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ABSTRACT

InAs/GaAs quantum dots (QDs) and quantum dot molecules (QDMs) are self-

assembled semiconductor nanostructures that can trap a single electron or hole in a

3-D potential-well. Grown by molecular beam epitaxy (MBE), they have excellent

optical qualities that can be used in applications for quantum information processing

and quantum computing. Specifically, hole spins in a single QD/QDM have longer

decoherence time than electron spins due to the lack of hyperfine interaction, making

hole spins a great qubit candidate. However, many challenges such as QD growth,

device integration, and spin manipulation inhibit the scalability of a hole-spin-based

quantum information platform. A deeper understanding of the hole spin physics and

the QD/QDM material system is needed to advance device engineering opportunities.

In this dissertation work, we explore a hole spin in an InAs/GaAs QD/QDM

under a 2-D electric field. We develop a hybrid computational method that combines

a tight-binding atomistic simulation and a finite matrix approximation. This hybrid

method can quickly explore the properties of a single hole spin state under a variety of

electric field conditions. We discover that a hole spin in a single QD can be polarized

in the vertical direction with an in-plane (lateral) electric field and a Voigt (lateral)

direction magnetic field. We show that this effect persists with different QD shape,

composition, and orientation. We also demonstrate the ability to control hole spin

states using a lateral electric field in a QDM, particularly the ability to induce hole

spin mixing with a gradient 2-D electric field. We will discuss the spin texture concept

that explains these exotic spin effects using an animated visualization algorithm.

We also present the experimental effort to apply 2-D electric field to a single

QD/QDM. We use COMSOL semiconductor simulation to design a 3-electrode device

that can apply 2-D electric field in GaAs. We discuss a range of device parameters and

xxi



their influence on the device performance. We grow a single QD sample in an intrinsic

GaAs matrix using MBE. We fabricate the 3-electrode device on this sample using

electron beam lithography, ICP etching, Ion Milling and angled e-beam metal evapo-

ration. The device is then characterized by low-temperature micro-photoluminescence.

We show that we are able to control the charging of a single hole state in a QD using

two different voltage geometries. Combining the experimental data with the COM-

SOL simulation results, we show the charging comes from the induced 2-D electric

field around a single QD. We will discuss the improvements required to continue on

the path to full 2-D field control of a single QD.
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Chapter 1

INTRODUCTION

1.1 Quantum Computing Introduction

1.1.1 Concept of Quantum Computing

Classical computers use transistors to indicate logic, which can be either 0 or 1.

This binary logic architecture has grown with Moore’s law for the past decades, shaping

the fundamentals of our current digital infrastructures. However, to keep increasing

the computational power of a classical CPU, logic gates have to become smaller and

smaller so that more computational units can be integrated per area. This strategy

will eventually hit the quantum barrier where carriers become quantized and cannot

be simply described by classical theory. For example, when a dielectric insulators’

thickness is reduced to less than 10nm, carriers can easily tunnel out of the barrier and

cause logic errors. New computing paradigms need to be explored if we want to keep

increasing our computation power.

Quantum effects do not just pose an obstacle for computing, they also provide

an opportunity for an entirely new and extraordinarily powerful computing paradigm.

With quantum computing, the classical computing unit is replaced by qubits, where

each qubit can simultaneously exist in a superposition of the 0 and the 1 state. This

superposition increases the amount of information one computational unit can hold,

and allows multiple qubits to effectively store and process multiple states simultane-

ously by quantum entanglement. A significant increase in the computational power

can be achieved with a sufficient number of entangled qubits. For example, a common

hypothetical scenario is solving a 2048 binary digit key using a classical computer and a

quantum computer. A quantum computer with 2048 qubits can encode 22048 different
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key combinations all at once, where a classical computer can only consider one key

combination at one time. This makes the theoretical speed of finding the correct key

combination in a quantum computer 22048 faster than a classical computer.

1.1.2 Quantum Computing vs Classical Computing

Although quantum computing and quantum information processing is very

promising and, theoretically, very powerful, it is extremely challenging to implement

in practice. Following the previous example, a 2048-qubit quantum computer might

possess 22048 different states at once, but the time it takes to extract the one correct

combination from all the 22048 combinations can be significant. Good quantum al-

gorithms are required to process the quantum information accurately and achieve a

speedup, and not every type of classical problem can be directly implemented in a

quantum computer. Despite this limitation, the improvement in computational power

that would be enabled by quantum computers is still extraordinary, if enough qubits

can be employed by the hardware.

Figure 1.1 gives an explicit comparison between the classical algorithm and

quantum algorithm[1] for the speed of factoring a product of two large prime numbers.

The horizontal axis is the length of the number to be factored, which is the same as

the number of qubits, and the vertical axis is the time needed. The solid black line

indicates the amount of time required to factor a number using a classical algorithm

with a 1GHz Opteron CPU. The black vertical dashed line is the recommended Rivest–

Shamir–Adleman (RSA) public key length in 2007. It will take billions of years to factor

a 2048 bit number using the classical algorithm. Even with the constant increasing

classical computation power, the amount of time required is still astronomical.

The colored lines are different combinations of quantum computer logical clock

speed for 1) a three-qubit operation called the Toffoli gate (1Hz and 1MHz), 2) methods

of implementing the arithmetic portion of Shor’s algorithm (BCDP, D, and F), and

3) quantum computer architectures (NTC and AC). [1] Without getting into much

detail about each of these algorithms, it is clear that the time required to factor a 2048
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bit number can be reduced to seconds, as indicated by the blue line. However, the

speedup only occurs with enough qubits, and the threshold for speedup depends on

both the algorithm implementation and hardware architectures. The overaching point

is that: 1) the quantum algorithms are paramount if we want to solve problems that

can not be solved using the classical computers and 2) building quantum computing

hardware with thousands of qubits is essential to realizing a useful quantum computer.

The advances enabled by pratical quantum computing will accelerate fields ranging

from computation aided design, large molecule simulation related to drug delivery, to

cracking a security passcode.

Figure 1.1: The computation time of factoring L-bit number. picture adapted from
Van Meter, Rodney ; Horsman, Clare. ” A blueprint for building a quan-
tum computer.” In: Communications of the ACM. 2013 ; Vol. 56, No.
10. pp. 84-93[1]

1.1.3 Quantum Logic Gates and Their Challenges

Many quantum computing models use the advantages of quantum mechanics.

These models include gate quantum computing, one-way quantum computing, adia-

batic quantum computing, and topological quantum computing. In this work, we will

only introduce the gate quantum computing architecture and in order to motivate the
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needs to find new materials platforms that can incorporate better and more scalable

qubits.

Building a universal gate-model quantum computer requires two things: A) a

two-level superposition system that represents two quantum states |0⟩ and |1⟩ and B)

a set of universal gates that manipulate these two superposition quantum states. One

example of a universal quantum gate is a combination of a Hadamard (H) gate, a phase

rotation gate R(cos−1 3
5
), and a controlled-NOT gate. The Hadamard gate operates

on a single qubit and maps |0⟩ to 1√
2
(|0⟩ + |1⟩) and |1⟩ to 1√

2
(|0⟩ − |1⟩), creating

a superposition of |0⟩ and |1⟩ such that the measurement outcome will have equal

possibility of being one |0⟩ or |1⟩. The phase gate R operates with one qubit, leaving

|0⟩ unchanged and mapping |1⟩ to eiϕ|1⟩, which changes the phase of the quantum

state. The CNOT gate operates with two qubits, using the first qubit as the control

and flipping the state of the second qubit if the control is |1⟩[2]. Using a set of universal

gates such as the one described here, all qubits can be manipulated independently and

coupled together to execute an arbitrary quantum algorithm.

One of the biggest challenges in creating superposition states for quantum gate

operations is decoherence. Decoherence means the loss of coherence in the quantum

superposition state due to the non-perfect isolation between the state and its environ-

ment. The time that a superposition state can exist without collapsing to a classical

states is the decoherence time (T1). A special kind of decoherence occurs when the

orthogonal phase of the superposition state decays due to interactions with the envi-

ronment. The time a superposition state maintains its phase is called the dephasing

time (T2). These timescale set fundamental limits of time on how quickly quantum

information must be manipulated and extracted before the information is lost perma-

nently.

Because of the existence of decoherence, a quantum gate cannot be operated

perfectly and indefinitely. The success rate of a gate operation (fidelity) defines the

quality of the qubit and physical gate. The fidelity is a measurement of how robust

the coherent superposition state is and also how identical each qubit is. Non-identical
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qubits are often the number one cause of two-qubit gates operation failures. To achieve

higher fidelity gates in general, we need to find material platforms that can provide a

scalable path to identical qubits, improve the gate operation speed, and increase the

decoherence time and dephasing time.

Another way to improve the fidelity of a qubit gate is to use error correction.

While classical error correction uses redundancy and stores the information multiple

times in multiple bits, quantum information cannot be copied due to the no-cloning

theorem. However, it is possible to encode the information of one physical qubit in

multiple highly-entangled physical qubits. The collection of these physical qubits can

from a logical qubit that with error corrections, outperforms any single physical qubit.

The requirement for building a logical qubit with error correction is high-fidelity physi-

cal qubit with gate error rate typically smaller than 10−5 to 10−6[3], which is extremely

demanding.

Several quantum error correction algorithms based on this concepts have been

invented, including the Shor code[4] that uses 9 fully-entangled qubits, the CSS code[5][6]

that uses 5 fully-entangled qubits, and more recently the Surface code[7]. The surface

code, specifically, operates on a two-dimensional physical qubit array, uses the nearest-

neighbor qubits as a stabilizer, and can achieve a physical qubit error tolerance of 1%,

which is three orders of magnitude higher than what is typically required for other

approaches such as the CSS code[8, 7]. Based on the 1% error rate, the number of

physical qubits needed to form a surface code corrected logical qubit is estimated to

be around 108. Although this number can be reduced with physical qubits with lower

error rates (higher fidelity), the number of physical qubits needed to build a universal

gate-model quantum computer and achieve a speed-up against classical computer is

still very large.
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(a) (b) (c)

Figure 1.2: Examples of different quantum computing platforms. (a) a superconduc-
tor based 8 qubit system developped by Rigetti Computing.[9] Permission
granted (CC BY-NC 4.0) (b) The schematic of a linear Paul trap exper-
iment set-up, where a string of 40Ca+ ions is confined. The electronic
states of each ion, depicted as horizontal lines, encode a spin | ↑⟩ or | ↓⟩.
These states can be manipulated using laser beams. [10] (c) lithogra-
phy defined two Si/SiGe QD spin qubit and their neighbouring qubit for
charge sensor.[11]

1.2 Current Progress in Quantum Computing Research

1.2.1 Quantum Computing Platforms

Many different material platforms have been proposed to accommodate the gate

quantum computing model. Several important material platforms include Josephson-

junction-based superconducting platforms, trapped ion based quantum computers, sil-

icon lithographically-defined QD platforms, photon-based quantum computers, and

InAs quantum dot-based qubits, as shown in figure 1.2.

Superconductor-based quantum computers use Josephson-junctions as qubits,

which can form a proper quantum 2-level system based on the junction charge, flux, or

phase. Superconducting qubits’ operates at hundreds of mK, and they are coupled and

manipulated using microwave photon[12, 13, 14]. Figure 1.2 (a) shows a microscopy im-

age of an adjacently-connected 8-qubit system on a 1cm*1cm die developed by Rigetti

Computing using Josephson-junctions and microwave cavities.[9]

Trapped-ion based quantum computers use the highly identical atomic transi-

tions of ion states as qubit states, and qubits are manipulated by either photons or

phonons.[15, 14, 16] Figure 1.2 (b) shows a schematic of trapping Ca+ ions with a linear

6



Comparison of state of the art metrics in leading QC platforms
Platform Superconductor Trapped Ion Si/SiGe

Spin
Photonic InAs QDs

Decoherence/
Dephasing

30 ∼ 60µs [12,
13, 14]

1 min [15] ∼ 20µs [17,
11]

NA 1 ns [21, 22]
/ (1 ∼ 6µs)
[23]

Gate opera-
tion time

250 ∼ 450 ns
[14]

1 ∼ 10µs
[24, 15]

30 ns [17] 10 ms [19] ≤ 38 ps [25]

# of in-
teracting
qubits

5 ∼ 50 [13, 12,
26]

5 [14] 53 [16] 2−3 [17, 11,
18]

4 [19] 1 ∼ 2 [27]

Two qubit
gate fidelity

99.4% [12] ≥ 99.9%
[24, 15]

78% for
CNOT [11]

90% [20]
99.1% [19]

∼ 80% in
QDM [27]

Operation
temperature

≤ 25mK [14,
13, 12, 26]

≤ 100K [24] ≤ 150mK
[28]

RT 4K ∼ 30K
[29, 30]

Qubit Size 1 mm2 [26, 12] 2.5mm2 [24,
15]

63 nm2 [28] flying ∼900 nm2

Table 1.1: Comparison of state of the art metrics in leading QC platforms

Paul trap, initializing the ion state using a global laser beam while dressing individual

ions using a different frequency laser beam.[10]

Si/SiGe based qubit uses lithographically-defined quantum dots to form elec-

tron/hole traps and manipulate the electron’s spin state via tunneling using different

gate voltages[17, 11, 18]. Figure1.2 (c) shows a color enhanced SEM image of a double

Si/SiGe quantum dot qubit. The bottom quantum dot is used as a charge sensor and

readout of the qubit state.

Besides these solid material platforms, another important quantum computing

platform is the photon-based platform, which uses single photon sources and entangled

photon pairs to generate flows of quantum information[19, 20]. Photonic qubit systems

can be either constructed using free-space optics or integrated on-chip with photonic

waveguides and couplers.
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1.2.2 State-of-the-art Metrics in Various QC Platforms

We compile some of the state-of-the-art metrics in these leading quantum com-

puting systems in Table 1.1. For instance, superconductor platform can now achieve

tens of µs decoherence time and fast gate operation speed around hundreds of ns. The

number of interacting qubits has increased dramatically in the past decades to around

50, and possibly more as I write this sentence. The best two-qubit gate fidelity is as

high as 99.4%, reaching the limit of the error threshold of surface code. The drawback

of this system is that it operates at an extremely low temperature, typically lower than

25mK, imposing significant extra cost and major engineering hurdles to scale-up.

Other systems also have their advantages and disadvantages. For example,

trapped ion qubits have incredibly long decoherence times and close to unity two-qubit

gate fidelity, but their estimated qubit size is on the scales of millimeters. Si/SiGe

spin qubit systems have the smallest qubit sizes, which can be much more favorable for

mass integration, but they also operate at extremely low temperature with a fidelity

not high enough for fault-tolerant error correction. Photonic qubits, while having high

gate fidelity and working at room temperature, often requires a free-space optical setup

on the scale of square meters, naturally inhibiting its scalability.

1.2.3 Spin Qubit with InAs Quantum Dot and Quantum Dot Molecule

Without discrediting the significant advances many quantum computing plat-

forms have achieved, it is safe to say that the need to find a better qubit system cannot

be ignored. InAs quantum dot-based quantum computing systems use electrons or

hole spins trapped in a single quantum dot or quantum dot molecule as the qubit,

and these qubits are controlled using ultra-fast pulsed laser sources. This approach

has the advantage of achieving ultra-fast gate operation speed down to several tens of

picoseconds while coupling to photons for on-chip photonic mass integration. More-

over, the operation temperature for the InAs quantum dot system is usually around

4K to 30K. Although not as convenient as room temperature, this temperature range

is easily accessible with modern closed-cycle cryostats and poses far fewer engineering
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challenges than mK temperatures. Although the current gate fidelity is still low, and

the interacting numbers of qubits are still limited, integrating a large number of qubits

on-chip is possible with the sub-um size qubit unit and appropriate semiconductor

fabrication techniques.

Both electron spins and hole spins are promising candidates for spin qubit using

InAs QDs, as demonstrated by many groups.[25, 31, 32] However, hole spins are partic-

ularly interesting because of the lack of hyperfine interaction with the nuclei spin.[33,

34, 32] The relatively strong hyperfine interaction for electrons leads to coupling be-

tween the electron wavefunction and the random fluctuations of nuclear spins in the

ensemble, leading to fast decoherence times around several ns.[21, 22] However, the

p-type Bloch wavefunction for hole states results in zero wavefunction overlap with

the nuclei spin and dramatically reduced decoherence. For instance, Warburton et al.

have demonstrated a close to 1 millisecond spin relaxation time using hole spins in a

QD under a weak magnetic field. [33] Moreover, hole states in InAs QDs and QDMs

often have strong spin-orbit coupling interactions that lead to novel quantum device

oppotunities such as non-destructive quantum state readout. [35] These features of

hole spins make them an incredibly appealing qubit candidate.

InAs QDs and QDMs are also highly tunable by external electric and magnetic

fields. For instance, vertical electric fields are widely used to tune the emission energies

of QDs and QDMs [36, 37, 38, 39], which has the potential of enabling integration of

large numbers of qubits into a scalable device. However, there is a lack of study on

how electron or hole spins behave under an in-plane electric field. A systematic study

of the spin states in QDs and QDMs under in-plane electric field could help reveal

new spin physics, spark novel device applications, and complete the blueprint for InAs

QD/QDM spin qubit.

1.3 Dissertation Content

In this dissertation, we will systematically explore how hole spin states behave

in QDs and QDMs, subject to both vertical and in-plane electric field. We will also
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design, fabricate, and characterize devices that can apply a 2-D electric field to a single

QD or QDM. The content is structured as follows:

In Chapter 2, we will introduce the InAs QD/QDM system in detail. We will

cover InAs QD/QDM’s growth, optical properties with electric fields and magnetic

fields, basic spin qubit structures with InAs QDs and QDMs, and their current chal-

lenges in fabrication and spin manipulation. We will introduce the need to apply lateral

electric fields and 2-D electric fields, for full spin control of a QD/QDM system.

In Chapter 3, we will introduce the tight-binding simulation method for calcu-

lating single electron or hole spin states in a QDs. We will develop a hybrid simulation

technique combining the tight-binding simulation with a finite matrix approximation.

We will also introduce a visualization algorithm which reveals the spin texture of a

hole state in a single QD.

In Chapter 4, we will use the hybrid simulation method to calculate hole spin

states in a single QDs. We will uncover a novel hole spin polarization effect induced by a

lateral electric field. We will explore this effect under various simulation conditions such

as electric fields and magnetic fields orientations, QD geometries, QD compositions.

We will further introduce the concept of spin texture and give explanations of the

repolarization effect based on spin texture.

In Chapter 5, we will use the hybrid simulation method to calculate hole spin

states in an InAs/GaAs QDM. We will discuss the effect of 2-D electric fields on Stark

shifts, the formation of molecular states, and the hole spin mixing effect. We will also

present the hole spin mixing effect with the spin texture visualization method.

In Chapter 6, we will introduce the 3-electrode device designs that can apply

2-D electric fields in the InAs QD/QDM system, validated by COMSOL simulation.

We will discuss the importance of including the semiconductor module and examine

the device parameters that might limit our device functionality.

In Chapter 7, we will introduce nanofabrication methods that are commonly

used for III-V device manufacturing. We will focus on the fundamentals of e-beam

lithography, inductively coupled plasma (ICP) etching, e-beam metal evaporation and
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dielectric depositions using plasma enhanced chemical vapor deposition (PECVD) and

atomic layer deposition (ALD).

In Chapter 8, we will describe the detailed fabrication process for the 3-electrode

device as designed in chapter 6. We will illustrate our pattern layout, detailed recipes

for each fabrication step, and discuss potential recipe improvements.

In Chapter 9, we will introduce optical characterization methods that are used

to characterize InAs QDs. We will introduce the wafer imaging method that uses wafer

scale photoluminescence (PL) to identify the density threshold of the QDs, and micro-

photoluminescence (micro-PL) spectroscopy to characterize the spectral behavior of

QDs under electric fields.

In Chapter 10, we will present the micro-PL data of the 3-electrode device,

under different voltage geometries. We will show charging diagrams with different

symmetries. We will use power-dependent and wavelength-dependent PL data to ex-

plain the physics behind the charging diagram. We will also show 2-D band-structures

that correspond to charging a single QD using lateral electric fields, simulated using

COMSOL.

In Chapter 11, we will summarize the main results of the spin properties, es-

pecially holes, in a QD or QDM, subjected to a lateral/2-D electric field, both in

simulation and in experiment. We will discuss potential improvement in the device

design, fabrication, and characterization of a QD’s spectrum under 2-D electric fields.

We will provide future research directions for simulations and full 3-D control over the

electric field environment for a single QD or QDM.
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Chapter 2

BACKGROUND

2.1 From Bulk Semiconductor to Quantum Dot

Semiconductors, such as Si, Ge, and GaAs, are materials that have electrical

properties between insulators and metals. Their electrical properties are primarily de-

fined by their bandgap energy, which is the energy required to promote a valence band

electron to the conduction band, leaving behind a hole. In an intrinsic semiconductor,

the Fermi-level lies at the center of the band-gap, making the semiconductor behave

like an insulator. When the Fermi-level of a semiconductor moves close to the con-

duction band (valence band), the semiconductor will become more conductive because

less energy is required to promote an electron (hole) to the conduction band (valence

band). Besides versatile electric properties, semiconductors can also absorb or emit dif-

ferent energy photons depending on the bandgap of the material. We will specifically

introduce the formation of a semiconductor quantum dot and its optical properties in

this chapter.

Heterostructures formed by different semiconductors can have different band-

alignment, which yields different electrical, and optical properties. For example, a

quantum well can be formed by a type I band alignment between intrinsic GaAs and

InAs, as shown in Figure 2.1. The lower band gap material InAs is sandwiched by

the higher bandgap material GaAs, forming an InGaAs quantum well. The schematic

of a 2-D potential well in Figure 2.1 shows confined energy states of electrons and

holes in the z-direction. Electrons and holes that are trapped in the quantum well can

recombine and emit a photon that corresponds to the energy difference of the confined

states. Because quantum wells can only confine carriers in 1 dimension, electrons and
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holes can still move freely in x-direction and y-direction, resulting in a continuous

density of states.

Figure 2.1: Schematic of a InAs/GaAs 2-D quantum potential well structure with
type-I band alignment. Electrons and holes are tightly confined in the
z direction but are free to travel in x and y direction. This 2-D poten-
tial well model can also help explain the discrete energy state in a QD.
Electron (blue) and hole (red) wavefunction with strong overlap can re-
combine and emit/absorb a photon with the energy that’s equal to the
energy gap between the two states.

Expanding the potential confinement into all three dimensions leads to nanos-

tructures that are called quantum dots (QDs). Electrons and holes inside a QD have

discrete energy levels, giving them unique electrical and optical properties. Similar to

a quantum well, QDs are often formed with two semiconductor materials that have

different bandgap energies. The type of QD can vary based on different material com-

positions and fabrication techniques. Most commonly, there are three types of QDs:

1) Using lithography to define gates that are used to localize single electrons or holes
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on a semicondutor surface, such as Al gates on GaAs, or SiGe gates on Si. People often

refer to these QDs as lithographically-defined QDs or gated QDs. [40][41] 2) Using col-

loidal self-assembly to form nanoparticles that suspend in a solution. These are called

colloidal QDs.[42, 43, 44, 45] 3) Use bottom-up growth technique such as molecular

beam epitaxy (MBE) or MOCVD to form self-assembled quantum dots in a solid state

system, such as InAs QDs. [46, 47, 48, 49, 50, 51] We will focus on self-assembled

quantum dots composed of group III-V materials grown by MBE.

Many III-V QDs, such as InAs/GaAs QDs, are constructed from two direct

bandgap materials. The strong wavefunction overlap between electron states and hole

states in III-V QDs can lead to strong optical activities such as emission and absorption.

The energy and material structure of InAs QDs can also be precisely deducted by

characterizing the energy of the emitted or absorbed photon using spectroscopy. This is

why InAs QDs with properly designed structure can be used in many applications that

involve light. For example, combining InAs QD with an optical cavity and electrically

pumping the nanostructure with carriers can generate strong optical emissions for lasing

applications.[52, 53] Other applications include intermediate bandgap solar cells[54],

light-emitting diodes[55], photoconductive field effect transistor designs[56], infrared

photo detectors[57], and quantum information/computation applications.[58] Here, we

will focus on the spin properties of a single hole carrier in a QD and its quantum

computing applications.

2.1.1 The Formation of InAs/GaAs QD and QDM

InAs/GaAs QD are usually grown by molecular beam epitaxy(MBE). MBE has

the ability to deposit materials such as Ga and As layer by layer down to the atomic

level. When a single layer of InAs is deposited on GaAs, strain forms because of

the lattice-constant mismatch between InAs and GaAs. During the strain relaxation

process, InAs atoms can aggregate (self-assemble) and form island-shaped structures

that are around several nanometers high, and several tens of nanometers wide. This

island structure can later be capped with a much thicker layer GaAs to form a QD. The
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bandgap mismatch between GaAs and InAs forms a 3-D potential well at the island,

allowing the nanostructure to trap a single electron or hole. This growth method is

called the Stranski-Krastanow (S-K) method. [46] A scanning electron microscopy

(SEM) picture of a island shape InAs QD is shown in Figure 2.2 (a)[59]. A vertical

Quantum Dot Molecule (QDMs) is grown by depositing a second thin layer of InAs

several nanometers above the original QD layer. The second QD will tend to nucleate

directly on top of the bottom dot, due to favorable strain conditions.[60] The GaAs

between the two QD serves as a tunneling barrier for charges moving between the

two QD. Figure 2.2 (b) shows a cross-section transmission electron microscopy (TEM)

picture of a vertically stacked InAs QDM. [51]

(a) (b)

Figure 2.2: (a)H. Eisele, et al. demonstrated STM image of an uncapped InAs/GaAs
QD. [59] (b)TEM image of a InAs/GaAs QDM with a slight geometric
offset. [51]

One technique commonly used in InAs QD growth is cap-and-flush[61]. The

cap-and-flush method caps the island-shaped QD with some GaAs (2-3nm) partially-

covering the island but leaving the top exposed. The substrate is first heated to the

InAs growth temperature so that Indium migrates from the QD to GaAs, and then

slowly raised to the GaAs growth temperature to flush the exposed In away. The result

is that the top part of the QD island can be removed, leaving a truncated QD shaped

like a disk. This is why in Figure 2.2 (b) the two QDs cross-section view looks like

a rectangle. Using cap-and-flush, the height of the QD can be precisely controlled,
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decreasing the ground state photoluminescence (PL) emission wavelength from 1.3um

to around 950nm by increasing quantum confinement.

