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Biomedical researchers usually describe their experimental results in research 

publications. With the rapid growth of biomedical publications, the information of 

interest needs to be extracted automatically to avoid the time consuming and labor 

intensive process.  

 

In this dissertation, we seek to help in the process of gene related annotations, 

by extracting the unstructured information buried in the literature and providing means 

to structure the extracted information. We start by recognizing gene names in the 

literature and linking them to database records. Based on this work, we develop a 

system which automatically selects articles that are about a specific UniProt protein 

entry. Next, we describe our approach for mining information related to another 

important bio-named entity, protein complex. Finally, we present our work on 

assisting the curation of gene annotation.  

 

In each of these tasks, we conduct experiments to evaluate the efficacy of our 

approaches. The results show that our systems achieve good performances, and can be 

used to assist the annotation process related to genes.  

 

ABSTRACT 
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INTRODUCTION 

1.1 Motivations and Contributions 

 

Most biological experimental results are described in published literature. 

Researchers need to find the information of their interest from the research literature in 

order to conduct and interpret their own experiments. However, with the rapid growth 

of biomedical publications, molecular biology has become an information-saturated 

field. Manually extracting information from the literature usually is a time consuming 

and labor-intensive process. As a result, a major focus of bioinformatics research is to 

automatically extract information from published literature, using text mining 

techniques. 

 

Named entity recognition (NER, a task to recognize entities mentioned in 

natural language text) and relation extraction (a task to identify relations between the 

recognized entities) are two common tasks in the biomedical text mining field. They 

both extract the unstructured information buried in the literature, and provide a means 

to structure the extracted information, such as putting it into databases. In my 

dissertation, I will present my work on the recognition and normalization for two 

important bio-named entities, genes and protein complexes. I will also describe my 

work on assisting the annotations of these two entities, which is based on relation 

extraction. 

Chapter 1 
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This dissertation’s focus reflects the primary importance genes and their 

products play and their importance in biological and medical studies. In order to 

comprehensively annotate gene/protein records and to support queries from biologists 

from a variety of backgrounds who may use different names to refer to a gene/protein 

of interest, curators of knowledge bases, such as UniProt Knowledgebase 

(UniProtKB) [1], need to capture the full range of names and symbols by which a 

protein/gene is known. Automatic detection of gene/protein names in the literature and 

their linkage to database records, also known as gene normalization (GN), is being 

developed as an alternative to the time-consuming practice of manual extraction of 

names. GN has become an essential component of many text mining systems and 

database pipelines. For example, our group uses GN of kinase and substrate mentions 

to integrate phosphorylation information from the text mining tool RLIMS-P [2] into 

iPTMnet [3], a bioinformatics resource for protein post-translational modifications. 

 

Despite the large body of work [4, 5, 6, 7, 8, 9, 10, 11, 12] conducted in gene 

normalization, it remains inadequate for certain taxonomic groups, particularly plants. 

This is an initial motivation to work on this task. We developed a gene normalization 

system, called pGenN (pivot-based Gene Normalization) [13]. The system consists of 

three steps: dictionary-based gene mention detection, species assignment, and intra 

species normalization. It accounts for the naming conventions for genes in plant 

species, however, the notions and approaches developed in pGenN is generalizable to 

any species. For evaluation purposes, we had to develop our own curated literature 

corpora due to the non-availability of annotated plant literature in existing corpora. 
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Evaluation using these data sets, shows that our system achieved state-of-art 

performance on abstract level plant gene normalization. Additionally, we applied 

pGenN on all plant-related Medline abstracts. The results, which are updated monthly 

in sync with PubMed, are stored in a local database called pGenN_DB. To make these 

results accessible to the community, we developed a web interface 

(http://biotm.cis.udel.edu/gn) for multiple modes of querying and downloading of 

results. In addition to developing the best performing GN system on plant literature, 

our work also contributes in two aspects: (1) it introduces the notion of pivot that can 

be used in other named entity recognition and normalization tasks; and (2) the 

development of a method to automatically generate a large corpus can be generalized 

for other types of entities as well as for other specific sub-domains. Techniques here 

may also be applicable for distant supervision for development of NER tools. 

 

We have continued our work to GN in full length articles and focus on the 

species assignment process of genes in the results section. Based on our study, this 

process is different from normalizing genes in the abstract, while other techniques that 

have been introduced in abstract level gene normalization are still directly applicable 

to full length articles. We showed that our approach on species assignment of genes in 

the results section yields good performance. Our approach can be distinguished from 

previous approaches because it treats different full length article sections differently, 

especially the results section from the abstract. We believe that this idea can be fruitful 

for other text mining tasks applied on full length articles. 
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A second aspect of this dissertation concerns extending computationally 

mapped bibliography for UniProtKB. UniProtKB is a publicly available database with 

access to vast amount of protein sequence and functional information. Articles used in 

the annotation of information for proteins are associated from the protein’s entry. 

Rather than curating all articles about a given protein, UniProt chooses a 

representative set that maximizes the information content. Thus, an article related to 

one UniProt entry with potential useful information content may not have been 

included in that entry. Furthermore, UniProt focuses the curation effort on the most 

widely studied species, therefore some organisms for which experimental data may be 

available are not actively annotated. To complement the curated literature set in 

UniProtKB/Swiss-Prot with additional publications and to add relevant literature to 

UniProtKB/TrEMBL entries that have not yet been curated, UniProt compiles 

additional bibliography from external sources. 

 

We developed a system to automatically select articles that are about a specific 

UniProt protein entry, and suggest these articles to the entry as additional 

bibliographies. The system employs a 2-stage process: (1) using pGenN to detect plant 

gene/protein mentions in a given abstract and normalize them to UniProt entries, and 

(2) utilizing a trained model, to predict whether the abstract is about a gene and hence 

should be linked to the UniProt entry for that gene. Evaluation results showed that our 

system obtained very high precision, thus can be used to meet the need of suggesting 

additional bibliographies for UniProt. Our notion of aboutness can be extended for 

other types of entities and in general be used for other tasks, such as ranking articles in 

the information retrieval tasks. We have conducted the full-scale processing of 
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PubMed for 8 common plant species for suggesting UniProt accession-PubMed ID 

pairs to UniProt. The literature collected by our system has already been integrated in 

the UniProt production of computationally mapped literature. It is updated every three 

months and can be accessed via the UniProtKB protein entries enhanced view of 

publications. So far, over nine thousand UniProt accession-PubMed ID pairs have 

been suggested of which nearly four thousand were not previously found in UniProt. 

 

So far, we have introduced our work related to genes/proteins (as in most gene 

related text mining tasks, we do not distinguish gene from protein). Since proteins 

often function as components of larger complexes to perform a specific function [14], 

and some molecules exist only in certain types of complex (e.g. collagen type I, EBI-

2325312) [15], it is important to apply text mining techniques to mine protein complex 

related information. The next part of this dissertation focuses on this aspect.  

   

Protein Ontology [16], Complex Portal at IntAct [15] and CORUM [17] are 

some well-known resources which containing information about protein complexes. 

Entries for individual complex in these resources commonly include the protein 

complex name and its synonyms, the species and the component proteins of the 

complex. These types of information are usually obtained from individual experiments 

published in scientific articles, rather than from the high-throughput experiments data 

[17]. Currently, the coverage of protein complex in these resources is limited, and 

most of the included information focuses on a few species. For example, there are only 

1905 protein complex entries in Complex Portal (07/2017 release), 570 entries are 

from Homo sapiens (NCBI Taxonomy ID: 9606), 531 from Mus musculus (10090), 
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424 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (559292), with the 

remaining 380 from 15 other different species. 

 

We conducted our work on three subtasks that are intended to assist in the 

improvement of the coverage in these resources: (I) protein complex mention 

recognition, (II) protein complex-component relation extraction, and (III) protein 

complex component-component relation extraction. 

 

Although several systems have been developed for recognizing bio-named 

entities such as genes and diseases, as far as we are aware, there is no system publicly 

available for protein complex mention recognition. Due to the limit of coverage in the 

current protein complex resources, we did not work on the normalization task, but 

instead try to assist in the improvement of the coverage in these resources. Since the 

annotation of a protein complex requires its components information, detecting the 

relation between protein complex and protein will be helpful for complex annotation 

(Of course, this information will also help with the annotation of the protein). 

Frequently, complex formation can be found without the name of the protein complex. 

In these cases, we will extract the protein complex component and component 

relation. Similar to the complex-component relation, extraction of the component-

component relation will also assist the annotation for both the protein complex and the 

protein. 

 

Evaluation results show our system for protein complex mention recognition 

achieves good performance. Since there is no system publicly available for protein 
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complex recognition, our system will be the first one to serve the community. In this 

task, we create a dictionary of protein complex names by extracting protein complex 

names from the literature using high confidence. This idea can also be used in other 

situations when a dictionary of names needs to be created. For the two complex related 

relation extraction tasks, we have shown that our approaches achieves very high 

precision. Thus, we believe our work on the three subtasks can provide high 

confidence text evidence for the protein complex resources, and can be used to assist 

in the improvement of the coverage in these resources. 

 

The final part of the dissertation focusses on assisting the curation of gene 

annotation. The first part of the work on GN is an essential step for curation of gene 

annotation since allow us to identify the places where a gene is mentioned in the 

literature. Further work on the mining of protein complex related information can be 

used for the curation of the proteins for complex formation information. Extending 

this part, we consider the annotation for one of the domains of gene annotations.  

 

The Gene Ontology (GO) [18] is a resource that supplies information about 

gene product function using ontologies to represent biological knowledge. These 

ontologies cover three domains: (I) Cellular Component (CC), the parts of a cell or its 

extracellular environment; (II) Molecular Function (MF), the elemental activities of a 

gene product at the molecular level, such as binding or catalysis; and (III) Biological 

Process (BP), operations or sets of molecular events with a defined beginning and end, 

pertinent to the functioning of integrated living units (cells, tissues, organs, and 

organisms). GO annotation is a process which assigns gene functional information 
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using GO terms to relevant genes in the literature. It is a common task among the 

Model Organism Database (MOD) groups. Manual GO annotation relies on human 

curators assigning gene functional information using GO terms by reading the 

biomedical literature. This process is very time-consuming and labor-intensive. As a 

result, many MODs can afford to curate only a fraction of relevant articles [19]. 

 

Many systems have been developed for automatic GO annotation [20, 21, 22, 

23, 24, 25, 26]. Despite the fact that there are three types of GO terms (CC, MF, and 

BP) and the kind of textual evidences for each type are different, current approaches 

for automatic GO annotation tend to use a single approach for annotations of all types 

of GO terms. In contrast, we treat annotation with different types of GO terms as 

individual subtasks, where we cast each subtask as relation extraction between gene 

and other entities. Since our previous work covers the mining of protein complex 

related information, and protein complex falls into the CC domain, in this work, we 

consider annotating genes using GO terms from the CC domain. 

 

GO terms from the CC domain can be essentially divided into two sub-

hierarchies: subcellular location terms, and protein complex terms. We believe that we 

can assist in the curation of the annotation process using GO terms from these two 

sub-hierarchies by considering two relation extraction tasks: (1) extract cases where a 

protein is found to be in a subcellular location, and (2) extract cases where a protein is 

a subunit of a protein complex. We tested our approach on the BC4GO test set [27], 

and evaluation results show that our approach achieves very high precision. Thereby 
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we believe our system can be used as a useful tool for the bio-annotators to accelerate 

the process of GO annotation. 

 

1.2 Dissertation Overview 

 

In Chapter 2, we introduce related work and concepts necessary for 

understanding the work presented in this dissertation. Chapter 3 discusses our 

approach for gene normalization. In Chapter 4, we present our system automatic 

identify additional bibliography for given UniProt protein entries. Chapter 5 reports 

our work for mining protein complex related information. Both protein complex 

mention recognition and two protein complex-associated relations (complex-

component relation, component-component relation) extraction are discussed. Chapter 

6 discusses our approaches for gene annotation using GO term from one particular 

domain, Cellular Component. In Chapter 7 we summarize this dissertation and outline 

directions for future work. 
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RELATED WORK 

This chapter introduces related work and concepts necessary for understanding 

the works presented in this dissertation. Section 2.1-2.3 are concerned with named 

entity recognition and normalization, describing related works in the gene mention 

task, the gene normalization task and other biomedical named entity recognition and 

normalization tasks respectively. Section 2.4 introduces works on biomedical relation 

extraction. Finally, works related to application of text mining to Gene Ontology 

annotation are discussed in Section 2.5. 

 

2.1 Gene Mention Recognition 

 

The task of gene mention (GM) recognition is to automatically recognize 

gene/protein names mentioned in text. This task has received wide attention, and has 

been used in several challenge evaluations such as BioCreative I [28] and BioCreative 

II [29]. Other annotated corpora have also been constructed for system development 

and evaluation purpose. 

 

There are several challenges of the gene mention recognition task. (1) the 

number of gene names are in the millions and new names are created continuously. (2) 

Chapter 2 
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Name variations: Authors usually do not use proposed standardized gene names. (3) 

Polysemy: gene names often also refer to other entities such as disease names. 

 

As is typical in gene mention/normalization literature, we do not differentiate 

between names of genes or their protein products. 

 

2.1.1 Gene Mention Recognition systems 

 

Approaches to gene mention recognition can be categorized into two major 

classes: (1) rule-based approaches and (2) machine learning-based approaches. 

 

While rule-based gene mention recognition approaches do not require 

annotated data to train a system, they do require domain experts to be closely involved 

in developing the rules. The following three systems are examples of gene mention 

detectors that rely on manually developed rules.  

 

Hanisch et al. [30] presented a dictionary matching based system that detects 

fly, mouse and yeast gene names from biomedical text. Fukuda et al. [31] proposed a 

method which incorporates two new concepts called c-term (a concept based on 

orthography) and f-term (a concept that is based on terms that correspond to types of 

biological entities) (details about those two terms will be introduced later in the Gene 

Normalization chapter). Narayanaswamy et al. [32] developed a system which extracts 

multiple types of named entities including gene names. Their system is based on a 

manually developed set of rules that rely upon some crucial lexical information, 
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linguistic constraints of English, and contextual information and develop the notion of 

c-term and f-term in named entity recognition. 

 

The machine learning-based gene mention recognition approaches require 

annotated data to train a system. Thus, domain expertise is now required in the 

development of the data annotation and less during the system training. 

 

In the machine learning-based gene mention recognition approaches, the gene 

mention recognition task is often treated as a sequence labelling problem (label the 

tokens in the text using the tags). BIO (or IO) tags for the text are commonly used to 

represent the boundaries of gene mentions where B represents the beginning of the 

gene name in text, I is assigned to a token inside the gene mention and O is assigned 

to token that are outside the gene mentions. 

 

Among the machine-learning based systems, BANNER [33] is widely used for 

recognizing biomedical named entities including gene mentions. It is based on 

conditional random fields and applied orthographic, morphological and shallow syntax 

features. Liu et al. [34] trained a classification system using Conditional random field 

(CRF) [35] to classify each word in the literature to the BIO tags. They applied 

BioThesaurus [36], a comprehensive collection of gene names to entries in the UniProt 

Knowledgebase, for dictionary lookup and used the matching information as a feature. 

Huang et al. [37] considered the gene mention task as a classification problem and 

applied support vector machine (SVM) [38] to solve it. Chen et al. [39] proposed a 

gene mention recognition system for biomedical literature using a dictionary and 
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Support Vector Machine. Zhou et al. [40] proposed an ensemble of classifiers for gene 

mention recognition. They combined three classifiers, one Support Vector Machine 

and two discriminative Hidden Markov Models using a simple majority voting 

strategy. Other machine learning based gene mention systems can be found in [41, 42, 

43, 44, 45, 46, 47, 48, 49, 50, 51]. 

2.1.2 Gene Mention Recognition corpora 

 

High quality gene mention corpora are important for the development of any 

type of gene mention recognition system. Even for the rule-based system, more 

accurate rules can be made by analyzing the instances in the corpora.  

 

The GENIA corpus [52] is a collection of 2000 abstracts extracted from 

Medline database. Multiple biomedical named entities, including gene names, are 

annotated. It is focused on a subset of human hematology. The PennBioIE corpus [53] 

consists of 1414 Medline abstracts on cancer. 24 types of biomedical named entities, 

including gene names, are annotated. The BioCreative 1 GM corpus [28] contains 

15,000 sentences from Medline abstracts. Genes and related entities mentions are 

annotated. The BioCreative 2 GM corpus [29] contains 20,000 sentences from 

Medline abstracts (15,000 of which were used previously in BioCreative 1). 

 

2.2 Gene Normalization 
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The task of gene normalization (GN) is to automatically link a gene mention to 

a database entry for the gene (product). 

 

Other than the challenges stated in the gene mention recognition task, the 

challenges for the gene normalization task also include: (1) identifying the species for 

the gene mentions since most gene (product) knowledge bases contain species-specific 

entries, and (2) disambiguation since multiple gene entries may share the same short 

name (symbol). 

 

2.2.1 Gene Normalization systems 

 

The following were the top performing systems in the BioCreative I [54] and 

BioCreative II [55] Challenge GN Tasks. ProMiner [5] is a dictionary-based GN 

system which is characterized by the inclusion of different biomedical dictionaries and 

manual clean-up of a dictionary. BioTagger [4] tackles the GN problem with the steps: 

(1) dictionary lookup to obtain a list of mapping pairs of gene mention and database 

identifier, (2) machine learning that considers features such as the gene mention 

recognition, name ambiguity, and token shape information, and (3) a similarity based 

method to associate Entrez gene records with phrases detected by the gene mention 

tagger. GNAT [6] is a GN system encompassing four steps: named entity recognition 

for genes and species, validation of gene mentions, correlating gene mentions with 

species, and finally gene mention disambiguation. GeNo [7] tackles the GN problem 

by employing a carefully crafted suite of symbolic and statistical methods. 
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In BioCreative III [56], the GN task was further extended to cover genes of all 

relevant species in the literature corpora. Among the systems, Bhattacharya et al. [8] 

tried to associate a species name with a gene name by considering their proximity to 

the gene mention. Dai et al. [9] employed a multistage GN procedure and selected 

dictionary entries from only the top 22 most common species in NCBI (from 7283 

species) to speed up the GN process. A document-level gene normalization system, 

called GeneTUKit [10], employed features from the local context as well as the global 

context of the whole full-text article. GenNorm [11] follows three steps: gene name 

recognition, species assignment, and species-specific gene normalization, and uses 

SR4GN [57] for assigning species to gene mentions. GenNorm has been widely used 

in text mining systems that require GN, such as in PubTator [58] and in an event 

extraction pipeline [59]. GNormPlus [12], as an updated version of GenNorm, refined 

the gene mention process by training the mention recognizer on a new corpus with 

gene, gene family and protein domain annotations. It also integrates several advanced 

text mining techniques, including SimConcept for resolving composite gene names. 

 

2.2.2 Gene Normalization corpora 

 

High quality gene normalization corpora are important for the development of 

any type of gene normalization system.  

 

The BioCreative I gene normalization corpus [54] and the BioCreative II gene 

normalization corpus [55] focused on the GN task for yeast, fly, and mouse genes and 

human genes respectively. Both of these corpora annotate gene mentions found in 
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abstracts. In contrast, the BioCreative III gene normalization corpus [56] annotates full 

length articles and is not limited to specific species. 

 

The BioCreative I gene normalization corpus consists 15,000 abstracts for 

training, 468 abstracts for developing, and 750 abstracts for testing. All these abstracts 

are annotated in abstract level, not mention level (only a list of database identifiers is 

given for each abstract, without any location information). No corresponding gene 

name in the abstracts for the database identifier is provided in this corpus. The 

BioCreative II gene normalization corpus consists 281 abstracts for training, and 262 

abstracts for testing. All these abstracts are also annotated in abstract level, but the 

corresponding gene names in the abstracts are given for each database identifier. The 

BioCreative III gene normalization corpus consists 32 fully annotated articles and 500 

partially annotated articles for training. For testing, it provides 50 articles as gold 

standard and 507 articles as silver standard. 

