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ABSTRACT 

 

Urban Heat Islands (UHI) occur where urban areas have higher temperatures 

than their less-developed surroundings, and can be mitigated in part by urban 

vegetation. In addition, the experience of the UHI varies across populations within a 

city due to many social and economic factors such as poverty, age, and the residents’ 

biological sex. Urban community gardens have been suggested as a form of urban 

vegetation which may mitigate local temperature increases associated with the urban 

heat island in a city as well as providing many other social benefits. However, urban 

greenspace such as parks vary in cooling capability, and urban gardens are also subject 

to social forces that influence their composition and may affect their cooling 

capability. Through an analysis of observed and modelled data from a garden in 

Philadelphia, the effects of urban garden composition on a neighborhood’s thermal 

comfort was analyzed. It has been demonstrated that urban gardens can reduce 

temperatures within a city as well as promote thermal comfort, primarily due to the 

presence of tree cover. The experienced cooling effect of trees varies between the 

sexes, with females seeing a greater reduction in thermal discomfort than males. 

However, while urban gardens (and tree cover) may promote thermal comfort, there 

are many obstacles to cooling the city in this manner. Many of the most popular 

Philadelphia urban garden crops are non-arboreal. Increasing the cooling impact of an 

urban garden may require changing garden composition to promote cooling, and trees 

take years to mature. In addition, residents also face structural inequality and the risk 



 xv 

of gentrification when attempting to maintain urban gardens or increase tree cover in 

their neighborhoods.
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Chapter 1 

BACKGROUND 

1.1 Urban Heat Islands and Park Cool Islands 

Urbanization leads to increased temperatures in a region when compared to 

their less-developed surroundings due to changes in land surface properties, a 

phenomenon known as Urban Heat Islands (UHI; Coseo and Larsen 2014). UHI is 

caused by the concentration of impervious heat-absorbing materials used in buildings, 

sidewalks, and streets which absorb more daytime heat (and release it more slowly at 

night) than natural materials such as soil or vegetation (Harlan et al. 2006). Urban heat 

islands have been found to reach temperatures that are 6.5 °C warmer in urban areas 

that replace temperate grasslands and savannas, and 6.5-9 °C warmer when replacing 

temperate forests (Imhoff et al. 2010).  This increased temperature can have multiple 

effects: increased cooling costs, altered human activity and community interactions, 

and increased heat stress (Jenerette et al. 2007). In addition, more deaths are attributed 

to excess heat in cities found within temperate climates when compared to warm 

climates, due to a lack of acclimatization (Declet-Barreto et al. 2013).Yet the impact 

of UHI can be mitigated in part by Park Cool Islands (PCI), which is a pattern of 

cooler areas created by the presence of vegetation within the Urban Heat Island. Urban 

vegetation cools its surroundings through a combination of shading and transpirational 

cooling, and has been found to decrease surface temperatures up to 8.4 °C in Phoenix, 

AZ (Declet-Barreto et al. 2013). 
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 However, the Park Cool Island effect is highly variable, due to 

differences in the extent and composition of urban vegetation. In Florida, forested 

parks had greater cooling than neighborhoods with extensive vegetation, which in turn 

had greater cooling than less-vegetated neighborhoods (Jamei et al. 2016). This is 

consistent with prior research showing that the percentage of impervious surface cover 

explains approximately 70% of the land surface temperature increase (Imhoff et al. 

2010). The size of a park also determines the intensity and extent of its PCI. Cooling is 

highly localized and decreases away from the park; prior research has shown cooling 

to extend outside park boundaries by approximately the width of a park and may 

extend up to 1 to 2 km away in larger parks (Jamei et al. 2016). 

The effects of Urban Heat Islands are not evenly distributed among urban 

populations. Within a city, high mortality is disproportionately impacting 

marginalized groups, such as the poor, minorities, and the elderly (Harlan et al. 2006). 

In addition, low-income and minority populations have less access to greenspace and 

its associated benefits as well (Declet-Barreto et al. 2013). In fact, Jenerette et al. 

(2007) found that for every $10,000 increase in a neighborhood’s annual median 

income, the summer surface temperatures decreased by 0.28 °C. While the Park Cool 

Island effect has the potential for mitigating Urban Heat Islands, the variability due to 

both the physical and social influences are important to consider when studying its 

impact, to understand the experience of heat and how it may differ across an urban 

population. 

1.2 Urban Gardens 

One potential method for the mitigation of urban heat islands is through urban 

gardens, defined as “public spaces managed by member-volunteers who grow food 
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crops and/or flowers, shrubs, and trees in individual plots and communal growing 

spaces” (Gregory et al. 2016). Urban gardening has other unique benefits as a type of 

greenspace. In particular, urban gardens provide healthy and locally produced food to 

low-income communities (many of which are in “food deserts” with limited access to 

fresh fruits and vegetables), improve bodily and psychological health, build 

community resources, and convert vacant land to communal spaces (Poulsen et al. 

2014).In addition to these social benefits, there are multiple physical benefits that 

gardens are purported to have. Many gardeners consider urban gardens as a way to 

“green up” the city through remediating spaces (Reynolds and Cohen 2014) and there 

has been recent promotion of urban gardens to mitigate local temperature increases 

within cities to reduce the effects of energy poverty within cities (Tsilini et al. 2014). 

In particular, Tsilini et al. (2014) found the addition of an urban garden decreased 

temperatures during the spring, summer and autumn seasons, and advocated for the 

use of urban gardens due to their cooling properties and social benefits. 

Yet like other forms of greenspace, urban gardens are also subject to social 

forces that can create disparity. In New York City, Reynolds (2014) found social 

structures that promote racial and class disparity create differences within the gardens 

as well, primarily due to the lack of connections to funding and city services among 

farmers that were non-white or lower income. In general, white gardeners report 

raising more funding than gardens led by people of color. While one white-led gardens 

was able to raise funds over $1 million, most non-white gardens were “bare-bones” 

and struggled to raise money for items such as a $500 generator. This difference is 

noticed by both white and non-white gardeners, who both describe the urban 

gardening as having two distinct, racially-divided parts. These funding differences can 
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manifest in the size and composition of the gardens; gardeners report that the cost of 

proper growing media (which includes soil, compost and nutrients) and labor limit the 

size of their gardens. In particular, a lack of funding makes it difficult to hire labor. 

Most gardens struggled to pay workers to grow food and relying solely on volunteer 

labor to manage the gardens was difficult (Cohen and Reynolds 2014).  

This disparity between gardens run by white and non-white groups is present 

in Philadelphia gardens as well. Meenar and Hoover (2012) found that gardeners in 

Philadelphia reported issues in acquiring and maintaining vacant land, and 

neighborhoods with less social or political capital have greater difficulty accessing 

land for gardening. In addition, the gardeners have reported lower-income residents 

had less time to grow food as well. While Meenar and Hoover’s focus precluded 

discrepancies in funding, the lack of social and political capital that created difficulties 

in acquiring land likely are also likely to lead existing neighborhood gardens to 

experience disparity in funding and composition as well. As Reynolds’ (2014) 

reported for New York City, a lack of funding made hiring labor difficult. When 

Philadelphia residents have little time to grow food due to other jobs, the demand for 

gardens may be limited. 

1.3 Thermal Comfort 

While air temperature is an important factor in the thermal sensation of the 

human body, the heat-balance of the body also relies on other processes affected by 

the moisture and movement of the air, as well as the radiation balance of the body 

(Höppe 1999). Therefore, to study the impact of heat on city residents, the use of 

human-biometeorology can determine the felt impacts of the local climate (Matzarakis 
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et al. 2007). This can be done through the local observations of both microclimate and 

human vitals, or through a variety of models. There are several models available. 

For this experiment, two commonly-used programs are employed: Envi-met 

(Envi-met 2016), and RayMan (as described in Matzarakis et al. 2006). Envi-met is a 

three-dimensional microclimate simulator designed for use in urban and rural 

environments. Envi-met contains simulation parameters that model plant and surface 

fluxes, and calculates the thermal comfort index Predicted Mean Vote (PMV) as a 

result. Due to these capabilities, Envi-met is often used to determine urban 

biometeorological conditions for varying urban configurations of buildings, street 

design, vegetation and permeable soils (Salata et al. 2017). Envi-met has been used in 

research to analyze influences on urban microclimates (Declet-Barreto et al. 2013, 

Middel et al. 2015, Middel et al. 2015) and to study human thermal comfort in an 

outdoor urban environment (Salata et al. 2016). 

In contrast, RayMan is a radiation model which can be used to calculate the 

Predicted Mean Vote and Physiological Equivalent Temperature (PET). RayMan uses 

meteorological variables such as air temperature, humidity, and wind velocity (which 

may be produced by numerical models such as Envi-met), as well as biological 

variables such as human body heat production, and heat transfer resistance of clothing 

in order to calculate the thermal comfort indices (Matzarakis et al. 2006). In addition, 

RayMan is the most popular method of modelling mean radiant temperature, which is 

an important variable in the calculation of human thermal comfort (Johansson et al. 

2014), and is used to produce the human thermal comfort indices PMV and PET 

(Matzarakis et al. 2010). While RayMan is only able to model the thermal comfort of a 

stationary subject (and is thus unable to simulate spatial patterns of comfort), RayMan 



6 

 

is still being used due to its accurate simulation of thermal comfort in urban 

environments (Matzarakis et al. 2006). 

Thermal comfort indices, such as Predicted Mean Vote (PMV) and 

Physiological Equivalent Temperature (PET), are quantitative ways of determining the 

felt impact of climate change on humans. The PMV and PET are based on the 

physiological energy balance of a subject in the experimental study area, but have 

different forms of determining comfort. Predicted Mean Vote is designed to predict 

the mean description of an environment by a group of individuals. The PMV scale is 

based on a seven point Ashrae comfort scale (from -3 for cold to +3 for hot), where 

the absolute value of the results reflect the predicted thermal stress of the environment 

(from “no stress” at zero to “”very strong stress” at 3) (Mayer 1993). However, the 

PMV was designed for indoor conditions and can diverge from an actual survey of 

thermal comfort in outdoor conditions. 

In comparison, the Physiological Equivalent Temperature has been shown to 

demonstrate better results in outdoor conditions (Rupp et al. 2015). In contrast to the 

PMV, the PET index calculates the temperature of an indoor environment which 

would induce the same thermal comfort. Unlike the seven-point PMV scale, the PET 

scale remains in °C (Mayer 1993), and is based on the Munich energy balance for 

individuals (MEMI) model (Matzarakis et al. 2006).The MEMI model is heat balance 

model for the human body, taking into account the metabolic rate, physical heat 

production, net radiation of the body, convective heat flow, latent heat flow, 

respiratory heat flow, heat flow due to sweat evaporation, and heat storage (Gosling et 

al. 2014). PET temperatures around 23 °C are considered neutral (while temperatures 

at 18 °C and 29 °C would be slightly cool and slightly warm, respectively). The PET 
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can be adjusted to account for acclimation to warmer temperatures as well, for 

example, the neutral PET for a warm period is increased to 27 °C (Wang et al. 2017).  

In addition to studying the differences in the distribution of potential garden 

cooling, it is important to examine how human bodies within the neighborhood 

experience the heat and what disparities may arise. Therefore, in the analysis of the 

microclimate surrounding and within an urban garden, it is important to study both 

male and female bodies. Women experience heat differently than men; women are 

more sensitive to cool temperature, less sensitive to humidity, and more often 

uncomfortable with an environment than men (Rupp et al. 2015). These differences 

can lead to disparity in felt impacts of heat in urban population due to the sex of the 

residents.  

1.4 Modelling “Difference” 

With half of the world population currently living in cities (Salata et al. 2016) 

and expected to increase to 70% of the world population by 2030 (Rupp et al. 2015), it 

is increasingly important to consider the effect of urban heat island on the population. 

One proposed method of mitigating the effects of increased urban heat is through the 

Park Cool Island effect via urban garden vegetation (Tsilini et al. 2014). Initially this 

idea appears to be a preferable solution to UHI because urban gardens have many 

additional social benefits compared to other forms of urban vegetation, such as 

providing fresh food to city residents (Meenar and Hoover 2012, Poulsen et al. 2014) 

creating community connections, promoting psychological wellbeing, and cleaning up 

vacant lots (Poulsen et al. 2014). However, many forms of greenspace receive uneven 

support within a city due to neighborhood characteristics stemming from class and 

race (Harlan et al. 2006, Jenerette et al. 2007, Declet-Barreto et al. 2013), and urban 
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gardens suffer from similar disparities as well (Meenar and Hoover 2012, Reynolds 

2014, and Reynolds and Cohen 2014).  As the Park Cool Island effect is dependent on 

the size and composition of greenspace (Imhoff et al. 2010, Jamei et al. 2016) and the 

impact of increased heat is dependent on the residents’ bodies (Rupp et al. 2015), 

while an urban garden’s cooling capabilities may be a physical effect but the extent 

and impact of this cooling may be socially determined. The aim of this project is to 

examine the physical characteristics of an urban heat island in Philadelphia, PA and its 

impacts on thermal comfort, with a focus on the social variability and difference in 

their formation. 
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Chapter 2 

METHODS 

 

2.1 Observations 

Two sets of observations were employed in this study. One set is from a series 

of in situ meteorological sensors installed in and near an urban garden specifically for 

this study. These sensors were used to determine the air temperature and humidity 

within and nearby an existing urban garden in the city of Philadelphia. The second set 

consists of externally-operated sensors that are a part of the Mesowest network. This 

set of sensors were used to compare the conditions of the earlier set of sensors to 

urban, peri-urban, and rural areas within and surrounding the city of Philadelphia. 

2.1.1 In situ HOBO sensor data 

To determine the cooling capability of an urban garden, temperature and 

relative humidity data were recorded in situ using Onset HOBO sensors. These HOBO 

sensors were HOBO U23-001 Pro v2 Temperature/Relative Humidity Data Loggers.  

These sensors have a temperature range of -40 to 70 °C, an accuracy of ± 0.21 °C 

from 0 to 50 °C, and a resolution of 0.02 °C. The relative humidity range of the 

sensors is 0 to 100%, an accuracy of ±2.5% from 10%-90% relative humidity (and an 

accuracy of ± 5% below 10% or above 90% relative humidity), and a resolution of 

0.05%. HOBO sensors can store 42,000 measurements and are powered by a 
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replaceable ½ AA lithium battery. The sensor housing measured 10.2 cm x 3.8 cm 

(Onset 2016). 

Temperature and humidity data were collected at one primary garden site, the 

2124 Fitzwater Garden, in the center of Philadelphia, PA. The HOBO sensors 

recorded temperature and humidity data in five-minute intervals from October 2nd, 

2016 to December 4th, 2016. One sensor was situated in the garden, and 4 sensors 

were located on trees alongside an adjacent street (hereafter referred to as the “Garden 

Sensor” and Sensors 1 through 4 (based on their proximity to the garden, Figure 2.1). 