The advantage of the Stranski-Krastanov growth is that the defects between

InAs and GaAs interfaces are kept to minimum so that the optical properties of the

QDs are excellent. The downside is that the location, size, shape, and density of QDs

cannot be precisely controlled because of the self-assembly process. This means that

every QD has a slightly different size and shape, which influences its energy structure

and optical qualities[46]. The randomness of the QD locations also causes difficulties

in device fabrication.

2.2 InAs QD and QDM Optical Properties

InAs QD/QDM grown by S-K method after cap-and-flush have a strong confine-

ment in the growth direction, close to a square well. The confinement in the in-plane

direction is usually not that strong, resulting in a parabolic potential well. Electrons

and holes trapped in the potential well have strong wavefunction overlap in the growth

direction and can emit light in the near infrared region. The excitation can be either

from an above-bandgap photon source[62, 63], below-bandgap photon source (inter-

mediate band excitation)[54] or electrical injection (electroluminescence)[53]. In my

dissertation, we will mainly discuss above-bandgap excitation photoluminescence(PL)

signatures of QD and QDMs for quantum computing/information applications.

Laser light with an energy higher than the GaAs bandgap can excite electrons

in a QD from the valence band to the conduction band, leaving a hole behind. The

combined states of excited electrons and holes are called excitons. Under low excita-

tion power conditions, only the PL from the lowest unoccupied energy states can be

observed, giving insights into the energy structure of the QD. Consequently, photolu-

minescence (PL) is one of the most convenient ways of studying an InAs QD/QDM.

PL study of a QD usually requires cryogenic temperature lower than 80K, since non-

radiative recombination is significant at a higher temperature. While ensemble QD
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emission has a Gaussian linewidth of several tens meV, due to the random size differ-

ence of each QDs; the linewidth of a single QD’s photoluminescence has a Lorentzian

shape theoretically, and it can be significantly reduced (down to several µeV) under

low excitation power and low-temperature condition. We will focus on a single QD PL

in our discussion.

The PL from a single QD also has fine structure splittings on the µeV scale.

In detail, PL emissions from a single QD consist of two distinguishable, radiative

recombinations with distinct linear polarizations. This effect largely originates from

the ellipticity of QD’s shape in the in-plane direction, resulting in different optical

dipole moments in different directions.[64, 65] This anisotropic exchange splitting is

very important. Tuning the FSS to minimum can be useful for the generation of

entangled photon pairs from QDs and increase the efficiency of coupling a single spin

in a QD to photons. Successfully reducing the fine structure splittings in QDs can lead

to high fidelity spin operations and single photon generations. [66, 67, 68]

It is also worth mentioning that single photon sources are crucial for photonic

based quantum information technologies. InAs QDs has been reported to be able to

generate single photons at a purity higher than 99.99%, based on two-photon excitation

of the biexciton state [69]. InAs QDs also has been reported to achieve 99.5% indis-

tinguishability using adiabatic rapid passage[63]. Using spontaneous coupled down

conversion, QD can also generate entangled photon pairs, where the two photon’s

energy and momentum are coupled and can be used in quantum information applica-

tions[70]. Because utilizing all these properties in device applications are still challeng-

ing, studying the fundamental properties of QD using photoluminescence can improve

QD engineering and inspire more accessible application ideas.

2.2.1 Photoluminescence of QD with Vertical Electric Fields

Single InAs QD can be used to confine a single electron or a single hole. The

common strategy to charge a quantum dot with a single electron or hole is to use vertical

(growth direction) electric field. Figure 2.3 shows a typical InAs QD device structure
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Figure 2.3: (a)A common vertical electric field QD device with a n-i-Schottky het-
erostructure. Graph below shows the band-alignment of a vertically gated
InAs quantum dot. (b) A photoluminescence intensity graph with dif-
ferent gate voltage and photoluminescence wavelength(energy). The dia-
gram above shows the charging sequence as the tuning of the gate voltage.
Graphs come from review paper by Warburton, et al. [71]

and its PL as a function of different vertical electric fields. (picture from review article

by Warburton)[71]. As shown in (a), the QD is grown on a GaAs substrate that has a

n+ back contact. A thin GaAs intrinsic barrier is grown between the QD and the n+

contact as the tunneling barrier. Electrons can tunnel into the QD when the electron

states’ energy matches the Fermi level of the n+ layer. A higher bandgap material

such as AlAs/GaAs is used to form a blocking layer, preventing holes from tunneling

in from the other side. Finally, a Schottky contact is formed on top of the QD to tune

the electric field.

Figure 2.3 shows the photoluminescence intensity as a function of gate voltage.

X0, X1−, X2− represent the neutral exciton, the single electron charged exciton (neg-

ative Trion), and the doubly electron charged exciton respectively. These states occur

consecutively as the gate voltage changes the band alignment of the structure and al-

lows electrons to tunnel into the QD one at a time. The energy shift of the PL upon
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charging is due to changing many-body interactions within the QD. The photolumi-

nescence of a single charge state also shifts in wavelength as the gate voltage increases.

This is due to the Stark shift that changes the band structure in the QD. This shift can

be used to tune the two QDs into resonance if they have different energies. However,

the tunability is very limited for single QD and is usually not enough to offset the

inhomogeneity among the QDs.

2.2.2 PL from a QDM with Vertical Electric Fields

Figure 2.4: Photoluminescence of a quantum dot molecule and the formation of the
anti-crossing molecular state of a neutral exciton. The wavefunction dis-
tribution of electron (blue) and hole (purple) is indicated along with the
band diagram of the QDM. Anti-crossing forms around 80kV/cm, indi-
cating coherent tunneling of hole state between the two QD and forming
hybridized molecular state[72]

A QDM in a similarly gated device has a similar PL signature in that electrons
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or holes can be injected into the QDM one at a time, forming neutral excitons and

charged excitons. One major difference is that electrons or holes can now reside in

either quantum dot (bottom or top), and different PL signatures can occur when they

recombine from different dots. Figure 2.4 shows the PL signature of a neutral exciton

in a QDM under external vertical electric field[72, 39]. The two QDs in the QDM have

different truncation heights, which leads to different ground state energies for the two

dots. The four insets in the graph show the band structure of a quantum dot molecule

with different electron (blue) and hole (purple) wavefunction distributions. The left

part of the bandstructure indicates the bottom dot and the right part indicates the top

dot. Electrons and holes can recombine from either the same dot (direct transition),

or from different QDs (indirect transition). Indirect transitions have significant larger

tunability with electric field because of the increased charge dipole moment.

Another signature of QDMs happens when the energy levels of the two QDs are

at resonance. As shown in the graph, when the electric field is around 80kV/cm, holes

(purple wavefunction) can tunnel between the two QD and form molecular states.

This is why there’s an anti-crossing, instead of a crossing, at 80kV/cm when direct

transitions state meets indirect transition state. It is very similar to the molecular

orbitals hybridization phenomenon, thus the name quantum dot molecule.

It is also worth mentioning that similar molecular states can be observed with

electron tunneling between the two QDs. In both cases, indirect transitions have

lower PL intensities because the electron/hole wavefunction overlap is significantly

reduced compared to the direct transition. Therefore, finding the right balance between

tunability and good optical properties is key to many QDM optoelectronic applications.

2.2.3 Effect of Lateral Electric Fields

Numerous studies have been done on single QD systems with lateral (in-plane)

electric fields. Just as for the vertical electric field, the lateral electric field also induces

the Stark effect, changing the energy of the QD. While in theory similar to the vertical

electric field, in reality the reported magnitude of the Stark shift induced by lateral
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electric fields varies significantly from experiment to experiment. [73, 74, 75, 76] For

instance, Gerardot et al. reported up to 1meV Stark shift in a single InAs QD using gate

electrodes separated by 15um [73], while Kowalik et al. only observed 100 µeV Stark

shift with gate electrodes separated by 2um. We should point out that the magnitude

of the Stark shift strongly depends on the size, the geometry and the symmetry of the

quantum dot and more studies are required to improve the design and device fabrication

for QDs with a lateral electric field.

Besides Stark shift effects, the lateral electric field can also induce forbidden

optical transitions and modify the linewidth of the quantum dot. Reimer et al. report

that with the lateral electric field, electrons can recombine with holes from the p shell

state instead of the s shell state.[74] Additionally, they report that the lateral electric

field can help reduce the fine structure splitting of the QD emissions by 60%. Moreover,

Moody et al. report that by applying a lateral electric field in a QD coupled with a

waveguide structure, they can increase the coherence time from 1.4 to 2.7 ns. [77]

Despite the interest in lateral electric fields, little study has been done on how

lateral electric field affects a single hole spin state in an InAs QD. Additionally, there are

no experimental efforts in applying lateral electric fields to a single vertically-stacked

QDM. Moreover, devices used to apply lateral electric field are often designed according

to experience, but without systematic numerical simulations. [78] Considering all the

reported effects of induced lateral electric field, there is significant opportunity for

controlling a hole spin with 3-D electric field for quantum computing applications.

2.2.4 Effect of Magnetic Fields

2.2.4.1 Zeeman Effect

Zeeman effect refers to the splitting of spectral lines in the presence of a magnetic

field. The splitting originates from the coupling between the magnetic field and the

angular momentum and the spin angular momentum of the electron or hole. At zero

magnetic field, electrons or holes in the s-shell of a QD with different spins will have
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degenerate energy levels. The degeneracy will be lifted in the presence of a magnetic

field B, with a splitting energy ∆E. In a simple form:

∆E = µBgB (2.1)

The factor g is the Lande g-Factor that is an intrinsic property of the carrier. In

a QD, g is dependent on the carrier type (electron, hole, or exciton), magnetic field

direction, and sometimes electric field. The magnetic field is commonly used to create

an energy difference between the orthogonal spin states, i.e., a 2-level system, for spin

manipulations.

2.2.4.2 Hyperfine Interactions

Hyperfine interactions refer to the coupling between the electron spin and the

nuclear spin. Because the nuclear spins of III-V materials are not zero, electron spins

in an InAs/GaAs quantum dot are subject to interactions with an ensemble of 104−106

fluctuating nuclear spins. This means that electron spins are exposed to a magnetic

field (Overhauser field) with random magnitude and direction. The result is a fast

decoherence time usually in the range of several ns. [79] A common way of reducing

the hyperfine interaction and improving the decoherence time is to apply a static

magnetic field. Nuclear spins will line up with the direction of the external magnetic

field, becoming less noisy.

Besides suppressing the hyperfine interaction magnetically, we can potentially

eliminate the hyperfine interaction completely by using hole spin. Unlike electron spin

wavefunctions, the natural p-like symmetry of the hole spin Bloch wavefunctions have

nearly zero amplitude at the nuclear site. Thus the hyperfine interaction is kept at a

minimum. We will later introduce how this effect can be used in hole spin manipulations

in a single QD.
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2.3 Spin Qubit using InAs/GaAs QD and QDM

2.3.1 Single QD Spin Qubit

A single QD has the ability to trap a single electron or single hole, providing

an environment for single electron/hole spin manipulation. Previously we mentioned

that magnetic fields are commonly used to break the degeneracy between different

electron/hole spin states, creating a 2-level system for qubit applications. Moreover,

because the optical emission energies of InAs QDs are in the NIR region, commercially

available wavelength-tunable laser beams can be used to address a single spin state

deterministically. Here, we will introduce how spins in a QD can be manipulated

optically.

To start, we will use electron spin as an example. Figure 2.5 shows the electron

spin operation in a QD with a magnetic field along the growth direction (z, also called

Faraday geometry magnetic field), as reported by Warburton. In this illustration, solid

arrows | ↑⟩ and | ↓⟩ represent electrons with spin up and down, and double arrows | ⇑⟩

and | ⇓⟩ represent holes. Because of the Zeeman splitting effect, different spin state

exhibit different energy states, which leads to the slight energy mismatch between state

| ↑⟩ and | ↓⟩.

(a) (b) (c)

Figure 2.5: Single QD spin initialization and manipulation, using optical transitions.
(a) optical transition rule in a vertical magnetic field. (b) single spin
initialization using optical coherent trapping. (c) optical manipulation of
spin state using Raman transitions. [71]

As shown in (a), due to optical transition rules and the Pauli exclusion princi-

ples, σ+ photons can only drive transitions from the ↑⟩ state to the | ↑↓,⇑⟩ and vice
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versa. The readout of the spin state can be performed by measuring the time-averaged

absorption of the laser with the resonant energy and polarization corresponding to the

QD’s spin transition.

To initialize a spin state, we can use optical coherent trapping (OCT) as il-

lustrated by (b). Transitions between state | ↑⟩ and | ↑↓,⇑⟩ are driven by a narrow

bandwidth laser resonant with the transition energy. Spontaneous emission takes place

at rate Γ from the vertical transition | ↑↓,⇑⟩ → | ↑⟩ and at rate γ from the diagonal

transition | ↑↓,⇑⟩ → | ↓⟩. Provided the optical coupling is comparable to Γ, and γ

is much greater than the spin relaxation rate, the electron is shelved by the diagonal

spontaneous emission in the | ↓⟩ state.

Stimulated Raman transitions are usually used to manipulate the electron spin

state between | ↑⟩ and | ↓⟩, as shown in Figure 2.5 (c). Two pulsed lasers are used

to address the spin state with an in-plane magnetic field (Voigt geometry). The two

laser’s energies are h̄Ω1 and h̄Ω2, and the difference between the two equals the splitting

of the two ground states. Detuning between the two lasers leads to Rabi Oscillations

that creates superposition states of | ↑⟩ and | ↓⟩. [71]

Similar spin manipulation strategies can be applied to hole spins in QDs. It is

also worth mentioning that besides using an external magnetic field to create the 2-

level system, Gerardot, et al.[33] reported coherent optical pumping of a single hole spin

without the presence of the magnetic field. The electron-nuclei hyperfine interaction

results in coupled excitons states with opposite electron spin polarization, creating a

Λ system for spin pumping. The pumping of a single hole state will therefore solely

depends on the circular polarization of the laser, instead of the laser wavelength.

2.3.2 QDM Hole Spin Qubit

Although there has been much success in single QD spin operations, the tun-

ability of single QD’s emission under electric fields are very limited. This is a problem

because of the inhomogeneity of as-grown QDs and the importance of identical tran-

sition energies for scalable quantum computing devices. Indirect optical transitions in
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QDMs have much larger tunability than direct optical transitions in QDs and QDMs.

Using the indirect optical transitions for qubit applications can therefore ease the scal-

ability challenge by individually tuning each QDM’s emission energy to the target

wavelength. When combined with the reduced hyperfine interaction described above,

this makes holes confined in a QDM a promising qubit candidate. In this subsection,

we will introduce an additional advantage for hole spins in QDMs as qubits, a phe-

nomena known as hole spin mixing. We will explore how hole spin mixing and indirect

transitions can be used as hole spin qubit in a QDM.[51, 35]

2.3.2.1 Hole Spin Mixing State in QDMs

When we apply a vertical direction (Faraday geometry) magnetic field in a

vertically-stacked quantum dot molecule, a single hole spin state could have 4 different

configurations: hole spin up in the bottom dot, hole spin down in the bottom dot,

hole spin up in the top dot, hole spin down in the top dot. In the scenario where

there are only heavy holes, the four different configurations could be represented by

matrices with double arrows respectively as: (⇑, 0), (⇓, 0), (0,⇑), (0,⇓). Previously we

discussed that under a growth direction electric field, electron and holes could tunnel

between the two QDs and forms molecular states. These states can be represented as:

(⇑, 0)±(0,⇑) and (⇓, 0)±(0,⇓). In this case, holes maintain their spin projection while

tunneling between the two QDs.

An interesting spin effect happens in asymmetric QDMs, i.e. those that have

a lateral offset in which top quantum dot is not symmetrically centered on the bot-

tom quantum dot. In other words, the internal geometrical symmetry of the QDM

along the growth direction is broken. An example is shown in Figure 2.2 (b). This

symmetry breaking, in conjunction with spin-orbit interactions, leads to the mixing

between the heavy hole states and the light-hole states. As a result, hole spin states

that are coherent superpositions of holes with orthogonal spin orientiations can form.

Mathematically, such states can be expressed as: (⇑, 0) ± (0,⇓) and (⇓, 0) ± (0,⇑).

Conceptually, these states are equivalent to a spin flip during tunneling.
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Figure 2.6: Hole spin mixing effect explained with theoretical calculations and pho-
toluminescence. (a) Energy levels of bright and dark state calculated at
0 magnetic field. (b) Photoluminescence of a single QDM at 0 magnetic
field showing the dark state. Picture adapted from [51]

One of the direct experimental observations of the hole spin mixing effect is the

existence of dark states photoluminescence. According to the optical transition rules,

electrons and holes will only recombine and emit a photon if their total spin angular

momentum equals ±1. Electron spins ↓ and hole spins ⇓ won’t emit a photon because

their combined angular momentum is ±2. These exciton states are called dark states

and normally they cannot be observed optically. The observation of photoluminescence

from such a state implies that this state must be mixed with a bright state, which in

turn implies hole spin mixing must be present. Indeed, this effect has been reported

by Doty et al. in a photoluminescence experiment under 0 magnetic field and Faraday

geometry magnetic field.

Figure 2.6 (a) shows the bright and dark transitions of a single QDM at 0
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magnetic field. In this case, we only consider the scenario where the electron is located

at the bottom dot and the molecular state can form with the hole tunneling between

the two dots. The two bright states
( ↓,0
0,⇑

)
and

( ↓,0
⇑,0

)
are drawn in black line and the two

dark states
( ↓,0
0,⇓

)
and

( ↓,0
⇓,0

)
are drawn in red line. The energy split between the two

direct transitions are due to the symmetric electron-hole exchange interaction. This

interaction is proportional to the wavefunction overlap between electrons and holes,

and thus is suppressed to negligibly small in indirect transitions.

Figure 2.6 (b) shows the experimental photoluminescence data from a QDM

with a 4 nm lateral offset, as a function of the applied vertical electric field. As

pointed out by the two green arrows, a weak anti-crossing is observed in PL, indicating

forbidden optical transitions as shown in Figure 2.6. Doty et al. also observed a more

complicated spin mixing effect under a 6T vertical magnetic field, further proving the

existence of the hole spin mixing states. The physical origin of the hole spin mixing

effect is explained using a Luttinger spinor calculation, where heavy hole states with

angular momentum of ±3
2
mix with light hole states with angular momentum ±1

2
. The

hole spin mixing state could recombine with electrons and emit a photon, making the

dark states visible. [51, 35] The calculation also shows that the hole spin mixing state

only exist in a QDM that has a lateral offset.

2.3.2.2 Qubit Based on Hole Spin Mixing

Based on the hole spin mixing effect and indirect transitions in QDMs, Doty,

et al. have developed single hole spin qubit operation strategies using an optical ma-

nipulation concept.[35] As shown in Figure 2.7, hole spins can be initialized, controlled

and read out under a vertical magnetic field. The left side of the 2 by 2 grid represent

the bottom dot and the right side represent the top dot. The strategy uses two hole

spin states
(
0,0
0,⇓

)
and

(
0,0
0,⇑

)
as our qubit 2-level basis. The strategy also uses the highly

tunable indirect transition states to mediate the interactions between these two basis,

giving it great potential for scale-up.
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Figure 2.7: QDM spin initialization and manipulation, using hole spin mixing with a
Voigt geometry magnetic field. (a) optical pumping from spin down state
to spin up state using a σ− circular polarized pump laser. (b) Raman
transition using σ− polarized laser with two detuned frequencies Ω1 and
Ω2. (c) Spin readout using cycling transitions with σ+ polarized laser.
[80]

To initialize a hole spin in the top dot, we can use optical coherent trapping with

a σ− polarization pump laser as shown in Figure 2.7 (a). The laser can continuously

pump hole spin state
( 0, 0

0,⇓

)
to state

(
0,0
0,⇑

)
by using the hole spin mixing exciton state(

0,↑
⇓,⇓

)
±

( 0, ↑
0,⇑⇓

)
. Using two laser beams with frequencies Ω1 and Ω2 slightly detuned

from the hole spin mixing state, we can create Rabi oscillation that rotates the spin

projection of a single hole state. This is shown in (b).

More interestingly, the readout of the spin state can be ”Non-destructive” if we

use cycling indirect optical transitions between the hole spin state
(
0,0
0,⇓

)
and

(
0,↓
⇑,⇓

)
.

Since the only allowed transition is the electron and the ⇑ hole state, the hole state ⇓

can be preserved during optical readout.

2.3.3 Coupling QD/QDM Qubit to Photons

Coupling between QD or QDM spin states and photons are usually mediated by

photonic nanostructures patterned on-chip, such as a micro-pillar[82], a micro-disk[83],

a slab waveguide[84], or a photonic crystal cavity.[85, 81, 86, 29] Specifically, photonic

crystal cavities, as shown in Figure 2.8, creates photonic bandgaps and traps photons in

their defects. It allows strong couplings between a photon and an exciton, creating an

entangled quantum state that can be used to mediate QD qubit to qubit interactions.
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Figure 2.8: A single InAs QD deterministically coupled to a photonic cavity. a, AFM
topography of a QD and photonic cavity [81]

In the example presented by Hennessy et al.[81], a quantum dot is pre-selected

using atomic force microscopy (AFM), and periodic holes are patterned around the

QD to create a photonic cavity, as shown in Figure 2.8(a). Figure 2.8(b) shows the

electric field intensity of the photonic crystal cavity mode, while the QD is located at

the cavity field maximum (white) to ensure optimal coupling. The size and periodicity

of the holes are designed to create a cavity resonance wavelength similar to the QD’s

emission. Figure 2.8(c) and (d) shows the PL spectrum from the same QD before and

after the cavity fabrication, with the cavity mode located 2nm apart from the target

exciton wavelength.

Achieving exact overlap between the as-grown QD emission energy and the

as-fabricated photonic crystal resonance is extremely challenging. Because the QD

emission is much more sensitive to temperature than the cavity mode, many have

demonstrated strong coupling between a QD and the cavity mode by temperature

detuning. [87, 81] Additionally, people have demonstrated using a vertical electric field
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tuning to couple a QD’s emissions with the cavity mode, by embedding the photonic

crystal in a vertical diode structure.[86, 29] While on-chip strong coupling between

individual quantum dot is yet to be realized, coupling QD emissions using free-space

optics has shown great potential in photon based qubit applications.[88]

2.3.4 Challenges Facing QD and QDM

2.3.4.1 Growth and Fabrication

As mentioned before, MBE grown QD are usually randomly located. This alone

can cause significant trouble in single QD characterization. Currently, people use dif-

ferent techniques to study the behavior of QD/QDM without in-situ grown QD. For

example, the density of the QD can be modulated by stopping the wafer rotation

during the InAs QD layer deposition. The no-rotation growth creates a QD density

gradient in the wafer that can be later characterized optically. People also use mi-

croscopy methods such as AFM to pre-locate a good QD before device fabrication.[81,

89] Without these approaches, hundreds of apertures need to be fabricated to isolate a

single QD optically. There are also many ways to grow QD in-situ. For instance, the

substrate can be patterned with pits or pyramids to form favorable strain conditions

for QD to nucleate.[90, 91, 92, 93] These techniques, however, all result in QDs with

poor optical quality (low quantum yield, high inhomogeneity) and can not be used for

reliable qubit applications.

Besides the random nucleation sites in growth, QDs are also grown with different

density, sizes, and shapes. The result is that every QD/QDM has its own emission

wavelength and polarization, and thus couples to photons of different energies. To the

best of our knowledge, the smallest ensemble QD PL linewidth is around 20meV. [46,

61]. This puts a lot of constraints on how a QD qubit device can be fabricated. For

example, in order to build a QD/QDM-based 2-qubit system, photonic structures such

as cavities and waveguides must be fabricated to mediate the interactions between two

QDs. Each QD’s energy has to match precisely to the energy of the cavity in order to

generate strong interactions between the QD’s state and cavity state, forming cavity
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QED. In order to tune the energy of the cavity with just one QD, external tuning

mechanisms such as electric field or temperature have to be introduced to the qubit

system, thus increasing the noise and the decoherence.[94, 29] Additionally, coupling

between two or more QD/QDM on-chip requires all QDs to be located at the photonic

cavity’s field maximum as designed. The precision required is usually on the scale of 10

nm, which is impossible without the precise location control during the growth stage

and reliable alignment procedures across the entire fabrication.

The self-assembled growth also inhibits our ability to control the symmetry of

the QDM. As mentioned before, the hole spin mixing effect has only been observed in

QDMs that have a geometric offset. Additionally, the magnitude of hole spin mixing

also depends on the magnitude of the geometric offset, which eventually leads to dif-

ferent gate fidelity and decoherence. Because the growth of a self-assembled quantum

dot is a mostly random process, deterministically controling the geometric offset of two

stacked QD during growth is awfully challenging. Therefore external controls of the

hole spin mixing effect have to be invented to make this material a more viable qubit

candidate.

