conical case 
eo = ~ / 2  depicted in (c) of Fig. 2.36. 

parameter t, we obtain: 

These singular 

Setting n = 2 in (39) and (401, and eliminating the 

x2(t) + yz(t) = a2 . 

Hence C(2) is a circle with center at the origin (O,O), and of 
radius a, as expected. Setting n = 1 in (39) and (40), and 
eliminating the explicit appearance of the parameter t, we ob- 
tain 

y(t) - -x2(t)/4a + a 



i. 

The behavior %or the CIS@ n 9 2  continues to present puzzling 
features, Thus, when n 9 2 ,  x(t)+Q fox large t, indicating 
that [x(t)l attains a maximum %or SQIW 6. Examining (39) for 
this possibility, we see that tar Cgn), 



. _ ^  .- -_ 
128 RADIOMETRY AND PHOTOMETRY VOL. I1 

n < 2  

t =o to t=a 

n=2 

t=O to t=m 

t=a 

ly unrealizable) 
range 

FIG. 2.39 Some cross sections of surfaces which produce 
irradiance fall-off like l/rn (see text). 

Y 
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The surface S(n) inducing Radius of 
curvature at 

vertex n Hr = C/rn 

Several general concluding comments can now be made on 
the problem of the inverse nth power law for irradiance. 
First, there is the constantly recurring use of or reference 
to the integer 2 throughout the most general of the preceding 
discussions. Observe how critically 2 enters into the fol- 
lowing tabular classification of our main results: 

Range of 
Val idi ty 

Table 2 

0 

1 

Curve with half-angle 0 (= O/Za) r 2 a  

Paraboloid of revolution 1/2a r z a  

eo = */2 (Fig 2.36 (c)) 

(Fig. 2.38) 

n 

1 '  I I I 

r = - r ~ a  0- nth order luxoid n/2a 
(Fig. 2.39 IC)) 

I I 2 1 Sphere (Fig. 2.38) I l/a (= 2/2a) I r z a  

-3-1 3rd order luxoid 
(Fig. 2.39 (c)) I 3'2a I r0zr2a I 

In this classification we encounter classical euclidean sur- 
faces for all n, OencrZ, but a definite break occurs at 
n - 2, as has been repeatedly evident in the curve-tracing 
discussion above. All this is apparently closely related to 
the fact that we live in a three dimensional world, or at any 
rate, the radiometric laws above are represented most natural- 
ly in euclidean frames of dimension 3. The three dimensional 
geometric frame has been used implicitly throughout our dis- 
cussions. We are thus led to conjecture that radiometry in a 
two dimensional world would have a ubiquitous inverse first 
power "irradiance" law and radiometry on a line would have 
its inverse zero power irradiance law. It is interesting to 
speculate on the theory and utility of k-dimensional geometric 
radiometry in which very likely the "irradiance" in such a 
geometry will obey an inverse k-1 power law, and to contem- 
plate the potentially rich multiplicity of irradiances, sca- 
lar irradiances, and radiant intensities and their manifold , 

interconnections latent in such geometries. Were the dualities 
brought out between irradiance and radiant intensity in the 
preceding examples are likely to attain their deepest and 
broadest meanings. These observations are commensurate with 
the conclusions, already brought out in the studies in Sec. 
99 of Ref. [ZSl], that radiometry and radiative transfer are 

1. 
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init inward normol 
to collector 

er t ical radiance 

(b) 4 k (unit inward normal to 

plone of 
collector\ 

rotated radi 
listri bution 

" 

FIG. 2.40 Some calculation details for irradiance from 
elliptical radiance distributions. 

I 
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E= 0.23 
i-- 
i 

FIG. 2.41 Some representative irradiance dist~ibutions 
The Hge) associated with eflfptical radiance distributions. 

points are calculated f m m  148), 
cles, showing a possibh ~ ~ ~ ~ ~ ~ ~ ~ c a ~ ~ ~ ~  of (48) ~ Q P  snginesr- 

The solid curves are CBP- 

ing calculation purposes. 

Thus, the nearer E is to 1, the greater is this ratis. The 
ratio sf zenith ~~~~~~~~~~ eo nadir [up#ard? radiance is: 
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where :(e,$) is the hemisphere S(E), as shown in part (a) of 
Fig. 2.40. This range of integration in (43) may be given 
explicitly : 

where e(@') is the angle between k and E', i.e., the variable 
direction of integration in the collector's plane which has 
azimuth $ I .  @($I) may be determined from the functional re- 
lation: 

O($') = arc cot I-tan e cos ($-$')I . (45) 

Thus, e.g., if 8 = 0, e($') = afc cot I O )  = w/2 for every $ I ,  

0 s  @ s2n. Eq. (43) can be put into a more convenient form by 
using the fact that, as far as the quantity H(x,e,$) is con- 
cerned, it is immaterial whether, on the one hand, the col- 
lector is tipped in the frame of reference of the radiance 
distribution as in (a) of Fig. 2.40; or on the other hand, 
the collector is held still and the radiance distribution is 
appropriately tipped in the frame of the collector as in (b) 
of Fig. 2.40. The computational merit of the arrangement in 
(b) is superior to that in part (a) of Fig. 2,40, and we shall 
adopt it in the present illustration. The salient change re- 
sulting in this switch of points of view is in the functional 
form of N(x,e',$'). Indeed, a glance at (a) and (b) of Fig. 
2.40 shows that the "vertical" radiance distribution in part 
(a) has undergone a rigid rotation to the "tipped" form in 
part (b), and rotated about the vertical axis so that k goes 
into the unit vector whose angles are (e,"+$). 

its new form Nr(x,O1,$') constitute a simple exercise in ana- 
lytic geometry and are left for the reader to formulate (re- 
call (18) of Sec. 2.5). The resultant form is: 

The details of the transformation of N(x,e',$') into 

N N'(x,e',)'] = 
1 + €(-sin e sin 0' cos $' + cos e cos el) 

(46) 
in which we have set $ = 0 since the desired irradiance 
H(x,e,$) is independent of $ for the present radiance distri- 
bution, which is assumed symmetrical about the vertical. We 
can partially check (46) by letting = 8 and $' = n. The 
resultant radiance is: 

N'(x,B,ar) = N/(l+€) 
which is precisely the magnitude of N(x,O,$), as was to be 
expected. Using (46), it is clear from (b) of Fig. 2.40 that 
the desired irradiance H[x,e,$) is given by: 
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The net downward irradiance is therefore: - 
H(%) = M(a] - H(0) 

which ks positive for all E, 0 4 E C 1. E(%) is the magnitude ' 
of the vector irradiance 1[x) associated with (4E). The di- 
rection of a(x] is evidently -k. It may be verified directly 
from (48) tha-t: 
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H(B) = R(t) cos $ 
where we have written 

"ii(B)" for il(0) - ll(+) 

and 
"$" for n - 8 

Equation (52) is a specific example of (16) of Sec. 2.8. 

ted since the elliptical radiance distribution becomes spher- 
ical as E+O, and as we now know, a spherical radiance distri- 
bution of magnitude N, induces an irradiance rN. This fact 
about the limit of H(0) as E*O may be seen relatively readily 
for a special case by letting E*O in (49). Indeed, expanding 
ln(1-E) in a power series in E, we have, for very small E, as 
an approximation ; 

Observe next that H(B)**N as E+O. This is to be expec- 

H(n) = 2aN ( 
2 3 4  

whence : 
Fi(n) = 4TEN/3 

The scalar irradiance induced by the elliptical radi- 
ance distribution (41) is also of interest. Using the repre- 
sentation (41) in (3) of Ses. 2.7 we have: 

I 

I i 

where we have written, ad hoc: 

"h(E)" for h(x,t) , 

Note that: 
lim h(E) = 45rN . 

E+O 

For small E, we have, very nearly: 

h(E) = 4rN [I + $1 . . 

Comparing (53) and (51) we see that: 



which illustrates [9] of See. 2.7. In the two-flow theory of 
Tight fields, t~ be studied ia Chaprers 8 and 9, the f ~ l l o w -  
ing ratios are af interest in that thesay (see also f[3;0] of 
Sec, 10.7): 

h(c,-)bH(n) - E: In(l-€)/(E*ln(l-E)) 457) 

h(E,+)/H(O) ’E In(l+€)/(e-Pn(l*el) (581 

These ratios cmstitute convenient measures 0% the “‘collima- 
tedness” af the elliptical radiance dfstributisn. Thus for 
the case E = 0, the distribution is spherical and the very 
antithesis sf sollimatedness. In this case: 

Pian h(e,-)!H(~) = 2 . 
B - 4  

A similar limit, namely 2, holds for h(c,+)/H[O). J A  the 
other extreme, i.e., whem e is near l s  the elliptical distri- 
bution of downward flux is relatively cel%imated. In this 
case: 

lint h[~,-)$H(r) L 

On the other hand, and ~ o ~ ~ w ~ ~ t  unexpectedly, the u g ~ a ~ d  pa- 
diancs approaches a certain shape for which: 

B+tl 
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lim h(E,+)/H(O) = In Z/(l-ln 2) . 
E'1 

Equation (48) is plotted for the four values of E given in 
Fig. 2.41. The plots of 2H(e)/ZaN are shown in the lower line 
of that figure. 

Example 14: Irradiance from Polynomial 
Radiance Distributions 

The preserit example is assigned the task of developing 
a generalization of the elliptical radiance distribution con- 
sidered in Example 13, and of developing a formula for the 
associated irradiance distribution. The main lesson of this 
example is one not of importance to radiometry per se. Rath- 
er, it is designed to bring to the reader's attention the fact 
that many of the techniques of classical polynomial and power 
series theory are available to help obtain analytical repre- 
sentations of the radiance distributions measured in nature 
and on which, in turn, one can base practical methods of com- 
puting the associated irradiance distributions. 

Suppose then, that an empirical radiance distribution 
N(x;) can be represented for each 8 and 4 by the following 
polynomial in cos 8: 

N(x,e,+)n = 2 ajPj(cos e) (59) 
j=O 

where Pj(c0S e) is the tegendre polynomial (in cos 6) of the 
first kind and of integra$ order j. The number n may be fi- 
nite or infinite, as required. Here we are assuming that 
N(x,-) is a radiance distribution symmetrical about the ver- 
tical but of a form which has a quite general 8-dependence. 
As in the case of the elliptical radiance distribution in Ex- 
ample 13, we can use the fact that the irradiance produced by 
N(x,8,4) in (59) depends only on the angle 4 between its axis 
of symmetry and the inward normal to the collecting surface. 
Therefore we can use the results of this example, without fur- 
ther effort, to compute irradiance on any collecting surface 
when the angledbetween the axis of the symmetrical distri- 
bution and the unit inward normal to the collecting surface 
is known. Hence the assumption of the form (59) constitutes 
no loss of generality in this sense, 

We first observe that the coefficients a are readily 
determinable from the tabulated data N(x,B ,$) . 'Indeed, using 
the orthogonality properties of Pj(cos e), we have from (59) 
(and cf. (3) of Sec. 6.3): 

r 

N(x,e',@')Pk(cos 0') sin 8' de' d+' 
I 
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Equation (60) takes the relatively compact fcm: 

I 

where e.f is the angle between the directions (6s,48) and (e,$j. 
The preceding integral can be t~ansfof~~ted into an alternate 
form by adopting the technique used in Example 13. 
12.40 (b).) Thus Equation [BZ) tan be written: 

(See Fig. 

I (633 

and which may be viewed as the presen% counterpart of ($71, 
wherein: 

CQS d' Sin 8 Sin 5' COS 4 COS 8 COS @@ . 
Equation (63) now stands in a form which is readily evaluable. 
Toward this card, observe that the sum of Legendre pofymomiaH 
t e r m  can be written in the formar: 
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I I 

where the numbers b,, j= 0, ... , n, are obtained by expanding 
each P.(cos 4') in the left side of (64) in powers of cos++') 
and collecting together like powers of CQS ' . Each "b," 
therefore denotes the coefficient of c o s I ~ '  so obtained. 
Hence from knowledge of the aj, the numbers bj are readily 
computed. Tables of Legendre Polynomials are available for 
the determinations of the bj. 

Next write, ad hoc: 

Then for every j , 1,. . . , n 

(cos d')J = (x cos 9' + y)J 

i = O  

where "JCifr as usual denotes the combinatorial coefficient of 
the ith term in the jth power of a binomial. Using this 
expansion in (63), with the help of (64) we can rearrange 
(63) to read: 

H(x,~,@) = 

Observe that: 
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where 

Observe that: 

where ''r(zQsQ once again denotes the waaue sf the gamma func- 
tion I" at z. 
the latter integral. Henee: 

Lst us write p'J,;q' for the product aF Hij and 
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j+l)/j + 1 
n 

h = Z n z b j  (1 - (-1) 
j SO 
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(68) 

and 

Y(8)" for H(x,8,$) , 

then (66) becomes : 

VOL. I 1  

This is the desired formula for the irradiance distribution 
associated with the radiance distribution in (59). Observe 
that the numbers 1Cj Jij are evaluable once for all, so that 
to use (67) with particular radiance distribution N(x,*) it 
is required only to evaluate the ak by means of (61) to the 
desired degree of accuracy, and to obtain the bk using.(64). 
It is left as an exercise f5r the reader to evaluate 'CjJij 
and to obtain explicit formulas for the bk in terms of 
the ak for the first few values of k = 1, 2,:.., n, and to 
make a list of th&m so that the use of (67) is reduced to sim- 
ply finding the ak for each new application. 

sociated with a radiance distribution N(x,*) of the form in 
(59) is given by: 

The reader may verify that the scalar irradiance h as- 

We close this example by observing two special cases 
of the polynomial distributions. First we note that the set 
of polynomial radiance distributions discussed above contains 
as a special case the elliptical radiance distribution of Ex- 
ample 13. To see this, in (64) choose the a subject to the 
condition that : j 

b .  = (-E)" J 
for every integer j 2 0 ,  where O ~ E ~ I L ,  and where N is a non- 
negative number. Then: 

OD 

N(x,B,$) = N ~ ( - E  cos 
j =O 

= N/(1 + E cos e) , 
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Example 15: On b%e Fo?rmza% Equi.valence sf Radiance 
and Irradiance! Uistributnons 

ric comepts is concluded with B discussion of eke theoreti- 
cal possibility of reversing the usual path between radiance 
and irradiance distributions. Ye e h Z 5  sdsou thae, given an 

to dadepee tkre asecsaicrted radiance dis%rtbution N[x2*). This 
course of action io the reverfie of that taken in the various 
Examples above, aiad in the discussion of Sec. 2.5. The theo- 
retical and experiasntal significance of this re:yers,~B of the 
usual ~~~~~~~~~~~ prseedum was touched on briefly. in Sec.2.5 
whereiw also a practical scheme for obtaining N(x,*) from 
N[xI*) was suggested. The main purpose of this example is to 
show that this reverse path is possible not only on aa nmsri- 
IXL IeweP, but also on an exact. Punstior~-thesreric level. 
This is tantmount to showing that (8% of Sec. 2.5, when 
viewed as an integral equation with unknown N(xI-), has a u- 
nique solution in terms of the irradiance! distribution H(x,-). 
We shall discuss this point of view in detail, as it affords 
an opportunity to illustrate how the use of advanced vector 
space concepts can facilitate the solutions of certain radio- 
metric problems. 

1EoPlcsws: Given: the irradiance distribution H(x,*) at a 
point x in 8x1 optical ~~~~~~~ RequCmd: the associated radi- 
ance distribution N(x,-), NOW, for every direction 5 and 
paint x we Iaave, by (8) of Sac. 2.5: 

The present sequence of illustrations of the radiomet- 

ippaaiaaca ~ ~ e w b u t i ~  H(X,Q~ it is p ~ s ~ i ~ t e ,  ta p ~ ; n c i p ~ e ,  

We caw phrass the present problem in precise terms as 

Let us write: 

ive sal1 CCx] the cosine o p e ~ a t o ~ ,  fog. obvious reasons. 
(69) can be written as: 



144 RADIOMETRY AND PHOTOMETRY 

!!.kd- = N(x,-) C(x) , 
2n 

VOL. I1 

where "N(x, .)C(x)" means: "operate on the radiance distribu- 
tion N(x,-) by Substituting N(x,.) into the square bracket of 
the integral operator C(x)." For example, if at point x, 
N(x,*) is a uniform radiance distribution with magnitude N, 
then for every 6: 

Up to this point in the present example our delibera- 
tions have been relatively elementary and were without excep- 
tion motivated by physical intuition. Rut now when we ask: 
"Can we determine N(x,-) knowing H(x,-) and C(x)?", we leave 
the domain of physical intuition and are asking a purely math- 
ematical question. Perhaps even in this general radiometric 
setting some reader may see a physical reason for an affirma- 
tive answer to the query. For instance, by starting with the 
simpler setting in (21) of Sec. 2.5 and by letting the number 
of equations of the type considered there increase indefinite- 
ly and by being assured at each step along such a course that 
N(x,-) is determinable from H(x,-1, perhaps by following such 
a line of thought one can be convinced of the general deter- 
minability of N(x,*) from H(x,*). Indeed, it is most desir- 
able that some assurance be generated in such a manner. But 
at the present moment we are confronted by a mathematical 
question and in view of its important relevance to applica- 
tions we prefer to settle it using now the rules of mathemat- 
ics. 

a mathematical setting in which the question suggests some 
further action toward the present goal. The appropriate set- 
ting is obtained by considering the s e t 7  (x) of all radiance 
distributions at point x. Next we observe the interesting 
fact that the sum of any two such radiance distributions is 
again in the set T(x). For example, if N(x,*) and N'(x,-) 
are in q(x], then the function: 

To begin to answer the preceding question we generate 

N(x,*) + N'(x,*) 

is in T(x) and by definition assigns to each direction 5 at 
x the sum N(x,() + N'(x,C) of the two radiances N(x,C) and 

x 
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'This may be taken as intuitiwaly obvious at this poirat of 
the exposition. FomalSy, it is a consequence 0% the inter- 
action principle of Chapter 3. 
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C(x) 
ance distribution N(x;) which, by (70). yields up H(x,.). 

deed one-to-one when restricted to 'q'[x) and we find its in- 
verse C-'(x) as follows. We begin by observing that: 

is one-to-one we are encouraged to find that unique radi- 

It turns out that the linear transformation C(x) is in- 

- 1  
2 

- -  

For our present purpqse, 

'1 I f (x , - ) I 

h(x) * 

let us write: 

. 
where f(x,-) is in V(x). In particular, if f(x,*) is inT(x), 
then f(x,*) I is the scalar irradiance associated with a gen- 
eral radiance distribution f(x,-) at point x. The main thing 
the preceding calculation has shown is that: 

(72) 1 IN(x,*)c(x)l = 7 IN(x,.>I . 

The significance of this equality for the present discussion 
is crucial, and we pause to make this significance clear. 
The significance becomes clear when it is pointed out that the 
scalar irradiance h(x) acts as the "length" of the vector 
N(x,:) in V(x). Indeed, the bars around "f(x,*)" in the def- 
inition above are there to point up the easily verified fact 
that If(x,-)l is analogous to the absolute value of a number 
or vector; and it may be shown that all the essential proper- 
ties of length that we carry with us from euclidean space hold 
also fop the numbers IN(x,*)I. We call IN(x,*)I (i.e., h(x) 
in this case) the radiometric norm of N(x,*), to point up 
this similarity between N(x,*) and the usual concept of norm 
or length of a vector. 
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The significance of (72) can li;o'zs be stated: the Binear 
transfcmmatkaa G[x] has the property that it maps a radiance 
function into one which has exactly half the norm (i.e.# 
"Pength") of the original rkdiance distribution. In short, 
C(x) has the ~$5~)12 eomtraeding property with contracting factor 
%/2. The ~ ~ t h ~ ~ ~ ~ ~ ~ ~ ~  consequence of this fact is immediate: 
we now can use the well lclags~d~s norm-coatxastiag theorein of vec- 
tor space theory, as skatedp e.g., in Ref, [2Sl] for the radi- 
ative rransfer context, to assert that: the inverse C-r(x) of 
CgX] eXiStSp @.and the%, ~~~~~~,~ 

where 1 is the identity transformation, i.e., 

P(XI')I = f(x,*) 
far every f(xtg] in v(X). ahis iderutity tPansformatioA Can 
be written as an integra1 operator. Thus if we write: 

*'I*' for 1 h 16CE-E'B dQ(tV) 

it may be verified that 1 is the identity operator on V(x] 
whenever 6 is the Dirac delta function (on the space with n as 
measure). Thew if we go on to write: 

we hawe the equivalent form for (73), where 

U(x) 0 [x-c(x,) 

and 

m I 

j =O 

and r--------- 1 

where, in turn, we have defined D'(x) recursively by writing: 
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"U~(X)II for I , 

and for every positive integer j: 

~~DJ(X)~I for DJ-'(X)D(X) , 

and where, finally, ."llJ-l(~)D(~)" denotes the customary inte- 
gral operation on Dl-l(x) as an integrand in D(x). Equation 
(74) yields the requisite inverse of C(x), and the solution 
of our present problem is summarized in (75). 

Ref. [251] we actually need the fact that I-C(x) is a norm- 
contracting operator. The reader may now easily verify that: 

Observe that to use the norm-contracting theorem in 

1 JN(x,*) (I-C(.))l = T BN(x,-)I I 

so that I-C(x) is, indeed, norm-contracting with contracting 
factor 1/2, and the norm-contracting theorem statement yields 
(73) and hence (74). 

involved in (74) (namely, Dirac delta functions, and two-di- 
mensional iterated integration) the algebraic essence of (74) 
is identical to that of the formularused by every high school 
student summing a geometric series of the form: 

Aside from the relatively advanced mathematical objects 

( I - ~ )  + ( I - ~ ) Z  + (1-x)3 + ... 
whose value is clearly I/x and where x is any number with ab- 
solute value less than 1. Now, instead of squaring (1-x), Le., 
multiplying (1-x) by itself, we are required to operate with 
I-C(x) on itself. Thus, e.g., 

N(x,.) (I-C(x)) * = 

To obtain the form for (I-C(x)I2 itself, simply remove 
"N(x, *)'I and "N(x, E)" where they occur in the preceding equal- 
ity. Thus, as in the case of computing the "fraction" l/x by 
using solely multiplication, addition and subtraction repeat- 
edly, so too can we compute "l/C(x)", i.e., C-'(x) using solely 
integration, multiplication, addition and subtraction, repeat- 
edly. The norm-contracting theorem states that by continuing 
sufficiently far, C-'(x) can be arbitrarily closely approxi- 
mated. 

C-'(x) in (74) at the kth term may be readily computed. Thus, 
write, 

The error engendered by stopping the computation of 
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The reader may use as specific; 

m 

eases in (75) the formulas for 
~ ( x , e ~ $ ~  in ( S S ~  ana (is?) 0.6 Examples 1.3 and 14 in order to 
recover the associated radiance distributions of these exam- 
ples. These will afford non trivial examples of (75). 

We slase this discussion with s5me general assertions 
to which one is naturally Ped after contemplating the lesson 
of the present enanple. The assertions concern the possibil- 
ity af still further equivalences between radiance and other 
radiometric concepts which are natural generalizations of the 
concept of irradiance. Rscgll that irradiance was defined 
empirically by specifying as m a l l  plane surface S onto each 
point of which radiant 51uw could be incident within the set 
ZCS), shere E is the unit inward normal to S. If now we re- 
place E(Z) by any fixed conical set D(E) 0% directions of p s -  
itive solid angle content specified in some way with respect 
to 5, then the generalized irradiance distribution H(xtD(*)), 
3s defined in (4) of See. 2-4, is equivalent to Ngx,*) in the 
same sense that kS(x,-] and N(x,e) were shewn to be equivalent 
in the present example, This is the first assertion to which 
we are led. Its proof is left to the rea de^. 

The lesson 0% the present example cap1 be carried still 
further than the point reached in the preceding paragraph. 
Let Y S S ( X , ~ ) ~ ~  &note a coile~ting surface s which is a convex 
surface of revolution of fixed shape and size whose location 
and oraentation in an optical medium X are uniquely specified 
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FIG. 2.42 A diagram of a radiometrically adequate collec- 
tor. How many of them are there? (See text) 

by locating a fixed point x on (or within) S and giving the 
direction 5 of the sensed axis of revolution of S. A typical 
surface of the type S(x,E) is pictured in Fig. 2.42. Let SI 
be a proper band of latitude circles on S, i.e., such that SI 
has positive area and such that to the points X I  of each lati- 
tude circle C' of SI there is assigned a right circular cone 
D(x') of directions whose axis direction 5' lies in the plane 
of x' and E and makes a given angle with E, and of common pos- 
itive solid angle opening B(D(x')). We shall require that 
the values 5-5' and Q(D(x')) are fixed for the points x' on 
each latitude circle C' on SI but may vary from circle to cir- 
cle on SI. Let XCx) be the spherical region swept out by 
S(x,€J as x is held fixed and 5 allowed to vary through all of 
E. Finally, assume that a general radiance distribution of 
fixed structure is defined at each point within X(x). Then 
if "P(S(x,5])" denotes the radiant flux collected by S for B 
given x and 5, we make the following plausible assertion with 
the above conditions in mind: For every point x in the opti- 
cal medium X, the radiance distribution N(x,*) is equivalent 
to the Padiant flux dietribution P(S(x,-)) in the 8en8e that 
there is a one-to-one integral opepator E(S,x) such that: 

P[S(x,*)) = N(x,*) E(S,x) (76) 



The preceding assertion clesrly contains the i.rr8diancs asser- 
tions above as special cascs. For examp1e, 10% S be ip plane 
circular surface of positive B T ~ ,  with unit inwsrrd normal L 
and cantor x. 1.er 5' be one sido sf s such PElaX D d x ' )  " a(G1 
fur every x p  in Ss. 'Them under the conditions of the prcsrd- 
irng 1SSrertiT9W, we have. 

PISb,tI) = H(x,b;l AQs) Y 

so that, according to [?$I and (76) : 

ECS,a] = 23C(x] A(§] p 

where A(S) is the area oP the plane circular surface S. 

ent in (701 and (76); however, they will suffice for the pres- 
ent to 5bow that these is an infinite class of radiametric 
functions each naaambe-s of which is equivalene to the radiance 
function in the sense af there being a o~e-to-one linear t m s -  
fornsatiora between the vector spaces of radiance distributions 
and radiant flew distributions sf such functfons. Let us say 
that an arbiarary conwex s;ur%ace S is a radiasstricatty nde- 
qreate c o t Z c m h ~  in an sptisak mdiunn X if its associatad radi- 
ant f l u  distribu%ion P(S[x,*]) is equivalent, in the sense 
of the present example, to Wgx, for every point x in X. We 

Eerestsd readers: Charoatxr$ss &he acstlb: generat etcsse of pa- 
diometriadZZy adequate cottoetom. (dn CJ%-~SP oords: gioe 

~ a d ~ ~ m e t k $ ~ a Z Z g  adoqaeca%@ 6stEaator.l Ma? hawe shown in the 
present example that p E a m  circular 5urface9, and more gener- 
ally, have conjectured that swfaces of rev~~lurien such as 
cyliinders, spheres, hemispheres, spherical caps, prelate and 

lectors. It is certainly clear, at least intuitively, that 
the class of radionetrically adequate callectors is quite 
large and could, under suitable qualifications, contain sur- 
faces not necessarily surfaces sf revolution, such as the 
Platonic "solids", rectangular parallelepipeds, convex sur- 
faces, and even certain non convex surfaces. However, nrsn 
convex surfaces introduce self-interreflection complications 
which cannot be handled until! the interaction. principle (Chap- 
ter 31 has been studied, and therefore ~ O T  the present at any 
rate, will be omitted fram the psoblen stated above. 

These exc%aplcs do no% exhaust the possibilities inher- 

close this example with the fsklawing problem directed to in- 

eke tp40e638QP3 @ad 5l,lffi@5@%l? QQfditiOtpd Q 8UPfc%O% s be Q. 

Oblate spher~idl~, &tC., Can be radiometrically adequate COl- 

2.12 Transition from Radiometry to Photometry 

The concepts sf classical photometry, to which we turn 
our attention in this section, are designed to give quantita- 
tive measures of the capability of radiant flux to evoke the 
sensation of brightness in human eyes. These measures all 
rest in the single concept of the standard tminclsity funstion 
the key concept in the science of photometry. Photometry is 
principally concerned with the precise description of and the 
deductions from the relative visibility af ~ o ~ o c h ~ ~ ~ ~ t i ~  radi- 
ant flux as a functian of wavelength and 8s esbedied in the 

6 
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standard luminosity function. The depth to which we shall 
study photometry will be only so far that the reader may gain 
an insight into the principal features of the subject and a 
competence in working with photometric concepts, in the forms 
they commonly occur in the study of applied hydrologic optics. 
Such interesting problems as the physiological basis of color 
vision, which lie at the base of the subject, transcend the 
scope of the present discussion. 

tometric concepts by means of hypothetical experiments de- 
signed to acquaint the reader with the main empirical features 
of photometry. The experiments described are to be understood 
as didactic devices and as such omit the wealth of detail re- 
quired for the implementation of their real counterparts. 
Once the essential idea of the transition has been explained 
and the transitiori made from the concept of radiance to that 
of its photometric counterpart, luminance, then we shall em- 
bark on a systematic transition to geometrical photometry and 
compile our results in compact tabular form suitable for con- 
venient reference. 

We shall initially motivate the transition to the pho- 

The Individual Luminosity Functions 

Figure 2.43 depicts an observer viewing a screen in a 
well-lighted room. The screen is divided into two equal 
areas, and is devised so that on the left half a radiance of 
fixed amount N(Xo) of fixed wavelength h, is constantly dis- 
played throughout the experiment. The magnitude of N(A0) is 
chosen comparable to daylight radiances. The right half of 

FIG. 2.43 A schematic setting for the empirical deter- 
mination of the individual luminosity function. 



%or every 4j in 6., and c.a7a$ yeair*) %he 2uiiainoeit;y funcdian 
fop ob5.sr~oar aj-. The w a % w  T(ai,aj) is called the Lunrinasity 
of the w~~~~~~~~~~ k j *  as judged by  observe^ ai. 

Matters have been arranged (on the basis of earlier 
experiments with nkservez a s ,  not recorded here) so that wave- 
length 1, was the wavelength of maximum luminosity for obser- 
ver ai. To see what this ~ ~ B I I S ,  recall that N(ai,Xj) is 
chosen to be of such a magnitude as to rnrotch N(X,) in its 
capability of evoking the sensation of brightness. Since 
N&), the radiance with wavelength Xo of maximum luminosity 
is fixed in magnitude, all ather radiances N(ai?Xj) must then 
be increased to give the same brightness sensation to ai as 
did the radiance #(X,?. Hence; a plot of B(ai,A.j) versus Xj  
for each observer ai ~n A will have a graph of the general 
form in Fig. 2.44, At A j  A,, y(aieAo) = 1, Far every other 
X., y(ai,kj) 
~BserOrer to observer, let us write, aBternativsly, ~~i,(ai)" 
%or the xo sf 0bsarPver ai. 

1, TO point up the fact that A, varies from 

Once each observer i.11 the experimental group A has 
been assigned Q luminosity Pdnction, this information could be 
used to predict the subjective sensation of brightness OB a 
given sample of monochromatic radiant flux in the following 
sense. Suppose that observer ai encounters a radiance of mag- 
nitude N()cj). 
would cappear to him to have the same "brightness" as a s m p l a  
of radiant flux of wavePength ioQai) and radiance: 

Then by (1) we can predict that this radiance 
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FIG. 2.44 Some individual luminosity functions (sche- 
matic only) a 

, 
The, term follows very simply and logically from (1). But the 
interpretation of this term, as just stated, ie not oompetled 
to fotlow from (1) by the taws of atgebra. 
pretation we must first make an assumption (preferably expli- 
citly) that the subjective sensatiom of brightness that can 
be produced by a radiance N(Aj) varies Zineerty with the mag- 
nitude of N(Aj). 

' sensation 
diant flux of wavelength A. and of double the radiance 
N(~:)~(ai,Aj). The reasonableness of this Qssumption rests 
cnihcally on the stability of a-'s luminosity curve with re- 
spect to the absolute magnitude o$ N(Xo(ai)) used in the ex- 
periment, and on the general lighting level within the experi- 
mental room. Actual experimental evidence indicates that the 
luminosity function for ai is dependent to a measurable degree 
on both N(Ao(ai)) and the background radiance. The description 

To make this inter- 

Thus if we were to double N(Xj), then the 
would be the same as that produced by viewing ra- 

x 



is the requisite radiance. Mowever, there appears to be no 
experimental evidence t~ substantiate this attempt, although 
practical ca1culations based on (3) and physiological eye- 
mechanisms tend tsr lend s m e  support of (3). In the absence 
of such experimental evidence and in the presence of a desire 
to progress to a scientific discipline, we must make an explid 
cit assumption to the effect that: the rodiame of taavetength 
Aojaij capable o j  prwdueiatg the Same senlaation of b~Zghtnes8 
BB a m<tture oj@ CUCI radiances of wavslungtks Xj cmd Aha ira 
given by (3) oboia. Clearly this is a$. generalization of the 
linearity assmption above, the earlier form being obtaified 
by setting Aj = ike 

valent radiance of wavelength A,, as it should preferably be 
called)--is made, the path toward a sound basis for the sci- 
ence af photometry is cleared of one further obstacle. In- 
deed, it is but a fsrrnal step from (3) to the following gen- 
eral definitiran for the relative luminance distribution 

Once the preceding assumption- - (or dejg.;n6tion of equi- 
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associated with a radiance distribution at a point x in an 
optical medium: Let N(x,*,t,X) be the radiance distribution 
at x at time t for wavelength X. Then the associated relativu 
twninanas distributioti with respect to observer ai is the 
function ; 

I" 

e 
which assigns to each E at x at time t, the relative ZumCnanw, 
with respect to a,i, of the integrated radiance distribution 
1, N(x,=,t,X) dX. We shall denote the latter by 8tN(x,-,t,A)1'. 

A minor technical point should be noted here before 
going further, a point which concerns the integration of radi- 
ance with respect to waueZength A rather than frequenay v. 
It will be recalled that the basis for integrating radiance 
over the spectrum of frequencies was established in Sec. 2.3, 
and that the possibility of such an operation is guaranteed 
by the additivity and continuity properties of 0 with respect 
to frequency (cf., (I) and (2) in Sec. 2.2). By noting that 
vX - v implies dv = -(v/X2) dX, each integration with respect 
to v can be cast into an integration with respect to A. (See 
note(c) to Table 3 below.) Whenever such a change of varia- 
bles from v to A is made, we assume that the factor -(v/X2) is 
suitably absorbed in the radiometric symbol, and the dimension 
of the radiometric concept, e.g., radiance, as far as the fre- 
quency component is concerned, is tacitly changed from "per 
unit frequency length" to "per unit wavelength". 

the fashion of the interpretation of (3). A straightforward 
extension of the interpretation of (3) is the following: f?r 
a &van direation #, (41 is the amount of monochromatic radt- 
ancu of wavelength Xo(ai) which would produce an equivalent 
8un8ation of brightness in the b r a h  of observer ai a8 oould 
the integrated radiance N(x,S,t,A), where A is the entire 
wavelength (or frequency) spectrum. In view of the preceding 
observations, in the definitions (4) of Sec. 2.5, one can re- 
place "F" by "A" and have: 

Returning now to (4), we attempt to interpret (4) after 

m 

N(x,#,t,A) = IN(X,E,t,X) dX , 
0 

by virtue of (4), Sec. 2.3. It is to be particularly noted 
that the preceding italicized interpretation is a format inter- 
pretation with no known empirical basis--except for the sin- 
gle case where the given radiance distribution is monochro- 
matic. 

With the preceding interpretation of (4) in mind, we 
next return to (1) and emulate that definition in the present 
heterochromatic setting of (4). Thus, we write: 

m 
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The Standard Luminosity ~ u ~ ~ ~ 2 i o ~ $  

We now re-examine the Emily of individual relative 
luminosity functians, dapicxed in Fig. 2.44, and attempt to 
define a singie Pwninoritpr function which is representative of 
the entire set A of individual observers. There are several 
ways to go about this. For example in one method, we can go 
through the set of graphs of Pig. 2.44, note each xo(ai) and 
make ia histogram, over X in A, of the number of observers 
whose maximum luminosity occurred at wavelength A. A typical 
histogram that would rezta%t is shown schematically in park (a] 
of Fig. 2.45. All indications In real experiments and theo- 
retical considerations point to a gaussian distribution far 
the ideal limir of such histograms as the number of members 
in the set A increases indefinitely. The peak of the distri- 
bution is found in actual experiments tea occur near a X of 
555 my. Next, n general wavelength A is selected and the 
graphs of Fig. 2,44 are combed through with-the specific goal 
irn mind of finding the spread of values of y(%ris.)b? over the 
ai in A. This spread of values is then split up into inter- 
vals. Bart (b) of Fig. 2.45 depicts a typical histogram with 
the abscissas locating the observed values y(ai,A9 occurring 
owe+ the selected set of intervals, and the ordinates giving 
the number of ai in each interval. Part (b) af Pig. 2.45 is 
adapted from Fig. 3.133a of i%xmqs treatise Q B ~  Illuminating 
Engineering (Ref, [185]9, which in turn is dkrivsd from actual 
experimental results by Coblent2 and Emerson who gathered 
data from a set A of 125 observers. By means of (bj af Pig. 
2.45, the relative luminosity value of 0.1750 Is assigned to 
the standard observer for A = 6463 mu. 
by repeating the process sumiarieed in (159 of Fig. 2.45, now 

By going through the entire spsctr1m in this way--i.e., 
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No. of 
ai with 
XJa 1) in 
X intervol 

555 x 

NO. Of Oi 
with 9(ai,X) 
for X=64Qrnp 

FIG. 2.45 Towards determining the standard luminosity 
function 7. (From [185], by permission) 

for each A in a selected range of A's through A--the desired 
standard luminosity function is obtained. A graph, to scale, 
of the standard photopic tuninosity function j=(*) is given in 
Fig. 2.46, and a tabulation of 7(*) is given in Table 1. A 
more detailed tabulation of the values Y(A) over the visible 
spectrum is given in Ref. [SO]. 

means of individual luminosity functions y(ai,*) can be re- 
peated line for line for the standard obeerver a. Thus, 
wherever "Y(ai,*)" appeared, we can write "y(a,-)'I or, more 
simply, "y( *)'I, for the standard photopic luminosity function, 
and where "a"stands for the hypothetical standard observer (a 
creature who shares the same corner of conceptual reality with 

Now, all that we did in the preceding discussion by 



FIG. 2,46 The solid curve depicts the standard photopic 
luminosity function for daylight adaptaticn. 
scotopic luminosity function (bar dark adaptation) 
dashed. 

The standard 
is shown 

such entities as the "average American male, age 30"). Spy- 
cifically, we can now make the following definition which 4s 
one of the principal definitions of photometry: 

ometry (radiance, irradiance, radiant intensity, &e.) defined 
on the part M of the spectrum A. a o w %  
where we have written: 

Let A be any radiometric concept of geometrical radi- 

for the e$anda,nd obae,ver is the number y[& ,M) 
The aetaltCoe Zuminosity of 

"v( & , M) I' for (7) 
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TABLE 1 

The StandaYd Photopic Luminosity Function 7(*9 
and its Indefinite Integral 

390 
400 
4 10 
420 
4 30 
440 
450 
460 
470 
480 
490 
500 
510 
5 20 
530 
540 
550 

560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
7 20 
7 30 
740 
750 
760 

1. x 10-4 
4. 
12. 
40. 
116. 
230. 
380. 
600 e 
910. 

1,390. 
2,080. 
3,230. 
5,030. 
7,100. 
8,620. 
9,540. 
9,950. 

9,950. 
9,520. 
8,700 
7,570. 
6,310. 
5,030. 
3,810. 
2,650. 
1,750. 
1,070. 
610. 
320. 
170. 
82. 
41. 
21 e 
11. 
5. 
3. 
1. 
0. 
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390 

0 x 16" 
2 
5 

17 
57 

783 
1,383 

173 
403 

2,293 
3,683 
5,763 
8,993 

14;023 
21.123 
29; 743 
39,283 

49,233 
59 , 183 
68,703 
77,403 
84,973 
91,283 
96,313 
100,123 
102,773 
104,523 
105 , 593 
106,203 
106,523 
106,693 
106,775 
106,816 
106,837 
106,848 
106,853 
106,856 
106,857 

P 
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x l o ~  lumens 
m2 x steradian 

VOL. I1 

(9) 

The units of (8) are watts/fm2 x steradian). Our agreement 
leads us to equate (8) and (91, after introducing a numerical 
constant which will balance units in the resulting equation. 
Let us denote this number by "Km". Then we agree to write: 

r od I 
6 x105 - Kml Nb(h)F(h) dh 

0 

The number Km so defined has units: lumens/watt. Its magni- 
tude is determined by explicitly introducing the functional 
form €or the surface radiance Nb of the surface of a black- 
body (a compZste radiator or Ptanckian radiator) at tempera- 
ture 'IT: 

cz/ChT) 
N ~ [ A )  = cl~-s/x(e - 1) 

in which we have set:* 

C ~ / T  = 2c2h = 1.1909 x IO-'' watts m2/steradian 

cz = hc/k = 1 . 4 3 8 0 ~ 1 0 - ~  m '(Kelvin) 
T = 2042' '(Kelvin) 

It follows, on numerical integration of Nb(h)y(h) over A, 
that: 

m 

Nb(A)y(h) dh = 884 watts/(m2x steradian) . 

+ A  
Hence, from (10): 

Km = 6 x 1OS/884 

= 680 lumens/watt . (11) 

* 
The units of c1 are determined by specifically using the 
spectral density part of the dimensions of radiance. Thus 
dim [N] = watts/(m2 x steradian x m) , using wavelengths. 

Uncertainties in the measured values of CI,CZ and in the nu- 
merical integrations leading to the value 884 watts/(m2x stera- 
dian) lead to a corresponding uncertainty of Km Qf about 5 or 
6 units in the last digit. See, e.g., [Sl], [153]. 

** 

r 
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the Z w d n a n o ~  associated with the radiance function N(x 5 t I) -1, 
and write: 

If x and t are fixed but F, allowed ta vary in M(x,S,t,A) then 
the resultant f u ~ t i o ~  B[xbos6) is called the Ezewina~sos die- 
tribut5on at x ,  at time t. Often the time t, or x, or even E 
are understood (as occurred e.g.. in the radiometric csmtext) 
and so may be dropped from the notatim provided no confusion 
results. Thus we agree that we can occasionally write: 

These definitions serve trs fix %(x,*) as the ghotsaetric coun- 
te~part to the radiometric function N(x,*) studied in earlier 
sections of this chapter. The units of BQx,*) are lumens/ 
( m 2  * aGeradian) 

Table 1 of Sec. 2.4 can be used ta construct a corres- 
ponding table of radiance by assuming that the surfaces S re- 
ferred to in Table B of Sec. 2.4 have unifo~m radiance. Then 
the desired radiances are found by dividing each irradiance 
in the right hand column 05 that table by 8, A similar table 
for the general carder of anagaitude of tatmimanoas crf c o ~ o r i  
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natural objects can be constructed. 
is given below which is partly constructed from Pig. 1.12, 

A sample of BUL.- a tr-le 

TABLE 2 

Source Luminance [lumens/ (m2 x steradian)) 
1 

Surface of sun 

Surface of moon 

Further illustrative examples of luminance are easily 
constructed: suppose a source of monochromatic radiant flux 
has a radiance N of 1000 watts/(m2 xsteradian) per meter wave- 
length for each A over an interval A X  of 10 mu centering on 
wavelength h = 555 mut, and of zero radiance outside this in- 
terval. What is the luminance B of this source? Returning 
to (12) we see that in this case: 

m 

B = Km! N(X)y(X) dX 

= KmN ( 5 5 5) r( 5 5 5) A A 
= 680 ~ 1 0 0 0  x 1 (I mu = 1~1'~m) 
= 6.8 x lo-' lumens/[m2x steradian) . 

0 

As another example, consider a source of radiance 
N = 1000 watts/(m2x steradian) per millimicron wavelength at 
A = 450 mu over an interval A A i  of 10 mu about this wavelength, 
and of radiance N = 500 watts/(m'xsteradian) per millimicron 
wavelength at A = 600 mu over an interval A h 2  of 5 mu about 
the latter wavelength. What is the associated luminance of 
this source? By (12) we have: 

~ ~ -~ 7- 
These luminances are computed directly from the full and half 

phase illuminances produced by the moon, as given in Pig. 1.12. 
For half phase the solid angle of the luminous surface was 
taken as 3 x 10' steradians. Standard references give 2500- 
3000 Bumens/(mz x steradian) for the moon's luminance. The 
lighting geometry on the porous and craggy lunar surface is 
partly involved in this spread of values. 



165 

Here we have integrated over the range h * 390 mp, to 
a = 760 mp in steps of PO mu using the values of Table 1 
above, The result is: 

y(A] dX = 106.857 (millimicrons) !,,, 490 
This value may, for a11 practical purposes, be taken as the 
integral of ?(e) from A = ~ y i  to A = -, 

Transition to GsonetricaP Photometry 

The transition front geometaicaI radioaetry to gearnet- 
rical photometry has so far been made b ~ ~ ~ ~ ~ n  two points, i.e., 
between the radiance and luminance concepts by means of (121, 
and with the help of (10) and (11). This choice of the sadi- 
znce-luminance bridge rather than any ather means was garerned 

c 



by the relative visualizability of these concepts 3s contrast- 
ed with other radiometric-photoaetric pairs, say with the vis- 
ua)izability of hemispherical irradiance and its counterpart 
hemispherical illuminance ( t ~  be defined below). But now that 
the bridge has been constructed with suitable attention to in- 
tuitivb motivations and visualization, we return to its site 
and start anew with the purpose in mind of constructing the 
bridge once again, but now in a logically more satisfying way. 
By undertaking this reconstruction we are given the opportun- 
ity to re-emphasize and make formal the additivity assumption 
we had encountered on our way to the relative luminance dis- 
tribution in (4). This formalized additivity assumption will 
subsequently take its place among the other basic assumptions 
of radiometry which we isolated for the radiant flux function 
in the discussions of Sec. 2.3. 

The transition from radiance to luminance, as summa- 
rized in (12), nay now be emulated systematically for each ra- 
diometric Concept. That is, for every part M of the spectrum 
b we first define a general integral the radiometrio-photo- 
motrio transition opePator by writing: 

v'Y(*,W)O' for K,,,] [ ]y(X) dX . (13) 
M 

Then it follows from (12) that: 

B - Y(N,A) 9 (14) 

where **B*l and "N" are the abbreviated names for the given lu- 
minance and radiance functions in (12). But we need not stop 
at (12). Indeed, let us go on and write: 

'IF* (S , D , t ) 'I 

V(X, 6, t) 'I 

"L (x ,E, t ) '1 

"B* (x , E, t) 

"I * (S 6, t) 

(tuminous ftux, (15) 
(3) of Sec. 2.3; 
cf., (17) of Sec. 
2.4) 
(iZZuminance (ll), (16) 
(17) of Sec. 2.4) 
(tumin~us emit- (17) 

Sec. 2.4) 
(tuminance , (30), (18) 
(31) of Sec. 2.5) 
(tuminous inten- (19) 
sity, (7),(10) of 
Sec. 2.9) 

tanoe , (22) of 

These are the definitions of the first five principal pdoto- 
metric concepts under both the surface (9) and field (-) inter- 
pretations. The names of the concepts are given to the right 
of each definition and reference is made to the appropriate 
radionetric ancestor of each concept. Thus, e.g., surface 
luminous flux F+(S,D,t) is derived dram surface radiant flux 



Whenever either "+" or ''-" is understood, or an equation is 
valid uader both the field and surface interpretations, then 
these signs may be dropped, if desired. For example, in the 
case sf (ZO), we know f r m  (21) of Sec. 2.5 that W and N- $0 
Logether, SO that dropping s'-lB on the right sides of the equa- 
tions in (201, no confusion caw result. Hence, every occur- 
rence of the signs '1-1' may be dropped from (20) and left im- 
piicitiy understood. 

The roll-call of principal photometric concepts is con- 
tinued as f~llows, We shall write: 

Q' [X, t]" 

"Q' (S ,T) 

"yf (x 9 t) " 

''e (x , t) 
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I~l(x,t)" for Y(w(x,t,*),A) (btaailar luminoue (25) 
emittanuo, (19) of 
Sec. 2.7) 

We illustrate again the fact that any linear relation 
between.two radiometric quantities has a carbon copy in the 
photometric context. Thus, consider (14) of Sec. 2.7; assum- 
ing v is independent of A in X and applying the operator 
Y(*,h) to each side we have: 

There remains to be defined certain of the photometric 
concepts such as the vector counterpart E to H,I to J, etc. 
Ilowever, instead of going on to explicitly exhaust all these 
transitions, which are quite numerous, we state below a gen- 
eral definition-scheme which covers. all transitions just made, 
and any yet unmade. 

Let c&t7 be a radiometric function defined on A. 
Y( &',A) is the photometric counterpart to &. Let It  de- 
note this photometric counterpart. Then the following state- 
ment is a definitional identity: 

Then 

A definitional identity is a statement of the form "A * B" 
where "A" and *'Btr are the names of one and the same object 
arising from a definition. Thus, e.g., "Q(X,t)" and 
"Y(U(X,t,*),A)" are names of one and the same object, namely 
the number: 

~ U ( X , t , A ) W )  dA 
0 

and so: 

and alternatively: 
W 

are definitional identities. For example, definitional iden- 
tities were used to start arid end the series of deductions 
summarized in (20) and (26). The significance of (27) is 



General Properties .DE %he RadiuwetrPc-Phoeametric 
~ ~ ~ ~ ~ ~ ~ ~ ~ r n  Operator 

era9 properties h i l t  into it which ore of critical importance 
in establishing the science of theeretical phot~metry. To 
recognize and ~~~~~~~~~~ these properties is to recognize and 
understand the role of ~~~~~~~~~y as a descriptive science, 
TEserefoae we devote SORW attention to the isolation of these 
properties * 

and .@z ba any two radiometric functions de- 
fined on E subset M of A and Eet C& and cg bs any two real 
nmbers such that the sum Qca B.1 4 cp a2] is defined. Then 
by $13) an8 the linearity of the mathematical integration pro- 
cess : 

The integral operato+ Y(*sEf) defined in (13) has sev- 

Let 

for every pair of disjoint subsets M I  and ?"I2 QP A. This is 
the addiidve prspsrty of Y[&,*) and is the formal vestige 
of the property of y(aioX) discussed in (5). Finally, for 
every radiometric function A? defined on A, 

(301 

which is the MI-eantinuCty property of YC&,-) for continuous 
spectra. The length measure 1 and its general use was defined 
in (4) of Sec. 2.3. 

'She Mathematical Basis for Geometrical Photoaetry 

Properties (29) and (50) may bo added to the set of 
six additivity and continuity properties 0% Q di.scus.sed in 
Sec. 2.3. In fact, in an axiomnati~ developnrent ob the mathe- 
matical theory of photometry, statements [zag, (291 and (30) 
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would constitute the essential starting point of the construc- 
tion of the theory, just as the properties of in Sec. 2.3 
constitute the essential starting point of the theory of geo- 
metrical radiometry. Indeed, for any radiometric function 
defined on A, we may deduce from (29) and (30) alone the exis- 
tence of a function y8(*) on A such that: 

(311 
A 

Evidently TI(*) will turn out to be KmT(*) discussed above. 
The complete details of the mathematical justification of 
this assertion lie beyond the scope of this work. Some of 
the mathematical background of (31) will. be covered as a mat- 
ter of course in Sec, 3.16. The requisite mathematical basis 
of the assertion may be found in part in Sec. 56, in particu- 
lar theorem D, of Ref. [L03]. The general measure-theoretic 
approach to foundations of radiative transfer theory, intro- 
duced in Ref. [216], can now, by (31), be systematically ex- 
tended to the domain of photometry. Hence, as far as the 
mathematical structure of photometry is concerned, it rests 
on three pillars: (ZS), (291, and (303, and its framework 
can be erected by means of the theorems of modern measure 
theory and without the necessity of any further reference to 
phy3isal constructs. In other words, the epistemological con- 
ten% of classical photometry rests in but three postulates, 
the statements of the linearity, M-additivity and M-continuity 
of Y introduced above. We note in closing that the preceding 
observations apply immediately to the representations of col- 
ors by the tristimulus procedure of colorimetry; all that has 
been said for the function 7, now applies, without essential 
change, to the other two tristimulus functions P and 'i- (cf., 
Sec. 1.7). The mathematical setting in the colorimetric case 
would be a three-dimensional vector space, and the measure- 
theoretic aspects will be elevated from the scalar to the vec- 
tor level. 