 

2.3 Other Biomedical Named Entity Recognition and Normalization 

 

There has been considerable interest in the detection and normalization of 

other types of biomedical entities such as diseases, chemical compounds and drugs. 

The issues tackled and approaches taken in these fields are similar because of the 

nature of the tasks and some ideas and concepts found in these works may be helpful 

to adopt for our work on gene mention detection and normalization. 
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2.3.1 Other Biomedical Named Entity Recognition 

 

tmChem [60] is a chemical named entity recognition system created by 

combining two Conditional random field (CRF) models in an ensemble. The two 

models in the system used different tokenization methods, feature sets, CRF 

implementations, CRF parameters. Lu et al. [61] developed a chemical named entity 

recognition system based on mixed CRFs with word clustering. Lowe et al. [62] 

proposed a system for chemical entity recognition based on grammar and dictionary. 

Their system uses a mixture of expertly curated grammars and dictionaries, as well as 

dictionaries automatically derived from public resources. 

 

Chowdhury et al. [63] presented a CRF based approach for disease mention 

recognition. The features they used include disease specific contextual features, 

orthographic features, general linguistic features, syntactic dependency features and 

dictionary lookup features. Kaewphan et al. [64] developed a system for disease 

mention recognition. Their system was based on an existing named entity system, 

NERsuite, supplemented with UMLS dictionary features. 

 

Other biomedical named entity recognition systems can be found in [65, 66, 

67, 68, 69]. 

 

2.3.2 Other Biomedical Named Entity Normalization 
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Leaman et al. [60] paired their chemical named entity recognition system with 

a dictionary approach for normalization. They used a dictionary of chemical entities 

and their names that was collected from MeSH and ChEBI. DNorm [70] is a disease 

normalization system, which uses a linear model to score the similarity between 

mentions and concept names. DNorm has an interesting approach of learning term 

variation directly from training data. Kaewphan et al. [64] developed a disease 

normalization system, which was based on their disease mention system. They 

combined compositional word vector representations with CRF to map the recognized 

mentions to the UMLS concepts. Other biomedical named entity normalization works 

can be found in [71, 72, 73, 74]. 

 

2.4 Biomedical Relation Extraction 

 

 Biomedical relation extraction is a task to identify relations between entities 

mentioned in natural language texts. Significant research efforts have been made in 

various tasks on this topic, e.g., extraction of protein subcellular localization in 

BioNLP shared task 2009, 2011, and 2013 in the Genia track [75, 76, 77], protein-

protein interaction in BioCreative II and II [78, 79]. Rule based and machine learning 

based methods are two kinds of commonly used methods for biomedical relation 

extraction. 

 

2.4.1 Rule based Relation Extraction Systems 
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BioSEM is a rule based system for extraction of protein subcellular 

localization event, it generates patterns automatically from training data [80]. RLIMS-

P is a system specifically designed to extract protein phosphorylation information on 

protein kinase, substrate and phosphorylation sites from biomedical literature [2]. 

Nebhi developed a system which uses linguistic information provided by syntactic 

parsers [81]. miRTex is a text mining system that uses lexico-syntactic rules to extract 

miRNA-target, miRNA-gene and gene-miRNA regulation relations [82]. Peng et al. 

[83] developed a system for the detection the protein-protein interaction. The system 

utilizes extended dependency graph (EDG), an intermediate level of representation 

that attempts to abstract away syntactic variations in text. Other rule based relation 

extraction systems can be found in [84, 85, 86, 87, 88]. 

 

2.4.2 Machine Learning based Relation Extraction Systems 

 

EVEX uses support vector machine with various lexical and syntactic features to 

extract the Protein subcellular localization event [89]. Liu et al. developed a system for 

biomedical event extraction. The system is based on a pairwise model that transforms 

the problem of trigger classification to a multi-label problem [90]. TEES 2.1 is a SVM 

based system for the extraction of events and relations. It uses an automated 

annotation scheme, which derives task-specific event rules and constraints from the 

training data, and uses these to automatically adapt the system for new corpora [91]. 

Miwa et al. [92] propose a method to combine kernels based on several syntactic 

parsers for the extraction of PPI. Other machine learning based relation extraction 

systems can be found in [93, 94, 95, 96, 97]. 
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2.5 Gene Ontology Annotation 

 

The Gene Ontology (GO) project is a collaborative effort to address the need 

for consistent descriptions of gene products across databases. It has developed three 

structured ontologies that describe gene products in terms of their associated 

biological processes, cellular components and molecular functions in a species-

independent manner [18]. 

 

Manual Gene Ontology annotation is very time-consuming and labor-intensive 

[98]. Hence there has been interest in developing automatic systems to assist curators. 

BioCreative IV [19] defines the Gene Ontology Annotation task as automatically 

assigning gene functional information using GO terms to relevant genes in the 

literature. 

 

2.5.1 Gene Ontology Annotation systems 

 

Automatic Gene Ontology Annotation involves three main steps: (1) location 

of text passages in the literature that can be used as evidence for GO term assignment 

for a gene (product), (2) gene normalization, and (3) prediction of GO terms for 

relevant genes. Since gene normalization can be treated as an independent task, the 

discussion of GO annotation systems can focus on the remaining two tasks.  

 

Zhu et al. [20] presented a system for GO Annotation. They trained a logistic 

regression model to detect GO evidence sentences, and developed a search-based 
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approach to predict GO terms based on the GO evidence sentences. Li et al. [21] built 

a binary classifier to identify evidence sentences, and developed an information 

retrieval-based method to retrieve the GO term which is most relevant to each 

evidence sentence. This method was based on a ranking function that combined cosine 

similarity and the frequency of GO terms in documents, and also used a filtering 

method based on high-level GO classes. Gaudan et al. [22] introduced a method for 

automatic identification of GO terms in natural language text. Their work was based 

on considering the proximity between the words occurring in text and the information 

content of the GO terms. Couto et al. [23] presented a system called GOAnnotator that 

automatically identifies evidence text in literature for GO annotation of 

UniProt/Swiss-Prot proteins. Emadzadeh et al. [24] proposed an approach for finding 

GO terms for different genes in an article. Their approach was based on distributional 

semantic similarity over the GO terms. Tuan et al. [25] introduced an approach using 

the GO cross products as the GO term representation to recognize GO terms in text. 

Chen et al. [26] proposed a rule based GO evidence sentence retrieval systems based 

on a set of rule patterns. 

 

2.5.2 Gene Ontology Annotation corpus 

 

The BC4GO corpus [27] is a publicly available corpus for the Gene Ontology 

Annotation task, it provides GO annotations for each full text article, and evidence 

sentences for each GO annotation. This corpus contains 200 full-text articles for 1356 

distinct GO terms. Among these 200 full-text articles, 100 are used for training, 50 are 

used for development, and the rest 50 are used for testing. 



 22 

GENE NORMALIZATION 

3.1 Introduction 

 

A major focus of modern biological research is to link big data to knowledge 

[99], which requires tools to provide structure to information in unstructured sources 

such as the scientific literature. One barrier to structured representation of information 

in the literature is the highly complex nature of the nomenclature of genes and 

proteins. Multiple names and symbols are frequently used to refer to the same entity, 

and conversely, a given name or symbol can refer to multiple entities.  

 

In order to comprehensively annotate gene/protein records and to support 

queries from biologists from a variety of backgrounds who may use different names to 

refer to a gene/protein of interest, curators of knowledge bases, such as UniProt [1], 

need to capture the full range of names and symbols by which a protein/gene is 

known. Automatic detection of gene/protein names in the literature and their linkage 

to database records, also known as gene normalization (GN), is being developed as an 

alternative to the current time-consuming practice of manual extraction of names and 

has become an essential component of many text mining systems and database 

pipelines. For example, PubTator, which uses GNormPlus, incorporates GN to assist 

curation of genes in PubMed abstracts. Our group also uses GN of kinase and 

substrate mentions to integrate phosphorylation information from the text mining tool 

Chapter 3 
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RLIMS-P [2] into iPTMnet [3], a bioinformatics resource for protein post-translational 

modifications. GN also enables semantically refined literature searches [100] (e.g. 

retrieval of literature for a given protein in a particular taxon group), Thus, efficient 

and reliable GN systems can play a key role in the effort to link big data to knowledge. 

 

Despite large body of work has been done, as shown in the related work 

chapter, gene normalization continues to be inadequate for certain taxonomic groups, 

particularly plants, where (i) there is a lack of common standard nomenclature across 

species [101-106], (ii) locus or ORF species-specific names are frequently used, and 

(iii) there is a high frequency of ambiguity in gene names because of the high number 

of paralogs in multigene families. Thus, we first conducted our experiments on plant 

related literatures. We developed a gene normalization system, called pGenN (pivot-

based Gene Normalization) [13]. Although it incorporates notions that are not specific 

to any species, the system was initially tailored to normalizing plant genes. 

Additionally, the system was designed to work on abstracts. For evaluation purposes, 

we had to develop our own curated literature corpora due to the non-availability of 

annotated plant literature in existing corpora. Evaluation using these data sets, shows 

that our system achieved state-of-art performance on abstract level plant gene 

normalization. 

 

We applied pGenN to all plant-related Medline abstracts to test its scalability. 

The results, which are updated monthly in sync with PubMed, are stored in a local 

database called pGenN_DB. The pre-processed results are publicly available via a web 

interface for multiple modes of querying and downloading of results. 
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Finally, pGenN was extended to full length article. The focus of this extension 

was on the species assignment process of genes in the results section. We show this 

component yields good performance. 

 

3.2 Methodology 

 

In this section, I will describe our approaches used in pGenN for plant gene 

normalization. The overall architecture of pGenN is shown in Figure 3.1. The input 

text in Medline abstract format is broken up into sentences and then into individual 

tokens. Potential gene name candidates are first identified using a dictionary lookup. 

Next, a context-based disambiguation component decides which of these candidates 

correspond to actual gene mentions. Then, a species is associated with each detected 

gene mention. Using different features gathered from text and dictionary, pGenN 

completes the normalization process by assigning an identifier for a species-specific 

gene in the dictionary among those that matched the name found in the text.  
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Figure 3.1 pGenN system architecture 

3.2.1 Text Preprocessing 

 

Given a list of PMIDs, the titles, abstract text, and the MeSH terms are 

extracted for each PMID. We use an in-house developed tool to split the abstract text 

into sentences and then tokenize the sentences. This tokenization is based entirely on 

orthographic features such as the combination of lowercase followed by uppercase 

letters or presence of numerals and symbols. For example, terms such as AtAur1 and 

Mn(2+) are tokenized as “At Aur 1” and “Mn ( 2 + )” respectively. We then use an in-

house developed tool to tag noun phrases in each sentence. 

 

3.2.2 Using Dictionary to Determine Gene Mention Candidates 
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Many existing gene mention recognizers (e.g., BANNER [33]) do not use a 

dictionary-based approach. For example, BANNER uses conditional random fields 

(CRF) [35] with orthographic, morphological and shallow syntax features. In contrast, 

we use a dictionary-based approach for the gene mention task. Dictionary matching is 

an essential part in the gene normalization task since the task of gene normalization is 

to link gene mentions with identifiers included in the dictionary. So even if a GN 

system uses a system such as BANNER to detect gene mentions, it would still need to 

match the detected mentions with a gene dictionary for normalization. Additionally, 

using a dictionary for gene mention detection avoids the problem of false negatives 

produced by the gene mention systems. Similar points have been observed earlier by 

others, e.g., Verspoor et al. [107]. 

 

We create a plant gene dictionary based on the UniProt database. UniProt 

protein entries contain protein accessions (ACs), protein names and gene names. Our 

dictionary is created by downloading all entries for all plant proteins in UniProt (latest 

update based on the 2017_05 release). Similarly to others who have built gene 

mention detection or normalization tools, we do not distinguish between genes and 

their protein products. Hence, we collected both gene and protein names from UniProt 

for all the plant gene/proteins. Each entry in the dictionary contains additional 

information, such as its species and synonyms (alternate names), along with the name.  

 

While gene names from UniProt are taken directly, protein names are further 

processed to extract parts that are likely to be found in text. Consider the protein name 

“Pre-mRNA-splicing factor SLU7” (UniProt AC A2YQU8). In addition to the original 
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name, we also include the shorter version “SLU7” in the dictionary as they are often 

found in the abstract text without the preceding “descriptive” part. In order to split the 

full name into these two parts, we look for protein names in a specific pattern: “word1 

word2 … wordN f-term c-term”. The notions of c-terms and f-terms were introduced 

in [31] and further developed in [32]. An f-term comes from a small list of words such 

as gene, protein, factor and enzyme, which indicate that the entity is a gene or its 

product. Table 3.1 shows the regular expression we used for identifying gene f-terms. 

A c-term, on the other hand, is characterized by the presence of orthographic features 

such as capital letters, numerals and special prefix symbols, which indicates that the 

term is not a typical English word but likely to be a name. 

 

Table 3.1: Regular expression for identifying gene f-terms 

/(gene|protein|factor|kinase|[^abehiou]ase|oncogene?|binder|globulin|tubulin|le

ctin|galectin|globin|tinin|matin|ietin|tropin|zyme|kine|leukin|nogen|receptor|enz

yme|hormone|protease|permease|nuclease|oncogene)$/ 

 

UniProt contains two types of entries: reviewed (Swiss-Prot) and unreviewed 

(TrEMBL). The reviewed entries are curated by domain experts with information 

extracted from literature and curator-evaluated computational analysis and are 

assumed to be of high quality. Proteins and gene names in the reviewed entries include 

recommended name and synonyms from the literature and nomenclature standards, 

plus locus names and open reading frame names (ORFs) for gene names. The 

unreviewed entries, on the other hand, contain protein sequences (e.g., from 

translation of sequences in GenBank [108]) associated with computationally generated 
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annotation and large-scale functional characterization. These entries have not been 

curated by human annotators. Protein and gene names in unreviewed entries come 

from direct submissions, propagation of annotation rules developed by UniProt, or 

other external sources. UniProt coverage for plant proteins in the reviewed section is 

limited; as an example, there are only 446 entries for tomato proteins in the reviewed 

part, but 37,386 entries from this species in the unreviewed part. Thus, we also 

considered including gene and protein names from unreviewed entries in UniProt. A 

quick analysis of some unreviewed entries suggested that while the gene names were 

acceptable, the protein names should be used with caution because they are often very 

general. For example, in the unreviewed entry UniProt AC B6SS10, the Submitted 

(protein) full name is “Receptor kinase”. Using such names would lead to too many 

non-specific matches. As discussed above, the fact that the name ends with an f-term 

indicates that it is likely to be a generic name description rather than a specific name. 

Thus, from the unreviewed entries, we extract all gene names and only those protein 

names that include c-terms. 

 

To discuss the organization of the names in the dictionary, we first consider 

how a name like AtAur1 is stored. Every name extracted from UniProt is tokenized 

into three parts that we call the prefix, the pivot, and the suffix. The prefix represents 

the species, in this case, ‘At’ for Arabidopsis thaliana. A number of plant species 

follow a similar convention to indicate the species (two-letter abbreviation with the 

first letter uppercase and the second letter lowercase), but it is not universal. Several 

alternatives can be found in Table 3.2. The suffix includes numbers or Greek alphabet 

letters (or single uppercase alphabet letters corresponding to common Greek alphabet 
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letters) that are found at the end of the names. We call the remaining part between the 

prefix and the suffix the pivot. Thus, in this case, ‘Aur’ is the pivot. 

 

Table 3.2: Plant species prefix conventions 

2 letter-prefix First letter is upper case and second is lower case. e.g., “At” 

for “Arabidopsis thaliana”, “Os” for “Oryza sativa”. 

3 letter-prefix Only for Brassica species. First letter must be upper case “B”, 

which is short for “Brassica”. Second and third letters are 

lower case. e.g., “Bra” for “Brassica rapa”, “Bni” for 

“Brassica nigra”. 

4 letter-prefix For Latin binomial. The symbol for a binomial consists of the 

first two letters of the genus, plus the first two letters of the 

specific epithet. e.g., “PASM” for “Pascopyrum smithii”. 

5 letter-prefix All the letters must be upper case, and the first three letters 

must be “VIT”. e.g., “VITVI” for “Vitis vinifera”. 

 

The dictionary is organized hierarchically into three layers, as shown in Figure 

3.2. At the top are nodes that are labeled with pivots. These pivot nodes have multiple 

child nodes where each child node corresponds to a different suffix. Each suffix node 

(together with its parent pivot node) corresponds to a specific gene name and has as 

children UniProt AC nodes. 
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Figure 3.2 Pivot based plant gene dictionary structure 

 

Consider 'AtAur1' appearing in text. It will be tokenized into prefix, pivot, and 

suffix ('At Aur 1') as stated in the dictionary organization. The occurrence of 'Aur' in 

text will match a corresponding pivot node in the dictionary. The next token in text ‘1’ 

matches one of the dictionary entry suffixes under that pivot node. Hence the tokens 

“Aur 1” can now be considered a candidate gene mention, and several UniProt ID 

nodes for different species are linked to the suffix node with this candidate gene 

mention.  

 

Some extensions are added to this simple matching approach to enhance the 

performance. The first extension is a longest match strategy: if one match occurred 

inside another, only the longer match will be kept. For example, ‘Bcl-2’ in 'Bcl-2-

associated athanogene 7' can be matched to a name in the dictionary, but it will not be 

kept as candidate gene mention because it is nested in another longer match ('Bcl-2-
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associated athanogene 7'). Another extension involves creation of multiple candidates 

from a sequence of tokens, using three rules. The first rule tackles the case where full 

name and short name appear together as pivot, and share the same suffix. E.g., 

“interleukin (IL)-4”. In this case, we create two names from the sequence of tokens: 

full name plus suffix, and short name plus suffix. E.g., from “interleukin (IL)-4”, we 

create “interleukin-4” and “IL-4”. Another rule is regarding the case where multiple 

suffixes appear in conjunction, and share the same pivot. E.g., “Protein kinase C alpha, 

beta, and gamma”. In this case, we create multiple new names where each name is 

formed by the pivot and one suffix in the conjunction. E.g., from “Protein kinase C 

alpha, beta, and gamma”, we create names “Protein kinase C alpha”, “Protein kinase C 

beta”, and “Protein kinase C gamma”. This rule will also cover cases like “ERK 1/2”, 

where “ERK 1” and “ERK 2” will be generated. The last rule is similar with the 

second one, except it covers the case where suffixes appear in range. e.g., from “ERK 

1-8”, we create “ERK 1”, “ERK 2”, ..., “ERK 8”. 

 

3.2.3 Using Context to Determine Gene Mentions 

 

Dictionary look-up alone is not sufficient to detect gene mentions. For 

example, consider the following sentence from PMID 6857705: “injection of the 

purified toxins are 91 (SN1) and 71 (SN2) micrograms/kg mouse”. The name 

candidate “SN1” matches a pivot and suffix in the dictionary, but it is not a gene 

mention.  
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In general, a candidate can have a gene sense or a non-gene sense. In this 

section, we discuss how we decide if each candidate is a gene mention or has a non-

gene sense. First, we apply some heuristic rules to decide whether a candidate gene 

mention is an actual gene mention or not. Next, we apply a support vector machine 

(SVM) model for predicting gene or non-gene sense. It is customary for sense 

disambiguation to be handled by considering context in the form of words that appear 

nearby, and hence the words appearing nearby are used as the features for SVM 

learning. One of the distinguishing aspects of our sense disambiguation approach is 

that we use only immediate local context (within two words to the left or right) as 

features. We believe that such an approach has potential to achieve high precision but 

can also lead to low recall. To alleviate this problem, we have developed a technique 

to propagate gene context to other instances of candidate mentions. This technique is 

assisted by the idea of pivots we have introduced before.  