Sensors 1-4 were each attached to the tree on a lower branch (at the most consistent 

height possible for each tree) and at the midpoint of the branch from base to tip, to 

provide shielding from direct sunlight through the tree’s canopy. The Garden Sensor 

was placed in housing that was attached to the trunk of the tree. Sensors 1 through 4 

are located sequentially eastward from the garden on Fitzwater Street (the street 

adjacent to the garden), on the opposite side of the road from the garden. The Garden 

Sensor was housed in the center of the garden, on the single tree within the boundaries 

of the garden, at a height of 157 cm from the ground. Sensor 1 was located on a tree 

diagonally across the street from the garden, at a height of 211 cm. Sensor 2 was down 

the street from the garden, at a height of 236 cm. Sensor 3 was located further east on 

the next block, near the corner of Fitzwater Street and S 21st Street, at a height of 203 

cm.  Lastly, Sensor 4 was placed east of Sensor 3 (but within the same city block) at a 

height of 201 cm.  

The Garden Sensor was placed with the support of the Neighborhood Gardens 

Trust, which is an organizing body for urban community gardens in Philadelphia 

(which the 2124 Fitzwater Garden is a part of) as well as the specific gardeners in 
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charge of the 2124 Fitzwater Garden. Street trees within the city of Philadelphia are 

the property of the landowners (in this case, the residents of Fitzwater Street), and 

verbal consent was obtained before placing the Sensors 1-4 on their trees. 

2.1.2 Mesowest 

In addition, Mesowest data from two sensors located in Philadelphia, and one 

located on nearby rural land, was used for comparison. Mesowest provides current and 

archived weather observation-s across the United States, relying upon weather stations 

managed by a mixture of governmental, educational and private organizations 

(Mesowest 2017a). Mesowest is an ongoing project between researchers at the 

University of Utah, the Salt Lake City National Weather Service Office, the NWS 

Western Region Headquarters, and other agencies, universities and commercial firms. 

The Mesowest weather-observing networks and database is used by numerous 

organizations, including by the National Weather Service to monitor weather 

conditions throughout the country (Mesowest 2017b) 

One Mesowest sensor located in Philadelphia and used in this study, E8199, is 

located in the center of Philadelphia (Latitude: 39.94367, Longitude: -75.15100) at a 

height of 12 meters (Mesowest 2017c), 2.3 km from the urban garden site. Sensor 

E8199 records data at 15-minute intervals, and measures temperature, dew point 

temperature, wet bulb temperature, relative humidity, wind speed, wind gust, wind 

direction, air pressure, altimeter, solar radiation, precipitation (24 hour), and 

precipitation since local midnight (Mesowest 2017d). Sensor E8199 is part of the 

APRSWXNET/Citizen Weather Observer Program. In a manner similar to the 2124 

Fitzwater Garden neighborhood, the buildings surrounding the sensor E8199 are 

typically multi-story buildings that are either attached or in close proximity to each 
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other. Mesowest shows the land use in the surrounding 1 km2 of land as the USGS 

land use classifications “Developed, High Intensity,” and “Developed, Med Intensity” 

for both the E8199 sensor and the HOBO sensors (Mesowest 2017a). While the E8199 

sensor is not in an identical configuration to the garden sensor, the urban environment 

surrounding both have a similar configuration and density of buildings. Also, as the 

E8199 sensor is part of the Mesowest network, it is a good, calibrated reference for the 

HOBO sensors. 

Another Mesowest sensor, KPHL, is located at Philadelphia International 

Airport (Latitude: 39.87327 Longitude: -75.22678) at a height of 2 meters, and is part 

of the National Weather Service/Federal Aviation Administration (NWS/FAA) 

network (Mesowest 2017e). The KPHL sensor records data at a five-minute interval, 

and measures temperature, dew point temperature, wet bulb temperature, relative 

humidity, wind speed, wind gust, wind direction, pressure, sea level pressure, 

altimeter, weather conditions, visibility, ceiling, peak wind speed, peak wind direction, 

and 6-hour high temperature (Mesowest 2017f). The KPHL sensor is located in a 

noticeably different (peri-urban) environment than sensor E8199; being directly 

located in USGS land use type “Developed, Open Space” while also located next to 

“Developed, Med Intensity,” “Cultivated Crops,” “Developed, High Intensity,” 

“Pasture/Hay,” and “Barren Land” (within the 1 km2 of land surrounding each site) 

(Mesowest 2017c). This peri-urban environment is quite different from the interior 

urban environment shared by E8199 and the garden sensor. 

The rural station, E4674, is located outside of the city of Philadelphia at a 

height of 23 meters above sea level, and is part of the APRSWXNET/Citizen Weather 

Observer Program (Mesowest 2017g). The E4674 sensor records at 10-minute-long 
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intervals, and measures temperature, dew point temperature, wet bulb temperature, 

relative humidity, wind speed, wind gust, wind direction, air pressure, altimeter, solar 

radiation, precipitation (24 hour), and precipitation since local midnight (Mesowest 

2017h). In the 1 km2 surrounding E4674, the USGS land use is primarily of the types 

“Deciduous Forest,” “Developed, Low Intensity,” and “Developed, Open Space,” with 

some smaller quantities (<5% coverage) of “Developed, Med Intensity,” “Woody 

Wetlands,” “Pasture/Hay,” “Evergreen Forest,” “Cultivated Crops,” and “Developed, 

High Intensity” (Mesowest 2017h) Therefore, E4674 is used as a rural reference for 

the UHI impact, while KPHL and E8199 are used to determine the extent and 

variability of the UHI. 

2.2 Observational Data Analysis 

2.2.1 Calculating Urban Heat Island Intensity 

To determine the UHI intensity and the potential mitigation of the garden, 

paired t-tests of the data were conducted through JMP. JMP is a statistical package 

from SAS (2017a and 2017b).  

To determine the UHI intensity and the potential mitigation of the garden, the 

temperature and relative humidity of each sensor was compared using the Local 

Climate Zone (LCZ) classification proposed by Stewart and Oke (2012).The Local 

Climate Zones are defined as “as regions of uniform surface cover, structure, material, 

and human activity that span hundreds of meters to several kilometers in horizontal 

scale” (Stewart and Oke 2012). Using this classification scheme, the differences that 

are analyzed are not necessarily “urban-centered” but provide a means of analysis 

across land cover-land use types (Stewart et al. 2014). For the purposes of this 
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analysis, the HOBO sensors and Mesowest sensor E8199 are classified as “compact 

mid-rise” LCZ class (LCZ2), defined as a “dense mix of midrise buildings (3–9 

stories), few or no trees, land cover mostly paved, [and] stone, brick, tile, and concrete 

construction materials” (Stewart and Oke 2012). The KPHL sensor is classified as the 

“open mid-rise” LCZ class (LCZ5), defined as an “open arrangement of midrise 

buildings (3–9 stories), abundance of pervious land cover (low plants, scattered trees), 

[and] concrete, steel, stone, and glass construction materials” (Stewart and Oke 2012). 

Lastly, the Mesowest sensor used as a rural proxy, E4674, is defined as the “sparsely-

built” LCZ class (LCZ9), defined as a “sparse arrangement of small or medium-sized 

buildings in a natural setting, [and an] abundance of pervious land cover (low plants, 

scattered trees)” (Stewart and Oke 2012).  

The potential UHI was found by analyzing the temperature and relative 

humidity differential between the HOBO sensors and Mesowest sensors E8199 and 

KPHL in reference to sensor E4674 (e.g. ΔT LCZE8199-E4674 as the temperature 

difference between the “dense mid-rise” and “sparsely-built” classes). Due to the 

difference in the temporal resolution of the collected data from the HOBO and 

Mesowest sensors, the hourly averages of the temperature and relative humidity data 

are compared for this analysis. In addition, differences in the diurnal temperature 

range (defined as the difference between the daily maximum and minimum 

temperatures) are also being analyzed between LCZ classes. This is being done in a 

manner similar to Stewart et al. (2012), who used a similar analysis to analyze 

differences in temperature in Nagano, Japan, Vancouver, Canada, and Uppsala, 

Sweden.  



15 

 

In addition, the daily maximum temperature, minimum temperature, and 

relative humidity differentials of the HOBO sensors and Mesowest sensors E8199 and 

KPHL will also be analyzed in reference to sensor E4674, and paired t-tests will be 

conducted for all variables (hourly average temperature, hourly average relative 

humidity, diurnal temperature range, daily maximum temperature, and daily minimum 

temperature). The analysis of daily climate extremes, and the use of paired t-tests, is 

similar to prior research by Ellis et al. (2015), in which daily maximum and minimum 

values of urban temperature and humidity data collected from HOBO sensors was 

analyzed to determine spatial patterns of variability in the UHI of Knoxville, TN.  

In this study, to determine the potential mitigation of the urban heat island by 

the garden, the temperature from the Garden Sensor was compared to temperatures 

recorded nearby from Sensors 1-4 as well as the temperatures of the independent LCZ2 

sensor E8199. The data from Sensors 1-4 were also compared to the E8199 sensor to 

determine the extent of any potential cooling outside of the garden boundaries as well 

as the presence of any other internal temperature variation within the city. Differences 

in temperature, relative humidity, diurnal temperature range, daily maximum 

temperature, and daily minimum temperature, as well as paired t-tests for these 

variables, were conducted on the Garden Sensor data in reference to each LCZ2 

sensor. 

2.2.2 Paired T-test 

To test for a significant difference in the mean for climatic variables between 

two sensors, paired t-tests were conducted using the “Matched Pairs” platform in JMP. 

The Matched Pairs platform compares difference in the values of each row between 

two columns using a paired t-test. The platform’s results provide the difference 
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between the means of both tested variables, and uses the paired t-test to determine the 

p-value of the means’ difference (significance: p<0.05, SAS 2017a). 

To calculate the paired t-test, first the sample mean difference (𝑑) must be 

calculated as the mean of the difference for each set of paired values (e.g. the 

temperature values for the Garden Sensor and Sensor 1 for the first hour) for the study 

period. The standard error of the mean difference is also calculated as 𝑆𝐸𝑑 =  𝑠𝑑/√𝑛, 

where 𝑆𝐸𝑑 is the standard error of the mean difference, 𝑠𝑑is the sample standard 

deviation of the differences, and 𝑛 is the sample size. Then the t-statistic is calculated 

as 𝑡 =  
𝑑−𝜇𝑑0

𝑆𝐸
𝑑

, where 𝜇𝑑0 is the mean of the differences (d) under the null hypothesis 

(which equals zero in this case). The t-test has n-1 degrees of freedom (Whitlock and 

Shluter 2015). Using the t-statistic, JMP finds the probability that the difference of the 

means equaling zero is not within the 95% confidence limit of the mean difference 

(SAS 2017a). 

2.2.3 Microclimatic Model Forcings 

The observed HOBO sensor data and the archived Mesowest meteorological 

data were also used in the creation of parameters for microclimatic simulator Envi-met 

(2016). In order to model the climate in the garden and surrounding streets, 

temperature and relative humidity data from Sensor 3 were used for boundary 

conditions, due to the sensor’s location at the edge of the model area. Boundary 

condition forcings of temperature and relative humidity are determined on an hourly 

basis in Envi-met (2016), so hourly averages were created for each day of the study 

period. Then, to reduce the influence of random variation (such as rain or clouds 

during any particular day) in the study period, weekly averages were created for the 

hourly temperature and relative humidity data. Envi-met does not simulate rainfall, 
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and can only produce cloud cover through simplified (i.e. constant) parameters that do 

not reflect the short-lived nature of cloud cover on the model area’s scale, as noted 

previously by Salata et al. (2016). To reduce –but not necessarily eliminate- the 

influence of these short-lived fluctuations of temperature and humidity, the average 

diurnal cycles for each week of the study period were created instead.  

In contrast to temperature and relative humidity, wind speed and direction are 

represented as one value in the configuration of Envi-met (2016). Therefore, average 

wind speed and direction were determined for each week from the Mesowest sensor 

E8199’s wind speed and direction data. These averages were incorporated in 

representative parameters for each week of the study period, and each model area 

configuration was used with these same weekly parameters.  

2.3 Modelling 

In addition to the comparison of observed data to archived Mesowest 

meteorological data, the observed data were used to simulate the effects of the garden 

site and its surroundings on thermal comfort. Two models were employed in this 

study. 

2.3.1 Envi-met 

 The 2124 Fitzwater garden site was recreated in Envi-met (Envi-met 2016), at 

a resolution of 2 meters x 2 meters. Envi-met is a three-dimensional microclimate 

simulator first designed in 1998 to simulate microscale interactions between urban 

surfaces, vegetation, and the atmosphere (Bruse and Fleer 1998). Envi-met is 

commonly used to determine urban biometeorological conditions. Simulation 

parameters include complete parameterizations of plant and surface energy and 
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moisture fluxes, which allows for comparative urban vegetation studies. In addition, 

Envi-met calculates thermal comfort index Predicted Mean Vote (PMV) as a result 

(Salata et al. 2016).  

A study area map was created using the City of Philadelphia Aerial 

Photography 2015 dataset (PASDA 2015) to determine building and land cover 

extents in the garden’s surroundings. Building heights were determined using 

PASDA’s Philadelphia Buildings GIS shapefile dataset (PASDA 2016).  Receptors 

were placed in the model area in the locations of the Garden Sensor and Sensors 1-3 

(Sensor 4 was located outside of the model area boundaries). Receptors create output 

files containing the vertical distribution of calculated variables (including, but not 

limited to, the temperature, relative humidity, wind speed, and mean radiant 

temperature data used to calculate the thermal comfort indices below) at the receptor 

location at a higher temporal resolution than the standard output, and provide a 

temporal focus in contrast to the standard spatial output of Envi-met (2016).  

Multiple model areas were constructed, based on variations of garden 

vegetation and size. ActualGarden was designed to recreate the size and vegetation 

extent of the existing garden (vegetation model: Figure 2.2, soil/surface model: Figure 

2.3). In this instance, the garden is the size of a single building lot, and contains grass 

and a birch tree (to create ground cover vegetation and a tree with the same relative 

height to the surrounding buildings). ActualGarden is the only model to contain the 

standard garden size, as the next models contain garden areas that are the size of three 

house lots (replacing an adjacent house and its driveway). This increased size was 

used to exaggerate the effects of different garden compositions and the potential 

resulting Park Cool Island, which has been previously found to be size-dependent 
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(Jamei et al. 2016). Because the next seven models represent garden compositions that 

are not real, they will be referred to as the “hypothetical models,” and due to their 

increased size, all of the hypothetical models have the prefix “3x.”  3xGarden, in 

addition to the enlarged garden size, contains grass cover and two birch trees which 

cover the garden, in order to test the impact of garden size on its mitigation potential 

(vegetation model: Figure 2.4, soil/surface model: Figure 2.5). 3xSoyGarden contains 

a garden that is covered entirely with soy (one of the two agricultural plant models in 

Envi-met (2016)) (vegetation model: Figure 2.6, soil/surface model: Figure 2.5) while 

3xLoam replaces the garden with bare loamy soil (vegetation model: Figure 2.7, 

soil/surface model: Figure 2.5), to determine the influence of plant cover on the 

garden’s microclimatic impact.  