Summary and Examples 

The present discussion of radiometry and photometry 
will be brought to a close with a summary of the main concepts 
introduced in this chapter. The units and dimensions of the 
concepts will be tabulated, discussed and illustrated, and a 
few further illustrative examples will be given. 

symbol, units, dimensions, and reference to its definition in 
the present work. A similar Table 4 lists the main photomet- 
ric concepts in an exactly analogous way, as far as possible. 
Explanatory notes are appended to each table. 

Table 3 lists the main radiometric concepts by name, 



SEC. 2.12 

TABLE 3 

RADIBMETRIC CONCEPTS 

i w  RADIANT 
EM P TTAiW CE 

VECTOR RADIANT 
EMITTANCE 

SCALAR RADIANT 
EMITTANCE 

MDIANNT 
I "ENS I TY 

VECTOR RADIANT J 
INTENSITY 
SCALAR RADIANT j 
IMTENS P TY 

(2) Of Sec.Z.8 

2.7 Of Set* I 
WATT/ s r 1 
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TABLE 3 (Continued) 

RADIANT ENERGY 

(RADIANT) PATH 
FUNCT f ON 

PATH RADIANCE 7 

WATT-SECOND 

DEFINITION 
' REFERENCES 

(121, (17) of 
Sec. 2.7 

(2) of Sec.2.7 

(2) of Sec.3.12 
(8) of Sec.314 
43) of Sec.13.: 

(1) of Sec.3.12 
(15) of Sec. 3.12 
(2) of Sec.13.3 

Explanatory Notes for Table 3 

(a) sible, from the current standard in nomenclature, namely that 
recommended in 1953 by the American Standards Association 
Section Committee 2-58, sponsored by the Optical Society ([4], 
[49], also cf., p. 229, Ref. [SO]). The basic symbols are 
used to construct names for various radiometric functions by 
placing various modifiers after them. Thus, e.g., @(S,D,t,F) 
is the value of the function (b which assigns to each set F 
of frequencies the radiant flux incident on collecting sur- 
face S through the set D of directions at time t. Further ex- 
amples are found throughout the preceding sections of this 
chapter. It might be well to observe here that the symbols 
and names for the concepts in such 8 venerable subject as geo- 
metrical radiometry are still in a state of change. However, 
there is currently some effort being made in the direction of 
establishing an international standtird of terminology in radi- 
ometry and photometry (see, e.g., Ref. [130]). It may be 
noted that the terminology and notation listed in Tables 3 and 
4 have withstood the severe tests of use in courses and re- 
search studies by the author and his colleagues over the past 
twenty years, and have been found adequate for the purposes 
of radiative transfer studies in natural optical media. (See 
also p. 6, [177].) 

It now appears possible to attain; a systematic and bas- 
ic terminology for radiometry and photometry by combining the 
best features of Table 3 and Table 4 (below) and the sugges- 
tions by Jones in Ref. 11301. Towajrd this end we observe that 

The names and basic symbols are drawn, as far as pos- 



Sones extracts the idea of .fl&Z, as the basic ccPncept whose 
task is to describe the flow of .a generalized 'substance'. 
The 'substance' may be radiant energy, Pumbous energy [the 
photometric counterpart to radiant energy) or even entropy. 
The suggested tern for the 'ontgitry8 whish studies gemeral 

such 'ometriess ~~~~~~~~~ ad present: 
iFPsws is ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ @  (@~phluo@* = "to Blow"'). There are five 

Radiometry Radiant Watt 
Pherometry Lminoarts Lumen 
Brgoaetry Energ is Joule 
Ergophotometry ErgoIranis: Lunsn-second 
Entropaaetry Entropic ~ a ~ t / ~ ~ ~ r ~ ~  

[b)  he basic raeiient flux dimensions P', P- are associated 
with flux leaving and incident on a sur%ace, respectively. 
%Re idea of 'radiant flux' is the central physical idea of 
geo~~tricak r a d i ~ ~ t r y .  However, it is S ~ u n d  useful in theory 
and practice $0 distinguish between enitted and incident ~ a -  
diant flux, This distinction has bean placed into the dimen- 
sions for ~~~~~~~~~~~ use, if needed, and its geometrical sig- 
nificance is sunmarired in Pip. 2.47, (See also Pig. 2.12.) 
If the d i s b i ~ ~ t i ~ n  is not needed, or is understood, the QCCUT- 
rences of p'+B' ap (1-1' may be omitted. Further discussion of 
dimensions is made in note (hj. 
(c) The spectral radiant PBux P has units of 1'IATTPmu if 

e used, or has units of 

6 unit inward normal E unit outward norma! to 
surface s Ot x surface s at x 
Flux incident on s 

flux. 
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WATT/sec-', if frequency is in units of ses-'. The dimensions 
'WATT/mu" are used often in practice; hence their inclusion in 
the table. The radiant flux dimension P of any radiometric 
quantity below P \in the table can be either spectral (hence 
PA) or general (hence P). Por simplicity, only the general 
radiant flux dimension is given. When working with spectral 
radiant flux, it is occasionally necessary to explicitly use, 
during a given discussion, both wavelength and frequency di- 
mensions for radiant flux. The radiometric quantities can 
then be given a "A" or a '%" subscript for the duration of 
such discussions. In general, however, such explicitness is 
not needed and the dimension of the spectral €lux is under- 
gtQod implicitly, and (except for specific numerical examples) 
wall so be understood throughout this work. In theoretical 
radiative transfer discussions, e.g., the frequency dimension 
is usually preferred over wavelength (and this preference is 
implicit in the notation) because frequency of radiation is 
invariant along a path with variable index of refraction. The 
general (definitional) connection between Pv and PA is ob- 
tained by writing: 

d@V "PV" €OF - 
dV 

"PAt1 for - 
dh 

Whence : 

(d) Table 3 is divided into five natural groupings of con- 
cepts. First in order are the three main concepts--@, P, N. 
Then comes the irradiance group, the radiant emittance group, 
and the radiant intensity group. These are followed by the 
energy group, and the radiative transfer group consisting of 
N, and N". In principle, the irradiance group and the radiant 
emittance groups may be coalesced into a single group by using 
explicitly the surface (+) and (-) concepts. However, his- 
torical precedent has fixed the distinction between these 
groups by means or' the generic letters "HI' and "W1t , and we 
see no reason at the present time to change such established 
notation to "H*" for W and "H-" for H merely on the grounds 
of esthetic reasons. However, esthetic reasons (in particular 
the desire for symmetry) are responsible for the inclusion of 
two concepts in Table 3 which--if the practical photometric 
worker had a say--would normally be omitted. These are the 
two concepts W and j. The distinction between W and H is very 
fine conceptually and non-existent vectorially. For we define 
W(x) as follows. We write: 

tw(x)*f for SN+(~,E) dn(~) (33) i 
where, as noted, the integral uses the surface radiance. We 
call W(X) the vector Padiarat emittance at x. Thus (33), by 



(32) of Sec. 2-5, and (2) of See. 2.8, yields the equality 
W(X) = a(x], Further, whenever S is a surface and Ncx) is a 
uniform radiance distrfbutisn at x on S [either field or SUP- 
face) then we may wri",: 

u,jgs)a9 for I NCx) dM%l E341 
s 

and caLl j (S) the atccrk&W rrt%d&as%& intsPasCiq, By i~~~~~~~~ 63%) 
and (34) we round Out aar" e~te radaaat e m i t t a ~ ~ ~  ana aah~i- 
ant intensity families tgil a fd.1 threesame, and ~~~~~~~~ the 
interesting duality between irradiance sz~d radiant ia'rensity 
brought out in the? rneisn discussions &owe (where j(S) is now 
the dual to k(x1 p. 
[e) unit rime 8 q ~ ~ e r s ~ ~ s ~ D 1  for radiance is ~ ~ o ~ t e a  %rsa 
a suggestion by Moon (Ref. [184]). Hawever, the unit, as used 
herel is left ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ e ~ . : q  This means rimply that' for 
uniform radiance distribution, we haws?: !4 = nti9. i-lmcs if ?d = 1 
hersshel, then H = 'N watlts/d, and ~~~~~r~~~~ ~ ~ ~ ~ u ~ ~ ~ ~ ~ n ~  are 
not. jeopardized by not remembering what to do with 's~'p. Fur- 
thermore, the A serves to keep tabs on the dimmsihskas of !{ 
and iV in calculations. It is clear that ~~~~~~~n~ other than 
xhe relatively ~ e n g t h y  ~ i ~ ~ ~ ~ ~ / ~ ~ 2  x SF):! is desirable, at: least 
in verball discussions where 'rsr" sta~86Es for "steradian" a d  

as *.isual Bemte.s "!square meters" /. ,rm2cr 

(E) 
function N, is iaclwded for convenience cf reference. These 
are the only two additional TediOmtPic concepts needed in 
the general studies of radiative transfer in natural optical 
media. Actually these concepts are mutually dependent and 
only one is needed. The full discussion of this matter is re- 
served ?or chapter PII. 

(g] The only radiometric concepts omitted from Table 3 and 
lshich are of some impor88nce, are the spherical and hernispher- 
icab scalar irradiances defined in Sec. 2.7. These concepts, 
especially the latter, are primarily indigenous to plane-garal- 
9eZ (or one parameter] geometries, whereas all the listed con- 
cepts pertain to general geometries. Not defined at all were 
the spherical and hemispherical scalar emittances e For the 
sake of completeness (cfS1 (6) of Sec. 2.7), we write: 

Tlie final group consistiiag of path radiance PI" and path 

1 ' ' w ~ ~  (x, 5, t]" for 5 w Ix, E t) 

and these are cel2ed, respectively, spkglreaak sad%ant 
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emittance, hemisphericat s m t a ~  radiant smi.ttance, and ksmi- 
uphprioat radiant emittanoe. 
(h) 
concepts has received relatively little systematic attention, 
We shall devote a few comments to this matter in the present 
note. The dimensional system chosen for Tables 3 and 4 is 
constructed from two basic physical dimensions and one basic 
geometrical dimension. 
flux IT, time T, and length b. The general radiant flux func- 
tion 0 is assigned the dimension B; %h<o dimension is consid- 
ered irreduoibte .in the radiometric context. In other con- 
texts, P need not be irreducible. Thus, in the electromagnet- 
ic context P is representable in terms of the dimensions of 
force, length and time: (force) x (length) x (time)", or as 
(mass) X (lengthl2 x (time)- The '8+9" and superscripts on 
"P" do not change its dimension; they merely serve as conven- 
ient mnemonics for the surface and field interpretations of 
radiant flux. 

PI, or PA are reducible to PT or PL-', respectively. 
cally, in Table 3 we have implicitly written: 

The theory of dimensions of radiometric and photometric 

These are the dimensions of radiant 

As already made clear in note (c] above, the dimensions 
Specifi- 

and for the wavelength case we have explicitly written: 

Now just as we find it convenient to append "+" and 
I1  - I 1  to the basic symbol llPS' to denote %he geometric sense of 
the flow of radiant flux, so too is it helpful to distinguish 
between two types of length in geometrical radiometric dis- 
cussions. Following Moon [184], we write: llLtll to denote the 
dimension of length measured in a direction transverse (i.e., 
perpendicular) to a given direction 5; and "L to denote the 
dimension of length along the given (radial) Sirection 5. As 
in the case of P*, attaching 9rt" and "r'l to lrL1* does not 
change the dimension; rather it serves as a conceptual remind- 
er of the transverse and radial interpretations of length. 
Then in the table we have wri%ten: 

'v~'l for ]bt2 

llgl9 for ]Lt2Ll 

Thus in the present dimensional system, area has the dimen- 
sions of transverse length squared--a most natural dimension 
within radiometry since we perceive areas as two-dimensional 
extensions of space in the transverse directions to a line of 
sight. Volume has dimensions of AL,, i.e., (transverse) area 
times (radial) length--again a most natural combination of 

I? 



dimensions for the radiomekrist. Finally, saEid ibpbgPe~. arc 
measured using the steradian concept. Im the present system 
the dimensim of solid angles does not vanish from view, but 
rather is axpressed as tile product of and L=-~, as indi- 
cated above. Since Gt and Bpjp are conceptually distinct, this 
product is conceptually not dimensionless. En this way tine 
occasionally bothersome problem of the vanishing dimensions 
of solid angle can be solve&. (Ordknmily the ~~~~~~~o~~ van- 
ish, but bike the $Bile of the @hes+&re cat, the units remain.) 
It should be noted thse the ~ ~ ~ ~ ~ f ~ n ~ ~ ~ ~ ~ ~  dfmerssi~ns of thse ra= 
dionnsdaric concepts are recoverad by dropping ?T+'** p s - @ l  B "t", 
and from B and L whsre~er rhey occur. 

sterve that the dimemisfon of path functian can be written ais 

have the dinensions of radiance per unit of radial length. 
The full significance of this ~ ~ t e ~ ~ ~ ~ t ~ ~ ~ 0 n  will become clear 
in SCG. 3.12, wherein the path function concept is fomally 
introduced. Ow the other hasad, we may rearrange the path 
function dimensions as follaws: (Ih'Pk- ']V" and thereby dis- 
cern another facet of this concept, naakiEy that it may be 
viewed as a radian% intensity per unit volume, gcf. (71, (10) 
of! Sec. 13-61. The radiamce cogcept itseBd may be arieged via 
the d i ~ ~ s i a n a i  ~~~~~~~~~~~ [P"W-~]Q- a as irradiance (-1 
radiant emittance [+I per unit solid angle en the one hand, 
and via; the ~~r~~~~~~~~ (P%-')A-' as field (-1 or surface e., 
radiant PnteElsit). per unit area, on the other hand. 

metric concepts and their manifold derivates in practice is 
as follows. Let us refer to "area", ''Iength~'~ "time", etc. 
by the generic tern "'measure", and use the generic symbol %rt 

EQP a measure. Let us m i % @  "dim(m)" far the dimension of m. 
Thus if A is a n  area measure, then A(S) is the area of a SUP- 
face: S, and dim(A) = Lt2- Further, if I is a length measure 
along paths of sight, then l(p) is the length of a path p, 
and dirn(1) = Lr. Now, according to our development of %eo- 
metrical radiometry in this chapter, every radiometric concept a is definable first on the empirical level and then on the 
theoretical Bevel. The empirical level ob-' definition is sim- 
ply the Bevel on whish the maaSUreS are used directly. Tlaus, 
e.g., recall that empirical irradiance H(S,D) is P(S,D)/A(S), 
nee., the quotient of incident. radiant flux over a surface S 
b the area of S. The corresponding theoretical definition is 
attained by going to the appropriate limit (e.g.s S-+(x) in 
the case of irradiance). In going from the enpirical level 
to the theoretical levelp it is desirable to have the dimen- 
sions remain unchanged, Hence the definition on the empirical 
level already fixes the dimension of a radiometric concept. 
Suppose then that ~8 is E: radiometric cssncept and its empiri- 
sal definition is such that we write: 

as an iblustratiaw of the use of these a ~ m e ~ ~ ~ o ~ ~ ,  ob- 

hP+y&-~a"l)%r-~~E so that Che path function concept. is seen tQ 

A general guide to the fixing 0% dimensions of radio- 

@mi' ... m a 
ma.. .inb 

where " i = I,. . . #a, and 1'rnj'v9 j p 1,. m .  *b, denote meas- 
ures a n ? ~ l ~ ~ ~  denotes the radiant flux function, which is also 
a measure with dimension dim(@) = B. Then the dimenaion of 

B 1 1  for 

I "  
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H i s :  

(dim 0) x dim(m1 I) x . . . x dim(ma') 
dim(mk) x . . . x dim(mb) 

The preceding reduction of a dimension to simpler terms is 
facilitated by adopting the following conventions for the di- 
mention operator dim. 
physical concepts. Then: 

Let x and y be any two measures or 

(i) dim(xy) = dim(x) dim(y) 

(ii) dim(x/y) = dim(x)/dim(y) 
(iii) If dim(x) = dim(y), then dim(x) = dim(x+y) 
(iv) If fx,) is a sequence of terms of common 

dimension d, and if limn xn = y, then 
dim(y) = d. 

In our development of radiometry, the basic dimensions 
are B, L, and T. In order to use rules (i)-(iv), we agree 
that these dimensions obey the same rules of addition and mul- 
tiplication as real numbers. This is implicitly assumed in 
the tables and in the various manipulations above. In addi- 
tion to the four dimensions above, we introduce one more, 
namely 1, which has the property that: 

dl = la = d 
for every dimension d, and 

for every pair of dimensions d l  and 6 2  such that dl = dp. 
Thus "1" denotes the dimensionless concept. 

Explanatory Notes for Table 4 

.. 

(a) The notes and comments for Table J apply also to this 
table except where explicit references to frequency or wave- 
length concepts are made. Observe that Tables 3 and 4 cor- 
respond item for item, except that there is naturally no lu- 
minous counterpart to the general radiant flux function +, 
the primitive radiometric function from which all others 
spring. The unit of luminance, the (unrationalized) blondel, 
is adapted from a suggestion by Moon (ref. [184]). The lu- 
minous counterparts to (35) - (37) are obtained by means of the 
general definition scheme of (27). In (35) and (37) l'wl' is 
replaced by "l", and "radiant" replaced by "luminous", to 
effect the definitions. We assign to the lumen the basic di- 
mension F. Hence, in particular, dim(Km) = FP-'. By (15) 
and property (iv) of the operator dim in note (h) €or Table 3, 
we have, e.g., dim(F'(S,D,t)] = F'. In this case, the limit 
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LLlMINQUS 
EMITTrnEIICE 

SCALAR LUMINOUS 
EM f TTANCE 

SCALAR LUMINOUS 
INTENSITY 

(LUMINOUS] PATH 
FUNCTION 

PATH LU?4INANCE ** 



operation is that used in the definition of the integral op- 
erator (13). 

with a few examples. 
We conclude this discussion of the photometric concepts 

Bazmple 1. Using the luminance of the sun as given in Table 
2, compute the corresponding illuminance on a plane normal to 
the rays of the sun. To find the requisite illuminance, re- 
call from (2) of Sec. 2.5 that we can write: 

Applying the transition operator Y(*,A), as defined in (13), 
to each side of this equation, we obtain: 

Y(N(S*W ,A) ~ ~ ~ ( ~ ~ ~ ~ R ( D ~  SA] 

Using (16) and (18) and the general definition scheme (27) to 
define the empirical counterparts of radiance and irradiance 
the preceding cqorrtim yields: 

E(S,Dl I# BCS,D)Q(W 8 

which is the desired connection between empiricrat Zuminanoo 
and ompiriaat itkumdnanca. 

From Table 2, 

B(S,D) = 2x10' blondels or eandelas/m2 
or 1mens/m2x sr 

and from Example l of See. 2.11: 

R(D) * 6*78x stsradians 

Hence' : 

Esainpte E. If the sum in the context of Example 1 is at 
6 = 50' from the zenith, and surface Sf is the projection on 
a horizontal p l m e  of the surface S used in Example 1, what 
is the illuminance E(S',D) produced by the sun's rays on S'? 
To find this illuminance, recall (IS) of See. 2.4: 

H(S',D) = H(S,D) cos d , 

where the symbols are explained im detail in Sec. 2.4, and 

*A relatively recent estimate (~ef. [KZB]~ sf E(S,D) is 
136,000 lum@ns/m*. See also [296] for a survey of measure- 
ments of the solar constant. 

c 



Using the operator Y[-,A) and the definition scheme (273, 
this equation bssomss: 

Err' = ESS* 
Let E be the illuminance at the earth 
B($,Df in Example 1. 
Venus, s = 67x10B miles. ~ense: 

as given in the f o m  
Hence r = 93 x lO'm~lss. In the case of 

E, = Er(r/s)P 
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gemp%e 4. Compute the number of lumens F incident on a plane 
surface S of area A(S), every point Of which is illuminatedby 
a luminance distribution of constant magnitude B incident over 
directions within a conical solid angle D of half angle 0 and 
whose axis is nomil to S. The requisite relatibn for the lu- 
mens incident on S is obtained by beginning with (14) in Ex- 
ample 6 of Sec. 2.11: 

2r 
W = I sin28($] de , 

0 

and applying the operator Y(*,A) to each aide to get: 

%n 
sinZ@($) ag,.) 

0 

which, via the definition scheae (27), can be written: 

2n 
y. E - ; sin"?(+) dg . 

0 

In the present case, B(4) - B for every $, 0 5 $ 5 2 n .  
Hence : 

E 5 gB sin'@ . 
Next, from (6) of Sec. 2.4 we hawe: 

P(S,D,t,v) = H(§,D,t,v) A(5) . 
Applying the operator Y(*,A), to each side of this equation, 
we have : 

Y(PCs,D,t,-?,A) * Y[H(S,D,t,*>A(s>,A) 

From (15) and the definition scheme (27) applied to 

F(S,D,t) - E(S,B,t)A(S) . 
empirical irradiance, we consequently have: 

Considering references to S,D, and t as understood for the 
present dissussfon, we distill this to: 

F - E A  . 
Thus we are led to the desired relation: 

F nBA sin20 . 

1: ' 
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= 1360/(680 x 2 x 10) 
= 1/10 = .PO 

From Table 1, by linear interpolation, we infer that X =  472 m u  
OF 652 mu. From the given $metal appearance! of the filter's 
color, we infer that X = 652 mu. 

2.13 Generalized Photometries 

We conclude this chapter with a few observations on 
the wecessary Eosns of certain generalized photonetries which 
arise in an attempt to C C ~ ; S R ~  the sialienz ideas of classical 
phst~mt?try. The directions of extension to which we subject 
the ideas of photometry in this discussion are toward a more 
eneral class of alminosityP functions. The class we envi- 
sion here is to contain not only the eBsasslca1. luminosity 
functions of ~~~~ eyes, as briefly discussed in 2.11, but 
also irrodiatian-response functions describing photographic, 
phototransmissive, photovoP%aic, photoemissive, and photo- 
current phenomena. In short, we! attempt to sketch in braad 
terms rceatain possible generalizations of the *lmeea' concept 
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with reference to irradiations which can be measurably effec- 
tive on both organic and inorganic Bevels. 
will consider in turn linear and nonlinear generalized photom- 
etries. 

Our discussion 

Linear Photometries 

tions: the tinsap ghotometpg. The classical photometry dis- 
cussed in Sec. 2.12 is an instance of a linear photometry. 
Using that discussion $s 8 suitable motivation a d  background, 
we can initially and broadly define thocroGCaa2 tCd*ar ph tom- 
etry to be the study of the properties of the effects Z(&,M), 
on some physical object, of radiometric causes &'over a wave- 
length set M, and under the premise that the numbers Z(&,M) 
have certain postulated general properties. Specifically, 
for a given physical object (eye, skin, selenium cell, etc.), 
let Z(*,-) be a function which assigns to each radiometric 
concept & and part W of the y e c t r m  A a real number Z[&,M) 
with the following properties : 

(i) -LinearCCy: For every two radiometric con- 

Let us begin with the simpler of the tWQ generaliza- 

cepts HI and L% and nonne ative real numbers CI 
and c2 for which ct@?~+ c a d ,  is defined, and for 
every part M of the spectrum A, 

Z Ccl +e2 63 z ,W 1 2 (RI r MI +c2Z (@ 2 r MI 

(ii) M-AddZtiwLty : For every radiometric function 
and every two disjoint ports Ma and Mz of A, 

Z(&,Ms u Ma) e Z(&~M~)+Z(LR,M~I 

(iii) M-Coktinwitg : For every radiometric function 

if 1(M) = 0, then Z(da,W) = 0 . 
An example of Z(& ,M) would be the amount of reddening 

(suitably measured) of human skin under irradiation (so that 
&? can be irradiance H) aver a certain portion of the far in- 
frared (so that M consists of all wavelengths from e.g., 
A = $00 mp to h - 850 mu). Ansther example of Z(d,M) would 
be the rate of oxygen production by a leaf of some type of 
vegetation under irradiation [so that A? can be scalar irra- 
diance h) and over some part M of the spectrum. Marine bio- 
logical contexts appear also to present potential areas for 
generalized photometries. 

photometry are properties (i), (ii), (iii) above. The concept 
of a linear photometry is certainly not empty since we have 