 

3.2.3.1 Rule-based Disambiguation 

 

The first rule is applicable for a candidate mention that matches a dictionary 

full name. Since long names are assumed to not correspond to a non-gene concept, 

these full name mentions are directly considered as gene mentions, and therefore are 

not subjected to the processes described below. 

 

Second, candidate mentions can sometimes be inferred to be family names or 

complex names, and hence excluded on that basis. Rules for filtering out these types 

of mentions are shown in Table 3.3. In Chapter 5, we will introduce a system for 
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detecting protein complex mentions. However, that system was not available during 

the development of pGenN. Thus, here we simply use a few rules to filter out complex 

names.  In the future, we plan to integrate pGenN with the protein complex mention 

recognition system for mention detection. 

 

Table 3.3: Rules for filtering out family and complex names 

If NAME appears at the end of a noun phrase, and the noun phrase starts with “a” or 

“another”, then NAME will be considered as family name and filtered out. 

If NAME is followed by words “family” or by an f-Term in plural form, then 

NAME will be considered as family name and filtered out. 

If NAME appears at in the end of a noun phrase, and the NAME is preceded by 

“subunits of”, then NAME will be considered as complex name and filtered out. 

If NAME is followed by word “complex”, then NAME will be considered as 

complex name and filtered out. 

 

Third, some language structures are used by the author to give additional 

descriptive information, hence they provide clear clues to disambiguate names as gene 

or non-gene. For example, in the sentence…flowering by repressing the transcription 

of FT, a flowering-integrator gene that encodes…’, the appositive of name ‘FT’, ‘a 

flowering-integrator gene …’, provides a strong clue that ‘FT’ is indeed a gene. The 

pGenN method detects two language structures, acronym and appositive. Acronyms 

are detected using an in-house build acronym detector, which is based on Stanford 

acronym detection algorithm [109], and appositives are detected using the text mining 

system iSimp [110]. Rules that are based on these two language structures, as well as 

two other rules (Dictionary matched name in relation and Synonym) used for 

disambiguation purposes are shown in Table 3.4. 
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Table 3.4: Rules for disambiguation of name as gene or non-gene 

Acronym rule: If an acronym pair is detected, and the full name matches with the 

gene dictionary or ends with an F-term, then the short name will be assigned a gene 

sense. 

Appositive rule: If NAME has an appositive, and the appositive ends with an F-term, 

then NAME will be assigned a gene sense. 

Dictionary matched name in relation rule: If two or more names are matched with 

the dictionary and they appear together in a conjunction with other candidate 

mentions, then all the names will be assigned a gene sense.  

Synonym rule: If NAME1 and NAME2 are synonyms (matched with the same 

dictionary entry), and they appear in the same article, then both NAME1 and 

NAME2 will be assigned a gene sense. 

 

3.2.3.2 SVM-based Disambiguation 

 

We use the presence of nearby words to determine if the candidate mention is 

an actual gene mention or represents some other type of entity. We restrict the use of 

context to words appearing immediately to the left or right of a candidate. Such use of 

immediate context is motivated by an attempt to achieve high precision, since words 

adjacent to the candidate are likely to be related to candidate, whereas words that are 

further away may pertain to some other entities and hence not be necessarily related to 

the candidate.  

 

Support vector machines (SVMs) [38] are supervised learning models and are 

commonly used for classification. We employed SVM-light [111], an implementation 
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of the SVMs, using default parameter settings and a linear kernel to learn the 

disambiguation model. 

 

The six features used for learning correspond to: a single word appearing to the 

immediate left or immediate right (LI-SW and RI-SW), a single word appearing 

within two words to the left or right (LW2-SW and RW2-SW), and two words 

appearing to the immediate left or immediate right (LI-TW and RI-TW). For example, 

given the sentence “Mutants lacking jasmonate synthesis or response had decreased 

MYB21 expression and …”, the feature attributes associated with the candidate 

“MYB21” are ‘LI-SW: decreased’, ‘LI-TW: had decreased’, ‘LW2-SW: decreased’, 

‘LW2-SW: had’, ‘RI-SW: expression’, ‘RI-TW: expression and’, ‘RW2-SW: 

expression’, and ‘RW2-SW: and’. Using an automated method discussed in section 

3.2.3.4, we developed a large gene mention corpus which covers plant related 

literature and annotated the named entities as gene or non-gene. We collected all 

words and bigrams that appeared next to the annotated named entities to form a 

feature set. To enhance effective learning, we removed the common English words in 

the feature set using a stop word list, and selected only the features with a frequency 

greater than 30. Finally, we got a feature set with 1739 features. 

 

3.2.3.3 Propagating Contexts 

 

Despite developing a large training corpus for training the SVM-based 

disambiguation model, it still may suffer from low recall. Many occurrences of gene 

names might not have words immediately to the left or right for us to assign a gene 
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sense with confidence. Consider the occurrence of “rab5” (or “rab7”) in Figure 3.3. 

Clearly words nearby are not sufficient to clearly assign a gene sense (or a non-gene 

sense). However, if there is another occurrence of “rab5” (or “rab7) in the same 

abstract, which had a clear-cut evidence for the disambiguating model to assign a gene 

sense, then we assume that both the occurrences will have the gene sense. This 

assumption, that multiples occurrences of the same candidate name within the same 

abstract have the same sense, has a long history in natural language processing and can 

be called as the single sense per name per document rule. But, in this abstract (Figure 

3.3) there is no other occurrence of “rab5” (or “rab7”) to apply this rule. However, the 

notion of pivot allows us to generalize the rule to single sense per pivot per document 

rule. By this rule, the occurrence of rab2 (which shares pivot with rab5 and rab7), 

which can be clearly disambiguated as having a gene sense by the SVM model on the 

basis of its context to the left, will allow occurrences of rab5 and rab7 also to have a 

gene sense. Note that the single sense per pivot per document rule subsumes the single 

sense per name per document rule for propagating context. 
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Figure 3.3 Example for ‘uni-pivot gene sense assumption’ 

 

In spite of our efforts to increase the application of context based 

disambiguation by such propagation, there could still be instances of candidates which 

do not have context features to assist the disambiguation. Based on our experience of 

analyzing a significant number of Medline abstracts, these candidates will be assigned 

a non-gene sense.  

 

3.2.3.4 Developing annotated corpus for GM task 

 

Recall that we need an annotated gene mention corpus for machine learning to 

determine if the candidate mention is an actual gene mention or represents some other 

type of entity. The currently available corpora either tend to be organism specific, 

domain specific, or not large enough to cover a wide range of immediate gene 

contexts. e.g., the GENIA corpus [52] is focused on a subset of human hematology, 

the PENNBIOIE [53] corpus is on oncology, the BioCreative 1 GM corpus [28] 

contains only 15,000 sentences, the BioCreative 2 GM corpus [29] contains only 

20,000 sentences (15,000 of which were used previously in BioCreative 1). A machine 

learning-based disambiguation model trained on those corpora using only immediate 

contexts as features is quite likely to suffer from low recall. A similar observation has 

been made by Wermter et al. [112]. Since our goal is focused on plant species, a gene 

mention training corpus that includes text from the plant literature will be the best 

choice for our system. 
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To develop a new large gene mention corpus that covers substantial plant 

literature would be difficult if it relies solely on expert annotation. Hence, we 

developed an automatic method to create annotated gene mention corpora. Since our 

method only requires raw text as input, we can efficiently create very large annotated 

data sets. In addition, our method can be applied to other settings beyond our 

particular use here. However, we need to take care to ensure that there is little noise in 

the data. 

 

We retrieved all the Medline abstracts containing one or more gene short 

names that appear on a list of ~50,000 gene short names from our plant dictionary. 

Next, we used an algorithm modified from the Stanford acronym detector [109] to 

detect the full name-short name pairs in these abstracts and picked the ones which 

have short names appeared in the dictionary. Note that the appearance of these names 

in the abstracts does not mean that they refer to genes necessarily. Our task was to 

identify which amongst those pairs represented genes and which did not. For this 

purpose, we considered the extracted full name and assigned it a gene sense only if the 

full name appeared in the dictionary with the short name or it ended with an f-term. 

On the other hand, if the full name does not end with an f-term nor has any word in 

common with corresponding full names in the dictionary, then a non-gene sense was 

assigned. Otherwise, it was left unannotated. As an example, the pair, “ataxia 

telangiectasia mutated (ATM)”, was left unannotated. The full name does not meet the 

requirement for gene sense assignment. However, since there is a partial match with a 

full name (which includes ataxia and telangiectasia) corresponding to “ATM” in the 

dictionary, it was not assigned non-gene sense either. 
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These simple rules allowed us to identify instances of names from a gene 

dictionary that had gene or non-gene sense with high degree of confidence. We 

manually analyzed a sample of 40 full name-short name pairs where the short name 

appears in in our plant dictionary and found the rule marked 36 as having gene sense 

and remaining four were left unannotated. All 36 names marked with gene sense were 

indeed gene mentions. It turns out that even the four unannotated instances were gene 

mentions. 

 

Once the mentions were assigned a gene or non-gene sense, all occurrences of 

the same name within the abstract were also tagged. Finally, all the positive full names 

and short names were replaced with the string “NAMEP”, and all the negative full 

names and short names were replaced with “NAMEN”. By applying this method, we 

obtained a large annotated corpus and used the first 200,000 abstracts with 157,336 

gene positive instances and 120,308 gene negative instances as our gene mention 

corpus. 

 

Although this method might not identify all the gene mentions in text, our key 

hypothesis is that we can still automatically obtain a sufficiently large training corpus 

that covers a wide variety of contexts by applying this rule to a very large number of 

abstracts. Also, since all name mentions are not annotated with gene or non-gene 

sense, it cannot be used for evaluation of gene mention detection. Additionally, this 

corpus can only be used for learning the context of gene and non-gene mentions, but 
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not words appearing within the names since the mentions are replaced by strings 

“NAMEP” and “NAMEN”. 

 

3.2.4 Species Detection and Assignment 

 

A gene name matched in text can be associated in the dictionary with several 

UniProt records corresponding to different species. So, the next task we considered 

was the assignment of a species to a matched instance based on the text around it. This 

involved using a recognizer of species mentions in text and connecting each gene 

mention with the species mentions that were detected in the document. 

 

SR4GN [57] is a well-known recognizer of species names in text that assigns 

species to gene mentions and has been adopted by other gene normalization tools such 

as GenNorm [11]. SR4GN uses a species name dictionary for recognizing species and 

uses a few rules to assign species to gene mentions. However, we found we could not 

use it for our purpose. First, while it uses prefixes found in gene/protein names to 

assign species, the prefixes are limited to those of a handful of species that did not 

include the range of plant species of interest to us. Second, SR4GN employs additional 

heuristics such as the presence of words in the document like “cohort” or “ferment” to 

assign species when none are detected in the document. Again, these heuristics do not 

appear to extend to plant species. Finally, SR4GN always tries to assign some specific 

species to every gene mention, whereas our analysis of plant literature suggested that 

there were several cases where the gene mentioned did not correspond to a specific 

species but rather had a more generic usage (i.e., species independent). Thus, we 
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concluded that we needed to develop a method to detect and assign species to gene 

mentions that extends the rules developed for SR4GN. 

 

The detection of species is handled by two components. The first component 

performs a dictionary matching, using a species dictionary built from NCBI 

Taxonomy. Because authors often abbreviate the species name by using the initial 

letter for the genus (e.g. A for Arabidopsis) followed by a period and then the species 

name (thaliana). Accordingly, the dictionary was extended by adding this type of 

names. e.g., new name ‘A. thaliana’ was generated from ‘Arabidopsis thaliana’. The 

second component identifies prefixes in gene and protein names that conform to plant 

species prefix conventions (same conventions as shown in Table 3.2), as these could 

indicate the presence of a species. e.g., ‘At’ for ‘Arabidopsis thaliana’, ‘Zm’ for ‘Zea 

mays’, ‘Os’ for ‘Oryza sativa’. 

 

The gene mentions are associated with the species based on the following 

rules. Note that the rules are ordered based on our confidence in their precision. This 

ordering is used to determine which rule should be used in case more than one of them 

applies. If a species is assigned for a particular mention based on some rule numbered 

x, then no other rule lower in the ordering (i.e., numbered greater than x) can override 

that assignment. 

 

1. Prefix. If a gene mention has a species prefix, we assign the species based 

on the prefix. e.g., ‘AtAurora1’ would be assigned the species ‘Arabidopsis thaliana’. 

This rule is similar to Rule R1a in SR4GN. 
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2. Same noun phrase. If a gene mention and species are in the same noun 

phrase, we assign that species to the gene mention. e.g., ‘Arabidopsis TOC1/PRR1 

gene’ would be assigned the species ‘Arabidopsis thaliana’. There is no direct analog 

in SR4GN, but this rule is inspired by Rule R1b. This rule also considers the case 

where the species appears in a prepositional phrase that is attached to the noun phrase 

containing the name (as in ‘SEX4 from Arabidopsis’). This is an improvement over 

SR4GN Rule R1b in cases where multiple species and multiple genes are mentioned in 

the same sentence. For example, in PMID 23879260, the sentence 'The predicted 

protein for CpPG1 has 416 amino acids, with a high homology to other pollen PGs, 

such as P22 from Oenothera organensis (76%) and PGA3 from Arabidopsis thaliana 

(73%)'. Using Rule R1b, SR4GN would assign PGA3 with species Oenothera 

organensis whereas our rule will correctly associate PGA3 with Arabidopsis thaliana. 

 

3. Species-free. If a gene mention is in the ith sentence, and the first species 

mentioned in the article is in jth sentence and i< j, then we assume that the gene 

mention doesn’t belong to any particular species. SR4GN does not have a rule 

corresponding to this; SR4GN will always assign the gene mention with a species as 

long as any species is found in the article. 

 

4. Single species. If only one species is mentioned in the abstract, then all the 

gene mentions in this abstract will be connected with this species. This is similar to 

SR4GN Rule R1c. 
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5. Species consistency. If a gene mention with name ‘NAME1’ has been 

assigned a species in one of the previous sentences, then this occurrence of ‘NAME1’ 

will be assigned the same species used for the closest occurrence. This rule captures 

the intuition that authors typically do not switch species without some explicit 

notification. There is no corresponding rule in SR4GN. 

 

6. Species in the same sentence. A gene mention is assigned to a species that 

occurs in the same sentence. If there are multiple species in the same sentence, pick 

the one to the left. This is the same as SR4GN Rule R1b. 

 

7. Species in the previous sentence. A gene mention is assigned to a species 

that occurs in the previous sentence. If there are multiple species in the previous 

sentence, then this rule is not applied. There is no corresponding rule in SR4GN. 

 

8. Major species. Species in the title and in the MeSH terms are considered to 

be the major species of the article. A gene mention is assigned to the major species. If 

there is more than one major species, then this rule is not applied. This is similar to the 

idea of focus species in SR4GN, except that we have introduced several other rules, 

which have no corresponding rules in SR4GN, prior to the application of this rule. 

 

The rules described above were reported in the pGenN paper [13]. We have 

added one additional rule based on the error analysis in that paper, to decide when a 

species is not associated with a gene mention, even though they occur close to each 

other: 
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9. If term “homolog of”, “ortholog of”, “homology to”, or “homologous to” 

appear between a gene mention and a species, then the species is not associated with 

the gene. For example, in sentence “WSL4 is predicted to encode a KCS, a homolog 

of Arabidopsis CER6.” from PMID 27913740, “Arabidopsis” will not be used for 

gene mention “WSL4”. 

 

3.2.5 Intra-species Normalization 

 

Once we have detected gene mentions and we have assigned a species to each 

gene mention, we then use the dictionary to obtain a list of candidate identifiers 

(UniProt ACs) for that name and species pair. To complete the gene normalization 

task, we need to choose one of the candidate identifiers. We use the context of the 

gene mention and information about the identifiers obtained from gene/protein 

resources to make the choice.  

 

Similar to previous cases, we have a number of rules that are applied in order, 

where the order of the rules is based on our belief in their accuracy.  

 

The first type of context we considered is in the form of the acronym, 

appositive, or relative clause attached to the gene mention, or words appearing in the 

same noun phrase containing the gene mention. This type of context is typically used 

to introduce descriptions relevant to the entity. E.g., in sentence “SEN1 is a 

senescence-associated gene in the Arabidopsis which is strongly induced by …” from 
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PMID 15692183, “senescence-associated gene” is used to describe the gene mention 

“SEN1”. Hence, we believe words in this type of context are the strongest clues for 

disambiguation. Words in this type of context are compared to the words associated 

with each candidate identifier in the dictionary, and the identifier with the most word 

matches is chosen as the normalization result. Back to the previous example, using the 

context words “senescence-associated gene”, we can normalize the gene mention 

“SEN1” to UniProt AC A8MRI9, which has words “Senescence-associated protein” in 

the full name. However, the context discussed above might not always exist for all 

gene mentions. If we cannot disambiguate (i.e., identify a single identifier) based on 

this type of context, we will consider words in the same sentence as context. 

 

To ensure that all the occurrences of the same name were assigned with the 

same ID, and to address the potential low recall due to only use immediate context, we 

treated all occurrences of the same gene as a single instance where we combined the 

context for all the occurrences of the same name. 

 

We generalized this context sharing strategy to names with the same pivot: all 

the names with the same pivot would share the same context, because we believe the 

same abbreviation in one article will have the same expansion. We have never 

observed any case where one abbreviation had multiple expansions in one abstract. 

However, to make our rule more robust, if we detected different expansions for the 

same abbreviation, then this context sharing strategy would not be used. 
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3.3 Evaluation 

  

 We have conducted two evaluations: the first is the evaluation reported in the 

pGenN paper, and the next is an evaluation of the new version of pGenN, which 

incorporates some minor modifications based on the error analysis of the first 

evaluation. 

 

3.3.1 Evaluation Setup 

 

Since we are not aware of any existing corpus annotated for plant gene 

normalization, we developed both evaluation corpora in-house.  

 

The abstracts used in the first evaluation corpus were identified by searching 

PubMed using the query: ("Proteins"[MeSH] OR "Genes"[MeSH]) AND 

"Viridiplantae"[MeSH]. One hundred and four abstracts were selected from the 

retrieved abstracts, with a selection process that attempted to ensure coverage of a 

range of different gene names, different species, and different publication years. The 

annotation was completed by a senior bio-curator who did not participate in the 

development of the system. Altogether, 195 instances of UniProt AC-PMID pairs were 

annotated from the 104 abstracts. 

 

To build the second evaluation corpus, same query: ("Proteins"[MeSH] OR 

"Genes"[MeSH]) AND "Viridiplantae"[MeSH] were used to search in PubMed for a 

set of plant related abstracts. 100 abstracts were selected from the retrieved abstracts, 

with a selection process that attempted to ensure coverage of 8 common plant species: 

Arabidopsis thaliana, soybean, tobacco, tomato, potato, spinach, wheat and maize. The 

annotation was completed by 5 senior biocurators who did not participate in the 

development of the system. Altogether 212 instances of UniProt AC-PMID pairs were 
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annotated from these 100 abstracts. Both evaluation corpora are publicly available at 

http://research.bioinformatics.udel.edu/iprolink/corpora.php. 

 

As most of the existing gene normalization tools were designed for non-plant 

species and hence are not appropriate for comparison. Some of these tools are also not 

publicly accessible. Thus, in the first evaluation, we were able to compare with 

GenNorm [11] only. In the second evaluation, we compare our results with 

GNormPlus [12], an updated version of GenNorm.  