Lastly, the influence of impervious surface cover, albedo and direct sunlight 

were tested with different combinations of tree and impervious surface coverages in 

place of the 3xGarden configuration. 3xAsphalt replaces the enlarged garden with 

asphalt (vegetation model: Figure 2.7, soil/surface model: Figure 2.8), and 

3xTreeCoveredAsphalt has asphalt ground cover with additional dense tree cover at a 

height of 15 m (vegetation model: Figure 2.9, soil/surface model: Figure 2.8). The tree 

cover allows for comparisons of the impact of shade on human thermal comfort in the 

modelled conditions. 3xConcrete replaces the asphalt in 3xAsphalt with concrete 

cover (vegetation model: Figure 2.7, soil/surface model: Figure 2.10). Asphalt and 

concrete are both treated by Envi-met as impervious surfaces but have different albedo 

values, and the differences between 3xAsphalt and 3xConcrete will demonstrate any 

differences arising solely from albedo. Lastly, 3xTreeCoveredLoam replaces the 

asphalt in 3xTreeCoveredAsphalt with loamy soil (vegetation model: Figure 2.9, 
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soil/surface model: Figure 2.5). Loam and Asphalt both have lower albedos, but loam 

is pervious while asphalt is impervious. Through the comparison of 

3xTreeCoveredAsphalt and 3xTreeCoveredLoam, the differences between these 

models will demonstrate the difference in permeable and impermeable surface cover 

on thermal comfort. 

2.3.2 RayMan 

In contrast, RayMan is a radiation model that was designed to model the 

radiation balance of a human body in an urban environment. RayMan can be used to 

calculate the Predicted Mean Vote, Physiological Equivalent Temperature (PET) and 

Standard Effective Temperature (SET).  RayMan uses variables such as air 

temperature, vapor pressure, wind velocity, human body heat production, and heat 

transfer resistance of clothing in order to calculate the thermal comfort indices 

(Matzarakis et al. 2007). 

After the simulations were run for Envi-met, receptor data (for temperature, 

relative humidity, wind speed, and mean radiant temperature data at locations 

corresponding to the HOBO sensor locations) were exported for use in RayMan 

(Matzarakis et al. 2007). Each receptor has a 30-minute output recorded for each 

variable in the location of the sensor. The meteorological variables of temperature, 

relative humidity, wind speed, and mean radiant temperature values at a height of 1.4 

meters were used for calculating thermal comfort, due to the cell height being the 

closest height within the model to ISO 7726 standard measuring height of 1.1 m for a 

standing subject, which is one of the main standards within the field of 

biometeorology (Johansson et al. 2014). The meteorological variables (and default 

clothing and activity levels) were used to calculate the Predicted Mean Vote (PMV), 
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Physiological Equivalent Temperature (PET), and Standard Effective Temperature 

(SET) in RayMan, in the garden and its surroundings for each model area trial.  

2.3.2.1 Physiological Equivalent Temperature 

RayMan calculates the PET based on the work of Höppe (1999) (Matzarakis 

2010).  The PET is calculated using the Munich Energy-balance Model for Individuals 

(MEMI), which is composed of three equations. The first equation, the energy-balance 

of the human body, is as follows: 𝑀 + 𝑊 + 𝑅 + 𝐶 + 𝐸𝐷 + 𝐸𝑅𝑒 + 𝐸𝑆𝑤 + 𝑆 = 0. In the 

energy balance equation, M represents the metabolic rate, W is the physical work 

output, R is the net radiation of the body, C is the convective heat flow, 𝐸𝐷 is the latent 

heat flow of imperceptible perspiration (water vapor diffusing through the skin), 𝐸𝑅𝑒 is 

the sum of heat flows for heating and humidifying inhaled air, 𝐸𝑆𝑤 is the heat flow due 

to the evaporation of sweat, and S is the storage heat flow (for the heating and cooling 

of the body’s mass). 

For the energy balance of the human body to be calculated with the above 

equation, some of the terms are dependent on the conditions of the mean clothing 

temperature, mean skin temperature, or sweat rate. These conditions are dependent on 

ambient conditions and the core temperature of the body. In order to calculate the 

unknown quantities of the variables, two additional equations are used. The second 

equation describes the heat flow from the body core to the skin surface (𝐹𝐶𝑆), which is 

calculated as 𝐹𝑐𝑠 =  𝑣𝑏 ∗ 𝜌𝑏 ∗ 𝑐𝑏 ∗ (𝑇𝑐 − 𝑇𝑠𝑘).In the second equation, 𝑣𝑏 is the blood 

flow from the body core to the skin (in 𝐿 (𝑠𝑒𝑐𝑜𝑛𝑑 ∗ 𝑚2)⁄  ), 𝜌𝑏 is blood density (in 

𝑘𝑔 𝐿⁄ ), 𝑐𝑏 is for the specific heat (in (𝑊 ∗ 𝑠𝑒𝑐𝑜𝑛𝑑) (𝐾 ∗ 𝑘𝑔)⁄ ), and 𝑇𝑐 and 𝑇𝑠𝑘 are the 

clothing and skin temperatures (respectively). The third equation describes the heat 

flow from the skin surface to the clothing layer to the surface of the clothing (𝐹𝑆𝐶). 
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The third equation is 𝐹𝑆𝐶 = (1 𝐼𝑐𝑙⁄ ) ∗ (𝑇𝑠𝑘 − 𝑇𝑐𝑙), with 𝐼𝑐𝑙 representing the heat 

resistance of the clothing (in (𝐾 ∗ 𝑚2) 𝑊⁄ ). 

The Physiological Equivalent Temperature is calculated by first calculating the 

thermal conditions of the body using a given combination of meteorological 

parameters with the MEMI model (for the purpose of the PET, the metabolism of the 

body is 80 W (for light activity) and heat resistance of clothing is equivalent to a 

clothing level of 0.9 clo). Next, the calculated values for the mean skin temperature 

and core temperature are inserted into the MEMI model for an indoor reference 

environment in which the mean radiant temperature equals air temperature, air 

velocity is set at 0.1 m/s, and water vapor pressure is 12 hPA. The resulting air 

temperature from this calculation is the PET (Höppe 1999). 

2.3.2.2 Predicted Mean Vote 

While Fanger (1972) determined that female bodies have a lower metabolic 

rate (although it is mitigated by a slightly lower insensible perspiration rate), the PET 

index uses a standard “body” in its calculation that has a set metabolism (80 W, 

equivalent to light activity) and clothing parameters (0.9) (Höppe 1999). Therefore, 

RayMan does not account for differences in the biological sex of the body when 

calculating PET, but does for PMV. Therefore, the PMV will be used to compare 

differences in thermal comfort between the biological sexes (and the clothing level 

will be unchanged).  

The PMV was calculated in RayMan based on the work of Fanger (1972), who 

proposed the PMV index (Matzarakis et al. 2007). The PMV is calculated as follows: 

𝑃𝑀𝑉 = (0.352𝑒−0.042(𝑀 𝐴𝐷𝑢⁄ ) + 0.032) [
𝑀

𝐴𝐷𝑢
(1 − 𝜂) − 0.35 [43 − 0.061

𝑀

𝐴𝐷𝑢
(1 −

𝜂) −  𝑝𝑎] − 0.42 [
𝑀

𝐴𝐷𝑢
(1 − 𝜂) − 50] − 0.0023

𝑀

𝐴𝐷𝑢
(44 − 𝑝𝑎) − 0.0014

𝑀

𝐴𝐷𝑢
(34 −
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𝑡𝑎) − (3.4 ∗ 10−8)𝑓𝑐𝑙[(𝑡𝑐𝑙 + 273)4 − (𝑡𝑚𝑟𝑡 + 273)4] − 𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − 𝑡𝑎)], where ADu 

represents the surface area of the human body (the “DuBois” area), η represents 

external mechanical efficiency of the body, pa is the partial pressure of water vapor in 

the ambient air, ta is the air temperature, fcl is the ratio of clothed surface area of the 

body to unclothed surface area, tcl is the mean temperature of the outer surface of the 

clothed area of the human body, tmrt is the mean radiant temperature, and hc is the 

convective heat transfer coefficient. The temperature of the outer surface of the 

clothed area of the body, tcl, is found iteratively, using the equation 𝑡𝑐𝑙 = 35.7 −

0.032
𝑀

𝐴𝐷𝑢
(1 − 𝜂) − 0.18𝐼𝑐𝑙[(3.4 ∗ 10−8)𝑓𝑐𝑙[ (𝑡𝑐𝑙 + 273)4 − (𝑡𝑚𝑟𝑡 + 273)4] +

𝑓𝑐𝑙ℎ𝑐(𝑡𝑐𝑙 − 𝑡𝑎)], where Icl is the thermal resistance from the skin to the outer surface 

of the clothed body. The convective heat transfer equation, hc, is found with a 

piecewise equation; where the equations  20.5(𝑡𝑐𝑙 − 𝑡𝑎)0.25 and 10.4√𝑣 (where v is 

the relative air velocity) are compared, and the greater resulting value from either of 

the two equations is used as the convective heat transfer (Fanger 1972).  

2.3.3 Analysis of RayMan Results 

Next, the effects of distance from the garden and garden composition on 

thermal comfort were determined respectively by comparing the trends and 

differences between the receptor locations (which correspond to the Garden Sensor 

and Sensors 1-3), and different model area configurations using the PET and PMV 

indexes. To test the difference between model configurations, paired t-tests, 

hierarchical cluster analysis, and diurnal cycle plots of the model runs were used for 

the PET results. For the comparison of the PMV results in reference to biological sex, 

paired t-tests and plotting of the model’s diurnal cycle were used as well. Plotting the 

diurnal cycle is commonly used as a means to demonstrate UHI by showing the 
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temporal distribution of a variable (such as temperature (Dimoudi et al. 2013, Middel 

et al. 2014) or temperature differential (Gaffin et al. 2008)) over the course of a day, in 

order to demonstrate differences between land cover types. For the diurnal cycle, the 

thresholds for human comfort perceptions (and accompanying biological heat stress) is 

based on the values provided by Wang et al. (2017), and are overlaid on the diurnal 

cycle graphs. In addition, hierarchical cluster analysis is used to create dendrogram 

diagrams, which show model clusters with similar climatological trends. Hierarchical 

cluster analysis was used by Kim and Baik (2004) and Petralli et al. (2011), who 

employed the cluster analysis to find climatologically similar stations and cities 

(respectively) to find trends in urban heat intensity. 

2.3.3.1 Hierarchical Cluster Analysis 

The hierarchical cluster analysis was completed through the use of JMP’s 

“Hierarchical Cluster” platform.  The hierarchical clustering method treats each 

observation as a cluster, then calculates the distances between all pairs of clusters and 

joins the two closest clusters together. This process repeats until all the points are 

combined into one cluster. The resulting dendrogram demonstrates the process in 

which the observations are clustered, and the horizontal distances between each 

vertical cluster linkage represent the relative distance between observations (SAS 

2017b). As with Kim and Baik (2004) and Petralli et al. (2011), Ward’s minimum 

variance method was used to calculate the cluster distances. For this method, the 

distance between two clusters is the ANOVA sum of squares between two clusters 

summed over all variables. For clusters K and L, the distance is calculated as 𝐷𝐾𝐿 =

‖𝑥𝐾 − 𝑥𝐿‖2 (
1

𝑁𝑘
+

1

𝑁𝐿
)⁄ , where 𝑥𝐾  and 𝑥𝐿 are the mean of clusters K and L 

respectively, ‖𝑥𝐾 − 𝑥𝐿‖ is the square root of the sum of the squares of the elements of 
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𝑥𝐾  and 𝑥𝐿 , also known as Euclidean length, and 𝑁𝑘 and 𝑁𝐿 are the number of 

observations in clusters K and L respectively (SAS 2017b).



 

 

Figure 2.1: Sensor Locations on Fitzwater St. Philadelphia (Background Image, PASDA 2016)
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Figure 2.2: ActualGarden Vegetation Model 
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Figure 2.2: ActualGarden Soil/Surface Model 
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Figure 2.4 3xGarden Vegetation Model 
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Figure 2.5 Enlarged Garden Soil/Surface Model (used for 3xGarden, 3xSoyGarden, 

3xLoam, and 3xTreeCoveredLoam models) 
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Figure 2.6 3xSoyGarden Vegetation Model 
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Figure 2.7 No-Vegetation Garden  Vegetation Model (used in 3xLoam, 3xAsphalt, 

and 3xConcrete models) 
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Figure 2.8 Asphalt-Covered Garden Soil (used in 3xAsphalt and 

3xTreeCoveredAsphalt models) 
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Figure 2.9 Tree-Covered Garden Vegetation Model (Used in 3xTreeCoveredLoam and 

3xTreeCoveredAsphalt models) 
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Figure 2.10 Concrete-Covered Soil/Surface Model 
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Chapter 3 

RESULTS 

3.1 Observational Data Results 

For the observational data, the variables of daily maximum temperature, daily 

minimum temperature, daily temperature range, hourly average temperature, daily 

maximum relative humidity, daily minimum relative humidity, daily relative humidity 

range, and hourly average relative humidity for the entire study period were analyzed. 

Each variable was analyzed with paired t-tests, to determine difference in the 

variables’ means from the five HOBO sensors and three Mesowest sensors, with 

respect to the sensors’ LCZs. First, the variables of the Garden Sensor, Sensors 1-4, 

E81999 (all LCZ2 sites), and KPHL (an LCZ5 site) were compared to the sensor 

E4674 (an LCZ9 site). For this test, a positive result would indicate a positive bias in 

the mean for the tested variable at the urban and peri-urban sites in comparison to the 

rural site E4674. Next, the variables of the Garden Sensor was compared to the other 

LCZ2 sites, Sensors 1-4 and E8199. For this test, a positive result would indicate a 

positive bias at the Garden Sensor compared to the other urban sites. 

3.1.1 Paired t-test with E4674 

3.1.1.1 Temperature Differences 

In relation to the “sparsely-built” (Local Climate Zone 9 (LCZ9)) rural sensor 

E4674, temperatures were generally warmer in the “compact mid-rise” (LCZ2) urban 
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sites (Table 3.1). With the exception of the Garden Sensor (which did not yield 

statistically significant results), maximum temperatures were found to be warmer than 

E4674, with the difference in the means between the urban sensors and the rural 

sensor E4674 ranged from 0.62 °C (for E8199) to 3.1 °C (for Sensor 1) warmer than 

E4674. Minimum temperatures were similarly found to be warmer, with a range in the 

difference of the means between the urban sites and E4674 being between 0.91 °C (for 

E8199) to 1.83 °C (for Sensor 3). This positive bias of the urban sites is also reflected 

in the hourly average temperatures as well, with a difference in the hourly average 

temperatures ranging from 0.54 °C (for E8199) to 1.25 °C (for Sensor 3). However, 

the daily temperature range yielded mixed results. The differences of the average daily 

temperature range for the Garden Sensor was smaller than E4674, Sensors 1, 3, and 4 

were larger than E4674, and statistically insignificant for Sensor 2 and E8199. 