At any rate, the landmarks of sn incipient linear 

"The footnote to the discussion of (3) and (4) of Sec. 2.3 
applies also to the present discussion and should be consulted 
before proceeding. 



~~~~~~~~~~ Photometries 

€ ~ ~ ~ ~ ~ ~ ~ s m  for nonXinear phstsastries we are faced with the 
usual arresting fact about nonlinear pheaometnn: there are so 
many types of them. Were eke world built so that there was 
only one type of nonPineorPty--say of the power-exponential 
type QK the sinusoidal type, s%c.--then tks problem of rspre- 
senting nonlinear phenomena would long ergo have been thorough- 
ly subdued, analytically speaking. However, since mm's fi- 
nite wosewt af attention must be spread over an apparently 
infinite class of nonlinear phenomena, this layer of attention 
must be nearly 'aonoholecular' in depth wherever it exists. 

To make a small start into the wilderness of nonlinear 
photometries, 1st us consider Ehe first and logically the 
simplest types ~f departure from linearity. The preceding 
three statements [iI-(iiiS1 constituting the defining proper- 
ties .$ a linear photsmetrg, may not all hold for given 
photometric phenomena. The three main types of departure from 
linearity would be: 

Turni~g now 80 eansider the prssspeets of ~~~~~$ a 

Type I ~onlinearity: (i) does not hold; Cii) and 

Type I1 nonlinearity: [in) does not hold; [i) and 

Type 1x1 nonlinearity: (i) and (ii> do not hold: 

This choice of classification is based L%A the plausible feel- 
ing that: "if l(w) = 0, then Z[&(,M) = 0'' will always hold in 
any reasonable designed measure 2(*, *). of 8 radiometric effect. 
Therefore, if 8 nonlinearity is encountered, it is likely to 

(iii) hold 

(iki) hold 

biii) holds 
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be traceable to a violation of either (a) or (ii), or both. 
Each of the three types of nonlinearity will now be briefly 
discussed with the purpose in mind ob suggesting possible 
routes toward linearization. 

earities is to find R funstion f which would linearize Z(*,M) 
for every M. 
function f, defined on the real numbers, such that: 

One very promising mode of approach to Typo I nonlin- 

S ecifically, we suggest finding a real valued 

Many logarithmic and power nonlinearities are linearized away 
in this manner by the time-tested technique ob plotting on 
logarithmic OP exponential, OP power coordinates. Whenever 
a linearizing function f can be found so that (iv) holds, then 
we say that the Type I nonlinearity is removabte. The func- 
tionsnl composition f e z  of the linearizer f and the Z suffer- 
ing a Type f removable nanlinearity, is now linear. Thus (i)- 
(iii] hold for P e Z  and so the canonical form (1) is available 
for use with fez. Summarizing: whsnover u Type I nonthoar- 
it8 of a photoinsfpic measure Z(e,M) ie pernowable by a tinoar- 
iaaF f suoh that (ioJ Tacaklds, then the compooition foZ(*,M) 
ha8 a oanonioat Pepresentation (1 I. 

Let us consider now the Type I1 nonlinearity. We ask: 
if (ii) does not hold, in who$ way is it most likely not to 
hold? Imagine an erythemal phenomenon: a bit of Living ani- 
mal tissue is irradiated simultaneously by two distinct sets 
of radiation of non-overlapping wavelength sets MI and MI. 
The effect Z(&,W1U M2) is noted. Then a biologically equi- 
valent piece of tissue is irradiated in turn by samples of 
wavelength sets M I  and M,, and Z(ba,Mp) and Z[&,M2) are noted. 
Since M I  and M Z  are allowed to be active separately, more 
effect-activity say, may take place in the tissue under each 
irradiation by M. than when they act simultaneously. Thus, 
it may be that w h P s  the effects are not additive, they are 
M-eubadditive: 

Whenever a Type 11 linearity is encountered so that 
(ii) does not hold, it may be the case that M-subadditivity 
subsists. If subadditivity is indicated in a Type I1 nonlin- 
earity, then it may be shown (cf. [103]) that for every &? 
there exists apb extended measure Z*(Ap*) which is additive in 
the sense of (ii). The net result we have reached may be 
stated as fQllOWS: 
exhibits nonlinoapity 0.f Type I1 and which is subadditive 
(;.e., fv) hotds) may be eztanded to a linear phOtORetFiC 
meaoure z,(&?,*) for which a canonical representation (1) i8 
possible. 

nonlinearity is to seek a linearizer f such that (iv) holds. 
Some Type 111 nonlinearities will surely succumb to these 
very general modes of attack, Beyond these few approaches 
lies an unknown field of potential modes of study of 

Every photometric ~ B U B U P B  Z(R, *) which 

The immediate attempt at linearization of a Type I11 





CHAPTER 3 

THE INTERACTION PRINCIPLE 

Gird up now thy t o i m  tCke a ma@; 
for I @ill demand of *has, and onmder 
thou me. 
Where vast thou Eshen H taid the 
foundatione of tho ece~th? deelare, if thou 
hast understanding. . . 
Whereupon BPS the foundations thereof 
fastened? OF who toid the somapetone 
thereof ... 

JOB XXXVXIH, 3-8. 

3.0 Introduction 

Radiative transfer theory is distinguished by the fact 
that it is one of the branches of theoretical physics that 
can be made to rest on a single principle from which all the 
salient structures of the theory may be systematically de- 
duced. In this sense it is a closed subsystea of electromag- 
netic theory. The pTinCip1e that permits this mode of con- 
struction of radiative transfer theory is called the intaraa- 
tion grinaipts. The interaction principle is a distillate of 
many diverse conceptual constructions concerned with radia- 
tive transfer which have arisen during the past seven decades 
of evolution of the theory. In this chapter we shall state 
the principle and present various instances of it for a selec- 
ted range of physical situations customarily encountered in 
practical applications of radiative krmsfer theory. It will 
be demonstrated that tbese physical situations can all be for 
mulated within the theory in a uniform manner using a method 
which we call the method of the intepaotioa prtnoipZe. By 
means of examples we shall verify, on the one hand, that the 
salient theoretical structures of the theory do indeed fall 
under the domain of the principle, and, on the other hand, we 
shall prepare the groundwork for the various applications of 
the principle in the subsequent chapters of this work. 

The principle, of interaction in its essential form is 
a statement of the linearity of the classical radiative trans-, 
fer processes. Thus radiative transfer theory, R complex web- 
work of deductions following from the principle, is at its 
core a linear theory of the interaction of light with matter 
on a phenomenological level. The linearity of the theory 
arises from the confluence of two main paints O P  view adopted 
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by its principal develespers and investigators since the turn 
sf the century, 

cerned in the main either with radisiat energy ~~~~~~~~~ within 
the relatively hair-thiri visible w a ~ e ~ e ~ ~ ~ ~  ~~~e~~~~ dram 
4 x 1 0 2  m~ ta 7 XI@' aw, or within B wider band of ~ ~ v e ~ ~ n g t ~ ~  
from IO to mwn. ~~~~~~~ c a e ~ g y  ~~~~~~~~~ within this EOUP 
orders of m~~~~~~~~ s p m e d  aaf the e ~ ~ ~ % ~ ~ ~ ~ ~ r n ~ t ~ ~  ~~~~~~~ 

are, as we shall see belowp asscciatsd with ~~~~~~~~ which 
$arsBy tap the ~~~~~~~~~~ caergy levels of ~~~~~~ attmpwic strue- 
tures. The res.ax8eane ir~araracri~ns of razlidanh energy with mat- 
ter are thereby lini%ec$ eseentia$ly to shrst.ft: scatter 45Cti91i- 
tya photoefeeeric efPccts, anid simple absorption-emission phe- 
nomena, Ewe%;as.gic scatter interactions of pbafcns with eaaetsr 
are virtually ruled out within the I o - B O ~  SIP range SP wave- 
lengths. Within this ~~~~~n the radiant energy interactions 

for the linear ~~~~~~~~~ 0% the interaction principle. 

theory is that the Bnteraetian 0 H  light with matter is to be 
viewed on the ~~~~~~~~~~~~~c~~ level, i.e., on the ~ ~ C P O S C Q ~ ~ C  
level, with instr ents which mimic normal h m a n  vision in its 
essential gsmowstric characteristics. ~~~~~~~~~ the delicate 
effects of wave ~ ~ ~ n ~ ~ e ~ ~ ~  such as diffraction, ineesference, 
and other ~~~~~~~~~ activities are auQoaa%i&aLTy excluded, by 
firre, from the damin of cPassicaP radiative transfar theory. 
(See problems I-V of Sec. 141, Ref. [2511). Xaa adopting this 

about all that we have seen, The lineaaities resulting from 
this predominantly geometrical viewpoint f ~ ~ m  the basis %or 
the various additive and continuity properties of radiant flux 
discussed and devePopcd at length in Chapter 2. Thess two 
views, one physical, the other geometrical, combine to act as 
effective linearization forces on the formulations of the con- 
cepts designed to describe radiative transfer processes in 
geophysical ~ p t i c s  and great stretches of astrophysical optics. 

The first of rhese v i g w  is that the theory is con- 

are ~~~~~~~t~~ linear, ana taneraby set OW& pare 0% the stage 

The second viewpoint adopted by the founders of the 

approach, we have 'shut our eyes sonapletsly* anal have thought 

The Physical Basis of the Lirnearity 
ob thk Interaction Principle 

Before going on PO state and illustrate the interaction 
principle, it will be instructive to examine in more detail 
the preceding physical assertions about the types of radiative 
processes limited to the purview of radiative transfer theory. 
In contenplating the consequences of the m ~ d e r ~ l  view that ra- 
diant energy is carried by quantized e ~ ~ ~ t ~ o ~ ~ ~ n ~ ~ ~ c  fields-- 
i.e., by photons--we encounter a great number of p~ssible 
types of interactions of photons with matter. Adopting a sug- 
gestion by Fano [go], we con usefully classify all sf these 
variations into five maim types of photon intaraothm: 

I Interactions with atomic electrons. 

P I  Interaceions with atomic nucleons (protons, 
neutrons), 
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111 Interactions, with electric fields around charged 
atomic particles (electrons, charged nucleons). 

IV lnteractions with mp9soi-i fields surrounding nucleons, 

V Interactions with other photons, 

The effects of these interactions ate also greatly 
varied. But again for our present purp~ses, we need distin- 
guish only three broad types of effso&s: 

A. Outright absorption 

B. Elastic scatter 

C. Inelastic scatter 

A word or two on the meaning of these terns is in order. Sup- 
pose we picture a photon as a small colored fuzzy ball, and 
an atom or a molecule of an optical medium as a relatively 
large complex spherical maze of thin, widely spaced fuzzy 
wires (electronic orbits or ele3Ct~OA bonds] with tiny rela- 
tively dense central cores. Then in the case of effect A, the 
colored ball either zooms into the wire cage and becomes en- 
meshed in the maze of wires or is captured by a dense cores 
there to stay for a period of time far greater than that nor- 
mally required to ergverse the diameter of the cage at its 
initial speed. I% it is ultimately releasdd, we say an emis- 
sion proosee has occured. In this captured state the ball, 
in effect, has been cabeorbed by the atom, and loses its iden- 
tity as suchs resulting momentarily in a higher orbit of one 
of the atom’s electrons or in a higher stationary energy state 
of a molecule or in an increase in kinetic heat energy of the 
atom, or some combination of these. In the case of effect B, 
the colored ball caroms off (or skims through) the electronic 
shells of the atom, the net effect being a change of direction 
of travel of the photon with no change of its color, and we 
say that the photon is scattered without ahange in oavetength. 
In the final case, Cp the ball becomes very briefly enmeshed 
in the electronic shell, or glances off the dense core, with 
greater or lesser wavelength than before, the net effect being 
a change of color and direction 5f travel, and we refer to the 
photon as 8OattaFad with change in wauo2ength. 

we see that there are, in the present view, five possible 
types of interaction of a photon with matter and three pos- 
sible types of effect. There are then in all fifteen possible 
interaction-effect pairs we can fora: 1.4, IB, IC, IIA, IIB, 
IIC, ..., VC. We shall call any of these fifteen interaction- 
effect pairs a radia’ciue proaees. In Table 1 the fifteen gen- 
eral radiative processes are displayed by their characteristic 
interaction energies and by name whenever possible. For ex- 
ample, the class of processes we know as Rayleigh scatter is 
subsumed by the process IB. In this process a photon inter- 
acts with an atomic electron with the effect that it is scat- 
tered elastically. The inequalities that are indicated in the 
entries of the Table specify the interaction energies for 

Returning now to the interactions and their effects, ‘ 
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Photcuahs Inter- 
acting With 

Electrons 

EPeetris field 
around EPec- 
trolls Nulrlle 

Other Photons v 

which the associated process takes place. For example, 
" ~ 0 . 1  Mev" means that the associated process takes place at 
0.1 million electron volts OF lower. Further, "20.1 Mev" 
means that the associated process takes place at 0.1 ail.lien 
electron volts or higher. The unnamed processes and some of 
the other processes (IIIC, IWB, IVC, and the phot~nie inter- 
actions) have not been observed et this tine ob writing. 

It will be instructive eo correlate eke Mev means sf 
specifying the energy of a photon with its associated wave- 
length. By doing so, we shall be able to see clearly where 
eke interaction energies cornon to radiative transfer eheory 
stand in the arena sf all this activity, To facilitate com- 
parisons, we convert Mev units to wavelength units. The tran- 
sition from plev to wavelength is made by first recalli.ng that 
the basic quantum of energy E associated with a photon of fre- 
quency v is 

E hv 



where the frequency is related to wavslew 
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iw * v 

and whtre "v" denotes the speed of light. If we let v = c - 
9 3  x10 m/sec, and recall that h = 6.625 ~10'~' ergsec, then 
from the preceding relations: 

h = hc/B meters 

1.24 x 
E 

where B is in Mew units. Thus if E 5 1, then the associated 
energy is one million electron volts. The f o m  in which we 
require this formula is : 

or 
A =  *kr D 

I 1 

I 
I I 

where A is in nap, i.e., m ~ ~ l ~ m ~ c ~ ~ n ~  meter), or as they 
are also called, nanorpletezw. Assuming tRa% our present inter- 
ests lie mainly with processes im thag wawelength range 
1 0 s a ~ 1 0 ~  mu, we can now estimate the associated energies of 
interaction. Then by looking over the table of processes WC 
can judge which of the areas of the aain inteiaction arena axe 
of primary interest. 
range : 

Thus we are interested in the energy 

1.24 x 10's E 1.24 x lo-' 
a 

B O 5  15 
i.e. , 

In particular, green light (555 r n ~ )  is on %he order of 
2 x  1O" MeV. 

What a tiny corner of the interaction arena we find 
ourselves in. A glance at the table shows that OUT world of 
radiant phenomena lies well within classes IA and IB. We 
shall call IA and IB the 4%ass&ca% ~aediative proaesees. The 
classical radiative processes are, of course, replete with 
special radiative p~ocesses which include the various well- 
known absorption and scattering processes such as Raman, Ray- 
leigh, Tyndall and resonant scatter; also fluorescence, and 
phosphorescence. 

need not be overly concerned in this work with such phenomena 
as Cemgton scatter--a relativistic phenomenon; pair production 
--a quantum electrodynamics phenomenon; or scattering of light 
by light--a quantum relativistic ~ k ~ ~ Q m e ~ o ~ .  Even if we ex- 
tend our interests down three orders of magnitude to 

The simple calcu1atisn just performed shows that we 
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follows: we present in the next section a preliminary a?xsrmple 
sf the interaction principle. This will serve to focus atten- 
tion an P arslativePy concrete but yet typical instance of the 
use of the principle. From eke example we shall extract the 
essence of the principle and state and discuss the result in 
Sec. 3,2. Beginning with See. 3.3, further examples of the 
interaction principle will be given. The examplies of applisa- 
tion will proceed in a systemtic manner from relatively sim- 
ple cases to progressively mare complex cases until all the 
main t ~ o l s  of radiative transfer, as needed in the present 
work, have been formed. 

principle eo the development of the reflectance and transait- 
tance operators for plane m d  curved s~rfaces, with detailed 
examples presented to help fix the main ideas of the deriwa- 
tions and applications. In Sections 3.6 and 3.7 the reflec- 
tance and transnittance operators for plane-parallel media 
are dewalopcd and applications ore given. The next step in 
the ascending scale of applications is taken in Sections 3.8 
and 3.9 in which the interaction operators for general media 
are defined, functional relations governing the! resulting op- 
erators are derived, and applications of the operators illus- 
trated. Then the sequence ob five sections 3,'L0-5.14 goes on 
to apply the preceding theory to the problem of constructing 
the basic inherent optical properties and radiance functions 
of radiative transfer theory (volume attenuation function, 
volume scattering function, path function, path radiance) and 
in See. 3.15 these are all assembled into the fundmental in- 
tegral equation for radiance. A6 this point all the? main 
tools ob radiative transfer theory will have been constructed 
by means of the methodical use of the interaction principle. 
This M B ~  of the interaction principle is systematized and 

The plan of the remaining part of this chaptcr is as 

Thus in Sections 3.3 to 3-5 we apply the interaction 
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summarized in Sectiows 3.16-3,3,8 in such a way as to aid the 
student of radiative transfer theory in attempting further 
applications and development of the method. 

Throughout all the examples of this chapter--regardless 
of their level 0% coBplexity--runs a common thread of method: 
the method of the interaction princip2ls. This metliod begins 
to form in Example l of Sec. 3.4; crystallizes in Example 2 of 
that section; and then recurs repeatedly, in the manner just 
outlined, through all the remaining illustrations of the 
chapter. 

3.1 A Preliminary Example 

We shall dewelop an example'of the interaction princi- 
ple in this section with the purpose in mind of fixing, on a 
relatively simple intuitive level, the salient features of 
the principle preparatory to stating the principle in its full 
form. 

Empirical Refkectances and Transmittances for Surfaces 

A prerequisite for the development of the example is 
the definition of the empirical reflectance of a small plane 
surface S. Figure 3.3, depicts such a surface S with unit out- 
ward normal k, which is irradiated at each point by radiant 
flux* through a narrow solid angle D', the flux passing 
through a hypothetical collecting surface S' on its way to S. 
The dbserved (empirical) field radiance of the incident flux 
is N(S' ,Da) and the observed (empirical] surface radiance-- 
arising from reflection of N(S',D') by 5 in a narrow solid 
angle D--is N(St9,Dt;S,D). We write: 

NISI ,D';S,D) 
N(S' 3D') Q(D') 

"r(S',D';S,D)" for P 

and call r[S',D';S,D) the (empirical) reflectance of surface 
S for (the incident and reflected directions D' and D, respec- 
tively. Here S' is the projection ~f S on a plane perpendic- 
ular to a direction <', the central direction of D'. The func- 
tion which assigns to (S',D'> and (S,D) the number r(S',D';S,D) 
is called the (empirical) reflectance function for S. For 
the purpose of the present example, we assume r(S',D';S,D) is 
known for all pairs (D',D) of incident and response (reflected) 

'For simplicity in exposition, throughout this work all radi- 
ant flux quantities will be assumed unpolarized, unless spe- 
cifically stated otherwise. For an outline of the task of ex- 
tending all results below to the polarized context, see Chap- 
ter XI1 of [251]. The interaction principle, however, holds 
implicitly for the polarized case. For the relative mathe- 
matical consistency of the assumption of the unpolarized 
light field with respect to the complete theory of the polar- 
ized field, see Sec. 13.1%. 
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FIG. 3.1 Setting for empirical rsflectances and trans- 
mittances of surfaces. 

direction sets such that t;f*k<O and E*k> 0, respectively. 
Here E' and 4 a.re arbitrary central directions of the sets D' 
and D, respectively. These two conditions merely require D' 
and D to lie DIP opposite sides of S, as in Fig. 3.1. 

N(S',Ub;S,U) is that it is additive with respect to D'. More 
precisely, experimental evidence indicates that we may assert 
the following property of N(S',D';D,S). In each case let the 
sets D,D' of directions be circular, conical sets with cen- 
tral directions S,C', respectively. Then: 

Now the essential property of the response radiance 

(i) (D'-AddittvityB If 5 is a surface in an optical 
medium X and S is irradiated in turn by radiances 
N(SI',DI'J and N(SY',D~~), with N(Sll,D1';S,D) 
and N(S2 ' ,Dz ;S,D) as the respective observed re- 
sponse radiances, then N(SI',DI';S,D~~N[S~',D~';S,D) 
is the observed radiance of the S under simulta- 
neous irradiation. 

Furthermore: 

(ii) (D'-ConLinuityl Let the geometric setting be de- 
fined as in (i]. If Q(Df) = 0 and 5' f €, then 
N(S*,Ug; S,D) = 0. 

By letting D lie on the same side of S as D', these 
two empirically-based properties of reflected radiant flux 
are readily turned into the corresponding laws for 
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transmitted flux (see dotted direction c ~ n e  in Fig. 3.1). Ob- 
serve that, by wirtus of ti), rQS',Dv;S,D) is independent of 
the mapitude of N(S',D*). It should be particularly noted 
that (1) and (ii) are mew laws which are independent of the 
D-additivity and D-continuity properties sf 3 in Sec. 2.3. 
The present laws are intended to characterize 8 particular 
type 0% interaction of radiant flux with matter, whereas the 
earlier laws were intended to characterize certain intrinsic 
radiometric (principally geo~i~et~ic) properties ob radiant €lux 
regardless of its interaction with mattea, These two prspar- 
ties permit a limiting process to culminate in rigorously de- 
fined reflectance and transmittance functions for surfaces. 
The details of such definitions will be considered in (6)-(9) 
of Sec. 3.3. For the present we use (i) and (ii) as they 
stand to help solve the ~~~~~~~~~ radiometric interaction 
problem. 

The Problem 

Two plane surfacesP Sg a ~ d  S2, in a vacuwn are mutual 
point sources. In addition, they are mutually visible end 
are irradiated by sources of radiance NE" and NzO over solid 
angles, DO 1 and Dtar respectively, IS shown in Fig. 3.2. 
These incident radiances initiate an interreflection process 
between St and §2 with resultant surface radiances N(SI,DIZ) 
and M(S2,D21). Here D12 is the set of directions from IP point 
in S1 to every point in Sa. Since SI and Sa are mutual point 
sources (ime., eash is a paint source as seen from the points 
of the other), D I Z  does not vary appreciably as location is 
varied over SI, and so may be assumed constant over SI. 

FIG. 3.2 Setting up an interaction calculation for sur- 
faces SI and S2. 

c 

... 



where S ~ Z ' ~  e.g., is the projection of S L  on the plane normal 
to the direction frp~m X I  to XZ. Similarly, for S4aIs Sol', 
and S ~ Z ~ .  In the cast: sf  SO^^^ e.g., imagine an external 
s o u r ~ e  poimt xQ. The 562 -Dlz consists of all negatives of 
directions in D12- Thus if 5 is in Dl2, then -Dlz contains 
-E. Now by virtue of the definition of empirical reflectance, 
the De-additivity property (i3 above, and the fast that the 
intervening space between S1 and SI is a vacuum [so that the 
radiance invariance Paw can be used) we have: 

where we have written: 

For later purposes it is convenient to make one final 
set of definitions. We write: 

" ~ ~ , ~ *  ~ Q F  r . .n . i,j - 1,2 013 01 

%os rijiQji i,j = 1'2 
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Then (2) and (3) become: 

Equations (49 and (5) together constitute the algebraic 
core of the statement of the present form of the interaction 
principle. In the present case we have two relatively small 
plane surfaces which are: interacting radiometrically. Each 
surface Si (i-1 OF 2) is irradiated by two incident parcels 
of radiant flux in the form of the empirical radiances, NiO 
and Nji, and Si itself has a resultant surface radiance Nij. 
To the sets of such incident ~.adZanoes, Ni' and Nji and Pe- 

Si (ipl or 2), there c o l ~  

would be to assert the existence of these operators and to 
yield the interaction  p pat ions (4) (5) e 

Solution of the Problem 

present problem leads to the solution of the problem by means 
of the theory of simultaneous algebraic equations. Thus, mul- 
tiplying each side of (4) by C121: 

N 1 2 E n 2 a  a N ? C ? ~ C I . ~ ~  + N z i ~ a i z C 1 2 1  

The interaction principle formulation (4), (5) of the 

The 
and 
(4) 

c 

radiance N12 can be found by permuting the symbols "1" 
"2" in this equation. The complete solution of the system 
, (5) is then: 

(6) 

c 
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This iw turn is the value af the: empirical reflectance ~ U R C -  
tiara for SI. By (I), and the fact that this value OS TL is 
independent of the magnitude cf the irradiating flux, we can 
select any incident radianee* say EI;~ over - ~ 1 2 ~  ana %et N ~ Z  
be the response (reflected) radiance over ?'hen: 

Si(sia ,-DirniS~ tDi2)nra e & .  

N; 2 

If k{si2] is the projected area of S1 on a plane normal to 
the direction from X I  to x 2  (see Fig. 3.21, and P(Sl,-Dla) 
and P(S1, D12) are the radiant fluxes associated with 
then the incident radiant flux is given by: 

NT2, 

wE #-IW - N ; ~ A I S : ~ B R ~ ~  

and the surface (response) radiant flux is given by: 

Here we have used the fact that Q(-Qlz) = Q4Dlz) * GI,, and 
el50 the operational definition sf surface radiance (Ses. 2.6). 
Hence ; 

I 

At this point we choose the o n e ~ g y  consaroatian prZnaipte in 
the form which states that: 5f P' 7:s %he twtcmt ~adiant ftua: 
iYl&dQ?%& Q)I o g d w n  eurfase s ana P+ irr the toeat ~ a d ~ a n t  ftux 
teotsing the surfam S clad P+ and P' are independent of tCme, 
then PSP'. We shall BSSMSW this statement is true. From 
this we deduce in particular that: 
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so that: 
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A similar inequality now follows for X l a l .  These inequalities 
are the most we can say, without further qualifications, about 
any reflectance (or transihittance) operator occurring in the 
theory of radiatiwe transfer. Thus in a partzeular geometri- 
oat situation w e  muet expbicitZy pootututca OIP demonstrate 
that at least one of uplld C P l z  in (6) and (7) ia striotly 
tusa Ghan I; and as our analysis has now made clear, this is 
8 sufficient condition that (61 and 67) uniquely determine 
N12 and Nzl. 

Related Problems dncl their Solutions 

The solutions (6) and (7) of the problem considered 
above can be used to solve related problems centering on the 
radiometric interaction of SI end S2. Suppose, for example, 
we require the surface radiance of St in some set D1 of di- 
rections other than D12. 
xfl which may be any point in the surrounding medium either in 
or not in St or S2. Toward this end we write: 

Here l'B'' is associated wit a point 

*'~oIB'* for rl(S:l;Den;Sn,Dle) . 
Then by the D9-ndditive property (i) above and the radiance 
invariance law we have: 

In an exactly similar manner we arrive at the surface radiance 
of s2: 

0 
M 2 8  N2rOZg~Ol * N12r12Ba2P 

Once again we can c m t m c t  these solutions into a fixed 
form which clearly reveals the underlying unity of the inter- 
action concept. Thus by writing: 

0 I'ZiB1I for roi8Sloi i = l,2 
and 

lfEijB1* for rijsnji ~ i,j 

the preceding equations become: 

a 
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Am Alternate form of the Principle 

He now abruptly change our eoncsptual orientation ili 
Fig. 3.2 €ram that ob two radiometrically interacting surfaces 
SI and S2 to that of a single subset S of the optical medium 
irradiated frons withorn$ by radiant flux. This change in ori- 
entation can be encouraged by imagining S; and S P  in Fig. 3.2 
EO be encircled by a closed dashed curve and to think of the 
EUKWB as holding a si(0g243 eubaet S ~f space (that is, S IS a 
disconnected subset which happens to consist of two separate 
surfaces, SI and St). This subset S is irradiated at two 
places by incident radiances IN10 and Ha0, and the response of 
S is imagined in the form of two streams of flux characterized 
by Nas and Nzg. This soncaptual C O I T ~ F K ~ ~ S ~ Q ~  of Sl and S2 rntn 
a single radiometrically respansive entity can be expressed 
symbolically as folPow5. Ye first write the system (8) and 
(9) in matrix form (replacing "13'~ in (9) by "-p, for general- 
ity) : 

Further, from (6) 2nd 17) we can write: i 

xhere, in turn, we have written: 
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Then going one step furthet and writing: 

and : 

VOL. 11 

Let us write: 

'IB&'* for Y;, + YOY,, 

and thereby arriwe at the desired form of the system (8), (9): 

The significance of (10) may be disserned as follows: 
given subset S we have shown that to an arbitrary pair of in- 
cident radiances (N'?,NB] and reepome radiance8 (NlBrN2y) 
there oorpaeponds a uniglee interaction operator f a  2 x 2  matrix 

for the 



%he MtleuaCLB bb&? of SQlUtioIl 

We conckude this preliminary exmp.Po of the interaction 
principle by displaying an alternate made of solution ~f the 
problem of the radiometric interaction of the tw5 surfaces SI 
ana s2 ~ ~ ~ t s i d e r e ~  above. our purpose is to show that this ai- 
ternate mode of solution and the interaction principle made 
of solution are equivalent. As our ~~~e~~~~~~~~ proceed into 
the nex% chapter, we shall also see that each made of s~lueion 
gos.ses3.e~ a valuable conceptual kernel which is capable of ex- 
tension to quite wide damairas of application in radiative 
transfer theory in general, and hydrologic optics in p a r t k u -  
Lar. This alternate made of solution we call the natural 
mode of solution, for it appears t3 be conceptually the sim- 
plest rand most natural approach to interreflection problem. 

briefly as ~ O ~ ~ O W S .  We imagine a hypes-fast camera filming 
the radiometric interaction of two surfaces, SX and Sz. 
filmed episode begins the instant the incident radialnces N1 
and NaO simultaneausly impinge on Sa and St, respectively. 
In a playback af the filmed episode in slow motion, we see 
part 5f NIQ reflected from and start to travel toward Sa. 
This reflected flux eventually reaches S, and part a€ it is 
redirected back toward § t e  In the meantime has been re- 
flected at Sa aand part ef the reflected flux ~ o v e s  om to SI, 
there ~ B B  be reflected and to have same flux begin to return 
to Sa. As the film ccintinue~, the sources Nlo and con- 
tinue to steadily pour f l u  an SI and SZ. After a while SI 
is being irradiated by photons, some af which CQWB directly 
from NpQ, some sf whish are waking their first arrival from 
SO. and some their second arrival from Szr ete. By and by 
the fluxing and interfluxing reaches a ~ ~ ~ s ~ ~ ~ ~ l e  steady state 
(while, in principle, however, there will always be some in- 
terreflection number which has not yet been attained). 
following argument develops the symbolit: representaeion of 
this steady state Pneeareflectioa process, 

Retaining the? notation of the preceding Biscussions, 
let us go on to write: 

The natural made of solution may be described quite 

Theo 

The 
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and 

By recalling the moving-picture allusion it is easy to see 
that &I is interpretable as the surface radiance of S, in 
the directions of S, consisting sf radiant f l u  hav ng under- 
gone precisely j reflections. Again, by means of the analogy, 
we are led to write: 

The numbers Nlz and Nzl obtained in this way are called the 
natura2 so2utiola of the present problem of the radiometrically 
interacting surfaces SI and S2. That N I Z  and N Z A  are indeed 
solutions of the steady-state interreflaction problem associ- 
ated with SI and S Z  will now be shown. By starting with the 
definitional identity arising from (11): 

we deduce the Bollawing chain of equalities: 



SEC. 3.2 

?L'P lart equality foB1aws $ram qlz] anti the ~~e~~~~~~ defini- 
7 i ~ i  of N 1 2  . By comparing (133 and (41 we see that the nat- 
tjr 1 1  m d e  of solution implies the interaction mode of 5 0 1 ~ -  
t i m  Evidently the steps in (13) are reversible, so that 
+.'*I rnteraetion mode of seilution implies the natural mode of 
solution. Thus the two modes of soluticsn are equivalent in 
this case. Since the interaction mode of solution clearly 
represents the solution of the interreflection problem of 51 
and S2. the natural mode of solution therefore is also, by 
virtue of the preceding equivalence, a solution sf the inter- 
reflection problem. This equivalence actually holds in wepy 
general settings and has been established in detail for these 
settings, in Ref. [25l]. We shall have O C C ~ S ~ Q I I  to study and 
. a ~ r  once again this equivalence of the two techniques later 
in the present work. Finallyt we observe that the sums in 
(11) unci (12) being reducible to a sli~~ple geometric series 
~-it.h ratio C141E211. and initial tern of the Porm 
(NQC?. + N?C9.C 1 (ial, j=t for (In); i=2, 4-1 for (12)), 

::re readily evaluated; these sums are given by (6) and (7). 
I IJ J 1 1  jij 

'i. 2 The Interaction Principle 

With the preliminary example complete, we turn now to 
ihe statement of the central principle of radiative transfer 
f he ory : 

r:> if X io an opticaZ medium and S is Q aubaat of X,and A 
I =  (Ai, ..., A,)) de a ctaes of Bets Ai eoa~<ating af inaident 
radiometric functions on % a n d  B (= fE13.+.*Bn)) de a ctaes 
of sets Bj consisting of ~ e s ~ o n s e  radionmelrZc fwwtiona on S, 
aad m aPrd R ape positive Cntegers, then there exiets a unique 
* a t  is..: iS1, ..., m J  j=l>. . .,nl of 159tear tinternction,J 

The Intzrastian Prdnc%pte: FOP every X,S,A,B, m and 

13 

1. 
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operatore sij with domain Ai and range Bj with the property 
that for ever# tirtormmt (ak,. a .#am) of A there eadste an ala- 
mont (bi,. . . , bnl of B euoh *hat: 

181 

bl - 1 aisij 
i-1 

or in matrix form: 
b = as 

where we have written: 

Ila" far (alp *.. ,am) 

fo Ir . . e .  . . . .  
mn sm2 e.. s 

Discussion of the Interaction Principle 

We shall discuss in some detail the meanings of the 
various terms in the interaction principle. First of all, 
the meaning of the term $'optical medium" as used in the 
statement is quite broad and,for example, is intended to have 
as real designata such parts of the world as lakes, oceans 
and various portions of the atmosphere. From the mathernati- 
cal point of view, "optical medium" may be interpreted simply 
as part of Euclidean three-dimensional space such as the re- 
gion between two infinite parallel planes or the interior of 
a sphere, etc., in which we assume that the principles of geo- 
metric optics hold, in particular, Fermat's principle. There 
will eventually evolve, as the studies progress and the basic 
constructs assume their final form, a relatively technical 
version of what we mean by the term "optical medium" in the 
fully developed theory (re: Def. 5 of Sec. 9.1). However, 
for the present the term may have either of the simple mean- 
ings suggested above. 

The meanings of the terms A, B, and Sij in the princi- 
ple can be illustrated using the preliminary example of Sec. 
3.1. Let us return to the setting summarized by Eqs. (4) and 
(5) of Sec. 3.1. In that setting the optical medium was some 
(physically) vacuous region X of Euclidean three-space con- 
taining two plane surfaces SI and Sa. We concentrate atten- 
tion on SI. Then SI is an instance sf S in the principle. 
Consider the set of all incident radiances like N I O  on SI. 
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 his set of incident radiances becones the set A I  in the prin- 
ciple. cont;ider the set of all incident +adiamces like fd,, 

(Al,Ar] c~nstitutb the incident class a in the principle, SQ 
that m = 2. It should be noted that Wa and A2 are each closed 
U A ~ W  the ogsra%ions of forwing seas and products by nonnega- 
tive numbers (Ziaaaoa ~Zoeure). Thus if Nl and p l ~  are in At, 
then so is cN8 + dN2 where c and d aye ~ ~ ~ ~ ~ e ~ ~ ~ i ~ ~  numbers. 
This feature ~f AS and An C m e s  ~~~~~~~~~~~~~R wLth %he requi- 
site linearity of the sij. The class B of response functions 
Si consists of one set Bz, with Naa as B typical. element. 
Ther~?fore in the case cf SI we h2ve in = 2, and n 1, with 
~ 8 r  and Zpsz as the present instances of sz1 and 5 2 1  aespsc- 
tiveby. Hence m e  irivocation of the interaction principle 
far the case 05 SX yields (4). Another and distinct invoca- 
tion in the case a€ $1 yields (5). 

provides n further illustration of the principle's linear al- 
gebraic statement. In (10) of Sec. 5,1, ]I is the s a ~ e  space 
as above. WBW, however, S I  and S2 are considered parts of 

ordered pairs of incident radiance on 5 like (Nl,NP]. This 
becomes A X  in the principle. Consider the set of all ordered 
pairs of response radiances of S like [b!~~,Mzy). This becomes 
B I  in the principle. Therefore in the present case of S, we 

pair (NY.N~) there sorrespoRXs the associated response pair 
(MnfiaN2y] g+ven by [la). Clearly (10) is the present instance 
of the mtstsacial form ~f the principle's algebraic statement. 

As we progress along the line of examples of the inter- 
action principle we shall be gradually less explicit in point- 
ing out the particular parts of the current form of the intar- 
action principle, leaving the details of correlation mare to 
the reader as he becomes familiar with the principle. In all 
the subsequent uses of the principle, we shall look upon it as 
a convenient working principle, i.e., a rule of action for the 
formulation of subordinate principles, the various laws, and 
everyday problems of radiative transfer theory. The practical 
uses of the principle are directed to determining the light 
fieid ira natural optical media by finding the interaction ai$- 
erator sii~. supplied by the basic principle# for a given med- 
ium. The determination of the structure of the operators Sij 
and the various functional equations they satisfy constitutes 
one of the more interesting and challenging problems of modern 
radiative transfer theory. We shall begin the investigation 
of these operators in the present chapter and borntinue it in 
Chapter 7. 

BTY Si. This b e c o ~ e ~  the set A2 in the principle, T ~ g e t h e ~ ,  

The alternate example summarized in (10) of Sec, 3.1 

ORB and the 98mitl SUbSBt, Say s Of x. Consider &he Set Of all 

hawe n no= IF and sz1 is 8' . AS select any T P ~ W  incident 
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The Place of the Interaction Principle in 
Radiative Transfer Theory 

It is not intended that the interaction principle ca- 
tegorically replace all classical instances of itself such as 
the principles of invariance and the invariant imbedding re- 
lation, or other classical instances that occur in the liter- 
ature or that arise during the subsequent developments below. 
Rather, it is intended that the principle be viewed by its 
users simply as a working principle of radiative transfer the- 
ory, and to be used (and perhaps refined) by those students 
of the subject who prefer to envision the theory as governed 
by and derivable from a single idea. The place of the inter- 
action principle in radiative transfer theory and in the main- 
stream of physics may be summarized by the following diagram: 

r------ 

L,, ________________-_________ J 
may join the mainland of physics via electromagnetic theory 
(see, s.g., Chapter XIV, Ref. 12511) or the theory may be 
made completely autonomous using an axiomatic formulation 
made elsewhere (Chapter XY, Ref. [251]). Direct interconnec- 
tions also exist between the three principal parts of the 
theory (indicated in the diagram below the interaction prin- 
ciple). In fact the internal ties on the level of the general 
equation of transfer, the general principles of invariance, 
and the general invariant imbedding relation are so strong 
that these ties are effectively logical equivalences. The de- 
tails of the pursuit of these connections are mainly mathe- 
matical and are beyond the scope of the present work. For 
further details on this matter, the reader is referred to the 
various chapters of Ref. [251]. 

As the diagram indicates, radiative transfer theory 

Levels of Interpretation of the Interaction Principle 

file great practrc, 1 r m 2 ~  :%:,. depth nf the interaction 
principle arises from thc l e n - ~  O C  L I I ~ u I . I L ~ ' c ~ ~ ~ ~ ~  which 
it may be applied. There are g e - : 1 1 ~ 7 ~ 1 j ~ *  L.*u: main lev~:Is of' 



interpretation of the principle: the point, %Zlae, swfc~ce, 
and B ~ Q U ~  levels, Of these, the surface amd space levels sf 
interpretation are operationally the most. meaningful. 
point and line mterpretatiods are special theoretical asrti- 
fices which increase the range of the priwcLple im specific 
settings. The preliminary example above is BPZ insnarace of 
the surface level of interpretation. In general, the surfma 
Zevot interpretation of the interaction principle subsi sts 
when one interprets the subset S of sa space X as a subset of 
O A ~  less dinension than X, For three-dimensional spaces X ,  S 
would have two dimensions. For two-dimensional spaces X 
[whicl: arise in certain mathemstisal models) 5 woaald have one 
dimension, etc. In general the spam-EeveE htsx+pPstatias of 
the interaction princig%e 5ubsists when one interprets the 
subset S of a specs X as a subset of the same dimension as X, 
Plane-parallel slabs, spherical solids in Euclidean three 
space are settings for the space-level interpretation. For 
two-dimensional spaces x, the subset S would have two dimen- 
sions, etr. 

Of the remaining two Ravels of interpretation of the 
principle, the paint Level ineerpretation is the more widely 
used. In fact the point-level interpretation covers so much 
ground that it is convenient to regard it from two separate 
aspects The generat poine-Eovet iats~pretatdon of the inter- 
action principle subsists when X is a general space whose 
points are arbitrary, The general point-level interpretation 
is of most u5t in the development of general discrete-space 
theory (Ref. [Z§lj], The ~ p e a i ~ ~ l  point-teveZ interprsitadion 
of the interaction principle subsists when s is 8 poila& or an 
optically small three-dimensional subset of space (i-e., e.$., 
a point source] in which single scattering processes are to 
be dominant relative to multiple scattering processes, This 
special interpretation is commonly used to establish in an 
intuitive fashion the concept of the volume scattering func- 
tion, which plays a key role in the theory (see Sec. 13.4). 
h alternate establishment of the volume scattering function 
could take place strictly and rigorously in the space-level 
interpretation (see Sec. 3.14). The special paint-level in- 
terpretatior IS also a useful and defensible ploy in setting 
up radiative transfer theory and is thereby retained and giv- 
en a special status. (See, e.g., Example I., See. 3.17.) 

The Linal level of interpretation to be discussed is 
the line-lewel interpretation of the interaction principle. 
The tine-level. interpPetation subsists when one interprets 
the subset S QE a space X as a one-dimensional subset of X. 
T!ie line-levcl interpretation is not operationally meaningful 
:is are "Le surface, space and special point-level interpreta- 
ta~n!i, ltowevcr, it is retained because it favors useful math- 
ematicai attifacts, as does the special point-level interpre- 
Cation. Furthermore, like the special point-level interpre- 
LLitiOiI, the use of the line-level interpretation is rigorously 
defensiale by means of limit aguments starting with the space- 
level interpretation; for that reason it is retained as a use- 
fur technical device. We shall use it below in viewing the 
; - ~ t l ~  radiance as the response of a path in real optical medium 
:u t~ir incident path function radiances along the path. (Ex- 

The 

!e :, Sec. 3.17.) 
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Unless specifically noted otherwise, we shall hence- 
forth mean by tqoptical medium" any three-dimehsional part X 
of Euclidean threq-dimensional space. This then will auto- 
matically set the dimensionality of S in the various h t e r -  
pretations of the interaction principle. 
of optical media, as they are studied in radiative transfer 
tneory, is given in Sec. 9.1.) 

(A.forma1 definition 

3.3 Reflectance and Transmittance Operators for Surfaces 

In this section we begin the sequence of constructions 
of the concepts needed for the description of the manifold ra- 
diative transfer phenomena encountered in the practice of ra- 
diative transfer theory. In particular in this section we 
shall use the interastion principle as a base for the con- 
struction of the more commonly used surface reflectance and 
transmittance concepts. Some work has already been done in 
this direction in Sec, 3.1. In fact the empirical reflectance 
function was defined in that section as a necessary prerequi- 
site for the construction of the preliminary example of the 
interaction principle. We now return to that setting for the 
purpose of establishing systematic definitions for the family 
of reflectance and transmittance operators for surfaces. 

Geometrical Conventions 

Figure 3.3 (a) depicts CB general surface Y in an opti- 
cal medium X and a relatively small part S of Y about point x 
on Y. We are interested in the reflectance and transmittance 
of Y in the region 5 about x. Now the terms tvtransmittance" 
and "reflectance" become meaningful only after adequate ref- 
erence frames have been established at given points x of Y 
within which one can unambiguously establish conventions about 
the notions of "inwardness", "outwardness", "upwardness", 
"downwardness", trforwardness8t* "backwardness", etc. Suppose 
then we affix to point x of Y a unit vector k(x) and call it 
the unit outward normal to Y at x. Perhaps some readers 
would prefer to call -k(x) the unit outward normal to Y at x. 
This is perfectly admissible €or our present purposes, and 
the reader may therefore turn around the arrows in parts (a)- 
(d) of Fig. 3.3 and read the following discussion as it 
stands. The point being made here is that what one calls 
"outward", etc., is immaterial. What does matter is what one 
subsequently does with the concept and that, within a given 
discussion, a measure of consistency is sustained in the use 
of the concept once the convention is made. 

During the present discussion, let "D'" and "D" denote 
narrow circular conical solid angles of central directions e t  
and 5, respectively. S is a small collecting surface on Y, 
and x is a point of Y in S. Let "S'" denote the projection 
of S on a plane normal to 6'. (See parts (c) and (d) of Fig. 
3.3.) D' is the set of incident direotions; D is the set of 
response direotions. Both D' and D will always lie completely 
within E+(k(x)) or E-(k(x)) where E+(k(x)) is the set of all 
directions e' such that c'*k(x) > 0, and E_(k(x)) is the set 
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FIG.. 3.3 Setting for reflectance and transmittance op- 
erctors for surfaces. 

m 
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af all directions E' such that F.'*k[x) (0. (See part (b) of 
Pig. 3.3 and compare with Sec. Z d 4 ,  so that E+(k(x))-E(k(x)) 
and E_(k(x))-T;-(-k(x)). We shall also write for brevity: 

"E*(x)" for Et(k(x)) . 
The notation ''E~(x)~' finds its best use when specific 

surfaces are under consideration, while the natation 
"E(*k(x))'.' finds its greatest use when (as in Sec. 5.4) purely 
radiometric arguments are in effect as no specific surfaces 
are being discussed. 

The Empirical Reflectances and Transmittances 

With these paeliminzries established we can define 
with some measure of precision the empirical reflectance and 
transmittance function, Emulating (L) of Sec. 3.1 we write: 

(1) N(S' ,D';S,D) 
N(S' ,D')Sa(D') 

"s(S@ ,D';S,D)'' for 

where all terms on the sight side of the definition are as 
described in Sec. 3.11, but now with x~E',<,S',D'~S, and D as 
specified above. The notation in (1) does not tell us spe- 
cifically on which side of S the sets D' and D lie, By spe- 
cifying this information, the values s(S',D';S,D) take on the 
characteristics ob reflectarises and transmittances. Thus let 
us write: 

"r+(S* ,D';S,D)fl for s(S',D';S,D), if DsCE+(x) and DCZ-(x) 

"r_(S',D';S,D)'' for s(S',D';S,D), if D'CE_(x) and DCZ+(x) 

"t+(S' ,D' ;S,D)" for s(S' ,Do ;S,D) if D'C E+(x) and DCE+(x) 

"t-(S',D';S,D)" for s(S',D';S,D) if D'CZ:_(x) and DCE_(x) 

(2) 

(3) 

(4) 

(5) 

Here "D' C E',(x)" is an inclusion statement which means that 
D' is contained in E+(x). Similar interpretations hold for 
the other three inclusion statements. For example, part (c) 
of Fig. 3.3 depicts the geometrical arrangement for 
t-[S',D';S,D), and part (d] of Fig. 3.3 depicts the arrange- 
ment for r-(SfBD';S9D). Definitions (2) and (4) cover the 
outward (or upward or forward) empirical reflectance and trana- 
mittanoe of Y over S. Properties (i) and (ii) in Sec. 3.1 
hold for the r+ and t, just defined. 

We could have arrived at the preceding four empirical 
reflectance and transmittance functions just above by direct 
appeal to the interaction principle. Thus, with X and S as 
given, let m = n = 1 and A be the set of all outward directed 
incident radiances N[S',D') on S (i.e., D' contained in 
E+(x) 1, and let 5 be the set of all inward directed response 

- - 

n 
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radiances of S (i.e.* D contained in Z.-(w)). Thean the inter- 
action principle asserts the existence of a linear interaction 

that for every N(S',D') rn A there exists an N(S,D) in B such 
that 2 

QyesarOP 91 z--Call it "re(* *)n(*)'"-With the p??sy@l'ty 

N(S.9) - N(S1 rD*)r+(Sb , D e  ;S,D]G(DE) , 

tlence the interaction operator in this instance is a real 
raliiedi function ~f four variables (SI ,Dl,S,D) which assigns to 
each choice of these variables a number--the reflectance of Y 
over S under the indicated conditions. If instead ab incident 
radiances, we chose incident scalar irradiances over De for 
the set A, then rt(*,-;*,*) itself would have been obtained. 
ti we! had chosen rncadent irradiances instead, thew 
r*(-,-;*,*l/E@@k would have been obtained. This shows the 
potential flexibility of the principle in supplying i4 great 
variety of ' q ~ ~ f l e ~ t ~ n ~ e s r B ,  depending on what set sf radiomet- 
ric quantities art? chosen for A and for B. 

The Thearezical Reflectances and Transmittances 

By letting S apprcach txl, I)' approacRCE'1, and D ap- 
proach {E} in the limit, definitions (2)-(5) yield definieiom 
of the corresponding theopetieat reftaetanoss and tranamit- 
taunoso of Y at x. Thus by performing the indicated limit op- 
erations, we arrive at: 

Here "C'EE+(X)" m a n s  that 6' is a direction in E+(x), etc. 

fiectance and zransmittance functions for surfaces follow di- 
rect.ly from the interaction principle. The technique of ob- 
taining rt or t; is similar to t-hat discussed in See. 2.13 
for obtaining the generalized luminosity function Z(*). Spe- 
cifically, we would use the interaction principle to supply a 
positive linear function with the pro-perty that it acts on 
incident radiance distributions and yields reflected or trans- 
mitted radiance diseributions. . Interested mathematical read- 
er's may pursue this matter further in Sec- 3.16. To develop 
this appiicatian of the interaction principle in the present 
::ectioa would be to digress too far from the chosen scope of 
tlic present discussions. We give only the results of suck 

It is a simple matter to show how these theoretical re- 

3ii exc:lrs iort into measure theory. Thus, we write: 
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These are the general reflectance and transmittance integral 
operators associared with an arbitrary surface Y with outward 
unit normal k(x) at each point x of Y. The domain of' inte- 
gration in each operator is of the form E+(Y) or Fi-(Y) and is 
known once x in Y is specified. Thus, if N(x,-) is an inward 
incident radiance distribution at x in Y, then: 

is the outward reflected radiance at x in the direction 5 in 
response to N(x, e). In general, if N(x, e )  and rc and t+ are 
defined over just part a of Y, then we use "N-(a)" to denote 
inward incident or response radiance distributions over part a, 
and "N,(aj 
distributions over part a. For example, if x is a point of a 
and 5 is an outward direction, then N+(a) assigns to x and 5 
the response radiance N(x,F). If we let x in (123 range over 
all points of part a of Y, then we see that (12) defines the 
response function N+(a) of a. Hence N+(a) in this instance 
is a general reflected radiance distribution resulting from 
operating on N_(a) by r-(a). This fact we write in the form: 

to denote outward incident OF response radiance 

where we have written: 

The radiance distribution appearing in the integral is (by 
noting that the range of integration is E-(a)J an inward ra- 
diance distribution incident on a at a general (unspecified) 
point. The definition (14) can be repeated for the three 
other general cases associated with a, namely N+(a)r+(a), 
N-(a)t-(a), N+.(a)t,(a). Equation (13) gives the integration 
operation an algebraic appearance, a feature which, as we 
shall see, is most conducive to rapid and creative manipula- 
tions during theoretical radiative transfer computations. 
This algebraization of radiative transfer theory is fostered 
by the interaction principle whose salient character is itself 
basically algebraic (rather than, say, analytic or geometric). 

L 



Some attention will next be given to the possible var- 
iations the preceding definitions of rf and tt nay undergo as 
shifts are made in the choice of types of radiometric inci- 
dent and response quantities. A few specific instances will 
suffice to shew the potentially great ~iurnber of variations . 
possible. 

the incident set A are BO be irradiance5 a ~ d  those in the re- 
sponses set M to De ~ c d C a n o ~ a .  Then, e.g., in the expanded 
rendition of [k3): 

TO begin, suppose that the radiometric quantities in 

we retarrange matters so: 

with the result that the new reflectance operator has a ker- 
nel with values 0% the foam: 

(161 rdCx;S';S) . 
I E' -k(x) I 

#e shall not devise notation to cover this case or the multi- 
tude of alternate cases possible. The notation is best set- 
tled by those who must work repeatedly with the specialized 
concepts. A semblance of order and universality is attained 
in such matters, however, if some set of functions such as 
those defined via f6)-(9) is taken as a fixed base of opera- 
tions from which to proceed to new territory. 

are used in practice h'here the surfaces under study are often 
considered ideally or nearly uniform (or tambept] refteators. 
For suppose a surface Y at x has the property that there is a 
real number r- such that: 

Reflectance functions of the form displayed in (16) 

for every 5' in Z-{x) and every < in $(x). Then (IS) becomes;: 
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licncc thc roflectg-d radianco di*,trrl>ution N(x,*) is uniform 
findopendent of [) of iiiclgnitude N(x), say. Then the associ- 
ated radiant emittance is: 

W(x, E-Cx)) = nN(x) 

= r_H(x,5-(x)f 9 

as one would expect by the way T- is defined. If the inci- 
dent radiance distribution itself was uniform, of magnitude 
N'(x) then 

H{x, Z-(x)) = nN'(x) a 

From this and the preceding equation we have: 

N(x) = r-N'(x) II 

again as one would expect of the new version of the reflec 
tance function asd a lan,t,ert reflector. 

As ai:otbeT t*xample, supy,osc that the irrcsdent T-,'L!< - 
metric quantities in A are radiances and those in B arc ra ' I -  
ant emittances. Specifically, kat (15) he used as startirt- 
point and o;ieratc on each side of (15) with an integration of 
the kind: 

N(x,S')r- (x;S';S)dQ(E'l S-k(xldQ(S1 . (18) - J = (x) [I E_(x) 1 

-+ 1 

-+ 

It is clear that the integral on the left yields the requisite 
radiant emittance W[x,?+(x)) [cf. (22) of Sec. 2.4) which thus 
is obtained by operating on the incident radiance distribution 
N(x,-) with the integral operator 

I lr-(x;EU;;S)~Q(E') S*klxjdn(S) a 

Sow i t  I C  q u i t e  natural. whpr: using irxadiance and radiant 
emittance in this hay for to assign to the quotient 

w ( x E, ( x ) j i I I ( x , E- ( x ] ) 
the meaning of a reflectance (an atbedo) of the su~faic, Y at 
x. Thus if we write: 

P 
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Example 1: lrradiances cn Two Infinite Parallel Planes 

faces separated by a vacuum, as in Fig, 3.4. The coordinate 
system used is the terrestrial system defined in See. 2.4. 
Each plane has assigned reflectance and transmitkance func- 
tions as developed in Set. 3.3 which are to be constant Gver 
a and b. However, the directional structures of the reflec- 
tance and transmittanc.e functions are otherwise arbitrary. 
.4n interreflection process between a and b is initiated and 
sustained by a steady downward field radiance distribution 
NP(b) on plane b which bas the same structure at 2.19 points 
of 'J. Our pyesent goal is to compute the resultarit. s?.esidy 
sfate irradiances on a and b, that is the upward irradiance 
ti,(a) 0'1 a ani! tho downward irradiance H..(b) b. 

The interaction principle app-lied to a and b ir? t u n  
y:clds the requisite irradiance reflectance operators. Thus 
for a the set A 0f incident rsdiometric functions consists of 
:.-:.-ci!iances like ti,(a)* and the set B of response redi.ometrj.c 

0: :a :sansis~s of downward radiant emittamces i4- (a1 
+ c  * .--c! vacuilm betweeia a and b hsve maz:ii.- 

Let "a" and "b" denote two infinite parallel p1.ane sur- 

'-7R 12 of Sec. 2,11 
. I i L r  wieh r LT- *'-e ' . .c ir<6';T.;*f 

This definition of r- ( x j  (And the three analogous definltlans 
I-+(?(), t2fx)) is motivated by the need for working with nurncr- 
icai irradiances and radiant emittances, and nuiiterica4. r e -  
f l e c t a ~ ~ e s  rather than the analogous functional and ciperator- 
ial concepts which must be used in certain full treataents of 
interreflection problems, In the next section, we shall il- 
lustrate in more detail the use of (13) and (191. 

3.4 Applications to Plane Surfaces 

In this section we shall illustriadt the appEicatinri of 
the reflectance and t.ransaitta&ce operators for surfaces I 
constructed in Sec. 3.3, for several types of frequently erl. 
cauntesed plane-surface settings in radiative transfer Lheary. 