 

In both evaluation, the system performances were computed using the standard 

measures of precision, recall and F-measure. Gene/protein mentions linked to 

accession numbers of non-plant genes were not considered. pGenN may return 

multiple UniProt ACs for one gene mention, due to: (1). the UniProt entries are almost 

identical except for the subspecies designation. e.g., Oryza sativa subsp. indica (Rice), 

or Oryza sativa subsp. japonica (Rice). (2). the UniProt entries are redundant, 

corresponding to reviewed and unreviewed entries for the same entity. Errors that 

originated from either of these two reasons were ignored. GenNorm and GNormPlus 

normalize genes to EntrezGene identifiers. To compare the performance with 

GenNorm and GNormPlus, we used the ID mapping tool provided by UniProt to 

convert these identifiers to UniProt ACs. 

 

3.3.2 Evaluation Results 

 

Table 3.5 shows the precision, recall and F-measure for both pGenN and 

GenNorm on the first evaluation corpus We analyzed the false positive and false 

negatives of pGenN to learn how different components of pGenN contributed to the 

errors. 

 



 48 

Table 3.5: Performance of pGenN & GenNorm on the first evaluation corpus 

System Precision Recall F-measure 

pGenN 90.9% 87.2% 88.9% 

GenNorm 57.6% 39.0% 46.5% 

 

The within-species normalization component worked surprisingly well, 

considering we use limited features (based only on names in the dictionary) for 

disambiguation. This component contributed to error in only one instance, resulting in 

both a FP and a FN. Many of the errors were due to incorrect assignment of species. 

This situation is consistent with an observation in Wei et al. [11] that accuracy of 

species assignment is critical for overall performance on the gene normalization task. 

When the species is incorrectly assigned, clearly a wrong accession number will be 

assigned. This not only results in false positives but false negatives as well. An 

example of an incorrect assignment of species comes from PMID 11197326: 

“OsMADS14 and -15 are highly homologous to the maize MADS box gene ZAP1 

which is an orthologue of the floral homeotic gene APETALA1 (AP1).” Based on the 

same sentence rule, the closest species mention “maize” is assigned to “AP1” 

incorrectly. Other species assignment errors were also similar and involved mentions 

of homologs. The second source of errors is due to the dictionary based gene mention 

detection. For example, in PMID 16455357, the mention “Ljcen1” did not match with 

the correct dictionary entry because we failed to detect the species prefix “Lj”, which 

is short for the species “Lotus japonicus”. This was due to the fact that the gene name 

cen1 did not start with an uppercase letter as expected based on other plant species 

naming conventions. Some of the errors were due to failure to capture all variations of 

a gene name in the dictionary. In PMID 17114582, the text includes a mention of 

"MtHAP2-1". However, the name in UniProt is "HAP2.1" (UniProt AC A4ZVU9), 

and we had not accounted for this variation. 
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The precision, recall and F-measure for both pGenN and GNormPlus on the 

second corpus can be found in Table 3.6. Results show that pGenN achieves higher 

precision and recall. The species assignment component showed significant 

improvements compared to our previous pGenN version. An error analysis revealed 

that the majority of the errors were due to gene mention detection issues (19 out of the 

26 FNs and 10 out of the 15 FPs), rather than normalization itself. One source of 

confusion was in the disambiguation between gene names and gene family names. For 

example, in PMID 26508775, “TaPR1” is recognized as a gene mention, whereas it is 

a gene family name mention. Finally, only 2 FPs and 2 FNs were due to mistakes by 

the intra-species normalization component. 

 

Table 3.6: Performance of pGenN & GNormPlus on the second evaluation corpus 

System Precision Recall F-measure 

pGenN 92% 88% 90% 

GNormPlus 86% 47% 61% 

 

3.4 Use Case Study: Normalization of Genes Related to Phosphorylation in the 

Brassinosteroid Signaling Pathway 

 

Text mining tools that extract gene/protein-based information from text can be 

run on a large scale and the information gathered can be stored formats amenable to 

searching or incorporation into curation pipelines. However, it is even more useful if 

the gene/proteins can be normalized to unique database (e.g., UniProt) identifiers. As a 

use case, we applied pGenN to plant-related phosphorylation information obtained 

through large-scale text-mining using RLIMS-P [2]. RLIMS-P, which extracts 

information about kinase, substrate, and site from text, has been run on the entire set 

of Medline abstracts.  
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For determining the effectiveness of plant gene normalization in conjunction 

with this tool, we selected a set of 87 abstracts using the query “brassinosteroid 

signaling” in which RLIMS-P extracted at least one kinase or substrate. 

Brassinosteroids are a class of plant hormones that regulate gene expression via a 

signaling cascade that involves multiple phosphorylation events [113]. The quality of 

gene normalization by pGenN was compared with a manual annotation of kinase and 

substrate occurrences in these abstracts. We found pGenN achieved 97.9% precision 

and 93.5% recall. Perhaps the biased nature of the abstracts and the limited number of 

proteins may explain the better results than those obtained for the evaluation data sets 

(GenNorm also achieved better performance on these 87 abstracts, with 93.5% 

precision and 66.0% recall). 

 

We have incorporated pGenN to normalize kinase and substrate mentions in all 

plant-related abstracts from which RLIMS-P has extracted a mention of 

phosphorylation events with a kinase and/or phosphorylated substrate. The results of 

the entire plant-based text-mined phosphorylation results are accessible via iPTMNet 

[3]. 

 

3.5 Medline Abstracts Processing and Interactive Web Interface 

 

To verify the scalability of pGenN and to develop a large body of pGenN results 

that we could make accessible to the community, we processed all plant-related 

abstracts that we identified in Medline using the broad query, ‘plant[MeSH] AND 

hasabstract[Text]’. The 527,481 abstracts which were returned by PubMed for this 

query (accessed on May 2017) were processed by pGenN and the results were stored 
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in a local database which we call pGenN_DB. We intend to update pGenN every three 

months in sync with PubMed.  

 

Table 3.7 shows the statistics of the processing of 527,481 plant-related Medline 

abstracts that were obtained by the PubMed query “plants[MeSH] AND 

hasabstract[Text]”. 117,443 PMID-UniProt AC pairs were obtained from 75,125 

abstracts.  

 

Table 3.7: Statistics of pGenN large-scale processing of plant Medline abstracts 

# of abstracts processed 527,481 

# of abstracts which are pGenN positive 75,125 

# of unique UniProt ACs obtained 28,445 

# of PMID-UniProt AC pairs obtained 117,443 

 

A web interface (proteininformationresource.org/pgenn) has been developed to 

enable community access to the plant gene normalization results in pGenN_DB. 

 

3.6 Extending pGenN to Full Length Article 

 

So far, we have described pGenN on normalizing gene mentions that appear in 

abstracts. In this section, we will extend pGenN to full length articles. Based on our 

informal study, we found normalizing genes in the results section is different from 

normalizing genes in the abstract and other sections. We also found that many 

techniques that have been introduced in abstract level gene normalization are still 

directly applicable to full length article. For these reasons, in extending pGenN to full 

length articles, we will focus on developing methods specific for the results section. 

We note that the findings of the experiments found in the research articles should be 
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expected to be described in this section. Finally, we noticed that the major 

modifications are required to the species assignment process only. Thus, our 

extensions are concerned with results section and species assignment. 

 

3.6.1 Observations 

 

In order to investigate how pGenN, more specifically, the species assignment 

process, can be extended to work on the results section of full length articles, we 

studied the annotations in the 32 full length articles from BioCreative III training set, 

and drew the following observations: 

 

(1) The changes need to take into account that different sections of the article 

have different roles. For example, the setups of the experimental study are usually 

described in the methods section, while the results of the experimental studies are 

usually described in results section. Thus, the relevant species information can often 

be found in the methods section and mention of the species need not be found in the 

results section at all. On the other hand, the species mentioned in the background 

section may or may not be relevant for normalization of genes mentioned in the results 

section. 

 

(2) Many articles describe one or more experimental studies that are focused 

on genes from a single species, even when genes from multiple species are mentioned 

in the article. (Out of the 32 articles we have studied, only 4 articles (PMC 2048754, 

2443158, 2579434, and 2631505) conducted their research on genes from more than a 

single species). We observed that the genes used in the experiments and their species 

are identifiable from the methods section and that such species (if there is a single one) 

can be used for species assignment in the results section. However, if a particular 

gene’s mentions correspond to different species, we noticed that authors usually 
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provide that information in immediate context. For example, in PMC 2396500, the 

experimental studies are focused on genes from Arabidopsis thaliana. When genes 

from other species are used for comparison purpose, mentions such as “human DDB2” 

and “DDB1 in mammalian” were used. 

 

(3) For the detection of species from the methods section, we observed that 

such species are often mentioned in the titles of the methods subsections, or in the 

beginning of the methods section or subsections, where authors introduce how they 

conduct their research. Thus, the position (e.g., title of method subsections) and the 

identification of textual patterns involving species in the first 1-2 sentences of the 

method subsections can be used to identify the species. 

 

3.6.2 Methodology 

 

Based on these three observations, we developed the following species 

assignment rules for genes that are mentioned in the results section.  

 

We first detect the species of the genes used in the experiments. These species 

are detected from the Methods sections and will be called the experimental species. 

We identify the experimental species if they appear in: (1) the titles of the methods 

subsections, (2) the first two sentences of the methods subsections and adjacent to 

phrases such as “sample”, “derived from”, “carried out”, “harvesting” while extracting 

the species names. For example, in PMC 2423616, sentence which describes species 

from which the experimental genes are got is “MEFs were prepared by harvesting 

embryonic stage 14.5 mice”. As discussed in our creation of species dictionary, we 

also detect species name from presence of cell line names. If multiple species are 

detected in this manner from all Methods subsections, we see if specific genes can be 
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associated with them. Techniques used in conjunction with specific genes can also be 

associated with species but currently we have not implemented this aspect. 

 

We will now consider how species will be assigned to gene mentions in the 

results sections. The most straightforward case is when only one experimental species 

is detected. Like the case of major species in our species assignment process for 

abstracts, this experimental species will be used as the default choice for genes in the 

result section. It can be overridden by immediate species context, i.e., in cases where 

the gene mention includes (1) species prefix, (2) species in the same noun phrase or 

(3) has an attached prepositional phrase with the species name.  

 

If multiple experimental species or no experimental species is detected, then 

we hypothesize that the species for a gene mention will be explicitly stated in the 

results section. Thus, this situation becomes similar to an abstract which is read before 

the methods. Therefore, in this case, each subsection in the result section will be 

treated like a abstract and the rules will be applied the same way they were designed 

for the abstracts (as described in section 3.2.4). 

 

3.6.3 Accuracy of the approach 

 

The BioCreative III gene normalization corpus consists of a test set that 

includes 50 articles which are annotated manually. The annotations are in the form of 

Gene ID and PMCID pairs. Thus, if there are more than one Gene IDs corresponding 

to one unique gene name, there is no information that indicates the species for each of 

the gene mentions. For this reason, we do not have species information for the gene 

mentions that specifically appear in the results section. Hence, we run our system on 

20 articles which are randomly selected from the BioCreative III gene normalization 

gold standards test set and manually analyze the system output for species assignment 
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errors in the results section (errors caused by other process, e.g., gene mention 

recognition, are not included). Table 3.8 shows the number of TPs, FPs and FNs. 

 

Table 3.8 Accuracy of the species assignment process 

# of TPs # of FPs  # of FNs 

106 13 9 

 

 We can see the species assignment process contributes to very few errors. 

These errors mainly correspond to cases where no experiment species is detected and 

no species information from immediate context can be used. In these cases, some low 

confidence rules, e.g., species in the same sentence, will be applied. This causes both 

FPs and FNs. 

3.7 Conclusion 

 

We have described a gene normalization system, pGenN, initially designed to 

normalize plant genes that appears in the abstracts. When developing pGenN, we 

introduced a new concept called pivot. We believe this concept can be used for other 

named entity recognition and normalization tasks as well. We also developed a 

method to automatically generate a large gene mention corpus. This method can be 

generalized for other types of entities and other specific sub-domains, as well as for 

distant supervision for development of NER tools. The evaluation shows that pGenN 

achieves an F-value of 88.9% and 90% on two in-house annotated plant gene 

normalization corpora, significantly outperforming existing state of the art gene 

normalization system. Based on the case study we conducted, we believe that pGenN 

can be integrated into text mining pipelines. In fact, pGenN has already been 

integrated into iPTMNet, a resource for protein post-translational modification that 

draws, in part, on information gathered by text mining tools. Additionally, pGenN has 

been used to process a comprehensive set of over 527,481 plant related Medline 
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abstracts. The pre-processed results have been stored in our local database, 

pGenN_DB, and. can be searched, sorted and downloaded via a web interface, found 

at http://biotm.cis.udel.edu/gn/. We also extended pGenN to full length article. The 

focus of this extension was on the assigning species to gene mentions found in the 

results sections of the articles. In this work, we treated different sections of full length 

article differently. Same idea can be explored for other text mining tasks that are 

applied on full length articles. Our evaluation shows that this component yields good 

performance. 

 

In the future, we would like to investigate the usage of pivot based dictionary 

matching to enhance two aspects of curation of the Protein Ontology (PRO) [16]: (1) 

Detecting gene family names to enhance coverage of protein family classes and (2) 

Normalizing family protein names to PRO IDs when terms already exist in the 

ontology. 
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EXTENDING COMPUTATIONALLY MAPPED BIBLIOGRAPHY FOR 

UNIPROT KNOWLEDGEBASE  

 

UniProt Knowledgebase (UniProtKB) is a publicly available database with 

access to vast amount of protein sequence and functional information. To widen the 

scope of the publications associated with a protein entry, UniProt has introduced the 

computationally mapped additional bibliography section in each protein entry to 

include relevant literature collected from external sources. This effort has focused on 

adding literature mainly to entries from model organisms, while the entries for other 

species remain under annotated. To alleviate this situation, especially for plant protein 

entries, we have developed a text mining system, eGenPub, which selects articles for 

automatic inclusion of additional bibliography for given UniProt protein entries. 

 

4.1 Introduction 

  

UniProt is a comprehensive, high-quality and freely accessible resource of 

protein sequence and functional information [1]. The Knowledgebase (UniProtKB) is 

the central database containing information for over 85 million protein sequences (as 

of Release 2017_05). UniProtKB consists of two sections, one known as 

Chapter 4 
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UniProtKB/Swiss-Prot that is annotated by experts, and the other, 

UniProtKB/TrEMBL that is automatically annotated. Expert curation in 

UniProtKB/Swiss-Prot includes manual verification of each protein sequence as well 

as a critical review of experimental data from the literature and predicted data from a 

range of sequence analysis tools [114]. A recent article describes in detail the basis for 

selection of relevant articles for expert curation [115]. Rather than curating all articles 

about a given protein, UniProt chooses a representative set that maximizes the 

information content. Thus, an article related to the entry with potential useful 

information content may not have been included in the entry because: its information 

overlaps (is redundant) with existing annotations, its main theme is out of scope for 

UniProt curation, or it is a new publication that has not yet been reviewed by curators. 

Moreover, UniProt focuses the curation effort on the most widely studied species, 

therefore some organisms for which experimental data may be available are not 

actively annotated.  

 

To complement the curated literature set in UniProtKB/Swiss-Prot with 

additional publications and to add relevant literature to UniProtKB/TrEMBL entries 

that have not yet been curated, UniProt compiles additional bibliography from external 

sources. This additional bibliography consists of literature mapped to UniProt entries 

from other curated databases (such as, Wormbase [116], Rat Genome Database [117], 

Intact [118], TAIR [119], GeneRIF [120] and IC4R [121]) added in a collaborative 

manner. However, this effort provides literature mainly to entries from model 

organisms, while UniProt entries for other species remain under annotated.  
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To tackle this issue, the use of text mining tools to systematically associate 

literature to protein entries, with focus on species not yet covered by the curated 

resources, can be explored. The detection of protein names in an article by itself is not 

sufficient for associating the article with the protein entry in UniProt bibliography. For 

UniProt inclusion, the article is expected to describe at least one experiment conducted 

on the given protein and in the given species. For example, many articles describe 

properties of a protein/gene and mention its homologs, e.g., “The function of PsBRC1, 

the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 

and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was 

investigated.” from PMID 22045922. The above article provides functional 

characterization of the pea BRC1 protein only, then the article should not be linked to 

the other homologs mentioned for the purpose of UniProt additional bibliography. 

Similarly, some gene mentions are listed as background information, e.g., as in the 

case of soybean LOX1 in “It has been known that lipoxygenase (LOX) isozymes 

exhibit differences in product formation, but most product information to date is for 

LOX 1 among soybean (Glycine max) LOX isozymes. In this study, LOXs 2 and 3 

were purified and used to generate hydroperoxide (HPOD) products in an in vitro 

system using linoleic acid as a substrate in the presence of either air or O2.” from 

PMID 15998134. This article does not appear to contain any experimental study on 

LOX1 and accordingly, it should not be linked to LOX1. Other times, proteins/genes 

are part of a methodology, like a marker or a reporter gene, e.g., “In this study, the 

promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS 

reporter gene.” from PMID 27019084. This article should not be linked to GUS entry.  
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A key requirement for such an association is that the article must describe some 

experimental data about the protein. It is more important to include a correct article 

than to miss one. The examples above demonstrate the need to couple the 

normalization of gene/protein mentions with the concept of “aboutness” to ensure that 

articles are linked to the relevant UniProt entries. In this chapter, we describe a 

method that utilizes a trained support vector machine (SVM) model to predict whether 

an article, based on its abstract, is appropriate for linking to some UniProt entry as 

additional bibliography. We use pGenN, a normalization tool for plant genes and 

proteins described in Chapter 3, for the detection of gene/protein mentions and 

association to UniProt entries. By utilizing these two tools, we have developed a 

system, eGenPub, that adds articles to the computational mapped bibliography section 

of UniProt entries. It is currently limited to UniProt entries for 8 common plant 

species: Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Nicotiana 

tabacum (tobacco), Solanum lycopersicum (tomato), Solanum tuberosum (potato), 

Spinacia oleracea (spinach), Triticum aestivum (wheat), and Zea mays (maize). 

 

4.2 Methodology 

  

eGenPub employs a 2-stage process (green boxes in Figure 4.1). Given a 

UniProt accession (AC) as input, it first uses pGenN output to identify PubMed 

abstracts that have mentions linked to that UniProt entry. Then, each UniProt AC-

PMID pair is converted into a set of features, which are input to the SVM. If a UniProt 

AC-PMID pair is labeled as relevant by the SVM then it means that eGenPub is 

predicting that article given by the PMID is about the protein given by the UniProt AC 
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and therefore, eGenPub predicts that the article can be included in the protein entries 

bibliography section. We have described pGenN in detail in Chapter 3. In this chapter, 

we will only introduce the SVM model that suggests when a PMID is an appropriate 

bibliography entry to add for an UniProt entry. 

 

 

Figure 4.1 eGenPub system architecture 

 

4.2.1 Using SVM for detecting AC-PMID linking 

 

Suppose a gene (normalized to a UniProt AC) occurs in a PubMed abstract 

(indexed by a PMID). Based on the occurrences of this gene in the abstract, we assign 

features that are used in the learning of the SVM model. There are a few types of 

features considered, with additional details described below. 

 

The first type of features is concerned with the frequency of occurrence of the 

gene in the abstract. Our assumption is that if the gene is mentioned several times in 

the abstract, it is highly likely that the abstract is “about” the gene. In contrast, if the 
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gene appears only once in the abstract then it is possible that it was just mentioned in 

passing and the gene is not central to the study reported in the abstract. We have used 

two features that consider the number of mentions of the gene: feature FGE3 counts 

whether the gene appears at least three times in the abstract and feature FEQ1 is 

true/false based on whether the gene is mentioned once/multiple times.  