2.3.4.2 Decoherence

Decoherence is the main antagonist of all qubit systems, including spins in

InAs QDs. One of the main sources of decoherence is the hyperfine interaction. As we

mentioned before, electron spins have strong hyperfine interactions, which usually leads

to fast spin relaxation time in the scales of nanoseconds. Optical techniques such as

spin echo, which uses laser light to manipulate the phase of the electron spin, can help

increase the decoherence time to µs. However, combining the spin echo with qubit gate

operations is still challenging. [23] While hole spins wavefunctions have the symmetry

of atomic p orbitals, the hyperfine interaction can only be completely removed with

pure-Ising like heavy hole states. This puts many challenges on light-hole heavy-hole

interaction-based qubit applications.
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Another major source of decoherence is local fluctuations of the electric field.

Fluctuating electric field can be generated from nearby defects or other QDs, resulting

in Stark shift to the emission energy of the exciton. While it does not directly interact

with the spin states, such inhomogeneous linewidth broadening caused by electric field

fluctuation could result in variations of coupling strength between an exciton and a

photon, reducing the spin operation fidelity.[95]

2.3.4.3 How 2-D Electric Field Can Help

Studying QD and QDM in a 2-D electric field system by itself helps us under-

stand the physics behind experimental phenomena such as the magnitude of the Stark

shift and hole spin mixing. It is also possible that new physics can be observed when

QDs and QDMs are subject to a 2-D electric field. Such new phenomena may also

find applications in quantum computing. Here are three specific examples of how 2-D

electric fields in a QD can help:

1. In previous examples, we’ve seen the effect of a 1-D electric field on a QD

system. The vertical electric field can be used to charge a QD with a single electron or

hole, shifting energy levels by the Stark effect. Lateral electric fields can induce Stark

shifts and change spin fine-structure splitting effects in QD. One of the drawbacks

of applying the vertical electric field is that the tunability from the Stark shift is

significantly hindered by charging because the charged state can ”disappear” when

an extra carrier is injected into the QD. Lateral electric fields, on the other hand, are

usually induced by Schottky contact gate electrodes that do not have a doped Fermi-sea

on the side to charge a single QD. Combining these two functions and applying vertical

and lateral electric fields simultaneously could achieve individual tuning between charge

injections and energy level tunning by Stark shifts.

2. 2-D electric field can help change the local electric field environment, and

thus fine tune the fine-structure splitting. While using the vertical electric field alone

suppresses field fluctuations in one direction, defects in material growth could generate

32



field fluctuation in the lateral direction. Recently, Zeeshan et al. have proposed a strat-

egy of applying quadrupole electric field on a single QD to suppress the local electric

field and eliminate the spin fine-structure splitting. It could increase the decoherence

time significantly. [96]

No Electric Field Gradient Electric Field

Figure 2.9: Quantum Dot Molecule and hole wavefunction (purple) under a gradient
electric field. Schematics not to scale.

3. 2-D electric fields can prompt new spin physics and spin engineering appli-

cations. For example, there’s a lack of study on how hole spins behave in a single

QD with Voigt geometry magnetic field and lateral electric field. A thorough under-

standing of the hole spin in this scenario is necessary for quantum device engineering.

Another example would be inducing and controlling the hole spin mixing effect, which

only exists in asymmetric QDMs. To control the asymmetry of the growth is extremely

difficult, but 2-D electric fields might be able to mediate this problem. As shown in

figure 2.9, if we apply an electric field that has a gradient in the growth direction,

we could asymmetrically push the wavefunction of holes in a QDM, thus creating an

artificial lateral offset.

In this dissertation, we will focus on how lateral electric fields induce new spin

physics in a vertical field charged single QD, and how 2-D electric fields help shape

the wavefunction of a QDM. We will then explore different device design parameters

that help us apply the 2-D electric field to a single QD/QDM nanostructure. We will

discuss how this device is fabricated and characterized. Finally, we will present our
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closest effort yet to deterministically control a single spin in an InAs using a 2-D electric

field.
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Chapter 3

SIMULATION METHOD

3.1 Tight-binding Theory

Tight-binding simulation is a semi-empirical model that’s commonly used in

simulating bulk and finite scale semiconductors. The premise of tight-binding is the

assumption that electron and hole wavefunctions can be described as a set of atomic

orbitals. We consider inter-orbital and nearest neighbour atom-atom interactions, as a

matter of convenience, which gives us a good description with the band structures. A

simple s band 1-D tight-binding model can be found in the appendix.

3.1.1 Tight-binding Model for III-V Quantum Dot

In the tight-binding model we used, the basis states for each atom includes an s

orbital, three p orbitals and an excited s∗ orbital[97, 98, 99, 36, 78]. The on-site orbital

energies and nearest neighbour coupling parameters for InAs and GaAs are adjusted

to reproduce the InAs and GaAs bulk band structures.[97] Roughly more than half a

million atoms are used to construct the InAs/GaAs QD and QDM structure.

The strain due to the the lattice mismatch is also accounted for by using the

valence-force-field method to find the relaxed lattice configurations with the minimum

strain energy.[100, 98, 99, 36] The tight-binding parameters are re-scaled using Har-

rison scaling laws to account for deviations of the local atomic lattice from the bulk

configurations with bulk bond lengths and bond angles.[101]

The tight-binding model also needs to accommodate different electric field and

magnetic field conditions. A static applied electric field can be included in the tight-

binding approach via a potential energy shift of the atomic orbital energies. A constant,

static magnetic field B⃗ is incorporated, in a gauge-invariant form, in the tight-binding
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approach via a Peierls transformation[102] that includes the magnetic vector potential

via a phase shift of the tight-binding nearest-neighbor hopping parameters. Spin-

orbit effects are included atomistically.[103, 104]. The interaction with atomic orbital

angular momentum and spin is also included with an additional Zeeman energy term,

µB(L⃗at +2S⃗) · B⃗ where L⃗at is the atomic orbital angular momentum and S⃗ is the spin.

III-V semiconductors are piezoelectric materials where local charge is produced

proportionally by local strain. This local charge creates an additional local electric

field and corresponding potential. We use the approach employed by Zielinski[105,

106] to include the potential for the piezoelectric field as an additional shift of the

on-site orbital energies.

We will also refer to the full tight-binding simulation as atomistic calculation

for the rest of our discussion.

3.2 Finite Matrix Method

3.2.1 Theory

The atomistic tight-binding simulation provides the eigenstates energies and

wavefunctions of a semiconductor model with high precision. However, exploring

the parameter space of different electric fields or magnetic fields could be very time-

consuming, because each data point at a specific field condition requires a full calcula-

tion that takes into account of all the energy states’ interactions. A simple bias-energy

map that varies with 20 different electric field conditions could take days. Therefore,

it’s not practical to use tight-binding simulation alone for exploring a QD’s spin state

under electric fields with different directions, magnitudes, and gradients.

To solve this problem, we construct a finite matrix calculation method based on

the Hamiltonian calculated from a tight-binding simulation. Specifically, we use this

method to calculate a single hole spin state in a QD or QDM with electric fields. We

first perform a tight-binding calculation at a chosen electric field F⃗0 to define a basis

of exact eigenstates for this field. These basis states contain the information of each
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eigenstate’s energy and wavefunction. We then choose a finite number of basis states

that’s energetically close to the ground hole-state to construct the following matrix:

H ′ =


E

(0)
1 + V11 V12 . . . V1n

V21 E
(0)
2 + V22 . . . V2n

... ... . . . ...

Vn1 Vn2 . . . E
(0)
n + Vnn

 (3.1)

The n states, with energies E(0)
n are computed by the atomistic method. The

wavefunction that describes each state (ϕri) consists of amplitudes for every electron

orbital (s, p and s∗) at each atomic site r⃗. At each atomic site α, the external potential

value Vr = (F⃗α−F⃗0,α)·r⃗ is the product of the external electric field (F⃗ ) and the position

of each atom (r⃗). The interaction terms (Vij) are constructed from the integration of

two wavefunctions over the electric potential, Vij =
∑

r ⟨ϕri |Vr|ϕrj⟩. In practice, the

potetial V changes very slowly over the lattice, so that it becomes a constant at each

atomic site. The calculation can then be rewritten as Vij =
∑

r Vr⟨ϕri |ϕrj⟩. Using

this basis, we then calculate the eigenenergy for an arbitrary field condition F⃗ by

diagonalizing the matrix Hamiltonian.

The diagonalization of the finite Hamiltonian H that contains less than 100 ele-

ment per dimension usually takes less than a second. On the other hand, diagonalizing

the Hamiltonian in the tight-binding simulation which contains 500,000 times 500,000

elements will take hours. This is why the finite Hamiltonian method is much faster

compared to the tight-binding simulation, for the purpose of exploring many Hamilto-

nian under different electric fields. We also further accelerate our calculation by first

calculating the states interacting terms at each atomic site ⟨ϕri |Vr|ϕrj⟩ and store it as

a matrix, then reuse the matrix for different electric field conditions.

We refer to this method as finite matrix Hamiltonian method, to distinguish it

from the full tight-binding calculation.
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3.2.2 Calculating the Spin

As we mentioned before, the spin effects are included atomistically in the tight-

binding simulation[103, 104]. Specifically, each orbital’s wavefunction amplitude is

divided into two parts that represent the spin up and the spin down in the growth (z)

direction. In formula, we could write the specific hole (electron) states’ (j) wavefunction

as:

Ψj = ψr⃗j ,αj ,sj |r⃗j, αj, sj⟩ (3.2)

Where |r⃗j, αj, sj⟩ is the wavefunction basis at the location r⃗, with the orbital

α = s, p, d, s∗ and the z component spin s. To convert the z component spin to x and

y components, we use Pauli matrices:

σz =

1 0

0 −1

σx =

0 1

1 0

σy =
0 -i

i 0

 (3.3)

The interactions between the z component spin ↑ and ↓ and Pauli matrices can

be summarized as:

⟨↑ |σz| ↑⟩ = 1, ⟨↓ |σz| ↓⟩ = −1

⟨↓ |σx| ↑⟩ = 1, ⟨↑ |σx| ↓⟩ = 1

⟨↓ |σy| ↑⟩ = i, ⟨↑ |σy| ↓⟩ = −i

Consider a single hole state j, the eignevalue of the spin under the new 1/2 spin

basis k=x,y,z is

⟨Ψ|Sk|Ψ⟩ = h̄

2

∑
r⃗,α,Ŝ,Ŝ′

ψ∗
r⃗,α,Ŝ,Ŝ

′ ⟨Ŝ|σk|Ŝ
′⟩ψr⃗,α,Ŝ,Ŝ′ (3.4)

Where Ŝ and Ŝ ′ represent different spin directions ↑ or ↓.

We also find it interesting when we dissect a single hole spin wavefunction

and spin amplitude into different locations in the quantum dot. Instead of treating

each hole energy state as a envelope wavefunction across the quantum dot, we could

analyze the spin and amplitude wavefunction from each atomic site by calculating them
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individually instead of summarizing everything. We will cover the details in the next

section.

3.3 Accuracy Test and Results

Linear perturbation theory tells us that the major factors that limit the accuracy

of the perturbation results are: 1) the orders of perturbation involved, 2) the number of

interacting states included, 3) the magnitude of the perturbation itself. We choose this

finite matrix Hamiltonian method which includes all orders of perturbation, because we

are unable to use the 2nd order perturbation theory or even the 3rd order perturbation

theory to generate high accuracy results that agree well with the tight-binding theory.

That being said, the accuracy of the finite matrix method compared to the

full tight-binding results still strongly depends on the number of states included in

the matrix. We perform convergence tests using different number of states in a QDM

simulation with different external electric fields. We calculate the discrepancies among

different state’s energy levels, Zeeman splitting magnitude and spin, with different

QD and QDM models. For example: Figure 3.1 shows the energy level errors when

calculated with different number of eigenstates included in the finite matrix, from a

minimum of 16 states to 28 states. The 12 cases represent the energy from different

hole states (1st being the ground state) and the lateral electric field condition from

Ex = 5kV/cm to Ex = 50kV/cm. In all cases, including more than 24 states could

reduce the overall error down to 8%. Moreover, the smaller the electric field, the smaller

the error as compared to tight-binding model.

Another example is shown in Fig 3.2. In this case, we calculated the spin

component (Sx, Sy, Sz) errors in a AlAs/GaAs Dome shaped QD with a magnetic field

B(110)=1T and different lateral electric fields. The finite matrix contains either 20

hole states or 56 states (36 hole states and 20 electron states). The differences between

the two cases is obvious at large lateral electric fields: the 20-state finite matrix has

more than 10% error starting at 120kV/cm, while 56-state finite matrix keeps the spin

error below 10% even at 200kV/cm.
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Figure 3.1: Energy level error in symmetric QDM without piezo-electric effect

Figure 3.2: Spin error in a single AlAs/GaAs quantum dot with B(110) E(110) sym-
metry

While increasing the number of states in the finite matrix increases the accuracy,

it also increases the calculation time significantly. In this work, in order to balance

between the calculation accuracy and calculation speed, we will include a minimum of

44 states for the single QD calculations (unless stated otherwise) and a minimum of

24 states for the QDM calculations.
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3.4 Spin Texture Visualization

In this section, we will go over the details of visualizing hole spin texture in a

quantum dot or quantum dot molecule.

The traditional interpretation of a single electron or hole in a semiconductor is

the effective-mass model which uses envelope wavefunctions to describe the amplitude

along with a net spin. This interpretation needs to be improved, because hole states

in a 3-D confined semiconductor nanostructure have strong spin orbit coupling effects

that are usually hard to explain using an envelope wavefunction. In our discussion, we

developed a computation method that interprets a single hole state wavefunction as

the integration of amplitude and spin-projection contributions from different atomic

sites. This method allows us to visualize the transformation of the spin with different

electric fields, as well as the spin orientation from each atomic site that forms the net

spin. It is extremely useful in terms of explaining hole spin mixing effects that often

occurs in a QD/QDM system.

The method to visualize the spin texture of a hole in a QD or QDM, which

contains more than half a million atomic sites, can be summarized as follows:

1) In order to directly visualize the spin texture in a 2-D graph, we need to

reduce the amount of spin information. We first calculate the spin amplitude of a

given atomistic location r, by the finite matrix method described above. We then

integrate the (x,y,z) spin of all atoms in the QD/QDM along z axis, generating the

spin information in the (x,y) plane. To make each spin diagram readable, we reduce

the numbers of atomic sites in the (x,y) plane by combining the cation site and anion

site, and then condensing them by a 3*3 lattice grid. The result is a reduced number

of spin contributions from half of a million atoms to roughly 500 atomic sites, which

represent the spin information around their location in the (x,y) plane. In the single

QD simulation, the (x,y) plane is particularly interesting to analyze because both the

electric and magnetic field lies in this plane. In the QDM cases, we will summarize all

the spin component to two (x,y) planes, relative to each QD, so that the spin behavior

in each QD in the QDM is analyzed separately.
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2) We present the condensed spin contributions in the x-y plane with 3-D arrow

plot. To properly illustrate the spin property without distorting the underlying physics,

we unified the scale of all three axis and plot arrows individually and proportionally

based on their atomistic locations and spin components. We modified the 3D arrow plot

developed by Shawn Arseneau[107] to form each individual arrow, where the length and

direction of each arrow represent the magnitude and direction of the spin contribution,

respectively. The code to calculate wavefunctions and generate spin texture graphs

using finite matrix approach can be found in the appendix.

Figure 3.3: Spin texture in single AlAs/GaAs QDs with different electric field[108]

An example is shown in Figure 3.3. We calculate a single AlAs/GaAs QD with

a Voigt geometry 1T magnetic field that’s pointing in the (1,1,0) direction. Each arrow

represents the spin amplitude and direction around its atomistic location, relative to

the (x,y) plane. When the electric field E(1, 1, 0) = −100kV/cm, which points opposite

to the magnetic field direction, most spin components point in the negative z direction,

while centered around the (-1,1,0) side of the QD. The exact opposite is shown when

E(1, 1, 0) = 100kV/cm, where most spin components point in the positive z direction.

At E = 0kV/cm, however, the net spin is too small so that the lengths of the arrows

are hard to resolve. We will use this visualization tool to explain hole spin effects in

QDs and QDMs in the following chapters.
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Chapter 4

HOLE STATE IN A SINGLE QD

In this chapter, we will discuss the hole spin properties of a single QD under

both in-plane magnetic fields and electric fields. We will start with a relatively simple

GaAs/AlAs model, and examine the hole spin properties including Stark shifts, wave-

function distributions, and polarizations. We will then examine the hole spin with

different parameters, such as the geometry and composition of the QD, the magnetic

field orientation, and the electric field orientation. We will also use the spin texture

visualization method to explain the physical origins of the hole spin properties.

4.1 Dome-shaped AlGaAs QD

We first simulate an GaAs/AlAs QD that has a dome shape. The geometry of

the QD model is shown in Figure 4.1.

GaAs/AlAs QD

Figure 4.1: Single GaAs dome-shaped QD embedded in AlAs

The model consists of a semi-spherical GaAs QD embedded in an AlAs matrix.

The dome height is 5nm, and the diameter is 30nm. While such a QD does not
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actually exist and cannot be grown by the Stranski-Krastanov method, this theoretical

model eliminates any strain effect caused by the lattice mismatch between different

materials. To lift the degeneracy of different spin states, we computationally apply a

1T magnetic field in the in-plane direction (Voigt geometry). We include the 44 lowest-

energy hole spin states and 30 electron states in the finite matrix for all the following

calculations. In the following sections, We analyze the hole spin states under varying

electric field conditions, through many aspects such as Stark shift, spin polarization,

and wavefunction distribution.

4.1.1 Stark Shift

Figure 4.2: Lowest hole spin state stark shift under different electric field. B(110) =
1T

The Stark shifts of the lowest hole spin state under different electric fields are

shown in Figure 4.2. When the electric field is along the (001) crystal direction, the

Stark shift of the ground hole spin state resembles a straight line, indicated by the

purple line. When the electric field is along the (110) direction, parallel to the wetting
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layer, the Stark shift is a parabolic function of the external electric field, indicated by

the orange line. This difference originates in the symmetry of the QD. Because the

QD model is symmetric in the in-plane direction, the first order perturbation from the

external electric field goes to zero due to symmetry, giving the Stark shift the parabolic

shape. On the other hand, the QD is not symmetric along the (001) direction, making

the first order perturbation the dominant factor in the Stark shift, therefore the straight

line.

4.1.2 Spin

(a) (b)

Figure 4.3: Ground hole spin state under in-plane electric field E(110), parallel to
the magnetic field. (a) the probability of ground hole spin state at the
x + y > 0 region (black) and x + y < 0 region (red). (b) the Spin
polarization in x, x+y, z direction with the increase of lateral electric
field E(110).

The lateral electric field can have a surprising effect on spin polarization, as

shown in Figure 4.3. We apply up to 200kV/cm electric field parallel to the (110)

magnetic field direction, pushing the wavefunction of hole spin states towards the

x + y > 0 side of the QD, as shown in Figure 4.3(a). At 200kV/cm, the occupancy

probability of the hole wavefunction in the x + y > 0 region becomes more than

98%. The spin polarization also changes with the movement of the wavefunction: the

normalized Sx, Sx+y, and Sz components of the hole spin start around 0 at 0 lateral
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electric field and gradually increase with the lateral electric field. Specifically, the Sz

component peaks at 60kV/cm and maintains a highly polarized value ( higher than

0.7) up to 200kV/cm.

The large Sz spin polarization is surprising because both the electric field and

magnetic field are in the in-plane direction, perpendicular to the z axis. Our hypothesis

is that the spin polarization in the z direction comes from the symmetry of the relation-

ship between the magnetic field and the QD itself. In other words, we hypothesize that

different regions of the QD contribute Sz up and Sz down components to the net spin

projection. When the wavefunction is well centered in the QD, these contributions are

equal and the net spin polarization along the z axis is zero. When the lateral electric

field displaces the hole spin wavefunction, the opposing contributions are no longer

equal in magnitude and a net spin polarization appears. To validate this theory, we

will explore this effect with various electric field orientations, magnetic field directions,

and different QD models.

4.1.2.1 Spin with B(110) and E(110)

Figure 4.4 shows the magnified spin texture of a GaAs/AlAs QD under a

B(110)=1T Voigt geometry magnetic field, with 0 external electric fields. We use

3-D arrows to represent the spin components in the (x,y) plane and we magnify the

absolute value of the spin uniformly without distorting the relative spin magnitude in

the graph, as described in Chapter 3. We can tell from the direction of the arrow-plot

that: 1) most arrows in the x + y < 0 region have a negative z component and most

arrows in the x+y > 0 region have a positive z component; 2) Judging from the length

of the arrows, the magnitude of the out-of-plane spin components in the (+x,+y) di-

rection and in the (-x,-y) direction are equal. This is why the net spin in out-of-plane

direction at E=0 is 0. This texture under the magnetic field B(110)=1T defines the

spin polarization when the hole wavefunction is pushed to either x+y > 0 or x+y < 0

side of the QD.
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Figure 4.4: Magnified spin texture from a single GaAs/AlAs QD with B(110)=1T,
E=0kV/cm

Figure 4.5 shows the spin polarization of the ground hole state as a function of

lateral electric field in the GaAs/AlAs semi-spherical QD model with a 1T magnetic

field in the (110) direction. The results correlate well with the hypothesis proposed

previously, that the electric field pushes the wavefunction towards the edge of the

quantum dot and the spin components in that direction get magnified. When the

electric field is along the direction of the magnetic field, as shown in Figure 4.5(a), the

net z-spin becomes positive as the wavefunction being pushed to the (+x, +y) direction

by the (110) electric field. The net z-spin reverses its direction at 0 electric field, and

becomes negative when the wavefunction being pushed to the (-x, -y) direction by the

(-1-10) electric field. This spin polarization direction follows the spin texture shown in

Figure 4.4. On the other hand, as shown in Figure 4.5(b), electric fields in the (-110)

direction or (1-10) direction do not polarize the hole spin in the z-direction because

of the equal and opposite contribution of z spin component from the x + y > 0 and

x+ y < 0 sides of the QD.
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(a) (b)

Figure 4.5: Spin component with B(110)=1T under different electric field (a) Lateral
electric field (110) along the magnetic field direction. (b) Lateral electric
field perpendicular (-110) to the magnetic field direction.

The spin texture also explains the spin in the x and x+y direction. At 0 electric

field, most Sx and Sx+y spin components in the (x > 0, y > 0) region and the (x <

0, y < 0) region are positive, and some Sx and Sx+y spin components in the (x >

0, y < 0) and the (x < 0, y > 0) region are negative. Increasing the electric field in

the (110) direction magnifies the positive Sx and Sx+y components by pushing the

wavefunction towards either the x + y > 0 or x + y < 0 region. The Sx+y can be

polarized to nearly 1 under ±200kV/cm (110) lateral electric field, as shown in Figure

4.5(a). The (-110) lateral electric field, although increases both Sx and Sx+y net spin,

does not polarize the spin as much as the (110) electric field, as shown in Figure 4.5(b).

This is likely due to the negative Sx and Sx+y contribution from the (x > 0, y < 0)

and the (x < 0, y > 0) region.

4.1.2.2 Spin with B(-110) E(-110) and E(110)

To determine whether the magnetic field plays a role in the spin texture sym-

metry, we repeat the calculation of single hole states in the GaAs/AlAs QD model

with a magnetic field in the (-110) direction. Figure 4.6 shows the ground hole state

spin texture of this model in the (x,y) plane with 0 electric fields. The spin-texture
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magnitude is re-scaled to improve the visibility of the effect. Although the out-of-plane

component of the spin is not obvious, it is not hard to tell that the spin texture is, in

this case, analogous to the B(110) case rotated by 90 degrees counter clockwise. This

indicates that the spin texture symmetry is dependent on the magnetic field direction.

Figure 4.6: Spin texture with B(-110) = 1T , 0 electric field

Figure 4.7 shows the net spin of the hole ground state as a function of lateral

electric field under the same (-110) magnetic field. When the electric field is along the

magnetic field direction (-110) as shown in the left figure, Sz quickly increases from

0 to close to 0.8 at a moderate electrical field magnitude. Sz changes its polarization

when the electric field is in the opposite direction to the magnetic field, dropping to

-0.8 when E=-25kV/cm. The Sz spin component remains unchanged when the electric

field is along the (110) direction, as shown in Figure 4.7(b). The Sx and Sx-y net

spin decrease with increasing lateral electric fields, regardless of the electric field’s

polarization. And similar to the case with the (110) direction magnetic field, the

magnitude of the Sx and Sx-y spin polarization with the (110) lateral electric field

(Figure 4.7(b)) is much smaller compared to one with the (-110) lateral electric field

(Figure 4.7(a)) .
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The above result establish that the out-of-plane spin component Sz is strongly

tunable when an in-plane magnetic field and parallel electric field are applied. The

direction of the polarization depends on the sign of B⃗ · E⃗. The in-plane spin compo-

nents can be magnified by an in-plane electric field either parallel or orthogonal to the

magnetic field direction. The polarization of the in-plane net spin follows the direction

of the magnetic field.
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Figure 4.7: Spin polarization with B(-110) = 1T, as a function of (-110) lateral electric
field (left), and (110) lateral electric field (right).