Throughout this section and, indeed, the remainder of this 
chapter, ofle of the principal goals is the demonstration of 
the systematic use to which the interaction principle may be 
put in fQrmUhtkng the concepts and problems of radiative 
transfer theory. 
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1 

FIG. 3.4 Two interreflecting parallel planes. 

planes). The interaction principle then asserts the existence 
of a reflectance (a number) r+(a) such that: 

\V-(a) = H-(b) = !i+(a)r+(a) 
= \V+(b)r+(a) (1) 

The last equality uses the radiance invariance law which im- 
plies that W+(b) = ll+(a) . The closing example of Sec. 3.3 
shows the necessary form of '+(a!, Thus, following the pat- 
tern (19) of Sec. 3.3 we have written: 

"r+ 

and 

- +  

where N(x,-) is now the upward surface radiance distribution 
of b at x which, with r+(x;E';S), is independent of x. By 
noting that the iterated integration amounts to finding h'-(a), 
the downward radiant emittance of a, we see that we are simply 
writing : 

a 
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M,(a) 
kj+. (a) 

"K+ [a)" for 

flowever, r+(a) is XIOW precisely determinable as shswrn i n  the 
iterated integration whenever N(x,&) and r,lx;E8;tE) are known 
for every x.Egn and F. Even if the surface radiances NCx,S] 
of b (and also a) are not known in abso%u%s magnitude, but 
only in relarive magnitude ( i s @ + $  its shape but not the size 
is knawsa) the present goo% can be attained, as we shaP% see. 

plane b, which has two sets of incident functions and one set 
of res onse functions. For, ehe given d ~ w ~ w a ~ d  surface radi- 

li!!(b). Esuadiawees Pike H![b) comprise the set A X  of incident 
radiomctric functions for b. Irradiances like H_[b) conprise 
the set Az of incident radiometric functions for b. The set 
B1 of response functions of b consist$ of radiant emittances 
W,(b) numerically equal to H+(a),(via the radiance invariance 
law once again). The interaction principle then yields two 
reflectances (numbers) t?(k?) (for A1 and €31) and r,/b) (for 
A 2  and &I) such that: 

Continuing, we apply the interaction pt-insiple to 

ance N,(b) g on b gives rise to 8 known incident irradiance 

w,(~I Q w+ba) = @(bIr?(b) + ~-(b~r..(b~ . (21 

The numbers rf[b) and r-(b) are defined exactly analogously 
to r+(aj. bquations [I] arid (2) together determine H+(a). 
Thus, using (1) to eliminate H-(b) from (21, we have: 

H,Ca) a H:(blr!Cb) + W+(a)r+tallr-(bl 

and so: 

T'hese solutions exist provided that the product r+(a)r-(b) is 
less than 1. This provision is reminiscent of a similar prs- 
vision for C I Z ~  and G Z J Z  encountered in the preliminary exam- 
ple of Sec. 3.1, and may also be handled via the energy con- 
servation law if desired. It is clear that (3) and (41 are 
usable in practice once reasonable estimates of r+(a) and 
r-(b) are made. Sush estimates can be based either on empir- 
ical data in the form of measured ratios such as W,(a)/H+(a], 
or by means of integral computations knowing the values 
r+(x;S';S) and the ~ h a p e  of the reflected radiance distribu- 
tions. For example one can assume the perennial favorite: 
a uniform radiance distribution, or other readily integrated 
products of the form N(x,<')r+(x;S';€). 
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r 

b 

FIG. 3.5 Systematic details for an interreflection cal- 
culation between two parallel planes. 

Example 2: Irradiances on Two Infinite 
Parallel Planes, Reexamined 

In this example, we systematize the procedure and re- 
sults of Example 1. In that example the radiometric details 
bere kept at an absolute minimum so that the algebraic work- 
ings of the interaction principle could be readily followed. 
Now that the algebraic details of the interaction formulation 
have been demonstrated, we return to that simple setting and 
pull out nearly all the radiometric stops and turn on all the 
lights--so to speak. Specifically, we now let plane a be ir- 
radiated by two external sources, (i.e., origins of flux 
other than a and b) which produce downward H!?(a) and upward 
Hy(a) irradiances; sinilarly, b is irradiated by two external 
sources which produce HO(b) and Ht[b) as schematically shown 
in Fig. 3.5. Our present goal is to use the interaction prin- 
ciple to formulate the equations governing the four quantities: 
W+(a) , W,(b) , i.e., the upward (+) and downward (-3 radiant 
emittances of a and b induced by the interreflection inter- 
action between a and b and the incident external sources on 
a and b. We direct attention first to plane a and list all 
possible incident radiometric quantities on a: 

AI: all irradiances like HO(a) 

AP: all irradiances Pike Hy(a) 

Aj: all irradiances like H,(a) 4 
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A1 and A1 are self explanatory; a, is tile Set of frraahanccs 
induced by the prese~nc8 Of- plane b below 8. Next, E%l@ set Of 
all response radiometric quantities of B are ers~lmerated as 
fol LOWS : 

B1: all radiant emittances Pike W+(lp) 

Bz: all1 radiant emittances like W-(a) 

stract interastiom operators si* supplied by the interaction 
principle are in the fora of rshectance and ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ g ~  
nrunbers a5 follows: 

Thus, in the C S S ~  of plan@: a, I s 5, mi 10 2, anad the six ab- 

o 
SI1 -- P’JB) 
9 1 2  -- toea) 
s p y  -- t:(aI 
$22 -- r,(a) 

1 

o 

9 3 1  “” t,(a) 

s 3 2  -- r+la) 
The six numbers ry(a), . . . ,r+(a) are defined exactly 

analogously to re(a) in Example 1 and come ultimately from 
the interaction principle as outlined in Sec. 3.3. The su- 
perscripts “o“ set off the external incident sources from the 
internal sources. Then, according to the interaction princi- 
ple iV+(a) and w_(a] are given by: 

w+(a) = I-f(a)r(l(a) + Ht(a)t:(a) + H+(a)t+(al (5) 

w-(a) = iIf(a)t(l(a) + Hz(a)rt(a) + t{+(a)r,(a) . (6) 

By repeating this process of application of the interaction 
principle to plane b we arrive at the analogous pair of state- 
ments: 

iJ+(b) - Hz(b)t:(bB + H?&Zr?(b) + H-(b)r-(b) (7) 

(8) W_(b) - ~+~(b)r~(b) 4 H!O)t’I(b) + H_(b)t_Ib) . 
idhen we append the following two equations: 

W+lb) = H,(a) (9) 

... 
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H+(a) = [ B, + A-~-(bl]/[l - r+(a)r-(b)] 

which follow from the hypothesized vacuum between a and b and 
the radiance invariance law, the resulting system (5)-(10) is 
self-contained and in- principle solvable. In particular when 
W-(a) and \V+(b) in (6) and (7) Are eliminated via (9) and (lo), 
the resultant pair of equations is autonomous: 

. (13) 

A First Synthesis of the Interaction >lethod 

This example is valuable in pointing up the systematic 
use to whicli the interaction principle may be put in formulat- 
ing and solving a radiative transfer problem associated with 
a subset S of an optical medium A. The essential steps of 
this method exhibited by the preceding example are as follows: 

Isolate the.subset S of the optical medium X. 

Enumerate the incident radiometric quantities ai 
on S. This determines AI, ..., Am. 

Enumerate the requisite response radiometric 
quantities bj of S. 

Enumerate the mn operators sij, i = 1,. . ,,in, 
j = 1, ..., n supplied by the interaction principle. 

b j = f  a s  Write the interaction equation 
for j = I?. ..,n. 

This determines B 1 ,  ...,3n. 

i ij 
i= 1 
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(vi) Append auxiliary equations connecting various 
chosen 3i and bj, in as much detail as required 
to solve the system in (v) for the bj. 

Step (vi) in the present example occurred in is) and (1D) 
above e Invariably, the additional auxiliary equations in (vi) 
are equations whi~lr match radiances on adjoining subsets of h 
and use one or the otlier of the followirig laws: 

(a) The radiance invariance law 

jb) i'he equality of field and surface radiance at 
a given point and for a given directioE* 

The six steps (i)-[vi) together with (a) and (b) above 
will be used time and again in the following examples. These 
steps appear to lead to systematic formulations ef radiative 
transfer problems in a mannex similar to that used in the 
formulation of the problems of statics and dynamics in nechan- 
ics, i*e., by using the technique which begins with Zhe time- 
I L O R O T ~ ~  injunction to: "isolate tne body", then categorically 
adding up all. forces on the isolated body, and finally zpply- 
~ n g  m e  01 all of the three basic Newtonian lsws of mechanics 
to tile isolated system. It is somewhat amusing and perhaps 
of interest to observe that the three Xewtonian tahs even ap- 
pear to nave their explicit radiometric counterparts in the 
forin of (a) above for the First Law, [v) above for the Secund 
Law, and (b) above for the Third law. We shall call the meth- 
od of formulation summarizekl in (i)-(vi] and (a), (Lj above 
the mo.thod of the interac~ion principle, or simply the i n t e p -  
aotion method. * 

Example 3: Irradiances on Finitely :lany 
Infinite Parallel Planes 

What we have done above far two plane surfaces ice can 
in principle do again for any finite nunbcr arid even an in- 
finite number of 1)lane surfaces. de noti consider the case of 
finitely many parallel planes mainly for the novel problems 
of solution it presents subsequent to the invocation of the 
interaction principle. This will serve to show that the 

-___ 
*In studies of linear hydrodynamics subsequent to the comple- 
tion of the present work, I have found that the interaction 
method is capable of unifying this field in an elegant and 
practical manner, and that it leads to detailed numerical de- 
scriptions of scattered fields of surface water waves. Fur- 
ther studies in water wave-guide theory show similarities to 
the scattering matrix method in e.m. wave-guide propagation. 
All of this is not surprising, as the wording of the inter- 
dction principle is quite wide, and will apply to these other 
contexts by changing "radiometric" along with "optical medium" 
appropriately. See, e.g., Preisendorfer, R.W., "Surface-wave 
transport in rionuniform canals ,I' Report NUAA/JTHE-80, Hawaii 
Institute Of Geophysics, 15'72. 
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FIG. 3.6 Interaction calculation details for finitely 
many parallel planes. 

interaction principlk can lead even the most assiduous inves- 
tigator only so far: there will always be a need for effec- 
tive solution procedures of the more complex formulations 
supplied by the method of the interaction principle. 

ai-l,ai, and ai+l in a family of p parallel planes separated 
by vacua. Hence 1 <i < p  in the Figure. For the moment, p 
may be either finite or infinite. Each plane ai, i = 1, ...,p 
is generally irradiated by an external source and the irradi- 
ation is constant m e r  the extent of each ai. The reflectance 
and transmittance functions of the ai are also independent of 
x over ai. 
(-) external source irradiance on ai. Furthermore, for every 
internal plane ai, 1 <  i < p ,  there are irradiances H+(ai) pro- 
duced by flux from its lower neighbor (ai+l) and its upper 
neighbor (aiml). Therefore for each isolated internal plane 
ai there are four sets of incident radiometric quantities: 

Figure 3.6 depicts three adjacent, parallel planes 

Let t'H$(ai)t' denote the upward (+) and downward 

I AI: all irradiances like H:(ai) 

A2: all irradiances like Hy[ai) 

A3: all irradiances like H,(ai) i 4-4: all irradiances like H+(ai) 1 < i < p  

The set of all response radiometric quantities of ai are enu- 
merated as follows: 
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Ez: 

aPb radiant emittances Like W+(ai> 

all radiant emittances Like W-(ai) 
I <  i c p  

Thus for the ~ a 5 e  of subset ai of X, 1 a i r: p r  we have rn = 4 
and n = 2, and the eight abstract interaction operators sij 
supplied hy the interaction principle are specifically of 
the Effiiloh ing forms : 

0 

o 

0 

Q 

SI% -- r"(ail 
5 1 2  -- t-(ai9 
s.21 -- t + ( q  

522 -- r+(ai) 
531 -- r-(ai) 
532 0 -  e-(ai]i 

S C I  - -  t+lai) 
S + P  -- r+(ai) 

Q The eight numbers r-(ai)p-e.nr+(ai) for a given ai are defined 
exactly as ~ ~ ( 8 9  was defined in Example 1. Then, according 
to step (2) of the method of the interaction principle (as 
outlined in Example 2), we have the following two equations 
for "+(ai): - 

0 o 0 0 w+(ail = H-(ai3r-(ai) + H+(ai)t+(ai) f I{-(ai)r-(a.l 1 

+ H+(ailt+(ail (141 

0 0 w-(ai) = H-(ai)t-(ai) + H:(ai)r;(ai) + H,(ailt_(ai) 

-+ fi+[ai)r+(ai) 115) 

l < i < p  

The interaction principle is now applied to planes at and ap 
in turn. In the case of al, the five steps of the method 
of the interaction principle yield: 

which are (and should be) identical in form tQ (5) and (6) of 
Example 2. As might XIOW be expected the radiant emittance 
equations for ap, are identical in form to (7) and (8) of Ex- 
ample 2: 
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W+(ap) = JJ:(a P lty(a P 1 + 11?(a,3r?(apl + H-(aplr-(a P 1 

w-(a P 1 = P )ry(a P 1 + H?(aplt?(ap) + H-Cap)t-(ap) 

(18) 

(19) 

In this way, for finite p, we arrive at p pairs of equations 
for N+(ai), i = 1>...,p. Step Evi) of the interaction prin- 
ciple method (in particular law (a)) yields the following 
2(p-1) auxiliary equations: 

W+(ai) = H+(aia1) , i = 2 ,..., p (20) 

W-(ai) = H-(ai+l) , i = 1 ,..., p-l (211 

Using (20) and (21) in (14), (Is), (17), and (18) we arrive 
at the following set of 2(p-1) equations in 2(p-1) unknowns 
H, (ail : 

b{-(az) = A-(all + H+(al)r+(a1) (22) 

l-i+lai-ll --- A+(ai) + H-6ailr-(ai) + H+(ai)t+!ai) 

H-(ai+l) = A-.Cai) + H-(ai)t-(ai) + H+(ai)r+(ai) 

(23) 

( 2 4 )  

(25) fj+(ap-l) = A+(ap) + H-(ap)r-(ap) 

"A+(ai)l' for H~((ai)r~(ai) + H:(ai) t:(ai) 

"A-(al)" for H-(ai)t?(ai) + H+(ai)r+(ai) 0 0 0 

1 l<i<p 

where for every i, l s i s p ,  we have written: 

The system of equations (22)-(25) is very nearly a di- 
agonal system, so can be solved relatively easily by succes- 
sive elimination, or by other well-known methods of solution 
for such a system. However, it is interesting to note that a 
general recursion procedure for solving the system is suggest- 
ed by the following physical observations. Suppose we concep- 
tually view the system of p planes as a new system of two in- 
teracting subsets namely a1 and the remaining set ta2, ..., ap} 
of p-1 planes. Considering ia2, ..., ap) as a single unit is 
reminiscent of considering the two surfaces S1 and S P  in the 
preliminary example of Sec. 3.1 as a single unit. By apply- 
ing the interaction principle to a1 we obtain the equations 
for W+(al) whose forms are precisely those of (53, (6). By 
applying the interaction method to the set (a2, ..., aply which 
we will also call by the new name "b", we obtain equations 
for W+_(b) which are precisely those in ( 7 ) ,  (8) provided that 
all internal sources on Ia2p.,,,ap) are shut off. We defer 
treatment of the internal-source case for the moment. Then 
{as, ..., apl reacts radiometrically to irradiation as would a 
single plane. That is, Qa2, ... ,a 1 has its own reflectance 
and transmittance functions assigRed to it by the interaction 
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principle anl hence its associated reflectance and transmit- 
tances for k?-radiance are presumed known. It follows Xhat 
equatLon (13j yields H+(ai) and hence W+(b), etc., provided 
that r- (b) --i.e. the reflectance of the set {ai,, . , > a p )  
fox downward irradiance is known. We do not know r-(b) a5 
sush, but at any rate we have gone down the ladder of complex- 
ity one rung: OUT original task was to find the reflectance 
and transmittance properties of a set of p parallel planes. 
Now we have only to find them for a set of p-1 planes. The 
co~arsc of action now before US is clear: we use <13) and its 
related equat.ions applied to ap-i and ap to obtain the refiec- 
tance and transmittznce of the set fap-i,apls Then we use 

3) again ta find the reflectance and transmittance of 
i,aPi, and so on, adding Layer by Sayer until we re- 

form the final step. The preceding tectbrriqilc has been hastily 
sketched rather than developed in detail because rt is only a 
special case of a. mcre general problem, the complete details 
of which have been worked out elsewhere using the interaction 
principle and thus need not be repeated here. The reader inay 
consult Chapters IX and X of Ref. [25l] for a categorical 
analysis of this internal-source problem. Furehemore, for 
several succi.nct formulas summarizing the preceding sauree- 
free anaiysis ctf the system {al, ..., apl, see Example 6 of 
Sec, 9.7. 

sumed under a more general completed analysis, the reader 
should try his own hand at solving the system de novo, first 
for the case of all internal scurces zero (i.e., iI,O(ai) = 0, 
1 = 1, ...?p- 1 and It?(a,) = 0, i = 2,...,p), and then with a 
general distribution ot internal sources. 
vcrsion of the present problem is considered later (see (44)- 
(66) of Sec. 8.51. A general solution of the internal-source 
probiem is given in Ex. 3 of Sec. 3.9. 

system conrprised of a1 and iaz,.,.,ap} and per- 

Despite the fact that the system (ZZ)-[ZS) can be sub- 

The continuous 

Example 4: Irradiances on Infinitely iltaiiy 
Infinite Parallel Planes 

We now consider an infinite set h of infinite parallel 
planes, shariiig common reflectance and transmittance func- 
tions. These functions are constant over each plane but may 
have arbitrary directional structure. This infinite set is 
depicted schematically in Fig. 3.7. Our purpose in exhibit- 
ing this example is to point up again thc fact that the inter- 
action principle carries one only as far as to permit a metic- 
ulous formulation of the problem. However, the variations in 
the incisiveness and pertinence of a given formulation is 
thereafter limited only by the ingenuity of the wielder of 
the principle. 

As a case in point, let the set A be irradiated at its 
cpper level only and in an amount Ho(h). It is required to 
find W+(.<j, thc resultant upward radiant emittance of the up- 
p,er surface of the set A. A straightforward application of 
::le Lnteraction method to the subset A yields the equation: 
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B A 

FIG. 3.7 An interaction of infinitely many planes, 
which illustrates Ambarzumian.' s priilciple. 

Without any further insight into the problem on the part of a 
student of the subject, the interaction principle can carry 
the discussion no further. A significant advance toward the 
solution occurs, however, if the first plane a of the set A 
is removed from A and it is noticed that the remaining set B 
is in all particulars just like A except that it starts one 
layer lower than its predecessor. This may be viewed alter- 
natively as if A were shoved bodily down one notch and other- 
wise left unchanged. Thus if a radiance distribution of the 
same directional structure impinges on B as that associated 
with H?(A), our hypothesized conditions imply that the reflec- 
tance r-(B) of B IS equal to the reflectance r-(A) of A. Let 
us explicitly make thls assumption to see where such an in- 
sight into the physics of the problem leads us. 

acting subsets a and B. By ir-vdking the : CAraction principle 
for each of these subsets, in-t-r 
which are formally identic I 
(with "b" replaced by "B") 
difference is that in the p . 2 ~  
When these incident lighting conditi 
obtain: 

The system A is now -v?;'b.np? to consist of two inter- 
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brom a simple operational argument (i,e., imagine taking in- 
strument readings) it is clear that: 

W,(aj = W+(W) - (2141 

Now, comparing [ZS) m d  C28) and using the physically-based 
Ins iglit : 

P..W r-CB1 4301 
he have: r“- i 

tquaeiora (:lj governs the requisite reflectance r-(A) (for 
irradiance) of an infinite system A of parallel plane sur- 
faces of coinmoan optical properties. In order to arrive at 
(31) two uses of physical intuition in the P a m  of (291, (30) 
were nestled. tie assumed in particular that the structure of 
the downward incident radiance distributian on B was of the 
‘iane angular structure as that on A. In the present adven- 
t l r r ~ ~ . ~  spirit we can go on to assume that all radiance distri- 
butions within A have the same angular structure (say uniform) 
so that : 

I r(Sra, - r+(a) 
total = t+(a) 

Let us vdrite “rs’ for this common reflectance value for each 
plane in A and ““t’ for this common transmittance value for 
each plane in A. Then (31) reduces to: 

t 2 r _  (A) 

1 + Tr-(A) 
r-(A) = r + I (32) 

T h ~ s  yields the following quadratic equation governing r -  (A) : 

rr;{A) -+ (l-r2-t2)r-(A) - r = 0 (33) 

~11icfi has thf- physiczlly meaningful solution: 

’ i Iiciy ,hcose between the two root signs, observe that if 
t =  0, then r-[A] should be r. By using the sign ”+”, (34) 
:~e:dis this limiting answer. As an example of r_(A) for a 
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particular value of r, let r = 1/2 and t 1/2, t h r n :  

r-(A) = .61H 

The lesson provided by this partitular case of many in- 
teracting plane surfaces may be summarized as follows: while 
the interaction principle always yields the correct formula- 
tion corresponding to the wielder's method of analysis of a 
given radiometric system, there are nevertheless some choices 
of physical analyses of that system which are more pertinent 
than others. The methods of devising such analyses defy sys- 
tematic description &nd retain radiative transfer theory, in 
this respect, in the it'anks of the arts. The particular in- 
sight which was decisive in the present case was that summar- 
ized in (30), and is originally due to Ambarzumian. (See 
Ref. [l] ~ [Z] .) This insight was the basis for the formula- 
tion of the first of the principles of invariance of modern 
radiative transfer theory (for a historical sketch, see Sec. 
49 of Ref. [251]). Now that hindsight and formal principles 
(such as the interaction principle) are available, we can 
mechanically reproduce Ambarzumian's insight (30), (see, e.g., 
(30) of Sec. 7.3). Hence the arguments leading to (34) can 
be made formally rigorous without superfluous physical assump- 
tions. 

Example 5: The Algebra of Reflectance and Transmittance 
Operators for Planes 

In this example we show how the reflectance and trans- 
mittance operators r*(Y), t*(Y), as given in (lo), (11) of 
Sec. 3.3, are used in computations leading to reflected and 
transmitted radiance distributions on plane surfaces. Fur- 
thermore, some important technical concepts, such as the ra- 
diometric norm of an integral operator, will be developed, 
along with the rudiments of the algebra of reflectance and 
transmittance operators. 

We consider first a plane surface a with un t upward 
normal k, as in Fig. 3.8. As usual, "5+" and " 2  'I will de- 
note the set of all upward and downward directions with re- 
spect to k. Let 'lN+(~,.)tt denote the downward (-) surface ra- 
diance distribution at x in a. Let "NZ(x,-)" den0 e the up- 
ward surface radiance (+) distribution at x in a. In general 
throughcut this example, a signed subscript on "N" will tell 
whether the radiance distribution is upward (+) or downward 
(-). A signed superscript on "N" will tell whether the radi- 
ance distribution is a surface (+) or field (-) radiance. 
This convention will serve to help us keep track of the com- 
ings and goings of radiant flux over the surface a. 

For the moment we are interested in relating the down- 
ward field radiance distribution NI(x, *) to its reflected and 
transmitted surface radiance distribution at x on surface a. 
Our goal is to establish the concept of the radiometric norm 
of radiance distributions and of the reflectance and trans- 
mittance operators. According to (10) and (13) of Sec. 3.3: 
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FIE. 3.8 Depicting the notation conventions for i~ciiknt 
and response radiances of the field and surface type. 

E341 - -_ 
Here NZ(x,-) is the Pefteeted and N+(x,-) %he transnctted ra- 
diance distributions at x on a. Integral (35) shows us how 
to find the value of Nf(x,F;) for every x in a and 5 in E,., 
given the values NI(x,S) for every x in a and 5 in E-. Thus 
(35) leads to the operator equation: 

NI(~) = ~_(a)r_[a~ 1371 

where r-(a) is r-(Y) for Y = a, and N:(a) is the upward sur- 
face radiance distribution over a. Thus, bo every x in a and 
5 in E+, the value of N:(a) at (x,S) is Nf(x,S) 8s given in 
(35). Similarly, N:(a) is the downward field radiance distri- 
bution over a. Equation (36) gives rise to the analogous op- 
erator equation: 

~f(a) = N:[a)t_(al (37a) 
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There are two more operator equations in addition to (37) and 
(37a), which round out the family of reflectance and transmit- 
tance operations over surface a: 

N:(al = N;(a)t+(al (381 

~ f ( a )  = N;(a)r+(a) (391 

which are the respective operator condensations of: 

and 

+ 

When working with the operators rt(a], t+(a) on one surface 
only, such as plane surface a, it is clear that the and 
II -,I superscripts on the radiance symbol are redundant (since 
field radiances are always operated on to yield surface radi- 
ances) and therefore may be dropped. However, when working 
with two or more interacting surfaces, the "+" and "-" super- 
scripts often must be retained to avoid ambiguity during cer- 
tain manipulations, as we shall see in later examples. 

Radiometric Norm 

We go on ncw to define the concept of a radiometric 
norm of radiance distributions over plane surfaces and of re- 
flectance and transmittance operators. This concept is of 
central importance in both theoretical and practical computa- 
tions of radiance distributions resulting from reflections or 
transmissions over surfaces. For every plane surface of fi- 
nite area, let us write: 

6 

where "A(a)" denotes the area of surface a. If A(a) is infi- 
nite, then we write: 

"IN+(a) - 1'' for lim IN,(a') 1 (42a) 
a'+a 

where a' is one of a family of subsets of a of finite area 
which equals a in the limit. We call IN,(a)l the radiometric 
norm of N_+(a) over a. It is reminiscent of (and related to) 
the radiometric norm used in Example 15 of Sec. 2.11. The ex- 
tension of (42) to curved surfaces is immediate. N?(a) in 
(42) can be either a field or surface radiance distribution 
for each direction (+) or I-). We observe that the radiometric 
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norm is Pinear in the ~ e n ~ e  that: 

for 

for 

for 

for 

r 
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The motivation behind this seemingly bizarre set of defini- 
tions will now become clear. Let M-(a) be an incident down- 
ward radiance distribution on surface a, and let N+(a) be its 
reflected radiance distribution. Then by (35) : 

We now wish to relate the radiometric norms of Nc(a) and N-(a). 
The preceding definitions have been formulated with precisely 
this task in mind, We begin by integrating each side of this 
equation over 3,. The result is: 

J -  N+CX,S) d ~ t ~ . )  = 1- N-(x,s') Y-(X;S') ~Q(s') 
-+ - 

Then we integrate this result over a and divide by A(a). The 
new result is: 

by definition of tne radiometric norm of N+(a). 
(46) : 

Next, by 

and by (48): 

The last equality follows from the definition of the radio- 
metric norm of N-(a). This is the desired relation between 
the norm of N-(a) and that of N+(a). This type of computation 
can be repeated three rimes. The collected results are as 
follows : 

In these equations the norms of incident radiance dis- 
tributions are on the right, and the norms of response radi- 
ance distributions are on the left. To denote this fact 
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explicitly and to avoid possible ambiguities, superscripts 
%(+PS and I!- 1 1  may be appropriately appended to "M". 
hers yt(a,N], &,(a,N) are called the specCat sediomaeric 
frlo~rna of r,(a), t,(a) associated with N over 8, respectively. 
These numbers are dependent on the incident radiance distri- 
butions as can be 5een by inspection of (46)-[39). ilouever, 
it is not difficult to show khat, for every incident radiance 
distribution N over a and every plane surface a: 

The n m -  

These inequalities follow from the energy conservation prin- 
ciple as enunciated in Sec. 3.1. From this we conclude at 
once that the radiometric n o m s  of response functions cannot 
exceed thorps of the incident functions. The proofs of (52) 
and 65.3) first bring out the facts that Osyr(x;E1) 5 1  and 
Os6i.(x;&q)hl €or every x in a and every 5 in E+. Am empir- 
ical farm of these inequalities was established in Sec. 3.1 
directly from the? e n e ~ g y  conservation principle and may be 
used i2;s a basis far the present proofs. From these latter in- 
equalities and 646) we see that Ocy*(x,N)51 and 05Ar(x,N)Sl 
far every x in a and every N. Inequalities (52) and (53) now 
follow for every Q and N from (48) and (49). Finally, we can 
free the numbers yf(a,N) and &k(a,N) from dependence on the 
incident radiance distributions N by taking their maxima [or 
suprema) as N varies over all possible incident radiance dis- 
tributions in a. Thus let us write: 

"y+(a)" - for maxN y+(a,N) - (541 

"&+(a)" - for maxN 6,(a,N) - . (55) 

From this and (S0)-(53) we have: 

The response radiance distributions are on the left in (56), 
(57), and the incident radiance distributions are on the 
right. We call v+(a) and &,[a] the generat radiometric norm8 
of r+(a) and t+(a) for surface a. The properties (96) and 
(573-will. play-an important r ~ l e  in the discussion of the ex- 
istence of solutions of the radiative transfer formulations 
below. In particular the following properties will turn out 
to be sufficient conditions for the existence of many 
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solutions. We shall say that r+(a) and tf(a) are norm con- 
traating if and only if: 

0 < v,(a) < 1 (60) 

0 < &,(a) < 1 

Iterated Operators 

We turn next to a systematic description of certain in- 
tegration details arising in interreflection calculations. 
Familiarity with these details will help the reader to attain 
a working understanding of how to translate into numerical 
form the results of the algebraic manipulations of the reflec- 
tance and transmittance operators. 

We have seen in the preceding examples how the four 
operators rt(a), t+(a) associated with a surface a serve to 
describe the reflection or transmission of incident radiance 
distributions on a. These response radiance distributions 
can subsequently go on to interact with another surface b, or 
conversely, the incident radiance distributions on a may have 
come to a after being reflected or transmitted in some sur- 
face b. Hence there arises the possibility of considering an 
operation like r+(a) followed by an operation like r-(b); or 
t-(a) followed by t-(b); or r-(b) by t+(a), and so on. These 
combined operations are called iterations. We now systemati- 
cally consider all such iteration possibilities of two opera- 
tors when a and b are two parallel plane surfaces. There are 
eight such possibilities. They are schematically depicted in 
parts (a)-(d) of Fig. 3.9. Actually, the four possibilities 
in (a) and (b) of Fig. 3.9 are exhaustive of the basic pos- 
sible combinations. Turn them upside down to get types in 
parts (c) and (d) of the figure. However, in a terrestrially- 
based coordinate system, generally one that is fixed indepen- 
dent of the planes a and b, it is convenient to explicitly 
and independently list also the possibilities (c) and (d) of 
Fig. 3.9. 

As a specific example of the iteration of the inter- 
action operators r+(a), t+(a), let us consider the iteration 
of r+(a) and r-(b) in chat order. That is, an upward field 
radiance distribution N;(a) is incident on plane a and is re- 
flected in plane a. The reflected flux goes on to become an 
incident radiance distribution N:(b) on b and which is reflec- 
ted in turn in plane b. This is shown in part (b) of Fig. 
3.9. If NI(b) is the resultant upward surface radiance dis- 
tribution over b, then the value of Nf(b) at yj on b in the 
direction 5 -  in E+ is given by: J 

Now by the radiance invariance law and with the help of Eig. 
3.10: 
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Id 1 

FIG. 3.9 Bookkeeping procedure in operator iterations: 
the eig!it possible types of interactions between two planes. 
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1 

b i 
FIG. 3.10 Further detail of Diagram (b) in Fig. 3.9. 

for every 5' j in E- at every yj in b. 
is the value of N9(a] at x 
present agreement, is givei by: 

But the value N+(Xj , E > )  
and for S'j, and this, by our 

Combining (62), (63) and (64) we have: 

(65) 

which holds for every y in b and 5. in 9,. In brief: 
j J 
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where x .  is in a, and yj = Xj 
Aetween'xj and yj, i.e.* 

r' = d/ 
j 

where we have written the left and right sid.ss of (66) as ab- 
breviations of the carrespanding sides of (65). The variables 
xj,yj,Ej,C' ets,, are appropriately subscripted by integers 
j with 1 = S:a,z, ... simply in order to help the eye keep 
track of manipulations of variables in iterations of more 
than two operators. 

To smmarizeS we have agreed to write: 

and where d is the distance between a and b, and k is the 
unit upward normal to a and b. Equation (663 may be conven- 
iently interpreted as follows: if N;(a) is a member of a set 
A$[a) of incident functions on a and Bi(a) is a set of re- 
sponse functions containing Na(a), we view r+(a) as an opera- 
tor which maps elements of 81 (a) into Bi (a). Similarly, r- (b) 
maps elements of a set Al(b) of incident functions on b into 
a set Bl(b) of response functions on b. Therefore, the iter- 
ated operator r+(a)r_(b) maps elements of Al(a) into Bl(b). 

As another example supp.ose Nf(b) is the transmitted 
radiance distribution of the surface b in resp~nse to N:(b). 
If the space between surfaces a and b is a vacuum, then by 
the radiance invariance law, NI(b) is equal to Nf(a), which in 
turn is the transmitted response to NIla). See Fig. 3.11, 
which is a version of part (a) of Fig. 3.9. Then for every 
Yj in b and t;j in i?-, we have: 

By the radiance invariance law: 

where : 
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.. 

FIG. 3.11 Further detail of Diagram (a) in Fig. 3.9. 

for every 5' 
value of 
sent agreement, is given by: 

in 8- at every y -  in b. But Nf(xj,C'j) is the 
by our pre- jN?(a) at xj and fbr elj and this, 

Combining (69) and (70) we have: 

where we have written the left and right sides of (72) as ab- 
breviations of the corresponding sides of (71). Thus we agree 
to write: 
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"t_(;a)t-(b)" for 

It is clear that the iteration %-(a)t-(b) maps ole- 
ments in an incident set of surface a into the response set 
of surface b, Similar delinitions can now be nade crf the re- 
maining six types OS iterations depicted in (a)-:d] of Fig. 
3.9, These are left 80 %he reader as exercises, 

bly iterated operators are related to the radiometric n o m s  
of the original incident function as ~ O ~ ~ O W S .  F ~ o m  (66) to 
which we apply (56) twice: 

'kke radiometric n o m s  sl response functions under dou- 

1 N - W )  1-C 6_(a)6_(bl IN,(al I 
Similar inequalities hold for the remaining six iteration 
possibilities. 

Operator Algebras and Radiative Transfer 

We close this discussion of Example 5 by observing that 
iterations of the operators r+[a] and t+(a) can be continued 
indefinitely as long as each iteration is meaningful. As an 
example of a meaningful continued iteration consider iterating 
r+(a)r-[b) with itself. Thus let us write: 

and for every j 2 1  we write: 

Thus (r+(a)r-(b])] is an iterated integral, iterated Zj times 
using the reflectance ~ U A C ~ ~ O ~ S  r+(a) and r-(b). An example 
of a meaningless iteration is t+(a)r,(b), since after a trans- 
mits flux upward, the flux does not go directly to b for re- 
flection. Finally, we note that interaction.operators can be 
added together. Thus "rl(b] + r-(b)r+[a]ry(b?" denotes the 
operator which acts on downward radiance distributions like 
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e.-- 
. *  . 

N (1,) to &:ivc upward radi,incc distribution\ like NI(b)r_(b) + 

N [b~r-(t~)r*~~iJr-(t)~, ctc. lluncc wc can spcnk of O U ~ J  ,ind 
~ P U ~ U O L O  ( L.c., iter;ition.-) of interaction opcrcitorb snd so 
liriridlc tlic operator5 in iiinny instances as if they wcre num- 
bers, and i f  they obeyed the same laws as numbers. 

The properties of iterated and added operators arising 
in radiative transfer theory, when all assembled in a system- 
atic list, turn out to be rather interesting from an algebraic 
point of view. Suppose that T, s, and t are any of the inter- 
action operators defined above whose iterations rs, rt, st 
or sums r+s, r+t, s+t, are meaningful, then we can readily 
establish the following properties under suitable regularity 
conditions on the reflectance,or transmittance operators un- 
derlying the symbols. Let a be the set of all such operators. 
Then to every pair r,s of operators in a there corresponds a 
sum r+s in a of r and s such that 

(i) r + s = s + r  (commutativity) 

(ii) r + (s+t) = (r+s) + t (associativity) 

(iii) 0 + r = r (identity) 

(iv) r + (-r) = 0 (inverse) 

Furthermore, to every real number a an operator r in CZ there 
corresponds an operator ar, the product of a and r. (For 
example, if r is a reflectance operator, then cIr is just the 
integral operator formed in the usual manner after multiply- 
ing r+(-;S';S) in (10) of Sec. 3.3 by u.) The product ar has 
the general properties: 

(v) a(r+s) = ar + as (operator distributivity) 

(vi) (a+B)r = ar + Br (scalar distributivity) 

(vii) (aB)r = a(Br) (scalar associativity) 

(viii) Or = 0, lr = r (zero, identity) 

In the preceding equations a,B are real numbers, and 0,l on 
the left sides in (viii) are the usual zero and unit real num- 
bers. The 0 on the right in (viii) is the zero integral op- 
erator obtained by using r+ = 0 or r _  = 0. 

If the set a of operators satisfies all eight of the 
preceding conditions, then a is a vector space of operators. 
Now a vector space is a most useful object to work with be- 
cause of its highly intuitive concepts and because of the 
rich body of computational theorems that exists for it. This 
gives one incentive to arrange matters so that, in suitably 
enlarged domains, the operator sums r+s and products rs are 
meaningful for every r, s in a. lie shall not pursue such 
matters in the present work, as it is too potentially vast a 
subject to compress into one section of a study devoted pri- 
marily to the immediate mathematical-physical foundations of 
the subject. However, before leaving this area of ideas, 

$ 
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several more interesting algebraic aspects of the reflectance 
and transmittance operators will be brought out for future 
re€erence. 

rs of two reflectance QP transmittance operators. Consider 
once again the collection LZ of all such operators associared 
with some optical medium. Then we have, in addition to prop- 
erties [ i) - (viii) * the fallowing: 

As observed above, we can assign meaning to the product 

jix] x(st) = (rs]t 

(XI r(s+t) = rs + rt 
(xi) (r*s)t = rt + st. 

When a satisfies (i)-(xi] we call it an oparator ring. If, 
moreover, we have 

(xii) o[rs) = (crrls = r(as] 
for every real number. a and pair of operators Y, s, in a , 
then LZ is an o p c m t o r  algebra. All of these twelve proper- 
ties are read+ly shown to hold for the surface reflectance 
and transmittance operators of the form r.+(a), t.(tn), pro- 
vided their products are definable. Unfortunately the commu- 
tative ?roperty, rs = sit, does not generally hold (except 
when certain reciprocity conditions are in force). 

of r, obtained as shown in (541, (55), depending on the nature 
of r. Then it is possible to show that, under suitable con- 

Going still further, let us write 111iri14* for the norm 

h 

L 

and IIr]I = 0 if and only if r = 0 

IrlI + IISII 

at 11.11  
rll IIsll 

an identity element I, then 1 1  I 1 I = 1 
The first of these, namely (xiii), was essentially 

proved in (S8), (59). Condition (xiv) is the triangle in- 
equality, condition (xv) is trivial, and (xvj) is readily cs- 
tablishtd using definitions of the kind (67), (73). The iden- 
tity element 1 of a can be a suitably defined Dirac delta 
function. A set U. of operators satisfying (i)-(xvii] is 
called a normed openztor atgebra. Unfortunately, for each r 
we do not generally have an s such that rs = I, so that opera- 
tor division and hence the finding of inverses is generally 
not possible (however transmittance operators generally have 
inverses). 

theory for surfaces and solids can be niathematicaliy cast in 
terms of the tiieory of normed operator algebras. While this 

It appears that all of classical radiative transfer 

I I 

I 
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The radiance distribution N,(b) is therefore of uni- 
form directional structure and of magnitude: 

j = O  

From (82) : 

This completes the general calculation of N+(b) and N-(a). 
By adopting sufficiently severe assumptions, the calculation 
has been reduced to a finite number of arithmetic operations. 
Nevertheless, these results constitute useful rules of thumb 
for estimating the order of magnitudes of interreflected ra- 
diance distributions between two extensive parallel surfaces. 

As a specific example of the use of (86) and (87), let 
r+ = r- = t- = 1/2. Hence 

~i 1 - (1/4) 3n +' 

Truncation Error Estimates 

The matte: of truncating the series expansion of 
[I - r+(a)r-(b)] 1 and estimating the resultant truncation 
error will be taken up next. The technique we use for the 
present special case is indicative of what can be done in the 
general truncation processes. 

Suppose that planes a and b in Fig. 3.12 have arbitrary 
reflectance and transmittance operators subject only to the 
condition that at least one of r+(a) or r-(b) is norm contract- 
ing. For simplicity in manipulation let us suppose that 

r 
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We are interested in the radiometric norm of the difference 
N+(b) - N+(b;k), for this difierence is evidently the compo- 
nent of the actual radiance distribution omitted by the trun- 
cation process. To facilitate the estimate of the norm, let 
us write ad hoc: 

The last equation follows by repeated use of the linearity of 
the radiometric norm (42) (with c = c' = 11. The next stop 
will be facilitated by examining a typical term of the preced- 
ing sum of norms. Thus observe that: 

r 
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c: YO) IN'(r+(a)r_(bl)j-'r+(a) I 
5 y+(aly-(b) INo(r+(a)r-(b))j-' I 

The last two inequalities follow from the definition of the 
general radiometric norms given in Example 6. The pattern of 
reductions arising in the estimate of IN+(b) - N+(b;k)( is 
now clear. We have: 

I N + W  - N,(b;k)l = 2 (Y+(a)Ym)jlN0l 
j =k+ 1 

I NOI CY, (a)v - (W-j k+l 
L-1 - Y+(a)Y-(b)J 

This gives an estimate of the relative error arising from 
truncation of the natural mode of solution of N+(b) at the 
kth term. 

y-(b) = 1/2 and 6-(a) = 1/2. Then: 
As an example of the use of (88) suppose y+(a) = 

By terminating the series of iterated integral operators at 
k = 2, we have 

*Otherwise, simply divide through by IN!(a) I instead of IN+(b)l. c 



SBG. 5 - 4  API'I.1 CATIONS TO PLANE SURFACES 253 

Thus the resultant relative error of truncation in this case 
is on the order a€ li2 percent. 

By using the calculation in Example 6 far the response 
radiances of Lambert surfaces a and b with r+, r'_ and t- in 
that e x m  le now replaced by y+(af, y - / b f t  y-da). an estimate 
of lid+.c'~jp can bs made, From +this and the preceding inequal- 
ity an estimate of the absh~luee error of truncation can be 
made. Thus, as an illustration, we use the result (84) of 
Example 6 to find: 

1 IAl,(bl I H'lIa3 

I N , E ~ ~  - N,(~;LIP C: 5.5 x IO-~H?(~) 

Hence : 

e 

~t fallows that if H ~ C S )  is an the order of watts/m2 then: 

/N,(b) - ~,[b;k) I c .SS watts/[m2 r steradian) . 
This estimate of Hf(a) is a reasonable one for natural. light 
fields as may be seen by an inspection of Table I m f  Sec. 
2*4. 

One can occasionally profitably reverse the preceding 
error estimate calculation as follows. We agree on an error 
E > 0 at. the outset and then solve for the 1: which will yield 
that E. Thus, from (88). we set: 

whence we ficd k by means of the relation: 

This formula is associated with the particular geometric sir- 
rangements of the present example. It is a relatively simple 
matter to extend this result to other formulas in connection 
with related problems, one of which will be discussed next. 
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Quantum-Terminable Calculations 

In closing Example 7 we remarked that the preceding 
method of determining the value of k, which goes with a par- 
ticular E, may be extended to certain interesting extreme 
cases. For example, suppose that the average number n of 
photons of a given frequency v incident per second per unit 
area per unit solid angle on a surface falls below some num- 
ber no, say no = lo-’, or no = lo-’, etc. Suppose that this 
magnitude of no is so small that it is operationally meaning- 
less to theorize about or experiment with the radiance No 
produced by no. That is, N, is not measurable using available 
radiance meters because it is below their threshold of sensi- 
tivity. Suppose E = No/N, where N is some fiducial magnitude 
for radiance--say that of the order of magnitude of the sun’s 
maximum spectral radiance. This value of E will then deter- 
mine a corresponding finite value of k, say k(E), after the 
manner illustrated for the special case above. This value 
k(c) in turn can evidently be used in defining a terminable 
response radiance calculation, For example: 

would define a terminable calculation for N+(b;k(E)). 
would in turn give rise to a terminable calculation for 
N-(a;k(~)). 

quantum concepts in the way just indicated, are called 
quantum-terminable calculations and provide a basis for a 
strong physical argument in favor of the study of terminable 
calculations in radiative transfer theory. Terminations 
therefore need not be arbitrary; but can be based on real 
physical limitations of the apparatus on which rest the phe- 
nomenological foundations of the discipline. A systematic 
study of quantum-terminable calculations appears to hold cer- 
tain interesting theoretical challenges (for example, can a 
consistent finite algebra of operators be developed on the 
basis of quantum-terminable calculations?). This study, how- 
ever, is beyond the.scope of the present work and is left for 
the interested reader to pursue. 

This 

Such calculations, which are terminable by introducing 

Example 8: Two Interacting Finite Plane Surfaces 

In the present example we return to the setting of the 
preliminary example in Sec. 3.1 and reformulate the problem 
of that section using now theoretical radiances and the method 
of the interaction principle. Fig. 3.13 reconstructs the es- 
sential features of the setting of Fig. 3.2 in anticipation 
of the use of the appropriate forms of the integral operators 
*,(‘f) and t+(Y) . The unit outwapd normals kl and k2 for the 
two plane surfaces S1 and S2 fix the outward :+(Si) and 
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FIG, 3.13 Two interacting finite plane surfaces. 

inward :_(Si) hemispheres on Si, i = 1 OT 2. Thus :+(Si) 
consists of all unit vectors 6 such that t-ki > 0 and E-[‘>i) 
consists of all unit vectors 5 such that <*)hi 0. This con- 
vention of fixing outward and inward hemispheres of inter*- 
acting surfaces is to be distinguished from the coirespmding 
convention for calZecting surfaces used in See. 2.4. For ccrl- 
lecting surfaces it is sometimes more convenient to refer the 
directions of incident flux to B unit inward normal. For a 
surface which is explicitly considered to interact with m o t h -  
er, the outward unit n o m a 1  is occasionally a more car:venient 
reference direction to use. We do not intend, however, to 
permanently fix such conventions. Rather we shall choose be- 
tween the conventions as a given situation favors one or ti c  
other. With the direction coordinate frames anchored to Si 
and Sz in the above manner we now require that for every y in 
SZ the set D(sl,y) of all directions from paints of SI to 1,- 
to lie in a_(S,). Conversely, we require for every x in 5, 
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the set D(S2,x) of all directions from points of S2 to x to 
lie in ?-(SI). See Fig. 3.13. These conditions amount to 
the simple requirement that each surface lie above the other's 
horizon. This is not an essential restriction; it serves 
only to shorten the number of cases considered in the analysis 
below. We require that the reflectance and transmittance 
functions of S 1  and S2 be known and that the space between SI 
and SZ be a vacuunt. The two surfaces are irradiated by inci- 
dent radiance distributions N?(S.), i = 1. or 2. It is then 
required to formulate and solte the interreflection problem 
associated with Sl and S2 under these conditions. In partic- 
ular we require thP response (surface) radiance distributions 
N (Si) of Si, 
wiich assigns to each x in SI and 5 in S+(Sl) a surface radi- 
ance N+(x,S). As usual when the need arises to distinguish 
between field and surface radiances for SI, the appropriate 
superscripts t'-rt or "+" respectively, will be appended to "N". 
Thus "N;(Si)" will denote field (incident) radiance distribu- 
tions over Sis i 
face (response) radiance distributions of Si. 

dent radiometric €unctions on SI: 

i = 1 or 2. Thus N+(S*), e.g., is a function 

1 or 2, and "N+(Si)" will denote the sur- 

We isolate surface SI and enumerate the sets of inci- 

A1 : 

A2: 

As: 

All field radiance distributions like NZ(S1) 

All field radiance distributions like N:(SI) 

All field radiance distributions like NI(S1) 

The set of response radiometric functions €or SI are: 

E1 : 

Bz: 

All surface radiance distributions like NI(S.1) 

All surface radiance distributions like N+(SI) 

Thus, in the case of surface SI, m = 3, n = 2, and the six in- 
teraction operators s.. supplied by the interaction principle 
are in the form of retiectance and transmittance integral op- 
erators as follows: 

The six operators r?(Sl) 9.. . , t- (SI), are instances of defini-4 
tions (10) and (11) of Sec. 3.3. They are handled using the 
techniques illustrated in Example 5. Then, according to the 
interaction principle the response radiance distributions are 
given by: 

. .  

L 



NZ(Sa) = ~~~~~~~~~~~~ * N:CSn)t:Csz) * M:4SS)r_4%2) 

M+(S2) = N:rSdt:(Sd +. N:$SdP:(SSB N:ISdt-@z) * (92) 

(911 

An inspection of (89) and (91) shows khat these equations arc 
identical in structure; siailarly for (901 and (92). The 
present choice sf coordinate frames has rendered the fsPmuYa- 
tion coapletely symmetrical with respect to SI asad Sa. It is 
a% interest to note that the domain of integration of the op- 
erator rlCSn), e.$., aaby be limnired at each x sf $1 eo 
DQSz,x), and that of +-[Sl), may be limited to D[Snsy) at 
each y of §z. Similar obserwstions hold far t-gsi), i = 1. OF 
2. 

not be exhibited; it: is similar in till essential respects to 
tha% for the system (76)-(796. Those who wish to solve (91)- 
(92) explicitly should observe that the present counterparts 
to l80), (811 are given by the symmetric pair of auxiliary 
equations: 

The sc~lution procedure of the system [ 

N 3 S d  = N:(SI) (931 

NI(Si1 N:(SzI (94) 

where the domain of the distributions are suitably restricted. 
Thus, e.g., ('33) is understood to state that 

N:(Y,a e N:(x,cI (95) 

far every x in SI and y in S2 such that 

5 = Cx-Ya/ix-Y\ 
By allowing SI and SZ to be mutual. point sources as in the 
preliminary example of Sec. 3.1, and by setting N!i?(Si) = 0, 
i = 1 or 2, the reader may easily show that (89) can be re- 
duced to (2) of Set;. 3.1 and that (91) can be reduced to 133 
of See. 3.1. In this reduction, observe that Dlz in Fig. 3.2 
is now replaced by -DCS2,x), and D z ~  by -B(Snry]. Of even 
mare interest is the fact that the present formulation con- 
tains as a limiting case all the preceding examples on infi- 
~ i t e  parallel planes (set §I and S2 parallel, and let them 
become arbitrarily large). 

ti 
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N +  

FIG. 3.14 Geometric conventions for radiometry on open 
concave surfaces. 

3.5 Applications to Curved Surfaces 

The distinguishing feature of curved surfaces for ra- 
diometry in general and the interaction principle in particu- 
lar is the fact that such surfaces, unlike plane surfaces, 
may interact radiometrically with themselves. In this sec- 
tion we illustrate the application of the interaction princi- 
ple to curved surfaces with this feature of self-interaction 
particularly in mind. 

Example 1: Open Concave Surfaces 

As a first illustration, consider a smooth open con- 
cave surface S in an optical medium X which is otherwise a 
vacuum. S is of finite extent and, as depicted in Fig. 3.14, 
has the general appearance of a dish or bowl. Each point x 
on S is visible to every other point y on S. At each point x 
of S we erect a unit outward normal k(x) which automatically 
determines the outward hemisphere: S+(x); and inward hemi- 
sphere: :-(x), at x. Instead of going into complete analyti- 
cal specifications of the sense of "outward", we let Fig. 
3.14 help fix the sense which is intended: the angles between 
k(x) and the directions to every other y in S from x are less 
than 90°. Here "outward" direction at x, as usual, means 
"away from S" in the immediate vicinity of x along some speci- 
fied direction. By traveling in an outward direction Erom a 
plane surface, one is carried ever farther from the plane. 



F 

In the case OP a curved surface such as S however, by trav- 
eling far enough along some outward directions from x. one 
can eventually reach S again at a pokmlt y and make contact 
w!rile traveling along all inward direction at y. 'This elemen- 
tary observation 3s a key observation needed in the formula- 
tion sf the present interreflection problem. We let S be is- 
radiated at each paint bg steady inward and outward incident 
radiance distributions pd, [S) which are conveniently thought 
of as originating at places other than points on S. Thus the 
value of N~IS) at x and in the direction E in ?+:SI is 
N$![x,<). For example, if S is a portion of the sea surface 
at an Instant of eime, then PCS) is the radiance distribution 
over that parr of the sky visible at the point of interest, 
and N$(S) is the radiance dis%ribution of that part of the 
underwater scene visible at the paint of interest. These 
saui-ces initiate and sustaia an interrefleetion process OR S 
where xt is now possible for the immediate neighborhoods of 
every pair or points x and y of S to interact radiometrically. 
~eturning to Fig. 3.14, let *w:(s)~* denote the PesuXtant re- 
sponse radiance distribution over S. Thus far every x in S 
and f ? ~ Y L  E",,(x) N;(xpf) is the resultant surface radiance of 
S at x in the direction E. As usual, the superscript It+'- de - 
notes surface radiance, and the subscript denotes that E, is 
in E+(x). Furthermore let "N:(S)" denote the resultant field 
radiance distribution QVCZ S. Thus for every x in S arid 6 in 
E-(x>, Nz(x,S) Ps the resultant field radiance at x in the 
directam 5. In summary, then, N:(S) plays the role of an in- 
cident radiance on S, and NT(S) that of a response radiance 
of S" 

tablished using the radiance invariance law. We have for eve- 
ry distinct pair x,y of paints in s: 

The connection between N:(S) and N:(S) is readily es- 

whenever x and y ate two points whose common line lies in a 
vacuum, and: 

5 = (x-y)/ix-y/ . 
The reader will find it of interest to compare ( 9 5 1  of Sec. 
3.4 and (1), and dwell an the points of similarity between 
the formulatlons of Example 8 of Sec. 3.4 and those of the 
present example. In particular he may ask: which of the two 
problems is more general (in the usual sense that the more 
general problem yields as a special case the less general 
problem) ? 

first letting "D(S,x)" denote the set of all directions E from 
points y in S to the fixed point x. Thus D[S,x) is analogous 
to the sets D(Sp,x) and D(S1,y) of Example 8 of Sec. 3.4. 
Then (1) holds at x in S for every E in D(S,x), where y= X - P ~ ,  
and r = [x-y1. Observe that D(S,x) is part of 2 - i ~ )  for every 

Equation (1) can be stated in a more useful manner by 

X. 

We are now ready to use the interaction principle to 
fornulate the present problem. We isolate S and then enumer- 
ate the sets of all incident radiometric functions on S. 
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AI: 

Az: 

A3: 

all field radiance distributions like N:(S) 

all field radiance distributions like N:(S) 

all field radiance distributions like N:(S) 

Enumerating all the sets of response radiometric functions 
for S: 

Bl: 

Ba : 

all surface radiance distributions like NI(S) 

all surface radiance distributions like Nf (S) 

In the present case m = 3,.n -- 2, and the interaction princi- 
ple yields the following six interaction operators sij: 

511 -- +%I 
s12 - -  t O W  

s21 - -  t , o W  
5 2 2  -- r y w  
sjl - -  r-(S) 
s32 - -  t_(S) 

The six operators r!(S), . . . , t-(S) are instances of defini- 
tions (lo), (11) of Sec. 3.3. Then, according to the inter- 
action principle, N:(S) are given by: 

N:(S) = NO(S)rO(S) + Ny(S)t:(S) + NI(S)r-(S) 

N+(S) = No(S)to(S) + N:(S)ry(S) .& N:(S)t-(S) 

(2) 

(3) 

This pair of interaction equations and the auxialiary equa- 
tion: 

N:(S) = N:(S) (4) 

form an autonomous system of equations. The latter equation 
is understood in the sense of (1). The order of solution of 
the equations is dictated by (2): it must be solved first. 
Thus using (4) in (2) we have: 

where we have written: 

"A+(S)" for NO(S)rb(S) + N:(S)ty(S) , 
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.I.,' ... , . ... . .. 
c., : 

and where ue have written: 

and 'the inverse of [I - P:(S)] exists provided r f ( ~ )  is ROTE 
contracting (sf. (60) of Sec. 3.4). 

icate the idea of a retarded argument in (6) and (7) to the 
general reader whose insight into bur intentions fortunately 
can lighten our expository task. However, if (7) is to be 
programmed for evaluation on an automatic computer, then 
stntotkaer--a E O T ~  mechanical--expedient must be devised to cam- 
municate the idea of retarded arguments of a function. For 
example we could define a mapping to(S) which assigns to eve- 
ry x in S and 5 in E_(x) the point x - rZ where r is the dis- 
tance from x to S along the diTection -E. Knowing the ana- 
lytic description of S, it is in principle possible to com- 
pute this r foe each x and 5 in E-(x) and hence to construct 
tp(S]. Then W~(S)toCS)" will denote the €unction which as- 
signs to every x in S and 5 in E-(x) the xadiance NT(x,Ef 
i- N:(X-~C,E)) where x - r~ is on S and 5 is in E+ax-r~). 
With this definition of t,(S], we can rewrite (4) as: 

The prime on the operator r!(s) is adequate to cowmum- 

M:w = N:(S)to(SJ (81 

.= A*(Sl + N:(SJto(S)rJS) 