Between the “open mid-rise” (LCZ5) peri-urban sensor KPHL and rural E4674, 

KPHL was generally warmer as well (though to a lesser degree than the HOBO 

sensors, Table 3.1). The maximum temperature and hourly average temperatures both 

had a positive bias in the mean, meaning the peri-urban KPHL sensor was warmer 

than the rural sensor, with the difference from the mean of E4674 being 0.75 °C and 

0.25 °C respectively. The daily temperature range of KPHL also had a positive bias 

(i.e. larger temperature range) of 0.9 °C compared to E4674. However, the mean 

difference of the daily minimum temperature with respect to E4674 was not found to 

be statistically significant. 
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Table 3.1: [Urban (LCZ2 or LCZ5) Sensor Temperature Variable Mean] - [Rural 

(LCZ9) Sensor E4674 Temperature Variable Mean]  (* represents 

statistically insignificant results (p>0.05)) 

 

 
 Garden 

Sensor 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 E8199 KPHL 

Daily Maximum 

Temperature (°C) 

0.45* 3.19 1.19 2.37 2.71 0.62 0.75 

Daily Minimum 

Temperature (°C) 

1.22 1.02 1.18 1.83 1.00 0.91 -0.14* 

Daily 

Temperature 

Range (°C) 

-0.77 2.23 0.03* 0.59 1.76 -0.27* 0.90 

Hourly Average 

Temperature (°C) 

0.66 1.06 0.80 1.25 0.93 0.54 0.25 

 

 

 

 

3.1.1.2 Relative Humidity Differences 

In relation to the rural (LCZ9) sensor E4674, daily minimum relative humidity 

and hourly average relative humidity was found to be lower in the urban (LCZ2) sites 

(Table 3.2). The difference in the means of the daily minimum relative humidity 

ranged from -1.73% (for the Garden Sensor) to -5.60% (for Sensor 1) when compared 

to E4674, although the comparison with sensor E8199 was not found to be statistically 

significant. The differences in the means of hourly average relative humidity had a 

range of -0.76% (for the Garden Sensor) to -2.70% (for Sensor 3) when compared to 

E4674. However, the differences of the average daily maximum relative humidity 

were not consistent, with the Garden Sensor, Sensors 1 and 2, and E8199 results not 

being significant, and with the Sensors 3 and 4 differences being -2.08% and 1.73% 

respectively. Despite this, the differences in the average daily relative humidity range 

was found to be significant for Sensors 1-4, with the differences ranging from 2.85% 
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(for Sensor 3) to 6.84% (for Sensor 1), meaning that there was greater variation in 

relative humidity in the city. 

Between the “open mid-rise” (LCZ5) sensor KPHL and E4674, KPHL had a 

larger daily relative humidity range (with both statistically significant higher daily 

maximum relative humidity and lower daily relative humidity) and a lower hourly 

average relative humidity (equal to -1.86%, Table 3.2). The difference in the average 

daily minimum relative humidity was found to be 7.56%, with the difference in the 

average daily maximum relative humidity equaling 2.02%, and the difference in the 

daily minimum relative humidity equaling -5.54%.  

 

 

 

Table 3.2: [Urban (LCZ2 or LCZ5) Sensor Relative Humidity Variable Mean] - [Rural 

(LCZ9) Sensor E4674 Relative Humidity Variable Mean]  (* represents 

statistically insignificant results (p>0.05)) 

 

 
 Garden 

Sensor 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 E8199 KPHL 

Daily Maximum 

Relative Humidity (%) 

0.07* 1.24* 0.39* -2.08 1.73 -0.5* 2.02 

Daily Minimum 

Relative Humidity (%) 

-1.73 -5.60 -3.65 -4.93 -5.58 -0.46* -5.54 

Daily Relative 

Humidity Range (%) 

1.80* 6.84 4.03 2.85 7.31 -0.04* 7.56 

Hourly Average 

Relative Humidity (%) 

-0.76 -1.26 -1.45 -2.70 -1.10 -0.52 -1.86 
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3.1.2 Paired t-test with the Garden Sensor 

3.1.2.1 Temperature Differences 

The Garden Sensor was found to have a negative bias in the daily temperature 

range with respect to the other urban (LCZ9) sensors, with the range of differences in 

the mean of the daily temperature range going from -0.48 °C (when compared to 

E8199) to -2.94 °C (when compared to Sensor 1, Table 3.3). The daily maximum 

temperatures had a negative bias for the Garden Sensor in relation to the five other 

sensors, which had a range of differences in the average daily maximum temperature 

from -2.74 °C (Sensor 1) to -0.17 °C (E8199). The daily minimum temperatures of the 

Garden Sensor were warmer than Sensors 1, 4, and E8199 (with mean differences of 

0.20°C, 0.22 °C and 0.31 °C respectively), but cooler than Sensor 3 (with a mean 

difference of -0.60 °C), and with Sensor 2 not having a statistically significant 

differences in the average daily minimum temperature. 

The Garden Sensor also had decreased hourly average temperatures in relation 

to the other HOBO sensors, with the differences in the mean ranging from -0.11 °C 

(Sensor 2) to -0.55 °C (Sensor 3). However, the Garden Sensor had warmer hourly 

average temperatures in relation to E8199, with an average difference of 0.13 °C. 
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Table 3.3: [Garden Sensor Temperature Variable Mean] - [Other Urban (LCZ2) Sensor 

Temperature Variable Mean] (* represents statistically insignificant 

results (p>0.05)) 

 

 
 Sensor 1 Sensor 2 Sensor 3 Sensor 4 E8199 

Daily Maximum 

Temperature (°C) 

-2.74 -0.74 -1.92 -2.26 -0.17 

Daily Minimum 

Temperature (°C) 

0.20 0.04* -0.60 0.22 0.31 

Daily Temperature 

Range(°C) 

-2.94 -0.79 -1.32 -2.48 -0.48 

Hourly Average 

Temperature (°C) 

-0.36 -0.11 -0.55 -0.23 0.13 

 

 

 

 

3.1.2.2 Relative Humidity Differences 

The Garden Sensor was generally found to have an decreased daily relative 

humidity range with respect to the other LCZ9 sensors (except E8199), with the 

differences in the mean daily relative humidity range having a range of -1.26% (when 

compared to E8199) to -5.04% (when compared to Sensor 1, Table 3.4). Similarly, the 

daily minimum relative humidity of the Garden Sensor had a positive bias when 

compared to other the sensors (except E8199), with a range of -1.26% (when 

compared to E8199) to 3.87% (when compared to Sensor 1).  The differences in the 

mean daily maximum relative humidity were more variable between sensors, with an 

increase of 2.15% when the Garden Sensor is compared to Sensor 3, and Sensors 1 

and 2 being offset by -1.17% and -1.67% respectively. Comparison with Sensor 2 and 

E8199 did not yield statistically significant results. Overall, the Garden Sensor had 

higher hourly average humidity then the other HOBO sensors (with the exception of 

Sensor 4, which was statistically insignificant) with a range of 0.37% (Sensor 1) to 
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1.79% (Sensor 3). However, the hourly average relative humidity of the Garden 

Sensor had a negative bias in relation to E8199, with a mean difference of -0.25%, 

 

 

Table 3.4 [Garden Sensor Relative Humidity Variable Mean] - [Other Urban (LCZ2) 

Sensor Relative Humidity Variable Mean] (* represents statistically 

insignificant results (p>0.05)) 

 

 
 Sensor 1 Sensor 2 Sensor 3 Sensor 4 E8199 

Daily Maximum 

Relative Humidity (%) 

-1.17 -0.32* 2.15 -1.66 0.57* 

Daily Minimum 

Relative Humidity (%) 

3.87 1.92 3.20 3.85 -1.26 

Daily Relative 

Humidity Range (%) 

-5.04 -2.24 -1.05 -5.51 1.83 

Hourly Average 

Relative Humidity (%) 

0.37 0.56 1.79 0.20* -0.25 

 

 

 

3.2 Thermal Comfort Index Results 

To find the impact of the urban garden’s form on thermal comfort in the urban 

environment, the PET and PMV were calculated for each garden type, and compared 

using paired t-tests, hierarchical cluster analysis, and diurnal graphs. 

3.2.1 Paired t-tests 

The paired t-tests were conducted in four different manners. First, the PET of 

three points outside the garden (analogous to Sensors 1-3, and referred to as Receptors 

1, 2, and 3) were compared to the PET of the receptor within the garden (at a spot 
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analogous to the Garden Sensor, referred to as the Garden Receptor, Figure 3.1). For 

this paired t-test, positive offsets represents an increased mean PET at the street 

receptor in comparison to the Garden Receptor of the particular model. Second, the 

PET results of the hypothetical models (i.e. all models prefixed with “3x”) were 

compared with respect to ActualGarden model’s receptor PET results between 

analogous receptors (e.g. 3xGarden Garden Receptor PET results vs. ActualGarden 

Garden Receptor PET results). Lastly, the hypothetical models’ PET results were also 

compared with respect to the 3xGarden model’s analogous receptor results, to 

compare vegetation and soil/surface cover differences without differences in garden 

size. For both paired t-tests, positive results indicate a positive bias in mean PET from 

the hypothetical model compared to the ActualGarden or 3xGarden model. 

Lastly, the Male and Female PMV was compared at each receptor for each 

model (e.g. ActualGarden Garden Receptor Male PMV results vs. ActualGarden 

Garden Receptor Female PMV results) to find the difference in the average PMV for 

male and female bodies. A positive result represents an increased mean PMV for the 

female body in comparison to the male body. 

3.2.1.1 Street Receptors’ PET vs. the Garden Receptor’s PET 

The ActualGarden, 3xGarden, 3xTreeCoveredLoam, and 

3xTreeCoveredAsphalt models were the only models with statistically significant 

results for all receptors (Table 3.5). For all four models, the street receptors had a 

positive bias in the PET than the garden sensor. In addition, the farther a receptor is 

from the garden, the positive bias of the difference in the mean PET (between the 

receptor and the Garden Receptor) increased. The smallest increase in the bias as 

distance increased from the garden was from 0.57 °C to 1.84 °C (a range of 1.26 °C, 
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for 3xTreeCoveredAsphalt). The largest increase in the biases from the garden was 

from 0.70 °C to 2.27 °C (a range of 1.56 °C, for ActualGarden). The model with the 

largest difference in the mean PET between the street receptors and the Garden 

Receptor was consistently 3xGarden, with a differences in the mean of 0.92 °C, 1.55 

°C, and 2.39 °C for Receptors 1, 2, and 3 respectively. The model with the smallest 

differences in the mean PET of the street receptors  relative to the Garden Receptor 

was consistently 3xTreeCoveredAsphalt, with differences in the mean of 0.57 °C, 1.02 

°C, and 1.84 °C for Receptors 1, 2, and 3 respectively. 

 

 

 

Table 3.5: [Garden Receptor Mean PET (°C)] - [Street Receptor Mean PET (°C)] for 

All Envi-met Models. (* represents statistically insignificant results 

(p>0.05)) 

 

 
  Receptor 1 Receptor 2 Receptor 3 

ActualGarden 0.70  1.41 2.27 

3xGarden 0.92 1.55 2.39 

3xSoyGarden -0.77* -0.21* 0.43* 

3xLoam -0.50* 0.07* 0.71* 

3xTreeCoveredLoam 0.68 1.13 1.95 

3xTreeCoveredAsphalt 0.57 1.02 1.84 

3xAsphalt -0.85 -0.28* 0.36* 

3xConcrete -0.66* -0.26* 0.39* 
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3.2.1.2 Hypothetical Model Receptors’ PET vs. ActualGarden Model 

Receptors’ PET 

In the models 3xSoyGarden, 3xLoam, 3xAsphalt, and 3xConcrete the PET 

results at the receptors had positive bias when compared to the PET of the 

ActualGarden at the same locations (Table 3.6). The differences in the mean PET were 

consistently largest at the Garden Receptor, and decreased farther away from the 

garden. 3xAsphalt and 3xConcrete had the largest differences in the Mean PET 

relative to ActualGarden. The range of the differences of the mean PET for 3xAsphalt 

was the largest, ranging from 0.08 °C to 1.98 °C (a total range of 1.91 °C).   

The models 3xTreeCoveredLoam and 3xTreeCoveredAsphalt both had warmer 

PET results for the Garden Receptor and Receptor 1, statistically insignificant results 

for Receptor 2, and cooler PET results for Receptor 3. 3xTreeCoveredAsphalt had 

slightly warmer mean PET differences (<1 °C) than 3xTreeCoveredLoam for each 

receptor, and a larger range in the receptors than 3xTreeCoveredLoam (0.43 °C 

compared to 0.32 °C respectively). 

The model 3xGarden had cooler PET results for the Garden Receptor and 

Receptor 3 (differences in the mean PET of -0.16 °C and -0.03 °C respectively) 

relative to the ActualGarden model, and statistically insignificant results for Receptors 

1 and 2.  
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Table 3.6: [Theoretical Model Mean PET (°C)] - [ActualGarden Model Mean PET 

(°C)] for All Receptors.  (* represents statistically insignificant results 

(p>0.05)) 

 

 
 Garden 

Receptor 

Receptor 1 Receptor 2 Receptor 3 

3xGarden -0.16 0.06* -0.02* -0.03 

3xSoyGarden 1.88 0.40 0.25 0.04 

3xLoam 1.60 0.40 0.26 0.04 

3xTreeCoveredLoam 0.28 0.26 -0.001* -0.04 

3xTreeCoveredAsphalt 0.41 0.28 0.01* -0.02 

3xAsphalt 1.98 0.42 0.29 0.08 

3xConcrete 1.95 0.59 0.27 0.07 

 

 

 

3.2.1.3 Hypothetical Model Receptors’ PET vs. 3xGarden Model Receptors’ 

PET 

The models 3xSoyGarden, 3xLoam, 3xAsphalt, and 3xConcrete all 

consistently had a positive bias in the PET compared to the 3xGarden PET (Table 

3.7). As with respect to the ActualGarden model, the mean differences of the PET 

were largest at the Garden Receptor, and decreased as distance from the garden 

increased. In addition, 3xAsphalt and 3xConcrete had the largest differences in the 

mean PET compared to the 3xGarden model, and the range for the mean differences of 

3xAsphalt was the largest with a range from 0.11 °C to 2.14 °C (a total range of 2.02 

°C). 

The models 3xTreeCoveredLoam and 3xTreeCoveredAsphalt had a greater 

positive bias in the PET values (compared to the 3xGarden model) closer to the garden 

site, and statistically insignificant differences further from the garden. For 



47 

 

3xTreeCoveredLoam, the mean PET of the Garden Receptor and Receptor 1 was 

higher than 3xGarden at the same locations (with differences in the mean of 0.44 °C 

and 0.20 °C respectively) but differences in the mean of Receptors 2 and 3 were 

statistically insignificant. The 3xTreeCoveredAsphalt model had differences in the 

mean of 0.56 °C, 0.22 °C, and 0.04 °C for the Garden Sensor, Receptor 1, and 

Receptor 2 (respectively) with respect to the 3xGarden model, but the results were 

statistically insignificant at Receptor 3. 

