Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2015 ### **Supplementary Information** ## Metal Oxide Arrays from Block Copolymer Thin Film Templates Michael K. Mayeda, a Jeffery Hayat, b Thomas H. Epps, III, a* and Jochen Lauterbachc* - Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA - ^b Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29201, USA - Department of Chemical Engineering, University of South Carolina, Columbia, SC 29201, USA - *E-mail: thepps@udel.edu. Tel.: +1 302 831 0215. Fax: +1 302 831 1048 - *E-mail: lauteraj@cec.sc.edu. Tel.: +1 803 777 7904. Fax: +1 803 777 8292 ## **Methods for Sample Preparation** Table S1. Sample preparation methods prior to immersion and polymer removal. | Description | Manuscript reference | Substrate | Annealing procedure | Metal precursor solution | | |--------------------------------------|----------------------|--|-------------------------------------|---|--| | PS-b-PEO | Figure 1a | Si | toluene vapor, 18 h N/A | | | | PS-b-PEO | Figure 1b | Si | toluene/water vapor (98 % RH), 18 h | N/A | | | EISA TiO ₂ | Figure 1c | SiO ₂ | toluene vapor, 2 h | 0.7 g titanium tetraisopropoxide,
0.25 g HCl solution (37% in
water), 0.5 mL 2-propanol
stirred for 30 min | | | SPICE TiO ₂ | Figure 1d | SiO_2 | toluene/water vapor (98 % RH), 18 h | 0.7 g titanium tetraisopropoxide,
0.25 g HCl solution (37% in
water), 0.5 mL 2-propanol | | | SPICE Au/TiO ₂ | Figure 1e | SiO ₂ | toluene/water vapor (98 % RH), 18 h | 0.7 g titanium tetraisopropoxide,
0.25 g HCl solution (37% in
water), 0.5 mL 2-propanol
stirred for 30 min | | | PS- <i>b</i> -PEO -Ti | Figure 2a | Transfer from SiO ₂ to Cu grid | toluene/water vapor (98 % RH), 2 h | 0.7 g titanium tetraisopropoxide,
0.25 g HCl solution (37% in
water), 0.5 mL 2-propanol
stirred for 30 min | | | PS-b-PEO -Ti | Figure 2b | Transfer from SiO ₂ to Cu grid | toluene vapor, 2 h | 0.7 g titanium tetraisopropoxide,
0.25 g HCl solution (37% in
water), 0.5 mL 2-propanol
stirred for 30 min | | | SPICE TiO ₂ | Figure 2c | Transfer from SiO ₂ to SiN grid | toluene/water vapor (98 % RH), 18 h | 0.7 g titanium tetraisopropoxide,
0.25 g HCl solution (37% in
water), 0.5 mL 2-propanol
stirred for 30 min | | | SPICE MgO | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | | SPICE Al ₂ O ₃ | Figure S1 | SiO ₂ | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | | SPICE MnO ₂ | Figure S1 | SiO ₂ | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | | SPICE Fe ₂ O ₃ | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | |--------------------------------------|-----------|------------------|-------------------------------------|--| | SPICE Co ₃ O ₄ | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | SPICE NiO | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | SPICE CuO | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | SPICE ZnO | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | SPICE ZrO ₂ | Figure S1 | SiO ₂ | toluene/water vapor (98 % RH), 18 h | 0.5 M in 50:50 vol ethanol:water solution stirred for 30 min | | SPICE RuO ₂ | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | SPICE SnO ₂ | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | | $_$ SPICE Ce_2O_3 | Figure S1 | SiO_2 | toluene/water vapor (98 % RH), 18 h | 1 M in