 

The second set of features is concerned with the location of the mention of the 

gene in the abstract. Our hypothesis is that if a gene is central to the study reported in 

an article, the gene is likely to be mentioned in certain prominent positions of the 

abstract, e.g., the title, the first sentence of the abstract and the last/concluding 

sentence of the abstract. Thus, for occurrences of the gene in these positions, we have 

corresponding features: LocTI records whether the gene is mentioned in the title and 

likewise LocFS and LocLS keep track of whether the gene is mentioned in the first 

sentence and last sentence, respectively. 

 

Next, we consider features that are based on whether the gene in question is the 

object of an investigation described in the article. Table 4.1 includes a list of lexemes 

(a lexeme roughly corresponds to a set of forms taken by that single word -- e.g., the 

lexeme “detect” includes the words “detect”, “detected”, “detection”, …) that indicate 

an investigation. While clearly this is not an exhaustive list, it is the current list of 

words we use to determine if a sentence mentions an investigation. The features that 

we consider indicate whether a gene appears close to these mentions of investigation. 

We use the distance (number of tokens) between the “investigation” words and the 

gene to measure the likelihood that the gene is an object being investigated. Based on 
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this notion, we introduce two features InvCl (whether the gene is within 5 words and 

hence close to the “investigation” word) and InvSS (whether the gene co-occurs with 

an “investigation” word in the sentence but beyond 5 words of it). 

 

Table 4.1: Lexemes used for “investigation” words 

Lexemes 

analysis characterize clone demonstrate 

detect determine develop express 

investigate isolate observe purify 

result sequence show test 

 

Our assumption is that abstracts that have the above features are likely to be 

relevant. Conversely, we also considered some features that may indicate when the 

gene in question is unlikely to be the object of study in the article. The first feature 

focuses on the species information. Suppose we have normalized a gene mention and 

we use our model to decide if this gene-PMID pair should be considered as positive. 

Since this gene mention has been normalized, we have already associated a species, 

say s, to this gene. If this species is not mentioned in the title, but rather some other 

species is mentioned in the title then we assume it is unlikely the gene-PMID pair is 

positive. Thus, we consider a feature SOthT to indicate that another species name 

appears in the title that is different from the species of the gene. We also consider a 

complementary feature SInT which is set to true if the species name of the gene in 

question appears in the title.  

 

Similarly, we considered other features concerning gene names rather than 

species names. Specifically, we consider a feature GOthT that records whether 
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another gene is mentioned in the title and a feature GOthGE3 that is set to true if 

another gene appears 3 or more times in the abstract. These two features could be 

taken to indicate whether some other gene is object of the reported research. However, 

we do not preclude the possibility that multiple genes can be studied in the article. We 

have noticed that when multiple genes are studied in one article they are invariably 

connected in some way, such as being members of the same gene family. A feature, 

GFamM, is introduced to indicate whether any member of the same gene family as 

the given gene is also mentioned in the abstract. To decide whether multiple genes are 

from the same gene family, we apply the notion of pivot, which is introduced in 

Chapter 3. E.g., gene “CDK1” and gene “CDK2” are treated as belonging to the same 

gene family since they share the same pivot “CDK” but have different suffixes, i.e., 

"1" and "2". Thus, if multiple genes share the same pivot but have different suffixes, 

they are treated as from the same gene family.  

 

Table 4.2 summarizes the type of features used in the SVM models.  

 

Table 4.2: List of feature types considered for SVM models 

SVM Feature Description 

FGE3 gene is mentioned at least 3 times 

FEQ1 gene is mentioned once or multiple times 

LocTI gene is mentioned in title 

LocFS gene is mentioned in first sentence 

LocLS gene is mentioned in last sentence 

InvCI gene co-occurs with an "investigation" word in sentence and 

within 5 words 

InvSS gene co-occurs with an "investigation" word in sentence but 

beyond 5 words 

SOthT another species appears in title 
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SInT species of the gene appear in title 

GOth another gene is mentioned in title 

GOthGE3 another gene is mentioned at least 3 times 

GFamM another gene that belongs to same family is mentioned 

 

We considered three different feature combinations (Table 4.3) as different 

ways of trade-off between precision and recall. We hypothesize that the feature 

combinations 1 (Model 1) and 3 (Model 3) (Table 4.3) might result in high precision 

and high recall, respectively. Feature combination 2 (Model 2) represents our guess as 

to what might be a good trade-off between the two metrics. We explored these three 

combinations by training three different models using SVM-light [111], an 

implementation of the SVMs, using default parameter settings and a polynomial 

kernel to learn the models.  

 

Table 4.3: Feature combinations applied on the SVM model 

Models Features 

Model 1 FGE3, LocTI, SOthT 

Model 2 FGE3, LocTI, SOthT, LocFS, LocLS, InvCI 

Model 3 All 12 features 

 

4.2.2 Evaluation Method 

 

We developed a corpus in-house to evaluate the ability of our SVM model to 

determine the aboutness, i.e., whether the AC-PMID pair should be linked. 450 AC-

PMID pairs were selected and marked as either positive (i.e., the pair should be 

linked) or not. Altogether, 245 AC-PMID pairs were annotated as positive (for 
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aboutness) and the remaining 205 pairs were annotated as negative. In our evaluation, 

we used 10-fold cross validation with standard measures of precision, recall and F-

measure. The corpus is publicly available at 

http://research.bioinformatics.udel.edu/iprolink/corpora.php. There is no alternate 

system to compare with, since as far as we are aware of, our system is the only one to 

detect the aboutness of article and gene.  

 

4.2.3 Pipeline for adding additional bibliography to UniProt entries 

 

The aim of eGenPub is to automatically suggest additional bibliography for the 

UniProt. Every three months, new plant related abstracts are retrieved from PubMed 

using the query: ("Current date"[Date - Publication] : "Old date"[Date - Publication]) 

AND plants[MeSH]. We filter out review articles. eGenPub processes these abstracts 

and suggests the additional bibliography (in the form of UniProt AC-PMID pairs) to 

the UniProt consortium. Since the process of adding additional bibliography to 

UniProt entries has now been automated (with some spot checking), we only want to 

include those PMIDs that we can be most confident about. Since Model 1 obtains the 

highest precision among the three models (see Results and Discussion section), we use 

it in this automated process. 

 

4.2.4 Semi-automatic categorization of publications in general annotation topics 

 

To determine the value of the bibliography associated with the entries via 

eGenPub, we conducted a study where we assigned UniProt entry annotation topics 

[122] to the suggested publications semi-automatically. For this study, we took a set of 

http://research.bioinformatics.udel.edu/iprolink/corpora.php
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UniProt AC-PMID pairs suggested by eGenPub and process these PMIDs using 

RLIMS-P [2], a tool for extraction of kinase-substrate phosphorylation events. We 

then checked if any kinase or phosphorylated proteins detected by RLIMS-P mapped 

to the linked accession. The abstract was tagged with topic [PTM/Processing] label if 

the UniProt entry was linked to the substrate, with topic [Function] if it was linked to 

the kinase, or with both if it was an autophosphorylation event. In addition, all 

abstracts were tagged by an expert curator for other topics. 

 

4.3 Results and Discussion 

4.3.1 Evaluation results of the SVM model 

 

We conducted an evaluation of the ability of the SVM model to correctly 

predict when a UniProt AC-PMID pair should be linked together. Our evaluation was 

based on 10-fold cross-validation on a set of 450 pairs. Table 4.4 shows the average 

precision, recall and F-measure of 10-fold cross validation using Models 1, 2 and 3. 

 

Table 4.4: Results of 10-fold cross validation using feature combination 1, 2 and 3 

Models Precision Recall F-measure 

Model 1 95.3% 60.9% 74.3% 

Model 2 88.5% 67.8% 76.8% 

Model 3 83.2% 77.5% 80.3% 

 

As expected, Model 1 achieved high precision and the lowest recall. The low 

recall can be mostly attributed to the fact none of the features hold for some pairs. For 

example, in PMID 7846163, “GRF2” (UniProt AC Q01526) is mentioned only once 

and none of the features of Model 1 are true. However, the abstract contains a sentence 
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that indicates the gene is subject of the experimental investigation: “Two maize (Zea 

mays) genes, designated GRF1 and GRF2, have been isolated and characterized”. 

 

The recall increases with the inclusion of more features (a 7% increase for 

Model 2, and a 17% increase for Model 3). The previous example, involving the 

mention of “GRF2” (UniProt AC Q01526) in PMID 7846163, becomes a true positive 

for model 2 and 3 as the feature InvCI captures the information “GRF2” is an object of 

an investigation described in that article. However, there is a decrease in the precision 

for Models 2 and 3, dropping by nearly 7 percentage points and 12 percentage points 

respectively, compared to Model 1. 

 

4.3.2 Statistics of full-scale PubMed processing 

 

As previously mentioned, for the purpose of assigning relevant articles to 

UniProtKB entries, we give more weight to precision than recall. As a result, in our 

first implementation of the pipeline, we selected the SVM Model 1 to run the full-

scale processing applied to the 8 common plant species. 

 

Table 4.5 shows the number of accession (ACs)-abstracts (PMIDs) pairs 

suggested by eGenPub for the full-scale processing of PubMed. As expected, a subset 

of these articles is already cited in reviewed entries (second column). However, this 

constitutes less than half the pairs suggested by eGenPub. More importantly, eGenPub 

adds additional bibliography to curated entries in Swiss-Prot (which may be source of 

updates, similar or complementary information, third column), as well as a significant 

number of uncurated entries in TrEMBL section. 

 

Table 4.5: Statistics of large-scale processing using SVM Model 1 
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Species 

Number of suggested 

AC-PMID pairs 

Number of suggested 

AC-PMID pairs 

mapping to 

Number of suggested 

AC-PMID pairs not in 

UniProt mapping to 
Suggested 

 

Already in  

UniProt 
Swiss-Prot TrEMBL Swiss-Prot TrEMBL 

Arabidopsis 

 
6662 3017 6322 340 3326 319 

Maize 

 
588 186 290 298 205 197 

Soybean 

 
149 45 45 104 26 78 

Tobacco 

 
361 104 142 219 114 143 

Tomato 

 
56 15 51 5 38 3 

Wheat 

 
369 130 129 240 86 153 

Spinach 

 
455 147 136 319 87 221 

Potato 

 
385 129 100 285 61 195 

Total 

 
9025 3773 7215 1810 3943 1309 

 

The overlapping set of publications in UniProt with those suggested by pGenN 

is an indication of the relevant bibliography added by eGenPub. To further show the 

value of the additional papers suggested, we looked at a random set of unique AC-

PMID pairs (193 pairs), and mapped them to the general annotation topics in relation 

to the associated entries. UniProt publications are categorized into the general 

annotation topics of the entry, namely, Function, Expression, Subcellular location, 

PTM/Processing, Structure, Sequence, Pathology & Biotech, Family and domains, and 

Interaction. From these, 150 mapped to a single topic, 35 to two topics, and 8 to more 

than two topics. Table 4.6 shows the distribution of annotation topics for the additional 

bibliography suggestions. The results show that the PMIDs added by eGenPub 

contains valuable information content related to the entry. 

 

Table 4.6: Distribution of UniProt AC-PMID pairs in annotation topics 
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Topic Number of AC-PMID pairs 

Function 70 

Expression 56 

PTM/Processing 43 

Pathology & Biotech 26 

Subcellular location 17 

Interaction 16 

Sequence 11 

Structure 5 

Family and domain 2 

 

The bibliography provided by eGenPub is publicly available in the Publication 

section of the UniProt entry, under “computationally mapped” section. As an example 

of the information content added, consider the unreviewed entry B5A4B4, 

corresponding to gene NAC1 in maize (http://www.uniprot.org/uniprot/B5A4B4, 

Figure 4.2). As of release 2017_05, there is no expert annotation on this entry (it is 

unreviewed), and the automatic annotation information is limited (Figure 4.2, 1). The 

publication section (Figure 4.2, 2) lists the source of publications/submissions 

available. In this case, there are eight submissions listed with no PMIDs in the UniProt 

entries, and one article in the computationally mapped section. The article added by 

eGenPub (shown as source:pGenN, Figure 4.2, 3) provides phosphorylation and 

functional information for Nac1. 
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Figure 4.2 Access to UniProt computationally mapped bibliography 

 

4.4 Conclusion 

 

We have presented here a system, eGenPub, to automatically predict whether 

an article, based on its abstract, is appropriate for additional bibliography for some 

UniProt entry. The system employs a 2-stage process: (1) using pGenN to detect plant 

gene/protein mentions in a given abstract and normalize them to UniProt entries, and 

(2) utilizing a trained SVM model, to predict whether the abstract should be linked to 

the normalized UniProt entries. We conducted evaluations on 3 trained SVM models 

which use different feature combinations. Results shows that Model 1 achieved a 

precision of 95.3%, and a recall of 60.9%, while Models 2 and 3 achieved lower 

precision but higher recall. A pipeline has been set up to run a full-scale PubMed 

processing for the selected 8 common plant species using Model 1 to suggest 

additional bibliography with high confidence. Altogether, 9,025 UniProt AC-PMID 

pairs have been identified, among which 5,252 (3.943 in UniProtKB/Swiss-Prot 
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entries and 1,309 in UniProtKB/TrEMBL entries) were not in the existing UniProt 

publication section. The additional bibliography suggested by eGenPub is integrated in 

the UniProt production of computationally mapped literature, and can be accessed via 

the UniProtKB protein entries view of publications. 

 

In the future, we plan to use eGenPub to add additional bibliography for all 

plant species in UniProt and will provide regular updates in sync with PubMed 

updates. We will investigate how to improve the recall of eGenPub without 

significantly affect its precision. Working closely with UniProt, we have demonstrated 

a robust text mining method for automatically adding bibliography to protein entries in 

selected plant species, and have shown the added information that these articles bring 

to the entry. Once integrated into the entries, these additional bibliographies may be 

used by curators to prioritize and identify entries in need of curation. Because it was 

not feasible to build a large enough corpus to train the SVM models, in contrast with 

traditional approach, we manually selected the features in this work. In the future, 

several additional features can be considered and when necessary automatic feature 

selection methods can be applied. Other possible future work directions could be: (1) 

generalizing the detection of aboutness for articles and other named entity, (2) 

exploring the idea of aboutness in the ranking process of information retrieval. 
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TEXT MINING OF PROTEIN COMPLEX RELATED INFORMATION 

5.1 Introduction 

 

A protein complex is often defined as a stable set of interacting proteins and 

where the complex has been shown to exist as an isolated, functional unit in vivo 

[123]. The interacting proteins, which form the protein complex, are called the 

components of the complex. Proteins often function as components of larger 

complexes to perform a specific function, and formation of these complexes may be 

regulated [14]. Some molecules exist only in certain types of complex (e.g. collagen 

type I, EBI-2325312) [15]. The need for recognizing protein complex and protein 

complex components in text stems from their importance in bio-medicine. 

      

Protein Ontology [16], Complex Portal at IntAct [15] and CORUM [17] are 

some well-known resources which containing information about protein complexes. 

Entries for individual complex in these resources commonly include the protein 

complex name and its synonyms, the species and the component proteins of the 

complex. These types of information are usually obtained from individual experiments 

published in scientific articles, rather than from the high-throughput experiments data 

[17]. 

 

Chapter 5 



 74 

Currently, the coverage of protein complex in these resources is limited. For 

example, there are only 374 organism specific protein complex entries in Protein 

Ontology (04/2017 release), 1905 organism specific protein complex entries in 

Complex Portal (07/2017 release) and 3408 organism specific protein complex entries 

in CORUM (03/2017 release). Additionally, they appear to be mainly for a few 

species. For example, in the case of the Complex Portal, 570 entries are from Homo 

sapiens (NCBI Taxonomy ID: 9606), 531 from Mus musculus (10090), 424 from 

Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (559292), with the 

remaining 380 from 15 other different species. While in the case of CORUM, 2357 

entries are from Homo sapiens, 561 from Mus musculus, 373 from Rattus norvegicus, 

and the remaining 117 from 7 other different species. 

      

In this chapter, we describe our work that is intended to assist in the 

improvement of the coverage of protein complex in these resources. Although a lot of 

work has been conducted for recognizing bio-named entities such as genes and 

diseases, as far as we are aware, there is no system publicly available for protein 

complex mention recognition. In this work, we will develop a system that detects 

protein complex mentions and its components. This work consists of three parts: (I) 

protein complex recognition, (II) protein complex-component relation extraction, and 

(III) protein complex component-component relation extraction. For example, 

consider the sentence “Human Fip1 is a subunit of CPSF that binds to U-rich RNA 

elements and stimulates poly(A) polymerase.” from PMID 14749727, we will first 

detect the protein complex mention “CPSF” (Task I). Since the annotation of a protein 

complex contains its components information, detecting the relation between protein 
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complex “CPSF” and protein “Fip1” will be helpful for complex annotation (Task II. 

Of course, this information will also help with the annotation of the protein. Also, 

complex formation can be found without the name of the protein complex. In these 

cases, we will extract the protein complex component and component relation (Task 

III). e.g., for sentence “hFip1, CPSF160 and PAP form a ternary complex in vitro” 

from PMID 14749727, we will extract the component-component relation among 

proteins “hFip1”, “CPSF160” and “PAP”. Extraction of this relation will assist the 

annotation for both the protein complex and the protein. 

      

We will introduce our work on Task I protein complex mention recognition in 

section 5.2. In section 5.3, we will discuss described our work on Tasks II and III. 

Finally, conclusion will be given in section 5.4. 

5.2 Protein Complex Mention Recognition 

5.2.1 Text preprocessing 

 

The input for our protein complex mention recognition system can be abstracts 

or full length articles. The same sentence splitting and tokenization process as 

described in Chapter 3 is applied. Note that common tokenization method breaks one 

sentence into either a contiguous block of letters and/or digits or a single punctuation 

mark. We treat the adjacent words which are c-terms as one token. For example, in the 

tokenized sentence “Signal transduction by the alpha 6 beta 4 integrin” from PMID 

7556090, “alpha 6 beta 4” is treated as one token. 
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5.2.2 Using CRF 

 

Conditional random field (CRF) [35] is a machine learning technique which is 

commonly used in the sequence labelling task. As introduced in the related work 

chapter (Chapter 2), there are many named entity recognition systems, e.g., ABNER 

[41], BANNER [33], which apply CRF and obtain the best performance in many bio-

named entity recognition tasks. We employ CRFsuite [124], an implementation of the 

CRF, to label the tokens in the text. 

 

It is common to treat the named entity recognition task as a sequence labelling 

task using the BIO model, as introduced in Chapter 2, where each token in the text is 

labelled as Beginning of a named entity, Inside a named entity, or Outside a named 

entity. In this work, we also treat the protein complex mention recognition task in this 

way. For example, in sentence “Endosomal sorting complex required for transport-I is 

one of three defined protein complexes ...”, to recognize the protein complex mention 

“endosomal sorting complex required for transport-I”, we will need to assign label “B” 

to the token with word “Endosomal”, assign label “I” to tokens with words “sorting”, 

“complex”, “required”, “for”, “transport-I”, and assign the rest of the tokens with label 

“O”. 

 

5.2.3 Machine Learning Features 

    

Similar to other NER system, such as BANNER, we use both internal features 

and external features. For the internal features, in addition to the commonly used part 
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of speech (POS) and lemma features, we also consider the nature of protein complex 

names, i.e., some protein complex are mentioned via their components, e.g., “Mis16-

Mis18” in PMID 24774534. But noted not all the mentions in this format are protein 

complex mentions, e.g., “Xnr1-Xnr6” in PMID 11934150 mentions a set of genes: 

“Xnr1”, “Xnr2”, … “Xnr6”. Some NER systems, e.g., BANNER, use features such as 

whether the current token is a number, or Roman numerals, or the name of the Greek 

letters. These features are mainly used to decide what can be considered a mention. 