 

 

 

Table 3.7: [Theoretical Model Mean PET (°C)] - [3xGarden Model Mean PET (°C)] 

for All Receptors. (* represents statistically insignificant results 

(p>0.05)) 

 

 
 Garden 

Receptor 

Receptor 1 Receptor 2 Receptor 3 

3xSoyGarden 2.03 0.34 0.27 0.08 

3xLoam 1.76 0.34 0.28 0.08 

3xTreeCoveredLoam 0.44 0.20 0.02* -0.0048* 

3xTreeCoveredAsphalt 0.56 0.22 0.04 0.01* 

3xAsphalt 2.14 0.36 0.31 0.10957 

3xConcrete 2.10 0.52 0.29 0.10106 
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3.2.1.4 Female PMV vs. Male PMV 

For all models, the Female PMV had a lower mean than the Male PMV (i.e. 

the differences in the mean Female PMV relative to the Male PMV were negative for 

all models) (Table 3.8).  However, two trends were apparent in the differences in the 

means of the Female and Male PMV. For the models ActualGarden, 3xGarden, 

3xTreeCoveredLoam, and 3xTreeCoveredAsphalt, all the models had much lower 

differences (in the mean Female PMV relative to the Male PMV) compared to the 

other four models (an average mean difference of -1.77, compared to -1.56). However, 

every model had similar differences in the mean PMV for the street receptors 

(Receptors 1, 2, and 3, with an average of -1.66, -1.59, and -1.61 respectively). Among 

the street receptors, each model had the largest differences in mean Female PMV 

(compared to the mean Male PMV) with Receptor 1, and the smallest mean difference 

with Receptor 2. 

 

 

 

Table 3.8: [Mean Female PMV] - [Mean Male PMV] at Each Receptor for All 

Models. (* represents statistically insignificant results (p>0.05)) 

 

 
 Garden 

Receptor 

Receptor 1 Receptor 2 Receptor 3 

ActualGarden -1.74 -1.68 -1.59 -1.61 

3xGarden -1.80 -1.68 -1.61 -1.62 

3xSoyGarden -1.56 -1.65 -1.58 -1.59 

3xLoam -1.59 -1.65 -1.58 -1.59 
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Table 3.8 cont. 

3xTreeCoveredLoam -1.76 -1.67 -1.61 -1.63 

3xTreeCoveredAsphalt -1.76 -1.66 -1.61 -1.62 

3xAsphalt -1.56 -1.65 -1.58 -1.59 

3xConcrete -1.56 -1.64 -1.57 -1.59 

 

 

3.2.2 Hierarchical Cluster Analysis 

For the hierarchical cluster analysis, dendrograms were created for the PET 

and PMV results. For the PET results, the dendrogram is grouping the results from 

each receptor for all eight models. The receptors that are most closely related form the 

lowest-level clusters on the left (as pairs). Clusters are formed by the vertical linkages, 

and the horizontal distance between the vertical linkages represent the similarity of the 

joining clusters. Eventually all of the receptors are linked at the far right of the 

diagram.  For the PMV results, the Male and Female results are provided in two 

separate dendrograms, to compare the changes in relationships between the biological 

sexes. The names of the receptors are formatted as “[Model Name] [Receptor 

Abbreviation],” where the cluster abbreviation is GR for the Garden Receptor and R1, 

R2, and R3 for Receptors 1, 2 and 3 respectively. 

3.2.2.1 Hierarchical Cluster of the Physiological Equivalent Temperature (PET) 

The hierarchical cluster of the PET (Figure 3.2) clustered the analogous 

receptors of each model into their own cluster. In terms of the Receptor clusters, the 

Receptor 1 and 2 clusters are the most closely related, followed by the Garden 

Receptor cluster and the Receptor 3 cluster. 
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Within the clusters for the Garden Receptor, Receptor 2, and Receptor 3, a 

pattern emerges. For each of the receptors, the ActualGarden and 3xGarden models, 

the 3xTreeCoveredLoam and 3xTreeCoveredAsphalt models, and 3xAsphalt and 

3xConcrete models form the lowest-level clusters on the dendrogram. In addition, the 

ActualGarden and 3xGarden cluster is most closely related to the 

3xTreeCoveredLoam and 3xTreeCoveredAsphalt cluster. Similarly, the 3xAsphalt and 

3xConcrete cluster is most closely related to of the 3xSoyGarden and 3xLoam. For 

Receptor 1 and Receptor 2, the 3xAsphalt and 3xConcrete cluster is paired with a 

3xSoyGarden and 3xLoam cluster. For the Garden Receptor, however, 3xSoyGarden 

and 3xLoam cluster is separated, with the 3xAsphalt and 3xConcrete cluster being 

more closely related to 3xSoyGarden than 3xLoam. 

Despite this, the main division within the three receptor clusters were between 

the model with trees (ActualGarden, 3xGarden models, 3xTreeCoveredLoam, and 

3xTreeCoveredAsphalt) and those without trees (3xSoyGarden, 3xLoam, 3xAsphalt 

and 3xConcrete). The 3xAsphalt and 3xConcrete cluster was the most closely related 

model pairs (although the other two tree-less models were similarly close in Receptors 

2 and 3), while the ActualGarden and 3xGarden cluster were the least similar of the 

lowest-level clusters in all the receptor clusters. 

For Receptor 1’s cluster, the clustering was different than the other receptors. 

While the ActualGarden and 3xGarden models, the 3xSoyGarden and 3xLoammodels, 

and the 3xTreeCoveredLoam and 3xTreeCoveredAsphalt are still the lowest-level 

clusters, the pairings within the Receptor 1 cluster changes. 3xAsphalt is extremely 

similar to the 3xSoyGarden and 3xLoam cluster (i.e. there is very little horizontal 

distance between their linkages). The three models are most closely related to the 
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3xTreeCoveredLoam and 3xTreeCoveredAsphalt cluster, which is then related to the 

3xConcrete model. These six models then form their own cluster within the Receptor 

1 cluster, which is then linked to the remaining two models in the ActualGarden and 

3xGarden cluster to complete the Receptor 1 cluster. 

3.2.2.2 Hierarchical Cluster of the Predicted Mean Vote (PMV) 

While the PMV dendrograms share many similarities with the PET 

dendrogram. The individual receptors each form the four main clusters, and the 

lowest-level pairs are similar to the pairs of the PET dendrogram. However, there are 

also multiple differences between the Male dendrogram, Female dendrogram, and the 

PET dendrogram, in which the lowest-level pairs are either split or paired with other 

clusters in a different manner than the other dendrograms. 

3.2.2.2.1 Male PMV 

The Male PMV dendrogram (Figure 3.3.) is similar to the PET dendrogram in 

regards to the corresponding Receptor 3 clusters. However, the other three clusters are 

structurally different from the corresponding clusters in the PET dendrogram. For the 

Garden Receptor cluster, the 3xGarden model is most similar to the 

3xTreeCoveredSoil and 3xTreeCoveredAsphalt cluster, and then this three-model 

cluster is linked to the ActualGarden model. For the Receptor 1 cluster, the 3xLoam 

model and 3xAsphalt model are a lowest-level cluster pair, then the 3xSoyGarden 

model is the closest related to the pair (that is, the 3xAsphalt and 3xSoyGarden 

models switch relative positions).For the Receptor 2 cluster, the ActualGarden model 

was more closely related to the tree-less garden-site models than the other tree-

covered garden-site models. 
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3.2.2.2.2 Female PMV 

Structurally speaking, the Female PMV dendrogram (Figure 3.4) is similar to 

the Male PMV dendrogram. However, there are two minor differences in the Receptor 

1 and 2 clusters. While the Male PMV dendrogram had the 3xLoam and 3xAsphalt 

models as a lowest-level cluster pair for Receptor 1, the Female PMV Receptor 1 

structure is structurally the same as the PET dendrogram (i.e. 3xLoam and 

3xSoyGarden are more closely related, then 3xAsphalt is most similar). In the 

Receptor 2 cluster, the 3xSoyGarden and 3xLoam garden were not paired, but instead 

3xLoam was more closely related to the 3xAsphalt and 3xConcrete cluster than 

3xSoyGarden. 

3.2.3 Diurnal Cycle Graphs 

For both the PET and PMV indices, the weekly average diurnal cycle of the 

four modelled weeks were plotted for all the models. The models are also graphed 

against the human comfort (and heat stress) thresholds for the PET and PMV 

(respectively) as used by Wang et al. (2017) (Table 3.9). The PET, Male PMV, and 

Female PMV results contained values that exceeded the “warm” value (correlated with 

moderate heat stress, 35 °C for the PET, and 2.5 for the PMV and reached the “cool” 

value (correlated with moderate cold stress, 13 °C for the PET and -1.5 for the PMV). 

However, the warmest weeks for all three indices were Week 1 and Week 3 (with the 

extreme results indicating a “hot” environment and strong heat stress and the coldest 

week was Week 4 (with results indicating a generally cold environment). 
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Table 3.9: Ranges of PET and PMV values for different levels of thermal comfort and 

physiological stress (according to Wang et al. 2017). 

 

 
PET (°C) PMV Thermal Comfort Physiological Stress 

4 -3.5 Very Cold Extreme Cold Stress 

8 -2.5 Cold Strong Cold Stress 

13 -1.5 Cool Moderate Cold Stress 

18 -0.5 Slightly Cool Slight Cold Stress 

23 0.5 Neutral No thermal stress 

29 1.5 Slightly Warm Slight Heat Stress 

35 2.5 Warm Moderate Heat Stress 

41 3.5 Hot Strong Heat Stress 

 

 

 

3.2.3.1 Warming and Cooling Patterns 

For all four modelled weeks, there was a consistent pattern in the model’s 

responses during the diurnal cycle for the Garden Receptor. Starting at 00:30 (the 

earliest receptor results from Envi-met), the PET and PMV values decrease until the 

minimum values of the diurnal cycle are reached right before sunrise, at which point 

the PET and PMV began to rise again. During this early period, the tree-less garden 

models (3xSoyGarden, 3xLoam, 3xAsphalt, and 3xConcrete) are cooler than the tree-

covered garden models (the ActualGarden, 3xGarden, 3xTreeCoveredLoam, and 

3xTreeCoveredAsphalt models). Then, during the early morning, the PET and PMV 

values begin to converge between models before diverging as the tree-less models 

warm faster at 09:30. During the day, tree-covered garden models demonstrate an 

increase in PET and PMV values that level out at 13:00 (in the range between the 

“neutral” and “slightly warm” thermal comfort values) before slowly decreasing for 

the rest of the cycle. However, the treeless models (the 3xSoyGarden, 3xLoam, 
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3xAsphalt, and 3xConcrete models) demonstrate a sudden increase in PET and PMV 

values (between 09:30 and 10:00) in which the values reach or exceed the “warm” 

threshold values for all four weeks. The thermal comfort indices then increase until 

12:00, and by 12:30 the thermal comfort indices return to below the “slightly warm” 

threshold and follow a similar pattern to the tree-covered models. 

However, within the tree-less and tree-covered model groups, some additional 

trends are apparent. The tree-covered models diverge into two groups over the course 

of the day. The ActualGarden and 3xGarden models are the coolest models, while the 

3xTreeCoveredLoam and 3xTreeCoveredAsphalt models are both much warmer than 

the first two models (and are similar in warmth to the tree-less models after 12:30). 

Within the tree-less models, the 3xLoam covered model is cooler during the day 

(including during the period of elevated warmth in the late morning) than the other 

tree-less models. The 3xLoam model is also similar to the 3xTreeCoveredLoam and 

3xTreeCoveredAsphalt models before 09:30 and after 13:00 during Weeks 2-4, and 

cooler in the same time period during Week 1. 

For Receptor 1, the pattern is similar across all weeks, but Weeks 3 and 4 are 

structured more similarly than compared to the prior two weeks. For each week (and 

across all three indices), the minimum values are in the early morning (similar to the 

Garden Receptor). Then, the indices begin to increase, with a rapid increase from 

08:00 to 08:30 and subsequent decrease from 09:00 to 09:30. A similar increase and 

decrease occurs between 12:30 to 14:30 for the every model but the 3xGarden model 

and Actual Garden. The 3xGarden model levels off around 13:00 before decreasing in 

the afternoon and evening. For Weeks 1 and 2, the ActualGarden model diverges from 

the 3xGarden model, and warms from 12:30 to 13:00 (in a similar intensity to the tree-
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less models) and then cools from 13:00 to 13:30. For Weeks 3 and 4, however, the 

ActualGarden model behaves similarly to the 3xGarden model. In addition, for Week 

1, the Concrete model shows strong divergence from the other models during the 

small daytime peaks. 

For Receptor 2, the model follows the same general diurnal cycle pattern of 

minimum PET and PMV values in the early morning which then increase before 

levelling off in the early afternoon. However, during the morning, there is a peak in 

the PET/PMV values for Weeks 1 and 4, and two peaks for Weeks 2 and 3. During 

Week 1, the thermal comfort indices sharply increase from 07:00 to 09:30, before 

decreasing from 09:30 to 11:00. For Weeks 2 and 3, there are instead two peaks, with 

local maxima at 08:00 and 09:30 for both weeks. For Week 4, the PET and PMV 

values increase sharply from 6:30 to 8:00 before decreasing suddenly from 8:00 to 

8:30.  

Receptor 3 shows a consistent pattern for each of the modelled weeks. As with 

the other receptors, the temperature minimum is in the early morning (for Receptor 3, 

at 06:30 in all cases). Then the temperature begins to increase sharply before levelling 

off and reaching a local maximum at 11:30, decreasing sharply from 11:30 to 12:00, 

having a slight increase in PET/PMV from 12:30 to 13:00, and a sharp peak at 14:00 

(of a similar intensity to the decrease at 11:30) before gently decreasing for the rest of 

the diurnal cycle. 
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3.2.3.2 Diurnal Cycle of the Physiological Equivalent Temperature (PET) 

3.2.3.2.1 The Garden Receptor 

During Week 1 at the Garden Receptor (Figure 3.5), the PET ranged from 

approximately 13 °C to 45 °C (for the tree-less models) and from 14.3 °C to 27.3 °C 

(for the coolest tree-covered model, 3xGarden model). When the tree-less models 

diverge from the tree-covered models between 09:30 to 10:00, the tree-less models 

increase approximately 20 °C in 30 minutes, and go from a PET just below the neutral 

threshold (23 °C ) to exceeding the “hot” threshold of 41 °C (indicating strong heat 

stress). The tree-less models maximum PET, 44.5 °C (at 12:00) is the warmest of all 

four weeks, and 17.9 °C warmer than the warmest tree-covered models 

(3xTreeCoveredLoam and 3xTreeCoveredAsphalt). After the peak PET at 12:00, the 

tree-less models cool until they are comparable to the tree-covered models at 12:30 

(for example, 27.3 °C for 3xConcrete and 26.8 °C for 3xTreeCoveredAsphalt at 

12:30), and are between the “neutral” and “slightly warm” thresholds (at 23 °C  and 29 

°C respectively).  