without the need oE further qualifications as was necessary 
in qualifying (43 by (1). Then using (8) in (2), the more 
detailed version of (53 is: 

from which the more detailed version of (73 follows: 
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It is easy to see that if r_(S) is norm contracting, then so 
is to(S)r-(S), where we have written: 

"to(S) r _  (S)" for 1 [-tO(s)lr..(x;E';S) dQ(E') (10) 
D(S.x) 

liere any function on which to(S)r-(S) operates automatically 
has its argument x,s (5 in E-(x)) first retarded to x-rtr and 
5 respectively (5 now considered in 3+(x-rc)]. Krith this def- 
inition of to(S), (9) and (7) are equivalent ways of indicat- 
ing the computation of the response function N:(S). The com- 
putation of N!(S) can be performed using (8), (9) and (3). 

tois) as a mapping from response set B into incident set A . 
This interpretation is based on (8). Such mappings occur 
naturally in the strictly mechanical formulations of the aux- 
iliary equations arising from step (vi) in the interaction 
method (cf. Example 2, Sec. 3.4). 

In closing we note that one can also view the object 

Example 2: Closed Concave Surfaces; the 
Integrating Sphere 

In the present example we allow the rim of the surface 
S in Fig, 3.14 to diminish in diameter while leaving the area 
of S greater than some fixed constant. Thus S becomes a 
closed concave surface (as seen from within). It is the pur- 
pose of this example to point out that the formulations of 
Example 1 remain unchanged as the open concave surface be- 
comes a closed concave surface. Indeed, as a review of Exam- 
ple 1 would show there is no essential use made at all of the 
openness of S as depicted in Fig. 3.14. The only important 
change to note is that D(S,x) is now exactly 9-(x) for every 
x in a closed concave surface S. Hence (9) holds also for 
closed concave surfaces. We shall now illustrate (9) for the 
most useful case of a closed concave surface: the integrating 
sphere. 

Figure 3.15 depicts a spherical surface S of diameter 
d enclosing a vacuous region. Incident source radiance is re- 
stricted to a general part a of s. For simplicity we let the 
incident source radiance be represented by NY(S) over art a 
of S. Hence we will write "N:(a)" for N$(S) and set N!(S)= 0 
in A+(S) of Example 1. Ny(a) is of arbitrary directional 
structure but is independent of location over a with respect 
to the local direction frame, determined at each point y by 
k(y). Then (9) becomes: 

We next adopt the classical assumption that the inside sur- 
face of S is a lambert reflector. In addition we assume a is 
a lambert transmitter. That is, we are assuming (cf. (17) of 
Sec. 3.3): 
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FIG. 3.15 Illustrating the radiometric self-interaction 
of a closed concave surface. 
sphere. 

The case of the integrating 

for every x in S, 5' in Z_(x), and 5 in E+(x); and with 
0 zz r- cc; 1. Further we assume: 

where fa is a function an S such that fa(x) = 1 if x is in a 
and fa(x) = 0 if x is not in a. Further, Hy is the constant 
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irradi 
form I 

ce on 
iance 

(qee Example 1 

produced by N?(a). Ilence N:(a)t?(a) is a uni- 
stribution over a and is a member of set B1, 
which we shall denote by *'No*'. 

We now write (11) in the form: 

Consider the first term: 

NOto(S1 r- (SI 

of the infinite series. 
Then by (IO) : 

We write "N"' for NotoCSj r- (SI. 

N1(x,S) = f N*(x-r'S',S'))r_(x;S';E) dQ(E') 

for every x in S and 6 in a,(x). Since the incident source 
NO vanishes outside part a of S and is of constant magnitude 
within a, the domain of integration shrinks from D(S,x) to 
D(a,x), and 

D(S,xl 

N1(xvE1 = t+ H+ '1 r-(x;S';Sl dn(t') I 

D(a,xl 

t+ = - 'II H: L/ r 1S'*k(x)[ dQ(E') . 
D(a,xI 

Now by means of an observation following (22) of Sec. 2.11, 
this integral is readily evaluated: 

f Ic'*k(x)[ dQ(E') = 
d2 D(a,x) 

Hence 

NL(x,S) = > Hy[ r- m] , 
rd2 

for every x in S and 5 in E+(x). This result was grouped in 
the indicated manner to show the effect of the operator 
to(S)r-(S) on No. The effect is to multiply the value of No 
by [r- A(a)/.d2] = I-- A(a)/A(S). 

acted on by ta(S)r-(S) to yield the second term of the series. 
The uniform surface radiance distribution N' is now 
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Observe that N' is constant-valued over S, whereas No 
is constant-valued over a and zero over the remainder of 5 
outside a. Thus the second term of the series is: 

With this second. iterate of t,(S]r,(S), the pattern begins to 
fora, We first note that: 

fajr every x in S. Hence: 

Since 
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for every x in S and 5 in E+(x), we then have: 

NJ(x,E) = N'(x,E)(r-)j-' 
for j = 2,3, ... . 

j=1 j=2 
m 

j=2 

VOL. 11 

It follows from (12) that 
- t +HyA ( a I] /A I S 1 

Nf(S) = No + $ 
[l-r-I 

Hence using the explicit values of No, we have for every x in 
S and 5 in S+(x) : 

L I 

where as noted before fa(x) = 1 if x is in a, and fa(x) = 0 
if x is not in a. This formula shows that N(x,S) is of uni- 
form directional structure over E+(x) at each x in S, and is 
independent of x over a and over the part S-a of S outside of ' 

a. However, the radiance distributions over a exceed those 
in S-a by an amount t+HP/r, which is presisely the transmitted 
radiance through the "window" a of the integrating sphere S. 
(Observe that no essential use has been made of the sphericity 
of the surface S. Hence we should expect to extend (13), with 
only minor changes, to the case of an arbitrary closed surface 
with lambert properties .) 

Example 3: Open and Closed Convex Surfaces 

The need to illustrate in great detail the interaction 
principle for the case of open and closed convex surfaces is 
obviated by the observation that concavity of surfaces is a 
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relative propcrty, that is, a psopcrty relativ, to the vxn- 
tag:t: point ot tlic alrwrwcs. Thuh thc surface S I R  Fig. 5.14 
1 5  concave r~lrptivc to *III ol)sesvation point in.stJc tlac spiicc 
eslcluscd by :, -1.v.. within thc bowl of S. 01 1  thr other hsiiii 
6 t appears C U ~ Y C X  wlii*in v ~ c w c d  froin bcPuw S in the Figure. 
'Ihe interaction equations autornatlcally adjust ~ without .iltcr- 
atian of their general forms, to these two points )f view 2nd 
equations (21, (31, (4) hold also for the convexity interpre- 
tation. The only changes in (2)-(4) that might occur are 
those associated with a reversal of direction of k(x), A C C Q P ~ -  
iagTly, if the user deems tep iPnGmduce this change, so m t~ 
aZ-udy C D D Z V ~ X  8UFfhlC68, tha?l crzz eubscriptw "+@ and "-" in (2)- 
t4Y and fheir SogicoZ descendants msy be interchanged: ever9 
ocourm?me of nrubsmtpt rr+n may be replaced by "-*', and can- 
verae ZI/ . 

Example 4: General Two-sided Surfaces 

In this example we ascend one more rung with respect 
to the generality 5f the type of surface considered: we shall 
apply the interaction principle to general self-interacting 
one-piece, two-sided surfaces which may be either locally con- 
cave ar convex, i.e., h a w  alternating hokP~ws OF hills. The 
surfaces may be c3osed in the sense of enclosing a volume, or 
open. 'de assume their reflectance and transmittance proper- 
ties are known at each point and that they are embedded in a 
vacuum. As a concrete illustration that may be kept in mind 
during: the following discussion, the instantaneous configura- 
tion of a dyrnamic wind-blown air-water surface will serve well. 
An application of this example of the air-water surface is 
nade in Sec. 12.10. 

Parts (a]-(g) of Figure 3.16 depict some particular 
instances falling within the scope of the present discussion. 
An examination of these general surfaces reveals two features 
which were not present in the cases of concave or convex sur- 
faces considered above. First, for some point x of S there 
may be points y of S such that x and y are not mutually visi- 
ble. That is, an the straight line between x and y there 
lies at least one other point of S. Second, for some points 
x of S there may be points y of S such that x and y are mu- 
tually visible but are an opposite sides of S. 

general surfaces such as those depicted in Fig. 3.16, and 
which have the two additional features just described. In or- 
der to display the application so that it may be useful in 
practice and be subject to mechanical manipulation, it is de- 
sirable to introduce some preliminary geometric concepts, 
First we assign, as usual, a unit outward normal k(x) to S at 
each x, This fixes S+(x) at each x and arbitrarily determines 
the outside and the inside of S. Further, we let t'?(S,z)" 
denote in general the set of all directions from points y of 
S to a point 2. D(S,x) consists of directions 6 in either 
Z+(x> or Z-(x). Further if 5 is extended to meet S at y, 
then 5 may be also in either E.,(y) or E-(y). See, e.g., parts 
(a) and (e) of Fig. 3.16. It will be necessary to distinguish 
between such members of D(S,x) which are in S+(y) or E-(y). 

The interaction principle is immediately applicable to 
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FIG. 3.16 Radiometric self-interaction of two-sided 
surfaces. 
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We shall do this Pa the following way. To hegra, fQr every 
x in S and 5 in DfS,x) we 1at ~ ~ r m ( x ~ & ‘ ~ ~ v ’  or simply ‘‘rm’’ denote 
thc least n m  raegativc r such that x-rt is n point of S. I‘he 
gcomtprcnl significance of rnk 1s clear: i f  at x k ~ i  S w e  g o  
slang a str.i:gtrt lnirc in direction -t, their cvciitusllv we’ IIIJY 
rcacln S, and since ca(mc ?;urPsasers arc coorug:ifed (ins in p.irts 
(a) or /b) sf Fig. 3.lb) we ;nay reach S again and ngain i f  we 
continue to travel along the straight line 11s the dircc.tiort 
-5. The distance -rm 15 the distance to the first of sucli 
meetings with S. Next: we let prtsn[5)‘‘ denote the function 
which assigns to each x in S and F, in D(S,x) the point x-r,S 
on 5 and the direction E. That is, tm[x,S’) = (x-rmE55] for 
every x in S; andl 5. in D(S,x), Hence t,(S) is a mappaaig which 
is an immediate generalization of the mapping to(5> introduced 
in Example 1. Finally we cclnstauct two functions Xi,(S) and 
?-(SI with the fclLowing properties: 

1% not in zt(x). Finally, for every x in S a%d t; not in 
D(S,x), X,[x,E] = 0. With these geometric preliminaries com- 
pleted, we can now ga on directly to the application of the 
interaction principle. 

Let Ng(S) be steady incident source radiamce distribu- 
tions on S. 
and sustain a self-interreflection process over S. Let N*(S) 
and t$i(S) be the resultant surface and field radiance distri- 
hutions over s. 

We firsz’isolats S and then enumerate the incident ra- 
diometric functions OR S: 

for every x in S and 6 
1n DfS,xf,_X&,E) = 1 ir 5 is in :*(XI and X,(X,<) = 0 if 5 

These incident distributions generally initiate 

A I :  

82: 

all field radiance distributions like Nf(S) 

all field radiance distributions like N:(S) 

all field radiance distributions like N:(S) 

all field radiance distributions like N;(S) . 
of response functions of S are: 

all surface radiance distribusions like Nf/S) 

all surface radiance distributions like N+(S) . 

In the present case m = 4, n = 2, and the interaction princi- 
ple yields the following eight interaction operators si,: 
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.. . .... -_ - 
x: 

5 4 1  - -  c+(s) 
5 4 2  - -  T!+(s) 

The preceding eight operators ry(S), . . . ,r+(S) are instances 
of definitions (lo), (11) of Sec. 3.3. Then, according to 
the interaction principle, N:(S) are given by: 

N:(S) = NO(S)rO(S) + My(S)ty(S) + N:(S)r-(S) + N;(S)t+(S) 

NT(S) = NO(S)tO(S) + N:(S)ry(S) + N:(S)tlS) + N;(S)r+(S). 

From the radiance invariance-law and the definitions of the 
geometric functions X,(S), t,[S), we have the two auxiliary 
equations: 

(141 

(15) 

N:(S) = N:(S).X+(S)tm(S) + N+(S) *X-(S)tm(s) (16) 

N;(S) = N~(S)-X+(S)tm(Sl + Nf(S)*X-(S)tm(S) . (17) 

These auxiliary equations together with (14) and (15) consti- 
tute an autonomous system of integral equation's governing the 
surface radiance distribution (Nt(S),N'(S)) over an arbitrary 
two-sided surface S. The dots denote multiplication of func- 
tions, and the multiplication is done after the operation 
tm(S) is applied to X+(S) and N:(S). 

As an illustration of the use of (16), let x be a 
point of S and let 5 be in D(S,x). 
at (x,E) is (x-r,E,E) and this is used in the argument of 
X-(S). 
X-(x-r,S,S) must be 0, and the other 1. 
and the latter is 1. Then the value of NI(x,E) of NI(S) at x, 
is : 

Then the value of tm(S) 

It follows that one of the two values x+(x-rm5,Ej or 
Say the former is 0 

N:(x,E) = N+(x-rmS,S) . 
Hence the downward field radiance Nt(x,S) comes from the down- 
ward surface radiance ax x-rmc. Thus x and x-r,& are on o - 
posite sides of S, and so S must be curled like that in (e! 
or (f) of Fig. 3.16. This illustration shows that X-(S)t,(S) 
is to be interpreted as the composition of the functions 
x-(S) and tm(S). 

erally alike. For the purposes of illustration we take 
N;(S)t+(S) as typical. Then, according to (11) of Sec. 3.3 
with Y = SI, the value of N;[S)t+(S) at x in S and 6 in 
E+(x) is: 

The integral operations in (14) and (15) are all gen- 

1 N;(x,E'3t+Cx;S';S) dQ(t;') 
=+(XI 



Tne reader should now examine the set (14)-[17) with 
the purpose in mind of noting that the set contains as special 
cases the convex and concave examples above. Plane surfaces 
are also covered; for then D(S,x) ha5 zero solid angle meas- 
ure for every x on S and the last two terms in (i4), (15) van- 
ish by virtue af (16)y (17) and the definitions of Xk. The 
preceding illustration beaxs %his out in part. Furthermore, 
by invoking a certain amount of geomerric-radion~etr~~ trickery, 
the set (14)-(37) can also yield, in the :fait, the cases of 
a set of finite or infinite parallel planes, For example, S 
m y  have the three part configuration as in part (9) of Fig. 
3.16, with parts a and b parallel planes and part c having 
zero reflectance and unit transmittance. This woudd yield 
the case of parallel finite planes. These observations will 
make plausible the assertion that the system (14)-(17) actual- 
ly constitutes the interaction equations for a general col- 
lection of two-sided surfaces S, where S is either in one 
piece or several distinct pieces, and of concave, convex, or 
nixed curvature. It is not intended, however, that the set 
[14)-(17) itself always be reduced to each case as it arises. 
We have exhibited the preceding interaction equations mainly 
to show the scope of the interaction method and the mechanical 
ease with which it can formulate radiometric interaction prob- 
lems. It is desirable, rather, especially for students of 
the subject, that each specific instance of an interaction 
problem be derived anew from the principle and that simplifi- 
cations be made and auxiliary equations invoked which are mo- 
tivated by the particular features of the individual case. 

kxample 5: General One-sided Surfaces 

in this example we apply the interaction method to the 
formulation of the interreflection light field over one-sided 
surfaces, Before going into the details it is of interest to 
observe that one- sided surfaces are mathematical objects 
which arose originally in critical studies of the classicrl 
surface integration theorems of Stokes and Gauss. One-sided 
surfaces were used principally as counterexamples to show the 
limitations of the classical forms of these theorems. It is 
because of this predominantly negative role played by one- 
sided surfaces in the early training of physics and mathe- 
matics students, and because of the spectacular and intuitive- 
ly bizarre claims made far these surfaces, that a student 
eventually carries away with him the general impression that 



272 INTERACTION PRINCIPLE VOL. I1 

one-sided surfaces are conceptual beasts which are inferior 
to their more applicable two-sided cousins, and are better 
left alone. This impression is, for the most part, defensible 
since the classical surface integration theorems in the usual 
physical applicatioxs of mathematics pertain) only and impli- 
citly to two-sided surfaces. The implicitness of the two- 
s'ided condition is eventually forgotten, and1 the ingrained 
avoidance of one-sided surfaces prevents their use in the ap- 
plication of the usual theorems. However, with a little ad- 
ditional effort the one-sided sfirfaces can occasionally be 
brought into physical discussions and their physical proper- 
ties compared--usually with deeper resultant insight--with 
the corresponding properties of two-sided surfaces. In this 
example we shall perform this service for the radiative trans- 
fer context. We shall briefly consider the interaction prin- 
ciple applied to the most notoxious of one-sided surfaces, 
the MGbius Strip. What we shall find out in this application 
will be typical of the radiometric properties of one-sided 
surfaces in general, and no more dramatic than the simple but 
useful insight that it takes exactly one half the number of 
equations to formulate the radiometric interaction equations 
for one-sided surfaces as it does for two-sided surfaces. 
Hence the four genesal equations of Example 4 will be reduced 
to two for the most general one-sided surface. 

one-sided surfaces the Mobius strip depicted in Fig. 3.17. 
The MSbius strip S is shown in plan view in part (b) of Fig. 
3.17 and its mode of generation is shown in perspective in 
(a) of Fig. 3.17. To generate S, one can imagine first of all 
a circle Cp of radius ro in a plane. Then a line segment L of 
length 2a is placed so that its center is on Co and so that 
the line segment, extended, goes through the center of Co. If 
L is moved around Co with this orientation maintained, and re- 
maining in the plane of Coy L will sweep out a_circular annu- 
lus of radii ro+a and rQ-a. To generate the Mobius strip S 
itself, instead of keeping L in the plane of CO, now, keeping 
L perpendicular to CO, let L rotate with its center always on 
CO, and at a uniform angular speed so that as L makes one cir- 
cuit of Co, it will turn 180' about its point of contact with 
CO. The equations for this Mobius strip are given in para- 
metric form using cylindrical coordinates as shown in (b) of 
Fig. 3.17: 

To help fix ideas..we shall adopt as the prototype of 

r = ro + p cos (o/Z) 
Q , = o  

z = p sin ($/2) 

-ac.psa, O G a < r o ,  O S o S s 4 a  (18) 

where p and $ are parameters for the surface and r, $, z are 
the usual cylindrical coordinate variables. The surface (the 
set of points in space) is then completely specified once we 
give the magnitudes a and ro. 

on S just as latitude and longitude are used to locate a point 
The parameters p and @ can be used to locate a point 
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FIG. 3.17 Radiometric self-interastian of one-sided sur- 
faces. The case of the MZbius strip. 

on the surface of the earth. For example, given P = a,@ f Sa"; 
one finds the corresponding point on S by walking on S along 
CO in the direction of increasing 4 until a point on Co is 
reached which is on the 90' radial line through the origin. 
Then, still standing on S and still facing in the direction 
of increasing @, one's extended right arm points in the direc- 
tian of increasing p; and one's extended left arm paints in 
the direction of decreasing p. In the present case one goes 
a units of distance along S tea the right to get to (a,90"}. 
The coordinates at this point in the cylindrical reference 
frame are obtained by setting 4 = 90' and p = a in the system 
(18) of equations: 

r = ro + aJZ/2 
c$ = 90" 
z = an/2 . 
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Now, Irom a radiornctric point of view any realizatjon 
of thc surface S will servc as a perfectly good example of a 
paskive reflector arid transmitter of radiant flux. By plac- 
ing a realization of S say, in the form of a translucent matte 
white plastic strip out in sunlight, one can observe the play 
of light over its surface and see the interreflection effects 
where flux from one part augments the natural external flux 
falling on another part. Hence, the one-sidedness of S does 
not at all interfere with the inherent interactions of S with 
light. The one-sidedness of S enters the picture when.an un- 
suspecting human observer wishes to unambiguously fix the unit 
outward k(x] at some point x of S preparatory to constructing 
the sets E+(x) and Z-(x) of outward and inward directions rel- 
ative to S at x. The observer soon sees that a certain prop- 
erty of "two-sided" surfaces is now lacking--a property which 
is so deeply ingrained in our geometric intuition about sur- 
faces that it is virtually taken as universal and as possessed 
by every surface. This property of two-sided surfaces may be 
phrased as follows: if one travels a closed curve C on a two- 
sided surface s, constructing Z+(x) at each x of C from know- 
ledge of the surface coordinates P and 4 according to some 
fixed rule, then when the journey aZong C is brought to a 
close, the last set Z+(x) constructed coincides with the set 
Z+(x) constructed ut the outset of the journey. This property 
is not possessed by the blijbius Strip S. Thus suppose we agree 
that, as we stand at any x on S, the direction of k(x) will be 
from one's foot to one's head. If one walks from a point xo 
around a small closed path in the neighborhood of a point x, 
then as one's feet return to xo his head will be in the same 
spot as when he started out. However, if he walks from xo 
around a larger circuit--say all around circle Co, then when 
he returns to x0, he will be relatively upside down from his 
original position. By making the circuit around Co once more, 
he will regain his original orientation. Hence for the pres- 
ent surface s, he can return, after traversing certain closed 
paths, to his starting point, but with an orientation opposite 
to that with which he started out. A surface S is two-sided 
(or orientable) if the preceding italicized statement holds 
for every C on S ;  otherwise a surface is one-sided (or non 
orientable). 

The salient effect of one-sided surfaces on radiative 
transfer theorizing is that such surfaces obviate the neces- 
sity of considering both the upper !+(XI and the lower hemi- 
spheres x-(x) of the unit sphere Z. It is found that the up- 
per hemisphere Z+(x) , e.g., alone suffices to describe the ra- 
diometric interactions of such a surface. This may be seen 
as follows. First, by means of some elementary vector analy- 
sis, we see that a unit "outwardt' normal k(x) at point x on 
the Mobius Strip is given by the equation: 

r 
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in which we have written: 
tlX" for (rstJ2zI f 
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and r, @, and z are as given in (18) for every choice of para- 
meters P and @. Further, the. unit vectors asfx), m+(x), a,(x) 
of the cylindrical coordinate system point along the direc- 
tions of increasing I-, 4 %  and z in that systemr as usual. 
lience kCx) is uniquely determined lay each choice of P and @, 
-8s p c = a I  0-c @ 52n. We can denote this fact also by writing: 

"k(~~4)" for k(x) . 
Now the heart oQ the one-sidedness of S resides in the follow- 
ing fact: for every p,4, by (18), (P,@] and (-p,$+Zr) deter- 
mine the same point x on S and: 

k(P,@l = -k(-PyV21) . (201 
rsai 
*.- 

Next for each k(x) we define Zk(x) as MSUal, where x C O Y ~ ~ -  
sponds to (pp@]* To point up this dependence of E+(x) an 
( p , @ ] -  we shall write "3,(p,$)" for E,jx). Then we see that: 

0 

e211 I .E"(PP+] = Z,(-p,43*2a) 

This is what we wished to show: the lower hemisphere corre- 
sponding to (~$0) is equal to the upper hemisphere correspond- 
ing to (-p,rp+Zr]. Hence a downward direction at (p,t$) may be 
thought of as an upward direction at [-~,@*2n). 

It should be recalled that the numbers P and o, are co- 
ordinates one uses while maneuvering about the surface S. If 
one starts at ( ~ ~ 4 1  where P = 0 and @ = 0 and walks to IP,$) 
in the manner explained above, and then starts all over again 
and walks to (-p,@+Zn), his feet will come to the same point 
in space but the final positions of his head will be diamet- 
rically opposed, We shall call the number pairs (a,$), 
(-p,@+Zs) conjugate coordinates. If a ()@-coordinate system 
were painted on a realization of the M6bius Strip S, then the 
conjugate coordinates (p,+) and (-p,@+2n) could be thought of 
as specifying two "different" points on S, These points 
could be imagined different in the sense that if S were suffi- 
ciently large and opaque then two people standing on points 
with conjugate coordinates would be hidden from each other. 
However, from a construction point of view, i.e., viewing S 
as an assembly of points, the point located by (P,$J), once 
placed into position, ,obviated the need of placing that corre- 
sponding to (-P,I$+~T). 

We can now apply these accumulated findings to the 
problem of formulating the radiometric interaction equations 
for a general one-sided surface S. If {P,@I] are the coordi- 
nates of a point on S, with P and 4 variables drawn from some 
silitable range of numbers such as that suggested above, we 
let "k(p,@)" denote the unit outward normal to S ar the point 
with coordinates (o,@]. To each point on S with coordinates 
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o n $ )  thcro exist conjugata coordinntos ( ~ ' , + l )  such that 
' t p,$) and (p',@') determine the same point on S but: 

k(Ps'$) -k(P's@') * (22) 

Let " @ l l  denote the function which assigns to each coordinate 
(p,+) its conjugate coordinate (P',+'): 

CP',$') = @(P,@) * 

In the case of the Mabius Strip above, p' = -p and +' = 9+2r. 
Then (22) can also be written: 

-k(p,$) = klQlP,4)) * (23) 

Z-(P,$) I+ E+(@(P,'$)l 1-24] 

E = E+@ (25) 

Further 

which may be abbreviated to 

Still further, if N+(p,+,C) is the downward surface radiance 
of S at (p,+) in direction 5 in E- (p,$) , then the radiance 
may be represented as the upward surface radiance N: (p , 9 ' 5) 
where (p,g) and (p',+'> are conjugate coordinates on S. 
Hence : 

* **.e 1 

N+(p',$,E) a Nf(p',$',S) 

= N: ( Q C P A )  ,E) 
or more briefly: 

N+(S) = N:(S)O , 

for the one-sided surface S. Analogously, 

N;(S) = N:(S)Q . (27) 

Hence on a one-sided surface S, downward supface radiance and 
upward field radiances can be transformed away according to 
(26) and (27) into respective surface and field radiances of 
the opposite polarity. It is therefore sufficient at a point 
x dn S to speak only of ueward surface radiance N:(S) and 
downward field radiance N-(S). In particular, incident source 
radiance distributions therefore are limited to downward 
field radiances N?(S). 

With these geometrical preliminaries in mind, we are 
now ready to apply the interaction principle to a general one- 
sided surface S' with conjugate mapping @. We first isolate 
SI and then enumerate the incident radiometric functions on 
S': 

A,: all field radiance distributions like NOISt) 
l 
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A2 : all field radiance distributions like N: [SI 1 
The sets of response functions of SI are: 

B X  : all surface radiance distributions like ~S~,CS%) 

In the present case RI 5 Z P  n I., qnd the interaction princi- 
ple yields the ~ o ~ ~ o ~ ~ ~ ~  two interaction spers%o+s: 

1st -- P(S') 
514 -- r_(S') 

The two operators r(P[S83 and s-(S') are m t  instances 0% def- 
initions (IO), (11) of Ssc. 3.S1 as has been tine case all1 
along in applications to two-sided S U T % ~ C ~ S .  #e shall see 
the specific f o m  of these operators in B moment. For the 
present we go on to write the, i n t e ~ a ~ t i i ~ ~  equation for a one- 
sided surface s as: 

The auxiliary equation in the present case in : 

where tm(Sf) has exactly tho same task in the present one- 
sided case as it did in the two-sided case of Example 4. 
Thus (28) and (29) constitute the general radiative transfer 
equations for a one-sided surface. The formal solution of 
(28) and (29) is: 

The similarity of this solution with (11) above far the in- 
tegrating sphere is particularly to be noted. 

We next establish the respective connections between 
the operators r?(S'), r-(S1), and tm(S*) for a one-sided sur- 
face, with their correspondents for a two-sided surface. 
This can most easily be done by making the present one-sided 
surface SI a two-sided surface S without changing its radio- 
metric properties. Thus we make any radial cut in SI, such 
as from x to y in Fig. 3.17. Then the equations of system 
(184 hold but we limit 0 to the range 0 5 9  5 2 n .  The result- 
ant surface S is two-sided in the sense defined above. Clear- 
ly, its local and global radiometric properties are the same 
as those of S'. The salient difference between S and S' is 
that in the case of S there are no pairs of conjugate soordi- 
nates assigned to each point and so rhere is no mapping 
which conveniently rids us of Z-(x), etc. It follows that 
/14)-(17) now apply to S. 
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Comparing (28) and (14), we have the following func- 
tional relations between the reflectance and transmittance 
operators for S' and S: 

r''(sl) = r:(S) + Qty(S) (31) 

Comparing (16) and (29) we have: 

t m ( W  = X,(S)trn(S1 + x..(s>@t,(s> 

Since we have not changed the definition of tm(S] in going to 
the one-sided context, we require: 

t,(S') = tm(S) . 

X,(S1 * )(-(S)@ = 1 
Thus in the one-sided context we should have 

which is indeed the case, by the definitions of X,(S) and a. 

the role of Mobius Strips and general one-sided surfaces in 
radiative transfer matters. As noted in the introductory com- 
ments to this example, one-sided surfaces arose in the search 
for the domains of validity of the classical surface integral 
formulas. Surface integrals in radiative transfer theory a- 
rise, for example, in irradiance calculations as we saw in 
Examples 8-10 of Sec. 2.11. lience caution must be exercised 
in using Stokes' Theorem, for example, in transferring from 
line to surface integrals when working with one-sided surfaces. 
Surface integrals also arise in calculations of net flux a- 
cross surfaces s. Thus, 

One final set of remarks may be in order concerning 

S 
normally gives the net radiant flux across a two-sided sur- 
face S, where H(x) is the vector irradiance at x. This inte- 
gral can have positive, negative, or zero values. Now as an 
indication of a radiometric pathology arising on a one-sided 
surface, let S be the Mobius Strip defined by (18) and in 
Fig. 3.17. If "x" denotes the point (r,Q,z) then: 

4w a I I H(x).k(x) dA(x) = 0 

for every irradiance field H over S, In other words a Mobius 
Strip S, lets every light field "slip through its fingers" 

$=O p=-a 

_.. 

t 
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k 

FIG. 3.18 Setting far emeirical reflectances and trans- 
mittances of plane-parillel mehia. 

when integrated over in the manner usual for two-sided sur- 
faces. However, by slicing S in a manner designed to render 
it two-sided, as done above, the same integral considered a- 
bove and taken m e r  the same point set can have non zero net 
radiant flux P across its extent and such that P has valid 
physical significance. 

3,6 Reflectance and Transmittance Operators for Plane-ParaL- 
le1 Media 

In this section we continue the sequence o€ C O R S ~ ~ U C -  
tions, begun En Sec. 3.3, of the basic concepts used in radia- 
tive transfer theory. We shall use the interaction principle 
to develop the reflectance and transmittance operators €or 
plane-parallel media which will subsequently be used (Sec. 
3.7) in the formulation of interaction equations for such me- 
dia. The development of such operators will be carried on 
within the space-level interpretation of the interaction 
principle (cf. Sec. 3.2). This is in contrast to the construc 
“cons leading to the r and t functions of Sec.3.3; thy were car- 
ried out in the surface-level interpretation of the principle. 

Geometrical Conventions 

The geometrical conventions for plane-parallel media 
are depicted in Fig. 3.18. 
k.icaZ medium is a subset of euclidean space X consisting of 

First of all a plane-pamllel op- 
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all points between and including two infinite parallel planes 
a and b. The plane-parallel medium is imagined to contain 
matter which can scatter, absorb or emit radiant flux. In a 
terrestrially-based reference frame (Sec. 2.4) planes a and b 
are customarily parallel to and coextensive with the xy coor- 
dinate plane, as shown in Fig. 3.18. The sets of downward 
E -  and upward E+ directions are available for use in describ- 
ing flows of radiant flux within the medium, and we shall use 
once more the narrow conical circular type of cones D' and D 
of Sec. 3.3 to cstablish the empirical reflectances and 
transmittances of plane-parallel media. 

The Empirical Reflectance5 and Transmittances 

as in Fig. 3.18. The medium is irradiated in the vicinity of 
point x on one of its boundary planes. No other irradiation 
falls on X and no SOUTCBS of radiant flux are within X. Fig. 
3.18 shows x on plane a. The point x can also be on plane b. 
The empirical radiance of the incident flux at x is N(S',D') 
where S' is the projection on plane a and along the axis of 
D', of the collecting surface of a radiance meter, and D' is 
the small solid angle of directions of the incident flux. D' 
lies wholly within 5- if x is on a, or wholly within E, if x 
lies on b. For notational convenience we have used the re- 
gions s' and S lying in the boundary planes, instead of their 
projected counterparts on the planes normal to the axis of 
the radiance meter (shown dotted in Fig. 3.18). With this ir- 
radiation fixed, a radiance meter is directed at various 
points y on the boundary of X. Let N(S',D';S,D) be the resul* 
ant measured surface radiance of X emergent through direction 
set D in the vicinity of point y on the boundary of X. Let S 
be the small patch of surface on the boundary of X about y de- 
fined as the projection on plane a or b along the axis of D, 
of the collecting surface of the radiance meter. (Recall the 
convention for measuring surface radiance in Sec. 2.6.) The 
cone D lies completely in E+ OF E- as the case may be. For a 
fixed plane-parallel medium X and every such pair S',D' of in- 
cident variables and every such pair S,D of response varia- 
bles, let us write: 

Let planes a and b define a plane-parallel medium X, 

In this way we can generate a table of values S[X;S',D';S,D) 
of the function S(*;*,*;-,*), and this table of values would 
be representative of the reflecting or transmitting properties 
of the medium X. As it stands the value S(X;S',D';S,D) does 
not tell whether the scattered radiant flux has been reflected 
or transmitted by X. To help distinguish between these pro- 
cesses we keep in mind on which hemisphere of E, the direction 
sets D' and D lie. If D' and D lie in the same hemisphere, 
then the value is a transmittance; if D' and D lie in opposite 
hemispheres, then the value is a reflectance. Thus part (a) 
of Fig* 3.18 depicts a transmittance arrangement, and part 
(b) depicts a reflectance arrangement. 

n 

h 
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~y systeaatisally considering the four general possibilities 
we arrive at the foPlowirng set Q€ definitions for P plane- 
parallel m e d i m  X defined by planes a and b. We write: 

"'R,(X;S' ,D*;S9D)" for S(X ;S' ,Ut ;S,D> if SIC R 
gpc E 

and s c=b 
Dcz- 62) 

P*R_IX;S'.D';s,D]" for S(X;SD ,D,';S,nS) if S'C: a 
u4c 5 

and S e a  
D c E *  13: 

f'T,(X;S',D';S,D]f~ for S(X;S",D~ ;S,D) if S'C b 
D'C E, 

and S c a  
DCE, (4) 

''T-(X;S1~Do;SIB]*' fox S[X;S',D';S,D) if S v c  a 
D'e E 

and S c b  
D C 2 -  (S) 

The preceding four definitions are designed to run parallel 
t~ (2)-(5) of Sec. 3.3. As in the earlier case, these defi- 
nitions could have been based directly on the interaction 
principle with the same operators resulting. (The interested 
reader should consult the discussion following (5) of Sec. 
3.3.) However, in this introductory discussion, we wish to 
keep the intuitive amd operational aspects of the concepts 
f osemos t . 

made for a given plane-parallel medium, the table can be used 
to compute the responses to incident flux. Suppose, e.$., 
that X is irradiated over S' in a by radiance N(S*,D') where 
the reflected radiance N(S,B) over S in a is sought. Then 

Once a table of reflectznces and transmittances is 

N(S,D) = N(S',D')R_(X;S',D';S,D)O[D')A(S') . 
The essential properties of the empirical radiance N(S:D';S,D), 
which is the response to NCS',D') of the plane-parallel medi- 
um X, is its S' and D' additivities and Its S' and D' conti- 
nuities. These properties are analogous to (i] and (ii) o€ 
See. 3.1 enunciated for surfaces. These properties are suffi- 
ciently important to the theory of plane-parallel media (and 
media in general) that they will be stated below: In each 
case D,D' are circular conical solid angles with central di- 
rections E,,EJ', respectively, etc. 
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. (i) (D'-additivity). If a and b are the plane 
boundaries of a plane-parallel medium X and 
either a or b is irradiated in turn by radiances 
N(S' ,D1 I )  and N(S' ,D2') with N(S' ,D, ;S,D) and 
N(S1,D2';S,U) as the respective observed response 
radiances, then M(S',Dl';S,D) + N[St,D2';S,D) 
is the observed radiance of S (on a or b) under 
simultaneous irradiation. 

Furthermore : 

(ii) (D'-continuityj. Let the geometric setting be 
as defined in [i). If n[D') = 0 and 5 # 5' 
then N(S',D';S,D) = 0. 

A similar pair of statements can be made about Sf-addi- 
tivity and S'continuity by varying the areas over which the 
flux is incident, keeping the solid angles fixed. The reason 
behind all this attention to additivity and continuity rests 
in the fact that frcm these properties--which are simply in- 
tuitive manifestations of the linearity of radiative proces- 
ses in the domain of radiative transfer theory--we form an em- 
pirical justification of the mathematical model of radiometry 
by means of which we can rigorously deduce the existence of 
the classical integral operators for the reflectances and 
transmittances of plane-parallel slabs of scattering material. 
The details of the derivation of the appropriate integral op- 
erators for the plane-parallel setting are quite close to 
those for the surface operators discussed in Sec. 3.3. In or- 
der to avoid excessive repetition, it will be shown in Sec. 
3.16 how all these integral operators for surfaces, slabs and 
general media can be deduced from the interaction principle. 

The Theoretical Reflectances and Transmittances 

We now use the definitions (2)-(5) as a basis for the 
definition of the theoretical reflectances and transmittances 
of a plane-parallel medium. As was pointed out in the preced- 
ing paragraph, the existences of theoretical reflectance and 
transmittance functions and their associated integral opera- 
tors all follow mechanically from the interaction principle 
and will be discussed later. However, it is instructive to 
show how these functions come about by means of every day 
limit operations applied to the empirical response functions. 
This we now do. In (2)-(5], we let S'++(x'}, S-+{x), D'+{C'}, 
D+{E) in any order desired. 

We choose first to write: 

'xS(X;S1,Dx;x,~)x' for lim S[X;S',D';S,D) . (6) 
S+(X} 

This limit exists by virtue of the S and D additivity and con- 
tinuity properties of radiant flux established in Sec. 2.3. 
Next we write: 

D 
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"S(X;X~,E;';X,~)" for lim SlX;x' ,5* ;x,E) (7) 
S'+(X'T 
D'+fF;' 1 

This limit exists by virtue of the S E  and U' additivity rand 
properties 01 the response radiance just cited above. One 
may envision the physical significance of the aagnitiadc of 
limit S[X;x',SB;;x,E] as felliowsj: the ragnitudg? rep~esents 
eke radiance of IZ at x in the! direction E induced by a m i %  
incident radiance on X at x g  in the direction c*. The estab- 
lishment of S(X;x',SE;x,%) in the two stages of limit opera- 
Zions (6) and (7) was ~~0~~~~~ by a desire ta facilitate the 
reader's study of reliated matters in See. 3.14 and in refer- 
ence [%Sl], in particular Chapter IrI of that reference. 

We come now to the definition of the integral operators 
associated uith plane-parallel media. These operators are the 
three-dimensional counterparts to r-[Y) and t_(Y) defined in 
[IO), (11) of Set. 3.3, and the theoretical somterparts ea 
Ea- and %, in (2]-(5) above. In zhe present case we identify 
the plane-parallel medium by the two bounding planes. When- 
ever possible, we choose to use their depths also as identify- 
ing names, thus "a" denotes a plane at depth a, etc, However, 
occasionally, to avoid confusion, the full ninme "Xy" will be 
used for the plane at depth yI a s y c b .  In what follows we 
shall, unless explicitly stated otherwise, always assume 

, ,  

By using "a" and YJ'~ as explained above, we obviate the need 

See. 3.3 OP (2)-(5) above. The operators R(a,b) and R(b,a) 
are called the standard refkctance operatars associated with 
the plane-parallel medium determined by a,b, The operators 
T(a,b) and T(b,ti) are called the standapd transmittance opera- 
tors associated with the plane-parallel medium determined by 
a,b. 

~ Q P  the signatures ''+'F and - 1 3  on "R" or '"" as in (6) -(9] of 

The remaining matters requiring mention in this section 

c 
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can be presented very much in the manner that the correspond- 
ing surface concepts were presented in Sec. 3.3 following (lo), 
(11) of Sec. 3.3. In particular, to denote an incident radi- 
ance distribution on the upper plane a of a plane-parallel 
medium X we write I'N-(a)". Thus, N-(a) is a function which 
assigns'to X I  in a and 6' in E- the radiance N-(x',E1). The 
reflected radiance distributiion initiated by N-(a) has its 
values given by: 

(where x is in a and 5 is in E+), and which we denote simply 
as: "N_(a)R(a,b)". In a similar way we define N-(a)T(a,b) 
as the transmitted radiance distribution emerging from level 
b and initiated by the downward incident distribution N_(a). 
Further, N+(b)R(b,a) and N+(b)T(b,a) are the reflected and 
transmitted radiance distributions initiated by the upward in- 
cident distribution N+(b) on the lower boundary b of X. When 
necessary (i.e., if ambiguity is to be avoided) we can append 
the signatures I'+'l and 1 1 - 1 1  as superscripts to "N1' to denote 
surface and field radiances, respectively. However, it has 
been found by experience that the surface radiance concept by 
itself is for the most part adequate to describe without ambi- 
guity theoretical discussions involving plane-parallel media, 
particularly those centering on the principles of invariance. 
The main functional relations for the operators (8)-(11) will 
be developed in Chapter 7. 

Variations of the Basic Theme 

The operators defined in (8)-(11) may be used as a 
basis for defining still further operators for radiometric 
concepts other than radiance. We illustrate this observation 
for the case of radiant emittance and irradiance. 

and b. Let N-(a) be an incident downward radiance distribu- 
tion over boundary a. This gives rise to an irradiance func- 
tion H-(a) over a. Thus the value of H-(a) at each x in a is 
given by : 

Let X be a plane-parallel medium defined by planes a 

The medium X responds to this incident flux with a radiance 
distribution N+(x,*) at each point x of a, as given in (12). 
The associated value of radiant emittance W+(a) of a at x is: 

I 

Therefore to every plane-parallel m e d i m  (efined by two paral- 
lel planes a and b we can associate a reflectance for irradi- 
ance, namely: 



We will rayely mix sadiance and irradiance taleulslians in 
one discussion so that it will usually be possible to ecowo- 
maim on notation and write trR(a,b]ls for the reflectance (13). 
Therefore the ~ ~ e r ~ ~ ~ ~  product H,(a)W(a,b] denotes; the radi- 
ant enittaaace of x induced by n_(a) x, where H,ea) in. turn 
is associated with i‘l-(a). Hence in the irradiance context 
qv$(asb)’q will denote a pure number; in the radiance context 
“ W ( B ~ ~ ) ’ ~  will denote an integral operator. We can mako three 
more definitions of reflectance and transmittance far H+{b) 
and H-da) : Rgb,ap, T(b,s) and T(a,b) respectively. The 
full details of all these definitions and the discussion of 
the properties 0% the R and T quantities are reserved for 
Chapter 8. 

the theme such as the present plane-parallel counterpart to 
(IS) of Sec. 3.3. However, the point khat potentiel varia- 
tions are possible seems well made by now, and we shall there- 
fore go on to consider the appaications 0f the interaction 
principle to pRane-parallel media. 

We ~lould now go on and consider Burther variations on 

3.7 Applications to Plane-Parallel Media 

The application of the interaction principle to plane- 
parallel media, which is the main theme of this section, will 
perhaps be most interesting from the following two points of 
view. First, the interaction equations for interacting plane- 
parallel media will be seen to be identical in form to those 
for interacting planes illustrated in Sec. 3.4. This point of 
similarity of the two types of interaction equations for os- 
tensibly dissimilar radiative transfer contexts should encour- 
age a closer examination of the classical modes of solution of 
the problems assQCiat€?d with these media with the purpose in 
mind of obtaining a unified means of sofution for both types 
of settings. The natural mods of solution, as we shall see, 
is one candidate for such a unification. 

about the illustrations below concerns the ontogenetical faun- 
dations of radiative transfer theory, that is, the basic con- 
septs on which the theory rests. Advanced students of radia- 
tive transfer theory know that the classical framework of the 
subject can be made to rest on the equation of transfer for 
radiance and on the principles of invariance. For some time 
there was a question as to the primacy of one QT the other of 
these concepts; which was more fundamental: the equation Q E  
transfer or the principles of invariance? This question is 
naturally of interest to those who are concerned with the 
logical connections between these two tap roots of the subjeci; 
The principles of invariance have been developed and made a 
powerful tool of radiative transfer theory by Chandrasekhar 

The second interesting observation that can be made 
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and his followers. The systematic use of the principles of 
invariance by Chandrasekhar's school has led to brilliant so- 
1:itions of longstanding intractable problems in radiative 
transfer theory, problems which were insuperable using the 
standard approach to them by means of the equation of transfer 
alone. In view of this fact, one is led naturally to specu- 
late on whether the principles of invariance incorporate a 
deeper and logically independent insight into radiative trans- 
fer phenomena than does their predecessor, the classical equa- 
tion of transfer. This speculation was examined in an earlier 
work (Ref. [ZSl]) with the purpose of resolving the question 
of the logical status of the principles of invariance within 
the theory of radiative transfer. It was found that the prin- 
ciples of invariance were logically deducible from the equa- 
tion of transfer. Moreover, it was found that, by suitably 
enlarging the domain of valid applicability of the principles 
of invariance--that is, by capturing their abstract essence 
in a sufficiently general physical setting--the equation of 
transfer was in turn logically forthcoming from these more 
comprehensive principles. The net result was the establish- 
ment of the logical equivalence of the principles of invari- 
ance and the equation of transfer. By continuing the abstrac- 
tion process of the principles of invariance still further, 
the interaction principle eventually was attained. 

ing illustrations may take on a deeper significance than 
would a mere enumeration of examples of the application of 
the interaction principle. Thus, the illustrations are in- 
tended to summarize a unification and an extension, by means 
of the interaction principle, of the classical framework of 
radiative transfer theory on plane-parallel media. In sub- 
sequent sections, the illustrations will be extended to cover 
ever wider applications of the interaction principle. 

With this brief historical sketch in mind, the follow- 

Example 1. Irradiances on Plane-Parallel Media 

We consider a general plane-parallel medium X bounded 
by two distinct transparent parallel planes, a and b, as in 
Fig. 3.19. The medium consists of scattering-absorbing mater- 
ial with no reflecting surfaces on the boundary or on parallel 
planes within X, and is irradiated by external sources only 
at its upper and lower boundaries. These sources are radi- 
ance distributions N-(a) on a and N+.(b) on b of fixed direc- 
tional structure and are independent of location on a and b. 
That is, the directional structure (but not the size) of N-(a] 
is fixed and is independent of position in a. Similarly for 
b. Furthermore, we assume the medium to be stratified, i.e., 
its optical properties and light field are independent of 
position on each intermediate plane at depth y within X, 
ac;y&b. Let H(y,+; and H(y,-) be the resultant irradiances 
at depth y (for notation, see Sec. 2.4). For brevity and uni- 
formity of exposition throughout this chapter, we write 
"H+(y)" for the irradiance H(y,+), and "H-(y)'' for the irradi- 
ance H(y,-). 
diant emittance of plane y in the upward (+) and downward (-) 
directions. The incident radiance distribution N-(a) induces 

Similarly "W+(y)", "W-(y)'' wall denote the ra- 
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FIG. 3.19 The basic interaction setting for irradiances 
on plane-parallel media. 

an irradiance which we denote by “H..(a)”. Similarly, N,(b) 
induces an irradiance H+(b). 
is to show how the interaction principle can be used to sys- 
tematically formulate the radiative transfer problem on X f o ~  
irradiance: gioen H-(a), H+(b); required, the irradiances 
H+(y) at every depth y, a s  y 5 b. 

tated by having a convenient designatian of the present opti- 
cal medium X and its various plane-parallel subsets. Let us 
write “XQx ,z)” for a plane-parallel medium bounded by planes 
x and z, acx..=zsb. We use, for convenience, “x” , etc., now 
t~ denote both the plane and its depth in the medium. The 
present medium X is of the form X[a,b). As a first applica- 
tion of the interaction principle, we cansides the subset 
X(a,yd of X(a,b), a s y s b .  The enumeration of the sets of 
incident radiometric functions on X(a,y) in the present case 
is : 

Our main purpose in this example 

The applicatian of the interaction principle is facili- 

AI: all irradiances like H_(a) 

Az: all irradiances like H,(y) 

The enumeration of the sets of response functions of 
X(a,y) is: 

B1: 811. radiant emittances like M+(a) 

Ba: all radiant emittances like W_(y) 
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Thus, in the case of medium X(a,y), m = 2, n = 2, and 
the interaction p~inciple supplies four interaction operators 
sij (in the present case these are numbers) of the form: 

s11 - -  Rla,y) 
S I Z  - -  T(a,y) 
52 1  - -  T(y,a) 
5 2 2  - -  R(y,a) 

The four numbers R(a,y), T(a,y), T(y,a), and R(y!a) 
can be represented, if need be, in terms of the S-function of 
Sec. 3.6 (see paragraph on Variaeions of the Basic Theme), 
and the discussion of that section shows how they can come by 
an alternate route from the interaction principle. For prac- 
tical numerical work, one may integrate the Riccati equations 
obeyed by R and T as shown in Ref. [251] and in Chapters 7, 8 
below. Hence these four numbers depend in a known manner on 
the depth y in X(a,b), we have then four functions R(a,*), 
T(a,*), T(.,a), R(* #a) associated with X(a,b) which take on 
specific values for each choice of subset X(a,y) of X(a,b). 
For the purposes of the present example, we assume specific 
knowledge of thesk four functions. In later discussions, 
throughout Chapter 8, we will show how the functions can be 
obtained. 

W-(y) are given by: 
According to the interaction principle, '#+(a) and 

Hence if all six quantities on the right side are known, W+(a) 
and W-(y) are determinable. Of these six, five are known as 
given properties of X(a,y> or as given radiometric data. The 
remaining quantity, namely H+(y) is not generally known, 
This indicates that we should apply the interaction principle 
once again, now to the subset X(y,b] of X(a,b); a s y r b .  

incident radiometric functions on X(y,b) : 
Isolating X(y,b), we then enumerate the sets of all 

AI: all irradiances like H_(y) 

A2: all irradiances like H+(b) . 
The enumeration of the response functions of X(y,b) is: 

B1: all radiant emittances like W+(y) 

Bz: all radiant emiftances like W-(b). 

The associated four interaction QperatOrS sij are: 

'..' 
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These zre the principles of invariance for irradiance in 
plane-parallel media. They will play an important sole in 
the studies of Chapter 8. In essence, (7), (8) are two equa- 
tions for H+(y) with solutions: - 

H+(b)TGb,yl + H_ Za>T(a,y)W,b) 
H,CYl = e91 

H-CY) = (101 

1 - R(y,aIR(y,b) 
fi_(aIT(a,~l * H+lblTlb,Y)RCY,a) 

1 - wY.a)R(Y,bl 
From H,(y) we can determine \$'+(a) and W_(b) using (13 and (4). 

tions. First of all, the complete solution of H+(y) and 
\$+(a), W-(b) is contingent on knowledge of the eight reflec- 
tances and transmittances associated with the subsets X(ta!y) 
and X[y,b) of X(a,b). Methods of finding these numbers will 
be discussed in Chapter 8. Even without referring ahead to 
these methods, che following properties af these numbers can 
be brought to light. A reflectance such as R(a,y) is depend- 
ent not only on the material comprising X(a,y) but Slso the 

We conclude this example with several general observa- 
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directional structure" of M-(a) irradiating X(a,y). This 
fact may be checked by studying (13) of Sec. 3.6. It turns 
out that K(a,y) is not an inherent optical property of X(a,y) 
but rather only an apparent optical property (cf., Sec. 9.1). 
It is for this reason that we hypothesized incident radiance 
distributions on X(a,b) of fixed directional structure. The 
matter of R and T factors for plane-parallel media shall be 
discussed in detail in Chapter 8. 

Secondly, we can see that the magnitudes of R(a,y) and 
R(y,b) must not exceed 1 if there is to be a determinate so- 
lution of H+(y). By appealing to the energy conservation law 
of general physics, suitably tailored to the radiative trans- 
fer context (Sec. 3J), we can show that: 

0 5  T(a,b) 5 1 (11) 

0 5  R(a,b) 5 1 (12) 

for every plane-parallel optical medium X(a,b). 
We can go further than (ll), (12) and state that: 

T(a,a) = 1 (131 

R(a,a) = 0 (14) 

for every degenerate optical medium X(a,a). This state of 
affairs is expected since the transmittance of a transparent 
plane should be 1 and its reflectance should be 0. These 
limiting values follow directly from (l), (2) and the auxil- 
iary equations (S), (6), after setting a = b and noting that 
(1) and (2) hold for every II_(a) and H,(b). 

hxample 2. Radiances in Plane-Parallel Media 

As a second illustration of the interaction principle 
we consider once again the plane-parallel medium X(a,b) of 
Example 1 but now with attention directed toward incident 
and response radiance distributions. The incident external 
radiance distributions on X(a,b) and N-(a) and N+(b) are ar- 
bitrary. The stratification assumption is now dropped. We 
require the determination of radiance distributions N*(y) 
over any intermediate plane y in X(a,b), as shown in Fig. 
3.20. 

and X(y,b), a s  y z b .  Isolating X(a,y) , and enumerating the 
sets of incident radiance distributions, we have: 

We begin by partitioning X(a,b) into two parts: X(a,y) 

t 
This is the case for the irradiance context and generally 
the radiometric quantities derived from radiance by various 
integral operations. The analogous operators R(a,y), etc., 
considered below for the radiance context, are indeDendent of 
the light field and are therefore inherenf optical properties 
of X(a,y). 

h 
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PIG. 3.20 The basic interaction setting for radiance 
distributions on plane-parallel media. 

AI: all field radiance distributions like N:(a) 

A2: all field radiance distributions like N,(y) 

Enumerating the sets of response radiance distributions, we 
have : 

B1: 

U 2 :  

all surface radiance distributions like Xt(a) 

all surface radiance distributions like Nf[y> . 
The four interaction operators sij are: 

SI]. - -  R(a,)r) 
5 1 2  - -  T(a,y) 
S2I - -  T(y,a) 
5 2 2  - -  R(y,a) 

The four operators above are integral operators as de- 
fined in (8)-(11) of Sec. 3.6. h R C e  these operators ufti- 
mately come Erom the interaction principle in the sense that 
the existence of the kernel function s(x;*,.;*,-) is guaran- 
teed by the interaction principle for every optical medium X 
[see Sec. 3.16). 
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The interaction principle then stsrtes that: 

N:(a) = N:(alR(a,y) + N;(y)TCy,a) 

Nf(y) = N:(a)T(a,y) + N;(YIR(Y,~) . (16) 

(15) 

By repeating this process of application of the inter- 
action principle to medium X(y,b), we arrive at the analogous 
pair of statements: 

Nf(Y) = N;(b)T(bY) + N:(Y)R(Y,bl (17) 

NTO) = N;(bIR(b,y) + N:(y)T(y,b) . (18) 

When we append the following two auxiliary equations: 

((Y) = qCY) (19) 

N:(Y) = N:(Y) (20) 

the set of equations (15)-(20) becomes autonomous. These 
auxiliary equations are specific instances of (32) of Sec. 
2.5, and are a succinct way of ruling out the presence of any 
internal reflecting interfaces in the medium being analyzed. 
Thus, we see that, besides making the system (15)-(20) auto- 
nomous, the auxiliary equations allow us to write the system 
(15)-(18) in terms of surface radiance Only, without possi- 
bility of ambiguity. It follows that N+(yJ in (15) and (16) 
is equal to ~f(y). ~:(y) in (17) and in (18) is equal to 
Nf(y) . The incident radiance distributions Nl(a) and N;(b) 
are from external sources and are immediately convertible 
to surface radiances using (32) of Sec. 2.5. Hence the sur- 
face radiance signature "+" may be dropped from the super- 
script position on "N". The set (lS)-(BS) thus becomes: 

N+la) = N-(a)R(a,y) + N+(Y)T(Y,a) (21) 

N-lY) = N-(a)T(a,yI + N+CY)R(Y,a) (22) 

E :  
.. 

..  

N-(y)= [N-(a)T(a,yl + N,(b)T(b,y)R(y,a)f [I - R(y,b)R(y,a)l-' 
(26) 

From (21) and (24) we can determine X+(a) and N-(b). The 
term [I - R(y,a)R(y,b)]-' is understood to be the inverse of 
the integral operator [I - R(y,a)R(y,b)], and the term 
R(y,a)R(y,b) is the iteration of R(y,a) with R(y,b). That is, 
with the help of the definitions (8) and (10) of Sec. 3.6, 
we have written: 