4.2 Increasingly Realistic Models of QD Structure and Composition.

In the previous section we explored the spin texture of hole states in a GaAs/AlAs

quantum dot that has a dome shape. Such a quantum dot geometry provides a clear

illustration of the emergence of spin textures. However, because InAs has a different

lattice constant than GaAs, the strain and piezo-electric effect in InAs/GaAs QD can

create different effects that do not exist in GaAs/AlAs QDs. Moreover, QDs are often

truncated to create a disk shape that provides a stronger confinement in the vertical di-

rection. In this section we will analyze the spin texture for QDs with compositions and

geometries closer to our experimental materials. The results also help us to understand

the physical origins of the spin texture.
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4.2.1 Disk-shaped AlGaAs QD

E (110) = 150kV/cm

E (010) = 150kV/cm

E (-110) = 150kV/cm

Figure 4.8: Spin polarization with rotating B//E in a disk-shaped AlGaAs QD. The
arrows indicate the atomistic spin contribution to a single hole spin state
from different atomic sites, integrated at the z=0 plane

We calculate the ground hole spin state in a disk-shaped GaAs/AlAs quantum

dot under an in-plane magnetic field and a parallel electric field. This model contains

a disk shaped QD without a wetting layer, and the thickness of the disk is 2a where

a is the lattice constant of GaAs. We keep the magnetic field at 1T and electric field

at 150kV/cm and rotate their direction synchronously from (110) to (-110). Figure

4.8 shows the in-plane spin texture of the hole ground state with the rotating parallel

electric and magnetic fields. The Sz component of the hole spin starts positive when

E and B are in the (110) direction then changes to almost 0 when E and B are in the

(010) direction. The Sz component reverses its sign to negative when E and B are in
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the (-110) direction.

This result shows that the net hole spin polarization and underlying spin texture

of the hole states could remain dependent on the crystal orientation. This is different

from the dome-shaped QD model we discussed earlier. In this disk-shaped QD model,

the QD structural geometry maintains symmetric in both the in-plane and z direction.

However, there’s a symmetry shift of the lattice dipole moment when viewing from the

(-110) and (110) crystal planes. The spin-flip when E and B field rotates from (110)

direction to (-110) direction could be a result of the reversed electrical dipole moment

of the atomic lattice.

4.2.2 Dome-shaped Alloyed QD

We next calculate the net spin polarization and spin texture for a dome-shaped

InGaAs alloyed QDmodel with a fixed 1T magnetic field pointing in the (110) direction.

This model considers the strain and local piezo-electric fields generated in an alloyed

dot. This model represents a QD geometry and composition that can be easily grown

experimentally using MBE. The calculation allow us to understand whether the strain

or the local piezo-electric field changes the Sz behavior. We present the in-plane spin

texture of the hole ground state in Figure 4.9. The Sz component polarizes easily with

100kV/cm electric field, similar to the AlGaAs dome shaped QD model. However, the

magnitude of the Sz polarization is not symmetric with electric field, possibly due to

the asymmetric piezo-electric field distribution in the alloyed QD.

4.3 Spin Texture Movies

To better visualize the impact of electric fields on the spin texture, we generate

animated movies that depict evolutions of the spin texture in the (x,y) plane evolving

with different electric fields. Each frame of the film indicates a spin texture under a

specific magnetic field and electric field conditions. Here’s a list of movies that are

related to this work:

1. Single QD GaAs/AlAs dot (dome)
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E(1,1,0) = -100kV/cm

E(1,1,0) = 0kV/cm

E(1,1,0) = 100kV/cm

Figure 4.9: Hole spin texture in a disk-shaped InGaAs QD, with a constant (110)
direction magnetic field, and three different lateral electric field. The
arrows indicate the spin contribution to a single hole spin state from
different atomic sites, integrated at the z=0 plane

• B(110)E(110)
https://youtu.be/bJ-LHNIQ_-4

• B(−110)E(−110) https://youtu.be/p8xEniJb-mg
• B(110)E(−110)

https://youtu.be/UkoifLne1Y0
• B(−110)E(110) https://youtu.be/YTLF-uh5MMw

2. GaAs/AlAs QD (disk)

• Rotation of B//E from (110) to (-110) B = 1T , E = 150kV/cm
https://youtu.be/HyFB8gQO7LE
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3. InGaAs alloy dot (dome)

• B(110) E(110) https://youtu.be/bJ-LHNIQ_-4
• B(110) E(-110) https://youtu.be/yZATIlrOTPk

4.4 Conclusion and Discussion

In this chapter we calculate the spin properties of a hole state in a single QD. The

results review new spin phenomenon when we apply an in-plane magnetic field and an

in-plane electric field. Specifically, we discover that the out-of-plane components can be

polarized by an in-plane electric field that’s parallel to the magnetic field’s direction.

The sign of the Sz component strongly depends on the relative symmetry between

magnetic field, electric field, and GaAs crystal plane, and this effect persists in many

simulation models that consider different QD shapes and compositions. We explain

these surprising net spin effects with the concept of spin texture: a single hole spin

state in a QD system is distributed across different atomic sites, rather than a single

envelope wave-function that contains only one spin quantum number. This explanation

is depicted by the visualization method we established in the previous chapter, and

corresponds well with the spin behavior observed in these simulations. We want to

emphasize that the spin texture visualization does not show multiple spin states in a

single QD, nor the interactions between a hole spin and the nuclear spin bath, but

rather the atomistic contributions to a single hole spin wavefunction. Effectively, we

are looking at the spin character of each localized Bloch wavefunction that contributes

to the overall envelope function describing the single hole. The inhomogeneous spin

contribution possibly originates in the boundary conditions of the QD due to the 3-D

confinement. We further note that the spin polarization only occurs in hole states.

This suggests that the symmetry of the Bloch states unique to the valence band (e.g.

spin-orbit coupling) are part of the physical origin of this phenemona. We expect this

theory will advance the understanding of the hole states in a confined quantum system

and provide new applications based on electrically-controlled spin states in InAs QD

systems.
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Chapter 5

HOLE STATES IN A VERTICALLY-STACKED QDM

5.1 Introduction

Vertically-stacked quantum dot molecules (QDMs) provide many interesting

effects that do not exist in single quantum dots. For example, hole spins states that

co-exist in the two quantum dots that compose a QDM can create a hole spin mixing

effect, in which the net spin of the hole is a coherent mixture of orthogonal hole spinor

projections localized in the two QDs. This effect arises through spin-orbit coupling

between the heavy- and light-hole components that make up each hole spinor and relies

on symmetry breaking within the QDM and has been both observed experimentally[51]

and understood theoretically.[51, 109]

Growth and fabrication of a QDM with a controlled lateral offset in a control-

lable fashion is extremely hard. To analyze the possibility of controlling this effect

using external electric fields and to resolve these spin effects in an arbitrary electric

field condition, we applied our tight-binding finite matrix method and spin texture

analysis. We will first discuss the important energy features that emerges under a 2-D

vector electric field. We will then analyze the spin states in detail using spin texture

visualization.

To illustrate our calculation strategy we will look at an example that shows the

4 lowest-energy hole states in a InAs/GaAs QDM, with and without lateral offset. Both

QDMs have a 10nm radius, 2nm height and a 4nm GaAs barrier. The asymmetric QDM

has a lateral offset of 4nm, as indicated by Fig. 5.1 (a). The geometry of the coordinates

(x,y,z) follows the crystal axis ((100), (010), (001)) where z is the growth direction. We

first identify the vertical electric field that creates the molecular states in each model
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=0nm

Figure 5.1: (Color Online) (a) Disk shaped QDMs without (symmetric) and with
(asymmetric) lateral offset. (b and c) The four lowest-energy hole states
as a function of vertical (z-direction) electric field in a symmetric QDM
for Bz = 12 T (b) and asymmetric QDM with ∆x = 4 nm and Bz = 6 T
(c).

system. We fix the vertical electric field at that value and then we apply a magnetic field

in the z direction to break the spin degeneracy of the hole states (12T for the symmetric

QDM, 6T for the asymmetric QDM.) The open circles in Fig. 5.1 indicate the state

energies at a specific vertical electric field, as calculated by tight-binding simulation.

The lines represent the finite matrix extrapolation of the state energies. To clarify

our discussion of spin states, we describe the states away from the resonance electric

field with heavy-hole spin state nomenclature: (⇑, 0), (⇓, 0), (0,⇑), and (0,⇓) with the

hole located in the bottom (left) or top (right) QD, respectively. Vertical electric fields

that create crossing or anti-crossing features of opposite hole spin states are marked

as Fsm and the anti-crossing gap is labeled as ∆sm. For the asymmetric QDM, whose

state energies are shown in Fig. 5.1 (c), two such anti-crossings are observed, at 1.1

kV/cm and 3.2 kV/cm. We will discuss 4 different QDM models: symmetric QDM

without piezo-electric field, asymmetric QDM without piezo-electric field, symmetric

QDM with piezo-electric field and asymmetric QDM with piezo-electric field. We will
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explain the results from these models systematically. We will further define these spin

states based on their spin texture properties around the resonance electric field.

5.1.1 Symmetric QDM without Piezo-electric Field

We will first take a look at a symmetric QDM without piezo-electric field. Elimi-

nating the piezo-electric field generated in III-V materials helps simplify the simulation

and allow us to capture qualitative effects that help us to develop a conceptual under-

standing of the underlying physics. Based on the model shown in Fig 5.1 (a), we apply

increasing x-direction lateral electric field under the constant 12T magnetic field and

vertical electric field Fsm = 3.8kV/cm. Because the magnitude of the electric field we

applied in this model is relatively small, we can achieve high finite matrix calculation

accuracy with only 16 states included. Figure 5.2 (a) shows the energy levels of the four

lowest-energy hole states as a function of lateral electric field in the x-direction. The

state energy decreases by about 3.5 meV when a 30 kV/cm lateral electric field is ap-

plied. The nearly parabolic decrease in energy indicates the absence of the permanent

dipole moment in the lateral direction, which results from the symmetric cylindrical

shape. However, the Stark shift when electric fields are applied along the lateral di-

rection tunes the state energy over a much larger range than the Stark shift for an

electric field applied along the growth direction. This larger tuning range for lateral

electric fields is due to the extended distribution of the hole wavefunction in the lateral

direction. Thus, lateral electric fields may provide a method for fine-tuning the optical

transition energies of QDs or QDMs for use in device applications.

An interesting effect of Zeeman splitting quenching is shown in Fig. 5.2 (b).

Previous experimental work on InAs QDM have shown that the magnitude of Zeeman

splitting can be a function of growth-direction electric field due to the changing spatial

distribution of electron and hole wavefunctions.[50, 110, 111, 112, 113, 114] In our case,

the changing Zeeman splitting originates, at least in part, from the changing spatial

extent of the hole in the lateral direction. This dependence of the hole wavefunction

distribution on lateral field is displayed in Figure 5.2 (c). Figure 5.2 (c) shows the
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spatial distribution of the third-lowest hole state wavefunction in the y = 0 plane

computed directly from tight-binding results for three different lateral electric fields.

We can clearly see the increasing displacement of the wavefunctions in both QDs,

relative to the blue dashed line at x = 0, with increasing lateral electric field.

The vertical electric field controls the energy offset between hole states in the two

QDs and thus the localization/delocalization of the hole state along the growth axis.

The Zeeman splitting reduction should also result in changes of the hole distribution

along the z-axis because the shift in Zeeman splitting changes the resonance between

the hole states in the separate QDs. Fig. 5.2 (d) shows that the hole distribution

along the growth axis changes non-monotonically with increasing lateral electric field.

The hole state is more delocalized with a non-zero lateral electric field (5 kV/cm)

than for zero lateral electric field. However, the hole state becomes more localized

as the lateral electric field increases further (10 kV/cm). We believe that this non-

monotonic behavior originates in the competition between multiple effects, including

Zeeman splitting reduction and hole spin mixing. [78] The effect of the wavefunction

distribution will be clearly illustrated in section 1.3, which describes QDM spin texture.

Finally, the hole spin mixing can be turned on with a constant lateral electric

field. As shown in Fig. 5.2 (e), the hole spin mixing anti-crossing gap (∆sm) becomes

positive in the presence of the lateral electric field (Fx). Under this 2-D vector field,

a linear increase of ∆sm is observed with increasing Fx, which indicates the ability to

tune the hole spin mixing magnitude by lateral electric field. The resonance vertical

electric field Fsm also changes with the increase of lateral electric field. This effect

originates from the Zeeman splitting variation that influences the crossing/anti-crossing

points between these two states. In fact, the spin feature for Fx > 12kV/cm becomes

extremely hard to resolve in a simple energy diagram because both Fsm bunch together

to form mixed states. Later in this chapter, we will use our spin texture visualization

to see how the spin evolves at higher lateral electric field.
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Figure 5.2: (Color Online)Effect of a lateral (x-direction) electric field on a symmetric
QDM under a constant 12 T magnetic field in the absence of piezoelectric
fields. (a and b). Energy (a) and Zeeman splitting (b) of the four lowest-
energy hole states as a function of lateral electric field when Fz = 3.8
kV/cm. (c and d) Spatial distribution of a hole wavefunction in y =
0 plane (c) and along z axis (d) with different lateral electric fields as
derived from the full tight-binding results. (e) Spin mixing anticrossing
splitting (∆sm) and spin mixing resonance vertical electric field (Fsm) as
a function of lateral electric field.

5.1.2 1 nm Shifted QDM Without Piezoelectric Field

Despite the lack of control of lateral offsets during the growth of QDMs, lateral

offsets are commonly observed experimentally, with an average displacement of about

1.8nm. [51] Because such offsets are common in realistic materials, it is important to

understand the hole spin properties in such QDMs with lateral offsets, before we move

on to more complicated piezo-electric models. In this section, we calculate the energy

levels for a QDM model with ∆x = 1 nm lateral offset under a variety of lateral electric

fields. Unlike the case of symmetric QDMs, in which the model maintains symmetry in

the (x,y) plane, QDMs with an offset behaves differently because of symmetry breaking.

We therefore consider two cases: lateral electric field along the shift direction (Fx)
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Figure 5.3: (Color Online) Effect of lateral electric field on an asymmetric QDM for
B = 12 T, in the absence of piezoelectric field. (a) Energy level of the
lowest four hole states for B = 12 T and Fz = 3 kV/cm, as a function
of lateral electric field (Fy) perpendicular to the QDM offset direction
(x). (b) Spin mixing splitting amplitude ∆sm (yellow solid line) and
spin mixing resonance vertical electric field Fsm (blue dashed line) as a
function of Fy. (c) Energy levels of hole states as a function of lateral
electric field along the QDM’s offset direction, Fx. (d) ∆sm and Fsm as a
function of lateral electric field Fx.

and lateral electric field perpendicular to the shift direction (Fy). Again, because the

electric field we explore here is relatively small, we find that including 16 states in our

calculation is sufficient.

Lateral electric fields (Fy) that are perpendicular to the lateral offset direction

(x) generate a Stark shift effect similar to that of the symmetric QDM case. As shown

in Fig. 5.3 (a), lateral electric fields in both ±y directions cause parabolic shifts of the

four lowest-energy hole states. The effect of Fy on hole spin mixing states is shown

in Fig. 5.3 (b). At 0 lateral electric field there exists a non-zero anti-crossing gap

with ∆sm = 0.18 meV. Changing the lateral electric field Fy can modify the hole spin
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mixing interaction in a direction-dependent manner. For example, ∆sm decreases with

negative y-direction electric field and increases with positive y-direction electric field,

as shown in Figure 5.3(b). We suspect that this is because both the lateral electric field

and the ∆smgeometry offset contribute to the symmetry breaking in the (110) lattice

direction. Changing the direction of y will change the contribution of geometric offset

and lateral electric field in the (110) direction from parallel to anti-parallel, which is

why the∆sm can be increased or decreased. A similar effect has been reported in QDMs

subject to external strains, which provides an alternative path toward controllable hole

spin mixing in QDMs.[115] We again observe a Zeeman splitting reduction in this

asymmetric QDM with similar magnitude to that observed in a symmetric QDM. In

summary, lateral electric fields orthogonal to the QD shift direction modify hole states

in a manner similar to the effect on perfectly aligned QDs, with the exception that

the field direction determines whether the hole spin mixing magnitude increases or

decreases.

In contrast, Lateral electric fields along the QD shift direction (x) impact the

hole state energies in a manner that changes the molecular resonance field Fsm. Figure

5.3 (c) shows the energy of the four lowest-energy hole states as a function of lateral

electric field along x (i.e. Fx), with a constant vertical electric field. The highlighted

red square area shows an energy structure that resembles the effect of vertical electric

field. Outside of the red square area, none of the four states resembles a parabola, which

is a signature of Stark shift. This is because the lateral electric field, if parallel to the

lateral offset direction, changes the wavefunction overlap between the two quantum

dot just as the vertical electric field does. It also generates Stark shifts in the lateral

direction similar to Fy. The energy feature we see here is a result of a competition

between the formation of molecular states and Stark shifts. In section 5.3.2, we will

use the spin texture visualization to validate this hypothesis.

The direct impact of Fx on the hole spin mixing vertical resonance field Fsm is

that it shifts both Fsm values the same distance, as plotted in Figure 5.3 (d). The hole

spin-mixing anticrossing magnitude ∆sm stays relatively the same compared to the
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magnitude under the lateral electric field Fy. This is not surprising because the lateral

electric field shifts the hole wavefunctions in each QD similarly in the x direction,

thus the electric field applied along the shift axis does not introduce any significant

symmetry breaking of the QDM.
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Figure 5.4: (Color Online) Effect of lateral electric field on a symmetric QDM under
12 T constant magnetic field with the piezoelectric field. Planes of the
piezo potential at the edge of the QDs (a) and the middle of the QDs (b).
(c),(d),(e) Spin mixing splitting amplitude ∆sm (orange) and spin mixing
resonance vertical electric field Fsm (blue) as a function of lateral electric
field in different directions, ((c) Symmetric QDM, (d),(e) asymmetric
QDM))

5.1.3 QDM with Piezo-electric Field

In the previous sections we explored the effect of lateral electric field on symmet-

ric and asymmetric QDMs without including the piezoelectric field. However, strain-

induced piezoelectric fields can make an important contribution to the local electric

field of the QDM. We include piezoelectric effects in our tight-binding calculations as

described in the simulation method section. We repeat the process of calculating the

energy levels of symmetric and asymmetric QDMs under applied electric fields with
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piezoelectric fields included. We analyze the results to understand the physical conse-

quences of the piezoelectric fields and their interplay with QDM symmetry and applied

lateral electric fields.

Figure 5.4 (a) and (b) display two different 2D cross-sectional planes of the

piezoelectric potential of a symmetric QDM. The vertical planes in Figure 5.4 (a) lie

at the outer edges of the two QDs and the horizontal planes in Figure 5.4 (b) lie at the

middle of each QD. These figures show that piezoelectric potential dipoles are formed

at the corner of each quantum dot, but with a 90◦ rotation of the dipole orientation

between the two dots. The symmetry of piezoelectric potentials has been found to

depend on a variety of parameters.[116, 117, 118] The rotated symmetry we find occurs

when QDs are close together and act as a strongly coupled entity.[116] Under a constant

lateral electric field, we observe Stark shifts and Zeeman splitting reduction similar to

QDMs without piezoelectric fields with only small shifts in the resonant electric fields

Fsm at which molecular states are formed. However, piezoelectric fields substantially

change the magnitude and tuning range of hole spin mixing, as we now discuss.

Figure 5.4 (c) plots the ∆sm and Fsm for the two hole spin mixing anticrossings

of a symmetric QDM as a function of a lateral electric field along x. In a symmetric

QDM model, piezoelectric field alone cannot induce hole spin mixing, and two crossings

occur as a function of applied vertical electric field. In other words, ∆sm = 0 when

Fx = 0. Anticrossings at both Fsm emerge when a non-zero lateral electric field is

applied (Fx > 0). Zeeman splitting effects (not shown) cause the two Fsm to converge

with increasing lateral electric field as described above. Although the emergence of

non-zero ∆sm as a function of Fx is qualitatively similar to what is observed in the

absence of piezoelectric fields, the magnitude of ∆sm is substantially reduced. As

shown in Fig. 5.4 (c), ∆sm at Fx = 15 kV/cm is about 6 µeV, much smaller than the

35 µeV anticrossing observed in the absence of piezoelectric fields (Fig. 5.2).

We next explore the consequences of including piezoelectric fields in the simula-

tions of asymmetric QDMs with ∆x = 1 nm. Following the analysis described above,

we consider lateral electric fields perpendicular to (Fy) and parallel to (Fx), which is
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the lateral offset direction (x). The results are presented in Figure 5.4 (d) and (e),

respectively. In both cases, the ∆sm value remains nearly constant as a function of lat-

eral electric field. For electric fields parallel to the shift axis (Figure 5.4 (e)), this result

is similar to what is observed without the inclusion of piezoelectric fields (Fig. 5.3 (d)).

We therefore conclude that the inclusion of piezoelectric fields does not significantly

alter the physics of hole spin mixing for electric fields along the shift axis. For electric

fields perpendicular to the shift axis (Figure 5.4 (d)), the change in ∆sm is about 7

times smaller than that observed when piezoelectric fields are not included (Fig. 5.3

(b)). This suggests that the symmetry breaking induced by the applied lateral electric

field is largely compensated by the local piezoelectric field.

In summary, the emergence and evolution of hole spin mixing is qualitatively

similar for QDMs studied with and without the inclusion of piezoelectric fields. How-

ever, the magnitude of hole spin mixing interactions (∆sm) is reduced when piezolectric

fields are included. Piezoelectric fields are inherent to the InAs/GaAs QDM system,

and thus intentional generation of strong spin mixing interactions using constant lat-

eral electric fields will be challenging. A possible explanation is that the piezoelectric

field counters the effects of external electric field and preserves the existing symmetry

of QDM. As a result, constant electric fields do not substantially alter the symmetry of

the electronic states of the QDM. This suggests that a gradient in the lateral field, with

different lateral fields applied to each dot, may enhance the symmetry breaking. We

next explore the consequences of lateral electric field profiles that have a gradient with

different lateral field magnitudes at the locations of the two QDs that comprise the

QDM. In the subsequent section we will use spin texture visualizations to understand

these effects.

5.2 Lateral Electric Fields with a Gradient

Before we begin discussions about applying a gradient electric field, we’d like

to understand the physics behind a gradient electric field. From Maxwell’s Equations

we know that under a static magnetic field, the divergence of an electric field is zero.
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Therefore, ∂Fy

∂z
= ∂Fz

∂y
. We consider Gyz = ∂Fy

∂z
and write the electric field at location

(x,y,z) with a constant gradient in the (y, z) plane as

⃗F (x, y, z) = x⃗Fx + y⃗(Fy +Gyz(z − z0)) + z⃗(Fz +Gyz(y − y0)) (5.1)

This type of electric field is commonly applied in ion-trap quantum computing

applications, where the gradient factor G is not a constant but a function of coordinate.

To simplify this problem and make it suitable for our discussion, we assume that the

QDM is small enough so that we can approximately treat G as a constant. We will

also choose (y0, z0) as the bottom of the top quantum dot in a quantum dot molecule.
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Figure 5.5: (Color Online) Effect of lateral electric field with a gradient in the growth
direction on asymmetric QDMs with piezoelectric fields included. (a)
Electric potential for gradient Gyz = 0.002 (mV/)/ . (b) ∆sm (orange)
and Fsm (blue) as a function of lateral electric field gradient G.

In order to calculate the state energy under a gradient electric field, additional

finite matrix terms must be calculated, namely Vijy = ⟨ϕi|r⃗|ϕj⟩. After computing

those terms, we perform the calculation on both symmetric QDM and asymetric QDM,

considering Gyz values ranging from 0 to 0.002 (mV/)/.

The results in Figure 5.5 show the gradient electric field effect in an asymmetric

QDM. In this case, we applied an electric gradient in the (y,z) direction, perpendicular

to the lateral offset direction x. Figure 5.5 (a) shows the electric potential in the plane

of the two QDs where G = 0.0002 (mV/)/. The red arrows indicate the direction
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and relative magnitude of Fy. On the right side, we can see that the hole spin mixing

magnitude ∆sm clearly increases with the increase of the electric field gradient, while

the resonance electric field shifts in the vertical direction. The oppositely-oriented

electric fields in the planes of the two QDs will cause the hole wavefunctions to shift

in opposite directions, breaking the QDM symmetry in a manner similar to the lateral

shift that occurs in asymmetric QDMs.

The range of ∆sm values accessible for this range of Gyz is still limited, possibly

because of the strong piezoelectric fields, and thus larger field gradients would likely

be desirable for device applications. Fsm shifts with Gyz due to the changes in both

Fy and Fz. Unlike the case with constant lateral electric field, we do not observe a

Zeeman splitting reduction as a function of increasing gradient magnitude. As a result,

the spacing between the two Fsm is nearly independent of Gyz.

5.3 Spin Texture in QDM

In the previous sections, we explored the effects of different electric fields in

QDM with or without symmetry breaking. We used the energy diagram and the

interaction signature anti-crossing to explain the formation of a hole spin mixing state

and a molecular state. However, this method becomes increasingly unreliable as we dig

deeper into the energy diagram and the anti-crossing or crossing points become harder

to resolve. For example, the difference between ”crossing” and ”anti-crossing” in the

energy diagram is hard to determine if the two lines anti-cross with a very small gap.

We usually have to refine the electric field search down to a resolution of several mV

until we can confirm existence or absence of a spin mixing anti-crossing from the energy

diagram. Furthermore, the actual hole state near multiple anti-crossing features can be

hard to resolve, such as in Figure 5.1 (b) at around 3.3kV/cm where the second/third

lowest hole state sits between two anti-crossings. Moreover, in Figure5.1 (c), there

seem to be two other anti-crossings forming around 2.2kV/cm. All of these spin states

are impossible to identify if we judge solely on the energy diagram.
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In this section, we use the same spin texture method we used in single QD to

explain the hole spin mixing effect, and illustrate spin states that are hard to identify

in the energy diagram.