During the Week 2 (Figure 3.6), the PET values follow a similar pattern, but 

ranged from “cold” (indicating moderate cold stress, threshold at 8 °C) at night to 

“warm” (35 °C for the tree-less models in the late morning. For the tree-covered 

models, the PET never increased above the “neutral” threshold. The highest mid-day 

maximum PET was 37.7 °C for the tree-less models (except for 3xLoam) at 12:00, and 

the coolest mid-day maximum PET was 18.7 °C for 3xGarden (from 13:30 to 14:30). 

Week 3 (Figure 3.7) had similarly high PET when compared to Week 1. The 

tree-less models all exceeded the “warm” threshold after diverging from the tree-

covered models in the late morning, and reached 41 °C (the “hot” threshold) at 12:00 
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before cooling to levels similar to the tree-covered models at 12:30. In addition, 

models were at or above the “neutral” threshold at during the mid-day, although at 

slightly cooler PET values than Week 1. 

During Week 4 (Figure 3.8), the coldest week, primarily had values below the 

“Slightly Cool” (18 °C) threshold, with the only models that exceeded the threshold 

being the tree-less models, during the period of extra warmth in the late morning. 

During the warm period for the tree-less models, the maximum PET barely exceeded 

the “warm” threshold (reaching 35.5 °C) at 12:30, before dropping below the “slightly 

cool” threshold at 13:00. 

3.2.3.2.2 Receptor 1 

Receptor 1 is located across the street from the garden, at a distance of 30 

meters from the garden boundary in the ActualGarden model. For Week 1 (Figure 

3.9), the only model to exceed the “slightly warm” was the 3xConcrete model (which 

had a maximum of 40 °C, just below “hot”), while the other models reached a 

maximum just below the threshold. Most of the models (except 3xConcrete and 

3xGarden) have a range from approximately 13 °C to 28 °C. However, the 3xGarden 

model diverges from the other models at 12:00 and does not have a small peak in PET 

between 13:00 to 14:00, so the 3xGarden maximum PET is approximately 25 °C. In 

contrast, the 3xConcrete model has exaggerated peaks at 8:30 to 9:00 and 13:00 to 

14:00 (approximately 10 °C and 12 °C larger than the other models), with a maximum 

PET of approximately 40 °C. In addition, the 3xConcrete model also has PET values 

approximately 1 °C less than the other models during the nighttime as well. 

For Week 2 (Figure 3.10), the all models have a maximum PET at 12:30, 

however the 3xTreeCoveredLoam and 3xTreeCoveredAsphalt are about a degree 
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cooler than the tree-less models. In addition, the ActualGarden model is a degree 

cooler than the 3xTreeCoveredLoam and 3xTreeCoveredAsphalt, and 3xGarden is 

approximately 5 °C cooler than the other tree-covered models. 

For Receptor 1, the models only exceeded PET values above the “slightly 

warm” threshold for Week 3 (Figure 3.11). In addition, the PET of Receptor 1 

consistently has a range of 1 to 2 °C outside of the mid-day divergence in PET values.  

From 00:30 to 06:30, the ActualGarden model is slightly warmer than the other 

models until the minimum PET (which was approximately 15 °C to 16 °C for all 

models), at which point 3xGarden reaches similar PET values to ActualGarden. The 

ActualGarden and 3xGarden models then warm at a lesser rate than the other models 

beginning at 10:00 (at which point the two models become cooler than the other 

models) and reach a maximum PET of about 26 °C at 13:00. In addition, the 

3xTreeCoveredLoam and 3xTreeCoveredAsphalt follow a similar pattern to the tree-

less models (including a small peak in PET at 13:00 and 13:30), although the two 

models are consistently cooler than the tree-less models. The 3xTreeCoveredLoam 

and 3xTreeCoveredAsphalt models have a maximum PET of approximately 32 °C, 

and the tree-less models have a maximum PET of approximately 33 °C. 

For Week 4 (Figure 3.12), the PET follows a similar pattern as Week 3, but 

with less variation between models (i.e. the models have similar PET values until the 

mid-day divergence), and much lower values. The PET never exceeds the “neutral” 

threshold during Week 4, with a maximum PET of approximately 21 °C. The 

minimum PET is also the lowest of any Receptor 1 PET values, at approximately 7 

°C. 
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3.2.3.2.3 Receptor 2 

Receptor 2 is located east of Receptor 1 and to the west to the intersection of a 

street perpendicular to Fitzwater Street (the street that the 2124 Fitzwater Garden site 

is located on), at a distance of 41 meters from the garden boundary in the 

ActualGarden model. For Receptor 2. During Week 1 (Figure 3.13), the thermal 

comfort indices sharply increase from 07:00 to 09:30 (with an approximately 20 °C 

increase in PET from the beginning of the peak to its apex), before decreasing from 

09:30 to 11:00 (a decrease of approximately 10 °C in PET), forming a local minimum 

at 11:00 as the PET slightly rises until mid-day. The maximum PET is approximately 

33 °C (slightly below the “warm” threshold), at 09:30, with a minimum PET of 

approximately 12 °C (slightly below the “cool” threshold). The models have a high 

similarity with each other for Week 1, with the largest variation between models being 

less than 1 °C. 

For Weeks 2 and 3 (Figure 3.14 and Figure 3.15), there are instead two peaks, 

with local maxima at 08:00 and 09:30 for both weeks. For both weeks, the two peaks 

have increases of approximately 20 °C (with an approximately 15 °C decrease after 

the peak). For Week 2, the first peak reaches 31 °C (above the “slightly warm” 

threshold) and the second peak reaches 37 °C (above the “warm” threshold). The 

models also see some divergence between the tree-less and tree-covered models from 

10:00 to 16:00, with the tree-less models being slightly warmer than the tree-covered 

models by a 1 °C. For Week 3, the first peak reaches 34 °C (slightly below the 

“warm” threshold) and the second peak reaches 41 °C (the “hot” threshold). Similarly 

to Week 2, Week 3 has a PET range during the mid-day with a 1 °C between the 

warmest models (the tree-less models) and coolest models (ActualGarden and 

3xGarden). 
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For Week 4 (Figure 3.16), the PET has a range of approximately 1 °C to 2 °C 

between the models throughout the diurnal cycle. The minimum PET is approximately 

7 °C (below the “cold” threshold) at 06:30. The PET then increases sharply to the 

maximum PET of approximately 25 °C (slightly above the “slightly cool” threshold) 

at 8:30, before decreasing to approximately 11 °C at 8:30. Then all the model PET 

values increase until approximately 18 °C to 20 °C at 12:30, before decreasing in the 

afternoon. 

3.2.3.2.4 Receptor 3 

Receptor 3 is located at the intersection, across the street that runs 

perpendicular to Fitzwater Street, at a distance of 80 meters from the edge of the 

ActualGarden model. For all four weeks, the pattern is consistent between all the 

models. Week 1 (Figure 3.17) and Week 2 (Figure 3.18) are structurally identical, with 

Week 2 being slightly colder than Week 1. However, Week 3 (Figure 3.19) and Week 

4 (Figure 3.20) have a small range in the PET (a maximum of 1 °C) between the 

models during the daytime. The extreme PET values also occur at the same time for 

each week, with the minimum PET at 06:30, and the maximum PET at 14:00 (which 

is slightly warmer than the PET before the sharp decrease from 12:00 to 13:30). For 

Week 1, the PET has a range of approximately 11 °C to 36 °C, going from below the 

“cool” threshold to above the “warm” threshold. For the PET has a range of 

approximately 7 °C to 35 °C, going from below the “cold” threshold to the “warm” 

threshold. For Week 3, the warmest week, the range is from approximately 14 °C 

(slightly above the “cool” threshold) to 45 °C (above the “hot” threshold).  Week 4, 

the coldest week, has a minimum PET of approximately 6 °C (below the “cold” 
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threshold) and a maximum PET of 33 °C (between the “slightly warm” and “warm” 

threshold). Week 4 also has the largest range of PET values. 

3.2.3.3 Comparison of Male and Female Predicted Mean Vote (PMV) Results 

For the PMV results, the PET, Male PMV, and Female PMV diurnal cycles 

have similar trends. However, while the Female PMV has a lower mean than the Male 

PMV (see Section 3.2.1.4 above), the Male and Female PMV results also have strong 

differences in their extreme values. While the Male and Female PMV results both 

have periods of hot and cold, the Female PMV has exaggerated deviations from 

neutral PMV values. Female bodies were more likely to feel cold during the course of 

a diurnal cycle (due to the model being generally cooler during the study period), and 

when the Male PMV increased, the Female PMV increased more. This phenomenon is 

apparent in all four receptor locations. 

3.2.3.3.1 Male and Female PMV Differences at the Garden Receptor 

The differences between the Male and Female PMV are most clearly 

demonstrated at the Garden Receptor. For Week 1, the Female PMV (Figure 3.21) of 

the tree-less models (which experience a period of increased warmth in the late 

morning) ranges from -3 to 5 (from below the “cold” threshold to far above the “hot” 

threshold), while the Male PMV (Figure 3.22) had a range of -1 to 4 (from below the 

“slightly cool” threshold to just above the “hot” threshold). However, the tree-covered 

models have a Male PMV range of approximately -1 to 1 (“slightly cool” to between 

“neutral” and “slightly warm”), and a Female PMV of approximately -2 to 0 (“cold” to 

between “slightly cool” and “neutral”) For the tree-less models Week 2 has an even 

larger range for the Female PMV (-4.5 to 4) (Figure 3.23), while the Male PMV has a 
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range of -2 to 3.25 (Figure 3.24). This pattern of difference in extreme PMV for the 

tree-less models repeats in Week 3, with a Female PMV range of -3 to 5 (Figure 3.25) 

and Male PMV range of -1 to 4 (Figure 3.26), and Week 4, with a Female PMV range 

of -5 to 3 (Figure 3.27), and a Male PMV of -2.5 to 2.5 (Figure 3.28). For the tree-

covered models, the Female PMV instead reaches a maximum PMV of -1.5, -0.5, and 

-2 while the maximum Male PMV was 0, 1, and -1 for Weeks 2, 3, and 4, respectively. 

3.2.3.3.2 Male and Female PMV Differences at Receptor 1 

The maximum PMV values at Receptor 1 were generally close to the neutral 

threshold for all models during Weeks 1-3, so there was minor variation during those 

Weeks. However, the 3xConcrete model had elevated PMV values compared to the 

other models during Week 1, and this increased PMV is much greater for the Female 

PMV (Figure 3.29) than the Male PMV (4 and 3, respectively) (Figure 3.30). In 

addition, the minimum PMV values were much lower for the Female PMV than Male 

PMV for all three weeks. For the first three weeks, Female and Male PMVs had a 

respective minimums of -3.5 and -1.4 for Week 1, -3.5 and -1.5 for Week 2 (Figure 

3.31 and Figure 3.32), and -2.5 and -1.75 for Week 3 (Figure 3.33 and 3.34).  For 

Week 4, the maximum PMV was colder than normal, so the Female PMV ranged from 

-5 to -0.5 (Figure 3.35), and the Male PMV ranged from -2.25 to 0.5 (Figure 3.36).In 

addition, during Week 4, the treeless models were higher than the 

3xTreeCoveredLoam and 3xTreeCoveredAsphalt by 1 (for the Female PMV) and 0.5 

(for the Male PMV) at the time of maximum PMV. 
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3.2.3.3.3 Male and Female PMV Differences at Receptor 2 

For the Weeks 1 and 2, the differences in Receptor 2 PMV values between the 

Male and Female behaved similarly as Receptor 1, with greater variation among 

minimum PMV values than maximum PMV values. For Week 1, the Female PMV 

ranged from approximately -3.5 to 1.75 (Figure 3.37), and the Male PMV ranged from 

approximately -1.25 to 2.75 (Figure 3.38). For Week 2, the Female PMV ranged from 

approximately -4 to 2.75 (Figure 3.39), and the Male PMV ranged from approximately 

-2 to 2.5 (Figure 3.40). However, for Weeks 3 and 4 the maximum PMVs had greater 

variation. For Week 3, the Female PMV ranged from approximately -2.5 to 3.75 

(Figure 3.41), while the Male PMV ranged from approximately -0.75 to 3 (Figure 

3.42). For Week 4, the Female PMV ranged from approximately -5 to 0 (Figure 3.43), 

while the Male PMV ranged from approximately -2.4 to 1 (Figure 3.44). 

3.2.3.3.4 Male and Female PMV Differences at Receptor 3 

For Receptor 3, the greatest differences in the Male and Female PMV extremes 

was the minimum PMV. For Week 1, the Female PMV ranged from approximately -4 

to 2.25 (Figure 3.45) while the Male PMV ranged from approximately -1.75 to 2.25 

(Figure 3.46). For Week 2, the Female PMV ranged from approximately -5 to 2 

(Figure 3.47), while the Male PMV ranged from approximately -2.5 to 2 (Figure 3.48). 

For Week 3, the Female PMV ranged from approximately -3 to 5 (Figure 3.49), while 

the Male PMV ranged from 1 to 4 (Figure 3.50). Lastly, for Week 4, the Female PMV 

had an approximate range of -5.75 to 2.75 (Figure 3.51), and the Male PMV had an 

approximate range of -2.75 to 2.5 (Figure 3.52)  
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Figure 3.1: Receptor Locations. Receptors are represented as purple cells with 

abbreviated name (i.e. Garden Sensor = “GS”, Receptor 1 = “R1”, 

Receptor 2 = “R2” and Receptor 3 = “R3). The ActualGarden model is 

shown, but the receptor location is unchanged in each model. 
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Figure 3.2: Hierarchical Cluster Analysis Dendrogram of the Physiological Equivalent 

Temperature (PET) For Each Model and Receptor. The four colors 

correspond to the four clusters of the dendrogram (which are composed 

of the same receptor for all eight models). Green represents the Garden 

Receptor, red represents Receptor 1, blue represents Receptor 2, and 

brown represents Receptor 3. 



66 

 

 

 

Figure 3.3: Hierarchical Cluster Analysis Dendrogram of the Male Predicted Mean 

Vote (PET) For Each Model and Receptor. The four colors correspond to 

the four clusters of the dendrogram (which are composed of the same 

receptor for all eight models). Green represents the Garden Receptor, red 

represents Receptor 1, blue represents Receptor 2, and brown represents 

Receptor 3. 
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Figure 3.4: Hierarchical Cluster Analysis Dendrogram of the Female Predicted Mean 

Vote (PET) For Each Model and Receptor. The four colors correspond to 

the four clusters of the dendrogram (which are composed of the same 

receptor for all eight models). Green represents the Garden Receptor, red 

represents Receptor 1, blue represents Receptor 2, and brown represents 

Receptor 3. 
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Figure 3.5: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

the Garden Receptor for Week 1. 
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Figure 3.6: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

the Garden Receptor for Week 2. 
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Figure 3.7: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

the Garden Receptor for Week 3. 
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Figure 3.8: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

the Garden Receptor for Week 4. 
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Figure 3.9: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 1 for Week 1. 
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Figure 3.10: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 1 for Week 2. 
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Figure 3.11: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 1 for Week 3. 
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Figure 3.12: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 1 for Week 4. 
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Figure 3.13: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 2 for Week 1. 
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Figure 3.14: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 2 for Week 2. 
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Figure 3.15: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 2 for Week 3. 
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Figure 3.16: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 2 for Week 4. 
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Figure 3.17: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 3 for Week 1. 
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Figure 3.18: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 3 for Week 2. 
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Figure 3.19: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 3 for Week 3. 
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Figure 3.20: The Diurnal Cycle of the Physiological Equivalent Temperature (PET) of 

Receptor 3 for Week 4. 
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Figure 3.21: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 1. 
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Figure 3.22: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 1. 
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Figure 3.23: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 2. 
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Figure 3.24: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 2. 
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Figure 3.25: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 3. 
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Figure 3.26: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 3. 
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Figure 3.27: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 4. 
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Figure 3.28: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of the 

Garden Receptor for Week 4. 
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Figure 3.29: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 1 for Week 1. 