ethanol stirred for 30 min | # **Atomic Force Microscopy (AFM) of Metal Oxides** **Figure S1**. AFM height images of metal oxides templated by the SPICE method: (a) MgO, (b) Al_2O_3 , (c) MnO_2 , (d) Fe_2O_3 , (e) Co_3O_4 , (f) NiO, (g) CuO, (h) ZnO, (i) ZrO_2 , (j) SnO_2 , (k) Ce_2O_3 , and (l) RuO_2 . Insets are FFTs of the entire image. Scale bars represent 200 nm. The SPICE method was used to template MgO, Al₂O₃, MnO₂, Fe₂O₃, Co₃O₄, NiO, CuO, ZnO, ZrO₂, SnO₂, Ce₂O₃, and RuO₂. TiO₂ is shown in the main text of the manuscript. Representative AFM height images are shown in Figure S1. FFTs of the image are shown in the insets. The 6-spot pattern is characteristic of hexagonal packing. XPS of Metal Oxides Table S1. XPS peak positions and associated full width half maxima (FWHM). | Metal oxide | Position (eV) | FWHM (eV) | Metal oxide | Position (eV) | FWHM (eV) | |---------------------|---------------|-----------|--------------------------------|---------------|-----------| | MgO | | | ZnO | | | | 2p | 50.8 | 1.7 | $2p_{3/2}$ | 1022.7 | 1.8 | | RuO_2 | | | TiO ₂ | | | | $3d_{5/2}$ | 280.7 | 1.8 | $2p_{3/2}$ | 458.9 | 1.3 | | | | | 2p _{1/2} | 464.6 | 2.3 | | Al_2O_3 | | | Fe ₂ O ₃ | | | | 2p | 74.6 | 1.8 | $2p_{3/2}$ | 711.2 | 2.8 | | | | | shake-up | 718.6 | 5.1 | | CeO_2 | | | $2p_{1/2}$ | 724.9 | 4.0 | | $3d_{3/2}$ | 916.5 | 4.4 | shake-up | 728.2 | 13.3 | | MnO_2 | | | NiO | | | | $2p_{3/2}$ | 642.2 | 2.7 | $2p_{3/2}$ | 856.7 | 2.0 | | shake-up | 645.6 | 5.5 | shake-up | 861.6 | 7.8 | | $2p_{1/2}$ | 654.0 | 2.5 | $2p_{1/2}$ | 874.3 | 2.6 | | shake-up | 655.3 | 9.1 | shake-up | 880.0 | 6.9 | | Co_3O_4 | | | Ce ₂ O ₃ | | | | $2p_{3/2}$ | 781.7 | 2.7 | $3d_{5/2}$ | 882.0 | 3.0 | | shake-up | 786.2 | 8.1 | $3d_{5/2}$ | 885.8 | 3.9 | | $2p_{1/2}$ | 797.2 | 3.5 | $3d_{3/2}$ | 900.0 | 3.5 | | shake-up | 802.9 | 7.2 | $3d_{3/2}$ | 904.2 | 5.2 | | CuO | | | ZrO_2 | | | | $2p_{3/2}$ | 932.9 | 1.3 | $3d_{5/2}$ | 182.7 | 1.4 | | shake-up | 942.4 | 5.9 | $3d_{3/2}$ | 185 | 1.5 | | $2p_{1/2}$ | 952.6 | 1.8 | | | | | shake-up | 962.4 | 3.7 | | | | | Cu(OH) ₂ | | | SnO ₂ | | | | $2p_{3/2}$ | 934.7 | 3.7 | $3d_{5/2}$ | 487.3 | 1.4 | | $2p_{1/2}$ | 954.6 | 3.1 | $3d_{3/2}$ | 495.7 | 1.4 | XPS data were fit using CasaXPS to determine peak positions and FHWM. Metal oxide signatures were evident in all spectra. No evidence of precursor salts or metals was noted. #### **Titania Loading** By comparing the PEO cylinder volume ($^{V_{PEO}}$) to the TiO₂ volume ($^{V_{TiO_2}}$), a loading ratio can be calculated. The measured height of titania dots, which has a density ($^{\rho_{TiO_2}}$) and formula weight ($^{FW}_{TiO_2}$), was 5.4 ± 1.4 nm when using PS-*b*-PEO films, which had a PEO density ($^{\rho_{PEO}}$) and monomer formula weight ($^{FW}_{PEO\ unit}$), that were 30 nm thick. PEO cylinders and TiO₂ radii were 8.7 ± 0.8 nm and 8.5 ± 1.9 nm, respectively. $$\left(\frac{\text{mol}_{Ti}}{\text{mol}_{PEO\ unit}}\right) = \left(\frac{V_{TiO_2} \cdot \rho_{TiO_2}}{FW_{TiO_2}}\right) \left(\frac{FW_{PEO\ unit}}{V_{PEO} \cdot \rho_{PEO}}\right)$$ (S1) $$\left(\frac{\text{mol}_{Ti}}{\text{mol}_{PEO\ unit}}\right) = \left(\frac{1.3 \times 10^{-24} \text{m}^3 \cdot 4230 \text{ kg} \cdot \text{m}^{-3}}{0.079 \text{ kg} \cdot \text{mol}^{-1}}\right) \cdot \left(\frac{0.044 \text{ kg} \cdot \text{mol}^{-1}}{7.1 \times 10^{-24} \text{m}^3 \cdot 1130 \text{ kg} \cdot \text{m}^{-3}}\right)$$ (S2) $$\left(\frac{\text{mol}_{Ti}}{\text{mol}_{PEO\ unit}}\right) = 0.38$$ (S3) The loading ratio (mol_{Ti} : $mol_{PEO\ unit} = 0.38$) is less than traditional EISA methods, which can reach up to 2 by employing micelles. However, loading ratios by the SPICE method should be compared to work by Shan *et al.