5.3.1 Hole Spin Mixing Effect in QDM

We will start by focusing on the hole spin mixing effect in QDM models that

considers piezo-electric fields. Hole states in these models can be more explicitly ex-

plained when we summarize all the hole spins into 2 different planes, each containing

spin contributions from each QD. Figure 5.6 shows the spin property of the states in-

dicated by the red dot in the energy diagram, evolving with vertical (growth direction)

electric field. The energy diagram indicates that the 2nd and 3rd lowest hole states

cross at F=3.8kV/cm and Fz=5kV/cm. The spin polarization around these crossing

points tell us that the spin contribution from each QD points in the same z direction,

and they flip directions whenever the red dot passes over a crossing point. This is

because the lack of interaction at Fsm simply makes the two spin states flip in the

central region. In fact, if we trace over the parabolic curve on the 2nd lowest states at

Fz=3kV/cm, instead of flipping the state at each crossing point, we observe same Sz

projection across all electric field strengths. In other words, this discontinuity at the

crossing point indicates two individual states without interaction, i.e. no anti-crossing.

A full animation based on this effect can be found in the appendix.

In contrast, the spin texture of a hole spin mixing effect is shown in Figure5.7,

with an asymmetric QDM (1nm shift) model including piezo-electric fields. Each frame

in the figure corresponds to a different vertical electric field magnitude, as indicated by

the x axis on the right. The spin polarization of the state indicated by the red dot has

opposite Sz component near the resonance electric field Fsm (-1kV/cm and 0.5kV/cm).

This is a direct illustration of the hole spin mixing effect using the atomistic method.

Furthermore, as we increase the vertical electric field from one Fsm to the other, the

spin component in each dot will flip its Sz projection and form another hole spin mixing

point. As for the states in between the hole spin mixing resonance electric field, the spin
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contribution from each individual QD maintains its direction, indicating no spin mixing

effects around those electric field regions. In other word, the range of vertical electric

fields that generate the spin mixing effect is around 0.6kV/cm. However, molecular

states emerge at the central electric field F=4.5kV/cm, which properly explains the

reverse anti-crossing feature between the 2nd lowest hole state (red) and the 3rd lowest

hole state(yellow), in the energy diagram.

Using the spin texture method, we illustrated the evolution of the atomistic

contributions to the spin projection of the molecular state around the hole spin mixing

region, which would not have been possible with only the energy diagram. Next, we

will discuss the effect of applying different lateral electric fields.

5.3.2 Lateral Electric Fields in QDM

We discussed previously how lateral electric field changes the energy diagram

and how hole spin mixing states are formed in a QD/QDM. Using the spin texture

visualization method, we will further this discussion and give direct explanations of

the effect of lateral electric fields.

We first explore the symmetric QDM model. The spin texture with different

vertical electric fields under a constant lateral electric field Fx=10kV/cm is shown in

Figure 5.8 The energy diagram shows a negligible anti-crossing gap around 4µeV at

Fx=10kV/cm, as indicated by Figure 5.4. The spin distribution in the two QDs are

shown on the left, with little indication of opposite spin contributions from each QDM.

If we choose our vertical electric field carefully enough, some spin mixing effects could

appear at Fz=5kV/cm, as indicated by the 4th picture, even though the magnitude of

the spin mixing is very small. If we increase the lateral electric field to 20kV/cm, the

Zeeman splitting quenching effect will dominate and push the two Fsm closer, as shown

in Figure 5.9. While it is hard to determine the spin mixing effect using the energy

diagram alone, we do not see spin mixing textures forming around the two new Fsm

either.
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The more effective way of inducing the spin mixing effect in a symmetric QDM

is to apply a gradient electric field. We therefore use the spin texture calculation to

analyze the same gradient electric field model presented in section 5.1.2. As shown in

Figure 5.10 with a gradient factor G=0.002mV/A/A, the two anti-crossing gaps are

visibly significant, and the spin contribution from the two QD are opposite of each

other, providing direct evidence of the formation of spin mixing effect.

5.3.3 Electric Field Parallel to the Lateral Offset

Spin texture can also helps us illustrate the effect of the lateral electric field

parallel to the geometric offset in an asymmetric QDM. In our previous discussion,

we observed an energy diagram that shows the formation of molecular states and hole

spin mixing states in a asymmetric QDM by changing the x direction of the electric

field only. The origin of this effect is yet unclear. However, we can better explain

this effect with the help of the spin texture visualization that plots the distribution of

spin/wavefunction in a QDM directly. In Figure 5.11, we can see how the spin states in

this QDM evolves with x direction electric field that’s parallel to the geometric offset.

The spin texture with different lateral electric field confirms the formation of the hole

spin mixing effect at Fx=3kV/cm and Fx=8kV/cm and the molecular state around

5.5kV/cm. The QD spin contribution transforms from mostly in the bottom dot to

mostly in the top dot as a result of the shift in wavefunction amplitude caused by the

electric field in the x direction.

5.4 Summary

In this Chapter, we explored the effect of different lateral electric fields on a sin-

gle InAs/GaAs QDM using tight-binding and finite matrix calculations. We discovered

that lateral electric fields can induce Stark shifts that are lager than that observed un-

der vertical electric fields and can induce Zeeman splitting quenching effects. Moreover,

lateral electric fields can generate/modulate hole spin mixing states in a InAs/GaAs
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QDM. However, the effect is strongly inhibited by local piezo-electric fields. A gradi-

ent electric field, on the other hand, can be used to simulate the geometric offset and

generate hole spin mixing effect with a large magnitude. We further explain the origin

of spin mixing using spin texture visualizations, allowing us to resolve hole spin states

that cannot be resolved using energy diagrams alone. In this way, the existence of

hole spin mixing partially validates our spin texture hypothesis. This work therefore

suggests the possibility of building a qubit system based on hole spin mixing states

controlled by external 2-D electric fields.
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Figure 5.6: Symmetric QDM with different vertical electric field at 0 lateral electric
field.
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Figure 5.7: Asymmetric QDMwith different vertical electric field and 0 lateral electric
field. Hole spin mixing effect is clearly shown around 0.5kV/cm and
-1kV/cm
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Figure 5.8: Symmetric QDM with different vertical electric field and a constatn
10kV/cm lateral electric field.
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Figure 5.9: Symmetric QDM with different vertical electric field and a constatn
20kV/cm lateral electric field.
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Figure 5.10: Symmetric QDM with different vertical electric field and a gradient
lateral electric field. Hole spin mixing effect just like asymmetric QDM
is shown.
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Figure 5.11: Asymmetric QDM with different x direction lateral electric field.
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Chapter 6

2-D ELECTRIC FIELD DEVICE DESIGN

6.1 Background

Applying 2-D electric fields in a vacuum system is critical for applications such

as ion traps[24], and has wide applications in mass spectrometry.[119] However, it has

not been demonstrated in a solid-state system. Traditional devices such as metal oxide

semiconductor field effect transistors(MOSFETs), while using multiple electrodes to

control the current flow, does not focus on applying arbitrary direction electric fields

at the quantum level. Moreover, the low-temperature conditions for InAs QDs also

changes how semiconductors devices perform. Thus, new device geometries have to be

invented to apply a 2-D electric field in an III-V QD system.

Zhou et al. have proposed a 4-electrode device to charge a lateral quantum

dot molecule (LQDM) using a vertical electric field while simultaneously applying a

uniform lateral electric field.[120] The device structure is shown in Figure 6.1. This

device uses an n-doped GaAs substrate with a back Ohmic metal contact. QDs are

embedded in intrinsic GaAs grown by MBE, 35nm away from the n-doped layer. A

rectangular 1µm wide strip mesa is etched and two over-the-top lateral electrodes are

deposited on the side of the mesa. The two lateral electrodes are insulated from the

bottom doped layer by 20nm of Al2O3. The top electrode, separated from the mesa by

300nm of SiO2 insulation layer, covers the device and has micron-sized apertures for

optical measurements.

Zhou et al. also show that by applying different voltages to the 4 electrodes,

a uniform vertical electric field can be generated in the entire mesa. In some cases,

uniform lateral electric fields in an 80nm-wide region can be formed at a specific location
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Figure 6.1: Schematic of 4-electrode device designed by Xinran Zhou et al. [120]

of the mesa. The electric field profile is calculated with COMSOL simulations using

the AC-DC module. This simulation model calculates the electric field profile using

Maxwell’s equations and treats different materials with different dielectric constant.

However, the results can be inaccurate when specific semiconductor parameters are

not taken into accounts.

6.2 COMSOL Simulation with the Semiconductor Module

To address the shortcomings of the previous COMSOL modeling and design

a device that can apply uniform 2-D electric fields in a GaAs matrix, we develop a

COMSOL model using the semiconductor module. This module treats all materials

with their semiconductor properties, and compute the electric potential φ using the
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Figure 6.2: Direct comparison between an ACDC model and a semiconductor model,
based on the device geometry designed by Zhou et al.

Poisson equation:

▽2φ =
ϵ

q
(n− p+N−

A −N+
D ). (6.1)

Here ϵ is the permmitivity, q is the charge of an electron, n and p are electron

and hole densities respectively, N−
A is the ionized acceptor density and N+

D is the ionized

donor density.

A direct comparison between the AC-DC model and the semiconductor model

simulation using COMSOL is shown in Figure 6.2. We adopt the design parameters

from Zhou [120] and calculate the electric field profile using either the AC-DC module
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or the semiconductor module. We apply ±1V on the two lateral electrodes and ground

the top and bottom electrodes. The surface map shows the relative electric potential,

and the streamline shows the direction of the electric field. In the AC-DC calculation,

as shown in (a), a semi-uniform lateral electric field can be formed at the center of the

mesa, as indicated by the horizontal electric field streamlines.

The AC-DC module does not take into account the doping level or the depletion

width of the semiconductor. This is important because MBE grown GaAs usually

have a background doping in the range between 1E14/cm3 to 1E16/cm3. This level of

doping could affect the depletion width, therefore the profile of the electric field. Using

the same geometry and voltage setup, we calculate the electrical profile in the presence

of a background doping of 1E15/cm3 in the intrinsic GaAs grown by MBE. The result

is shown in Figure 6.2(b). Electric fields in the mesa are almost solely along the vertical

direction, instead of lateral. The contrast between the AC-DC module’s calculation and

the semiconductor module’s calculation is evident. A qualitative explanation is that

the background doping changes the depletion width of the material, so that effectively

shielding the lateral electric fields at the metal-insulator-semiconductor interface. This

shows that new device designs and a deeper understanding of the device performance

are needed, and should be validated by simulations that take the semiconductor effects

into account.

6.3 Improved Device Design

6.3.1 3-electrode Design in an Intrinsic GaAs Matrix

We first design a device that can apply 2-D vector electric fields without charg-

ing the QD. The overall pattern layout is similar to what Zhou et al. proposed, with

the difference of eliminating the bottom doped layer and SiO2 insulation. The key

difference is that we shrink the mesa size down to 550nm, rather than 1µm. Figure

6.3 (a) shows the side view of the 3-electrode device. QDs are grown on an intrinsic

GaAs wafer and embedded in unintentionally doped GaAs grown by MBE. The mesa
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Figure 6.3: Improved 3-electrode device geometry and simulation result for both the
vertical and the lateral electric field. (a) The geometry of the 3-electrode
device (b) and (c) The surface potential map and electric field streamline
calculated using the semiconductor module

height that contains the QDs is 330nm. A 10nm Al2O3 layer covers the mesa confor-

mally, creating insulations between the three electrodes. A 400nm wide top electrode

consisting of Ti and Au is deposited on top of the mesa, with a 250nm wide square

aperture (not shown here) for top-down optical access. The bottom of the mesa is

550nm, resulting in a 15◦ angle on the sidewall. The two lateral electrodes are placed

at the bottom of the mesa, with partial sidewall coverage.

Figure 6.3(b) and (c) shows the electric field profile of two different voltage

configurations simulated using the COMSOL semiconductor module. We choose a

moderate unintentionally doping of 1E15/cm3 for the MBE grown GaAs and calculate

the electric potential at room temperature. The QDs are located at the z=0.05 line.

When we ground the two lateral electrodes and apply 1V to the top electrode, as shown

in (b), a pure vertical electric field is formed with little lateral components. When we
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ground the top electrode and apply equal and opposite voltages to the two lateral

electrodes, as shown in (c), an almost uniform lateral electric field can be formed with

little vertical components. Having a uniform lateral electric field across the entire mesa

is exceptionally advantageous in device characterizations because the location of a QD

could be anywhere in the mesa. However, with every electrode insulated from the

mesa, electrical charging is not probable.

6.3.2 4-electrode Design in a n-i-p Vertical Diode

p-GaAs

120nm Al0.3Ga0.7As

120nm Al0.3Ga0.7As

n-GaAs

QD with 

20nm i-GaAs 

400nm

10nm Al2O3

Ti+Au electrode

(a)

(b) (c)

1V-1V

0V

0V

Figure 6.4: The design of the 4-electrode device (a) The cross-section geometry of
the device (b) The electric field profile (Surface: Electric potential; Line:
Electric field direction) with equal and opposite voltage on the two lateral
electrodes, while grounding the top and bottom electrodes. (c) The band
structure along the lateral cut-line (red line in (a)) where QDs are located.

In order to include the ability to charge a single QD electrically, an n-i-p diode

structure in the vertical direction is needed. We design a 4-electrode device that can

charge a single QD using vertical electric fields and simultaneously apply lateral electric
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fields. The cross-section of the device structure is displayed in Figure 6.4 (a). The

sample is grown on an n-doped substrate with back Ohmic contact (bottom electrode).

We grow 120nm of Al0.3Ga0.7As as a charge tunneling barrier and grow QDs on top of

the AlGaAs. We then grow another 120nm of Al0.3Ga0.7As and cap the sample with

heavily p-doped GaAs. The p-doped layer is connected to a bonding pad far away from

the QD location so that we have top-down optical access. Similar to the 3-electrode

design, we create a 400nm wide mesa structure with a slight angle, and with the etched

depth just below the QD level. After coating the mesa with a 10nm Al2O3 insulation

layer, we can deposit the two lateral electrodes near the mesa sidewall using Ti and

Au.

Figure 6.4(b) shows the electric potential (surface map) and electric field (line)

in the device when we apply -1V on the left electrode, 1V on the right electrode,

and ground the top and bottom electrodes. The natural n-i-p structure in the device

creates a built-in field around 0.7V, resulting in the almost strictly vertical electric

field lines across the mesa. To resolve the lateral electric field component, we plot the

band-structure along the QD level as a function of x coordinates in Figure 6.4(c). An

almost linear band-tilting of around 0.8eV across the mesa shows the formation of a

uniform lateral electric field with the magnitude around 20kV/cm.

It is worth noting that this device design should still work if the Al0.3Ga0.7As is

replaced with intrinsic GaAs, although the strength of the lateral electric field might

vary. The Al0.3Ga0.7As is used to form an electron charging blockade so that a single

hole can be deterministically charged into the QD. The advantage of using a p-doped

layer on top of the mesa, rather than Ti/Au metal electrodes, is that the p-doped

GaAs is conductive while transparent to NIR laser light. Therefore, a large number of

interconnected mesa structures with optical apertures are much easier to pattern and

fabricate.
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6.4 Important Device Parameters

Choosing the proper device parameters is extremely important for applying a

uniform lateral electric field across the entire mesa. Here, we will briefly discuss the

device performance due to the influence of the background doping level, mesa size,

and lateral electrode sidewall coverage. Primarily, we will focus on the strength and

uniformity of the lateral electric fields.

6.4.1 Background Doping Level

Having background doping in MBE-grown intrinsic GaAs is common. The level

of the background doping affects the Fermi level, the depletion width, and the band-

bending significantly. To create a device with a uniform electric field across the mesa,

we want to minimize the level of the background doping in intrinsic GaAs so that the

intrinsic GaAs behaves like an insulator.

Figure 6.5: Band-bending across the cutline (insert) under lateral bias as a function
of the background doping level.
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To understand the potential consequences of unintentional doping, we use the

3-Electrode model and calculate the electric potential of the device with different un-

intentional p-type background doping. We apply -1V to the left electrode, +1V to the

right electrode, and ground the top electrode to create a lateral bias. Figure 6.5 shows

the band structure along the lateral cut-line of the mesa, where the QDs are grown.

At a background doping level of 1015/cm3, there is minimum band-bending across the

mesa and the band-structure roughly follows a straight line, implying the desired semi-

uniform lateral electric field. As the doping concentration increases from 1015/cm3

(blue) to 1016/cm3 (red), the band-bending becomes more and more significant. At

1016/cm3, there is almost no electric field on the left side of the mesa, and the electric

fields are mostly concentrated on the right side near the electrode. A similar result can

be expected in the 4-electrode design. A qualitative explanation is that higher doping

decreases the depletion width of the material, thus inhibiting the penetration depth of

the electric field. Higher doping also pushes the Fermi-level closer to the conduction

band edge or the valence band edge, thus changing the band alignment in the metal-

insulator-semiconductor interface. In most cases, a low doping of order 1015/cm3 is

required to apply uniform lateral electric fields.

6.4.2 Lateral Electrode Side Wall Coverage

Another important parameter that impacts the strength of the lateral electric

field is the coverage of the lateral electrode on the mesa sidewall. We compared two

device models: 1. The mesa side-wall is partially covered by the lateral electrodes,

20nm above the QD level. 2. There is a 50nm gap between the mesa sidewall and the

two lateral electrodes. The models are shown in Figure 6.6(a) and (b), respectively.

Similar to previous studies, we apply -1V on the left electrode, +1V on the

right electrode and ground the top electrode in both models. We then calculate the

lateral electric field strength along the lateral cut-line at the QD level. The device

with lateral electrodes covering the mesa sidewall shows a lateral electric field around

1.5 × 106V/m, as shown in Figure 6.6(c). In contrast, as shown in Figure 6.6(d), the
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Figure 6.6: Device models with different lateral electrode profile. (a) lateral elec-
trodes covers the bottom of the mesa sidewall. (b) Device with a 50nm
gap between the lateral electrodes and the mesa sidewall. (c) and (d)
The lateral electric field in model (a) and (b) while applying a lateral
bias and grounding the top electrode, respectively. The insert of (c) and
(d) shows the electric potential surface map in these two models.

device in which lateral electrodes do not cover the sidewall has a lateral electric field

around 5× 105V/m, 2 to 3 times smaller than the former case.

Although it imposes additional constraints during device fabrication, having

sidewall coverage of the two lateral electrodes is worth exploring if we want to apply

large lateral electric fields. However, it is not hard to imagine the downside of covering

the entire mesa sidewall with lateral electrodes. Such coverage would significantly

increase the probability of short circuits between the two lateral electrodes and the top

electrode, and would also impact the magnitude of the vertical electric field we can

apply. Hence, partial sidewall coverage is optimal for the 2-D field applications. In our

simulations, we find that device models with lateral electrodes covering to just above

the QD level give the best performance in applying both vertical and lateral electric

fields.
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6.4.3 Vertical Bias or Current

Figure 6.7: The valence band energy level along the QD cut-line (insert) in the 4-
electrode device with a ±1V lateral bias and different top electrode volt-
ages, while grounding the bottom electrode

Last but not least, the vertical bias or current also affects the formation of

the lateral electric field. Although this is not obvious in the 3-electrode device, it

significantly impacts the device performance in the 4-electrode device. To understand

this effect, we calculate the band structure of the 4-electrode device when we ground

the bottom electrode, apply -1V on the left electrode, +1V on the right electrode, and

a variety of positive voltages on the top electrode. We plot the valence band energy

level along the QD lateral cut-line in Figure 6.7, as a function of the lateral coordinate

x. As the top bias increases from 0V to 1V, the band-tilting becomes smaller and

smaller, indicating a decrease in the lateral electric field.

A possible explanation for this effect is that the increase of vertical current, as

we increase the vertical bias, changes the carrier concentration in the mesa. At 0V

vertical bias, the current is at a minimum, as a result of the built-in bias from the n-i-p
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diode structure. As we increase the vertical bias, the vertical band-structure becomes

closer to a flat band and eventually reverses so that electrons can easily move from the

n-doped layer to the p-doped layer. The extra electrons in the intrinsic layer change

the charge concentration and thus the depletion width and band-bending along the

lateral direction. Therefore, to observe the 2-D electric field effect in the 4-electrode

device, we will need to keep the vertical bias as low as possible.

6.5 Conclusions and Discussions

In this chapter, we presented 2 device designs in an InAs QD system that can

apply both vertical and lateral electric field. The first one contains 3 electrodes, pat-

terned on an unintentionally doped GaAs matrix; the second one contains 4 electrodes,

patterned on a vertical n-i-p structure. Both of them are able to apply uniform vertical

electric field around 30kV/cm and semi-uniform lateral electric field around 20kV/cm

under moderate biases. We further discussed how the strength and uniformity of lat-

eral electric field changes with a variety of device parameters. Ideally, we’d like to have

a device fabricated on a low 1015/cm3 unintentionally doped GaAs matrix, with mod-

erate sidewall coverage of the mesa and operate the device under the reverse vertical

bias (low current) condition.
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Chapter 7

NANOFABRICATION METHODS

To properly fabricate the devices designed by our COMSOL simulation, we need

tools that help us generate sub-micrometer-scale lithography patterns with alignment

errors for each lithographic step less than 50nm. We also need proper pattern transfer

techniques that define the electrodes and the mesa structure. Furthermore, we need

proper packaging techniques that accommodate our characterization instrument (cryo-

stat). In this chapter, I will briefly describe some of the important techniques we use

in our device fabrication.

7.1 E-beam Lithography

Lithography techniques, which define the pattern on the resist, are the most

important part of the nanofabrication because all the sequential pattern-transfer steps

(etching, deposition) depend on the properties of the resist. The accuracy of the lithog-

raphy determines the critical dimension of the device pattern, and many techniques

have been deployed in the industry to reduce the critical dimension to a quantum scale.

Although mask-aligner photolithography generates very high throughput and is easy

to use once a good recipe is established, achieving alignment precision that’s better

than 500nm is almost impossible. Furthermore, modifying the pattern design requires

new masks to be fabricated, making photolithography costly and less versatile if the

engineering process requires multiple device design iterations. Therefore, we will use

e-beam lithography for our resist patterning because of its high alignment precision

(+-5nm) and versatility of pattern definition.
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We will introduce three aspects of e-beam lithography: 1. The e-beam lithogra-

phy tool. 2. The pattern data preparation and job preparation. 3. The resist process

techniques.

The e-beam lithography tool at the University of Delaware nanofabrication cen-

ter can generate electron beams with 100kV acceleration voltage and maintain a beam

diameter as small as several nanometers. This offers substantial advantage over other

e-beam lithography tools which is modified from a scanning electron microscope, which

usually have a maximum acceleration voltage of 30kV. High energy electron beams will

penetrate resist (carbon based polymer) deeper (almost undeflected) than low energy

e-beams, which results in an exposed e-beam resist with almost straight side walls.

This resist profile has many advantages in the pattern transfer process. For instance,

it can be used to create etching patterns with extremely high step contrast. During the

writing, the electron beam is deflected using magnetic fields generated from electron

optics. The maximum area the electron beam can be deflected is called the main-field.

After finish writing on a main-field, the stage will move to the next one and the pat-

tern will be stitched together. Properly managing the main-field writing and stage

movements is very important to achieve a high writing precision.

To properly execute an e-beam lithography job, the pattern has to go through

multiple preparation steps so that the e-beam tool can recognize it. The first step is the

data preparation. It includes: 1) Pattern healing and extraction, which defines pattern

sizes and removes overlaps, bad spots, sometimes even adding bias/subtractions; 2)

Proximity effect correction, which gives the pattern proper dose factors according to

its shape, in order to compensate for the back-scattered electrons from the substrate;

3) Fracturing, which reduces the shape of the pattern to rectangles and trapezoids,

because these are the only two shapes the e-beam tool accepts. Fracturing also calcu-

lates how the e-beam/wafer should travel when writing a pattern. This step is very

important when writing sub 300nm features that have curves, for instance photonic

crystals. The second step is the job preparation, in which the prepared data file is sent
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to the machine and the parameters of the lithography are calculated. These parame-

ters include wafer locations, heights, alignment markers, base doses, and repetition of

patterns.

A good e-beam lithography process also needs a reliable wafer process flow. This

flow includes wafer preparation, resist coating, baking, and development. The process

usually starts with cleaning the wafer using low-power O2 plasma. Depending on the

resist and wafer type, applying adhesion layers might be necessary before the resist

coating. Then the resist will be uniformly spun on the wafer using spin-coating. As

an estimation, the resist thickness is inversely proportional to the square root of the

spin speed. After the e-beam writing, the resist needs to be developed to form the

pattern. The developing time for each resist and pattern can vary. And it is a com-

mon practice to over develop the resist to guarantee clearing the exposed (unexposed)

area for positive (negative) resist. Many parameters can affect the entire processing

outcome, such as temperature, time, resist adhesion, etc. One thing to emphasize is

that there are likely more than one set of parameters that will make the process work,

but a good process parameter set should leave large room for error. For example, a 10s

development time process is much harder to control compared to a 60s development

time process.

7.2 ICP-etching

Etching is a pattern transfer technique that removes materials on the wafer

that’s not covered by resist. There are two types of etching commonly used in nanofab-

rication: wet-etch and dry-etch. Wet-etch uses liquid-phase chemicals (acid, base,

organic solvent) to react with the wafer and dry-etch uses plasma phase chemicals

instead. Among dry etching techniques, reactive-ion etching (RIE) and inductively

coupled plasma (ICP) etching are two commonly used techniques. We will focus on

introducing ICP etching in this section.

ICP etching uses inductively coupled plasma to chemically and physically re-

move materials on the wafer. Compared to RIE etching, ICP etching generates higher
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density plasma with significantly reduced ion bombardment, which reduces the poly-

mer by-product after the etching process. The key difference between ICP etching

and RIE etching is the separate ICP RF power source connected to the cathode which

generates a DC bias and attracts ions to the wafer. This decouples the ion current and

ion energy applied to the wafer, broadening the process window.