 



93 

 

 

Figure 3.30: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

1 for Week 1. 
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Figure 3.31: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 1 for Week 2. 
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Figure 3.32: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

1 for Week 2. 
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Figure 3.33: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 1 for Week 3. 
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Figure 3.34: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

1 for Week 3. 
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Figure 3.35: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 1 for Week 3. 
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Figure 3.36: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

1 for Week 4. 
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Figure 3.37: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 2 for Week 1. 
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Figure 3.38: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

2 for Week 2. 
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Figure 3.39: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

2 for Week 2. 
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Figure 3.40: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

2 for Week 2. 
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Figure 3.41: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 2 for Week 3. 
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Figure 3.42: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

2 for Week 3. 
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Figure 3.43: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 2 for Week 4. 
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Figure 3.44: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

2 for Week 4. 

 



108 

 

 

 

 

Figure 3.45: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 3 for Week 1. 
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Figure 3.46: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

3 for Week 1. 
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Figure 3.47: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 3 for Week 2. 
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Figure 3.48: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

3 for Week 2. 
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Figure 3.49: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 3 for Week 3. 
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Figure 3.50: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

3 for Week 3. 
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Figure 3.51: The Diurnal Cycle of the Female Predicted Mean Vote (PMV) of 

Receptor 3 for Week 4. 
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Figure 3.52: The Diurnal Cycle of the Male Predicted Mean Vote (PMV) of Receptor 

3 for Week 4. 
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Chapter 4 

DISCUSSION 

4.1 Urban Heat Island and Mitigation in Philadelphia 

4.1.1 Philadelphia Urban Heat Island 

Through the comparison of the temperature in the “compact mid-rise” LCZ2 

(Local Climate Zone 2) environment of urban Philadelphia to the nearby “sparsely 

built” (LCZ9) rural sensor E4674, it is apparent that Philadelphia is warmer than the 

surrounding rural landscape. Among the non-garden urban sites, there was a consistent 

positive bias in daily maximum temperatures, daily minimum temperatures, and 

hourly average temperatures compared to E4674. Daily minimum temperatures were 

an average of 0.91-1.18 °C warmer than the rural sensor E4674, while daily maximum 

temperatures were an average of 0.62-3.19 °C higher compared to E4674. In addition, 

hourly average temperatures were also 0.54-1.25 °C warmer at the non-garden urban 

sites compared to E4674.  

These temperature differences are lower than the 7-9 °C increase for the 

maximum UHI found by Imhoff et al. (2010) in cities replacing temperate forests 

(which includes Philadelphia). However, this temperature increase was found during 

the daytime in the summer; the winter and nighttime UHI values were lower, with the 

summer nighttime UHI around 3 °C, and the winter daytime and nighttime UHI were 

3.5 and 1 °C respectively. As this study included both daytime and nighttime 

temperatures, and was conducted during the early autumn, it is expected the values 
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would be lower than the extreme UHI values possible during a summer day. It is also 

possible that, at the “rural” sensor E4674, the sparse buildings (and associated 

impervious cover) may have also affected the temperature, when compared to an area 

with no buildings or impervious surface cover (such as a dense forest or state park). 

The urban and peri-urban sites also had lower average daily minimum relative 

humidity (0.46-5.54% lower) and hourly average relative humidity (0.52-2.70% 

lower) compared to the rural sensor E4674. This is consistent with prior research 

(Hass et al. 2016), in which urban areas have lower humidity than vegetated and 

sparsely developed areas. 

4.1.2 Urban Garden Heat Mitigation 

The comparison of the Garden Sensor to the other HOBO sensors in the 

Philadelphia area suggests that the garden has the potential to mitigate warmer 

temperatures in the surrounding environment. The Garden sensor experienced lower 

average daily maximum temperatures (between 0.74-2.74 °C lower) and hourly 

average temperatures (between 0.11-0.55 °C lower) when compared to the other 

HOBO sensors. However, the Garden Sensor had only a slight decrease in average 

daily maximum temperature (only 0.02 °C) and warmer hourly average temperatures ( 

0.31 °C higher, on average) when compared to the urban Mesowest sensor E8199. The 

average daily minimum temperature was also warmer when compared to Sensor 1, 

Sensor 4, and E8199. 

It is possible that, while the garden provides cooling during the day, the 

cooling effect is minimal during the night. Prior research has shown that, while tree-

cover can provide cooling during the day in urban parks, the tree canopy can prevent 

radiation cooling at night (Bowler et al. 2010, Potchter et al. 2006, Yan and Dong 
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2015). The garden site has a tree and is bordered by two three-story homes on two 

sides, limiting its sky-view factor and reducing potential radiation cooling at night. 

The lack of nighttime radiation cooling may explain the presence of warmer daily 

minimum temperatures despite the cooler hourly average temperatures and daily 

maximum temperatures.  

The fact that the Garden Sensor’s average daily minimum temperature was 

cooler than Sensor 3 (by 0.60 °C) may be explainable by Sensor 3’s corner location.  

Sensor 3 is located on the corner of Fitzwater Street and S 21st Street, which runs 

perpendicular to Fitzwater Street and receives more direct sunlight than Fitzwater 

Street. While impervious surfaces such as pavement and concrete are associated with 

warmer temperatures (Imhoff et al. 2010, Yan and Dong 2015), building can provide 

cooling shade as well (Bowler et al. 2010, Potchter et al. 2006). It is possible that 

Sensor 3 temperatures were warmer due to the nearby large, sun-warmed paved area 

of S 21st Street, in contrast to the more shaded Fitzwater Street which is the only other 

road on which the other HOBO sensors are located. 

In regards to relative humidity, the Garden Sensor had a greater average daily 

minimum relative humidity compared to the other HOBO sensors and rural sensor 

E4674. The Garden Sensor also recorded greater hourly average relative humidity for 

Sensors 1-3, but reduced hourly average relative humidity compared to the urban 

E8199 and E4674. Prior research has shown that the relative humidity of an urban 

environment is correlated with greater amounts of vegetated surfaces and tree cover 

(Hass et al. 2016) and it is possible that the increased vegetation in the garden led to 

greater relative humidity values than the nearby street sensors. The E8199 sensor, 

however, may be in a location with greater tree cover than the HOBO sensors, and 
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therefore has a greater hourly average relative humidity. The greater hourly average 

relative humidity at the rural sensor E4674 is consistent with prior studies which 

found greater relative humidity values under tree canopies in Pennsylvania and 

Delaware forests (Matlack 1993).  However, the average daily maximum relative 

humidity was not consistent between sensors. This may be due to local mixing effects, 

as the Garden Sensor had a higher average daily maximum relative humidity when 

compared to Sensor 3 (located on a street corner), but a had a lower average daily 

maximum relative humidity compared to Sensor 1 and 4. Also, The Garden Sensor 

had smaller average daily minimum relative humidity values and average hourly 

average relative humidity values when compared to the urban sensor E8199. It is 

possible that E8199 had a greater level of vegetation (or another source of water 

vapor) nearby, when compared to the HOBO sensors, giving the sensor a positive bias 

compared to the Garden Sensor. 

4.2 Thermal Comfort in Urban Community Gardens 

4.2.1 Effects of the Composition of Urban Gardens on Thermal Comfort 

Of all the models tested, the ActualGarden model had lower average PET 

values than all the hypothetical models except 3xGarden. ActualGarden was 0.28 °C 

and 0.41 °C cooler at the Garden Receptor for 3xTreeCoveredSoil and 

3xTreeCoveredAsphalt (respectively), but the cooling effect was nonexistent past 

Receptor 2. This suggests that the ground vegetation cover of the ActualGarden and 

3xGarden may have provided a small amount of additional cooling compared to the 

other models, but that this effect is not noticeable beyond a certain extent past the 

garden boundaries. In contrast, the tree-less models had average PET values that were 
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1.60-1.98 °C warmer than the ActualGarden model at the Garden Receptor, and 

average PET values were 0.25-0.29 °C warmer at Receptor 2.  This is consistent with 

prior studies. Tree cover has been previously shown to reduce temperatures in cities 

(Bowler et al. 2010, Potchter et al. 2006, Shashua-Bar and Hoffman 2000), and in 

addition, the shade resulting from tree cover causes a reduction in the mean radiant 

temperature (Matzarakis et al. 1999), which is generally the strongest influence on the 

PET and PMV indices (Matzarakis et al. 2007).  

In comparison to the 3xGarden model, the other hypothetical models had 

warmer average PET results than compared to the ActualGarden model (and 

ActualGarden was warmer at the Garden Receptor and Receptor 3), demonstrating 

that increasing the size of an urban garden increases the cooling impact of the garden 

in a manner similar to city parks (Jamei et al. 2016). Of the tree-covered hypothetical 

models, 3xGarden had an average PET that was 0.44 °C cooler at the Garden Receptor 

(but nonexistent past Receptor 2) for 3xTreeCoveredLoam, and 0.56 °C cooler at the 

Garden Receptor (but the cooling effect was nonexistent at Receptor 3) for 

3xTreeCoveredAsphalt. However, the tree-less models had average PETs that were 

1.76-2.14°C warmer than the 3xGarden model, and still had average PETs that were 

0.27-0.31 °C warmer at Receptor 2. Because Receptor 3 was near the boundary of the 

model area, it is possible that the cooling impact of the garden may extend further than 

Receptor 2 (and potentially even Receptor 3), but the boundary condition forcings 

caused the PET results to be more similar between models than they may be in reality. 

4.2.1.1 The Effect of Tree-Cover and Ground Cover on Thermal Comfort. 

For the eight tested garden models, only the tree-covered gardens had 

significant cooling effects in the garden when compared to the garden’s surroundings. 
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The Garden Receptor of the tree-covered models had average PET values that were 

0.57-0.92 °C cooler than Receptor 1, but 1.84-2.39 °C cooler than Receptor 3. Of the 

tree-covered models, the bare-ground 3xTreeCoveredAsphalt and 

3xTreeCoveredLoam models had the smallest differences between their Garden 

Receptor and the street receptors, with 3xTreeCoveredAsphalt having the least cooling 

effect. Similar to the section 4.2.1, this suggests that pervious ground cover and 

ground vegetation cover has a small cooling effect in addition to the substantial 

cooling impact of tree shade. 

The effect of tree-cover and ground cover are also present in the PET 

hierarchical analysis as well. ActualGarden and 3xGarden, the two sites with tree-

cover and ground vegetation cover, are consistently paired with each other. With the 

exception of Receptor 1, similar patterns can be found with 3xAsphalt and 3xConcrete 

(the two tree-less impervious surface models) as well. Cluster analysis also indicated 

that the main division within the clusters are between the tree-less and tree-covered 

sites. 

The cooling effect of tree shade has been established previously. Shashua-Bar 

and Hoffman (2000) found that tree canopy shade accounts for 70% of the cooling 

effect in Tel Aviv. Similarly, Potchter et al. (2006) found that urban parks in Tel Aviv 

with medium or high tree canopies can reduce temperatures by 2.5 to 3.5 °C 

respectively. In addition, multiple studies have also shown that air temperatures below 

tree canopies were lower if the surface is grass instead of concrete (Bowler et al. 

2010), as is seen in the differences in cooling between the Garden Sensor and its 

surroundings in the 3xTreeCoveredSoil and 3xTreeCoveredAsphalt models. 
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 The reason for the large difference between the tree-less and tree-covered 

models is likely from the influence of direct solar radiation. Petralli et al. (2011) found 

that the largest differences in temperature between clusters of sites in Florence 

occurred during summer and fall months, attributing it to a greater influence of solar 

radiation exposure on the air temperature surrounding their stations. The effect of 

direct solar radiation is evident in the diurnal cycle of the PET. As solar radiation is a 

factor in air temperature and the mean radiant temperature of the body, increased solar 

radiation leads to increases in both in PMV and PET calculations. In the PET and 

PMV diurnal cycles, the greatest difference between the models occurs at the Garden 

Receptor. Between the tree-less and tree-covered models, the greatest differences 

occur during the mid-day, and the tree-less models can reach a PET that is 18 °C 

greater than the tree-covered models. During the period of direct sunlight, the Garden 

Receptor had PET values in the range of moderate heat stress (35 °C) for Weeks 2 and 

4, and strong heat stress (41 °C) for Weeks 1 and 3 (Wang et al. 2017).  

The tree-covered models did have slightly higher PET and PMV values (a 

difference that is less than 3 °C and 0.3 respectively) during the nighttime, which 

supports previous findings (Potchter et al. 2006, and Yan and Dong 2015) of tree-less 

sites having greater nighttime cooling. Despite this, trees moderate daytime thermal 

comfort to a much greater extent than any of the tree-less models. Of the tree-covered 

models, the ActualGarden and 3xGarden models were also much cooler during mid-

day (between 3 to 5 °C) than 3xTreeCoveredLoam and 3xTreeCoveredAsphalt. In 

addition, the PET cooling effect of the ActualGarden model is greater than 0.25 °C at 

Receptor 2 (although only an average of 0.08 °C cooler at Receptor 3), Receptor 2 is 

41 meters away from the garden boundary in the model. While this is smaller than the 
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cooling distance of 100 meters found by Shashua and Hoffman (2000), the garden is 

smaller than the 60 meter wide green areas in their survey. The ActualGarden model is 

a maximum of 28 meters wide along its longest axis (north-south), and maximum of 6 

meters wide along its shortest axis (east-west). In addition, the ActualGarden model’s 

garden site is less than 100 meters from the edge of the model (Receptor 3, located 

near the boundary, is only 80 meters away), and the boundary conditions will 

influence the PET closer to the model boundaries (and reduce differences in the 

models). Despite this, the cooling distance extends to a greater distance than prior 

findings that a Park Cool Island extends past the park boundaries by approximately the 

width of the park (Jamei et al. 2016), extending approximately 1.5 times the longest 

length of the garden (and approximately 6.8 times the shortest length of the garden), 

extending from the edge of the garden to Receptor 2 at a minimum possible extent. 

While this study was limited in number of locations in which PET was calculated, 

further research can provide greater precision to the cooling range of an urban garden 

through the use of more receptors at smaller spatial distances, and may be able to 

demonstrate the influence of wind direction on cooling extent as well. 

4.2.1.2 Male and Female Differences in Thermal Comfort 

While the effect of tree-cover on thermal comfort is noticeable for the PET, the 

intensity of solar radiation’s effect on the PMV is different between the sexes. While 

the Male PMV at the Garden Receptor has high PMV values during the mid-day, the 

Female PMV has much greater PMV values during the same period of direct sunlight. 