P 



"R[y ,a)R(y,b)" for 

in exact analogy to the iteration r+(a)r_ (b? %or surface in- 
tegral operators in (67) of Sec. 3.4. A similar definition 
is made for REy,b)R(y,a). Therefore, in m d e r  for the inversa 
of [I R(y,a)R[y,b)l to exist, at least one sf R(y*a)! or 
R(y,b) must be norm contracting [re. (60) of See, 3.4). This 
condition is invariably found to hold in every natural [reat) 
optical medium encountered in atmospheric an& hydrologic ap- 
tics. The theoretical details of iteration of (271 are eov- 
ered in Ses. 3.4, Therefore if the n o m  contraction condition 
m a s  I 

A similar equality is obtained by interchanging "asr and "b". 
Thus Nk(y) is uniquely determinable via (253, (26) using the 
natural mode of solution. The practical truncation process 
discussed in Example 7 of Sec. 3.4 (cl, in particular (88) ~f 
Sec. 3.4) holds for the present setting also. 

It may be of interest to observe that: only the inverse 
operation (28) need be computed in order to find both N+(y] 
and N-(y] by means of (25) and (261 when, say, N-(a) = 0. 
This observation is based on the identity: 

which holds for every pair of operators A and B such that 
[I - AB]-' exists. By means of this, the operator combination 

R(y,a) p - NY,b)R(Y,aly 

GI - R(Y,~)R(Y~~)~"R(Y,~I . 
in 126) can be written: 

If, on the other hand, N,(b) = 0, then only [I-R(y,b)R(y,a)]-' 
need be evaluated, for similar reasons. 

We conclude by observing that the solutions N+(y) are 
predicated on knowledge of the operators associated with 
X(a,y) and X(y,b), in particular knowledge of the function 
S(X;*,.;*,*) when X is X(a,y) and X(y,bl. We shall considt?~ 
some means of arriving at this knowledge in Chapter 7. 
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Finally, from the same considerations leading to (13) 
and (14), or formally from (25) and (26), or from Ia, Ib of 
Sec. 23, of Ref. [251], it is easy to deduce that the inte- 
gral operators T(a,a), R(a,a) obtained by setting y = a sat- 
isfy the conditions: 

T(a,a) = I (29) 

R(a,a) = 0 (301 

where "I" and "0" now denote the identity and zero operators, 
respectively, of the operator algebra of Sec, 3.4. 

Example 3. The Classical Principles of Invariance 

We pause in our illustrations of the interaction prin- 
ciple to show how the four classical principles of invariance 
emerge by applying the interaction principle to a suitably 
dissected plane-parallel medium X(a,b) without internal 
sources of radiant flux. Figure 3.21 exhibits the requisite 
partitioning of X(a,b). We consider an arbitrary subset 
X(x,z), which in turn is partitioned into X(x,y) and X(y?z), 
a s x s y s  zsb. Thus the geometric setting for the principles 
of invariance requires consideration of a partitioned internal 
slab X(x,z) arbitrarily located within X[a,b). This parti- 
tioning is of sufficient generality to subsequently allow 
functional relations to be written down for the four operators 
R(a,b), R(b,a), T(a,b), T(b,a) associated with a general 
plane-parallel medium X(a,b) ,(see Sec, 7.1). 

I , N-(o) 
I a 

J X 

I Y 

b 

FIG. 3.21 The setting for the classical principles of 
invariance on plane-parallel media. 
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By repeating, line for line, the derivstioas of Example 
2, now for X(x,z) (so that "a" is replaced by ">csi8 and "b" by 
ItZ V ?  and "y" is unchanged], we have the present counzerparts 
to (23) and (22): 

II, 
For 

These are the %wo mrtilra principles af invariance I and 
Principles I11 and IV obtained fro% them 2s follows, 

IIE, use P twice: first let y = a, z = b; then let y = a, 
with z arbitrary: 

l T < ( a )  = M,(ti'i'(b,a) + N_(a]Rja,b] -l 
For IV, use 11 twice: first %et y b, x = a; then 

let y = b with x arbitrary: 

Statements I-IV are the prineipzes of inuuriance for a plane- 
parallel medium X[a,b). They are rules by which one can for- 
mulate the laws of radiative transfer on X(a,b), including 
the equation of transfer (cf. Sec. 25 and Sec, 126 of Ref. 
Ezsrl) * 

The numbering of these principles is designed to facil- 
itate their comparison with those in Sec. 50 of Ref. [431. 
It should be noted that the present forms of the principles 
are written for generally inhomogeneous plane-parallel media 
so that four operators (rather than two as in [43]) are re- 
quired for a complete determination of the light field in 
X(a,b]. It should also be noted that the apparent simplicity 
and symmetry of I-IV above relative to their counterparts in 
[43] results from judicious use of operator concepts and also 
from leaving the light field in undecomposed form, i.e., the 
radiance distributions are not decomposed into reduced and 
diffuse flux (cf, Sec. 5.2). In this way the basic algebraic 
properties of the principles emerge and encourage formal maaip- 
ailations such as those leading to (251, (26). [For the de- 
tails of decomposition of light fields and their operators, 
see Sec. 7.1.) Of course, in the last analysis one must grap- 
ple uidh the realities of S(X;*,*;-,-). blowever, one of the 
virtues of the interaction method resides precisely in its 
ability to defer such activity until the m ~ s t  propitious mo- 
ment in a given analysis. In particular, one acquainted only 
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with the interaction principle and elementary algebra can an- 
alyze the most complex interaction problem to a stage typified 
b) (25) and (26). Fiom that stage onward, the natural mode 
of solution can be invoked for manual service, or service in 
automatic computer programs. 

tate the comparison of I-IV above with their classical COUR- 
terparts in [43]. Suppose, as in [43], that X(x,z) is homo- 
geneous. Or, more generally, suppose that X(x,z) and the 
light field within X(x,z) are stratified, a s  x sz s b .  We fur-. 
ther agree for the case where 5' is in Z- and 5 is in E,, to 
write: 

One further observation can be made which will facili- 

and for the case 

"T(x,z;E' ;( 

where the domain 

where 5' is in E- and 5 is in E-, to write: 

of integration is over the upper plane bound- 
ary X of X(=X(x,z>) at depth IC. The point y in (31) is in 
X,; t%e point y in (32) is in X,. Two more definitions can 
be made in a similar manner for upward reflectance and trans- 
mittance functions. However, if X(x, z) is homogeneous, then 
it is easy to see that, under the present conditions, these 
functions are all nonnegative valued and depend spatially 
only on the difference 5-x of the depth parameters for X(x,z). 
(The reason for this will be established in Sec. 7.1.) Hence 
to homogeneous X(x,z) are associated two functions, the R and 
T functions defined above. The R-function in (31) is the 
present counterpart to the S-function in [43], and the T-func- 
tion in (32) corresponds to the T-function in 1431. With the 
definitions (31) and (32) in mind we may represent the opera- 
tors R(a,b) and T(a,b) (for downward incident flux) in (8), 
(9) of Sec. 3.6 as: 

A similar pair of operators is associated with upward inci- 
dent flux on X(a,b). 

e 



Bxafiple 4: %be Invariant Imbedding Relation 

glans-parallel media X(ha,b) studied in ExmpEle 2 above were 
accomplished by ~ i n g  the interaction principle CQ set up the 
interaction equations for each of 2w5 subsets Xla,y) and 
X(y,b) of X(a,b). The rcsultarut. ~ ~ u ~ ~ . ~ ~ ~ ~  were then solve& 
for the radiance distributions N*{y) I) a@ y s b .  In the present 
example we will apply the interaction ~~~~~~~~.~ directly to a 
subset X(+,z) of X[a,bj of ~x~~~~~ 3 and ask it to give at 
once the xnteaactlen operators which yield NkL(yp) at L Q F ~ ~ S  l a v d  
y within X(x,zg. The resaleant operatair equarfon is called 
the iPnoa.rian& jarbaddirpg ~otcxt.icn, and ermsplayys the impartant 
CorpCsptS of the C.OlRpHe?ttt lee?%leC%&%nCe and ~~~~~~~t~~~~~ OpeS%l- 
tors. 

X[x,z) is isolated, a b  x s  9. s b .  The sets sf incident radio- 
metric functions on XCx,z) are enumerated as: 

The solutions of the radiative transfer problem in 

We begin with the setting of Fig. 3.21. The subsst 

Ag: all incident radiance distributions like M+(z) 
A,: all incident radiance distributions like Ei-(x) . 

The sets of response functions on X[x,z) ate those at level y, 
x s y  sz: 

Bt: all response radiance distributions like N+(y] 

Ba: all response radiance distributions like N_(y) . 
The interaction principle then asserts the existence of four 
interaction operators 5ij : 

sal-- T(Z,Y,X) 

These four operators are not the simple integral  parat tors of 
the kind in (8)-(11) of Sec. 3.6. Their structure rill be 
considered shortly. For the present we go on to the assertion 
~f the interaction equations in the present case. The inter- 
action principle states that for N,(y) : 
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”a (x ,y ,z)” for 

Then (33), (34) become: 

(35 

Equation (36) is the invariant imbedding relation. Equation 
(36) is reminiscent of (10) in the preliminary example of 
Sec. 3.1 which resulted from considering the two surfaces SI 
and S2 of that example as a radiometrically self-interacting 
entity. Such an interpolation may also be made in the case 
of (36); that is, we imagine X(x,z) isolated with N+(z) and 
N-(x) as incident radiometric functions on X(X,Z). Then the 
internal radiance distribution N(y) (=(N+(y) ,N- (y)) arises 
in response to this input by imagining the parts X(x,y) and 
X(y,z) to interact radiometrically. We denote the collection 
of all operators 7@(x,ylz) associated with X(a,b), and with 
parameters x,y,z in the interval [a,b], by 11r3(a,b)’t. 

The four operators occurring in the invariant imbedding 
relation will now be related to the standard reflectance and 
transmittance operators (81-111) of Sec. 3.6. No loss in gen- 
erality is engendered in setting x = a and z = b in (36), 
since X(a,b) was initially arbitrary. The resultant equation 
is : 

In particular, we have: 

Now according to the interaction principle these 6? and T o p -  
erators are unique, and yield the functions N+(y) correspond- 
ing to every member of the set of incident radiance distribu- 
tions in A1 and A2. Thus, in particular by setting N+(bJ = 0 
(the zero radiance distribution) in (38) and doing likewise 
in (25) we find that, since N-(a) is arbitrary: 

In a similar manner we find: 



b 
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 he operator @(a,y,b) is the complete rep~ectanae apesator 
and r (a,y,b) the cornpZete tFanornittance operator. E~pations 
(40)-(43) S ~ Q W  how these new cperators may be constnucted 
from the standard operators of Sec. 3,6. The methods of Chap- 
ters 7 and 8 will show how LZ and J m a y  be obtained directly 
by integration of the equation of transfer in two-flow fora. 
We can now rewrite, if necessarys (40)-(413) for a general sub- 
set X(r,z) of Ih[a,b). Front [23), (303 and C40Q-643) we de- 
duce 96% every x, z * ad x s  2.5 b ;  that: 

rJ/!X,Z,ZE = Tlx,zI C44) 

&?(x,x,z) -- R(x,z) e4s> 

"T(x,x,zl 1 14B) 

The invariant imbedding relation (36) contains the four 
principles of invariance *I.-IV of Example J as special cases, 
Thus, Ect x = y, then (53), (441, (45) yield: 

Further, let z = y, then (343, (441, (45) yield: 

From these first two principles of invariance follow pTinci- 
ples IT1 and IV after the manner explained in Example 3. 

in extended computations in discrete space settings may be 
found in Sec. 70 of Kef. [25l]. Further examples are given 
in Chapters 7 and 8 below. 

We conclude this example with a few observations of 
historical interest. The invariant imbedding relation (36) 
was first given in Ref. /233] in an attempt to put into pre- 
cise analytical form the verbal statement of the invariant 
imbedding principle of Bellman and Kalaba [IS]. The latter 
principle was, in turn, an extension of the ideas of Ambar- 
zumian [l], 12.1 and Chandrasekhar 1421 centering around the 
classical forms af the principles of invariance. The work of 
Bellman and Kalaba was an important impetus to the eventual 
formulation of the invariant imbedding relation. This rela- 
tion, in turn, motivated the aZgebraie foPmuEation of the 
classical radiative transfer principles. This algebraic for- 
mulaeian evolved and eventually culminated in the interaction 
principle of Ref. [251], which is the foundation of the p ~ e -  
sent work. 

Examples of the use of the invariant imbedding relation 
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Example 5: Semigroup Properties of Transmitted and 
Reflected Radiant Flux 

light in natural optical media such as the atmosphere or the 
sea is that of its transmission from one point to another. 
In this example we show how the invariant inkbedding relation 
yields a general analytical embodiment of this intuitive idea 
of transmitted light. In particular we shall derive the exact 
analytical expression of the following property of transmitted 
radiant flux: the amount of light transmitted over a path 
from point a to point b is equal to the amount first transmit- 
ted from a to an intermediate point y and thence transmitted 
from y to b. This type of property will eventually yield the 
volume attenuation function, one of the two main inherent op- 
tical properties used in the equation of transfer. 

To derive the transmission property of radiant flux we 
return to the invariant imbedding relation (36) applied to an 
arbitrary level y in X(a,b) and with N+(b) = 0 and N-(a) ar- 
b i trary : 

One of the most primitive of intuitions we have of 

Using (36) once again now for level b in X(y,b) with N+(b) =0: 

From this, we have: 

From (48) we have: 

Hence 

N-(b) = N-(a) T(a,y,b) J(y,b,b) . (50) 

From (48) once more, now applied to level b in X(a,b): 
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From this and (503, sirace 

.y(a,b,b) -. 

which is the desired senvGgroup p ~ o p e r t y  of the complete trans- 
mittance operatar. Oilsserve that the last %pf in each trans- 
mittancs operator is fixed and plays the role aE a. passive 
backgrcrund parameter indicating the size of the medium in 
which the transfer takes place, When reading the equations, 
the arttention ob the reader shcuhd he directed ea the first 
two parameters in each transmittance operatcr; then it wrlL 
become clear that f51) indead expresses in n vary gerteraf fox-? 
our basic intuition of transmitted radiant fkux. Qnee the 
idea of the derivation is clear, the reader may derive a 
slight generalization of [SI) wherein the subset X(apz] re- 
places X(a,b) and y is an arbitrary level. between a and z. 
The result is: 

Another semigroup relation similar to (51) bu% n ~ w  %os 
transmission from b to a is derivable from (Xi), This is left. 
as s$ikl another exercise for the reader. A further relation 
is forthcoming from (36) which exhibits an interesting qunsi- 
semigroup property for the complete reflectance operatnrs: 

far every level y in an arbitrary subspace X[a,z) of X(a,b). 
The setting in which the semigroup properties for the 

coaplete operators .@ and 7 is best viewed is that of the 
generalized invariant imbedding relation which is considered 
in Examples 5 and 7 below. Furthermore, the full semigroup 
relations for members of the partial group r,(a,b) are devel- 
oped (in the irradiance corntext] in Example 4 of Sec. 8.7. 
See in particular, (52)-(55) of Sec. 8.7, 

Example 6: The Generalized Invariant Imbedding Kelation 

The generalized invariant imbedding relation, which we 
now consider, is the result of an attempt to increase the 
structural symmetry and conprehensiveness of (363 and such 
semigroup relations as (52) and (53). The setting for the: 
present example is again that of Example 4: a general plane- 
parallel optical medium X[a,b), with no internal sources of 
radiant flux, and irradiated only at its upper and lower 
boundaries X, and Xb by N-(a) and N+(b), respectively. Me 
shall work with radiance distributions N,(y) on arbitrary 
levels y in X(a,b). Our goal in this example is the deriva- 
tion of a generalized version of (34) which has greater ana- 
lytic power and symmnqtry than (36). This will be bought, 



302 I NI’B KACT I ON PRI NC I P LE VOL. I1 

however, at the expense of some intuitive value of the result. 
However, the sacrifice is soon lost sight of in the glare of 
the analytic and algebraic light shed by the operatorial de- 
grees of freedom opened up by the extension. 

We could begin the derivation of the generalized invar- 
iant imbedding relation by simply invoking the interaction 
principle with the appropriate choice of incident and response 
functions. However, the requisite choice of incident and re- 
sponse functions is not immediately intuitively clear, and a 
few motivational comments in this direction will now be made. 

An examination of the invariant imbedding relation (36) 
shows that the matricial operator %‘?(x,y,z) may be viewed as 
a single interaction operator mediating between the single 
incident radiometric function (N+(z),N- (x)) and the single re- 
sponse radiometric function (N,(y)!N- Cy)) . 
the fact that the purview of the interaction principle need 
not be restricted to the run-of-the-mill kind of single radi- 
ometric functions. Indeed, its statement allows, for example, 
ordered sets of any finite (or infinite) number of radiance 
functions to play the role of a single incident radiometric 
quantity. Continuing to examine the invariant imbedding re- 
lation (361, we see that the planes x,y,z are customarily con- 
strained to lie in the relations x s y s z  to each other. Fur- 
thermore, the response function (&(y),N-[y)) is limited to a 
single plane y in X(a,b). 

just cited. Then we would be supplied by the interaction 
principle with an operator s such that 

This follows from 

Suppose we now r e h x  the latter of the two conditions 

(N+(w) ,N-(xI) = (N+(u) ,N-(v))s 

where w and x are in the interval defined by [v,u], vcu. We 
could go on to explore the properties of the four components 
si. of s in much the way we did those of m(x,y,z) in Exam- 
pl&s 4 and 5. 
the remaining condition on the incident and response functions. 
We now do not even require w and x to lie in [v,u], nor do we 
even require that VSU. The resultant operator arising from 
these relaxed conditions is the desired operator Z~(V,X;U,W) 
of the generalized invariant imbedding relation. 

depths u,v in X(a,b) we enumerate the following sets of inci- 
dent functions: 

But we wish to go one step further and relax 

We now isolate X(a,b) and for an arbitrary pair of 

AI: all incident radiance distributions like N+(u) 

Az: all incident radiance distributions like iU-(v) . 

Next we consider for an arbitrary pair of depths w,x in X(a,b): 

B 1 :  all response radiance distributions like N+(w) 

Be: all response radiance distributions like N-(x) . 

Then the interaction principle asserts the existence of four 
unique interaction operators: 

P 

PI 



SIP - -  &?iu,x;v,w) 
52: -- &(v,w;u,x) 
522 -- T(Y*x;U,w) 

These operators depend generally on all four ~ ~ ~ ~ ~ e ~ e ~ ~ ,  u,v, 
w,x. The choice 05  em^^^ of the ~~~~~~t~~~ in the sym- 
bols is guided by tho resultant increased facility in estab- 
li-shing and reading the group properties of the speratoi~ pre- 
sented below. For the present the individual parmetric 
grrsupings sinrply may serve as long names for the operators. 
These operators are called the esteMdeJ reflectance (43 and 
exfended bPQ%sm%k&anC@ (r) operators, The interaction grin- 
ciple goes an to state that for N+(w), N,lx): 

Equation (57) is the genesalized invre~iant imbedding raZatian. 
We denote by tlr,,(a,b)'' the collection of all operators 
@(v,x;u,w) with each variable u,v,w,x in the interval [a,b]. 

(57) it may be well to add same explanatory comments an the 
structure of (57) in addition to those motivating its deduc- 
tiara from the interaction principle. The question that seems 
most likely to arise is this: if it was assumed that N-(a], 
N+(b) were incident radiometric quantities on X(a,b), and if 
X(a,b) was isolated just prior to the invocation of the in- 
teraction principle, why weren't the radiance distributions 
N_(a),N,(b) explicitly counted among the sets of incident 
quantities on X(a,b)? The answer to this question is that the 
choice of the Sets of incident and response radiometric quan- 
tities on an isolated subset of an optical medium is quite 
arbitrary and subject only to the choice of the user of the 
interaction method. 
at this time may help make this answer clear. There is, in 
short, a precise logical basis f ~ r  (57) in the statement of 
the principle, and (57) follows mechanically, so to speak 
from the principle under the present choice of the sets A andk 

Before going on to deduce varisus consequences from 

A re-reading of the interaction principle 
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The answer to the preceding question can be put into a 
more intuitive, less formal tone by means of the following 
observation: the light field within X(a,b)"it is true, is 
generated ab initio and sustained by the hypothesized inci- 
dent radiance distributions N-(a),N+(b). Once generated and 
in the steady state, the light field within X(a,b) has a 
strong inteinal structural unity in the sense that the radi- 
ance distributions over any two separate planes of X(a,b) are 
closely and subtly interconnected one with the other; that is 
to say, the slightest change in the lighting over one plane 
is generally accompanied by a readjustment of the lighting in 
the other plane. Equation (57) is the formal expression of 
this intuitive insight into the internal unity of natural 
light fields. By our separating radiometric cause and effect 
in this extreme manner, the extended reflectance and transnit- 
tance operators of (57) have placed on them a relatively 
heavy burden to connect these distant radiometric causes and 
effects in one part of the light field with another. However, 
it is enough that the analytic connection--however complex or 
tenuous in reality--exists; far then a rich analytical harvest 
of results and techniques are available for use, especially 
those in the theory of continuous groups and semigroups, and 
which we shall state below and in subsequent examples. 

invariant imbedding relation (3@). The eetails of this deduc- 
tion will add substance to the general comments above concern- 
ing the internal unity of the light field within X(a,b). It 
appears that for didactic purposes the deduction of the in- 
variant imbedding relation from (57) is best made in reverse 
--that is we shall start from the invariant imbedding relation 
(36) and deduce (57). Then it will be observed that the path 
traversed from (36) to (57) is reversible. This mode of ap- 
proach to (57) was the one actually followed in its discovery. 
Toward this end we use (36) to represent each of the radiance 
distributions occurring in (57) : 

N+(w) = N+(b) J(b,w,a) + N-Ca)d??(a,w,b) (58) 

The first deduction we wish to make from (57) is the 

Equations (54) and (58) are two ways of representing N+(w). 
Let us use (60) and (61) to replace N+(u) and N-(v) in (54) 
as follows: 

Since N-(a) and N+(b) are arbitrary, (58) and (62) imply: 

P 

I -  

'. .:. . .  
'i .. 
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Since WP(a) and N,@) are arbitrary, this result and (59) im- 
Ply: 

[u,x;v,w) + 3-(a,v,b) J(v,x;u,w) -3 7(apx,b] (65) 

*aC~*V,a).3-(~*xIU,~r = &lb,x,aB (651 

The sets of equ~itionr (63),(64], and [65), (66) govern the 
extended reflectance a ~ d  transmittance operators in terns of 
the camplete reflectance and transmittance operators, le may 
view these equations in the present discussion as algebraic 
eqblatiens in the unknown extended operators with the knuwn 
complete operators as 'vcoe%ficients'P a This vieah. is heuristic 
and will lead us correctly to results which can be established 
rigorously using advanced operator theory. Thus we are ledto 
write (63) and (64) in matrix form: 

Let us denote the 2x2 matrix of operators in (67) by 
r(a,b;u,v)". This matrix has an inverse provided 

I - ;S(a,b;u,v) is norm contracting, a condition which can be 
shown to generally hold in all natuxal optical media. Hence: 

T"'(~~b;u,v) [I - (I - ?(a,b;~,~))]-~ I 

and by the norm contracting theorem (see, e.g., Sec. 40 of 
Ref. [251]): 
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Next, we go on to write (65), and (66) in matrix form: 

whence: * 

r I 

1 1 

Equations (69) and (71) express fhe four extended operators 
in terms of the complete operators in a manner analogous to 
that in (40) - (43) wherein' the complete operators were repre- 
sented in terms of the standard operatoPs for subsets of 
X(a,b) of the form X(a,b), X(y,b). Hence we may conclude 
that: in aZl natura2 optica2 media, the eztended operators 
of the general invariant imbedding relation are ultimately 

'' representabze in terms of the standard OpQratOPS of the form 
(8)-(11) of Sec. 3.6. An alternate proof of this conclusion, 
along with specific formulas establishing the asserted repre- 
sentations, is given in Sec. 7.4. 

Some observations on the preceding results will now be 
made. One observation that is immediately forthcoming from 
(69) and3 (71) is the somewhat startling fact that J(u,w;v,x) 
and &(v,w;u,x) are independent of x, and P(v,x;u,w) and 
&(u,x;v,w) are independent of w. However, some reflection 
on the equations (54) and (55) and the choice of notation will 
show that there is no compelling reason why one response func- 
tion should depend on another response function. Dependence 
of response functions on chosen incident functions must cer- 
tainly be the case, but not necessarily on response functions. 
Therefore the right-end variables x and w in (69) and (71) 
are superfluous in the extended @and Toperators in the 
sense just observed. The extended notation "~(v,x;u,w)" 
with all four variables shown is still desirable for reasons 
which will become clear in the group theoretic discussions of 
Example 7 below. qence the individual extended operators in- 
herit an added loosb variable which, like a human appendix, 
has meaning only whhn the entire domain of evolution of the 
operatorn(v,x;u,w) $nd the radiometric activity over X(a,b) 
is considered. This fljeedom of choice of the right-end vari- 
ables will be utilizedtin deriving special semigroup relations 
subsequently (cf., e.g., Ex. 4, Sec. 8.7). 

extended operators reduce to the complete operators upon suit- 
able confluence of the variables u,v,w,x. In this way we ful- 
fill our obligation of showing that the invariant imbedding 
relation is a special case of (57). This can most readily 
be seen by returning to (63)-(66). For example, let w = x, 
a = v, and b = u in (63) with a s w s b .  The result is: 

The second observation is on the manner in which the 

JC a, a, b 1 &( a, w ; b , w) + 6?( a, b , b I JC b , w ; a ,w> = L? (a, w , b 1 



From (44)-f47) we have: 

The three remaining relations are obtained similarly : 

&(b,w;a,v) = &b,w,a) (731 

(74) 

TEb,W;aswB Y(bswna1 * (751 
Hence: 

Jlb ,w P a1 &@ ,w I a> 1 t 176) JC a,w ,blJ 
qfa,w;b,w] = Zf((a,w,b) -- 

which is an instance OS the operator (561, It is clear that 
by suitable choice of parmeter values in (693 and [7l) we 
can once again retrace OUT steps to the invariant imbedding 
relation. Hwe-ver, the route just taken is certainly eqmi- 
vnleeat and somewhat less arduous. 

Finally, it should be observed that in general we need 

have the orders a s w s b  or L s w s a .  Thus it is possible to 
explore the properties of r3(a,b) under less restrictive con- 
ditions on the three parameters than given at the outset in 
(361. One such extension will be made in Sec. 7.4 as a mat- 
ter of course, Ho~ever, unless specifically noted otherwise, 
we shall work only with members of r,(a,b) whose parameters 
x,y,z are ordered either as x-;y=z or z r y s x .  In the €01- 
lowing example we shall introduce a new set (namely r2fa,b)) 
QS operators which will supply a powerful working tool free 
from any restrictions on the parameters of the operators. 

may be in order. A choice was made in (56) between the dis- 
played order of variables and '%he alternative t'm(~,w;v,x]ll. 
The latter would look more natural in (57). However, our 
current choice works better in remembering the reductions 
(72)-[76), and was accordingly made with that in mind. 

Aot restrict the parameters a,W,b in (762 OP in (72)-(75) t0 

A final word on the choice of notation for ?(v*x;u,w) 

Example 7: Group-Theoretic Structure of 
Natural Light Fields 

The interaction principle, via the generalized invar- 
iant imbedding relation of Example 6, leads to some intel-est- 
ing properties of natural light fields--group theoretic prop- 
erties--which appear to offer not only some novel analytical 
means for the numerical determination of light fields in priic- 
%ice, but also some fundamental ways of formulating radiative 
transfer theory. We illustrate the basis of these new means 
in this example. The sense in which we use the term "group- 
theoretic" is best explained by going on directly to the deri- 
vations of these properties. Some further discussion will 
follow the derivations. 
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The group-theoretic structure will first be considered 
s for a relatively easily visualized case--one which we shall 

return to in Chapter 7 (in particular Sec. 7.11) as a base 
for a new computational method of determining radiance dis- 
tributions. For the present we are concerned only with the 
bare logical structure of that method. Our setting may be a 
general plane-parallel medium X(a,b)--that of Example 6 once 
again--or it may be a general one-parameter optical medium 
(ref.: Ex. 2, Sec. 3.9). We begin by setting w = x and u = v 
in (57). The result is: 

The latter equality follows formally from (76). For brevity, 
let us write: 

"N(Y)" for (N+CY) ,N- (Y)) 

for every level u in X(a,b) and ad hoc: 

1'7f7(USX)'* for T(U,X,U) . 
Then (77) becomes : 

Nix) = N(u)T(u,x) (78) 

for every level x and u in X(a,b). Before going on, it must 
be pointed out that equation (78) has been obtained from [sa) 
by a purely formal tactic--that is, the operator v(u,x,u) 
was obtained by a formal change of parameters in q(v,x;u,w), 
and it turns out that T(u,x,u) as we have agreed to use it 
(i.e., as a member of rr(a,b)) is strictly not defined for 
x # u. This may be seen by recalling the usual domain of def- 
inition of the operator nl(x,y,z) of the invariant imbedding 
relation in Example 4, wherein x,y,z are constrained to have 
the relations x s y s z .  However, our goal at present is to 
draw certain necessary conclusions from (78), assuming it is 
possible to extend the domain of the invariant imbedding op- 
erator (35), and we shall now use the observations made at 
the close of Example 6 to justify this extension. The rewards 
for such a tactic are occasionally great and one interesting 
precedent for such tactics was in drawing certain necessary 
conclusions from the equation x2 + y = 0, assuming it possihle 
to extend the meaning of the equation to positive numbers y 
and values of x other than real numbers. The result, as is 
well known, was the theory of complex numbers. It is in such 
a heuristic spirit that we now proceed, using (78) as a prem- 
ise. 

Select any three levels x,y,z in X(a,b) and apply (78) 
to these levels in the following way: 

N(Y) = N(x) qfCX,Y, 
Nlzl = N(y) qYY,Z) 
N(z) = N(xIT(x,z) 



c 

Froxa the first two of these equations: 

Comparing this with the third equation in the preceding group, 
and using the uniqueness 6~f interactien. operators, we have: 

which-is the asaooiatiuitg of the operators of zhe type 
*(ut&). In addition for every level x in X{a,b): 

I--- 

Equation ($1) expresses the identity ppaperty and X is the 
Ldeatity operutor, where 19 are identity operators which act 
on upward (+> and downward (-1 radiance distributions. Fi- 
nally, far every level x , ~  in X(a,b): 

(824 

which is the inverse properey. If we now denote by "r2(a,b)" 
the set of all operators of the form fl(x,!) 
we see that r2(a,b) forms a partial group IIP the sense that 
the closure, associativity, identity, and inverse properties 
hold. The product of! elements W(w,x) and ?"n(y,z) of rzCa,b) 
is defined whenever x = y or w = 4;. (Mathematical readers 
will recognize ra(a,b) as an instance of a local tapalogiea2 
g~otlp under suitable regularity conditions. See, e.g., [ZOS]. 
Physicists will note the pertinence of the group-theoretic 
approach to the foundations Q E  quantum mechanics. See [I501 
and problem IV of iZSl],) 

The findings sa far may be summarized as follows: by 
sorting w = x and u = v in the generalized invariant imbedding 
relation we obtain an equation (78) which displays a formal 
extension %(u,x] of the invariant imbedding mapping ?f(x.y,z) 
and which shows that the set r,(a,b) of such sztended opera- 
tors has group structure. Its differential properties will 

a s x s b ,  a s  y s h ,  
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be explbred in Sec, 7.5. These will lead to practical methods 
for numerical studies of r2(a,b). 

The reader will now find it instructive to return to 
the generalized invariant imbedding relation and use the al- 
ternate definition: 

(u ,x) I' for 7 (u ,x ; u ,x) 
for R(u,x) with bo restrictions on u,z in the interval [a,b]. 
Alternatively, one may return to the interaction principle, 
using collections of radiance distributions like N(u) for the 
incident set A, and collections of radiance distributions like 
N(x) for the response set B. We choose to call the resultant 
interaction operator s11 so obtained, by the same name, 
t'~(u,x)"; there should be no confusion henceforth with the 
ad hoc definition of in(u,x>. above, which has finished serv- 
ing its introductory purposes. In either of these ways the 
reader can place on solid footing the heuristic procedure be- 
tween (78) and (82). It is also readily seen using the rela- 
tion (78) and the properties of the invariant imbedding rela- 
tion that the new operators v(u,x) in r2(a,b) for X(a,b) 
have the following representation in terms of the invariant 
imbedding operators (x,y , z) : 

for every u,x, a5 u s b ,  a:xsb, provided r(a,u,b) or 
I - V(a,u,b) is norm contracting. (See (68) for the general 
case.) Equation (83) will be established as a matter of 
course in (40) of Sec. 7.4. 

We now can make clear the opening statement of this 
example, to the effect that natural light fields have group- 
theoretic properties, From (78) we see that if we fix the 
parameter u, say Pet u = a, then the radiance distribution 
N(x) at euery level x in X(a,b) is associated with a unique 
interaction operator T(a,x). guch that ?'/(a,x) is a member 
of the partial group rz(a,b). As a consequence of this, if 
N(x) and N(y) are radiance distributions at any two levels x 
and y in X(a,b], they are connected by the group products: 

T(x,a)?'(a,r) I= V(x,r)) 

?(v,a) T(a,x> (= fl(y,x)) 
or 

which are clearly group inverses of each other. The first of 
these acts on N(x) to yield N(y), the second acts on N(y) to 
yield N(x). 

connections between one part and another of a natural light 
field such as that summarized above stems from the fact that 
a given natural light field in a well-defined optical medium 
with non-pathological values of its optical constants or its 
geometric form, has a strong inner structural bond, so to 
speak, such that if the light field oveP a small region is 
known, the form of the light field in the remaining regions of 

The possibility of such intimate group-theoretic inter- 
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the medium can be inferred. This property was commented upon 
once before in the discussions of Example 5. Befause of t h e  
irnporctance of this property, we shall pause to discuss it. in 
some more detail by means of two main examples, the first of 
which is as follows. 

As an everyday example of what is meant by "serong in- 
ner structure" of some conceptual object, consider a sphere. 
To make the i llus trstiom take on practical overtones consider 
one of those silvered spherss seen reposing an c~ncrete ped,: 
estali in res-tsin, gardens. Suppose that one s w h  specimen 15 
dropped and shattered. The g a ~ d e ~ e r  takes a remnant shard to 
9 dealer in silvered garden spheres. T'A~ dealer is ncw con- 
fronted with t ! ~  task of inferring from the shard the diameter 
3f tine sphere from which it came (so that the new sphere will 
sit cm the o7.d concrete pedestal). NOW, such dealers are a- 
ware at least on an empirical level, ob the "strong inner 
structure" of spheres in the form of their constunt positive 
curvature over their extents, Hence if the curvature 0 2  the 
shard is estimated [and there are little tripod-like 'devices 
which are designed just for such tasks] this estimate is then 
the numerical reciprocal of the radius of the entire sphere. 

djrect with new insight the reader's attention to %he matter 
of verifying the intuitian of the "strong inner structure" of 
natural light fields. hiathematical readers %ill recall that 
an outstanding example of such a property is possessed by 
analytic functions on open connected sets of the conplex 
plane * 

Further examples of strong inner structures in cvery- 
day liglit fields can be verified without excessive theoretical 
preliminaries: take the case of a finite sphere of uniform 
surface radiance in a vacuum. By measuring the normal irra.- 
diance at one point at a known distance from the center of 
the sphere it is possible to infer the normal irradiance pro- 
duced by the sphere's radiant QUtpUt at every other point in 
the space around the sphere [cf. Example 4 Sec. 2.,ll). 
Further, if the radiant -intensity of the sphere is known, then 
by measuring the normal irradiance over ar known. interval. of 
distance, however small, the reconstruction of the whole irra- 
diance field is possible. The light field in this case is 
represented by an analytic function of a simple kind. The ap- 
proximate but practically effective exponential Law of d.ecay 
of downward irradiance with depoh in natural waters is still 
another basis for a group-theoretic property of natural light 
fields. We shall return to these ideas in Chapters 7 and 8. 
For the present we give one final illustration of a group- 
thearetic property of light fields. 

theoretic 'structures of natural Light fields to be given i~ 
this example will now be considered. Recall that "?4(a,b)" 
denotes the set of all operators of the form W[Y,X;U,W), with 
u,v,w,x arbitrary levels in X(a,b). Then, as in the case of 
r~(a,b), the set rb(a,b) is a partial group in the sense that 
the closure property (79) the associativity property (sa) ~ 

the identity property (81), and the inverse property (82) can 
be verified to hold for I'b(a,b). In particular, the closure 

Perhaps the preceding i,llustration will now serve to 

The s,econd of the two main illustrations of the group- 
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property 1 5  of tlic form: 

using standard matrix multiplication. 

fining the members of r,(a,b) can be seen. Notice, e.g., how 
the transition from v to z on the left is made on the right 
side of the equation in two steps: v to x and x to Z, simi- 
larly for the transition from u to y. From (B4), four opera- 
tor equations are obtainable, namely the fully symmetrized 
fourth-order versions of (52) and (53), and the proper gener- 
alizations of (63) - 166). These are: 

Iiere, at last, the full role of all four parameters de- 

d(u,r;v,z)= 3-(u,w;v,x> 3-(w,r;x,z) +&(u*x;v,w)&(x,Y ;w,z) 

J(v, z ;u,y) = &(v ,w;u,x)&?(w, 2 ;x ,Y) + Y(v ,x;u,w) 7(x, z ;w ,Y) 
(85) 

(86) 

(87) 

(88) 

b ? C u Y  ;'Dy) = r l U D w  ;v,x) &?(w 7 ;x 9 y) ;vYw) 37(x 8 ;w Y y) 

&(V,Y ;u. 2 )  = &(v,w;u,x) r(w ,Y ;x 9 z) + X V , X  ;u ,w) &YX,Y ;w, 2) 

This set of equations or (84) will be called the fourth-order 
semigroup re Zations. 

The preceding two main illustrations of the group theo- 
retic structure of natural light fields constituting the pres- 
ent example will serve to show the novel directions in which 
the interaction principle can lead us. In pzrticular we are 
led toward useful modes of representing and computing light 
fields in radiative transfer problems. The operators intro- 
duced in these illustrations will be explored further in Chap- 
ters 7 and 8. 

tures of various sets of interaction operators with some ob- 
servations on general partial groups of the form r3(a,b); i.e., 
the collection r3(a,b) of operators q(x,y,z) where x s y s z .  
First of all, rs(a,b) does not satisfy the group properties 
of the type (79)-(82). Under the standard definition of ma- 
trix product the closest we can come to closure--the first im- 
portant group property required of F3(a,b) is: 

We close this discussion on the group-theoretic struc- 

T(a,z,b) = ;7tJCa,y,b) V(Y,~,Y) (89) 

which clearly requires y = z for the second operator on the 
right to be defined in the usual invariant imbedding relation. 
This special relation follows immediately from (84) and (76). 
However, despite the failure of rn(a,b) to have group struc- 
ture (a defect adequately remedied by r2(a,b) and rs(a,b) in- 
troduced above) using standard matrix multiplication, the 



component &i? and 7 operators OP m(xryrz) have the important 
and useful semigroup properties (52) and ($3) Still further 
grsup-theoretic possibilities for interaction operators of 
l”a(a,b] will be studied in Secs. 7.4 and 8,7. In particular, 
certain %on standardf1 products will be defined in order to 
obtain various desired group structures + 

Final! lyr we observe ~ W C J  useful cennectians between the 
members of FBCat,b) and r,(a,Pi) which folluw from (76) and 
(84) e The first connection l S ; m L s . _ ~ ~ ~ ~ - ~ ” w ~ ~ ~ ~ ~ - ~ - ~ - ~ ~ - - -  
it nseaber o f l * W * b ]  thus: 

where levels x,y and z are erbiirary within X(a,b]. 

Group Theory, Radiative Transfer and Quantum Theasp. 

In conclusion, it can hardly be overemphasized that 
the group-themetic formulation of radiative transfer prob- 
lems in the manner of this example, and a5 summarized in (79)- 
(821, gives rise to perhaps the most fundamental physical for- 
mulation possible at present. This formulation, when suitably 
generalized (see (102) of Sec. 7.4), begins to indicate a com- 
pletely unified approach to radiative transfer theory founda- 
tions which can be made to rest on quantum mechanics. A study 
of Land6’s formulations of quantum mechanics will illustrate 
the general manner sf approach envisioned. See Chapter VI of 
[I511 and in particular equation (Sa), which can be written 
in matricial form as bfA,C> = $(A,B)$(B,C), and which may be 
compared with (79). It now appears possible that problems 
I1 and IV of See, i41 hn Ref. [25l] may not only be stlccess- 
fully solved, but also in an elegant, unified mathematical 
manner. The program would in outline be as follows: starting 
with LandB‘s quantum mechanical formulation, one derives 
rz(a,b) (and, for generality, also its coherent-flux form), 
and obtains (79) - (82) = Then using the techniques eo be devel- 
oped in Sec, 7.4, one can construct the operators in T~,(a,b). 
These operators yield all the operators of radiative transfer 
theory presently known, including d(x;a,b) as defined in (6) 
of Sec. 3.8 or in Sec. 25 of [251]. Using the steps of Sec. 
3.15 below or those of Sec. 126 in [ZSl], one ~ P T ~ V ~ S  at the 
equation of transfer. 
tained, then the gateway to the classical theory has been en- 
tered. 

just outlined is but one of the many possible approaches that 

Once the equation e€ transfer is ob- 

The approach to the foundations of radiative transfer 
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may lie developed. The preceding approach is specifically de- 
signed to play up the deep group-theoretic similarities of 
tile quanturn anti phenomenological levels of radiative transfer 
theory. Unqucstionably, the simplest connection between quan- 
tum mcchan ics arid radiat ivc transfer tlicory--the connection 
that K O U ~ ~  require a miniinbin o €  re-doing of existing construc- 
tions, is tliat which would derive the interaction principle 
(Sec. 3.2) from the tenets of quantum mechaniks with a specific 
representation of the interaction operator in terms of the 
quantum properties of matter. Then all the constructions of 
[251] and the present work would stand ready-made for use 
without any further effort. In this way one can go on to 
solve important remaining problems of radiative transfer 
theory (Sec. 141 of [251]) with a minimum of duplication of 
effort. For further observations on the similarity of the 
structures of radiative transfer equations and quantum dynam- 
ical equations, see the closing remarks of Sec. 8.2. 

3.8 Interaction Operators for General Spaces 

The third step in the present sequence of constructions 
of the main concepts of radiative transfer theory will be tak- 
en in this section. We shall develop the concept of the in- 
teraction operator for a general three-dimensional optical 
medium. This development therefore augments the store of op- 
erators constructed in Sec. 3.3 for surfaces and in Sec. 3.6 
for plane-parallel media. As in the latter case, the present 
constructions will utilize the space-level interpretation of 
the interaction principle. 

in this section are those that are connected--i.e., in one 
piece--and we may envision them as members of an ensemble of 
interacting connected sets. The interaction equations will 
be stateable for the ensemble once the interaction operator 
for each connected component of the ensemble is known. The 
connected spaces we consider may be of finite or infinite ex- 
tent trnd fall conveniently for radiometric purposes into two 
main classes: Those that have convex surfaces and those that 
have non convex (concave) surfaces. 

The subsets of Euclidean three-space we shall consider 

Geometrical Conventions 

Figure 3.22 depicts a general connected optical medium 
X and a point x on the boundary Y of X. Let “k(x)“ denote 
the unit outward normal to U at x. Then ‘IZ+(x)” will denote, 
as usual, the set of all directions in E such that E-k(x)>O, 
and “E-(x)*’ will denote the set of all directions 5 in E such 
that c.k(x)<O. The directions in Z,(x) are called the outward 
(+) or inward (-) directions at x. Radiance distributions 
N(x,-) at points x of the boundary Y are split, as usual, into 
two parts: the outward radiance distribution N+(x,-) and the 
inward radiance distribution N-(x,-). If “a” denotes a part 
of Y, then “N+(a)“ and“N-(a)” denote the outward and inward 
radiance distributions of Y restricted to part a. The part a 
can vary from a set {XI consisting of one point x of Y, up to 
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.__ -- 
FIG. 3.22 Direction convention for interaction opera- 

toss on general spaces. 

'k itself. 
The geometrical conventions for the enpirical quanti- 

ties D',D,S',S, established in Sec. 3.3, will also hold below. 
Another geometric convention we shall require is that 

based on the process of conuzxification of a concave optical 
medium. This process will allow in many instances both con- 
vex and concave media to be treated alike during a given dis- 
cussion. Let any of parts (a), (b), (c) of Fig. 3.23 repre- 
sent an optical medium which has a concave boundary. This, it 
will be recalled, means that some points of the boundary can 
be joined by straight lines lying partially outside the sur- 
faca X, To be specific, we have pictured soZid subsets X for 
the present discussion. It should be noted that all that we 
say below can be applied, mutatis rnutaridia to surfaces also, 
Now imagine a rubber sheet to be neatly applied a13 around X ,  
enclosing X like a tight-fitting cocoon. On those parts of X 
where its surface is convex, the rubber sheet will cling and 
follow the contours of the original surface. On those parts 
of X where the surface is concave, the rubber sheet will soar 
as a plane surface across the concave hollow and will thereby 
establish a smooth convex surface enclosing X, of minimal ~ Q S -  
sible area, Tlnus the step-like concavity of X in (b) of Fig. 
3.23 will be ideally bridged by the rubber coating as sketched 
by the dashed lines in the figure,and the hallows and holes 
of (a) and (b] of the figure will be enclosed likewise. The 
net result will be a new region X' containing X with the rub- 
ber sheet as a convex boundary of the newly encased volume Xs. 
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X 

FIG. 3.23 Illustrating the convexification of concave 
media. 

The new surface so formed is called the convex hull of X. In 
short, X' is the smallest convex solid containing X. So far 
we have engaged in pure geometry. 

Next we introduce a radiometric element into the dis- 
cussion. 
ference P between X and its convex hull X', including any 
holes inside X. For example, the triangular prism region P 
in Fig. 3.23 is one such regian, and the hole in (a) and the 
hemisphere in (b) are further examples of the difference P be- 
tween X' and X. It is found that certain theoretical consid- 
erations of X are facilitated by considering all such regions 
like P as filled either (a) by a hypothetical vacuum of unit 
transmittance and zero reflectance, or (b) by its antithesis: 
a hypothetical black material of zero transmittance and zero 
reflectance. In the case (a), we use X' and say that X has 
been white conuexified and in case (b) we use X' and say that 

We consider all the regions which comprise the dif- 

I,., 

. . .  

r 
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FIG. 3.24 IfetaiBs for defining empirical scattering 
functions on arbitrary optical media. 

X has been black convexifisd. It is obvious that if X is con- 
vex to begin with (and hence also with no holes), then either 
its black or white convexificatisn results in X once again. 

(either way) is still a concsptuol object which can be consid- 
ered irradiated or probed at will at any point of its surface 
or interior. However, the definitions of convexified media 
hawe an operationally meaningful cast which, if the necessity 
ever arose, could quite p~ssibly be realized in many instances. 

It is perhaps needless to add that a convexified X 

The Empirical Scattering Functians 

The empirical scattering functions will now be estab- 
lished for a general optical medium X. 
convex or concave. If X has a concave boundary Y then we 
shall consider X to have been either white or black convexi- 
fied. The present discussion is independent of the particular 
choice of these convexifications and hence we need not distin- 
guish between them. 

Consider two parts a and b of the boundary Y. Let S' 
be a sinall patch of: part a around point x t p  and 5 be a small 
patch of b around point x, as in Fig. 3.24. Thus the present 
geometric situatj-on is similar--as far as the present general 
geometry will allow--to Fig. 3.18. Let an anaunt N[S',D') of 
radiance be incident over S' and within the narrow conical 
solid angle L)' which lies wholly inside E"(x')* This is the 
only source of irradiation either in or on X. (Again ~~s~~~~ 

The medium X may be 
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;JT, J I I  Lcc. 2.0, <,liould I)c rcplacccl in "N['>',lI')'' by thr nariic 
o f  ttlc projcLtion of 5' on a planc normal to the axis of I)'. 
Ilowever, brief notation wins out over loglcal notation once 
again.) Let N(S',U';S,U) be the resultant radiance of S with- 
in the conical solid angle D which lies wholly inslde ?+(x). 
Then let us write: 

(11 N (S ,U' ; S , D) "S (x; S' , u; S, D) " for 
N (S ' , I) ' ) A [ S ' ) R (D ' ) 

The non negative valued function S(X;*,-,*,-) is the standaiad 
(empirical) scattering function for X. 

white or black convexified, and when it is necessary to expli- 
citly note this fact in the symbol for the standard empirical 
scattering function we shall write: 

Occasionally it is convenient to know if X has heen 

"Sw(X;S' ,D' ;S,D)" for S(X;S1 , D 1  ;S,D) ( 2 )  

"Sb(X;S' ,U' ;S,U)" for S(X;S' ,D' ;S,D) ( 3 )  

if X has been white convexified and: 

if X has been black convexified. 

of Secs. 3.3 and 3.6, it was customary to observe that the 
counterparts to S(X;*,*,-,*) obeyed D and S additivity and 
continuiky properties. The observance of this procedure is 
now well established and, therefore, in order not to repeat 
unnecessarily, these facts need only be alluded to here with 
an observation that these properties are stated in detail in 
Sec. 18 of Kef. [251]. Of course, while we are currently 
giving slight attention to these properties, this does not in 
any way i~iitigate their supreme importance in allowing the rig- 
orous deduction from the interaction principle of the standard 
b' and ZC operators below, and hence, ultimately, all of ra- 
diative transfer theory on discrete or continuous optical me- 
dia. At any rate, the formal establishment of all these func- 
tions in 3.3, 3.6 and the present function, starting from the 
interaction principle, will be discussed in detail in Sec. 
3.lb. In particular, it will be shown in that section that 
each of the various S' -additivity and 1)' -additivity properties 
will taka its formal place as an appropriate property of the 
interaction measure, and the various D' and S" continuity 
properties will be formulated as the so-called A C  property of 
the interaction measure. 

At about this point in the corresponding developments 

The Theoretical Scattering Funct 

Let us write: 

"S(X;S' ,D' ;x,S)" for lim S(X;S 
S+{x 1 

i 
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and 

519 

'I'hese limits exist by v i r t m  sf the various D and S additivity 
and continuity properties of the empirical scattering function. 
Xi black or white convexification is to be explicitly noted, 
tlren "h" and Q"w" subscripts aye inherited appro:*riately, 
from (2) ,(3) * Ne go an to write: 

where a and 19 are parts of the original surface Y of X ano' x 
is in h, and 5 is in S+(X) - Further, we write: 

where a and b are parts of the (Original) surface Y of X and 
x is in b arid 6 is in E+[x). +(X;a,b) (or ''d " for si-icjrt 
when X,a,b are understood) is the stundard d-operator for X 
over a and b. U(X;a,b) (or "z(" for short: is the stanzarci 

~ -operutor for X Q V B P  a and b. 

serve that & is to a black convexified X as U is to a h h i t e  
convexified X. The theoretical connections between 4 and 24 
for a given concave space X have been given in Sec. 25 of Ref. 
[ZSl]. It suffices to say that this connection is intricate 
and its applications have not yet been completely cxplored. 
Of: the two, the standard &-operator is by far the xore useful 
in the immediate generalizations of classical radiative trans- 
fer theory, especially in the theory of one-parameter carrier 
and general spaces (Examples 4,5 in Sec. 3.9). ?'tie operators 

promise to help organize and systematize the theory 011 the 
inure general spaces which have little or no s)mnietry or reg- 
ular structure. 

It will be instructive for the readcr to give sinplc 
verbal proofs, based on the appropriate definitions, of the 
f o 1 I ok in g s t at erne n t s : 

To see the relative roles played by d and Zt xe ob- 

id) For every X, a, b, if >; is convex and a and ti 
are parts of the boundary of S, then 
t,J(X;a,b) = a(X;a,b). 

(b) For every X,a,b, if X is concave and 3 and I; 
are parts oh the boundary of X, then 
/X-(a) !J'(X;a,b) 15 /N-(al U(X;a,b) I 

In statement (b) above, we have used the definition of radia- 
metric norm (Lxample 5, Sec. 5.4) extended to curved surfaces 
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Y. Thus, we write in general: 

Furthermore, we have written in statement (b): 

"N-(a)d(X;a,b)" for 

I I N_(x',S')S,,(X;x' ,E' ;x,S) dRCS')dA(x') . 
a :-(XI) 

A similar definition holds for the term N-(a)Z(X;a,b). 

distributions over surfaces Y bounding general optical media 
X, it is natural to try to extend the definition of the norm 
of a reflectance operator, as given in Sec. 3.4, to a more 
general object such as the d-operltor for a medium X. The 
requisite sequence of definitions for the norm ofd(X;a,b) is 
patterned closely after (44)-(49) of Sec. 3.4, and proceeds 
as follows. First we agree that if X has a boundary Y of fi- 
nite area A(Y) then we normalize all radiometric norms of ra- 
diance distributions N+(a), defined over parts a of Y, with 
respect to A(Y) rather than with respect to A(a). Thus on a 
fixed finite boundary surface Y of an optical medium X we 
agree to write: 

Since we have defined the radiometric norm for radiance 

rl 

If A(Y) if infinite, then, as in Sec. 3.4, we employ a limit 
process to define the norm. In practice, when working with a 
fixed boundary Y, then "Y" may be dropped from the norm nDta- 
tion, for brevity. 

Next we write: 

"sb(x;x' ,E' ;x)" for j sb(x;x1 ,tl ;x,~) J~(s) (10) 

5, (XI 

where x' and x are in Y and 5' is in 5-(xl). We have chosen 
to work with sb simply to be specific. All that follows be- 
low holds also for S,. Further, we agree to write: 

N(x',~')Sb(X;x' 9 5 '  ;XI dn(E;') 

"B (X ,N ;x ' , x) " for 
r 



Mcxt. we write: 

As in the case of the norm of the surface reflectance opera- 
tor'~ r+_[a] ~ t+_(a) (Sec. 3.4) it can be shown with the help ~f 
the energy conservation principle that: 

0 5 &(X*N) 5 1 (151 

far every K,a,b on X, and every radiance function N. For a 
given X, we write 

'pB(X)9' for rnaxN B/X,N) 116) 
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wlicrc tlic III;IXII~~UIII opcratiori is taken ovcr the set of all ra- 
diance fuiictions on Y. 'I'licn thc conclusion in (14) implies: 

IN-(a) $(X;a,b) l y  5 O G )  IN-(a) l y  (1 7) 

We say that d(X;a,b) is norm contracting if: 

0 < B(X) < 1 . 

Variations of the Basic Theme 

The operators or U can be used as a basis for fur- 
ther definitions of operators which work with radiometric 
quantities other than radiance. Thus, following the patterns 
established in Secs. 3.3, 3.6, we could redesign d so as to 
map radiance into radiant emittance, or irradiance into radi- 
ance, etc. These brief comments will suffice to make the 
reader aware of the potential variations he himself may wring 
from d' and ZC as the occasion may arise. 

rd(X;a,b) and X(X;a,b) serve the capacities of both reflec- 
tance and transmittance operators depending on the relative 
disposition of parts a and b over the boundary of X. Thus we 
agree to call rd'(X;a,b) or U(X;a,b) a refZectance operator 

/. whenever a = b, and call it a transmittance operator whenever 
a and b are disjoint, i.e., have no points in common. This 
convention attains its greatest conceptual utility when X is 
very irregular and no simple directional conventions are pos- 
sible, such as are available in the case of plane-parallel 
media. Observe, that if X is a plane-parallel medium X(a,b), 
then our present convention essentially reduces to that es- 
tablished earlier for a plane-parallel medium X(a,b) with up- 
per boundary a and lower boundary b. (See, e.g., (8)-(11) of 
Sec. 3.6). 

It should he noted in conclusion that the operators 

3.9 Applications to General Spaces 

The applications of the interaction principle will now 
be extended to general optical media. lVe will begin with 
some relatively simple but important extensions of the prin- 
ciples of invariance to curvilinear media such as spherical, 