A typical ICP etching process contains both chemical etching and physical etch-

ing (ion bombardment). For example, to etch GaAs, Cl based gases (BCl3 or Cl2) are

used to react with the substrate and inert gases such as Ar are used to provide ion

bombardments. The chemistry of the reaction is shown in equation below:

GaAs+BCl3 → GaCl +B2 + As2 + As4 (7.1)

With proper chemistry, good selectivity can be achieved between different materials

such as SiO2 and GaAs. Besides choosing the etchant that’s appropriate for the ma-

terial system, there are many other parameters that affect the result of the etch. For

instance, plasma power during the ICP etching defines the ion density and therefore

the etch rate. The extra DC bias power that drives ions to the wafer can significantly

influence the side wall profile of the etched product. Other parameters such as the

chamber pressure, the sample temperature and the chemistry etching/physical etching

ratio also influence the process to a certain degree.

In addition to carefully fine tuning machine parameters during the ICP etching,

resist selection is equally important in creating reliable etching recipes. Resists, which

serve as the pattern transfer layer, protect the sample underneath from being damaged

by the ICP. Because resists also get damaged by the ICP, choosing the right thickness

of resist is crucial. If the resist is too thin, surfaces and side walls of the sample might

get exposed to the etchant, leading to undesired etched shapes. However, if the resist

is too thick, the etch gases might not be able to reach the sample completely, which

results in incomplete etching. The resist also needs to be removed from the sample

after the ICP etching. This is a common problem for many polymer-based resists. As

a result of intensive Ion bombardments and chemistry reactions, some processes could
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create polymer by-products that adhere to the surface (sidewall, top) of the sample.

High-power Oxygen plasma or other removal agents are required if the polymer cannot

be removed completely by tradition removal solvents such as aceton or NMP. Another

way to avoid polymer-removal is by using a hard mask instead of a resist mask. For

example, we can use patterned SiO2 as the mask to etch GaAs. The SiO2 can then

be removed by HF solution, which does not etch GaAs.

7.3 E-beam Metal Deposition Tool

Metal deposition is another key aspect of nanofabrication. Metals are commonly

used as electrodes, optical apertures (metals are optically opaque), and etching masks.

Metal deposition is usually done in a high-vacuum chamber, using an electron beam

metal deposition tool or a thermal deposition tool. The e-beam metal deposition tool

uses accelerated electron beams to heat metal sources and evaporate them onto the

sample. The electron beam is usually accelerated to several 10kV to bombard the source

metal. The high kinetic energy from the electron beam is converted to thermal energy

and causes the metal to melt or sublimate. Electron beam sources are typically ramped

up(down) slowly to make sure the heating(cooling) process does not damage the metal

crucible. Usually, circular or elliptical shaped electron beam scanning patterns are used

to insure the metal melts or sublimates uniformly.

The evaporation process from a metal source covers a wide angle and thus the

entire chamber will be coated during the deposition. That being said, the deposition

process for electron beam evaporation is still highly directional, because the distance

between the sample and the source is far. The angle of the deposition can be changed

by changing the tilt and rotation angle of the wafer with respect to the metal source.

Angled e-beam deposition is commonly used in many fabrication processes, and we will

continue our discussion on this topic later in the device fabrication chapter.
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7.4 Dielectric Deposition Tool (PECVD,ALD)

All integrated circuit fabrication requires proper insulating layer depositions.

Typical insulating materials, such as SiO2, Si3N4, Al2O3, are dielectrics with a high

resistivity. They are usually deposited on the wafer using chemical reactions. We

will introduce two commonly used dielectric deposition methods: Plasma enhanced

chemical vaper deposition (PECVD) and atomic layer deposition (ALD).

PECVD uses plasma induced chemical reactions for dielectric depositions. Si

based dielectric is usually deposited by PECVD. Using SiH4 and N2O, the chemical

reaction to form SiO2 can be written as:

SiH4 +N2O → SiOx +H2 +N2 (7.2)

With proper gas compositions, the deposited SiOx can have almost perfect

stoichiometric ratio and serves as a great dielectric insulator. However, because the

reaction of SiO2 deposition happens in the chamber and not on the surface of the

sample, the coating is usually not 100% conformal. Moreover, defects in SiO2 deposited

by PECVD, such as pin-holes, result in low breakdown voltages less than 1MV/cm that

degrade the performance of the device. Therefore, hundreds of nm thick SiO2 films

are required to provide good insulation.

ALD uses gas phased chemical precursors to react with the surface of the ma-

terial one at a time in a sequential self-limiting manner. Unlike PECVD where all

reacting chemicals are present in the chamber at the same time, precursors in ALD are

introduced into the chamber separately. Once all the reactive sites on the surface are

consumed, the reaction stops and precursors are purged away before the next precursor

is added. Therefore, the material is deposited on the surface one atomic layer at a time,

resulting in a high precision, uniform thin film coatings on the substrate. The Al2O3

deposited by ALD usually has breakdown voltage exceeding 5MV/cm, much better

than the PECVD grown dielectrics.
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In our research work, we also use plasma enhanced ALD rather instead of con-

ventional thermal ALD. In conventional thermal ALD, the energy required for chemical

reaction on the surface is provided only by the heated substrate. In plasma enhanced

ALD, energy required for chemical reactions can be provided by the plasma, resulting

in a much lower process temperature. Additionally, plasma enhanced ALD usually

results in better films and more conformal coating of the surface.[121]
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Chapter 8

DEVICE FABRICATION

In this chapter, I will first briefly introduce the fabrication recipe development

efforts we made before the device design change. I will then describe the fabrication

recipes for the 3-electrode device without insulator. I will discuss additionally recipes

that can be used in the insulator fabrication and the 4-electrodes device.

8.1 Background

We started our device fabrication on VGF grown GaAs samples and QD sam-

ples using the device structure designed by Xinran Zhou et al.[120]. However, we were

unable to observe any Stark shift or charging effect in either lateral or vertical voltage

configuration. We then progressed through several interations of device fabrications

before the design change. Unfortunately, none of them gave us any reliable result that

shows the control of 2-D electric field. These setbacks pushed the new design simula-

tions using the semiconductor module, and narrowed down our design parameters as

discussed in the previous chapter.

Some key fabrication processes of the previously designed sample are shown in

Fig8.1. After we grow the QD sample on a p-doped substrate using MBE, we deposited

NiGeAu alloy on the back of the sample, and anneal it using RTP to form the backside

Ohmic contact. We then etch a cylindrical-shaped mesa on top of the sample, using

Cl2 ICP and a PECVD grown SiO2 mask. Then we grow another 100nm of SiO2 using

PECVD, to form the insulation layer. Then two lateral electrodes are deposited next

to the mesa using e-beam metal evaporation. After that, another 300nm thick SiO2

layer is deposited on top of the device using PECVD, to protect the lateral electrodes.
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Figure 8.1: Fabrication process of a 4-electrodes device with the device structure
similar to Xinran’s structure[120].

To finish the device, we deposit Au electrodes with um size optical apertures that align

with the mesa.

The initial characterization of this device shown no Stark shift or charging of

a single QD in any bias configurations. To make things better, we fabricated devices

using the same geometry with several improvements: 1) Replacing the SiO2 layer with

Si3N4 due to its higher dielectric constant and better conformal coating; 2) Reducing

the insulator thickness covering the mesa to 20nm, and eliminating the top insulation

layer and deposit apertures on top of the mesa. Although we did observe vertical stark

shifts using improvement 2), unfortunately, we didn’t observe any photoluminescence

features that correspond to lateral electric fields control in a single QDs.

The upside of this experience is that we were able to establish many nanofabrica-

tion processes that can be directly transferred or modified for future device fabrication.

For example, we established different ICP recipes that can be used in GaAs etching,
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SiO2 or Si3N4 etching. We also developed by-layer resist lift-off recipes that can han-

dle up to 250nm-thick metal lift-offs. These efforts turned out to be very useful in all

of our future recipe developments.

8.2 3-electrodes Fabrication in an Intrinsic GaAs Matrix

In this section, I will describe our fabrication process for the 3-electrode InAs

QD/QDM device whose design was described in the previous chapter. I will focus on

the 3-electrode InAs QD/QDM device with Schottky metal contacts, as a first step

device to validate our simulation model. I will then introduce additional fabrication

recipes for the insulator-gated device and the 4-electrode InAs QD/QDM device.

8.2.1 Sample Growth

The sample was grown on a 500um GaAs (001) intrinsic substrate using the

OSEMI NextGEN solid source MBE equipped with effusion cells of In, Ga, and a two-

zone valved As cracker source. Beam equivalent pressure (BEP) of Ga, In, and As2 is

monitored by an ionization gauge. The growth temperature is measured by band edge

thermometry (BET). We wait until the desorption of the native oxide on the GaAs

wafer with substrate rotation under 1E-5 Torr As2, and over-pressure at 620◦C for 10

min until a clear and a streaky 2x4 RHEED reconstruction was observed. Then the

substrate temperature was lowered to 550◦C and a layer of 600nm unintentional doped

GaAs was grown at 1.9557 Å/s. The growth was then interrupted with the substrate

rotation being stopped, in order to achieve a non-uniformly distributed QDs density.

Additionally, the substrate temperature was lowered to 520◦C and the As2 BEP was

cut by half. Once the growth temperature and As2 BEP are stabilized, approximately

1.72 ML InAs was deposited at 0.035 ML/s, followed by the deposition of 2.7nm GaAs

partial capping layer to set the truncation height of the InAs QDs. Afterward, the As2

BEP was increased to 1E-5 Torr again and the sample was annealed at 580 °C for 70s

to evaporate the exposed In atoms beyond the truncation height. Finally, a 250nm

unintentionally doped GaAs layer was grown.
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We performed Hall effect measurements to study the film’s resistivity, doping

type, doping concentration, and carrier mobility. The as-grown film has a p-doping

density of 5.28E16 cm−3. The bulk resistivity is 2.635 Ω · cm and the mobility is 44.84

cm2/V s. We also performed low-temperature PL on the whole film before device fabri-

cation and confirmed the successful growth of InAs QDs with the desired height: sharp

peaks were observed in the wavelength range of 940nm to 960nm in PL spectroscopy.

The QD density is close to 10 to 100/µm2, and we are able to isolate single QDs by

using ebeam lithography to pattern apertures as small as 200nm.

8.2.2 Alignment Marker

76um75um

20um

(a)

(b)

(c)

1cm*1cm die

Alignment 

   marker

Pre-alignment 

    marker

Figure 8.2: Top electrodes deposition process for 3-electrodes device. (a) Schematic
of E-beam deposition using PMMA/MMA bi-layer resist. (b) Top view
image of a deposited top electrodes using SEM.

Reliable alignment markers have to be fabricated prior to device fabrication,
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so that each device layer can be aligned with nanometer precision. The marker pat-

tern design that works with our e-beam lithography tool is shown in Figure 8.2. As

shown in Figure 8.2(a), the device pattern is located at the center of the 1cm*1cm

die. 20um*20um size alignment markers are patterned on the four corners of the die.

Additionally, four blocks of pre-alignment markers are positioned at the bottom of the

wafer. The pre-alignment marker arrays are composed of 10um*10um squares that

are separated by a distance that depends on their relative location in the array. The

e-beam tool will locate five cross-patterned pre-alignment markers and calculate their

relative distance. Using this data, the e-beam tool can extrapolate the position of the

markers in the pre-alignment array. Then the e-beam tool will move to the alignment

markers’ position near the corner of the wafer and start the alignment calibration.

The electron beam tool uses back-scattered electrons to determine marker po-

sitions, so creating good back-scattered electron contrast between the marker and the

wafer is essential in fabricating high precision markers. Typical e-beam markers are

composed of either metal materials with high-atomic numbers or deep-etched pits. In

our device, we use a lift-off process to fabricate Au metal markers. The exact fabrica-

tion process is the same as the top-electrode lift-off process, which we will introduce in

section 8.2.4.1.

8.2.3 Pattern Layout

The device pattern is designed to accommodate our device packaging holder, op-

tical characterization setup and the cryostat. As shown in Figure 8.3(a), each 1cm*1cm

die has two 3mm*5mm big blocks. Each block consists of four segments with eight lat-

eral electrodes (green) and two vertical electrodes (red and black). The enhanced view

of the top two segments on the left block is shown in Figure 8.3(b). In each seg-

ment, there are 45 3-electrodes device units as shown in Figure 8.3(c)(d)(e). The top

electrodes (orange and dark green) are threaded through the entire segment in series

and connected to the bonding pad through wired areas (red). The lateral electrodes

(purple) are structured around the top-electrodes and connected to the bonding pad
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(a) 1cm*1cm die
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Figure 8.3: Top electrodes deposition process for 3-electrodes device. (a) Schematic
of E-beam deposition using PMMA/MMA bi-layer resist. (b) Top view
image of a deposited top electrodes using SEM.

in parallel. An optical aperture (black in (e)) can be fabricated on the top electrode

for out-of-plane optical access. The size of the pattern is adjusted throughout the

fabrication and should match the simulation model.

8.2.4 Top Electrodes with the Aperture

8.2.4.1 E-beam Deposition

After the marker fabrication, the wafer is cleaned using low power oxygen plasma

ashing for 5 minutes. We use a lift-off process to fabricate the top electrodes, as

sketched in Figure 8.4(a). The wafer is first spin-coated with 15 nm of adhesion pro-

moter AR300-80 at 4000rpm and baked on a hot plate at 170◦C. Then 250nm MMA

resist is spun at 6000rpm and baked for 2 minutes at 170◦C, followed by 180nm of

PMMA resist spun at 6000rpm, and baked for another 2 minutes at 170◦C. Because
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the MMA copolymer develops faster than PMMA, this process forms an undercut bi-

layer resist structure. This structure helps create a gap between the deposition metal

layer and lift-off layer, reducing lift-off edge defects such as flagging or incomplete lift-

off. The resist is then exposed with the electron beam at a base dose of 330µJ/cm2.

We use MIBK:IPA 1:1 solution and develop the resist for 90s at room temperature.

The patterned resist structure is characterized using the optical microscope and

the SEM to make sure the dimension is within our tolerance, and the exposed area is

clean. The average exposed top-electrodes pattern width is around 400nm, which is

close to the pattern size.

The wafer is then cleaned with low power oxygen plasma for 10s before E-beam

metal deposition. We first deposit 15nm of Ti at 4Å/s as an adhesion layer, then

deposit 110nm of Au at 5Å/s. Next, we soak the sample in NMP solution at 80◦C

for 20 minutes to strip the resist. The sample is then cleaned with ultrasonic and IPA

before taken out of the solution and blow-dry with Nitrogen gas. The thickness of

deposited metal is measured using a profilometer and found to be 125nm± 5nm. The

SEM picture of a 400nm wide lift-off top electrodes is shown in Figure 8.4(b), with a

dimension close to our pattern size. The texture on the metal contact is a result of the

Au’s grain size, which is typically around 20nm to 50nm.

(a) (b)

Ti/Au

GaAs

MMA

PMMA

E-beam metal deposi!on direc!on

250nm

180nm

MMA

PMMA

125nm

Ti/Au

Figure 8.4: Top electrodes deposition process for 3-electrodes device. (a) Schematic
of E-beam deposition using PMMA/MMA bi-layer resist. (b) Top view
image of a deposited top electrodes using SEM.
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8.2.4.2 Ion mill Aperture

To etch the aperture on the top metal electrodes, we used an Ion mill etching

process that has a high contrast in etch rate between Au and Ti.[122] The resist we

use is a ZEP520 type positive resist due to its high dry etch resistance comparing to

PMMA. The wafer is first cleaned with oxygen plasma and coated with a thin layer

of adhesion promoter. Then AR6200.09(CSAR) resist is spin-coated at 4000rpm and

baked at 170◦C on a hot plate for 5 minutes. The thickness of the resist is 180nm.

After resist coating, we exposed the resist with the aperture pattern at a base dose of

160µC/cm2. The resist is then developed with AR600-546 for 90s and rinsed in IPA

for 30s before blow-drying with nitrogen.

We used two different Ion Mill Ar etching recipes to etch the metal and form the

top aperture. The fast etch recipe uses 400V beam voltage and 55mA beam current to

generate Ar plasma and 80V acceleration voltage for directional etch. The slow etch

recipe uses 200V beam voltage and 22mA beam current with an acceleration voltage

of 40V. The Au etch rate for the fast etch recipe and slow etch recipe is 30nm/mins

and 5nm/mins, respectively. The erosion rate of CSAR resist with the fast etch recipe

is around 10nm/min, calibrated using a scratch test. Based on the relative power of

the two recipes, the erosion rate of the slow etch recipe is estimated to be less than

1nm/min. To etch away most of the Au without drilling into GaAs, the sample is first

etched with fast etch recipe for 3 minutes and 20s, then slow etched for 2 minutes and

30s. Because of the high etch-rate difference between Au and Ti, the etching will slow

down drastically or stop when all the Au is etched away. The GaAs underneath will

be protected by the thin Ti layer.

The post-etched sample is then soaked in NMP at 80◦C for more than 5 hours

and cleaned in an ultrasonic bath for 30 minutes. After rinsing in IPA and nitrogen

blow dry, the etched aperture is characterized by SEM, as shown in Figure 8.5(b). The

sidewall around the aperture guarantees the electrical continuity, and the depth of the

aperture in angled view indicates an almost clear aperture without Au metal.
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Figure 8.5: Top aperture fabrication process for 3-electrodes device. (a) Schematic
Ion mill using CSAR (ZEP520) resist. (b) Angled view of one top aper-
ture after fabrication.

8.2.5 Mesa Etching

We use ICP dry-etch with a resist mask to etch the mesa. The mesa etching

schematic is illustrated in Figure 8.6(a). The wafer is first cleaned and coated with a

thin layer of adhesion promoter, AR300-80. Then E-beam negative resist AR-7520.18

is spun at 4000rpm, followed by 60s hot plate baking at 85◦C. The mesa pattern size

is designed to be 20nm wider than the top-electrodes width so that the top-electrodes

are protected from the ICP etching. The wafer is then exposed with electron-beam

lithography at a base dose of 736µC/cm2. We used an AR300-47 4:1 H2O solution

to develop the resist at room temperature for 240s. The sample is then cleaned with

oxygen plasma (descum) for 10s.

To create an etching profile with a slope for lateral electrodes deposition, we

used 500W ICP power, 100W bias, 10sccm BCl3 and 25sccm Ar. The etch rate for

MBE grown GaAs is calibrated at 300nm/min and the erosion rate for ARN7520 resist

is 100nm/min. The sample is etched for 68s to create a mesa height of 325nm. After

that, the sample is soaked in an NMP solution at 80◦C for 8 hours to strip the resist,

including a 30mins ultrasonic cleaning time. The result from SEM characterization

in Figure 8.6(b) shows a smooth sidewall etching profile, free of polymer by-products.

The sidewall angle is measured in SEM to be around 15◦. (see appendix)
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Figure 8.6: Mesa fabrication process for 3-electrodes device. (a) Schematic of ICP
etching using BCl3 and Ar (b) Angled view of one etched mesa using
SEM

8.2.6 Lateral Electrode Deposition

The most critical part of the side gate fabrication is to have metal contact on

the lower part of the mesa sidewall. The mesa has a slope of around 15◦, and the

sidewall width is 72nm on each side. Aiming for coverage between 1/5 to 1/3 of the

sidewall, as designed, requires the e-beam lithography to have less than ±6nm writing

and alignment accuracy. Although not impossible, this is extremely challenging and

requires a long time for process engineering and calibration. Instead, we used angle

metal deposition as sketched in Figure 8.7(a). The resist structure is a LOR undercut

layer plus CSAR e-beam positive resist. The LOR’s developer is an alkaline solution,

other than solvent, allowing us to engineer each resist layer individually. The concept

is to form an undercut bi-layer structure that’s slightly wider than the base of the mesa

(around 555nm). Using SEM, we can characterize the resist size and calculate exactly

the angle that gives us the best sidewall coverage. This fabrication process requires

much less rigorous resist writing procedure and can guarantee sidewall coverage of

lateral electrodes if the SEM characterization and calculation is done accurately.

The fabrication process starts with sample cleaning using oxygen plasma and

coating it with the adhesion promoter. Then, LOR 3A is spin-coated on the sample
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at 6000rpm and baked at 200◦C on a hot plate for 5 minutes. CSAR09 is then spin-

coated at 2000rpm and baked at 170◦ for 5 minutes. The resulting resist thickness is

around 150nm of LOR plus 250nm of CSAR. The sample is then exposed using EBL

at a base dose of 190µC/cm2. The developing procedure is separated into two steps:

1) Develop CSAR with the AR600-546 developer for 60s, rinse with IPA and N2 blow

dry; 2) Develop the LOR layer using AR300-47 for 35s. This specific LOR recipe gives

an undercut rate that’s similar to the vertical developing rate, therefore resulting in

an undercut resist profile of 150nm on each side, as indicated in Figure 8.7(a) (not to

scale).

GaAs

CSAR

E-beam metal deposi!on angle

250nm

Ti/Au

LOR 150nm

125nm

325nm

555nm

410nm

Ti/Au

6°

(a) (b)

(c)

600nm

Figure 8.7: Lateral electrodes fabrication process for 3-electrodes device. (a)
Schematic of angled metal deposition for sidewall coverage of the lat-
eral electrodes. (b) Resist calibration shows CSAR width is 596nm. (c)
the full lateral electrodes structure after lift-off.
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The SEM calibration in Figure 8.7(b) shows that the CSAR width is around

600nm. Based on the geometry of the structure, we derived the angle that provides 1/4

sidewall coverage is 5.8◦. However, the tilting precision of our e-beam metal deposition

tool is 1◦, which is why we use 6◦ in our actual fabrication. Based on this structure, a

0.2◦ variation could result in ±3nm variation in sidewall coverage, which is within our

tolerance.

On a single device, we design lateral electrodes that are oriented in four different

directions: (100),(010),(110),(-110). One pair of lateral electrodes in each orientation

requires two separate angled depositions with 180◦ sample rotation. Therefore, a total

of eight 6◦ angle depositions with different rotation angle are needed to fabricate one

device. To avoid metal piling up, we deposit 10nm of Ti at 8 different rotation angles,

then deposit 40nm of Au with the sample rotated at 40◦/s. The resulting structure has

120nm bulk lateral electrodes with 10nm Ti to cover the sidewall. Although the actual

metal thickness on the sidewall is less than 10nm due to the non-orthogonal deposition

angle on the sidewall, it should at the very worst put the lateral electrodes position in

contact with the edge of the mesa. Figure 8.7(c) shows an SEM angled view of a pair

of lateral electrodes after the lift-off, with a visible sidewall coverage at the bottom of

the mesa.

8.2.7 Wire-Bonding and Packaging

After the side-gate metal deposition, the sample is diced into 3mm*5mm pieces

and mounted on an integrated circuit die. We use thermal and electrical silver epoxy

to bond the sample on the die and then cure it at 80◦ for 30 mins. We then bond the

contact pad to the IC die using wire-bonding. The finished sample is shown in Figure

8.8. The sample is then mounted in the cryostat and ready for optical measurement.

8.3 Additional Fabrication Steps

In the previous section, we discussed the fabrication steps for the 3-electrode

device when all 3 electrodes have Schottky contacts. We also fabricated a 3-electrode
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Figure 8.8: A post-nanofabrication 3-electrode sample mounted on an IC die, with
Au wire bonded between the contact pad.

device with Al2O3 insulators between the two lateral electrodes and GaAs. The pur-

pose of using the insulator is to prevent Fermi pinning and inhibit charging from the

two lateral electrodes. To successfully include Al2O3 in the device, we introduce two

additional fabrication steps:

1. 20nm of Al2O3 is deposited right after the mesa etching. We use plasma

enhanced ALD for Al2O3 deposition since it allows low temperature processing instead

of traditional ALD. We use Trimethylaluminium(TMA) as the Al precursor and O2

plasma as the O2 precursor. The deposition is carried out at 300◦C with a deposition

rate of 1nm per 9 cycles.

2. Because ALD deposition will coat Al2O3 conformally around the sample, the

excessive Al2O3 on top of the bonding pad needs to be removed to allow wire-bonding.

We spin 280nm of CSAR at 2000rpm and use e-beam lithography to define the pattern.

Then we etch the Al2O3 away using Cl2 ICP etching. We use 700W ICP power with

20sccm of Cl2, 30sccm of Ar and 100W RF bias. The etch rate for Al2O3 is 33nm/min

and erosion rate for CSAR is 220nm/min. The Al2O3 is clean after 45s of ICP etching
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and the resist is stripped using hot NMP and Oxygen plasma ashing.

In the previous chapter, we also discussed a 4-electrode device that uses a back

Ohmic contact. To fabricate the Ohmic contact, we use NiGeAu alloy with the thick-

ness of 17nm/33nm/120nm. After e-beam evaporation, we use Rapid Thermal Process

tool to anneal the contact at 410◦C for 60s. This is an established Ohmic contact

recipe created by previous group members. Other than this change, the process for

fabricating the device with Ohmic contacts remains the same as that described here.

8.4 Discussion

We have discussed our fabrication process for the device presented in the pre-

vious chapter. However, the current process is not perfect. Several issues affect the

yield of our fabrication, although they are not severe enough to cause device-level

breakdown:

1. We are experiencing unusual alignment errors. We discover these alignment

issues at the aperture etching stage when the aperture and the top electrodes are

misaligned. We find the majority of the alignment error to be systematic across the

sample, which is that the pattern is shifted by 50nm in the +x and 10nm in the

+y direction. Moreover, the alignment error maintains its direction and magnitude

through the entire fabrication. This indicates that the alignment error occurs at the

top electrode fabrication step. Our hypothesis is that the error occurs because of

metal migrating on GaAs due to poor adhesion and thermal processing. It is likely the

migration happened to one of the markers used for aligning the top-electrode layer,

which is why all the sequential steps are misaligned by the same amount. Luckily,

after we identified the systematic alignment error, we were able to reduce the error

significantly by shifting our pattern accordingly. The result is not perfect since we

can’t correct all the unsystematic errors. However, we are able to reduce the alignment

error low enough so that it doesn’t cause any device-level breakdown.