*; they achieved well-ordered arrays by complexing precursors with homopolymers prior to blending with a BCP solution. The reported loading ratios were 0.18-0.30; however, the ratios were calculated based on the homopolymer solution and not the final precursor/homopolymer/BCP solution. In the case of the latter, the loading ratios would have been closer to 0.12-0.20. Therefore, the SPICE method uses relatively large precursor loading ratios and thus minimizes consumed polymer material. ### Methylene Blue Catalysis **Figure S2.** Representative time-lapse UV-vis spectra of MB photocatalytically degraded by SPICE TiO₂. MB solutions were exposed to catalyst and UV irradiation in UV-transparent cuvettes. Inset contains the entire UV-vis spectra of a MB aqueous solution. The peaks between 550-740 nm (solid) were used to evaluate the photocatalytic activity of SPICE TiO₂, EISA TiO₂, and Au/SPICE-TiO₂ Au/EISA-TiO₂ surfaces. MB was used to demonstrate the improved photocatalytic activity of SPICE TiO₂ over traditional EISA TiO₂. The peaks between 550-750 nm were used to monitor the photocatalytic degradation of MB. Instrument drift was monitored by analyzing a stock MB solution that was not exposed to UV irradiation (Figure S2 inset) prior to each measurement. Time-lapse data clearly exhibit decreases in peak intensity. MB solution concentrations, which were based on integrated peak areas, were fit to first-order kinetics to determine rate constants (Figure 3). By monitoring the UV-vis spectra, it was shown that SPICE TiO₂ was 13% more effective than EISA TiO₂. ### TiO₂ Dispersion **Figure S3.** Size distributions of EISA and SPICE TiO_2 were measured according to the AFM images in Figure 1c and Figure 1d, respectively. Radii were calculated using ImageJ and binned in 0.5 nm increments. Counts (y-axis) were normalized for the purposes of comparison. Radii (r_x) represent the average and standard deviation of each data set. The data represent over 2700 measurements for each AFM image. The SPICE method produced a narrower distribution of TiO_2 than the EISA method. The narrower distribution was qualitatively evident by the line scan in Figure 1f, but it is quantified here. The variance (σ) within the distribution of radii were $\sigma_{SPICE} = 3.5$ nm and $\sigma_{EISA} = 19.6$ nm. The index of dispersion (D) was calculated by the following expression: $$D = \frac{\sigma^2}{\mu},\tag{S4}$$ for which μ is the number average of the distribution. The indices of dispersion were $D_{SPICE} = 1.5$ nm and $D_{EISA} = 39.2$ nm. This narrower size distribution is one of the key benefits of the SPICE method over the traditional EISA method. 1. Shan, L.; Punniyakoti, S.; Van Bael, M. J.; Temst, K.; Van Bael, M. K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.-G.; *J. Mater. Chem. C* **2014**, *2*, 701-707.