For example, during Weeks 1 and 3, the Male PMV had a difference of 2.7 and 3.4 

between the warmest tree-less and tree-covered models (3xTreeCoveredAsphalt and 

3xAsphalt) at 12:00, while the Female PMV had a difference of 4.5 and 5.4. Using 
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Wang et al.’s (2017) scale of PMV heat stress thresholds, an increase in PMV of 2.5 is 

equivalent to the difference between no thermal stress and moderate heat stress, and a 

PMV increase of 3.5 is equivalent to the difference between no thermal stress and 

strong heat stress. While the Male PMV experiences increases that would cause 

moderate to strong heat stress, the Female PMV experiences increases that are 

consistently much greater than the strong heat stress threshold (by a value that is 1 and 

1.9 greater than the 3.5 PMV threshold, respectively). The Female PMV of the tree-

less models also consistently experienced PMV values greater than 4 while in direct 

sunlight during Weeks 1 and 3 (which is 0.5 higher than the “strong heat stress” 

threshold), and the Male PMV only reached a value of 4 during the hotter parts of the 

day. The maximum Female PMV was warmer by a difference of 1 when compared the 

maximum Male PMV.  

The effect of direct sunlight is noticeable in the average PMV values as well. 

While the average Female PMV was cooler than the average Male PMV, the direct 

sunlight increased the average Female PMV. The models 3xTreeCoveredLoam and 

3xTreeCoveredAsphalt (at the Garden Receptor) were an average of 1.56 and 1.59 

cooler when compared to the Male PMV, but their tree-less counterparts (3xLoam and 

3xAsphalt) were both 1.76 cooler. This difference occurs despite the direct sunlight 

lasting for only two hours of the day. 

For Receptors 1-3, the results are similar between individual models at each 

receptor. However, as the PMV values diverge from neutral values, the Female PMV 

has a much higher or lower PMV (for hot or cold periods, respectively) when 

compared to the Male PMV at the same time. While this means that the Female PMV 

is generally colder than the Male PMV (due to much of the study period being cooler 
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than neutral at night and dawn/dusk), the Female PMV also has much greater “hot” 

values than the Male PMV during the mid-day. In addition, when the PMV values are 

close to neutral, there is less change between the Male and Female PMV. This is most 

noticeable at Receptor 2, or during Week 3 (for all three receptors), where the daytime 

PMV values (which are close to neutral) have a difference of approximately 0.5 to 1.0 

between the Male and Female PMV, while the nighttime PMV values (which are in 

the cool or cold values) have a difference of 2. 

These results are similar to prior research. Middel et al. (2016) similarly found 

that women reported slightly cooler average thermal sensations than males. Also, in a 

review by Karjalainen (2012), multiple studies have shown that while there is no 

difference in neutral temperatures between male and female subjects, females are 

more likely to be sensitive to deviations from neutral temperatures and therefore more 

likely to be dissatisfied with a thermal environment. As female bodies are more 

sensitive to shifts from optimal temperatures, they are also more likely to be affected 

by the presence of trees in an urban environment.  

The differences between male and female bodies have been considered minor 

in the past (Fanger 1970, Karjalainen 2012). However, recent studies (Karjalainen 

2012) and the results of this experiment show that the differences between the sexes 

can be significant, especially when deviations from neutral conditions occur. For 

further research, Karjalainen’s (2012) suggestion to focus on female thermal comfort 

(as their bodies are more likely to be stressed by thermal differences) would be useful 

for urban and outdoor thermal environment studies as well. 
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4.2.2 Urban Heat Island Mitigation Strategies for Philadelphia 

4.2.2.1 Possibilities  

The cooling ability of urban community gardens is highly dependent on their 

composition. The greatest amount of cooling occurred in models with tree-cover and 

ground vegetation cover, but in particular, tree-cover was consistently found to be the 

greatest influence over thermal comfort between the different models. Unfortunately, 

urban community gardens in Philadelphia have previously been found to grow a large 

variety of crops, but all of the most popular species are non-arboreal (Pearsall et al. 

2016). If a garden were to have both cooling and food-production uses, it would need 

to be composed of food trees with shade-tolerant plants beneath the canopy, in a 

manner similar to “multistrata” gardens.  

In many regions of the world, multistrata systems (or “homegardens”) are 

gardens in which a wide range of annual and perennial plants (that can be edible, 

medicinal, and utilitarian) are grown in a mixture that can even maintain decades-old 

trees (Muschler 2014). This system would not necessarily require largely different 

plants than some of the gardens in Philadelphia. Two of the species popularly grown 

plants in Philadelphia gardens, collard greens and parsley (Pearsall et al. 2016) are 

shade tolerant, and other greens (such as lettuce, kale, and spinach) and Brassicas 

(such as broccoli and cabbage) are shade tolerant as well (Dinesh and Pearce 2016). In 

addition, multistrata systems include species grown as companion species and for pest 

control (Muschler 2014), which is already done in Philadelphia gardens with 

marigold, zinnias, cornflowers, and garlic (Pearsall et al. 2016). 

In addition, the cooling effect of trees allows for multiple varieties of small-

scale greenspaces to promote thermal comfort. In Philadelphia, vacant land within the 
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city contributes to the UHI effect, and a majority of vacant lots are in areas with higher 

poverty rates, and lower median income and employment rates. Therefore 

neighborhoods with greater proportions of residents living in poverty have greater 

temperatures and higher heat-related mortality rates during extreme heat events. Yet, 

to reduce the disproportionate amount of vacant lots in poorer neighborhood, the City 

of Philadelphia is attempting to “green” the vacant lots (through projects such as tree 

plantings) (Pearsall 2017). As small patches of trees promote thermal comfort, this 

could reduce heat stress in the surrounding neighborhood, without requiring the use of 

volunteer labor from a lower-income neighborhoods, where lower-income residents 

often have little time to garden due to their jobs (Meenar and Hoover 2012). 

In addition, Shashua-Bar and Hoffman (2000) suggest placing small parks 

every 200 meters (double the cooling range of their results) to maximize cooling in 

urban areas, which would be every two blocks, in a neighborhood like the one 

surrounding the garden site.  As individual trees have been found to reduce air 

temperatures as well (Bowler et al. 2010), Shashua-Bar and Hoffman’s (2000) 

suggestion of at least one shade tree per house may also provide better thermal 

comfort to city residents (and in particular, pedestrians). Furthermore, urban trees have 

been shown to improve air quality, mitigate flooding and runoff, provide a habitat for 

urban wildlife, and reduce urban noise levels (Heynen et al. 2006). Street trees provide 

multiple ecosystem services while using minimal land coverage. 

4.2.2.2 Problems 

However, there are multiple obstacles to increasing thermal comfort for city 

residents. To create an urban garden, or to even grow a small patch of trees for cooling 

the local environment, requires the use of land that may be used for redevelopment. 
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While the City of Philadelphia is attempting to green the city’s vacant lots by planting 

trees and maintaining the lots, this requires management and decades of growth to 

provide cooling benefits to the neighborhood. At the same time, the vacant lot 

greening program is also being used spur development and increase property values, 

which will maintain the high temperatures in the neighborhood. This places the long-

term use of the vacant lots for cooling the environment in conflict with the short-term 

use of greening to increase tax revenue from residential, commercial or industrial 

development (Pearsall 2017). In addition, as this vacant land is greened by the city, 

property prices rise, especially in poorer neighborhoods (Heckert and Mennis 2012). 

This can then create a paradox in which the increase in greenspace causes 

gentrification, which then cause increased costs and drive out the very residents that 

the greenspace was supposed to protect (Wolch et al. 2014). 

This same conflict can be present for the use of a vacant lot as an urban garden. 

In Philadelphia, urban gardens requires access to vacant land, this is more difficult for 

neighborhoods with less social and political capital (Meenar and Hoover 2012), and 

gardens are subject to disparity due to the class and race of the gardeners (Reynolds 

2015). Also, even if the gardeners do have access to space, gardeners generally need 

more space than they have, and often have insecure tenure of their sites (Cohen and 

Reynolds 2014). As there is pressure to use the land for development, and a lack of 

social and political capital to support gardens in poorer neighborhoods, it can be 

difficult for gardens to survive. 

Even relying on urban trees to increase the thermal comfort of a neighborhood 

can potentially reify class differences.  Prior research in the city of Milwaukee has 

demonstrated that urban trees are distributed in relation to household income. Houses 
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with lower incomes cannot afford to maintain trees on their property, and instead rely 

on the ecosystem benefits created by the investment in trees on public property 

(Heynen et al. 2006). In addition, while Philadelphia has a free-tree-planting program 

(TreePhilly 2016), similar programs in Milwaukee do not provide trees primarily to 

the poor or to renters (Heynen et al. 2006). This due to a systematic disinvestment in 

the neighborhoods, where residents and landlords are less likely to invest in properties 

and upkeep if the neighborhood stability is in question (Heynen et al. 2006). 

4.2.3 Limitations and Future Research 

This study was limited in multiple ways. Only one garden was tested for a 

cooling effect, and it was only possible to get permission to place HOBO sensors to 

the east of the garden at three locations. In addition, the study period was in autumn, 

when the greatest urban heat island effect is generally found in the summer. Similarly, 

as autumn progressed, the trees shed their leaves and the garden plants died as the 

growing season ended, which would have an impact on the resulting park cool island. 

To further understand the UHI in Philadelphia (and the potential PCI created by urban 

gardens), it would be useful to sample multiple gardens simultaneously in the summer, 

and to include sensors in multiple directions outside of the garden, to find the 

variability of the PCI (and its extent) between different gardens. Multiple gardens 

from neighborhoods of varying income levels should be used as well, to determine the 

differences in the UHI between sections of the city and its connection to the 

neighborhoods’ wealth, and the differences in the gardens’ PCI as well. 

This study was also limited in terms of the social categories that were 

analyzed. This experiment discussed only the impact of heat mitigation and thermal 

comfort with regards to biological sex and a neighborhood’s income. However, 
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minority populations and the elderly are both at risk of increased heat (Harlan et al. 

2006). Further research could analyze the impact of urban heat on the elderly through 

the simulation of PMV at different ages using RayMan. In addition, further research 

could analyze the connection between thermal comfort and minority status by 

comparing gardens between neighborhoods with different racial/ethnic compositions. 

In addition, the study was limited in the use of a “rural” sensor. The Mesowest 

sensor E4674 was located in the “sparsely-built” local climate zone (LCZ9), which is 

defined as a “sparse arrangement of small or medium-sized buildings in a natural 

setting [with an] abundance of pervious land cover (low plants, scattered trees)” 

(Stewart and Oke 2012). While this is similar to the “scattered trees” (LCZA) or 

“dense trees” (LCZB) local climate zone types in terms of tree-dominated vegetation 

and mostly pervious land cover (Stewart and Oke 2012), the presence of buildings 

(and associated impervious surface cover, such as roads and driveways) in the area 

surrounding the sensor causes the area to be somewhat “suburban” in land cover, and 

may affect the temperature and relative humidity at the sensor. 

Lastly, the Envi-met model was also limited due to its inability to model rain 

or short-term cloud cover. While the impact of rain and cloud cover was reduced in 

the model runs through the calculation of weekly average diurnal cycle, this also 

reduces the daily (and hourly) variability of the PET. Due to the substantial impact of 

direct sunlight, it is possible that increased cloud cover may reduce the PET. However, 

humidity is related to thermal comfort (Fanger 1970, Hass et al. 2016, Höppe 1999, 

Matzarakis et al. 2007), and shifts in relative humidity associated with changes in 

cloud cover and rain were unaccounted for as well. While rain cannot be modelled in 

Envi-met, further simulations that model both cloudy and sunny days as case studies 
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may be able to analyze any existing difference in thermal comfort due to the 

associated differences in the meteorological conditions. 
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Chapter 5 

CONCLUSION 

It is well established that urban areas have higher temperatures than their less-

developed surroundings (Coseo and Larsen 2014, Imhoff et al. 2010). In addition, 

exposure to heat can vary across populations in a city due to the presence of vegetation 

(Declet-Barreto et al. 2013, Jamei et al. 2016, Jenerette et al. 2007); the biological sex 

of a resident can affect their thermal comfort (Karjalainen 2012, Rupp et al. 2015). 

Urban community gardens have also been suggested as a form of urban vegetation 

which may mitigate local temperature increases in a city (Tsilini et al. 2014), which 

would complement the many social benefits of urban gardens (Poulsen et al. 2014). 

However, urban greenspace such as parks vary in cooling capability, and the cooling 

extent of Park Cool Islands has been previously shown to only extend beyond the park 

boundaries by the width of the park (Imhoff et al. 2010, Jamei et al. 2016). Urban 

gardens are also subject to social forces that may limit their cooling; the gardens are 

often limited in size due to their reliance on vacant land, and limited in funding and 

support from the city due to the social and political capital of the gardeners (Cohen 

and Reynolds 2014, Meenar and Hoover, and Reynolds 2014).  

Through an analysis of observed and modelled data, it has been demonstrated 

that urban gardens can reduce temperatures within a city as well as promote thermal 

comfort, primarily due to the presence of tree cover. Tree cover has been previously 

shown to reduce temperatures in cities (Bowler et al. 2010, Potchter et al. 2006, 

Shashua-Bar and Hoffman 2000). This effect is likely due to the reduction in direct 
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solar radiation (Petralli et al. 2011), that results in a reduction of the mean radiant 

temperature which is a strong influence on thermal comfort (Matzarakis et al. 1999, 

Matzarakis et al. 2007). With the presence of tree cover, the otherwise-identical 

gardens can have thermal comfort indices that are reduced from “hot” to “neutral” 

values, a reduction from “strong heat stress” to “no thermal stress” (Wang et al. 2017). 

The cooling effect of the tree-covered gardens has also been found to extend past its 

boundaries, and beyond the width of the garden (and therefore further than urban park 

cooling). The cooling effect of trees also varies between the sexes; because female 

bodies are more sensitive to deviations from neutral conditions, direct sunlight causes 

greater levels of heat stress and discomfort than male bodies in the same conditions. 

Therefore, tree cover causes a greater reduction in the Female PMV when compared to 

the Male PMV. 

However, while urban gardens (and tree cover) may promote thermal comfort, 

there are many obstacles to cooling the city in this manner. Many of the most popular 

Philadelphia urban garden crops are non-arboreal (Pearsall et al. 2016), which may 

require changing garden composition to promote cooling, and trees take years to 

mature (Pearsall 2017). Poorer gardeners in Philadelphia also have a harder time 

accessing vacant land and maintaining their gardens due to a lack of resources 

(Meenar and Hoover 2012).  Relying on public trees may also be problematic for 

lower-income residents (Heynen et al. 2006), as the addition of trees in poorer 

neighborhoods increases property costs (Heckert and Mennis 2012), causing 

gentrification (which drives out the same residents the trees are meant to help) (Wolch 

et al. 2014). In order to mitigate urban heat islands using urban gardens and tree cover, 

residents face structural inequality and the risk of gentrification.  
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