2. We also find that bonding to Ti/Au metal pad on oxide surfaces is much

harder than on GaAs surfaces. This is a well-known issue because the adhesion of Ti
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to oxide is not as strong as Ti to GaAs. The solution is to find the bonding parameter

threshold just in between ripping off the bonding pad and leaving zero marks on the

bonding pad. We find this parameter set usually requires lower temperature (70◦),

almost zero ultrasonic strength and medium force. Another way to solve this problem

is to use silver epoxy. Although bonding a 5mm*5mm pad with epoxy is extremely

hard by hand, it’s not impossible with enough practice.

3. Another common problem with our process is the base developer for PMGI

and UV5 resist, such as LOR and AR7520. We find that the base developer tends to

react with GaAs and etches its surface. Although the etch rate is extremely slow, it will

cause damage to the GaAs substrate and affect the quality of deposited metal markers.

It will also react with AlGaAs layers much faster than GaAs substrate. Therefore, a

different resist needs to be used to fabricate GaAs samples with AlGaAs.
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Chapter 9

OPTICAL CHARACTERIZATION METHODS

9.1 Wafer Imaging

The lowest QDs density achievable during the MBE growth is around 1 QD/µm2,

as limited by the QD nucleation threshold. During the MBE growth of the QDs, the

wafer rotation can be stopped temporarily so that the QDs nucleate with a density

gradient. In this case, part of the wafer where the density is too low for QDs to nu-

cleate will have no photoluminescence (PL) from the QDs. Finding the threshold of

QDs photoluminescence on the wafer can help us locate the part of the wafer that has

a low QD density suitable for device fabrication. We use the wafer imaging technique

to find the PL threshold.

Figure 9.1: Wafer-imaging schematics
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The schematic of the wafer imaging optical set-up is illustrated in Figure9.1.

The wafer is mounted on a open-cycle cryostat that can be cooled to 77K using liquid

nitrogen. A 532nm continuous wave (CW) laser with a maximum power of 5W is

used to excite the wafer. A 650nm long pass filter is placed in front of the laser to

block any long-wavelength components from the laser. After that, the laser beam is

expanded using a cylindrical convex lens and projected onto the wafer. A pin hole (iris)

is used to confine the laser beam expansion and to reduce the scattered light. Finally,

photoluminescence emitted from the wafer is collected using a CCD facing the wafer.

The photoluminescence is filtered by different short pass filters, depending on which PL

component we are interested in. At 77K, GaAs photoluminescence is around 830nm,

InAs wetting layer photoluminescence is around 870nm, and QD’s photoluminescence

is longer than 900nm.

QDsGaAs control wafer

(a) (b)

Figure 9.2: Photoluminescence collected using the wafer imaging setup, from (1) a
GaAs control sample, (2) a sample with a QD gradient. The PL threshold
of the QDs is indicated by the blue line.

It is important to maintain the laser intensity at a high value, so that the PL

signal from QDs are strong enough to be detected by the camera. It is also important to

create a uniform excitation source across the entire wafer, so that the intensity of the PL

can directly infer the density of QDs. Therefore, the selection of the beam expanding

lens is crucial. We use a cylindrical lens, because the line-shaped laser that it produces

has higher intensity per area than the equivalent circular-shaped laser produced from

a spherical lens. The 532nm laser beam has a Gaussian spatial intensity distribution,
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and this distribution is maintained with any beam expanding optical elements. To gain

almost uniform illumination of the sample, the lens is placed 30cm away from the wafer,

and is aligned to direct light from the edge of the Gaussian intensity distribution.

Figure 9.2 shows the PL collected using the wafer imaging setup with a cylin-

drical lens. A GaAs wafer without QDs is used to calibrate the laser intensity in a

horizontal line, as shown in Figure 9.2(a). An almost uniform PL line across the cleaved

wafer is observed, indicating semi-uniform illumination. The PL from QDs in a wafer

with a QD density gradient in the horizontal direction is shown in Figure 9.2(b). Mul-

tiple line scan across the wafer (blue frame) indicates a PL threshold towards the right

side of the wafer, as indicated by the red line. This shows that the QDs density near

the red line is 1 QD/µm2.

9.2 Micro-photoluminescence

To study the photoluminescence of a single quantum dot, we use a micro-

photoluminescence setup that contains both microscopy and spectrocopy functions.

A schematic of our micro-photoluminescence setup is shown in Figure9.3. This dia-

gram contains two micro-PL setups with two cryostats: one closed-cycle cryostat on

the right and one magneto-optical cryostat on the left. We will first focus on the right

side of the diagram with the closed-cycled cryostat.

9.2.1 Closed-cycle Cryostat

The sample can be cooled to 7K using the ARS closed-cycle cryostat. The entire

cryostat is mounted on a translation stage with µm accuracy, so that the location of

the sample is adjustable. A collimated LED light is used to illuminate the sample for

microscopy analysis, and the image is collected using a CMOS camera. After locating

and position the aperture at the center of the screen, the LED source can be turned

off.

A tunable Ti-sapphire laser is used to excite the quantum dot for spectroscopy

analysis. The laser can be tuned from 780nm to 870nm, and can operate in either
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Figure 9.3: Micro-photoluminescence set-up schematic with a closed-cycle cryostat
and magneto-optical cryostat

CW mode or pulsed mode. The 780nm laser can excite the GaAs substrate, the InAs

wetting layer, and the quantum dot. But the single QD PL can be overshadowed by

the GaAs PL. Using excitation around 870nm which is below the GaAs and the wetting

layer bandgap can avoid this problem and only excite carriers in the QD. After passing

through the two 50/50 beamsplitters, the laser is focused on the sample with a spot size

approaching the diffraction limit using a NIR objective. Photoluminescence from the

sample can be collected using the CMOS camera or the spectrometer. The output from

the spectrometer can go either to a liquid nitrogen cooled CCD for spectral analysis

or to a time-correlated photon counting module (TCSPC) for temporal analysis.

Many filters that are used in the micro-PL setup are not shown in the diagram.

A 950nm short-pass filter is placed in front of the laser, in order to filter out the

excitation light that might be mixed with the QDs signal. The laser intensity can

also be reduced using neutral-density filters if the PL is too bright and exceeds the

detection limit of the CCD. Because both the laser light and the PL will be reflected

by the beamsplitter, filters are placed in front of the spectrometer to screen the laser.

To analyze the GaAs PL, two OD5 800nm long-pass filters are placed in front of the

spectrometer. GaAs PL is commonly used for alignment because it is much brighter
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than the QDs PL. To analyze the QDs PL, two OD5 900nm long-pass filters are placed

in front of the spectrometer. These filters can also be placed in front of the CMOS

camera, if one wants to use the camera to locate a single aperture with QDs.

Additionally, power supplies are connected to the sample through the cryostat

to apply voltages during the PL experiment. For multi-electrode devices, we use a

Keithley 2230 multi-channel power supply to apply voltages to different electrodes

independently. The Keithley 2230 model has 3 channels that can apply voltages from

0 to 30 V, with a compliance current up to 1.5 A. The resolution of the power supply

is 1 mV and 1 mA, which is sufficient for our experiments.

9.2.2 Magneto-optical Cryostat

The magneto-optical cryostat setup on the left side of Figure 9.3 uses a similar

operation mechanism. The laser is guided to the sample through a similar optical path,

and the photoluminescence is collected using either a CMOS camera or a CCD with a

spectrometer. There are several differences: 1) Up to 8T magnetic field in either the

vertical or the lateral direction can be generated by the heavy superconducting coils

located at the bottom of the cryostat. 2) The sample can be cooled to 4K because

liquid helium is used to cool down both the superconducting magnet and the cryostat.

A helium reliquefier is used to conserve the helium and prolong experimental run time.

3) A high numerical aperture lens is mounted in the cryostat, serving as the objective

lens, instead of a long working distance objective. 4) Because the cryostat is too tall

and heavy to be mounted on an optical table, excitation and luminescence photons are

guided through fiber. This results in a 50% loss of the observed photoluminescence

due to the fiber’s coupling efficiency.

While the magneto-optical cryostat can apply magnetic field, and can operate

at a lower temperature, the cost to maintain its operation is much higher compared to

the closed-cycle cryostat. In our experiment, we will only use the closed-cycle cryostat

for optical analysis without an applied magnetic field.
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Chapter 10

DEVICE CHARACTERIZATION

After the 3-electrode device fabrication, we test the device performance both

electrically and optically. In this chapter I will go through the results of the all-

Schottky-contact 3-electrode device. I will also present COMSOL simulations that

support the physical phenomenon we observe.

10.1 Electrical Characterization

10.1.1 Hall effect measurement

Before the fabrication, we measure the carrier concentration in the uninten-

tionally doped GaAs region using Hall effect measurements. The results show a sheet

carrier concentration around 1.46 × 1012/cm2, which corresponds to a bulk carrier

concentration around 5 × 1016/cm2. The carrier dopant type is p-type, likely due to

carbon contamination in the chamber during growth. These carbon defects also act as

recombination centers that leads to non-radiative recombination pathways for excited

carriers, leading to reduced PL.

10.1.2 I-V curve

To confirm the contact type of the three metal electrodes, we measure the I-

V curve of the device at room temperature after fabrication. The measurement is

conducted using a multi-channel voltage source Keithley 2230. When we apply ±1V

on the top electrode and ground the two lateral electrodes, the measured current is

below the detection limit of our voltage source (0.02mA). Similar results are obtained

under the lateral bias geometry. This indicates that all three electrodes have Schottky

contacts with Schottky barriers preventing large current flow. We observe a significant

116



current increase around ±3 to ±5V, implying a device breakdown field around 100 to

150kV/cm.

10.2 Optical Charaterization

10.2.1 Micro-photoluminescence with Bias

We mount the device in an ARS-DMX20 cryostat for micro-photoluminescence

study at 8K. We use an LED light to locate each aperture and a 5uW 780nm continuous-

wave (CW) laser to excite the quantum dot. We generate the 780nm CW excitation

using a MIRA-900 Ti:sapphire laser; both the power and the wavelength of the exci-

tation are tunable. We focus the laser light down to the diffraction limit using a NIR

objective so that only a single aperture is excited at one time. We measure the photo-

luminescence with a liquid-nitrogen-cooled CCD, filtered by two ND5 900nm long-pass

filters and spectrally-resolved by a NIR spectrometer with a resolution of 30µeV. We

use a Keithley 2230 multi-channel voltage source to apply voltages to the device.

We first survey all the apertures to find the ones that contain a single QD, then

apply voltages to those selected apertures. Figure 10.1 shows the photoluminescence

intensity graph from 4 different apertures (QDs) as a function of applied voltages. We

collect all PL spectroscopy data with a device current smaller than 50µA, close to our

detection limit.

For the data presented in the left column in Figure 10.1, we ground the two

lateral electrodes and apply a voltage V to the top electrode. We will name this

bias configuration the vertical bias. Under these conditions we can see an asymmetric

charging PL map centered at 0V in all 4 QDs presented here. For example, in QD (a),

the positively charged state (X+) with energy 1317.8meV occurs at -0.3V, indicated

by the dashed line. The neutral exciton state (X) with energy 1314.3meV disappears

at the same voltage. However, the same charged state does not occur when we apply

a positive voltage to the top electrode, though the neutral exciton state disappears.

We identify the X, XX, and X+ states in the optical spectra from QD(a) (top row

of Figure 10.1) through several complementary observations. First, we observe that the
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QD(a)

QD(b)

QD(c)

QD(d)

x

xx

x+

Ver cal bias Lateral bias

Figure 10.1: Micro-photoluminescence of four different QDs from 4 different aper-
tures on the 3-electrode device. The bias configuration of each PL col-
umn is indicated at the top. The lateral axis represents the applied
voltage V in each case and the vertical axis represents the PL energy
from a single aperture.
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two lines labelled as X and XX coexist over a wide range of applied voltages, which is

tyipcal for the neutral and biexciton states.[39, 71] Second, excitation-power-dependent

measurements show that the line identified as X dominates under low excitation fluence

conditions. Third, the observed blue shift of the X+ PL line relative to the X PL line

(by 3.5eV) is consistent with previous measurements of the energy shift associated with

X+ states.[39]

We observe similar photoluminescence features in QD (b), (c), and (d). The

energy differences between the neutral exciton state and the positively charged state

vary between different dots. This is likely due to the different electron-hole interaction

strength as a result of variations in QD size and composition.

For the data presented in the right column, we apply equal and opposite voltages

to the two lateral electrodes while grounding the top electrode. We will name this

voltage configuration the lateral bias. The magnitude of the voltage applied is the

same as the vertical bias configuration. Under these conditions we observe the same

charging sequence in each QD, just as the left column. The difference is the symmetry.

For example: in QD (a), the positively charged exciton emerges symmetrically at

V=0.6V and V=-0.6V. The same symmetric charging PL map can be seen in QD (b)

and (c). This symmetric feature is characteristic of the majority of the apertures that

we surveyed. Very occasionally, we could observe asymmetric charging features similar

to those obtained under the vertical bias, as shown in QD (d). The faint charged line

around 1288.5meV shows up only on one side of the PL bias map, in contrast to the

symmetric charging pattern observed in apertures a, b, and c.

10.2.2 Power Dependence

The charging observed in Figure 10.1. could come from either electrical in-

jections of a single charge carrier or from optical generations of an electron-hole pair

followed by the escape of one of the carriers by tunneling. In the case of electrical

injection, it is possible for the resident charge to escape the QD, but it is likely that an

additional carrier will then tunnel into the QD because the Fermi level is at or below
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Figure 10.2: Power dependence study of the charged states. (a) the vertical bias PL
map of QD (a). (b) The PL intensity of the neutral exciton state (red
X) and positively charged states (black X+) with different excitation
intensity. The top voltage is fixed at -0.49V. (dashed line in (a))

the energy level of the QD. As a result, under electrical charging conditions the charged

and neutral states typically co-exist over a relatively small range of applied voltages.

When a QD is charged with a single carrier through optical charging, subsequent PL

recombination events will take place in the presence of that excess charge, emitting PL

associated with the charged exciton state, until the second (resident) charge escapes

through tunneling or non-radiative relaxation. Once the resident charge has escaped,

neutral exciton emission can be observed until one of the optically generated charges

again escapes to leave a resident charge. As a result, neutral and charged exciton PL

can both be observed over a relatively large range of applied bias voltages. Moreover,

the ratio of neutral to charged exciton PL depends more sensitively on excitation power

because two optical excitation events must occur faster than the loss rate of the resident

charge in order for emission from an optical charged exciton state to be observed.

To distinguish electrical and optical charging in our devices we first note that

the charged state turns on relatively sharply as a function of applied bias voltage,

at approximately -0.3V for QD (a) as shown in Figure 10.1(a). The charged state

coexists with the neutral exciton state for only a small range of applied voltage. Next,

we measure the PL under a negative vertical bias with different excitation powers. We
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choose the voltage where the charged state is bright and the neutral exciton almost

disappears, as indicated by the dashed line in Figure 10.2(a). Figure 10.2(b) shows

the PL intensity of the neutral state (red) and the charged state (black) as a function

of the excitation laser intensity. The neutral exciton’s intensity is close to zero when

the excitation power is low, and it remains smaller than the charged exciton intensity

when the excitation power is smaller than 10µW. When the excitation power is higher

than 10µW, the neutral exciton’s intensity increases drastically, which results in a

much higher PL intensity than the charged state. Together these data show that

charging comes from electrically-injected holes rather than optical charging. The fact

that our sample and substrate are both lightly p-doped provides furher evidence that

the charged state is generated by an electrically-injected hole.

10.2.3 Wavelength Dependence

(a) (b)

Figure 10.3: Wavelength dependent study of a single QD PL. The same wavelength
threshold for QD PL is found in measurement with 5uW (a) and 50uW
(b) excitation powers.

To further investigate this charging effect, we conduct wavelength-dependent

micro-PL measurement on these QDs. The PL of QD(c) as a function of excitation

wavelength is shown in Figure 10.3. The PL intensity begins to drop significantly

when the excitation wavelength increases from 820nm to 830nm, and reaches zero
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for excitation wavelengths longer than 830 nm. This indicates that carriers involved

in PL emission are generated by excitation across the GaAs bandgap, with weaker

generation through near-band-gap impurity states that typically emit at around 830

nm. This excitation wavelength threshold does not change with different excitation

powers, as compared in Figure 10.3(a) and (b). This threshold also remains the same

for different QDs, as shown in the appendix. The fact that we do not observe PL

emission for excitation wavelengths longer than 830 nm indicates that the Fermi level

of the device at 8K is close to the valence band-edge. Because the Schottky barriers

height of the metal contacts are close to the mid-band of GaAs, there is a significant

amount of band-bending near the metal contacts. Moreover, the close-to-band-edge

Fermi level also reduces the depletion width of the substrate. As a result, the exact

electric field applied to these QDs cannot be simply calculated by a linear function of

the applied voltages.

10.3 COMSOL simulation

The mechanism of these charging effects can be qualitatively explained by the

band-bendings as a function of bias by using COMSOL simulations with the semi-

conductor model. We build the device model with a geometry mimicking the device

structures in the SEM picture. For non-polar semiconductors like GaAs, we use 0.8V as

the Schottky barrier height for Ti/Au metal contact. We use a Fermi level that’s close

to what we deducted from the wavelength-dependent measurement for all simulations.

The electric potential and the band diagram in the device are shown in Figure 10.4

and Figure 10.5.

10.3.1 Vertical Bias

The colored surface map in Figure 10.4 (a) shows the electric potential of the

3-electrode device with -1V applied to the top electrode and two grounded lateral

electrodes. The bias forms a large potential gradient near the two lateral electrodes,

while the rest of the mesa’s potential remains relatively flat. A more direct view is
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Figure 10.4: COMSOL simulation showing the device band-structure under (a) neg-
ative vertical bias and (b) positive vertical bias. The surface map shows
the relative electric potential in the device. (c) and (d) shows the band
structure along the vertical (c) and lateral (d) cut-lines in the mesa,
corresponding to the bias applied.

presented in the band diagrams in (c) and (d). The vertical white line in Figure 10.4

(a) follows the center of the mesa, and the horizontal white line represents the location

of the QDs. The red curves in Figure 10.4 (c) and (d) show the 1-D band structure

along the vertical and horizontal cut-lines, respectively. We can see that in the lateral

direction, there is little electric field at the center of the mesa. Most of the electric

field is concentrated at the outer 100nm edge of the mesa. In the vertical direction,

the band remains relatively flat at all regions.

In contrast, the electrical potential when we apply +1V on the top electrode

and ground the two lateral electrodes is shown in Figure 10.4 (b). We again show the

band structures along the two white lines in (c), (d), this time with the blue curves.
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Under these voltage conditions, the lateral band-bending is much smaller compared to

(a) and the band-bending in the vertical direction becomes larger. We expect that the

band bending could extend to the spatial location of the QDs if higher voltages were

applied.

10.3.2 Lateral Bias

0V

1V -1V

0V

-1V 1V

z

z

x

(a)

(b)

(d)

(c)

Figure 10.5: COMSOL simulation showing the device band-structure under (a) pos-
itive lateral bias and (b) negative lateral bias. The surface map shows
the relative electric potential in the device. (c) and (d) shows the band
structure along the vertical (c) and lateral (d) cut-lines in the mesa,
corresponding to the bias applied.

The electric potential and band structures of the device under the lateral bias

conditions is shown in Figure 10.5. The surface map in Figure 10.5(a) shows that when

we apply 1V on the left electrode and -1V on the right electrode, a large potential
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gradient is formed near the left electrode. This is obvious when we look at the band-

structure at the QD-level horizontal cut-line shown in Figure 10.5(d) in red. If we flip

the symmetry and apply positive voltage to the right electrodes, we observe that the

band-structure in the lateral direction flips symmetrically as well, as indicated by the

blue curve in (d). In both cases, there is a large band bending in the vertical direction,

as shown by the band-structure in Figure 10.5(c).

10.3.3 Charging a QD using Lateral Electric Field

Considering the band-bending under these bias conditions and the location of

the quantum dot, it’s likely that the charging comes from the induced lateral electric

field. At 8K, unintentionally p-doped carriers will freeze out, pushing the Fermi level

close to the valence band edge. While these carriers are not able to escape to the GaAs

valence band, they could form a carrier reservoir at the wetting layer. When the lateral

electric field is high on either side, carrier to tunnelling into the QD from the wetting

layer becomes possible. We stress that it is the changing lateral electric field profile

that leads to the charging observed under BOTH lateral and vertical applied bias.

To understand the range of observed charging patterns, we now consider several

illustrative potential locations for the QDs within the mesa. We will first analyze

the case where the QDs are located near the center of the mesa, such as QD1 and

QD2 drawn in Figure 10.4 and 10.5. Under a negative vertical bias, a large lateral

electric field can be formed around the QD while the vertical electric field component

is negligible. In this case holes can easily tunnel into the QD from either side of the

mesa because of the induced lateral electric field. On the other hand, holes are not

likely to be injected into the QD when the top electrode has a positive bias, because

the lateral electric field component is small. The reduction in PL intensity, in this case,

is likely due to the vertical electric field. Because the QDs are located near the center

of the mesa, reversing the symmetry of the bias from the two lateral electrodes will

result in charging from the opposite side, i.e. a symmetrical charging pattern centered

around 0V. This is likely the case for QD (a), (b) and (c) in Figure 10.1.
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In contrast, when the QD is located on the edge of the mesa, such as QD3

in Figure 10.4 and Figure 10.5, the charging under vertical bias will be similar to

QD1 and QD2. However, because the band-bending is large when +1V is applied to

the proximate electrode, but very small when -1V is applied, charging through lateral

electric field is only expected for one of the two ‘ends’ of the lateral electric field range.

As a result, the PL bias map should be asymmetrical. This is likely the case for QD

(d) in Figure 10.1. We note that QDs from the edge of the mesa have a much smaller

optical cross-section with the laser excitation, so the PL intensity is much lower. This

is reflected in the PL intensity map and would prevent us from observing many QDs

located near the extreme edges of the mesa.

10.4 Conclusion

In conclusion, the 3-electrode device we fabricated without any insulators shows

interesting photoluminescence effects that indicate charging through a lateral electric

field. We measure the photoluminescence under both vertical and lateral bias condi-

tions, and observe changes in the symmetry of the PL bias map. We conduct power

dependence PL experiments that reveal that the charging comes from electrically-

injected holes. We then use the wavelength-dependent excitation experiment to probe

the rough location of the Fermi level and calculate the band structure under different

biases using COMSOL simulations. The simulations support our hypothesis of lateral

electric field charging, due to the large band-bending near the Schottky contact.

It is likely that there is a 2-D electric field formed near the QD location under our

bias conditions. However, quantitatively characterizing the magnitude and direction

of this field is still challenging. Part of the uncertainty lies in the exact location of the

Fermi level because the competition of photo-generated carriers and frozen carriers are

hard to simulate at a low temperature. Moreover, the lack of Stark shifts in the PL

bias map indicates that the magnitude of the electric field is small. To understand this

result in more detail, a more systematic study of how III-V devices behave at extremely

low temperature is needed.
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Chapter 11

SUMMARY AND FUTURE WORKS

Hole spin states in QDs and QDMs have unique optical properties that can be

used in a wide range of quantum information applications. In this work, we explored

the properties of a single hole spin states under a 2-D electric field. Our main results

can be summarized into two categories:

1. To precisely calculate the energy level of a single hole state, we developed

a hybrid calculation architect that combined the atomistic tight-binding simulation

with a finite matrix approximation. We also developed a data visualization algorithm

using MATLAB that illustrated the spin texture of a single hole state. Using these

computational methods, we discovered that lateral electric fields can polarize the hole

spin in a single QD under a Voigt geometry magnetic field. Moreover, we can use 2-D

electric fields to induce and control the hole spin mixing effect in a InAs/GaAs QDM.

2. To design the device that can apply 2-D electric fields to a InAs QD or QDM,

we used COMSOL device simulation with the semiconductor module. We proposed a

3-electrode device design and a 4-electrode device design. We fabricated the 3-electrode

device with an InAs QD sample in a semi-intrinsic GaAs matrix. We observed a shift

in the symmetry of the charging PL diagram when we changed the vertical bias to the

lateral bias. We explained the phenomenon by lateral field induced charging from the

wetting layer, as supported by the COMSOL device simulation.

Our simulation results suggest the possibility of building qubit states with hole

spin states controlled by a 2-D electric field. Our experimental results demonstrate

charging a single QD using lateral electric field, and show our closest effort to engineer

a device that can apply a 2-D electric field. Future research around this topic can

include:
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1. The spin texture concept presented in the simulation results can be explored

in more detail in the future. For example, we could choose to analyze the cross-

section plane of the QD and QDM, under a variety of electric field and magnetic

field conditions. A more comprehensive study on the spin texture could reveal crucial

information on hole spin decoherence, and prompt new device designs for future qubit

applications.

2. The spin polarization effect also has not been observed experimentally yet.

This effect can be resolved theoretically from the polarization of a neutral exciton in

a QD, because only holes will polarize under parallel in-plane electric and magnetic

fields. Specifically, as we rotate the in-plane magnetic field while keeping the in-plane

electric field constant, we should see the ground polarization of a single QD rotates

accordingly.