cylindrical and toroidal media. Then the abstract versions 
of these media--one-parameter carrier spaces--are considered, 
and finally the illustrations culminate in the principles of 
invariance for completely arbitrary media which are not repre- 
sented explicitly as one-parameter media. Throughout this 
section, the proceedings may best be viewed once again from 
the two vantage points defined and discussed in the introduc- 
tion to Sec. 3.7. In regard to these vantage points, Sections 
3.4-3.8 and the present section begin to illustrate the effi- 
cacy of the interaction principle, not only as a theoretical 
tool, but as one which shows promise in fostering novel meth- 
ods of numerical computations in radiative transfer problems. 



FIG. 3.25 Illustrating some applications of the inter- 
action principle to various optical media. 
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Example 1: Principles of Invariance on Spherical 
Cylindrical, Toroidal Media 

Our present: goal is to use the interaction principle 
to formulate the principles sf i n ~ a r i a ~ e  en three cl~mmnn 
types of curvilinear media. Figure 5.25 depicts faup in- 
staaces of la CuPviainsar ~ ~ ~ ~ ~ ~ ~ e n ~ ~ ~ s  Iyptical rnedium x and 
one linear ~~~~~~~~~~~~~ optics% medium. Part [a) depicts a 
.spherical medium fa the form af 8 spherical shell with inner 
radius a s  and outer radius b. Adjaceust 20 the schematic cut- 
away of the spherical shell is a diagram showing a partition 
sf X int0 concentric spherical. shells of r2dii x,y,z, with 
a.sxcyzzs,b. Simk%ar descriptions can be made af the hollow 
cylindrical medium X in part [b] of Fig, 3.215, the ho2law %or= 
oidal m e d i m  in part (c], the rectangular parxZZepiped medium 
in part (d), and the solid vertical cylindrical medium 0): 
part (e], In the case of the hollow cylindrical medium, it5 
axial length may be finite or infinite, In the case a5 the 
parallelepiped, it may be of infinite extent in one or both 
lateral dimensions. In all five sases we may have a = 0. 
ality a 20, 
kkW8VBT, for the present i%lUStTiitiOR, W8 COnsidel. f0E" $eRer- 

We shall use as a prototype for the present formula- 
tions, the four principles of invariance derived in Exampie 3 
of Sec. 3.7 for the case of plane-parallel media. As in that 
earlier example, we shall for brevity use the letters "all, 
IIx" "y", etc., as names for both the parameter of the asso- 
ciated surface and the surface itself. Each medium in Fig. 
3.25 will be designated by the name "X(a,b)", and subsets of 
X(a,b) as "x(x,z)", etc., just as in the plane-parallel case. 
Each medium is irradiated over surface a and b by incident ex- 
ternal radiance distributions; N:(a) for a, N;(b) for b. No 
other sources are incident on or within X(a,b). The direction 
conventions are also analogous to the plane-parallel cases: 
we agree that at each paint x on a parameter surface, the unit 
normal k(x] is directed toward the direction of deepeasing 
parameter values. 

ifiad, we enumerate the sets of incident radiance distribu- 
tions : 

NOW, isolating X(a,y] and considering it black convex- 

111: 

A2: all field radiance distributions like N;(y) , 

all field radiance distributions like N:(a) 

Enumerating the response radiance distributions, we have: 

A 1  : 

132: all surface radiance distributions like Nf(y) ~ 

all surface radiance distributions like X:(a) 

The four interactian operators sij are: 
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511 - -  R(a,y) 
S I Z  -- TCa,y) 
5 2 1  - -  T(y,a) 
szz - -  R(y,al 

These four operators are instances of the standard 
d-operator d(X;a,b) in (6), where X is now X(a,y) and "b" 
is replaced by "a" where y is now a spherical surface in 
X(a,b): 
explicitly: 

For the standard reflectance operator R(a,y) we have, 

where x is in spherical surface a,c is in E+(x), and X is 
X(a,y). Similar constructions are made for the remaining 
three standard R and T operators. The R-T notation has been 
chosen so as to be uniform with the plane-parallel case of 
Sec. 3.7. 

The interaction principle then states that: 

N:(a) = N:(a)RCa,Y) + N;(Y)T(Y,a) 

N~(YI = N:(a)T(a,y) + N;(y)R(y,a) . (2) 

(1) 

By repeating this process now for X(y,b) we arrive at the 
analogous pair of statements: 

N:(Y) = N;(blT(b,Y) + N:(Y)RCY,b) 

Nflb) = N;(blR(b,Y) + N:(YfT(Y,b) - (4) 

(3) 

The similarity of (1)-(4) with (15)-(18) of Sec. 3.7 is un- 
mistakable: the interaction principle unifies all these in- 
stances. When we append the following two auxiliary equations: 

Nl(Y) = N;(Y) (51 

Nf(Y) = N:(Y) (6) 

the set (1)-(6) becomes autonomous, as usual. The remaining 
discussion of Example 2 of Sec. 3.7 now holds--virtually un- 
changed--including the definition (27) of iterated operators. 
Now, however, we use the standard t8-operator. It is not nec- 
essary to rewrite the principles of invariance I-IV of Example 
3 of Sec. 3.7. They apply, as they stand to the present con- 
text. The only salient change is in the basis of the R and T 
operators: we nou use the standard J9-operator, as defined 
in (61 of See. 3.8, as a basis. As in the plane-parallel '. 
case, the four principles of invariance are instrumental in 
allowing one to solve for N+(y) - for every y, a s y s b ,  assuming 

P 

' I  



the standard E; and T operators are known. These, in turn, 
are obtained from solutions of functional equations of ttic 
lliiid to be studicd in Chaptcr 3. 

The comprehensiveness of the principles of invariance, 
LLS extended from their classical plane-parallel settings hy 
iReanS of the interaction principle, begins to eirerge as the 
five specific media in LxampSe 1 are re-examined, 1~ this 
example we systematically extend the results sf Example 1 ta 
their immedicite logical limit. To dc this, we ask: w!iat, is 
common to all the specific instances of Example I? The an- 
swer is that these media are all constructed by assembling 
Layer upon layer of surfaces of geometrieaLty simiiar chapps. 
In part (a) of Fig, 3.25, we can imagine the hollow sphere to 
be built up from spherical surfaces of radii y o  a s y s b ,  much 
in the way an onion is built up Payer by layer. Pzrts ('1) 

and (e). of Fig. 3.25 show that the cylindrical medium can be 
built up from cylindrical surfaces or circular plane surfaces. 
Tlais two-way slice can be done for every instance shown in 
Fig. 3.25, and many others not shown. In each of thc five 
instances displayed in Fig. 3-25, the medium X(a,b) may be 
iinsgined to consist of a set of geometrically similar surfaces 
X, with a s x s b ,  i.e., with x a point in the interval ia,b] of 
real numbers. Thus we may set: 

i.e., X(a,b) is equal to the set of all geometrically similar 
surfaces X,, each being indexed (identified) by a single par- 
ameter x drawn from an interval [a,b] of real numbers, 

first of all the great number of three-dimensional subsets of 
Euclidean space which are one-parameter spaces and available 
for study, and secondly the multiplicity of ways in which a 
given solid can be represented as a one-parameter space (viz. 
(b) and (e) of Fig. 3.25). Indeed, as can readily be verified 
any solid of kuclidean three-space may be represented as the 
union af a one-parameter family of two-dimensional surfaces, 
and in many distinct ways! Despite this great variety of 
shapes and sizes for each set X(a,b) and each source-free 
subset X(x,a] of X(a,b), we can isolate X(x,z), consider 
X(x,z) black convexified if it is concave, and enumerate the 
sets of incident radiance distributions on X(x,z): 

A I :  all incident (surface) radiance distributions like N,(z) 

A 2  : all incident (surface) radiance distributions like N" (x) 

where ne are now following the pattern established in Example 
4 of Sec. 3.7 and using surface radiances throughout (see, 
e.g., (21)-(24) of Sec. 3.7). The sets of response functions 
of interest are 

The examples of Fig. 3.25 only begin to illusttate 
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B1: all response (surface) radiance distributions like N+(y) 

B2: all response [surface) radiance distributions like N-(y) 

In the present enumerations, N+(z) is the outward radiance 
distribution over the parameter surface X,, a c z s b .  The unit 
outward normal k(p) at point p on X, is in the direction of 
decreasing parameter values. 

The interaction principle then asserts the existence 
of four interaction operators sij : 

SI1 - - '  J(ZYYYX) 

5 2 2  -- 7(X,Y,Z) . 
These four operators are not instances of the operators de- 
fined in (6) of Sec. 3.8. Rather, they are exactly analogous 
to the complete reflectance and transmittance operators (40)- 
(43) of the plane-parallel case in Example 4 of Sec. 3.7. 
The interaction principle n& yields the two statements: 

I. N+(Y) = N+(z) J(z,rpx) + N-(x)~!(x,Y,~) (8) 

11. N-(Y) = N+(z)L?Ez,y,x) + N-Ex) r(x,y,zI (9) 

(N+(Y) YN-(Y)) = (N+(Z) ,N-(x))7Y(X,Y,z) 

which we can write as: 

where we have written: 

I .  i Ab, Y , z 1 n x  , Y ,z 1 
J(z ,Y 9 x 1  &(z ,Y .XI 

2?? ( x , y , z ] I' for 

The preceding equation is the invariant imbedding retation for 
one-parameter media. It is exactly analogous to (36) of Sec. 
3.7. On the strength of this analogy, we summarize the pre- 
ceding results as follows: 
Let X(= {XX: x E [a,bl3) be a one-parameter optical medium 
where [ayb] is a closed interval in the extended reat-number 
system. For every y E [a,b], there is a pair (N+(y),N-(y)) 
of (real or vector valued) response functions on Xy. 
denote the set of all ordered pairs (N+(z),N,(x)) of incident 
functions, [x,z] = [a,b] with subsets 7+ and 7- defined as 
EN+(,): z E [ayb]land {N-(x): x E [a,b]l, respectiuety. 
Then for every x,y,z with y E [xyz] c[a,b] there exists an in- 
teraction operator r(x,y,z) of 7( into 7 such that: 

Let "9" 

(10) 
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where @e have writ tea: 

for complete transmittances [cf, [52), (53, in Example 5, Sec. 
5.Q. Furthermore, the principles of invariance fer one-par- 
m e t e r  media are readily forthcmkng from flo]--cr the equiv- 
alent set (8]B(9]a Indeed, setting x = y in (8): 

Setting z = y in (9): 

Principles III and EV now follow from I, 11, as in Example 3 
of Sec. 3.7. The present instances of the principles are i- 
dentical in form to those in Sec. 3.7 and therefore need not 
be repeated in detail here. Furthermore, the representations 
of the present complete reflectance and transmittance opera- 
tors in terms of the standard operators are identical in form 
to those given in (40)-(43) of Sec. 3.7 for the plane-parallel 
setting. Furthermore, the properties (44)-(473 also are easi- 
ly shown to hold for the present complete reflectance and 
transmittance operators. The present forms of the seandasd R 
and T opelrators are important enough to repeat here. Thus 
for an arbitrary one-parameter optical medium X(a,b) we write: 

if x is in b and 6 is in Z-(x) ~ 
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"T(b,a)" 
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if x is in b and 5 is in E-(x). 

if x is in a and 6 is in a+(x). 

Example 3: One-Parameter Media with Internal Sources 

may be used in the task of formulating the equations governing 
the radiance distribution N(y) over a parameter surface Xy in 
a one-parameter optical medium X(a,b) which has internal 
sources generally distributed over an internal parameter sur- 
face Xs, ass-b. To see at the outset the essential struc- 
ture,of the resultant equations, %e assume that no other 
sources are incident on X(a,b). 

X a,b) with the incident source (field) radiance distributions 
N$(s) and N!(s) over level s in X(a,b). We imagine N:(s) to 
irradiate X(a,s) and NO(s) to irradiate X(s,b). Thus, it is 

In this example we show how the interaction principle 

Figure "3.26 depicts the one-parameter optical medium 

FIG. 3.26 Taking into account internal sources in gen- 
eral one-parameter media. 

.. 



as if the incident source radiance distribution E:"(s) 
(= (N!3js),N"s]) 1 were placed [like a thin transparent Im- 
minous vanilla filling) into X(a,b) afteg the latter had been 
naonentarily sliced open (like a layer cake) along X,. It Pol- 
Iows that the Bight field generated by this source may be 
visvcd as being distinct from N"(s]. Me assume Ear3{s) to vary 
from point: to point over lis, and to be of arbitrary direc- 
timnal structure at each point of X,, Thus in particular, 

point only, ar it could be of uniform radiance m e r  all direr,- 
tions at each point, ets, As usual X(a,b] is generally in- 
hornogeneaus. The only requisite regularity in X(a,b) is its 
georneeric one-parmeter structure (and even this can everatzdly 
be relaxed); optical properties and radiomctsic properties are 
Weft unconserain~$--excepe for a modicum necessary to d e f i w  
integra~ion and to have the usual additivity and ccrntina~ity 
properties on which to build the operator algebra, 

0% X(a,bg into two parts XQass> and X[s,b), In order to in- 
voke the interaction principle we could employ the usual no- 
tation It~+(y)rl for srarIare radiance of Xy, and 
field radiance over X a - r y s b ;  however, n w  that sollie spe- 
cific examples have sKown how to systematically use surface 
radiance, we shall limit our use mainly to that kind of sadi- 
ance. When 'Wt has no superscript, surface radiance is undey- 
stood. The outlniard and inward directions over Xy for radiance 
distributions are as defined in Example 2. 

radiance distributions on X(a,b] we have: 

blhy[§) Could consist Oc a nias'fhaw penciL Gf I'mdiatiori at OKIe 

The given internal source over X, suggests a partition 

for 

Isolating X(a,b) and enumerating the sets of incident 

A; : a11 radiance distributions like Ny(s) 

Az: all radiance distributions Like N(l(s) A 

Enumerating the sets of response radiance distributions: 

BI: all radiance distributions like N+(y] 

B2: all radiance distributions like N-(y) . 
Then m = 2, n = 2, and the interaction principle yields four 
interaction operators sij such that: 

$ 1 1  "- Y++(55Y) 

SI2 - -  ~+-(S?Y) 
s21 _ -  y'_*(S,Y) 
s a 2  - -  Yf--(s*y) I 

The fact that these four operators belong to the medium 
X(a,b) is implicit in the notation. Occasionally it will be 
desirable to explicitly denote this fact (see, e.g., Sec. 
7.13) and we shall then write "Y++(s,y:a,b)" far Y++[s,yj; 
"P+- (sry:a,b)" for Y + -  (s,y] etc. The interaction principle 
then states that, for every pair of levels y p s  in Xfa,b): 
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N(y) = No(s)Y(s,y) 
where we have written: 

'IN (y) 'I for 

I ~ N O  IS) 11  for 

We next show how the four operators Y++(s,y), ..., Y--(s,.y) 
can be represented in terms sf the standard operators associ- 
ated with the space X(a,b) and its subsets X(x,z). The deri- 
vation of the representation will proceed in two parts. The 
first part obtains a representation of Y(s,s]. The second 
part obtains the representation of Y(s,y) with s if y. 

ample, the subset X(a,s). Isolating this subset and enumerat- 
ing its incident functions and response functions under the 
present hypothesized conditions, we have NY(s) and the surface 
radiance N+(s) of X(s,b) as incident functions which both act 
on the lower boundary of X(a,s). These are the only incident 
functions on X(a,s). Hence by principle of invariance I1 in 
Example 2 (with z = y = s, x = a) we have: 

We turn now to the case of Y(s,s). Consider, for ex- 

N-(s) = (N:(sI + N+(s))R(s,a) (16) 

Similarly, for subset X(s,b) and principle I of Example 2 
(with x = y = s, z = b): 

From (16) and (17) : 

N, (s] = [No (s) R( s , b) + Ny (s) R( s ,a) R( s , b)] [I -R( s ,a) R( s , b)] - 
(18) 

N - ( s) = [N: ( s) R( s , a) + N: (E.) R( s , b) R (s , a)] [I - R (s , b) R (s , a)] 
(19) 



SEC. 3.9 APPLICATIONS TO G E N E M L  SPACES 333 

Comparing (18) and (19) with (15) (in which s = y) an$ recal- 
ling that N:CS) are arbitrary, we seduce ior the case 
a c s 5 b :  

Further ~ 

*In the notation of Sec. 7.13, tfvI++(s,~]" becomes "Y++(s,s~a,b3S1; 
"Y+-(sBs)" becomes "Y+-(s,~:a,b)", and so on. The abbreviated 
notation is used whenever [a,b] is understood, as in the pres- 
ent discussion. 
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__ I_ ___ - 
a Y++(S,Y) = (1 + 'Y++(S,S)) J(s,y,a) 

Y+-(S,Y) = (I + y++(s,sl)W(s,Y,a) 

Y_+(S,Y) = 'y-+(s ,SI 7(s ,Y ,a) 
-b Y--(S,YI = y-+(S,S)4q(SyY,a1 

- Y 
- S 

(31) 

(32) 

(33) 

C34) 

Since we have concentrated the origin of the source 
radiance NP(s) on a surface Xs, it is small wonder then that 
the outward (or inward) light field receives a jolt across X, 
as we move upward (or downward) through level s. This jolt 
is duly recorded in Y++(s,y) in the manner shown in (31) (for 
y < s) to wit: 

The second observation is that the use of the concept 
embodied in Y++(s,y) can be extended by postulating a contin- 
uous distribution of source radiance over a parameter inter- 
val (s-E,s+E), E >  0, or simply defining continuous functions 

* 
In the notation of Sec. 7.13, '"Y++(s,Y)'~ becomes 

"Y ++ (s ,y : a, b) 'I, "Y+ - (s ,y) I' becomes I'Y+ - (s ,y :a, b) I' , and so on. 
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NY(s) for all s, a s s s b  and adjusting them ks represent gis- 
e5 physical situations as needed, The latter treatment is 
more general. The resulting eperatcrr equation will therm be 

c of the form: 

Ndy) = ~hiOis)u(s,y! ds * I361 

ih! IYEs,y) fJ71 

a 

The interaction method then yields the integral operator: 

a 
ass i~ mateer of course arnd the detailed desompcsition of the 
new 2 x 2  matrix Y(s,y) of operators proceeds analogously to 
that of the original Y(s,y) above. The basis of this new ic- 
tegral operatar will not be discussed here. The interested 
reader will find the general theorems leading to [37) in Sec. 
3-16. Furthermore, readers interested in the discrete space 
version of (361 are referred to Chapters IX and X of Ref. 
12511, A representation of (37) will be obtained in the ir- 
radiance context in Sec, 8.5. 

le shall leave it as B simple exercise for the reader 
tcr show that, if there are a finite number of distinct exter- 
nal or internal SOUTC~S N;(S~) radiant i ~ u x  
of the discontinuous kind Ng(sji considered above, then by vir- 
tue of the interaction principle, the resultant light field 
at level y within X(a,b) is given by 

i = 1, e ,  n ,n, 

n 

i=l 
N(Y1 = ~No(si)Y(siyy) , (381 

where we have written: 

and where each Y(siry), i = l,--.,n is a 2x2 matrix of opera- 
tors of the same structure as Y(s,y) in (IS), and where for 
every i, lc.isn, the components Y++(siry) ,..., Y__(si,y) are 
as defined in (Z0)-(23) and (31)-(34). If n = 1, then (38) 
reduces to (15). 

that the problem of the internal sources of radiant flux in 
an arbitrary one-parameter medium can be reduced to a straight- 
forward, albeit nontrivial, calculation using only "Lae stand- 
ard reflectance and transmittance for -the m e d i m  (cf. Example 
4 of Sec. 3.7). These standard reflectance and transmittance 
operators, in turn, are governed by certain differential equa- 
tions which, when solved, yield the standard reflectance and 
transmittance functions for each given medium in terms of the 
inherent optical properties of the medium. These differential 

The net result of this example is the denonstration 
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equations will be developed in Chapter 7. 

Example 4: Principles 6f Invariante fot General Media 

rihat is the geometric limit of validity of the princi- 
ples of invariance? Can the principles of invariance be writ- 
ten down for radiance distributions in highly irregular media 
such as clouds, lakes, ponds, and wind-blown regions of the 
sea and other irregularly bounded natural hydrosols? The pur- 
pose of this example is to show that the answer to the latter 
question is in the affirmative. Once a few preliminary geo- 
metric conventions have been dispatched, an application of 
the interaction method yields the requisite principles of in- 
variance . 

Figure 3.27 depicts a general connected optical medium 
X. One may envision X as a cloud or a part of some natural 
hydrosol. As usual we assume no internal sources or reflect- 
ing boundaries. The boundary surface Y of X may be concave 

In order to invoke the interaction principle we must 
@ or convex. 

have some idea of our goal. Let us re-examine a simple geo- 
metric setting in which the principles of invariance were de- 
rived. In such a simple case we know what the goal looks like. 
Fig. 3.20--the setting for Example 2 in Sec. 3.7--is a good 
starting point. We ask: what are the bare essentials of the 

FIG. 3.27 The directional and spatial conventions for 
applying the principles of invariance to arbitrary optical 
media. 
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geoaetric setting there? First of all examine the mediun: 
it is a plane-parsllel medium; its boundary consists of two 
planes a and b. Thus if we are to emulate this for the case 
uf X we should also divide the boundary of X into two parts 
a. and b. Furthermere, the plane-paadlle% medium Xfa,bl in 
Fig. 3.20 is partitioned into two pafts: X[bs,y] and X(y,b) 
by the internal plane y. The corresponding actiwity in X 0%: 
Fig. 5-27 would be a partitioning of X into two pasts: A arsd 
B by iir. internal ~y~~~~~~~~~~ surface y. By,co~bining these 
two r ~ ~ ~ ~ ~ ~ ~ e n ~ ~ ~  we take the firit step in the 'ypesen~, deri- 

P ; ~ Q ~ Z J  the surface of X in*o tuo parts a and b, &he azts~iow 

boundary of A is the union sf ai and y; that of B is the union 
of b and y. There is 0p1e final geometric essential I.n Fig. 
3.20 to be taken into account, That is the matter af direc- 
tion. Our -grresent goal is to emulate the classical plane- 
parallel case as far as possible. Nenao we astablish &ha 
direotianatity conventions depicted in Pig. 5,Zfp. She utlct~r 
k(x] at saoh representative poiat ~f a,y, and 6 is an " u M ~ -  
W & P P ~ ~ ~  (or "rcpward" or" ' s f ~ ~ ~ ~ ~ d " )  direction (the appropriate 
adjective is gaverned by the context within which one encouw- 
tess W). As long as one is consistent in choice of directions, 
the following principles can be recast using any reference 
system an investigator cares to choose. The choice 0% direc- 
tions depicted In Fig. 3.27 is internally consistent acd co- 
incides with the plane-parallel conventions in the limit as 
X approaches X(a,b), i.e** when a,b, and c are laterally ex- 
tended and continuously deformed to become parallel planes. 

With the foregoing partitioning and orientation of par- 
titian elements of the medium X established, we can specify 
the incident radiance distributions over X. Incident radiance 
distributions over part a of X will be denoted by "NL(a)", 
outward radiance distributions over a will be denoted by 
tr~f(a)vla On the internal surface y, tq~;[y];: will denote out- 
ward surface radiance distributions, "N,ly) will denote out- 
ward field radiance distributions, etc. Over b, incident ra- 
diance distributions will be denoted by W;(b)qBP5 etc. As 
usual, Nf(y) is a function which assigns to each point x on 
surface y and direction 5 in Z+(k(x)] the surface radiance 
NZ(x,4;) of y directed into part A. 
same direction N;(y) has the value N;[x,E), and by (32) of 
Sec. 2.5, NS(x,&) = N;(x,&). 

lished to permit us to apply the interaction method to X. In 
particular part A is isolated and we enumerate the sets of in- 
cident radiometric quantities: 

vation: the asb.itmry op%iani! medium x is partitzoned ineo 
two papix3 A anti B bg CER 7hGo9naZ su2Qfam y; this azso pQFti- 

bOu?2daPCeS Qf A and B, Z'eSpcGtiVetJj. The%eforG the rata1 

At the same point and 

The geometrical prerequisites are sufficiently estab- 

AI: 

A2: all incident radiance distributions like N;(y) . 
a111 incident radiance distributions like N:(a) 

The sets of response radiometric quantities are: 

B1: all response radiance distributions like Nz(a) 
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B2: all response radiance distr 

In the present case m = 2, n = 2, and 
ple yields the four operators s . - *  

lJ ' 

ons like Nr(y) . 
interaction princi- 

The four operators L/(A;a,a), . . . , J(A;yPy) are instances of 
the &-operator (6) of Sec. 3.8 (and hence the appropriate 

i black convexification of A has been achieved). The interac- 
tion principle also yields the two interactiofl equations: 

N:(aI = N:(a) J(,A;a,a) + N;(y)d(A;y,a) (39) 

Nf(y) = N:(a)d(A;a,y) + N;(yId(A;y,y) . (40) 

In a similar way the interaction method is applied to 
the subset B of X, with the following interaction equations 
as a result: 

Nf(Y) = N;(bl d(B;b,y) + N:(Y)d(B;Y,Y) (41) 

(42) N+(bl = N;(b)d(B;b,b) + N:(y)d(B;y,bl . 
The auxiliary equations for the present formulation are: 

((Y) = N;(Y) (431 

NtlY) = N:(Yl (44) 

The set of six equations (39)-(44) is autonomous. We can use 
(43) and (44) to reduce the set of six equations to four in 
terms of surface radiance only, and so the superscripts are 
no longer needed. Thus, with incident source radiances N-(a) 
and N+(b) , we have: 

(451 

(46) 

(47) 

N+(a) = N- (a) sd(A;a,a) + N+(Y) $(A;y,a) 

N-(Y) = N_(a)J(A;a,y) + N+(Y) $(A;Y,Y) 

N+ (Yl = N, (b) $(B ;b ,Y) + N- (Y) sB(B ;Y ,Y) 

N-(bl = N+(b) d"CB;b,b) + N-(Y) d(B;y,b) . 148) 

Equations (45) -(48) are the requisite principles of invari- 
ance for X under the present partition into parts A and B. 
The middle two equations are autonomous. Their solutions are: 



Example 5: invariant Xmbedding Relation in General Media 

By m i r i n g  the sol.ution Ni(y) of /49),(50) in Example 
4 in matrix form, the invariant imbedding relation for the 
general medium X of that example is obtained. Thus, we write: 

We could have obtained (51) directly by means of the inter- 
action method and deduced the forn of @(a,y,b), 3-(a,y,b), 
etc., as in Example 4 of Sec, 3.7. We took the present route 
for the purpose of illustrating the mancer in which (51) was 
first obtained (cf. Sec. 23, Ref. [251]). At any rate, the 
invariant imbedding relation is seen in its most general form 
in (512 and its basic role in radiative transfer theory is 
clear: the invarimt imbedding relation (5'1) reZatee a given 
incident boundary radiance distribution ox X Co Q requisite 
internet radianoe distribution in X. 
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The specific evaluation of (52) is contingent on actual 
knowledge of the -kf-operators for X. Functional relations 
for the 28-operator on a general medium may be found in 1'- 
Ii' of Sec. 25 of Ref. [251]. The development of a praobicat 
general solution procedure in specific media of the functional 
relations I'-IV', especially relation I', constitutes one of 
the present outstanding (i.e., unsolved) applicational prob- 
lems of modern radiative transfer theory (see Problem VIII, 
Sec. 141, Ref. [251]). 

Example 6: Reflecting Boundaries and Interfaces 

Hitherto we have examined all manners of radiometric 
interactions of surfzces with surfaces (Secs. 3.4, 3.5) and 
solids with solids (Secs. 3.7 and the present section). In 
this example we shall illustrate how the mixed radiometric in- 
teraction equations for surfaces and solids are derived using 
the interaction method. We shall consider a medium X with 
reflecting boundaries and an internal reflecting interface, 
but with no internal sources. Fig. 3.27 will serve to estab- 
lish the geometric situation within X. We consider external 
sources incident on X over boundary surfaces a and b. In par- 
ticular Ny(a) and Ny(b) are the two external sources. 

its essential components, it is seen that the medium X may be 
considered to consist of five interacting parts: 

When the radiometric problem at hand is analyzed into 

boundary a 
medium A 
interface y 
medium B 
boundary b 

The interaction method then indicates the following 
desideratum: Each of these five subsets of X is required to 
be isolated and black-convexified, if concave; its sets of 
incident and response radiometric functions enumerated; the 
associated interaction equations written down; and the requi- 
site auxiliary equations stated which will make the resulting 
system of interaction equations autonomous. 

black-convexify surface a (see Sec. 3.8). This has the effect 
of reducing its interaction equations, (14)-(17) of Sec. 3.5, 
to a form identical to those of plane surfaces. In particu- 
lar, the interaction equations for part a are: 

We begin by isolating the boundary part a. We first 

N;(~I = ~?(a)r-(a) + N;(a)t+(a> 
Nr(a) = N:(a)t-(a) + ~;(a)r,(a) 

(53) 

(54) 

which follow from (14), (15) of Sec. 3.5 in which the second 
two terms (the self-interaction terms) are zero by virtue of 
the black-convexification. 
placed by "N:(a)"; "NY(S)*' by "N+(a)"; etc. 

The cotation "NO(S)** is now re- 

c 
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The operators rk(y),t+-(y) are tnstances of those defined in 
(la>,gll) of Sec. 3.3. 

The medium part E is isolated and black-convexified 
exactly in the manner of medium part A. The resultant equa- 
tions are [cf. Fig. 3.27): 

Finally the boundary part b is then isolated and black- 
convexified, if necessary, and generally treated in the manner 
of boundary part a. The resultant interaction equations are 
(cf. Fig. 3.27): 

The interaction method is brought to its final stage by append- 
ing the appropriate auxiliary equations. For the present pmb- 
lem, we have (cf. Fig. 3.27): 

N;(A) = N;(a] (43) 

N h  = N:(Al ? (643 

which couple sets (533 ,154) and (55) ,(56). Further: 
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which couple sets (57). (58) and (59) ,(60). Finally: 

Nz(b) = N;(B) (691 

NflB) = N:Ib) > (70) 

which couple sets (59),(60) and (61),(62). The set of 18 
equations (53)-(70) is autonomous. Using the eight auxiliary 

7 equations (63)-(70) (all instances 6f (32) of Sec. 2.5), the 
set reduces to a less complex set af ten equations, which, 
written uniformly in response surface radiance form are: 

Of these ten equations, the eight "interior" equations, i.e., 
(72)-(79) form an autonomous system. Hence the problem of a 
general optical medium with two reflecting boundaries and one 
reflecting interface, requires the solution of eight simul- 
taneous integral equations. As in the case of earlier exam- 
ples in this section, the solution of the present formulation 
is contingent on knowledge of the various operators r+(a), 
ri(b) , t+(a), t+(b), d(A;a,a) ,. . . d(B;b,b). 
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Example 7: The Unified Atmosphere-~~ydrosphere Problem 

The atmosphere of the earth and the surface of the 
earth (over both land and sea) farm a system ~f radiometri- 
cally interacting Qptikd amedia. In this example the inter- 
action equations for the atmosphere and $.he hydrosphere are 
obtained as an a u t o n ~ m ~ u s  system using the interaction method 
of farmulazing radiative tumsfer problems I) 

the present task. It renains to specify the physical aeanings 
of the five pasts u,A,y,B,b aP1 space X in that example. Con- 
sider Fig. 3*28 which is a schematic cross section of the 
earth. Lee “A” denate the atmosphere, and rbBrg the hydxwsphere, 
i,c,, natural waters. Let tqy*e denote the air-water interface. 
Let denote the bottom a€ the hydrosphere; at those places 
where B is solid earth, then h shall c~incide with y. Finally, 
rri%r’ denQteS ttke transp%xerrt Upper boundary of A. 

The formulations of Exarnple 6 are readily adapted to 

With these choices, the system Qf equations (71)-iBUQ 

N:[b) = 0. FOP the solution procedure of thi.s problan using 
the techniques of discrete space theory, see Sec. 71 of Rex. 
I25311, (Whenever media of differing indices of refraction 
are considered, it is implicitly understood that radiance 
functions are divided by the nz O X  the medium in which they 
are defined, see (43 of Sec. 2.6.) Because of the lateral ex- 
tensiveness of A and B, the problem of solving the set (751- 
(79) can be considered within the domain of the plane-parallel 
case if attention is restricted eo a region such as that en- 
closed in the dashed radial lines of Fig. 3.28. 

reduces to seven equations: (73)-[79) with N.{a) = Ho(a) and 

/- ‘I, I 

J 

FIG. 3.28 A schematic diagram for the unified atmos- 
phere-hydrosphere problem. 



3b4 

Example 8: Several Interacting Separate Media 

VOL. I 1  

The quantitative evaluation of the radiometric inter- 
action of separate clouds in the atmosphere, or separate por- 
tions of lakes, oceans, or other natural hydrosols forms an 
interesting and difficult radiative transfer problem. The 
methods of discrete space theory have been used to develop a 
systematic means of computing the @-operators of such irrcg- 
ular types of media (see, e,g., Chapter X, Ref. [251]). For 
actual computations, the latter formulation may use the es- 
timates of the d-operators as supplied by the methods of 
Chapter X of Ref. [25l]. 

3.10 Derivation of the Beam Transmittance Function 

In this and the following four sections the interaction 
principle is used to derive the basic inherent optical prop- 
erties and the integral equation of transfer for radiance in 
general optical media, In the present section the beam tran- 
mittance function is derived which in turn will yield the 
first of the inherent optical properties in Sec. 3.11, namely 
the volume attenuation function. 

sider a point x in X and a direction 5 at x. These together 
determine a natural path in X--a path for a light ray through 
x with direction 5. By specifying a length r, a path segment 
/r(X,s) is determined within X. For simplicity of exposition 
we shall introduce the beam transmittance concept in a medium 
X in which the index of refraction is constant. Thenpr(x,E) 
is a sensed, straight line segment in X with initial point x, 
terminal point x+rc and length r. We shall write "z" for 
x+cr. The requisite steps for the definition in a completely 
general medium with variable index of refraction will be 
clear from the following derivation. 

the,well-known function of radiative transfer theory w ich 
assigns to an initial radiance N0(x,S) at point x of $r(X,S) 
the residual radiance NF(z,S) at z after traversing Pr[X,f;). 
This residual radiance N,O(z,<) may be described as consisting 
of photons wgich have travelled the entire length of Br(X,c) 
without havidg undergone scattering or absorption. Were we 
not in possession of the interaction principle, we would sim- 
ply define the beam transmittance of Or(X,C) as the ratio 
Nf(x?<)/N,(z,€,). Such a definition is quite acceptable and 
imp1 ici t ly assumes the terms I f  scattering " and "absorption" as 
understood, using their meanings as grounded in other depart- 
ments of physics such as electromagnetic theory, and thus re- 
quiring no further elucidation. However, we choose not to use 
the words "scattering" and "absorption" at this stage of the 
exposition. Instead we ask: can the basic idea of "beam 
transmittance" be communicated without presupposing the phys- 
ical notions of scattering and absorption? If this is possible 
then the theory of radiative transfer, at least in this area, 
is kept self-contained and freed from unnecessarily using 

Let X be a general source-free optical medium. Con- 

Our goal is to define the beam transmittance function-- 

<' 

. , c 
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PIG. 3.29 The general setting for beam transmittance, 
path function, and path radiance derivations. The basic path 
&-(x,() is irnbedded in a cylindrical volume located in a gen- 
eral optical medius X (a portion of the atmosphere or hydro- 
sphere). 

undefined terms. But to do this requires essentially a geo- 
metrically-based definition of absorption and scattering. 
Scattering and absorption are not ostensibly geometric con- 
cepts i % ~  they occur in, say, classical electromagnetic theory, 
Hence there appears to be an impasse between us and OUT pres- 
ent goal along the path we wish to travel as long as we t r y  
to retain the strict electromagnetic meanings of these terms. 
However, if we pause and examine closely the meanings of the 
terns "absorption" and trscatteringt' as they are customarily 
used in radiative transfer contexts, we find that there is RCI 
essential reference to physical processes beyond the simplest 
conservation-type of activity. Radiant flux is observed to 
enter and leave a mediuni and it is possible to take a census 
af the immigrating and emigrating photons. What happens in- 
side the medium is not of immediate concern--only the phenom- 
s n ~ ' l ~ g f c ~ l  aspects of &ha transfer of radian$ ftssz t h ~ o u g h  the 
medium is of concem, Thus the terms "scattering" and "ab- 
sorption" as they are used in radiative transfei- theory proper 
are characterizable solely by means of a geometric measure of 
Padiant flue. Such a view w%s taken in an earliep study 
(Secs. 11, 19, Ref. [251]) and it was found possible to give 
a complete geometric characterization of the concepts of re- 
sidual radiance, scattering, absorption, attenuation, and 
hence beam transmittance as they are used in classical radia- 
tive transfer theory. We shall adopt the view of Ref. [ZSl] 
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in the present discussion and with the concept of the d - o p -  
erator at our disposal, we shall use it to define the beam 
transmittance function geometrically. 

PT(x,I;) as 
its axis. This cylinder is depicted schematically in Fig. 
3.29. The plane base of C at x is denoted by “at’, that at z 
by “b“. Let k(x) (= -5) be the unit outward normal to C over 
base‘a. Then C is an instance of a one-parameter optical 
medium with distance along the direction -k(x) as the parame- 
ter of the space (cf. Example 2, Sec. 3.9 and part (e) of Fig. 
3.25). Consider C isolated. Since C is convex we shall not 
need to black-convexify it. Let N-(a) be an incident radi- 
ance distribution over a circular conical set D of directions 
with axis 5 and on base a. Let N-(a) be the only source of 
radiant flux in C. Since C is isolated, radiant flux leaving 
C is not considered to enter it again nor is the radiant flux 
in X considered to enter it. In short “isolated” means, as 
usual, that a subset is conceptually excised from its master 
set and placed in a dark vacuum for a controlled radiometric 
study . 

Let C be a right cylinder in X containing 

We now direct attention to the radiance distribution 

N- (a) J(a,y,b) 

where y is an intermediate plane cross section of C, as in 
Fig. 3.29, and Z(a,y,b) is the comolete transmittance o-oera- 
tor for C Icf. (11) of Sec. 3 
is thought‘of a; that part of 
Hence : 

(N-(a) T(~,Y 

is that part of N-(a) transmi 
over base b. By (12) of Sec. 

9). h i s  radiance distribLtion 
N-(a) transmitted from a to y. 

b)) J(Y ,b,b) 

ted from a to b and emerging 
3.9 (with z = b) we have: 

or, alternatively: 

The crucial step in the definition of the beam transmittance 
can now be taken. We select the value of N-(a)T(a,b,b) at z 
for the direction 5 and let a+{xl, which is tantamount to let- 
ting C* Pr(x,t), We then go on to write: 

where the notation indicates that N-(a)T(a,b) is evaluated at 
z in the direction 5 during the limit process. Let us also 
write: 

t’N0(x,5)’’ for N-(a) (x,S) , 

i.e., N,(x,E) is the value of N-(a) at x and 5. Then we 
shall write : 



evaluated for a unit radiarbce function M_(a) and a% z in the 
direction 5. By (2) the definitional identity: 

T,(X,S) = T,&x,S)Tt(x + SEPE) 

retzdify f0llQW.S, Where 2 X + Ss. FOlr ever)' XpC.P., the 
qusntlty Tr(x,E) is a dimensionless, non negative real iaidabca 
associated with the path Prdx,ti;], and is called the beurn 
%rant?mi$tance of B (X,S>. TIW radiance W"(Z,P;) it; the di- 
rect iy transmitted for reaZdacot, OF redaces or unattanwzsod) 
radiance. 

theory can only be fully made aftex a sufficient mount af 
the therary has been developed. Those readers wishing an I.m- 
mediate indication of the compatibility nay consult ~~~t~~~~~ 
Ea and Ib ~f Sec, 23 in Ref. [251]. Statenent Ia shows at 
any rate that the limit of T&a,b) need not go to zero as a+ix$ 
and D+icl for short paths. Furthermore statement Eb states 
that R[a,b) does ge, to zero under these conditi~ns. The rig- 
orous p r ~ f  of the existence of the limit in (3) requires the 
specific postulation of very mild regularity properties of 
the underlying radiative process. We shall not digress here 
to establish such fine points. Interested readers are refes- 
red to Chapter 111 of Ref. [ZSl] fox a complete discussion of 
what regularity properties are needed in this matter. 

statement: 

The camparibifity of the limit in (3) with classical 

Next, by means of (42) of Sec. 3.7 we see that the 

(6'9 

follows fsom: 
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or 

Ts+t * TsTt 

na,a,a) = 1 9 

for short when x and 5 are understood. 
fact that 

we have €or every ,x and 5: 
I 1 

Furthermore, from the 

or simply: 
T o = l  ~ 

for short. In other words the beam transmittance of a path 
of length zero, is unity. Finally, from (15),(17) of Sec. 
3.8 it follows that for every x,S,r: 

(8) 

or 
Tr=l 

for short. Property (6) is called the multiplicative (or 
semigroup) property ; property (7) is the identity property , 
and (8) is the contraction property of beam transmittance. 
These properties can also be based on properly presented phys- 
ical arguments (see, e.g., Sec. 16 of Ref. [251]). However, 
it is of some interest to see that they can be made to follow 
formally from the interaction principle and (in the case of 
(8)) the law of conservation of radiant energy. 

The intuitive meaning of TT(x,E) for a path @r(X,E) 
in an optical medium can now be discerned. 
the radiance N-(a) T(a,b,b) (= N-(a)T(a,b)) transmitted 
through a finite cylinder C arrives at base b after having 
possibly been scattered several times. However, as C a - 
proaches pr(x,E?, so that base a approaches the set {xy con- 
sisting of the single point x, there is progressively less 
"elbow" room for the flux in transmission to scatter about 
within C on its way to b. In the limit as C goes to (x,E), 
any radiant flux that travels from x to z along Rr(x,Sf has 
the "straight and narrow path" to follow. If it happens that 
a photon in transit from point x to point z is scattered ex- 
actly forward or backward a certain number of times, this pho- 
ton is considered to constitute part of the residual radiance 
at z, for it is impossible at present to operationally dis- 
tinguish,in the time-averaed residual radiance,between a pho- 
ton which has travelled along pr(x,E;) without scattering and 
one which has travelled along Pr(x,E) and which has been 
scattered. Hence it will not be inconsistent to speak of 
Nz(z,&) as radiance consisting of those photons originally 

In everyday words, 



conszituting bFo(x,F;] which have not been absorbed or sczrt- 
tered from P,Cx,S) as they travelled from x to X * T ~  = 2 ,  
 his is the phenonarwZQgicaZ int,erpPeta*ion OE ~Opcx,~) 
we shall adopt it in the present work. 

case of Ron-constan& Endex 0% refraction is effected. by re- 
peating all steps with [H.(a)/n') inseead of N.. [a] + and build- 
ing a tribe of natural paths around Pr{.x,E) ~ s i ~ i g  cross scc- 
t i m  a as a base from which the paths begin1 with normal irica- 
dence, The motivation for using the quotient a'-(aE/n2 resc:: 
in the a -law for radiance in (4) 9f Sec. 2.6. 

This d i s c ~ s s i ~ ~ ~  is concluded with the observation that 
the bean transmitfnnce Tr(x,E] asso~iated with the path 
@~(x,E) in x is independent of the radiance distribution in 
X. This may be seen by returning to 13) and recalling that 
the standard transmittance operator R(a,b] is an integral ay- 
erator whose kernel function Sb is derived from an interactibm 
operator obtained via the interaction principle. I\ re-extami- 
nation of the conclusion of the interactiorm principle will 
shaw that an interaction operator is independent of the xnem- 
hers of its domain sets Ai and range sets Bj, in other w m d s  
interaction operators do not depend on the radiance distri- 
butions (i.e. the light fields) in X. 

The generalization of the foregoing results to the 

Inherent and Apparent Optical. Properties 

in establishing the basic optical properties of a natural op- 
tical medium X. Aq optical propapty P of an optical m e d i m  I: 
IP in the form of a number, function, or operator) which is 
independent of $he Zight fieZds (in the form of Padiance die- 
tributions) ipt X wiZZ be catted un inherent optical, propepfix 
of X; otherwise,P is an apparent opticat proper8 . Hence, 
the beam transmittance function Tr whish assigns'to the path 
&p~(x,t;] in S the bean tyansmittance Tr(x,t;), being indepead- 
ent of the radiance distribution in X, is an inherent optical 
property of X, IJe shall return to the systematic study of in- 
herent and apparent optical properties in Chapter 3. 

The foregoing observation is of considerable importance 

3.11 Derivation of the Volume Attenuation Function 

The volume attenuation function is a measure of how 
much radiance a light beam loses per unit length of travel un- 
der the joint action of scattering and absorption processes. 
In this section we shall develop the concept of the volume 
attenuation function with the beam transmittance function as 
a starting point. 

Let fr(x,&) be a natural path in an optical medium X 
with associated beam transmittance Tr[x,C). If a parcel of 
radiant flux of unit initial radiance traverses RT(X,F,)~ then 
on the one: hand Tr(x,C] is the amount of radiance transmltted 
over I$,(x,E), and on the other hand: 

7: 
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is the amount of radiance lost over &r(X,E). 
write : 

Hence if we 

1 - TrCx,E) 
!'ar (x ,E) I' for 

f 

then we can say that ar(x,E) is the average amount of radi- 
ance lost per unit length for a beam of initial unit radiance 
traversing 8, (x, 5) . 

We are almost at our goal. It remains to write: 

The function a which assigns to each x in X and 5 in 5 the 
non negative value a(x,E) given in (1) is called the uofume 
attenuation function. The dimensions of "(~$5) are Lr- (in- 
verse radial lefigth--see note (h) to Table I11 of Sec. 2.12). 
That a(x,E) is a non negaFive number follows from the contrac- 
tion property of Tr(x,E), ((8) of get. 3.10). 

without appropriate mathematical p;eamble. As in the case of 
(2) , (3) and (5," of Sec. 3.10, we are concerned here only with 
the formal conceptual content of the interaction principle. 
There should not be any concern at present about the existence 
of the limit (1) above and the limits in (2), (3), and (5) of 
Sec. 3.10. These limits can always be made to exist in dn ac- 
ceptable and workable setting by postulating physically rea- 
sonable regularity properties of the underlying radiative pro- 
cess. However, what is of greatest importance here is the 
fact that there now exists a formal deductive chain of argu- 
ments connecting the volume attenuation function with the in- 
teraction principle. In this ray we have shown that the vol- 
ume attenuation function is an inherent optical property of 
an optical medium and a property whose conceptual roots are 
logically linked to the same principle which yields the re- 
flectance and transmittance operators for surfaces and general 
subsets in the medium. 

A useful connection between a and Tr is the exponential 
representation of Tr using a. This connection is derived by 
using the multiplicative property of Tr ((6) of Sec. 3.10) to 
write: 

Once again we have assumed the existence of a limit 

The definition of as was used to obtain the second equality. 
Letting s+O, we obtain: , 12 = -aT, 



For given x and 5 this is an elementary differential equation 
for Trr with known function u s  whose solution is: 

f r  3 

or in more explicit notation: 
1 

We k a w  used the identity property for Tr ((7) of Sec. 3.10) 
ta find the integration constant for the particular solution 
(3) of equation (2). Here x(tR) and E(r') art? the location 
and direction of a variable point within 8,(~,5], 3t distance 
r' from x along the path. If the index of refraction were 
constant, then x(r*] = x + r"; c(r') = 5 for every r', 
0s=lr9sr; and (3) would become: 

T,(X,E) = exp 

and (2) would take the form: 

For a discussion of (5) in the case of variable index of re- 
fraction, see Sec. 27 of Ref. [ZSl]. In that section there 
is also an alternative derivation of the function a using em- 
pirical radiances and empirical attenuating volumes. An ex- 
peaimental procedure for determining a is given in sec. 13.4 
of this work. 

3.12 Derivation of Path Radiance and Path Function 

We continue the sequence of derivations, begun in Sec. 
3.10, leading to the derivation of the integral equation of 
transfer for radiance along a path Pr(x,E) in an optical med- 
ium X. In this section we give a derivation of two important 
components of this cquarion: the path radiance, and the path 
function associated with &'r[x!F;)# and conclude with a deri- 
vation of an important connection between them. 

The Path Radiance 

Let Br(x,c) be a path in an optical medium x such as 
that depicted in Fig. 3.29. Once again, for simplicity, we 
assume constant index of refraction over x and no internal 



352 INTERACTION PRINCIPLE VOL. I1 

sources. Let C be a right cylinder about Br(X,<). To in- 
troduce the concept of the path radiance of flr(X,&) we con- 
ceptually isolate C, think of it as a one-parameter optical 
medium as in Sec. 3.10, and direct attention to the incident 
radiance distribution N-(c) om its flank c. The surface of C 
consists of three parts: two bases a,b, and flank c. The 
unit outward normal to c is assumed defined at each point of 
c. The incident radiance over flank c generates a light field 
within C by scattering processes within C with response radi- 
ance N-(b) over base b given by: 

where &(C;c,b) is the requisite interaction operator supplied 
by the interaction principle. The physical significance of 
this equation should be thoroughly understood before proceed- 
ing. We have enclosed Fr(X,() (itself a conceptual object) 
in a hypothetical cylinder C. The radiance distribution at 
the base b of C is then the response of C to the incident nat- 
ural light field all along its flank c. We direct attention 
now to point z in base b and direction E(= -k(x)) at z. The 
value of N..(b) at z and 5 is the radiance, generated within 
C, in response to the incident distribution N-(c). We now 
let C approach pr(x,(), and keep an analytic eye on the limit 
of the value of N-(b) at x and 5. We write: 

k 
evaluated at z and 5. Ne call Nr(z,E) the path radiance as- 
sociated with (x, E )  . The path radiance N; (2, &) is commonly 
known as the "space light" or "haze of day" or "diffuse radi- 
ance" along a path of sight. If one looks along a path of 
sight under water or in the atmosphere such that the path ter- 
minates in some dark region, the veiling light between the ob- 
server and the dark region is due to path radiance. What we 
have just done is to go from the observable case for N-(b) to 
the mathematical limit (1). The latter is easier to work 
with for the same general reason that lines and planes in geo- 
metry are easier to work with than narrow rods and thin flat 
sheets. 

The Path Function 

IVe consider now the path radiance of very short paths 
Pr(x,E). In this way we shall come to the concept of the 
path function. Part (a) of Fig. 3.30 depicts a path Pr(X,C) 
with a right cylindrical subset C of X about @r(X,E) as axis. 
As in Sec. 3.10, we consider C a one-parameter optical medium 
with the usual geometrical conventions. We start once again 
with a conceptual isolation of C and consider the equation for 
N-(b). de are interested now not only in the limit of N-(b) 
as C approaches Pr(X,E), but also in the limit of N-(b) as r 
is allowed to go to 0 while x and 5 are held fixed. We can 
anticipate the limit by examining the specific integral struc- 
ture of d(C;c,b). From (6) of Sec. 3.8: 



FIG. 3.30 Detail for the path function derivation. 

where N(x',S') is the value of N,(c) at x' on c and 5' in 
Z-(xq). By the S*-continuity of the empirical funtion Sb giv- 
en in (1) and 13) of Sec. 3.8, we conclude that N_(b) goes to 
zero a3 r gges to zero. 
the value N,(z,E;] eventually goes to zero linearly with r. 
This can be seen by conceptually slicing C into two parts C1, 
CZ shown in (b) of Fig. 3.30, This partitions the flank c in- 
to two parts CI and C P  such that: 

hie can say a little more than this: 

where slUcz J c, and N-[cl) is equal to N,(c) over points of 
c1 and zero over points of CZ. N,(cz) is defined similarly. 
Each summand contributes a proportional share to N,/b). This 



. .- 

SI~OWS, wit11 ttie foregoing continuity property, t~iat N:(z,<) 
has additivity and continuity properties with respect to r; 
and so.it becomes plausible that it has an r-derivative. 

path Pr(x,() in X: 
,The foregoing observations lead us to write, for every 

* 

r+O r 

From this definition and (1) we have the following useful def- 
initional identity for every path pr(X,e) in X: 

r+O 
where the limit is evaluated at x and 6. The number N,(X,~) 
is value of the path function N* at x.6, on 
dimensions of N,(x,E) are those of radiance per unit radial 
length. That is, the dimension of N*(x,t) is P'A-'D-'Lr-' = 
= P+V-'Q-' (see Table 3 of Sec. 2.12 and note (h) of that 
table). Hence N*(x,E) may be thought of in either of two 
ways: the radiance per unit length (in the direction 6) gen- 
erated by scattering of an incident radiance distribution at 
point z into the direction 5; or the radiant intensity per 
unit volume generated by scattering of an incident radiance 
distribution at point z into the ckirection 5. 

By imagining a path @r(x,c) in an op- . 
tical medium X as the axis of a narrow cylindrscal subset C 
of X, as in Fig. 3.30, and by rigorously relating the incident 
and response radiances N-(c) and N-(b) over C by means of the 
interaction operator d(C;c,b), we can define precisely, and 
on a phenomenological level, the concepts of path radiance 
N:(z,S) and path function N, associated with the path&(x,c). 

gr(xDE). The 

To summarize: 

The Connection B,etveen Path Function and Path Radiance 

We now reverse the step taken in (2) and obtain a for- 
mula for the path radiance N:(z,S) given knowledge of the path 
function values N*(y,E) at each point y of &-(X,E) between 
x and z = x + re. The result will be a generally useful re- 
lation which also forms an indispensible component of the in- 
tegral equation of transfer for radiance. 

gain the one-parameter optical medium C around an arbitrary 
path @r(X,6) in X, . 3.29. In this way we have a 
useful scaffolding (x,S) with many precise analyti- 
cal ladders on which to clamter up and down its extent; lad- 
ders in the form of the complete reflectance and transmittance 
operators for the medium, and d-operators for arbitrary por- 
tions of the medium. Now a novel aspect of the present light 
field within C--when C is considered as a one-parameter opti- 
cal medium--is that radiant flux enters C from X through the 
flanking surface c of C. This is novel in the sense that nor- 
mally the invariant imbedding relation formally provides for 

The first step in the derivation is to set up once a- 

F 
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external incident sources to enter c only on parameter levels 
a and b. Itowever, by a simple device, to be introduced l>elour, 
we can rigorously convert the inciderax radiance diserbbutians 
C I ~  the flank c into internal sources at an arbitrary finite 
number of parameter Levels in C. The problem can timi be con- 
verted to one which, by Examplc 3 of Sec. 3 * 9 #  we know haw to 
solve in principle. After that it will be a relatively sin- 
ple matter to establish the requisite selatian between path 
radiance and path function. The relation is est-abli.shed by 
means of six steps, the first cf which begins below, 

The conversion of the incident radiance distribution 
N-tc) QIP the flanking s w f a ~ e  c of the medium C in%o internask 
S Q M T C ~  radiances is accomplished as folilons, Part (a) sf Fig. 
3.31 depicts the one-parameter medium partitioned into a fi- 
nite number n of cylindrical segments C1*C2r...3Cn by cross 
sectian surfacer, a~,a2,...~a~,~, with a This 
partition, in turn, partitions the flanging surface c of c in- 
to n pieces clrcp,...,cn. Hence for each i, i = 3,*.-*nD part 
Ci Of C is b~unded by parameter surfaces ai-a OE t ~ p  and ai 
OIP boetclrn ( u p u a ~ d  or twtt)ard, as usual, is the direction of 
k[x) 3 . The incident radiance d.istribution is partitioned cor- 
respondingly into n distributions N-(ci) such that: 

= a and an = b, 

OVBT Ci and 
N-dci) = 0 

over c outside of 6.. In other words, we have decomposed 
N- (c) analytically liy writing 

n 

i=l 

where xi is the characteristic function for part ci of c such 
that Xi(y) = 1 or 0 according as y is, or is not in ci, res- 
pectively. Thus the radiometric effect of N_(c) on C is equi- 
valent to the radiometric effect of this sum-decomposition of 
distributions on C. The proof of this is obvious: replace 
the left side of (4) by the right side of (4) in the inter- 
action equati.on: 

N_(cl = 1 XiN_(Ci) (4) 

Nr(b) = N-(cld(C;c,bI (5) 

Thus we have: 

- 

Ne now begin the 

n 

n 

(71 

second step. The result (7) suggests 
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r 

FIG. 3.31 Details for establishing the connection be- 
tween path function and path radiance. 

w 
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that the radiance distribution N-(b$ can be thought of as 98- 
erated by the response: of C to the n incident radiance distrb 
butions N..(ci]. We wish to canvert the external radiance bis- 
tskbution over ci to an equivalent set 05 one OT more source 
radiance distributions inside C. To see what is entailed in 
such a task, suppose %or the m5ment that N-tcj] = 0 for every 
cj except one, say k',(ci] We wow apply the interaction 
method to Ci by supposing Ci is conceptually isolated from C 
without disturbing the existing light field. Part (b) of Fig, 
3.31 will be of help to visujakize this ~ ~ f f i ~ ~ ~ ~ ~ ~ ~  sxcisimr 0% 
Ci fzon C. Fsrt.5 A and B of C outside of Ci are shown in the 
aisgrm slightly pulled away from Ci. Hext, the sets of in- 
cident radiometric functions on Ci are enumerated, These are: 

ha: 

Ai: 

AS: 

all incident radiance distributions like N_[ci) 

all incident radiance distributions like N+{ai] 

all incident radiance distributions like N_(ai-91, 

The sets of response radiance. distributions of interest arc?: 

%I: all response radiance distributions like 

Bz: all response radiance distributions hike N-[iai) , 

The members of A x  are field radiances. A31 the zemaining ra- 
diances &re surface radiances of their indicated surfaces. 
Jn the case of the members of A2 and Asr we have used the 
equality of field and surface radiance at a given point to re- 
place the field radiances. In the present case of the princi- 
ple, m = 3, ? = 2, and the six operators Sij given by the in- 
teraction principle are: 

These six operators have been given their standard notation 
as established earlier in the chapter. The first two are in- 
stances of (6) of Sec. 3.8. The remaining four are instances 
of the standard reflectance and transmittance operators for a 
general one-parameter medium, os given in Example 2 of Sec. 