Since this issue has already been handled in our tokenization method (described in 

Chapter 3), these features are not considered. 

 

The external features are in the form of the context. Normally, contextual 

words describing some functions are very helpful to recognize the type of bio-named 

entity. E.g., in sentence “EMF1 encodes a putative transcriptional regulator, while 

EMF2 encodes a Polycomb group (PcG) protein.” from PMID 19783648, we can 

know “EMF1” is a gene based on its context “encodes”. However, since protein 

complexes and proteins can have the same type of function, their contexts can also be 

similar. E.g., in sentence “Sgk1 phosphorylates Nedd4-2.” from PMID 18197893, the 

gene mention “Sgk1” has the context “phosphorylates”. However, complexes such as 

CK2 can also have this context, as in sentence “We showed that CK2 phosphorylates 

PU.1” from PMID 16439360.  

 

Therefore, due to the similarity in the descriptions of actions conducted by 

proteins and protein complexes, we do not learn from context for disambiguation. 

Instead, we only consider f-terms as used in pGenN. However, of course, we will have 
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to find an exhaustive set of f-terms for protein complexes. For this purpose, we use 

complex portal to automatically mine the protein complex f-terms. Entries in Complex 

Portal contain terms which describe the complex-assembly information, e.g., 

“heterodimer. These terms are collected and used as protein complex f-terms. Table 

5.1 shows the regular expression, which is generated from the collected protein 

complex f-term list, we used for identifying protein complex f-terms. 

 

Table 5.1. Regular expression for identifying protein complex f-terms 

/(complex|dimer|trimer|tramer|hexamer|nonamer|tamer|decamer|octomer|oligomer)$/ 

 

Dictionary matching is helpful to recognize the bio-named entities, as was the 

case with pGenN. However, currently the coverage in the protein complex resources is 

limited. The value of dictionary lookup feature may be underestimated by a machine-

learning method, if the protein complex dictionary is only created based on those 

resources. Thus, we develop a method to automatically mine protein complex names 

from Medline abstracts. Details of this mining process is described in section 5.2.3. 

 

Eventually, we decided to use the following set of features. For a current 

token, represented as token i below, the following features are used: 

 

1. POS feature. The part of speech tags of tokens i-2, i-1, i, i+1, and i+2. 

2. Lemma feature. The lemmas for the words of tokens i-2, i-1, i, i+1, and i+2. 

3. c-term feature. Whether the word/words of token i contains a c-term. 
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4. f-term feature1. The protein complex f-term flag (whether it is a f-term) for 

word of tokens i-2, i-1, i+1, and i+2. 

5. f-term feature2. Whether the headword of token i is a protein complex f-

term. The headwords here include: (a) the head of the NP which contains token i, 

(b) the head of the appositive of token i, (c) the head of the relative clause of token 

i. 

6. Multiple gene names feature. Whether the word/words of token i contain 

multiples gene names. Gene dictionary lookup is applied on the word/words of 

token i to see whether it contains multiple gene names. The gene dictionary used 

here is based on the one we used in Chapter 3, with gene names from human, 

mouse, rat, and yeast added.  

7. Dictionary lookup feature. Is token i: (a) the beginning of a dictionary 

match, (b) inside of a dictionary match, or (c) outside of a dictionary match. 

8. Feature combinations. Combinations of feature 3 and 4, as well as feature 3 

and 5. 

 

5.2.4 Dictionary Creation 

    

We want to extract protein complex names automatically from Medline 

abstracts. Recall that we have created a list of protein complex f-terms (described in 

section 5.2.2). The mining of protein complex names is based on this f-term list, with 

the following steps: 

(1) Search in all Medline abstracts for sentences that contain protein complex 

f-terms. 
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(2) Detect the “is_a” relation in the extracted sentences. The detection of the 

“is_a” relation is handled by one tool is our lab. For each “is_a” relation pair, it 

outputs two arguments (two NPs). 

(3) When one argument ends with a f-term or contains an adjectival form of a 

f-term (e.g., heterdimeric), then we will extract the other argument as protein complex 

name if it is a c-term (and hence likely to be a named entity). 

 

Using this method, 3,445 unique protein complex names are extracted. Among 

them, 1,318 are not in Protein Ontology, Complex Portal, or CORUM.   

     

5.2.5 Post-processing    

  

To improve the performance of the protein complex mention recognition 

system, we apply several postprocessing rules to the CRF results: (1) If one mention is 

recognized as a protein complex, then all the mentions in the same abstract/article 

which have same name will also be tagged as protein complex. E.g., “Arp2/3” in 

PMID 23354023 sentence 7 is recognized as a protein complex by the CRF model, 

then all occurrence of “Arp2/3” in this PMID is tagged as protein complex. (2) 

Abbreviation pairs are extracted using Stanford acronym detection algorithm [109]. 

Both the full name and the short name will be tagged as a protein complex if either 

one of them is recognized. (3) Recognized mention which is number or starts with 

number is removed. E.g., “850-kDa complexes” in PMID 4092036. 
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We also considered additional postprocessing step to improve the recall. In 

Section 5.3.2 we discuss the detection of protein complex-component relation using 

triggers and syntactic dependencies. Some of the triggers and syntactic dependencies 

can be used as text evidence for recognizing protein complex mentions. For example, 

if we can detect the structure “X is a subunit of Y”, and we know “Y” is a named 

entity (by checking whether it contains c-term), then we view “Y” as a protein 

complex name. 

 

5.2.6 Evaluation 

5.2.6.1 Evaluation Setup 

 

Since we are not aware of any annotated corpus available for protein complex 

mention recognition, we develop our evaluation corpus in-house. The Gene Ontology 

(GO) is a resource which provides structured ontologies that describe gene products in 

terms of their associated biological processes, cellular components and molecular 

functions. Entries in GO contain names of the GO term, and some of these names are 

associated with PMID. 200 PMIDs are extracted randomly from entries under Protein 

complex (GO:0043234) sub-hierarchy, and abstracts are retrieved from PubMed using 

the 200 PMIDs.  

 

As stated in the introduction section, Complex Portal at IntAct and CORUM 

are two famous resources for protein complex, Entries in these two resources are 



 82 

associated with PMIDs. Another 100 PMIDs are extracted randomly from these two 

resources (50 from each). 

 

Protein complex mentions are manually annotated in these 300 abstracts. The 

annotation is completed by two senior biocurators. Altogether, 745 protein complex 

mentions (329 unique PMID-protein complex name pairs) are annotated from the first 

200 abstracts, and 471 protein complex mentions (191 unique PMID-protein complex 

name pairs) are annotated from the second 100 abstracts. 

 

We use the first set of 200 abstracts for development, and the second set of 100 

abstracts for evaluation. We apply 10-fold cross validation to evaluate the 

performance of our system. Like the evaluation for other NER tasks, the system 

performance is computed using the standard measures of precision, recall and F-

measure. Since our system has a propagation step (If one mention is recognized as a 

protein complex, then all the mentions in the same abstract/article which have same 

name will also be tagged as protein complex), the system performance is computed 

based on the PMID-protein complex name pairs, instead of mentions. As far as we are 

aware of, our system is the first system for protein complex recognition. Thus, there is 

no alternate system to compare with. 

 

5.2.6.2 Evaluation Results 
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Table 5.2 shows the average precision, recall and F-measure of 10-fold cross 

validation. We compared the performance of the system using only the CRF model, 

and the CRF model plus postprocessing steps. 

 

Table 5.2: Results of 10-fold cross validation 

 Precision Recall F-measure 

CRF 73% 79% 76% 

CRF + postprocessing 80% 82% 81% 

 

 We analyzed the FNs and the FPs of the CRF model, and found that majority 

of the FNs are due to the fact that they do not have valid features to be used by the 

model. For example, in sentence “Ego3 assumes a homodimeric structure similar to 

…” from PMID 23123112. The context “homodimeric structure” indicates “Ego3” is a 

protein complex. However, this is not captured by the current used machine learning 

features. Other FNs are because the system fails to detect the actually name of the 

protein complex. For example, in sentence “… interaction with an Rps28p/3'UTR 

mRNP complex.” from PMID 15225542. The actual name of the complex is 

“Rps28p/3'UTR”. However, the system detects “mRNP” as the name. Of course, this 

type of errors will also lead to FPs. As expected, the postprocessing steps improve 

both the precision and the recall. Using of acronym detection and clues based syntactic 

dependencies contribute more TPs. While the step to filter out invalid names reduce 

the number of FPs. 
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5.3 Complex-associated Relation Extraction 

5.3.1 Relation Extraction based on Triggers and syntactic dependencies 

     

We use trigger based approach for the relation extraction tasks in this section. 

A trigger will be a word or multi-word expression that indicates a relation. For 

example, in sentence “CSC-1 is a subunit of the Aurora B kinase complex”, the 

relation between the protein complex and its subunit is indicated by word “subunit”. 

Similarly, the word “dimerizes” can be taken as a trigger for the relation between two 

protein complex components as indicated in the sentence “Mad1 dimerizes with Max”.  

    

Parsing the text where the trigger and the entities (in this section, the entities 

considered are protein complex and protein) are mentioned can identify any syntactic 

dependencies between them. In our relation extraction approach, after detecting the 

triggers, we use rules based on the dependency edges between the trigger and the 

entities to see whether the entities fit into the arguments of the trigger to confirm the 

relation. For the extraction of the component-component relation from the second 

example sentence, consider Figure 5.1 that shows the syntactic dependencies between 

the trigger and the two entities that are related. 

 

 

Figure 5.1: Syntactic dependencies for example sentence 2 
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To confirm the relation between “Mad1” and “Max”, our rule will enforce the 

following constraints.: (1) the trigger in a verb form appears in the sentence; (2) One 

of the entities, of type protein (“Mad1”), is the nominal subunit of trigger “dimerizes”; 

and (3) “Max” is the modifier of trigger “dimerizes”, where the modification relation 

is given by nmod: with.  

 

We use an existing framework in our lab to develop rules for confirming 

relations. Given one sentence, the framework uses the BLLIP parser [125, 126] to 

obtain the parse trees and then apples Stanford Conversion tool to get the Standard 

Dependency Graph. This framework provides a template to write rules that are in the 

form of a set of conditions and actions. Back to the second example sentence, after 

specifying the triggers and the syntactic dependency conditions, an “argComponent” 

edge is added from the trigger to each protein entity, as shown in Figure 5.2. Details of 

the template can be found in the Appendix A. 

 

 

Figure 5.2: Output for example sentence 2 

 

This framework also detects other extra-syntactic information such as is-a and 

member-collection relations and use them to propagate the original relations to form 

new relations. For example, Figure 5.3 shows the syntactic dependencies constructed 

based on the BLLIP parser output for sentence “The yeast eIF3 complex contains five 

core components: Rpg1, Nip1, Prt1, Tif34, and Tif35.”. Based on the syntactic 

dependencies, we can see the subject and object attached with “contains” are nodes 
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“complex” and “components”. We just need to write rule to detect the relation 

between these two nodes. The framework will handle the member-collection structure 

and add new edges, as shown in Figure 5.4. 

 

 

Figure 5.3: Syntactic dependencies for example sentence 3 

 

 

Figure 5.4: Output for example sentence 3 

 

5.3.2 Protein Complex and Component Relation Extraction 

    

Based on our study, we found the protein complex and component relation is 

often indicated by the “part whole” semantic structure, where a protein mention is 

found in the “part” argument position and a protein complex is found in the “whole” 

argument position. Consider sentence “CSC-1 is a subunit of the Aurora B kinase 

complex.”. In this case, the “part whole” structure is indicated by trigger “subunit”. 

However, the “part whole” structure can be indicated by more general English words. 

E.g., in sentence “MRE complex contains Sp1 or related proteins”, the “part whole” 

structure is indicated by word “contains”. 
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We use three types of rules to extract the part of relation between a protein 

complex and its component from individual sentences. The first type of rules covers 

cases like “protein is a subunit of protein complex”, where the triggers are word such 

as “subunit”, and “component”. In this type of rules, the agent should be the protein, 

and the argument should be the protein complex. The second type of rules covers 

cases like “protein complex contains protein”, where the triggers are words such as 

“contains” and “consists”. In this type of rules, the agent should be the protein 

complex, and the argument should be the protein. The last type of rules covers cases 

like “protein is detected in protein complex”, where the triggers can be “detected-in” 

and “observed-in”. In this type of rules, the agent should be the protein, and the 

argument should be the protein complex. 

 

By specifying the triggers and the conditions, we add an “argComponent” edge 

from the trigger to the protein entity, and an “argComplex” edge from the trigger to 

the protein complex entity if the conditions are met. Figure 5.5 to 5.7 show examples 

of the output using these three types of rules.  

 

 

Figure 5.5: Example output using type 1 rules 

 

 

Figure 5.6: Example output using type 2 rules 
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Figure 5.7: Example output using type 3 rules 

 

The range of triggers plus syntactic dependency conditions for the three types 

of rules can be found in the Appendix B. 

 

5.3.3 Protein Complex Component and Component Relation Extraction 

     

We use two types of rules to extract the protein complex component and 

component relation from individual sentences: (1) “protein and protein form a 

complex”, (2) rules based on protein protein interaction (PPI). For the latter, we first 

use a set of triggers and rules described in [83] to detect PPI relations. Then we use a 

heuristic that such binding forms a complex (i.e., the interacting partners are in a 

component-component relation) if the text also indicates that the PPI: (a) is stable, (b) 

performs some function, or (c) has more than two proteins involved. By specifying the 

triggers and the conditions, we add “argComponent” edges from the trigger to the 

protein entities if these conditions are met. 

  

The first type of rules covers the most basic and straightforward cases. 

Triggers used here are “form” with any protein complex f-term such as “complex” and 

“trimer”. Noted that the word “form” and protein complex f-term do not need to be 

adjacent, as shown in Figure 5.8 (in this example, trigger f-term needs to be the object 

of trigger “form”). 
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Figure 5.8: Example output1 using type 1 rules 

 

The first type also covers cases like “protein complexes with protein”, as 

shown in Figure 5.9.  

 

 

Figure 5.9: Example output2 using type 1 rules 

 

For the first type, we also consider the nominal form of the verb and use words 

such as formation (of complex) and dimerization as triggers. 

 

The second type is based on the detection of the PPI relation. Triggers used for 

detecting the PPI relation are words such as “interact”, “bind”, and “associate”. We 

consider three cases where the PPI indicates protein complex component and 

component relation. Since a protein complex is often defined as a stable set of 

interacting proteins, the first case we consider is when the PPI is stable (PPI + stable), 

as shown in Figure 5.10.  

 

 

Figure 5.10: Example output for PPI + stable 
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The second case we consider is when protein interacts with other protein to 

perform some function, or the interaction itself performs some function (PPI + 

function). Our hypothesis is that if the interaction results in some function being 

performed, it is stable enough or lasts long enough to be called a complex. For 

example, in Figure 5.11, based on the trigger “binds” and the syntactic dependencies 

between the trigger and the two proteins “CD47” and “TSP-1”, we can confirm there 

is a PPI relation. Since there is a conjunction edge from the PPI trigger “binds” to 

another verb “inhibits”, we can infer that “CD47” binds to “TSP-1” to perform some 

function, i.e., “inhibits angiogenesis”. 

 

 

Figure 5.11: Syntactic dependencies for example of PPI + function 

 

Finally, if more than two proteins are found to be involved in one interaction, 

we treat these proteins as components of one same protein complex (PPI + multiple 

components). Consider this sentence “Moreover, Bmh1p and Bmh2p associate with 

Ste20p in vivo.”. Since there are more than two proteins involved in the interaction, 

we can infer that those proteins are components of one same protein complex, as 

shown in Figure 5.12. 
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Figure 5.12: Example output for PPI + multiple components 

 

The list of rules (triggers plus syntactic dependency conditions) for detecting 

the protein complex component and component relation can be found in the Appendix 

C. 

 

5.3.4 Evaluation Setup 

     

We use the same 300 abstracts described in section 5.2.5 as dataset for 

development and evaluation purpose. The annotation of the complex-component and 

component-component relations was completed by two senior biocurators. Altogether, 

51 protein complex and component relation pairs, and 76 protein complex component 

and component relation pairs are annotated from the first 200 abstracts. 77 protein 

complex and component relation pairs, and 44 protein complex component and 

component relation pairs are annotated from the second 100 abstracts. 

  

We used the annotations in the first set of 200 abstracts for development, and 

the second set of 100 abstracts for evaluation. In both relation extraction subtasks, 

system performances are computed using the standard measures of precision, recall 

and F-measure. 
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5.3.5 Results 

 

Table 5.3 shows the precision, recall and F-measure for our complex and 

component relation extraction approach. The performance of component and 

component relation extraction is shown in Table 5.4. 

 

Table 5.3: Performance of Protein Complex and Component relation extraction 

Precision Recall F-measure 

93% 79% 85% 

 

Table 5.4: Performance of Component and Component relation extraction  

Precision Recall F-measure 

86% 77% 81% 

 

Since we use rules based on the syntactic dependencies, our approaches 

achieve very high precision. Most of the errors are caused by the parsing errors. For 

example, Figure 5.13 shows part of the dependencies for sentence “In addition, we 

have discovered two novel subunits of DASH, Hsk2 and Hsk3 (helper of Ask1), which 

are microproteins of fewer than 75 amino acids, as dosage suppressors of ask1 

mutants.” From PMID 15632076. We can see the edges from trigger “subunits” to the 

two proteins “Hsk2” and “Hsk3” are both “nmod:of”. While the correct dependency 

edges should be “appos” (appositive). The remaining errors correspond to cases where 

there is no clear-cut syntactic dependency between the entities. Thus, our syntactic 

dependency driven approaches are unlikely to have captured these cases. 
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Figure 5.13 Part of syntactic dependencies for example of parsing error 

 

5.4 Conclusion 

 

In this chapter, we have presented our work on three tasks of mining protein 

complex related information: (I) protein complex mention recognition, (II) protein 

complex and component relation extraction, and (III) protein complex component and 

component relation extraction.  

 

Evaluation shows our system for protein complex mention recognition 

achieves good results. As far as we are aware, there is no system publicly available for 

protein complex recognition. Our system will be the first one to serve the community. 

When developing the system, we proposed a method to create a dictionary of protein 

complex names by extracting protein complex names from the literature using high 

confidence. Same idea can be used in other situations when a dictionary of names 

needs to be created. For the two complex related relation extraction tasks, we have 

shown that our approaches achieves very high precision (with 93% and 86% precision 

respectively). We believe they can provide high confidence text evidence for the 
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protein complex resources such as Complex Portal, and assist in the improvement of 

the coverage in these resources. 

 

Many of the features in the training of the CRF model were manually 

designed. Again, this is due to the fact that the corpus we were able to obtain for 

training is not large enough. With a large enough corpus, more data driven approach to 

feature engineering can be adopted. In the future, we also plan to integrate our gene 

normalization system with the protein complex recognition system, we will investigate 

whether this can improve the precision for both systems. We also plan to keep adding 

syntactic patterns for extracting the two relations to improve the recall. 
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GENE ANNOTATION USING GO TERMS FROM CELLULAR 

COMPONENT DOMAIN 

 

In this chapter, I will describe our work on employing text mining for assisting 

Cellular Component Gene Ontology (GO) annotation. I will first introduce the task, 

then the methodology. Finally, I will present the evaluation results. 

 

6.1 Introduction 

 

The Gene Ontology (GO) [18] is a resource that supplies information about 

gene product function using ontologies to represent biological knowledge. These 

ontologies cover three domains: (i) Cellular Component (CC), the parts of a cell or its 

extracellular environment; (ii) Molecular Function (MF), the elemental activities of a 

gene product at the molecular level, such as binding or catalysis; and (iii) Biological 

Process (BP), operations or sets of molecular events with a defined beginning and end, 

pertinent to the functioning of integrated living units (cells, tissues, organs, and 

organisms). 

      

Chapter 6 
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GO annotation is a process which assigns gene functional information using 

GO terms to relevant genes in the literature. It is a common task among the Model 

Organism Database (MOD) groups. Manual GO annotation relies on human curators 

assigning gene functional information using GO terms by reading the biomedical 

literature. Currently manual annotations are made by experienced biocurators from 

annotation projects including TAIR (http://www.arabidopsis.org/), Saccharomyces 

Genome Database (http://www.yeastgenome.org/), Mouse Genome Informatics 

(http://www.informatics.jax.org/), WormBase (http://www.wormbase.org/), PomBase 

(http://www.pombase.org/), FlyBase (http://flybase.org/), and ZFIN (http://zfin.org/). 

This process is very time-consuming and labor-intensive. As a result, many MODs can 

only afford to curate a fraction of relevant articles. For example, the curation team of 

TAIR has been able to curate less than 30% of newly published articles that contain 

information about Arabidopsis genes [19]. 

 

As mentioned in Chapter 2, many systems have been developed for automatic 

GO annotation. Despite the fact that there are three types of GO terms (CC, MF, and 

BP) and the kind of textual evidences for each type are different, current approaches 

for automatic GO annotation tend to use a single approach for annotations of all types 

of GO terms. In contrast, our approach is to treat annotation with different types of GO 

terms as individual subtasks. 

 

In this chapter, we will present our work on annotating genes (as stated in the 

previous chapters, we will not distinguish gene from protein) using GO terms from the 

Cellular Component domain. Based on our study, we found that GO terms from this 
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domain can be divided into two sub-hierarchies: (1) subcellular location terms: i.e., 

terms in GO under CC category, which are in the sub-hierarchy rooted by 19 GO 

terms (shown in Table 6.1, all of which have “cellular component” GO:0005575 as 

parent node). (2) protein complex terms: i.e., terms in GO under CC category, which 

are in the sub-hierarchy rooted by protein complex (GO:0043234). These two sub-

hierarchies cover almost all of the 3757 CC terms in GO. We will treat the task of 

gene annotation using GO terms from these two sub-hierarchies as two relation 

extraction tasks: (1) extract cases where a protein is found to be in a subcellular 

location, and (2) extract cases where a protein is a subunit of a protein complex. For 

the latter, we will simply apply the methods for the complex associated relation 

extraction, which are discussed in the chapter 5. 

 

Table 6.1: 19 root GO Terms for Subcellular Location 

Extracellular region (GO:0005576) 

Cell (GO:0005623nucleoid) 

Nucleoid (GO:0009295) 

Membrane (GO:0016020) 

Virion (GO:0019012) 

Cell junction (GO:0030054) 

Extracellular matrix (GO:0031012) 

Membrane-enclosed lumen (GO:0031974) 

Viral occlusion body (GO:0039679) 

Organelle (GO:0043226) 

Extracellular matrix component (GO:0044420) 
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Extracellular region part (GO:0044421) 

Organelle part (GO:0044422) 

Virion part (GO:0044423) 

Membrane part (GO:0044425) 

Synapse part (GO:0044456) 

Cell part (GO:0044464) 

Synapse (GO:0045202) 

Symplast (GO:0055044) 

 

6.2 Methodology 

6.2.1 Gene Annotation concerned with Subcellular Location 

  

Recall this annotation for a protein requires the identification of text that 

relates a protein with a subcellular location. As in the previous chapter, we are going 

to use a trigger based approach and employ the same framework involving syntactic 

dependencies to detect the relations. 

  

The first relation we are interested in is the found-in relation, where triggers 

such as “found” and “detected” are used. A key aspect of the rules for these triggers is 

the presence of a locative preposition such as “in”, “at” and “on”. Figure 6.1 shows the 

syntactic dependencies of the sentence “SIRT2 is found primarily in the cytoplasm.”. 

Given the word “found” as trigger, we can see “SIRT2” is the nominal subject of the 

trigger, and “cytoplasm” is the modifier of the trigger (there is an “nmod:in” edge 
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from “found” to “cytoplasm”). Thus, we can confirm the found-in relation between 

“SIRT2” and “cytoplasm”. 

    

 

Figure 6.1: Syntactic dependencies for example sentence 1 

 

Note the triggers do not need to appear only in the verbal forms but can also 

appear in their nominal forms. For example, the trigger “detected” is used in its 

nominal form “detection” as in the phrase: “the detection of ZmHK1 in endoplasmic 

reticulum”. The use of the trigger in adjectival form is illustrated in Figure 6.2 

Because of the use of the copular structure, the syntactic argument structure is similar 

to the verb case where the nsubj and nmod:in (or other locative preposition) identifies 

the protein and the location.  

 

 

Figure 6.2: Syntactic dependencies for example sentence 3 

 

In addition to the trigger words that correspond to a broadly-defined found-in 

relation, we also consider “movement” verbs. For these cases, we need to ensure that 

the moved entity is a protein and the new/old location is indicated by a locative 

prepositional phrase. An example of this kind can be found in Figure 6.3, Unlike 
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previous cases, since the verbs used as triggers indicate movement of their objects, 

these prepositions are likely to be “to” and “from”, rather than “in”, “on”, “at”. 

 

 

Figure 6.3: Syntactic dependencies for example sentence 4 

 

The next type of relation we consider does not include a trigger that indicate 

the found-in or movement relation explicitly. Instead, this type of relation covers cases 

where the proteins are arguments of an event which occurred in some subcellular 

location and hence the protein-subcellular location relation is implied. For example, 

from sentence “Fbxo45 interacts with Par-4 in the cytoplasm.”, we can infer that 

“Fbxo45” and “Par-4” must both be in the cytoplasm since the interaction took place 

in this region. Figure 6.4 shows the syntactic dependencies of this sentence. From the 

graph, we can identify the proteins by considering the verb’s syntactic arguments such 

as “nsubj”, “nmod:with” and “dobj”. The nmod:in edge from the same verb to the 

location phrase indicates where the event took place.  

 

 

Figure 6.4: Syntactic dependencies for example sentence 5 
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Note that there are a variety of verb structures that can be used including 

passives. Also, the event need not be indicated by words in verbal forms but can also 

appear in their nominal forms. For example, in Figure 6.5, we can know “SGLT1” 

must be in “plasma membrane” since it is expressed there. 

 

 

Figure 6.5: Syntactic dependencies for example sentence 6 

 

Finally, if we were only interested in protein-subcellular location relation, then 

we can consider triggers that are adjectives that are modifiers specifying subcellular 

locations (e.g., nuclear and cytoplasmic). In such cases, we will look for the protein 

which these adjectives modify, e.g., in the phrase “the nuclear transcription factors 

AP-1 or NFIL-2A”. However, our interest here is not just in detection textual mentions 

of a protein’s subcellular location. Rather, we are interested in annotation of a protein. 

Thus, the text must indicate not only the relation but that it is a finding. Therefore, we 

will not consider cases such as “cytoplasmic CD3” in this work, because we believe it 

refers to existing knowledge. 

 

The list of rules (triggers plus syntactic dependency conditions) to detect 

protein-subcellular location relation can be found in the Appendix D. 

 

In addition to the above rules, we also attempted to capture descriptions of 

experimental results on protein localization, through fluorescent microscopy. Consider 

the following text: “The localization of CeCDC-14 was analyzed in wild-type C. 
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elegans embryos, using the affinity-purified anti-CeCDC-14 antibodies for 

immunofluorescence microscopy. Later in mitosis, during telophase, this staining 

compacted to a single dot that was positioned between the two daughter cells, highly 

reminiscent of the midbody.”. The word “staining” above indicates protein 

localization. While we haven’t developed concrete rules for these cases, we look for 

location terms in the same sentence. In this case, we thus obtain the location of 

“midbody”. Next, we attempt to find which protein’s staining is detected or observed. 

For this purpose, we try to see if there is a unique protein (other than tags such as 

GFP) mentioned in the same or previous sentence. In this case, there is only one 

protein mentioned, i.e., “CeCDC-14”. We use this (as a low confident clue) to infer 

that protein “CeCDC-14” is in location “midbody”. 

    

Finally, as for the detection of subcellular location mentions, we use a 

dictionary based method, where the subcellular location dictionary is created using 

terms from GO subcellular location sub-hierarchies (described in the introduction 

section). In this way, after we detect the relation between a protein and a subcellular 

location, the protein can be directly associated with a GO term. 

 

6.2.2 Gene Annotation concerned with Protein Complex 

    

In order to annotate a protein with a protein complex GO term, we will first 

detect the text where a protein is mentioned as a component of a protein complex. This 

can be done through detecting either of the two types of relations discussed in Chapter 

5: (1) Protein Complex and Component Relation, and (2) Protein Complex 
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Component and Component Relation. Then we will infer the proper GO terms under 

the protein complex sub-hierarchy based on the text to annotate the protein. 

 

For the first task, we only confirm whether a protein is mentioned as a 

component of a protein complex. So, to achieve this goal, for the Protein Complex and 

Component Relation extraction task, we do not need to limit ourselves to when the 

complex is named. Some general phrases that denote a protein complex such as “a 

complex” can also be used as valid context. For example, in Figure 6.6, if we know 

“JAB1” is a subunit of a protein complex, this is enough for us to select this sentence 

as GO annotation evidence sentence. Thus, in this chapter, we will also detect phrases 

that denote a complex by checking whether the phrase is ending with protein complex 

f-terms.  

 

 

Figure 6.6: Relation extraction output for example sentence 7 

 

Similarly, for the Protein Complex Component and Component Relation 

extraction task, we do not need to require all the components involved to be to 

explictly named proteins. Thus, for example, the following sentence (Figure 6.7) 

suffices to assert that CAR-1 belongs to a complex.  

 

 

Figure 6.7: Relation extraction output for example sentence 8 
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After the relations are extracted, we will infer the proper GO terms under the 

protein complex sub-hierarchy based on the extracted information to annotate the 

protein. Two types of information are used: (1) protein complex names, and (2) 

complex components.  

     

  Since entries from PRO, Complex portal and CORUM can all be linked to GO 

entries, if the protein complex we recognized can be matched with the dictionary 

created from these resources, we can directly associate it with the corresponding GO 

terms. Note that we do not need to consider the species information during the 

dictionary lookup process, since GO terms are not species specific. 

  

If we cannot figure out more information for the protein complex mentioned in 

the article, we will just annotate the proteins involved in the extracted relations with 

GO term “protein complex” (GO:0043234). 

 

6.3 Evaluation 

6.3.1 Evaluation Setup 

    

The BC4GO corpus is a publicly available corpus for the Gene Ontology 

Annotation task. It consists of a set of articles and associates GO annotations for these 

articles. This corpus contains 200 full-text articles, 100 of them were designated for 

training, 50 for development, and the remaining 50 were used for testing. Annotations 
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in this corpus include the PMID, Gene ID and GOID triplets (a list of relevant GO 

terms for genes in a paper). 

 

From the BC4GO test set, we extract the PMID, Gene ID and GOID triplets 

with annotated GO terms covered by the range of our methodologies, and use these 

triplets for evaluation. Altogether. 97 of the 102 PMID, Gene ID, and GOID triplets 

with annotation from the Cellular Component domain are extracted and used for 

evaluation. According to the annotation guideline, we only try to predict GO terms 

based on the text from the abstract, results section, discussion section, and conclusion 

section. 

 

6.3.2 Evaluation Results 

 

Table 6.2 shows the precision, recall and F-measure using our approach to 

predicting GO terms from Cellular Component Domain for given genes. 

 

Table 6.2 Performances of predicting GO terms for given genes 

Precision Recall F-measure 

91% 58% 71% 

 

Since many of the annotations used text evidence from multiple sentences, 

while our approach mainly captures the ones from one single sentence, majority of the 

FNs are due to fact that we didn’t anaphoric expressions such as “both proteins” and 

“it”. For example, in sentence “We monitored the subcellular localization of 
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ZmOST1-GFP and ZmSNAC1-GFP constructs in Nicotiana benthamiana and found 

that both proteins are localized in the nucleus and the cytoplasm of tobacco epidermal 

cells (Figure 3).” from PMID 23469147 (PMC3585266). If we can anaphoric “both 

proteins” to “ZmOST1” and “ZmSNAC1”, then we can capture the relations for the 

two proteins to location “nucleus” and “cytoplasm”, based on the syntactic 

dependencies. The remaining FNs correspond to cases where there is no clear-cut 

syntactic dependencies between the protein and the location. Thus, the syntactic 

dependency driven approach is unlikely to have captured these cases. We found 

sentential co-occurrence with careful restrictions might help to improve the recall 

without hurting the precision. This can be a potential future investigation topic. 

    

6.4 Conclusion 

 

In this chapter, we have developed a system to automatically annotating genes 

using GO Terms from Cellular Component Domain. We have described a novel 

approach of treating this process as two relation extraction tasks: (1) extract cases 

where a protein is in a subcellular location, and (2) extract cases where a protein is a 

subunit. Evaluation results shows that our approach achieves very high precision in 

this GO annotation process. Thereby we believe our system can be used as an useful 

tool for the bio-annotators from Model Organism Database groups to accelerate the 

process of GO annotation. 
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In the future, we plan to investigate how to improve the recall of our system. 

One possible direction is to apply sentential co-occurrence heuristic with careful 

restrictions. 
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CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 

In this section, we conclude by summarizing the contributions of this 

dissertation. Specifically, our contributions for each task introduced in this dissertation 

are as follows: 

  

1. Gene normalization. We have developed a system, pGenN, which fulfills a 

need for automatic detection of plant gene names in the literature and their 

normalization to UniProt. In developing pGenN, we have introduced a new concept of 

pivot that has been used in all phases of the normalization and helps improve the 

performance. We believe this concept can be also used for other named entity 

recognition and normalization tasks. We also have introduced a method to create a 

large gene mention corpus to learn the plant gene context. This method can be 

generalized not only for entities of other types and from other specific sub-domains, 

but also for distant supervision for development of NER tools. Evaluation on two in-

house annotated corpora shows pGenN achieves state of the art performance on 

abstract level plant gene normalization (with 88.9% and 90.0% F-measures on the two 

corpora respectively). pGenN has been used to process a comprehensive set of over 

527,481 plant related Medline abstracts. The results, which are updated monthly in 

sync with PubMed, have been stored in our local database, pGenN_DB, and can be 

Chapter 7 
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searched, sorted and downloaded via a web interface, found at 

http://biotm.cis.udel.edu/gn. pGenN was also extended to process full length articles, 

with a focus on the species assignment process for genes in the results section. The 

idea used in the task, i.e., treating different full length article sections differently, 

especially the results section, can be explored for other text mining tasks applied on 

full length articles. 

 

2. Extending computationally mapped bibliography for UniProt. We have 

presented a system, eGenPub, which utilizes a trained SVM model to automatically 

predict whether an article, based on its abstract, is appropriate for additional 

bibliography for some UniProt entry. We have evaluated the SVM model for 

predicting whether the article can be linked to the corresponding UniProt entry. 

Evaluation results show this model obtains 95.3% precision on our in-house annotated 

corpus. A full-scale PubMed processing has been conducted using eGenPub for 8 

common plant species. The literature collected by our system has already been 

integrated in the UniProt production of computationally mapped literature, and can be 

accessed via the UniProtKB protein entry publication view. So far, 9,025 articles have 

been suggested as relevant bibliography for 4,752 UniProt entries, among which 5,252 

articles are additional papers not in the existing UniProt publication section. 

Additionally, we can use our approach to detect the aboutness of an article for a 

specific entity (not limited to genes) and we believe this can benefit many curation 

tasks as well as many information retrieval tasks where ranking of articles is needed. 
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3. Text mining of protein complex related information. We have presented our 

work on three subtasks that are intended to assist in improving the coverage in protein 

complex resources: (I) protein complex mention recognition, (II) protein complex and 

component relation extraction, and (III) protein complex component and component 

relation extraction. For the recognition of protein complex mentions, we have 

delivered the first system to serve the community. Evaluation shows our system 

achieves good results (with a F-measure of 81% on our in-house annotated corpus). In 

additional to the good performance, we believe the idea of automatically creating a 

name dictionary by extracting names from the literature using high confidence rules, 

can be used in other tasks where a dictionary of names needs to be created. For the 

two complex related relation extraction tasks, we have shown that our approaches 

achieves very high precision (with 93% and 86% precision respectively). Thus, we 

believe our work on the three subtasks can provide high- confidence text evidence for 

the protein complex resources such as Complex Portal, and can be used to assist in the 

improvement of the coverage in these resources. 

 

4. Gene annotation using GO terms from Cellular Component domain. We 

have described a novel approach of treating annotation with GO terms from this 

domain as two subtasks, where we cast the task as relation extraction between gene 

and other entities: (1) extract cases where a protein is found to be in a subcellular 

location, and (2) extract cases where a protein is a subunit of a protein complex. We 

tested our approach on the BC4GO test set, and evaluation results show that our 

approach 91% precision for predicting GO terms for the given genes. Thereby we 
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believe our system can be used as an useful tool for the bio-annotators to accelerate 

the process of GO annotation.  

 

It can be noted that there is not much prior work to be compared with. In fact, 

as far as we are aware, we were the first to tackle many of the tasks included in this 

dissertation. This is the reason why there were no other systems that could be 

compared with. 

 

7.2 Future Work 

 

In addition to the methods/systems that we have presented in this dissertation, 

our study opens up several opportunities for future work. One main direction is to 

integrate the gene normalization system with the protein complex recognition system. 

Since the contexts of protein complex and gene can be similar (as discussed in Chapter 

5), this integration has the potential to improve the accuracy of both systems. Another 

direction is to extend the work and build a full system for gene mention detection and 

normalization in full length articles, especially the results sections.  

 

Another main direction is to continue our work on gene annotation for the 

remaining aspects of GO. We have introduced our approach of treating annotation 

with GO terms from the Cellular Component domain as two subtasks, where we cast 

each subtask as relation extraction between gene and other entities. This idea can also 

be applied to other types of GO terms. For example, based on our preliminary study, 

we believe our approach can be especially useful for two major sub-hierarchies of the 
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Molecular Function domain: protein binding terms and catalytic activity terms. 

Annotation with terms from these two sub-hierarchies can be benefit from: (1) 

extracting cases where a protein binds to other proteins, and (2) extracting cases where 

a protein is involved in catalytic activity. We believe approaches following these 

processes can yield high precision, thus can assist in the process of GO annotation. 
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Appendix A 

TEMPLATE TO WRITE RULES BASED ON SYNTACTIC DEPENDENCIES 

 

In this section, we describe the template for writing rules for relation extraction 

based on syntactic dependencies. The template consists 3 parts: (1) RuleID: 

name/symbol for the rule, (2) Cond_#: the conditions that need to be satisfied, and (3) 

Action_#: the dependency edge to be added. I will use an example to illustrate how 

this template works. Consider the rule in Table A.1, which captures the protein 

complex component and component relation for “Mad1” and “Max” in sentence 

“Mad1 dimerizes with Max”. The syntactic dependencies are shown in Figure A.1. 