3.9. 

for the response radiance distributions N-(ai), N+[ai-l): 
The interaction principle then yields the equations 
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The second step in the present derivation continues by 
comparing the preceding statements with those of the princi- 
ples of invariance for the medium C under the same partition- 
ing. 
that: 

The partitioning that is presently being used is such 

. .  

Ci corresponds to X(x,z) 

in principles I and I1 of Example 2 in Sec. 3.9. Furthermore, 
equation (8) corresponds to I when we let y = x in I and also 
let: 

y in principle I correspond to ai-l in (8) 

z in principle I correspond to ai in (8) . 
This detailed comparison is carried out in order to establish 
the fact that (8) may be interpreted as an instance of prin- 
ciple I applied to a source-free medium X(ai-l,ai) in C with 
a source of radiance of magnitude N-(ci) d(Ci;Ci,ai-l) at lev- 
el ai-1. In a similar way we see that (9) is interpretable 
as an instance of principle I1 applied to a source-free mediun 
X(ai-l,ai) in C with a downward source (downward in C) of ra- 
diance of magnitude N-(ci) d(Ci;ci,ai) at'level ai. The con- 
clusion we can now reach is the following: with the current 
assumption about N-(ci) as being the onZy source on C (to 
which we have momentariZy agreed at the outset of this step 
of the discussion) we can then write the interaction equations 
for the light fieZd in C with the interpretation that there 
are two sources of radiant ftuz in C: one upward fZux con- 
fined to Zeuet ai-1 with magnitude N-(ci)d(Ci;ci,ai-1>, and 
one downward fZux confined to ZeveZ ai with magnztude 
N-(ci) d(Ci;ci,ai). This is the crucial observation needed 
in order to carry the derivation to completion, and since it 
appears somewhat complex, we state its message in still an- 
other way: Suppose a radiance meter were placed inside parts 
A or B of the cylinder C; for definiteness, say the meter was 
in B. What we have inferred from (9) is the prediction that 
the meter's reading would be unchanged were we to replace the 
external incident radiance distribution N-(ci) by an internal 
source radiance distribution over parameter surface ai equal 
to N-(ci) d(Ci;ci,ai) and an internal source radiance distri- 
bution over parameter surface ai-1 equal to N- (Ci)d(Ci; ci,ai-1). 

The third step in the derivation consists in applying 
to the n-1 other partition pieces of C what we have just 
learned from consideration of the case of Gi. The net result 
is that the response radiance distribution N,(b) (the incip- 

9 

!* 



ient path radiance) may be considered to be generated within 
c by n-1 internal radiances Nz(ai) at i l,...ln-l, 
where we hawe written: 

The fuurGh step in the derivation is the m e  of (38) 
af Sec, 3.9 ta represent M,(b]. For, by the conclusion of the 
third step, we have reduced the problem of representing N-(b? 
8s generated by N_(c) to the problem of representing N-Ck) as 
generated by the internal soitlrces at the m-P interval. levels 
ai of 6. Toward this end, in (3&) of See. 5.9, let y = b, 
Si = ai, and let the su-mmatio~r run  fro^ P to n-I. Then, far 
the contribution from the n-1 internal sources ne have from 
(38) of Sec. 3.9: 

From this-, and the nth source Nolan) we have: 

i=l i=l 

wherein a i < b  for i = l,...,n-l . The latter inequalities 
show that we may use the representations of the '!'-operators 
in (31)-(34) of SeC. 3.9 Once we have interchanged "+" with 
11 - I *  , and interchanged ''a'' with rqb8t everywhere in those equa- 
tions. In particular, we have: 

f 
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. The fifth step of the derivation consists in applying 
to (13) the limit- process, C+ PT(x,~). This application is 
facilitated by noting that: 

which follow from (21) and (23) of Sec. 3.9 and (5b) of Sec. 
3.10. Applying the limit process C-+ @r(X,<) to (13) we have, 
with the aid of definition (3) of Sec. 3.10, and (1): 

Hence : 

or, briefly: 
n *  
xNriTr-ri 3 

i= 1 

where ri,. ri and xi are tefined as in (b) of Fig. 3.31. 
(Hence xo = X, Xn Equa- 
tion (14) is a useful exact formula for the path radi- 
ance of Pr(x,E) in terms of the path radiance over the com- 
ponent segments &'ri(xi-l,t); i = 1,. . . ,n. 
dividing and multiplying the ith summand in (14) by ri, and 
letting n+- in such a way that the maximum Ti in the set 
lrl,...,Tnl goes to zero. Thus we first write (14) as: 

Z, Tn = T, and Tr-rn'(Xi,5) =: 1.) 

The sixth and finaZ step of the derivation consists of 

and apply the limit process n+-, max lri}-+O, which formally 
yields, by means of (Z), the following Riemann integral: 

I I 

1 J 
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whish is the desired integral representation of the path ra- 
diance N:(z, E] fop the path lF'r[X, F,] in terms of its path func- 
tion Ma and beam transaittance function T,, In the integral 
we have usitten: 

'*z" for x 4 r5; 

and have derived the fornula uixder the canditiares sf constant 
index of refraction Q V ~ P  Pr[x,t;), ami 130 internal source-5 

;aacx, 5) ifhis canatpiete~ the derivation. 
form of tis) is ~~~~~~~~a when the index 05 T ~ ~ I - w -  

%ion is rmn constant, ~r~~~~~~~ the appropriate form af the 
betun transmittance far such case is used (seef, !.E., Set, 
16 of Ref. [25k]). The case of internal sources is covered 
by intraducing Lhe emission Eunction Nrr. (See, s.g,, Sec. 99 
of Ref. $91511 and fl) of Ssc. 5.8 below.) 

pired be~ween (5) and (15'). We started with (5) which is the 
precise farmula for the observable path radiance N,Cb] O Q @ ~  
path Pr[x,~) in an optical medium X. ,tiri3re we have tnsed one 
very canvenient feature of the interackien principle, naniely 
that it psovkdes the exact ~~~~~~~~i~~~ rendition of all pus- 
sibXe radiometric operations with radiance m t e r s  end athcr 
light zmeasuring devices in xnraturxE optical media. Equation 
(5) summarizes how we can view the N-(b) as the resp~nse to 
incident flux N,[c), aver the baumdary c, af ;i subset C of X. 
This formula Is then rearranged, using some of the Paws si ra- 
diative transfer and the properties of the interacrion opera- 
tors we have deduced so far, into the classical representa- 
tion (2s) of the path function integral for path radiance. 
Xh should be emphasized thzt no intuitive observations were 
used as integral parts of the derivation between (5) and (15); 
however, they were occasionally invoked merely to make intui- 
tively clear or to motivate the various steps in the deriva- 
tion. The interaction principle has been stocked at the out- 
set with all the intuition ~f the phenomenolagical point of 
view needed to establish radiative transfer theory. 
ciple thus provides the formal machinery Par recovering a11 
the known intuitions, and perhaps some new ones yet to be 

It might be well to explicitly $ ~ ~ r i ~ %  what has tram- 

The prin- 

generated. 

3.13 Derivation of Apparent-Radiance Equation 

action principle the well-known intuitive deconnpssition of 
the radiance of a distant abject into two parts: the residual. 
riediance transmitted from the object over the path of sight to 
the observer, and the path radiance generated aver the extent 
of the path of sight. 

The setting of Fig. 3.29 will serve for the first stage 
of the present discussion. We imagine the observer at point 
z of the path of sight @~CX!Q in an optical medium x and 
that he is recording the radiance FI[z,t;). F Q ~  example the 
path of sight might begin with point x in a mountainside, or 

We turn next to the task of deducing from the inter- 
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on a lake bottom, or then again it could simply be a path seg- 
ment beginning and ending in midair or midwater. Now for the 
purposes of the present derivation, we again imagine the cy- 
lindrical subset C of X about P-r(X,<) as axis, The set C is 
considered once again as a one-parameter optical medium with 
the usual direction conventions. The actual light field in X 
around @r(x,c) is considered to be incident on the surface Y 
of C. As usual we imagine C isolated from X without disturb- 
ing the structure of the light field on and in C. This inci- 
dent light field on Y can conveniently be thought of as inci- 
dent on the bases a and b and the flank c of C. We are cur- 
rently interested in the corresponding response radiance N-(b) 
emerging from the parameter surface with index b, as a result 
of the incident radiances over a, b, and c. In particular, 

z in the direction 5. For the present, the interaction prin- 
ciple yields three operators and the statement: 

N-(b) = N-(a)d(C;a,b) + N+Cb)J(C;b,b) + N-(c)d(C;c,b). (1) 

% we shall eventually concentrate on the value of N-(b) at point 

Our goal is to obtain a limiting form of this statement as 
C+&-(x,E). The result will be the desired equation for ap- 
parent radiance. Toward this end, let us examine in turn 
each of the three terms in (1). 

C+ Pr(X,E), is none other than the transmitted radiance 
N:(z,E) over the paths @r(x,E). For we have: 

The limit of N-(a)d(C;a,b) evaluated at z and 5, as 

d(c;a,b) = T(a,b) (2) 

by definition (6) of 3.8 and the definition of T(a,b) given 
in Sec. 3.9. The observation now follows from (2) of Sec. 
3.10. 

The limit of N+(b) d(C;b,b) evaluated at z and 5, as 
C+ gr(x,E), is zero. 
all that: 

This may be seen by observing first of 

d(C;b,b) = R(b,a) (3) 

by definition (6) of 3.8 and the definition of R(b,a) given 
in Example 2 of Sec. 3.9. The observation now follows from 
(5b) of Sdc. 3.10. 

C+ Pr(X,5) is the path radiance Nr(z ,E), according to (1) of 
Sec. 3.12. Let us write, 

The limit of N_(c)d(C;c,b) evaluated at z and E as 

(41 

P 

where N-(b) is as given in (1) and where “N-(b)(z,5)” denotes 
as usual the value of N-(b) at z, and 5. We call Nr(2.S) the 
apparent radiance associated with &‘r(x,E) - Applying the 1lm- 
it operation C+ Pr(X,E) to each side of (1) and using the pre- 
ceding observations we have: 



, 
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or in ccmmpmct functional. form: 
i-- -- 

Equation (5) is the desired equation for the apparent radiance 
associated with Pr (x, 61. 
intui%ian ne have about the apparent radiance of distant oh- 
jects. Let us ea11 the radiance b!o(x,6) at the initial point 
of the path @r(x,c) the; infieread ~adianaa of the field at x 
in the direction 6. The point x may be on B tangible surface, 
QT it may hang in empty spaceD mid air, or water. Further- 
more, for a given fixed z and f the path Pp.Ex,E] may vary 
its length r pthout changing No(2,Q, but the associated 
TrCx,$] and Nr(xls) will vary accordangly, The apparent: rani- 
8nce aE the field at x in the direction E as seen at z in the 
direction 6 is customarily thought of as consisting of tus 
parts: the transmitted (or reduced or residual) inherent ra- 
diance N;(Z,E) y N~(X,E~T~(X?E), and,the path radiance (or 
"space light" or diffuse radlaace) N,(z,5') scattered into the 
path between x and z. The preceding derivation has estab- 
lished a precise rendition of this intuitive judgment by 
m & a m  of a formal deduction from the interaction principle. 

Equation (5) may be written in more derail using the 
results (4) of Sec. 3.10 and (15) of Sec. 3.12: 

Equation (53 is the exact statement af the primitive 

* 

To shaw the%logical ancestry of the concepts in (A) in a 
striking way, the reader is invited to replace egch of the 
five main terms in (6) by its definition as developed in this 
and in the preceding three sections. When these notational 
disguises are remuved what should be left is an expression of 
the incident radiance distributions OR a one-parameter cyfirn- 
drical oprical medium C being acted on by interaction opera- 
t m s  and the result being embedded in a formidabas battery of 
neatly interlocking Limit processes. The interaction opera- 
tors used for C are supplied by the interaction principle, 
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3,14 Derivation of the Volume Scattering Function 

We come now to the derivation of the second inherent 
optical property of a general optical medium X, 
is summarized in the form of the volume scattering function 
which quantitatively describes at each point x of X the frac- 
tion of incident radiance N(x,S1) in the direction 5' scat- 
tered in the generally different direction 6, without change 
in wavelength. The volume scattering function together with 
the volume attenuation function derived in Sec. 3.11 are the 
two basic inherent optical properties for optical media used 

This property 

I in radiative transfer theory. 
Figure 3.32 depicts an arbitrary right-cylindrical sub- 

set C of the optical medium X. The axis of the cylinder is a 
straight line segment with initial point x, terminal point z, 
direction 6, and length r(5). Our present goal is to derive 
the volume scattering function from the appropriate interac- 
tion operator for C as supplied by the interaction principle. 

Let a and b be the two bases of C and c be the flank- 
ing surface of C. Let N-(c) be a member of the set of inci- 
dent radiance distributions on c. We assume C to be a one- 
parameter optical medium with the customary geometrical con- 
ventions. We are interested in the response radiances N-(b) 
emerging from the base b and such that N-(b) is of the same 
wavelength as N-(c). The interaction principle supplies an 
operaltor d(C;c,b) such that: 

N-0)) = N-(m-AC;c,b) * (1) 

cl E 

FIG. 3.32 Detail for the volume scattering function 
derivation. 



Here S' Is the part of the boundary of C which is bathed 
the present radiance distribution. More precisely, S! is 
set of all points x' of the flank c of C such that S'*k(x 
where kfx') is the unit outward normal to c at x'. and E' 

n 
the 
15 0. 
is 

the fix& direction of incidence of the radiance iiistsiiktian 
N,(c) (see shaded region in Fig. 3.32). W(§",D'f" denotes 
the constant value of the radiance distribution N-(s) over S B  
and D'. S" is the projection of S' on a plane normal eo 5'. 
By (11, (3) and (4) of Sec. 3.8, N(z,S) can be written as: 

N (2, 5) = NjS" 2D1) S(C ;S E ,D' ;x, EjA(S 1 Q(D1) (3) 

and we are essentially back where we started from--except for 
one important difference: the radiance Nfz,() is now clezn~ly 
seen (by (1) of Sec. 3.12) to be the incipient path radiance 
for the path (7(~)(x,<) under the present special lighting 
conditions. Hence by the agreement leading to (2) of Sec. 
3.12 we are motivated to consider the ratio N(z,S)/r(S], which 
by (3) is of the form: 

We have now reached the threshold of the definition of 
the volume scattering function. It remains only to write: 

, 
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The function u which assigns to each point x and distinct 
pair of directions c',E the non negative number u(x;E';E) de- 
fined in (5) is called the volume scattering function. Since 
(J.was derived from the operator g(C;c,b) with the kernel 
function S(C;*,-,*,*) supplied by the interaction principle, 
it follows (as in the case of a in Sec. 3.11) that u is an in- 
herent optical property of X. The dimensions of u are 
Lr-'Si-'. This radial length and solid angle are associated 
with the direction 6. The verbal interpretation of a(x;c';S) 
is obtained directly from (4) as follows: u(x;[';c) is the 
scattered radiance generated, uithout change in UaveZength, 
per unit length in the direction 5 by unit irradiance inci- 
dent at x in the direction 5'. 

An operational definition of u, suitable for experi- 
mental use in natural optical media, is given in Sec. 13.6. 
An alternate approach to the volume scattering function is 
given in Example 1 of Sec. 3.17. The approach to (5) via em- 
pirical operations is given in Sec. 18 of Ref. [251]. 

Regularity Properties of u 

We have gone as far as we can in the present approach 
to the definition of u: the value of CI at each x,c',c has 
been defined by means of (5). In order to go on and use a in 
the mathematical theory of radiative transfer we must assume 
regularity properties of u. In other words we must make ex- 
plicit certain continuity properties of CI in order to use the 
calculus. Therefore u will be assumed a piecewise continuous 
function of each of -the arguments x,c', and 5. Furthermore, 
we assume that for every point y in X there is a sphere Xa(y) 
of center y and radius a such that for every connected subset 
c of X,(y): 

for every pair of distinct directions E ' , < ,  and every pair of 
points x',x on the boundary of C. fiere "o(r(E;))" is the value 
of a function o(-) which has the property that lig+oo(x)/x=O. 
r(E) is the length of the shortest path through 
C with initial point x and in the direction -5. S' is that 
part of the boundary Y of C consisting of points x such that 
5'-k(x)CO where k(x) is the unit outward normal to Y at x. 
S' has a very simple geometric interpretation: shine a paral- 
lel beam of light on all of C along the direction E'. Then 
S' is that part of Y that is lit by the beam. 



Hence : 

The radiance N,(b]i(x,E;] is thus seen to be nearly the 
path radiance for the path through XaCy] emerging at x in %he 
direction y, and of length r(5) inside the spherical region? 
Xa(y) Hence N- [a) (x#E)/r(E) is nearly the value of %he path 
function at x in the direction E. By letting the radius a of 
X,(y> go to zero we have: 

Summari2ing: For every point x in an optical medim, the re- 
Pation between the path %unction Ne[x,-) at x, the radiance 
distribution N(x,*] at x and the volume scattering function 
c?(x;O9*j is: 
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3.15 The Equation of Transfer for Radiance 

All the pieces of the integral equation of transfer 

It remains only to assemble them into the desired 
for radiance have now been carved out of the interaction prin- 
ciple. 
statement. 

be a right cylinder with &-(x,S) as axis, and let C be a one- 
parameter optical medium with boundary Y composed of upper 
and lower parameter surfaces a and by and flank c, as in Fig. 
3.29. Let the incident radiance distribution over the outer 
surface Y of C be N-(Y). Then there is an interaction opera- 
tor d(C;Y,b) such that: 

Let @r(x,E) be a path in an optical medium X. Let C 

This is the interaction equation governing the response radi- 
ance of C over the base b. With this as a starting point, it 
was eventually reduced, as shown in.Sec. 3.13, to the State- 
ment : 

Nr(z,S) = N:(z,S) + Nf(z,S) 

where Nr(z,E) is the apparent radiance of the field at z in 
the direction E. From (6) of Sec. 3.13 this can be written 
in the form: 

r 
Nr(zpE) = No(~,S)Tr(X,S) + 1 N*(x',EITr-r~(x',Sl dr' 

0 

From (8) of Sec. 3.14 this becomes: 

which is the requisite integral equation of transfer for ra- 
diance a The subscripts "r'' and "0" may be dropped wherever 
possible when it is convenient to divest (1) of all explicit 
ties with the path pr(x,S). The result in such a case is: 

. .  . ., , ... 



$--- I 

This is the! ~ ~ ~ ~ ~ ~ ~ a ~ i ~ ~ ~  farn of the integral equation of 
trzmsfar for the radiance function N defined on XxE. Here 
+(z,&$ (abbreviated in (1) 85 "Y") is the length of the short- 
est d i ~ t a n ~ e  from 2 to the boundary of X along the direction 
-5 [see Fig, 3.35). Hence P depends on z and E and all are 
c ~ ~ ~ e ~ ~ e ~  by the equation: 2: = x + 1-6. The distances F' and 
r are measured from the bou~dary point x to the point x s  and 
the point 1 )  respectively, along the direction 

05 H on XxE, it is assunned that the volme attenuation func- 
tion Q and the volume scattering function G are kmwaxt with 
appropriate regularity properties, arvd that Njx,S) is given 
for each incident direction f at each point x on the boundary 
sf X. As it stands, Equation (2) is an i.ntegral equation for 
N and applies to source-free optical media of arbitrary $eo- 
metric shape with arbitrary Q and u and constant. index of: ye- 
fraction n, With slight modifications (2) can be made to bid 
in media with internal sources by suitably includkng the emis- 
sion functian !?n = Ne + Ns (where Ne represents true emission 

In mathematical discussians requiring the ~~t~~~~~~~~~~ 

FIG, 3.33 The setting for the equation of transfer for 
radiance in a general medium X. 
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radiance and N s  trailspectral scattered radiance), and variable 
index of refraction n. See, c.i:., SCC. 21, Ref. [251], in 
which tlic boundary rad iclriccs and thc optical propertics can 
also bc changing rapidly with tiine. 

Steady State Equation of Transfer 

We conclude the main discussion of this section by de- 
riving from (1) the classical form of the integrodifferential 
equation of transfer. This equation is designed to describe 
the rate of change of Nr(x,S) along &r(X,S), with respect to 
r. Thus, holding x and 5 fixed, we shall let the path length 
r vary and then compute dNl(x,S)/dr. By doing this, we in ef- 
fect imbed pr(x,c) in a family @ o f  paths of the same x and 
5, and observe that the general functional form of (1) is in- 
variant over the members of P. In order to find dNr(x,S)/dr, 
we can apply the operator .d/dr to e-ach of the two main terms 
of (1) : 

dNo (X, 5) T#, 5) dTr (x, 5) 
= No(x,S) 

dr dr 

= No(x,5) (-a(x9C)Tr(xyS)) . 
The second equality is based on (2) of Sec. 3.11. Next, we 
find (using (15) of Sec. 3.12 and (5) of Sec. 3.13): 

The second equality'is obtained by means of the Leibniz rule 
of differentiating an integral with respect to a parameter. 
Collecting these results, we have: 

Using (5) of Sec. 3.13, (8) of Sec. 3.14, and dropping "r" 
from "Nr" we finally obtain: 

4 



which is the desired inRog~odifferenefaZ form e;f the squat C a n  
of transfer. The settings in which holds also those 
for (1). The generalizaeiows available for es, are also those 
50F (I), 

each term of (3) by means of losses snd gains of hJ[a,E) due %a 
attenuation and scattering, Thus the tern -a[z,C)N(z,5) sun- 
marims the rate sf lase from N(z,S] by means of a ~ ~ ~ n ~ ~ ~ ~ ~ ~ ~  
and the integral term N,(z,E] summarizer the rate sf gain af 
Nir(z,5+j by means of scattering. X direct deriwation af (3) 
by means of such loss-gain arguments is made, e,p,, in See, 
21 of Ref. [25l.], We have C ~ Q S W I  the present route to (3) to 
add to the a ~ ~ u ~ ~ ~ ~ t ~ ~ ~  evidence in this chapter that all af 
classical radiative transfer theory is derivable %ram the in- 
teractian principle. Having finally arrived at (3) in this 
manner we may essentially rest our case. 

Et will be instructive for the reader to interpret 

I ,  

Time Dependent and Polarized Equations sf T ~ ~ x ~ s S ~ K  

The chain of arguments in Sec. 3,10 to the present 
starting from the interaction principle and culminating in tb 
equations of transfer (2) and (3), can now be repeated in all 
their e5sential steps but with more general rormuldtians zs 
the cnd result. For exaBple, two immediate generalizations 
of (3) are obtained by considering time dependent radiances 
with time dependent optical properties, and by considering pe- 
larized radiance functions. The derivations of these general- 
izations of (5) will. not be recorded here and are left as im- 
portant (and nontrivial) exercises for interested students of 
the subject. (See Sec. 129 of [251].) The resultant time de- 
pendent equation of transfer is: 
I 1 

t J 

(4) 
where we have written: 

a d - for - + v -  
Dt at drr 

I T  D 1 1  

and where D/Dt, as in (4) is the usual (mobiZa or substantial) 
derivative operator alsng the path 1c"r(x,&) e Furthermore, Y 
is the speed of light at z, and we have written: 



where V is thc usual gradient operator of vector analysis. 

diance has the same Gestalt as (3); thus, 
The steady state equation o€ transfer for polarized ra- 

I 

where N(z,S) is as defined in Sec. 2.10 and p(z;<';s) is the 
standard observable volume scattering matrix--the polarized 
counterpart to o(z;S';S). For a complete definition of 
p(z;S';S) and related concepts, see Sec. 112 of Ref. [251]. 
Helpful background techniques for the derivation of (7) from 
the interaction principle are contained in Sec. 113, 114, and 
126 of Ref. [251]. In particular, the work in Sec. 126 of 
Ref. [251] may serve as a prototype for the requisite deriva- 
tion of (7). What is required for the general derivation is 
the consistent elevation of all cdncepts of the prototype der- 
ivation from the scalar to the vector level. The extension 
of (4) and (7) to the case of internal sources is accomplished 
by appending suitable source terms to each. For example, one 
may append N,,(x,C,t) to (4), and NT)(~,[) to (7). A discus- 
sion of the relative consistency of (3) and (7) when the light 
field in a given medium is unpolarized is given in Sec. 13.11. 
In addition, the problem of the fidelity of (3) in the context 
of polarized light fields is raised and discussed in Sec. 
13.11. 

3.16 On the Integral Structure of the Interaction Operators 

In this section we discharge a series of obligations 
which have been accumulating ever since Sec. 3.3. These con- 
cern the assertions that the interaction principle formally 
implies the existence of the rarious integral operators for 
reflectances and transmittances of surfaces, plane-parallel 
media, and the scattering properties for general optical med- 
ia. Our purpose here is to cite and apply the appropriate 
mathematical theorems which, under suitable regularity condi- 
tions, yield the requisite integral operators arising under 
the use of the interaction principle along with their physi- 
cally interesting kernels. By methodically applying these 
theorems to the various geometric settings encountered in 
Sec. 3.3, 3.6, 3.8 and 3.9, and many other settings, a verita- 
ble cornucopia of classical and novel integral operator for- 
mulas for radiative transfer phenomena is tapped and brought 
into formal existence by means of the interaction principle. 
'The following discussion, while mainly mathematical in flavor, 
is written principally with the physicist in mind. Emphasis 
will constantly be on the physical or geometrical meanings of 
the terms discussed. As a result, mathematical rigor will 
not be of primary concern. 

.I 

G3 

' I  



The ~ i i t h e ~ ~ t ~ ~ ~ ~  Prerequisites 

In OUT everyday aetiviriea we frequently perfarni C ~ P -  
rain operations to determine various weights and measures of 
objects; measures of area, direction, length, vc~lmie, IRSSS I 
and so om. When an attempt is moade to fcrmulate .a aa%hheaat.ii- 
cal representation of these operations and to ~~~~~~~~~ theF.~ 
salient characteristics, one arrives at the logical. concepts 
of tibaear fY4%QttOMOZ and msastr,wo 1 

tiere is P saimpfe example of a lineaea functional. Con- 
sider a straight flat sidewalk S one block long. A child's 
wagon loaded with objects is pulled rg~er S from point a to b, 
As a result work is done in transporting these objects over S 
from it to b. The R Q F ~  objects in the wagon, the more force 
generally thae must be exerted to push it from a eo b. Sup- 
pose fEs> is the force parallel to the sidewalk that must be 
yplied to a loaded wagon at paint s on the sidewalk to keep 
rt wovkng at constant speed from a to b. Then f is a ~ O K C ~  
function defined on the sidewalk S. To f we ears now assign 
the amount of work W(P) required to push ita associated l~ar'ed 

tion g and yet another mount Wcg) of work dene in transport- 
ing that wagonload over S. Hence W is a function which BS- 
signs te, f or g a number, the work done in transpcsting over 
S the wagonload associated with f or g. id is called a fune- 
ticlneZ because it acts on functions f, g asnd not numbers (as 

W&gOlI Over s. P0.S an0thEnt Wagon IO&, there iS aPPotfiaCT fUnC- 

f and g do), 
How for typical sidewalks and most ordinary objects 

and wagons, the functional W is linear in the sense that: 

where c is a real number. An instance of (i) arises, e.g., 
when we stack f's load of objects on top of g's load of ob- 
jects and push the. assembled load, whose force functistn then 
is f + g, along S. An instance of (ii) arises when severilk 
copies ai an object with force function f are stacked on top 
of each ether and transported along S, (1x1 this case c would 
be m i  integer.) 

Here is an example of a measure. Consider once again 
the sidewalk S described above. Every two points s, s' on the 
centerline of S determine a segment [s,sq] of S between them 
which has length say l([s,s']). If [s,s'] and [t,t9] are two 
such separate segments along S, then 1([s,s'] U [t,tl]) = 
= l([s,s']) + l([t#t'])* where "[s,s*] U [t,t')'' denotes the 
set of points on S consisting of the points of [s,s'] or 
[t,t']. Here 1 is an example OE a measure--in this case a 
length measure: it assigns a number l([s,s']] OF " ~ ( S , S ' ] ' ~ ,  
for short, to the interval [s,sq] of points-the length of 
the interval Is, s ' 3 

Here is an example of a Linear functional closer to 
the present subject of radiative transfer theory. Let S be 
the same sidewalk as above, and let H be the functiari which 
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3 

c 

assigns to each point s of S, the irradiance on S at s. To 
this function I 1  there is associated an amount P(1-I) of radiant 
flux falling on S. 
light and street lamplight, etc,, various irradiance functions 
HI,If2, etc. can be defined over S, and with resultant amounts 
P(Hl), P(H2), etc. of radiant flux falling on S. P is there- 
fore a linear functional in the sense that: 

Ciii) P(111 + H2) = P(k11) + P(ll2) 

By simultaneous irradiation of S by sky- 

(iv) P(cft) = cP(I1) . 
The pertinent measure in this example is area measure A of 
parts of S: and with the property that A(SiUS2) = A(Si)+A(Sz) 
for two separate parts Si and S2 of S. 

Now the substance of the first of the two prerequisite 
theorems of present interest concerns the representation of 
linear functionals, such as W and P above, by means of an in- 
tegraZ with respact to a certain measure. Thus, in the case 
of W, the theorem states that there is a measure i~ over the 
sidewalk centerline such that for every force function f, 

We know from elementary physical theory that p is simply the 
length measure illustrated above; so 

b 
iV(f) = 

In the radiometric example, 
irradiance function €1 on S, 
sidewalk such that: 

P(H) = 

a 

the theorem asserts that for every 
there is a measure l~ over the 

(31 
J 
S 

From (6) of Sec, 2.4, we know that l~ must be area measure A; 
so 

S 

The general version of thc special cases (2) , (4) may 
be stated after the following preliminaries are covered: Let 
S be a closed bounded subset in Euclidean n-space Xn, over 
which a family F(S) of real-valued continuous functions is de- 
fined. 'This setting is of sufficient generality to serve all 
our present purposes. Observe that F(S) is a vector space, 
(e.g., the sum of two functions in F(S) is again in F(S); the 
product of a member of F(S) by a real number is again in F(S)). 
By examples (i)-(iv) above we know what a linear functional L 



is. A pcwit<ve linear functional L on F(S) is a linear Tunc- 
tianal on F(S) such that L{f]?0 if f is a non negative valued 
inember ai FES) [both examples W and P above are examples of 
positive linear lunctionals). Then the requisite theorem 
CwIticta is a gclacral form oif the Riesz representation theorim? 
gues 35 bollous: 

2')aeoscrn A. If L is a positive If-nsar functi~nizZ. oq 
&;(SI, then thera sZe&S&6 Q (EcopaZ) ~ B ~ B U P R  on s 
stsch that fop alrery f 5% FlS? 

b -7 

complete general development of this theorem may be found, 
e.g,, isa Sec. 56 of Ref. [lhB3]. 

which are absolutely continuous with respect to other measrarcs. 
A measure p is absolutely continuous with respect $0 re m e a s u ~ e  
u on a space X if v[E) = 0 whenever v(E) = 0 for every m a s -  
urable subset E of X. This o5tonsibly forbidding-sounding de- 
scription hides B very siinpPe idea which may be illustrated 
as follows. To each subset X of ordinary Euclidean three- 
s p ~ e  a5sign the radiant anergy content U(X) of that snbset., 
as, e.$., we did in (114) of Sec. 2.7. Now it is abvious from 
the relation (14) of Sec. 2.7 that U(X) = 0 nhenevci- V(X) = 0. 
That is, the radiant energy ramtent of a set X of zero volume 
is zero. Using the present terminology we say that the radi- 
ant energy measure U is absolutely continuous with respect to 
the volume measure V. Other common examples may be found: 
mass measure, heat measure, etc., are absolutely continuous 
with respect to volume measure, Now the next theorem we have 
in mind says that for the case of U and V, for example, there 
is a function T on X such that: 

The second theorem we shall need  concern^ measures 

u(x) = f(x) avcx) (53 
x 

In other words, the theorem guarantees the existence of an 
energy density function f which when integrated aver X gives 
the radiant energy content U(X] of X. In the other two cases 
cited we have the existence guaranteed of the mass density 
functions and heat density functions. Another way of writing 
f abovz is as: 

dU 
dY 

pointing up the nature of f as a volume derivative of energy, 
We could then write the preceding integral as: 

I 

dU 
dV 

U(X) = - dV(x) . 
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The function f above is a special instance of the general con- 
cept of a Radon-Nikodym derivative of one measure 1-1 with re- 
spect to afiother v. This derivative of v exists whenever u is 
absolutely continuous with respect to v. The general state- 
ment is as follows: 

Theorem B. Let S be a subset of Euclidean n-space 
Xn 'and let v be a finite valued measure on S. Let 
p be a finite valued measure on S which is absolutely 
continuous with respect to V. Phen there exists a 
finite valued function f on S such that 

k 

for every subset E of S. 
The wording of this theorem, whose full version may be 

found in Sec. 31 of Ref. [103], has been deliberately simpli- 

of measurable sets and functions have been suppressed and are 
to be implicitly understood. We are concerned here with only 
the essential conceptual content of Theorems A and B, what 
mathematical things they yield up for use, and their perti- 
nence to the physical radiative transfer context. In the con- 
text of Theorem B we shall write 

jfied--references to fixed measure spaces and fixed families 

(61 "du" - for f . 
dv 

The final theorem we shall need has been anticipated 
by the integral representation of U(X) above. Its statement 
goes as follows: 

Theorem C. Let S be a subset of Euclidean n-space 
Xn. If p and v are finite valued measupes on S and 
u i6 absoZuteiy continuous with respect to v and 
g is a function on S such that IEg dv is defined 
for evepy subset E of S, then: 

I I 

for every subset E of S. 
Again the wording of this theorem has b'een mercifully 

simplified so that one is encouraged to follow its physical 
applications below. Its unexpurgated and generalized version 
may be found in Sec. 32 of Ref. [103]. 
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The construction of u(x;D';S) in the present case is such 
.. (according to the proof of Theorem A) that for every D', if 

rr(D') - 0, then u(x;D';E) = 0 under all natural physical con- 
ditions. This means that a unit radiance distribution inci- 
dent on surface a through solid angles of zero measure will 
induce zero radiance N+(x,5). Hence p(x;- ;E) is to be abso- 
lutely continuous with respect to the solid angle measure Q. 

same set just used in Theorem A. The measure v is now solid 
angle measure R and u is V(X;*;~). Hence Theorem B says that 
there is a finite valued function f--in this case call it 
"r-(x;=;5)", such that: 

We are now ready to use Theorem B, The subset S is the 

for every subset D' of Z-(x). In other words: 

Theorem C completes the derivation when we observe that 
g is now to be N-(x,*), is now p(x;=;<), and v is a. We 
therefore have from (7): 

N+lx,EI = N-(x,S') d~(x;S';Sl 
E-CX) 

= N-(x,S')r-Cx;S';SI dQ(6') . (8) 
E- (XI 

Since x and E were arbitrary, (8) holds for every x in a and 
5 in E+(x), and the deduction of the form: 

from the interaction principle is complete. The integral rep- 
resentations of the remaining three operators r+(a>, tk(a) in- 
troduced in Sec. 5.5 are obtained similarly. 

Interaction Operators for General Media 

We go on now to consider a general optical medium X, 
bypassing the operators for plane-parallel media as being 
merely a special case of the present setting. Our goal is to 
derive the integral form of the linear operator d(X;a,b) in 
(6) of Sec. 3.8. 

d(X;a,b) such that 
The interaction method yields a linear operator 
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= U(x;s';x,s] I (111 

As in the case af the reflectance 0peraco.g for SUTfateS, we 
require, for O ~ V ~ O U S  physical reasons, the radiance N+(x,E) 
to be Z ~ T Q  when the measure w of a subset S' of S is zero. 
That is ~ we require u(X;S' ;x,t;) = 0 whenever v(Sl) = 0 and we 
shall assume that this is true. 

NQW We have: 
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Recall that a general subset S' of S is a collection of or- 
dered pairs (x',s') such that x' is in a subset a' of a and 
5' is in :..(XI); hence (12) is a special case of: 

We now return to Theorem B which asserts that there is in 
this case a finite valued function f on a x :---call it 
S (X; - , ;x, 5) --such that: 

a' Z-(xl] 

for every subset S' of S. In other words: 

The6rem C allows us to complete the derivation when we 
observe that g is ta be N-(a), u is now u(X;-;x,c) and u is 
R x A, the Cartesian product of the solid angle and area meas- 
ures. We therefore have from (10): 

Since x and 5 were arbitrary, (14) holds for every x and 5 in 
b and Z+(x), respectively, and the deduction of d(X;a,b) in 
its integral operator form: 

from the interaction principle, is complete. 

Interaction Measures and Kernels 

The features common to the two discussions just com- 
pleted will now be summarized so as to extract the salient 
steps that must be generally taken in deducing from the inter- 
action principle the requisite integral operator describing a 
given radiative transfer interact ion. 

Suppose a particular discussion using the inieraction 

.- 

I 



where Q and S are 
are images of the 

By Thesfem 
the subset s of x 
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\ in each situation. Thus the properties of each operator must 
be suitably stated so that tlic AC property holds (see remarks 
on the ~ t a y e t ~  of the I n ~ s r w c L i o n  Method in Sec. 3.18). 
A(, property of ii(:>;,y) 1 4  tlic iil)striiLt version of all the s' 
The additive property of tiic iiicasurc ~r(S;,y) IS the .tI)Stract 
version of the S' and L)' zidditivity propertics stated 111 tliesc 
sections. The initlals "AC" stand for "absolute continuity". 

The 

lIlJ I)' colltIrlulty st~trlll~llt4 lll:ldc~ 111 sccs. 3.3, 3.6, ri1111 3.8. 

The next step in the general method is to postulate 
(or verify) the AC property of p(S,-,y) so that we may go on 
formally to Theorem B which asserts that there exists a func- 
tion K(S,-,y) on C such that: 

(18) 
E 

for every subset E of C. For example, S(X;x',E';x,E) defined 
in the preceding example on general media is the special case 
of K(S,x,y) for a general optical medium X. In the case of 
S(X;x',c';x,S), "x" (Zn (18)) plays the role of "(x',C')", 
and "y" plays the role of "(x,E),", and of course "S" (in (18)) 
plays the role of X. Hence we have: 

We call K(S,*,y) the interaction kernel for the subset S of X 
and p(S,-,y) the interaction measure for S. 

An application of Theorem C then completes the general 
method by allowing us to write: 

That is, for every y in D, (15) may now be written: 

so that: I 
Equation (21) is the requisite integral representation of the 
interaction operator s, associated with the subset S of the 
optical medium X. 
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The 
at a point in an ~pti~;arl medium X and the asso~lated path 
Suractisn ~ i s ~ ~ ~ b ~ ~ ~ ~ n  Ha[x,*] at the s m e  paint in X was fi- 
nally attained in Scc. 5.14 after a relatively laboricsus strug- 
gle which first had to bring into the Sight of day aha roncept 
of veEauns serateering Aunction. le now connect Pr,(x,*] and 
M(x,-] in an alternate and less arduous way, Hawever, what 
gain in elegarnce and ~ a ~ ~ ~ ~ a t ~ ~ ~ ~  insight by taking the pres- 
ent approach, we lose in ~ ~ ~ ~ i c ~ ~  meaning. The earlier route 
taken, however lalag anti detailed, has the virtue that it sug- 
gests operational aeans of measuring B ia .&.tu,, i w e e ,  within 
an optical medium, The present approach has the virtue of 
showing the logical structu~e af the  re^^^^^^ between N,(x,*), 
H(x,=), and O [ X ; * " ; ~ ) ~  and does so with ~ n ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~  clarity. 

Let X be an optical m e d i m  and Ice the present subset 
S of X be a singleton {XI, i+e.! a one-point subset of X. 
Hence we will be using the special point-level interpretation 
of the interaction principle (re: See. 3-2). Let the set Ai 
of irrcident radiometric $unctions on {XI be radiance distri- 
butions Pike N [ X * * ) ~  Let the set B1 of response functions bs 
the path f u n c t i ~ ~  like M,(x,*) and defined using (3) of Sec. 
3.12. Then m * n = 1 in the interaction principle of: See. 

equation ~ ~ ~ ~ ~ c ~ ~ n ~  P radiance ~~~t~~~~~~~~ N[X,@] 

3.2, there t?XkstS an illtc?rip&tiQR QperatQP B §ti& that 

n,Cxt-9 = Nb,-lW (11 

In the terminology developed in the closing paragraph of Sec. 
3.16, in particular with reference to (15) of Sec. 5.16, b is 
AQW N,(x,a), a is now N(x,*), and s is now 8. The sets C and 
D are each now %he unit sphere 8, and v is solid angle measure 
Q on 5. R gives rise for each fixed E in E to ip positive 
linear functionial,so that for a particular fixed E in D [= Z) 
we obtain by Theorem A of Sec. 3.26, an interaction measwe 
tc(x;*;F] such that 

~(x;*;g) clearly has the AC property with respect to a. Hence 
by Theorem B OS Sec, 3.16 there is an interaction kernel 
o(x;*;g] such that for every subset D' of: E: 
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v(x;D';S) = I u(x;S';E) dQ(5') . (31 
D' 

Equation (2) corresponds to (lis) of Sec. 3.16; Equation (3) 
corresponds to (18) of Sec. 3.16, in which y is now 5. In 
the present instance the interaction kernel K for {XI is the 
volume scattering function u, The present specific instance 
of (20) of Sec. 3.16 is obtained by means of Theorem C of Sec. 
3.16: 

'- 
I 

and which is fo be compared with (8) of Sec. 3.14. Thus we 
have : 

I 1 f 

We Call R the'path function operator. 

EXAmple 2: The Path Radiance Operator 

The equation which represents the path radiance 
N:(z,E) over a path 
the path function N*(.,S) defined over Br(X,S) was obtained 
in (15) of Sec. 3.12 after some rather delicate analysis but 
in which each step was completely meaningful physically. We 
now establish (15) of Sec. 3.12 using the interaction princi- 
ple in a radically different way; one that exhibits the logi- 
cal interrelation of these concepts with a minimum of direct 
appeal to physical meaning. 

ium X (see Fig. 3.33). This path is a one-dimensional subset 
of X, and so we will be using the line-level interpretation 
of the interaction principle (Sec. 3.2). We let A I  be the 
set of all incident radiometric functions on Pr(X,c), in this 
case all path functions like N*(-,c). We let B1 be the set of 
all path radiances like NT(z,S), where z = x + 5r (see Fig. 
3.33). Then the interaction principle yields an interaction 
operator T such that: 

pr(x9c) in an optical medium in terms of 

We begin by choosing a path Pr(X,€,) in an optical med- 

In the terminology of Sec. 3.16, in particular (15) of Sec. 
3.16, b is now NE.(z,S], a is now N*(*,E), and s is now T. 
The set C is Pr(X,S), and the set B(D) is the set,of all 
path radiance values (non negative real numbers) Nr(z,S) on 
the set U = { (z,c) 1. The measure v is now the length measure 
1 along Pr(X,C). 

/ ,  . , I  . . _  



We call 3 the path radia~tce operator associated with the path 
PPr(X,t;) 
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R f 
R RodiQrnetrically relates two 

directions in a given point 

T Radiorhetrically relates two 
points in o given direction 

FIG. 3.34 

Before closing this Gxample we wish to Point out an in- 
teresting geometrical duality between the path radiance op- 
erator T and the path function operator R. This duality is 
best described in ideographic form in Fig. 3.34. In other 
words, if we interchange the words "directiontf and "point" in 
the description of R, we obtain that of T, and conversely. 

Example 3: The Volume Transpectral Scattering Operator 

We now formulate the definition of an important exten- 
sion of the volume scattering function--the volume transpec- 
tral scattering function. As its name implies this new scat- 
tering function relates incident radiance of frequency v' at 
a poiht x to resultant scattered radiance at x of frequency 
v. In short we shall now consider scattering of flux not only 
from one direction to another, but also from one frequency to 
another. 

The use of the interaction method has been illustrated 
often enough by now so that it will suffice in this and the 
remaining examples to be somewhat less detailed in the expla- 
nations. 
Stage one: Construct a function N,(x; ,v) (the transpec- 

tral path function) at point x in medium X,such 
that its value at 5 is the radiance of frequency 
v generated by inelastic (transpectral) scat- 
tering at x, of an incident radiance distribu- 
tion N(x,=,v'] of frequency v'. This stage cor- 
responds to the definition of the path function 
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using (3) of Sec. 3.12. 

stead of (I), we now have from the interaction 
principle: 

Stage tblO.: Proceeds exactly a5 in Exanple P above. In- 

Ng(x,*,v) = N(x,*,v')B 
The resu1tan.e integral represeatat ion is : 

[ ]aQx;S';&;u',v) dQ[E*l B E131 

The interaction ke.sneE in [Is) is called the votume tranepec- 
traZ acadstering function. This function is a proper general- 
izaeiaa of tibe monochromatic volume sczttering function as 
can be seen by setting v q  = v, 
~ Z ~ ~ F P X Z ~ I Z  Stage foo: Proceeds analogously to Bxmnpls I bur 

now %he incident radiance distributl ons have 
%@a free variables E r  and v', so that the psin- 

lE 

cipEe yi.ePds the operator equation: 

where A is the spectrum. 
the standard transyectral s@atzrPing ope~ator. 

bines w of (14) and Ea of (SI: 

The operator & in (14) is called 
,The undecsmposed transpectrat scateering operator com- 

[ u [ x ; ~ ' ; E ; w ~ ~ ( ~ - ~ ' )  + ;(x;<' ;C;V',V]~ dl{~')dG(&') [XS) id, 
where 6 is the Dirac delta function. The dimensional distinc- 
tion betyeen s and the tw5 a's should be noted. We shall al- 
so call u the votrrme tranopectpat scattexGng function. Oper- 
ator (13) is useful when only a finite number of discrete 
frequency transitions are considered. Operator (14) is a nat- 
ural choice when continuous frequency transitions are con- 
sidered. 

Miscellaneous Examples 

We leave the applications of the interaction principle 
open-ended at this stage and merely list s o ~ e  further possi- 
bilities for consideration by interested students of the sub- 
jest: 
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Path Function Operator for Polarized Radiance (and 
hence the genesis of the volume scattering matrix 
--see Sec. 112 of Ref. [251]). 

(and hence the genesis of the beam transmittance 
matrix--see Sec. 112 of Ref. 12511). 

Time Dependent Operators--the time dependent versions 
of all the kinds of operators considered so far. 
(See (4) of Sec. 3.15 and Sec. 127 of Ref. [251]). 

The Photometric Operators Y[ &,MI, Z( @,MI. 
(13) of Sec. 2.12 and (I) of Sec. 2.13.) 

The Operator C(x). (See Sec. 2.11.) 
The Operators of the MuePler Phenomenological Alge- 

The Path Rsdiance Operator for Polarized Radiance 

(See 

bra (Refs. [192], [193], 11941, and Sec. 137 of 
Ref. [251]). 

3.18 Summary of the Interaction Method 

The interaction method is a method of formulating 
radiafive transfer problems by means of the interaction prin- 
ciple. After some preliminary examples, the steps of the 
method were listed following Example 2 of Sec. 3.4. The metk 
od wad then extQnsively applied throughout the remaining part 
of thd chapter. In this section we summarize the method as 
developed throughout this chapter and include the steps of 
Sec. 3.17 leading to the integral representation of the in- 
teraction operators used in the method. The section concludes 
with some observations on the relative roles played by the in- 
teraction principle in this work and in Ref. [251]. 

Summary of the Interaction Method 

od. Let X be an optical medium and S be a subset of X. Then: 
There are three main stages of the Interaction Meth- 

Isolate the subset S of the opticat msdium. 
If S is concave decide how S is to be con- 
vetified (See. 3.8). 
Enumerate the zncident radiometric quanti- 
ties ai on S. 

Eaumerate the r e q ~ i s i t e  response radiometric 
quantities bj on S. 
j = l,...8n. ISec. 3.2) 
Enumerate the mn operators Sij, 
j l,*..,n> supptied by the znteraction 
prznciple (See. 3.2). 
h i t e  the interaction equations: 

This determinee Aj, 
i = 1 ,...,In. (Sec. 3.2) 

This determines Bj, 

i= 1,. ..,m ; 



Stage 1I.T 

Remarks on the Stages of the Interaction Method 

however, some further aspeczs of the details, of Stage P X  and 
Stage III beyond those covered in Sec. 3.97, remain tct be ab- 
served, As regards Stage IPI, the interaction kernels aris- 
ing in homogeneous plane-parallel media and their governing 
functional rej.ations have been exhaustively studied by Chan- 
drasekhar (Ref. 1431) Further functional relations were given 
in Refs. 1231, [I41 by BePLean and Kalaba for inhomogeneous 
media. The functional relations for the ccrrnplske set of four 
interactions kernels in non homogeneous one-parameter media, 
(i.e., the four reflectance and transmittance functions R and 

Stage 1 was fully illustrated in the present chapter; 
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f 

T) were introduced and derived in Refs. [233] and 12341. 
(See also Sec. 7.1.) The functional relations governing the 
interaction kernel for the general operators d(X;a,b) were 
derived in Ref. 12511. The general procedures for the solu- 
tion of the functional relations governing the operators 
R(a,b) .T(a,b), R(b,a), T(b,a) for general one-parameter opti- 
cal media for d(X;a,b) are given in Chapter 7 of this work. 

Now that the conceptual structure of radiative trans- 
fer theory has been elucidated by the interaction principle, 
and its mathematical foundations established (ref. [ZSl]) it 
remain$ to solve the important mathematical problems of mod- 
ern radiative transfer theory centering around the functional 
relations governing the interaction kernels (see problem VIII, 
Sec. 141 of Ref. [2511). 

One final remark on Stage II must be made. This con- 
cerns the AC property of an interaction measure. If the AC 
property is valid for a given inferaction measure, then the 
interaction kernel of that measure is, according to Theorem 
B of Sec. 3.16, the Radon-Nikodym derivative of that measure. 
In this regard the development of interaction kernels will be 
occasionally simplified if the transmittance-type operators 
are decomposed into their residual and diffuse parts, i.e., 
intb parts which, respectively, describe radiant flux which 
has not been scattered (iee6> beam transmitted) and which has 
been scattered. It turns out that transmittance operators 
for diffuse flux alwaysu have the AC property. (Reflectance- 
type operator% generally have th% AC property outright since 
they describe,only diffuse flux..) The basis for these re- 
marks rests in la, Ib of Sec. 23, Ref. [251], which, in the 
present work, may be taken as basic postulated regularity 
properties of interaction kernels. A model for this proced- 
ure of decomposing operators will be found in Sec. 7.1. The 
decomposition of the light field, which is a natural prereq- 
uisite to the decomposition of interaction operators, can 
easily be done in general since the concept of scattered and 
non scattered radiant flux is now rigorously definable by 
means of the path function and path radiance operators of Ex- 
amples 1 and 2 of Sec. 3.17. This decomposition will be 
studied as a matter of course in Chapter 5. The net result 
of Stage I1 of the interaction method will be that the diffuse 
component of a transmittance operator (rather than the unde- 
composed operator) will be passed on to Stage I11 for the de- 
termination of its kernel. The prototype of this procedure 
may be found in Ref. [43], and in Refs. [234], [235]. 

The Interaction Method and Quantum Theory 

We append here some final observations on the gener- 
al methodology of the interaction method, an observation which 
will point up some points of similarity between the interac- 
tion method and E W O  basic methods of solving dynamical prob- 
lems in classical and modern physics. The observation is de- 
signed to be of especial interest to physicists, rather than 
radiative transferists per se. Nevertheless, since radiative 
transfer is ultimately derivable from quantum mechanics, the 
latter workers may peruse the following with some profit. 

“I . , 



The first point of similarity was noted in the disransskan fnl- 
l w i n g  Example 2 of Sec. 3.4 where a colrparisan was made be- 
tween the Newtonian laws of motion and the interaction princi- 
ple, and note was made of the applicability of the aethtsd to 
Linear hydrodynamics and general wave guide ~~e~~~~~~~~ 
need not repeat it here. The second paint ad cornyarnson ap- 
pears to be even deeper than the first when we note the sirn;. 
larity between the interaction method m d .  the fotmulation rf 
the quantum mechanics of many-state attmic systems. TQ feci:- 
itate the comparison, the reader may con~ult, ~ , g , ,  F92j. 
Here are: the parallel correspondents: ta an atomic ar nolecu- 

idus base states of the atoinic system we pair the set:; cf in- 
cident rand response radiometric quantities [steps (ii) s (iii];+ 
To rhe timiltormian matrix of the atomic systssrn we pair ilks set 
(si-)of interaction operators [step (iv]! To the transitiara 
~ ~ o ~ ~ ~ i ~ ~ t y  equation (the linear superposition 
functions) we pair the interaction equation (stag (v)] I 

the finding of either the HamCXtonian matrir (usang conservz- 
tion laws and 5uxiPiary physical arguments) oar S-matrix, we 
pair the finding of the interaction operato~s [step (vi) and 
Stages II and 111). The m g . ~ t e ~ y  ~f this remarkable similarity 
between the quantw mechanical and radiative transfer formal- 
isms is only apparent and is resolved by noting that each dia- 
cipkine is faundod (for ita own papticulor erpepimemtal rea- 
srzns) on a aed of Iirzeer a u p e ~ p ~ ~ i t i v n  prinoiplea. Hence bath 
methodologies C Q ~ F J  under tha single unifying frairieoork of uea- 
Gprr space tkeo2ye The salient difference between the twa Eor- 
malisms is that the possibility of interference of amplitudes 
exists in quantum theory, whereas inrerfeaence of radiant 
fluxes is ruled out by fiat from radiative transfer theory 
(cf, Sec. 2.2). In the preceding point by point parallelism 
of the mathematics of quantum theory and radiative transfer 
tbsory lie the keys to the solutions of the basic problems II, 
and IV in Ses. 142 of Ref. i254]. It may be nored in passing 
that the applications of the linear interaction principle to 
quantum mechanics, linear hydrodynamics, acoustics, and elec- 
tromagnetic theory, e.g., introduce c~mplex-valud interfer- 
ing amplitudes, and on this level the theoretical and XIUTWTI- 
cal rnerhodologies of all. these fields are strikingly alike. 

We 

lar system we pair an optical ?iledium (step (ZY). To the ipar- 

amplitude 
Ts 

The Interaction Principle as a bleans and as an End 

Throughout this chapter there have been several ac- 
casions to refer to the developments of radiative transfer 
theory in Ref. [251] and in paFticular to the interaction 
principle in that work. A few words may be in order to help 
place in perspective the relative roles of the interaction 
principle in these two works. 

The interaction principle in Ref, [ZSl] was the end 
of a long series of generalizations and abstractions starting 
mainly with the work of Sshuster, on through classical prin- 
ciples of invariance of Ambsrzumian and Chandrasekhar, and up 
through the principle of invariant imbedding sf Bellman and 
Kalaba as applied to transport phenomena, and finally on to 
tho invariant imbedding relation, and the interaction principle 
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itself. It was shown, in particular, how all these principles 
could be deduced from the classical equation of transfer, and 
how the equation of transfer could itself be viewed as a lo- 
cal form of the principles of invariance. Hence, in a word, 
the interaction principle Was viewed in Ref. 12521 a8 an end 
of a set of long conceptual and deductive trails, the main 
traiL starting from Schuster's iniCial insight in 1905. Thus 
in 12511 the roots of interaction principle were established 
in the classical origins of the subject along with electro- 
magnetic and axiomatic bases of the principle. With this in 
mind we have taken the alternate uieo in dhe preaenb chapter . 
that the interaction prinoipte is a basic mean8 of formulating 
radiative transfer theory, a single working principze from 
which the saLient algebraic atxuctures of &he GheoPy may be 
deduced. The thirty-eight enumerated examples throughout this 
chapter, starting in Sec. 3.4 and ending in Sec. 3.17, have 
shown that the interaction principle can indeed be used as a 
starting point for the construction of the principles of in- 
variance on all types of three-dimensional media, the various 
classical interreflection problems of surfaces, the beam 
transmittance function for paths, the classical attenuation 
and scattering functions of the media used in the equation of 
transfer, and the equation of transfer itself. 

Conclusion 

In sum, then, the work of the monograph [ZSl] consti- 
tuted a necessary prerequisite for the establishment of the 
interaction principle. The present work no longer views the 
interaction principle as an end of research but rather as a 
means of application and a source of new research in.radiative 
transfer theory and general linear transport theories (even 
beyond radiative transfer, as in hydrodynamics, acoustics, e. 
m. wave propagation, etc.). The first application of the in- 
teraction principle was to the development of the discrete- 
space theory of radiative transfer in Ref. [251]. These ap- 
plications are continued in this chapter, and the following 
chapters of the present work. 

3.19 Bibliographic Notes for Chapter 3 

The interaction principle as given in Sec. 3.2 was 
first formulated in Ref. [ZSl], the end result of an extended 
series of generalizations. A historical sketch of the evolu- 
tion of the main lines of radiative transfer theory (not its 
manifold applications) which are pertinent to the interaction 
principle is given cumulatively in the bibliographic notes 
for the chapters in Ref. [251]. The formulation of the inter- 
action method, as summarized in Sec. 3.18, is new. 
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