 

 

Figure A.1: Syntactic dependencies for example sentence 

 

Table A.1 Example rule 

RuleID: pp_dimerizeWith 

Cond_0 : {lemma:/(.*dimerize|complex)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:with/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

For the rule shown in Table A.1, there are 3 conditions needs to be satisfied: 

(1) the lemma of one node “N0” (in this case “dimerizes”) needs to be matched with 
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the regular expression /.*dimerize|complex/, (2) there needs to be a “nsubj” edge 

points from node “N0” to another node “N1” (in this case “Mad1”), and (3) there 

needs to be a “nmod:with” edge points from node “N1” to another node “N2” (in this 

case “Max”). If these three conditions are all satisfied, then we add an 

“argComponent” edge from “N0” to “N1”, and an “argComponent” edge from “N0” 

to “N2”, as shown in Figure A.2. 

 

 

Figure A.2: Output for example sentence 
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Appendix B 

RULES FOR DETECTING PROTEIN COMPLEX AND COMPONENT 

RELATION  

In this section, we list the three types of rules (described in Chapter 5) we 

developed for detecting Protein Complex and Component Relation. The rules are in 

the same form with the template described in Appendix A. 

 

Type 1 rules: 

 

RuleID : pc_IsASubunitOf 

Cond_0 : {lemma:/(subunit|member|component|constituent|part)/}=N0 

Cond_1 : {}=N0 >/(nmod:of)/ {}=N1 

Action_1 : N0 >> argProtein >> N0 

Action_2 : N0 >> argComplex >> N1 

 

RuleID : pc_IsAComplexSubunit 

Cond_0 : {lemma:/(subunit|member|component|constituent|part)/}=N0 

Cond_1 : {}=N0 >/(compound)/ {}=N1 

Action_1 : N0 >> argProtein >> N0 

Action_2 : N0 >> argComplex >> N1 

 

RuleID : pc_compoundTail 

Cond_0 : {lemma:/(subunit|member|component|constituent|part)/}=N0 

Cond_1 : {}=N0 >/(compound)/ {}=N1 

Cond_2 : {}=N0 >/(nmod:of)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 
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RuleID : pc_compoundHead 

Cond_0 : {lemma:/(subunit|member|component|constituent|part)/}=N0 

Cond_1 : {}=N0 >/(dep|compound)/ {}=N1 

Cond_2 : {}=N0 >/(compound)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

Type 2 rules: 

 

RuleID : pc_contains 

Cond_0 : {lemma:/(contain|include)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >dobj {}=N2 

Action_1 : N0 >> argComplex >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pc_consistsOf 

Cond_0 : {lemma:/(consist)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N2 

Action_1 : N0 >> argComplex >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pc_containing 

Cond_0 : {word:/(containing)/}=N0 

Cond_1 : {}=N2 >acl {}=N0 

Cond_2 : {}=N0 >dobj {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

RuleID : pc_composedOf 

Cond_0 : {lemma:/(compose|form|consist)/}=N0 

Cond_1 : {}=N1 >acl {}=N0 

Cond_2 : {}=N0 >/nmod:(of|by)/ {}=N2 

Action_1 : N0 >> argComplex >> N1 



 130 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pc_isComposedOf 

Cond_0 : {lemma:/(compose|form|consist)/}=N0 

Cond_1 : {}=N0 >nsubjpass {}=N1 

Cond_2 : {}=N0 >/nmod:(of|by)/ {}=N2 

Action_1 : N0 >> argComplex >> N1 

Action_2 : N0 >> argProtein >> N2 

 

Type 3 rules: 

 

RuleID : pc_detectedIn 

Cond_0 : {lemma:/(found|detect|observe|discover|note)/}=N0 

Cond_1 : {}=N0 >nsubjpass {}=N1 

Cond_2 : {}=N0 >/nmod:(in|on|at|throughout|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

RuleID : pc_presentIn 

Cond_0 : {lemma:/(present)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:(in)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

RuleID : pc_engagedIn 

Cond_0 : {lemma:/(engage)/}=N0 

Cond_1 : {}=N0 >nsubjpass {}=N1 

Cond_2 : {}=N0 >/nmod:(in|throughout)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

RuleID : pc_associationInComplex 

Cond_0 : {lemma:/(.*association|binding)/}=N0 
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Cond_1 : 

{lemma:/(complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octomer)/

}=N3 

Cond_2 : {}=N0 >/nmod:of/ {}=N1 

Cond_3 : {}=N0 >/nmod:(with|to)/ {}=N2 

Cond_4 : {}=N0 >/nmod:in/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

Action_3 : N0 >> argComplex >> N3 

 

RuleID : pc_associationInComplex 

Cond_0 : {lemma:/(.*association|binding)/}=N0 

Cond_1 : 

{lemma:/(complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octomer)/

}=N2 

Cond_2 : {}=N0 >/nmod:of/ {}=N1 

Cond_3 : {}=N0 >/nmod:in/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

RuleID : pc_enterComplex 

Cond_0 : {lemma:/(enter)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >dobj {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 
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Appendix C 

RULES FOR DETECTING PROTEIN COMPLEX COMPONENT AND 

COMPONENT RELATION 

 

In this section, we list the two types of rules (described in Chapter 5) we 

developed for detecting Protein Complex Component and Component Relation. The 

rules are in the same form with the template described in Appendix A. 

 

Type 1 rules: 

 

RuleID : pp_formComplexWith 

Cond_0 : {lemma:/(form)/}=N0 

Cond_1 : 

{lemma:/(complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octomer)/

}=N2 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >dobj {}=N2 

Cond_4 : {}=N2 >/nmod:with/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

Action_3 : N0 >> argProtein >> N3 

 

RuleID : pp_formComplex 

Cond_0 : {lemma:/(form)/}=N0 

Cond_1 : 

{lemma:/(.*complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octome

r)/}=N2 
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Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >dobj {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

RuleID : pp_formationOfComplex 

Cond_0 : {lemma:/(formation)/}=N0 

Cond_1 : 

{lemma:/(complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octomer)/

}=N1 

Cond_2 : {}=N0 >/nmod:of/ {}=N1 

Cond_3 : {}=N0 >/nmod:by/ {}=N2 

Action_1 : N0 >> argProtein >> N2 

Action_2 : N0 >> argComplex >> N1 

 

RuleID : pp_existInComplexWith 

Cond_0 : {lemma:/(exist)/}=N0 

Cond_1 : 

{lemma:/(.*complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octome

r)/}=N2 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >/nmod:in/ {}=N2 

Cond_4 : {}=N2 >/nmod:with/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

Action_3 : N0 >> argProtein >> N3 

 

RuleID : pp_dimerizeWith 

Cond_0 : {lemma:/(.*dimerize|complex)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:with/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_stableInteractionOf 

Cond_0 : {lemma:/(interaction|association)/}=N0 

Cond_1 : {lemma:/(stable)/}=N1 
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Cond_2 : {}=N0 >/amod/ {}=N1 

Cond_3 : {}=N0 >/nmod:of/ {}=N2 

Action_1 : N0 >> argProtein >> N2 

 

RuleID : pp_stableInteractionOfWith 

Cond_0 : {lemma:/(interaction|association)/}=N0 

Cond_1 : {lemma:/(stable)/}=N1 

Cond_2 : {}=N0 >/amod/ {}=N1 

Cond_3 : {}=N0 >/nmod:of/ {}=N2 

Cond_3 : {}=N0 >/nmod:with/ {}=N3 

Action_1 : N0 >> argProtein >> N2 

Action_1 : N0 >> argProtein >> N3 

 

RuleID : pp_bindStably 

Cond_0 : {lemma:/(bind|associate)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:(with|to)/ {}=N2 

Cond_3 : {word:/(stably)/}=N3 

Cond_4 : {}=N0 >advmod {}=N3 

Action_1 : N0 >> argProtei >> N1 

Action_2 : N0 >> argProtei >> N2 

 

RuleID : pp_bind_with_as_complex 

Cond_0 : {lemma:/(bind|associate)/}=N0 

Cond_1 : 

{lemma:/(.*complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octome

r)/}=N3 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >/nmod:(with|to)/ {}=N2 

Cond_4 : {}=N0 >/nmod:(as)/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

Action_2 : N0 >> argComplex >> N3 

 

RuleID : pp_bind_with_as_complex2 

Cond_0 : {lemma:/(bind)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 
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Cond_2 : {}=N0 >dobj {}=N2 

Cond_3 : 

{lemma:/(.*complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octome

r)/}=N3 

Cond_4 : {}=N0 >/nmod:(as)/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

Action_2 : N0 >> argComplex >> N3 

 

RuleID : pp_bind_as_complex 

Cond_0 : {lemma:/(bind)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : 

{lemma:/(.*complex|.*dimer|.*trimer|.*tramer|.*tamer|.*hexamer|.*nonamer|.*octome

r)/}=N2 

Cond_3 : {}=N0 >/nmod:(as)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argComplex >> N2 

 

Type 2 rules: 

 

RuleID : pp_associationOfWithFunction 

Cond_0 : {lemma:/(interaction|association|binding)/}=N0 

Cond_1 : {pos:/(VBZ|VBD)/}=N2 

Cond_2 : {}=N0 >/nmod:of/ {}=N1 

Cond_4 : {}=N2 >/nsubj/ {}=N0 

Action_1 : N0 >> argProtein >> N1 

 

RuleID : pp_interactionBetweenWithFunction 

Cond_0 : {lemma:/(interaction|association|binding)/}=N0 

Cond_1 : {pos:/(VBZ|VBD)/}=N2 

Cond_2 : {}=N0 >/nmod:between/ {}=N1 

Cond_4 : {}=N2 >/nsubj/ {}=N0 

Action_1 : N0 >> argProtein >> N1 

 

RuleID : pp_associationOfWithFunction 
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Cond_0 : {lemma:/(association|binding)/}=N0 

Cond_1 : {pos:/(VBZ|VBD)/}=N3 

Cond_2 : {}=N0 >/nmod:of/ {}=N1 

Cond_3 : {}=N0 >/nmod:(with|to)/ {}=N2 

Cond_4 : {}=N3 >/nsubj/ {}=N0 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_interactionOfWithFunction 

Cond_0 : {lemma:/(interaction)/}=N0 

Cond_1 : {pos:/(VBZ|VBD)/}=N3 

Cond_2 : {}=N0 >/nmod:of/ {}=N1 

Cond_3 : {}=N0 >/nmod:(with)/ {}=N2 

Cond_4 : {}=N3 >/nsubj/ {}=N0 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_bindFunction 

Cond_0 : {lemma:/(interact|associate|bind)/}=N0 

Cond_1 : {pos:/(VB)/}=N3 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >dobj {}=N2 

Cond_4 : {}=N0 >advcl {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_bindFunction2 

Cond_0 : {lemma:/(associate|bind)/}=N0 

Cond_1 : {pos:/(VBN)/}=N3 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >/nmod:(with|to)/ {}=N2 

Cond_4 : {}=N3 >advcl {}=N0 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_bindFunction2 

Cond_0 : {lemma:/(interact|associate|bind)/}=N0 
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Cond_1 : {pos:/(VBZ|VBD)/}=N3 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >dobj {}=N2 

Cond_4 : {}=N3 >nsubj {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_associateWithFunction 

Cond_0 : {lemma:/(interact|associate|bind)/}=N0 

Cond_1 : {pos:/(VB)/}=N3 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >/nmod:(with)/ {}=N2 

Cond_4 : {}=N3 >nsubj {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

RuleID : pp_isAssociatedWithFunction 

Cond_0 : {word:/(associated|bound)/}=N0 

Cond_1 : {pos:/(VB)/}=N3 

Cond_2 : {}=N0 >nsubjpass {}=N1 

Cond_3 : {}=N0 >/nmod:(with|to)/ {}=N2 

Cond_4 : {}=N3 >nsubj {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

 

(For the following type 2 rules, the number of components involved needs to 

be larger than 2) 

 

RuleID : ppi_associateWith 

Cond_0 : {lemma:/(interact|associate|bind|coIP|colocalize)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:(with|to)/ {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_isAssociatedWith 

Cond_0 : {word:/(associated|bound)/}=N0 
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Cond_1 : {}=N0 >nsubjpass {}=N1 

Cond_2 : {}=N0 >/nmod:(with|to)/ {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_associated 

Cond_0 : {word:/(associated|bound)/}=N0 

Cond_1 : {}=N1 >acl {}=N0 

Cond_2 : {}=N0 >/nmod:(with|to)/ {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_associate 

Cond_0 : {lemma:/(interact|associate|bind|coIP)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >nsubj {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_associationBetween 

Cond_0 : {lemma:/(interaction|association|dissociation|binding)/}=N0 

Cond_1 : {}=N0 >/nmod:(between|of)/ {}=N1 

Cond_2 : {}=N0 >/nmod:(between|of)/ {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_associationOfWith 

Cond_0 : {lemma:/(interaction|association|binding)/}=N0 

Cond_1 : {}=N0 >/nmod:of/ {}=N1 

Cond_2 : {}=N0 >/nmod:(with|to)/ {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_bind 

Cond_0 : {lemma:/(interact|associate|bind|coIP)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >dobj {}=N2 



 139 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 

 

RuleID : ppi_combineWith 

Cond_0 : {lemma:/(combine|couple|copurify|co-purify)/}=N0 

Cond_1 : {}=N0 >nsubj {}=N1 

Cond_2 : {}=N0 >/nmod:with/ {}=N2 

Action_1 : N0 >> argPPI >> N1 

Action_2 : N0 >> argPPI >> N2 
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Appendix D 

RULES FOR DETECTING PROTEIN AND SUBCELLULAR LOCATION 

RELATION 

In this section, we list all the rules we developed for detecting Protein and 

subcellular location Relation. The rules are in the same form with the template 

described in Appendix A. 

 

RuleID : pl_foundIn 

Cond_1 : {word:/(found|noted|detected|observed|discovered)/}=N0 

Cond_2 : {}=N0 >/(nsubjpass)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_localizedTo 

Cond_1 : {word:/(localised|localized)/}=N0 

Cond_2 : {}=N0 >/(nsubjpass)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|to)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_transportedTo 

Cond_1 : {word:/(transported|translocated|displaced|attached)/}=N0 

Cond_2 : {}=N0 >/(nsubjpass)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(to|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 
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RuleID : pl_removedFrom 

Cond_1 : {word:/(removed)/}=N0 

Cond_2 : {}=N0 >/(nsubjpass)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_ExpressedIn 

Cond_1 : {word:/(translated|expressed|activated)/}=N0 

Cond_2 : {}=N0 >/(nsubjpass)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_stableIn 

Cond_1 : 

{word:/(stable|visible|detectable|enriched|located|localized|transported)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_expressionOfProteinIn 

Cond_1 : {lemma:/(localization|colocalization)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|to)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_expressionOfProteinIn 

Cond_1 : {lemma:/(translation|expression|activation)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_distributionOfProteinIn 
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Cond_1 : {lemma:/(distribution)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_relocalizationOfProteinTo 

Cond_0 : {lemma:/(relocalization|translocation|transport)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(to|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_ProteinRelocalizationTo 

Cond_1 : {lemma:/(relocalization|translocation|transport)/}=N0 

Cond_2 : {}=N0 >compound {}=N1 

Cond_3 : {}=N0 >/nmod:(to|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_relocalizeTo 

Cond_1 : {lemma:/(relocalize|translocate|transport)/}=N0 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >/nmod:(to|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_relocalizationTo 

Cond_1 : {lemma:/(relocalization|translocation|transport)/}=N0 

Cond_2 : {}=N0 >compound {}=N1 

Cond_3 : {}=N0 >amod {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_JJrelocalizationof 

Cond_1 : {lemma:/(relocalization|translocation|transport)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 
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Cond_3 : {}=N0 >amod {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_relocalizationTo 

Cond_1 : {lemma:/(relocalize|transport)/}=N0 

Cond_2 : {}=N0 >dobj {}=N1 

Cond_3 : {}=N0 >/nmod:(to|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_enrichmentIn 

Cond_1 : {lemma:/(enrichment|decrease|increase)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_increaseIn 

Cond_1 : {lemma:/(decrease|increase|accumulate)/}=N0 

Cond_2 : {}=N0 >nsubj {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_localizeIn 

Cond_1 : {lemma:/(localize|localise|colocalize|relocalize)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|to)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_appearIn 

Cond_1 : {lemma:/(occur|appear)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 
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Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_colocalizeWithIn 

Cond_1 : {lemma:/(colocalize)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(with)/ {}=N2 

Cond_4 : {}=N0 >/nmod:(in|at|on|throughout|within|to)/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 

Action_3 : N0 >> argLocation >> N3 

 

RuleID : pl_JJlocalizationOf 

Cond_1 : {lemma:/(localization)/}=N0 

Cond_2 : {}=N0 >/(amod)/ {}=N2 

Cond_3 : {}=N0 >/nmod:(of)/ {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_isPresentIn 

Cond_1 : {lemma:/(present)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_PresentIn 

Cond_1 : {lemma:/(present)/}=N0 

Cond_2 : {}=N1 >/(amod)/ {}=N0 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_labeled 

Cond_1 : {word:/(labeled)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/(dobj)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 
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Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_recruitmentOfTo 

Cond_1 : {lemma:/(recruitment)/}=N0 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(to)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_recruitmentOf 

Cond_1 : {lemma:/(recruitment)/}=N0 

Cond_2 : {}=N0 >/(compound)/ {}=N2 

Cond_3 : {}=N0 >/nmod:(of)/ {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_recruitTo 

Cond_0 : {lemma:/(recruit)/}=N0 

Cond_1 : {}=N0 >dobj {}=N1 

Cond_2 : {}=N0 >/nmod:(to)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_protein_adj_localization 

Cond_1 : {lemma:/(localization|colocalization)/}=N0 

Cond_2 : {}=N0 >amod {}=N2 

Cond_3 : {}=N0 >compound {}=N1 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_actionIn 

Cond_1 : {pos:/(VB|VBD|VBG|VBN)/}=N0 

Cond_2 : {}=N0 >/nsubj/ {}=N1 

Cond_3 : {}=N0 >/dobj/ {}=N2 

Cond_4 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N3 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argProtein >> N2 
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Action_3 : N0 >> argLocation >> N3 

 

RuleID : pl_location_NN_of 

Cond_1 : {pos:/(NN)/}=N0 

Cond_1 : {}=N0 >/(amod|compound)/ {}=N1 

Cond_2 : {}=N0 >/nmod:(of)/ {}=N2 

Action_1 : N0 >> argProtein >> N2 

Action_2 : N0 >> argLocation >> N1 

 

RuleID : pl_JJin 

Cond_1 : {pos:/(JJ)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|to|from)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_actionIn 

Cond_1 : {pos:/(VB|VBD|VBG|VBN)/}=N0 

Cond_2 : {pos:/(NN)/}=N1 

Cond_3 : {}=N0 >/dobj/ {}=N1 

Cond_4 : {}=N1 >/nmod:of/ {}=N2 

Cond_5 : {}=N0 >/nmod:(in|at|on|throughout|within)/ {}=N3 

Action_1 : N0 >> argProtein >> N2 

Action_2 : N0 >> argLocation >> N3 

 

RuleID : pl_VBNTo 

Cond_1 : {pos:/(VBN)/}=N0 

Cond_2 : {}=N0 >/(nsubjpass)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|to|from|over)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_protein_NN_on 

Cond_1 : {pos:/(NN)/}=N0 

Cond_1 : {}=N0 >amod {}=N1 

Cond_2 : {}=N0 >/nmod:(in|at|on|to|throughout|within)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 
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Action_2 : N0 >> argLocation >> N2 

 

RuleID : pl_verbIn 

Cond_1 : {pos:/(VBZ|VBP)/}=N0 

Cond_2 : {}=N0 >/(nsubj)/ {}=N1 

Cond_3 : {}=N0 >/nmod:(in|at|on|throughout|within|to|from|over)/ {}=N2 

Action_1 : N0 >> argProtein >> N1 

Action_2 : N0 >> argLocation >> N2 
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Appendix E 

REPRINT PERMISSION LETTER 

 

 

 

 

 

 