3. We need better simulations to guide the next generation device design. For

example, including optical excitation effects under low-temperature conditions in these

device simulations can improve the accuracy of our simulations. Based on these simu-

lations, we could deduce the location of the QD in the mesa from its PL spectroscopy

under different biases. Another example is combining the semiconductor device mod-

ule with the FDTD module, and integrate the 3-electrode device or 4-electrode device

with photonic structures such as a waveguide or a photonic crystal cavity.

4. To achieve 2-D electric field control, we need to grow better QD samples with

a lower GaAs background doping level. We could also further reduce the size of the

device to 200nm and use 4 to 6 electrodes to apply 3-D electric field on demand. The

device can also be integrated in a photonic waveguide/cavity structure, for applications

such as tunable single photon sources on chip and tunable spin qubits.
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Appendix A

APPENDIX MATERIALS

A.1 A Simple S-band Model

An example of how tight-binding simulation works can be shown with a simple

s-band model that includes a 1-D crystal of N atoms. For each atom’s wavefunction, we

will only consider the ground orbital state, i.e. s-band. The Bloch states of the system’s

Hamiltonian H can be constructed as a linear combination of atomic wavefunctions

|n⟩:

|k⟩ = 1√
N

N∑
n=1

eikna|n⟩ (A.1)

where a is the lattice constant of the crystal and k is the wave-vector in the

first Brillion zone. The factor 1√
N

is used to normalized the wavefunction. Considering

only nearest neighbour interactions, the overlap of wavefunctions can be written as:

⟨n|n⟩ = 1 ; ⟨n± 1|n⟩ = S; (A.2)

Where S is the overlap between wavefunctions of adjacent atoms. The non-zero

Hamiltonian terms are:

⟨n|H|n⟩ = E0; ⟨n± 1|H|n⟩ = Eij (A.3)

Here E0 is the energy of atomic orbital s in an isolated atom. Eij is the bond

energy between atoms. This term is not calculated, but given or adjusted to match

experiment.
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Using these expressions we can derive the energy of the state |k⟩:

⟨k|H|k⟩ = 1

N

∑
n, m

eik(n−m)a⟨m|H|n⟩

=
1

N

∑
n

⟨n|H|n⟩+ 1

N

∑
n

⟨n− 1|H|n⟩e+ika +
1

N

∑
n

⟨n+ 1|H|n⟩e−ika

= E0 + 2Eij cos(ka)

(A.4)

⟨k|k⟩ = 1

N

∑
n

⟨n+ 1|n⟩e−ika +
1

N

∑
n

⟨n− 1|n⟩e+ika +
1

N

∑
n

⟨n|n⟩e+ika = 1+ 2S cos ka

(A.5)

E(k) =
⟨k|H|k⟩
⟨k|k⟩

=
E0 + 2Eij cos ka

1 + 2S cos ka
(A.6)

A.2 QDM movie
1. symmetric QDM with piezo electric field

• 2ndstate(flipstateatanti− crossing)
https://www.youtube.com/watch?v=k1xumckg3g0

• tracesamestate
https://www.youtube.com/watch?v=lZFljOwuf0o

2. symmetric QDM with lateral electric field

• Fy=10kV/cm
https://www.youtube.com/watch?v=nFIu7y1f4HQ

• Fx with gradient
https://www.youtube.com/watch?v=-4P-wsnSkGA

3. asymmetric QDM

• QDM with vertical field only
https://www.youtube.com/watch?v=m3zaWxGMUHU

• QDM with Fx field (parallel to geometric offset) https://www.youtube.
com/watch?v=0rcmLPcX_Gs
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Figure A.1: A schematic of the resonance fluorescence setup

A.3 Resonance Fluorescence Setup

One of the techniques that can significantly enhance our spectroscopy resolution

beyond the spectrometer’s limit is resonance fluorescence (RF). The resonance fluores-

cence experiment uses a narrow line width wavelength-tunable laser to scan a single

QD’s emission. When the excitation wavelength is on resonance with the QD’s emis-

sion wavelength, strong fluorescence will be emitted from the QD. Typical resonance

fluorescence experiments use linear polarized light to excite the sample and detect the

fluorescence in the crossed polarization while filtering out the reflected laser light. The

resolution limit of this technique is the line-width of the laser and wavelength tunabil-

ity. This could be in the range of hundreds of neV, which is two orders of magnitude

smaller than the resolution of our spectrometer (30µeV at best).

Based on the setup illustrated by Kuhlmann et al. [123], we build a similar
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resonance fluorescence setup as shown in Figure A.1. The tunable NIR CW laser

has a highly linear polarization, and we name it ”s”. We will name the cross-linear

polarized light ”p”. The fiber-coupled ”s” polarized incident light (shown in red) is

reflected by the polarizing beam-splitter, and focused by a NIR objective to excite the

sample. A linear polarizer is used to filter out the unwanted ”p” component before the

polarizing beam splitter (PBS). A 1/4 waveplate is placed before the objective with a

high precision rotation mount.

One of the functions of the 1/4 waveplate is to change the polarization of the

reflected light. When the 1/4 waveplate is at a certain angle, the laser light maintains

its polarization upon reflection from the sample and is thus reflected at the bottom

PBS. However, because the PBS is not perfect, some ”s” polarization light can leak

through the bottom PBS to the top PBS and be reflected to the CMOS camera. This

light-path can be used for microscopy imaging purposes. The fluorescence light will

have both ”s” and ”p” component, so that part of the fluorescence will also reach the

CMOS camera. The majority of the ”p” polarization component of the fluorescence

light will go through the two PBS, and be collected through a single mode fiber to

a single photon counting device. The 1/4 waveplate can also tune the reflected laser

light to ”p” polarization. In this configuration, laser light can easily go through the

two PBS, and can be used as an alignment guide for the detection fiber-coupling.

Although not mentioned by Kuhlmann, it is also very common to used a weak

532nm CW laser to saturate the defect states in GaAs and increase the signal to noise

level, during a resonance fluorescence experiment. This is integrated with a flip mirror

next to the top PBS. Once the location of the aperture that contains QD is detected

using the camera, we can flip down the flip mirror and use an ”s” polarized 532nm CW

laser light to excite the sample along with the tunable laser source.

The laser extinction ratio, meaning the reflected laser light to the detector

divided by the excitation laser intensity, is an indirect measure of the signal to noise

ratio of the setup. Kuhlmann mentioned that accurately tuning the 1/4 waveplate can

help clean up the ellipticity caused by the objective and the sample, which increases
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Figure A.2: Left: The resonance fluorescence setup build on a stage. Right: the
extinction ratio tested with a reflected mirror

the laser extinction ratio from 105 to 108. Additionally, we discovered that switching

the NIR long working distance objective lens to an aspheric objective lens can also

improve the extinction ratio.

An ongoing effort towards building the RF setup is shown in Figure A.2(a).

We integrated all the key optical elements of the RF setup shown before onto an x-z,

tilt/yawn adjustable stage. We can easily switch our current micro-photoluminescence

setup for this portable stage-based RF setup and adjust its position according to the

sample’s position/angle in the cryostat. We also measured the extinction ratio using a

single photon counting module and our Sacher diode laser. We observed a maximum

extinction ratio of 5× 104 with the aspheric lens objective.

A.4 SEM Characterization of Resist for Side Wall Deposition

In chapter 8 we discussed characterizing the slope of the mesa. An SEM image

viewing from the top of the mesa is shown in Figure A.3. We can found that the

distance using a built-in function in the SEM that has an accuracy of around 15nm.
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Figure A.3: A top down view of the mesa structure in the 3-electrode device

We surveyed through a series of these mesas on the device. We measured the top part

of the mesa has an average width of 400nm ± 15nm and the bottom part of the mesa

has an average width of 572nm ± 15nm. We also measured the height of the mesa

using profilometer and found it to be around 330nm. The slope is deduced from these

dimensions to be around 15◦ ± 2◦.

A.5 Different QD Wavelength-dependent PL

In the characterization chapter, we mentioned using wavelength-dependent PL

to test the Fermi level of the sample. Another QD’s wavelength dependent data are

shown in Figure A.4. The QD’s emission peaks disappear when the excitation wave-

length is higher than 830nm, similar to what we have shown before. However, we

do see QD emissions at a different wavelength with a different fluence. This is likely

due to the exciton defect interactions in the sample, as a result of a different level of

saturation of the defects states under different excitation powers.
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Figure A.4: A top down view of the mesa structure in the 3-electrode device
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Appendix B

MATLAB CODE

Here we present the programs that calculate the finite matrix, stark shift, spin,

and spin texture visualization.

B.1 Importdata

1 % This f i l e i s used to import the ho l e s t a t e s and e l e c t r o n

s t a t e s

2 % wave funct i ons au tomat i c a l l y from the t i gh t−b ind ing

s imu l a t i on . We

3 % w i l l s t o r e the data in a matr ix Hamiltomian ”H” . To

maintain the

4 % ca l c u l a t i o n ’ s accuracy , we w i l l i n c l ud e 30 ho l e s t a t e s and

26 e l e c t r o n

5 % s t a t e s .

6

7 t i t l e importdata

8 numf i l e s 1 = 9 ;

9 numf i l e s 2 = 20 ;

10 numf i l e s 3 =16;

11 H=ze r o s (56 ,550524 ,20 ) ;

12 j =20;

13

14 % The data f i l e i s arranged with names ” ho l e s_s t r . ∗ ∗” where

the number in
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15 % the f i l e name i n d i c a t e s the energy s t a t e s . Because t i g h t

b ind ing

16 % s imu l a t i on t r e a t s h o l e s as va l enc e band e l e c t r o n s , there ’ r e

no obv ious

17 % d i f f e r e n c e in the f i l e names between e l e c t r o n and ho l e

s t a t e s . The

18 % sequence o f th e s e energy s t a t e s are determined by t h e i r

co r r e spond ing

19 % energy l e v e l as i n d i c a t e d in ”prob_cwc . ho l e s_s t r ” f i l e s .

The g en e r a l r u l e

20 % fo r f i l e sequence i s that each ho l e s_s t r r e p r e s e n t a b lock

o f ho l e s t a t e s

21 % that ’ s arranged in r e v e r s e o rde r . I t goes ” ho l e s_s t r ” f i r s t

, then ” ho l e s_s t r 3 ”

22 % and then ” ho l e s_s t r 2 ” in the orde r o f energy . the top

va l enc e band ho l e s t a t e s

23 % wavefunct ion i s ” ho l e s_s t r . 2 0” which co r r e spond ing to the

energy o f ”61 .7413meV” .

24

25

26 f o r k = 1 : numf i l e s 1

27 ho l e f i l e n ame = s p r i n t f ( ’ h o l e s_s t r .0%d ’ , k ) ;

28 h o l e f i l e = importdata ( ho l e f i l ename , ’ ’ , 1 ) ;

29 h o l e f i l e=h o l e f i l e . data ;

30 h o l e f i l e ( : , 1 : 4 ) = [ ] ;

31 H( j , : , : )=h o l e f i l e ;

32 j=j −1;

33 end

34
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35 f o r k = 10 : numf i l e s 2

36 ho l e f i l e n ame = s p r i n t f ( ’ h o l e s_s t r .%d ’ , k ) ;

37 h o l e f i l e = importdata ( ho l e f i l ename , ’ ’ , 1 ) ;

38 h o l e f i l e=h o l e f i l e . data ;

39 h o l e f i l e ( : , 1 : 4 ) = [ ] ;

40 H( j , : , : )=h o l e f i l e ;

41 j=j −1;

42 end

43 j=20+numf i l e s 2 ;

44

45 f o r k = 1 : numf i l e s 1

46 ho l e f i l e n ame = s p r i n t f ( ’ ho l e s_s t r 3 .0%d ’ , k ) ;

47 h o l e f i l e = importdata ( ho l e f i l ename , ’ ’ , 1 ) ;

48 h o l e f i l e=h o l e f i l e . data ;

49 h o l e f i l e ( : , 1 : 4 ) = [ ] ;

50 H( j , : , : )=h o l e f i l e ;

51 j=j −1;

52 end

53

54 f o r k = 10 : numf i l e s 2

55 ho l e f i l e n ame = s p r i n t f ( ’ ho l e s_s t r 3 .%d ’ , k ) ;

56 h o l e f i l e = importdata ( ho l e f i l ename , ’ ’ , 1 ) ;

57 h o l e f i l e=h o l e f i l e . data ;

58 h o l e f i l e ( : , 1 : 4 ) = [ ] ;

59 H( j , : , : )=h o l e f i l e ;

60 j=j −1;

61 end

62

63 j=40+numf i l e s 3 ;
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64 f o r k = 1 : numf i l e s 1

65 ho l e f i l e n ame = s p r i n t f ( ’ ho l e s_s t r 2 .0%d ’ , k ) ;

66 h o l e f i l e = importdata ( ho l e f i l ename , ’ ’ , 1 ) ;

67 h o l e f i l e=h o l e f i l e . data ;

68 h o l e f i l e ( : , 1 : 4 ) = [ ] ;

69 H( j , : , : )=h o l e f i l e ;

70 j=j −1;

71 end

72

73 f o r k = 10 : numf i l e s 3

74 ho l e f i l e n ame = s p r i n t f ( ’ ho l e s_s t r 2 .%d ’ , k ) ;

75 h o l e f i l e = importdata ( ho l e f i l ename , ’ ’ , 1 ) ;

76 h o l e f i l e=h o l e f i l e . data ;

77 h o l e f i l e ( : , 1 : 4 ) = [ ] ;

78 H( j , : , : )=h o l e f i l e ;

79 j=j −1;

80 end

81

82 E0_1=importdata ( ’ prob_cwc . ho l e s_s t r ’ ) ;

83 E0_2=importdata ( ’ prob_cwc . ho l e s_s t r 2 ’ ) ;

84 E0_3=importdata ( ’ prob_cwc . ho l e s_s t r 3 ’ ) ;

85

86 f o r i =1:16

87 E0( i )=E0_2( i , 2 ) ;

88 end

89 f o r i =17:36

90 E0( i )=E0_3( i −16 ,2) ;

91 end

92 f o r i =37:56
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93 E0( i )=E0_1( i −36 ,2) ;

94 end

95

96 % To s o r t the energy l e v e l so that the 1 s t energy i s the

l owes t

97 E0=f l i p l r (E0) ;

98

99 % To conver t the energy l e v e l to meV.

100 E0=E0∗(1000) ;

101

102

103

104 Pos i t i o n=importdata ( ’ smal latoms25 . 3 d ’ ) ;

105 PosSca le=importdata ( ’ smal latoms25_sca le . 3 d ’ ) ;

B.2 Finite matrix

1 % This i s the c a l c u a t i o n o f the f i n i t e matr ix e lement f o r a

number o f ho l e

2 % s t a t e s ” Fs ta te ” The c a l c u l a t i o n only has to be done once ,

which i s why

3 % eve ry th ing i s quoted . The i n t e r a c t i o n terms are s t o r ed in

VC f o r l i n e a r

4 % e l e c t r i c f i e l d , and GVC f o r g r ad i en t e l e c t r i c f i e l d .

5

6 Fstate =30;

7

8 % WC=ze r o s ( Fstate , Fstate , 2 , 3 ) ;

9 % VC=ze r o s ( Fstate , Fstate , 3 ) ;

10 % GWC=ze r o s ( Fstate , Fstate , 2 , 3 ) ;
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11 % GVC=ze r o s ( Fstate , Fstate , 3 ) ;

12 %

13 % fo r m=1: Fs ta te

14 % fo r n=1: Fs ta te

15 % fo r l =1:2

16 % fo r i =1:550524

17 % sump=0.0 ;

18 % fo r j =1:10

19 % sump=sump+H(m, i , 2 ∗ j −1)∗H(n , i , 2 ∗ j−2+

l )+H(m, i , 2 ∗ j ) ∗H(n , i , 2 ∗ j−l +1)∗((−1) ^( l −1) ) ;

20 % end

21 % WC(m, n , l , 1 )=WC(m, n , l , 1 )+sump∗PosSca le (

i , 1 ) ;

22 % WC(m, n , l , 2 )=WC(m, n , l , 2 )+sump∗PosSca le (

i , 2 ) ;

23 % WC(m, n , l , 3 )=WC(m, n , l , 3 )+sump∗PosSca le (

i , 3 ) ;

24 % GWC(m, n , l , 1 )=GWC(m, n , l , 1 )+sump∗

PosSca le ( i , 1 ) ∗ PosSca le ( i , 2 ) ;

25 % GWC(m, n , l , 2 )=GWC(m, n , l , 2 )+sump∗

PosSca le ( i , 2 ) ∗ PosSca le ( i , 3 ) ;

26 % GWC(m, n , l , 3 )=GWC(m, n , l , 3 )+sump∗

PosSca le ( i , 1 ) ∗ PosSca le ( i , 3 ) ;

27 % end

28 % end

29 % VC(m, n , 1 )=complex (WC(m, n , 1 , 1 ) ,WC(m, n , 2 , 1 ) ) ;

30 % VC(m, n , 2 )=complex (WC(m, n , 1 , 2 ) ,WC(m, n , 2 , 2 ) ) ;

31 % VC(m, n , 3 )=complex (WC(m, n , 1 , 3 ) ,WC(m, n , 2 , 3 ) ) ;
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32 % GVC(m, n , 1 )=complex (GWC(m, n , 1 , 1 ) ,GWC(m, n , 2 , 1 ) )

;

33 % GVC(m, n , 2 )=complex (GWC(m, n , 1 , 2 ) ,GWC(m, n , 2 , 2 ) )

;

34 % GVC(m, n , 3 )=complex (GWC(m, n , 1 , 3 ) ,GWC(m, n , 2 , 3 ) )

;

35 %

36 % end

37 % end

38 %

B.3 Masterscript to calculate energies and spin wavefunctions with differ-

ent electric field

1 % The f o l l ow i n g i s used to gene ra t e ho l e wave funct i ons with

d i f f e r e n t

2 % e l e c t r i c f i e l d .

3

4 g l o b a l Fs ta te ; % number o f s t a t e s that ’ s i n c luded

in the s imu l a t i on

5 g l o b a l Spindata ; % Matrix that c on t a i n s the net

sp in va lue with d i f f e r e n t E f i e l d

6 g l o b a l Energydata ; % Matrix that c on t a i n s the energy

va lue with d i f f e r e n t E f i e l d

7 g l o b a l Enum; % The e l e c t r i c f i e l d index

8 g l o b a l Enummax ; % The maximum number o f e l e c t r i c

f i e l d to i n c l ud e in the s imu l a t i on

9 g l o b a l Eper ; % The matr ix that c on t a i n s the

va lue o f e l e c t r i c f i e l d s
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10 g l o b a l Heigen ; % The energy s t a t e s wave funct ion

c a l c u l a t e d with the f i n i t e matr ix method

11 g l o b a l NEK; % A matrix o f e n e r g i e s o f each

e ighen s t a t e s with d i f f e r e n t e l e c t r i c f i e l d

12

13

14 Fstate =56;

15 Enummax=57;

16 Eper=z e r o s (1 ,Enummax) ;

17 imas t e r =1;

18

19 Spindata=z e r o s (Enummax, 3 ) ;

20 Energydata=z e r o s (Enummax, 4 ) ;

21 Heigen=ze r o s (Enummax,550524 , 20 ) ; % Wavefunction

a f t e r p e r tu rba t i on

22 NEK=ze r o s ( Fstate ,Enummax) ;

23

24 % Se t t i n g up the va lue o f e l e c t r i c f i e l d and s t o r e i t to

matr ix Eper

25

26 f o r Enum=1:19

27 Eper (Enum)=−200+10∗(Enum−1) ;

28 end

29 f o r Enum=20:39

30 Eper (Enum)=−20+2∗(Enum−19) ;

31 end

32 f o r Enum=40:Enummax

33 Eper (Enum)=Eper (39 ) +10∗(Enum−39) ;

34 end
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35

36 % For each e l e c t r i c f i e l d , c a l c u l a t e d the co r r e spond ing

wave funct ion and

37 % energy l e v e l .

38

39 f o r Enum=1:Enummax

40 Per tu rbat i on ;

41 end

42

43 % The f o l l ow i n g code i s used to determin and f l i p the ground

ho l e s t a t e s

44 % and second lowes t ho l e s t a t e s , i f there ’ s a c r o s s i n g / ant i−

c r o s s i n g

45 % between them . This happens when the f i n i t e matr ix can not

p r e c i s e l y

46 % pr ed i c t the energy l e v e l o f the ho l e s t a t e s at high

e l e c t r i c f i e l d

47 % (>100kV/cm) and the bottom two s t a t e s f l i p s p o s i t i o n .

Usua l ly l e s s than 2

48 % f l i p po i n t s should occur . I f there ’ s more than that , check

the p r ev i ou s

49 % code f o r c o r r e c t n e s s .

50

51 % DataStore ;

52 % imas te r =1;

53

54 % Determine the number o f sw i t ch po i n t s based on the energy

l e v e l
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55 % d i f f e r e n c e . And s t o r e the c r o s s i n g po i n t s to sw i t chpo in t

matr ix .

56

57 % fo r Enum=2:Enummax−1

58 % i f ( ( Energydata (1 ,Enum−1)−Energydata (2 ,Enum−1) )>(

Energydata (1 ,Enum)−Energydata (2 ,Enum) ) )

59 % i f ( ( Energydata (1 ,Enum)−Energydata (2 ,Enum) )<(

Energydata (1 ,Enum+1)−Energydata (2 ,Enum+1) ) )

60 % i f ( abs ( Eper (Enum) ) > 20)

61 % Switchpo int ( imas t e r )=Enum;

62 % imas te r=imas t e r +1;

63 % end

64 % end

65 % end

66 % end

67 % imas te r=imaster −1;

68

69 % Fl ip the part with l a r g e r e l e c t r i c f i e l d i f there ’ s two

sw i t ch ing po i n t s .

70 % The two sw i t ch ing po i n t s are u s u a l l y symmetric and cen t e r ed

at 0 e l e c t r i c

71 % f i e l d . Re c a l c u l a t i o n the ho l e s t a t e s wave funct ion a f t e r the

f l i p .

72

73 % i f ( imas t e r == 2)

74 % He i g enco r r e c t=z e r o s (Enummax,550524 , 20 ) ;

75 % fo r Enum=1:Enummax

76 % i f (Enum < Switchpo int ( 1 ) | Enum > Switchpo int ( 2 ) )

77 % Per turbat i on ;
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78 % fo r j =1: Fs ta te

79 % fo r l =1:10

80 % He i g enco r r e c t (Enum, : , 2 ∗ l −1)=r e a l ( eigenV ( j ,

eigenH (2 , 2 ) ) ) ∗H( j , : , 2 ∗ l −1)−imag ( eigenV ( j , eigenH (2 , 2 ) ) ) ∗H( j

, : , 2 ∗ l )+He i g enco r r e c t (Enum, : , 2 ∗ l −1) ;

81 % He i g enco r r e c t (Enum, : , 2 ∗ l )=imag ( eigenV ( j ,

eigenH (2 , 2 ) ) ) ∗H( j , : , 2 ∗ l −1)+r e a l ( eigenV ( j , eigenH (2 , 2 ) ) ) ∗H( j

, : , 2 ∗ l )+He i g enco r r e c t (Enum, : , 2 ∗ l ) ;

82 % end

83 % end

84 % Heigen (Enum , : , : )=He i g enco r r e c t (Enum , : , : ) ;

85 % end

86 % end

87 % end

88

89 %Fl ip one s i d e o f the energy diagram i f there ’ s on ly one

90 %c r o s s i n g / ant i−c r o s s i n g .

91

92

93 % i f ( imas t e r == 1)

94 % He i g enco r r e c t=z e r o s (Enummax,550524 , 20 ) ;

95 % i f ( Eper ( Swi tchpo int ( 1 ) ) < 0)

96 % fo r Enum=1: Swi tchpo int

97 % Per turbat i on ;

98 % fo r j =1: Fs ta te

99 % fo r l =1:10

100 % He i g enco r r e c t (Enum, : , 2 ∗ l −1)=r e a l ( eigenV ( j ,

eigenH (2 , 2 ) ) ) ∗H( j , : , 2 ∗ l −1)−imag ( eigenV ( j , eigenH (2 , 2 ) ) ) ∗H( j

, : , 2 ∗ l )+He i g enco r r e c t (Enum, : , 2 ∗ l −1) ;

158



101 % He i g enco r r e c t (Enum, : , 2 ∗ l )=imag ( eigenV ( j ,

eigenH (2 , 2 ) ) ) ∗H( j , : , 2 ∗ l −1)+r e a l ( eigenV ( j , eigenH (2 , 2 ) ) ) ∗H( j

, : , 2 ∗ l )+He i g enco r r e c t (Enum, : , 2 ∗ l ) ;

102 % end

103 % end

104 % Heigen (Enum , : , : )=He i g enco r r e c t (Enum , : , : ) ;

105 % end

106 % end

107 %

108 % i f ( Eper ( Swi tchpo int ( 1 ) ) > 0)

109 % fo r Enum=Switchpo int :Enummax

110 % Per turbat i on ;

111 % fo r j =1: Fs ta te

112 % fo r l =1:10

113 % He i g enco r r e c t (Enum, : , 2 ∗ l −1)=r e a l ( eigenV ( j ,

eigenH (2 , 2 ) ) ) ∗H( j , : , 2 ∗ l −1)−imag ( eigenV ( j , eigenH (2 , 2 ) ) ) ∗H( j

, : , 2 ∗ l )+He i g enco r r e c t (Enum, : , 2 ∗ l −1) ;

114 % He i g enco r r e c t (Enum, : , 2 ∗ l )=imag ( eigenV ( j ,

eigenH (2 , 2 ) ) ) ∗H( j , : , 2 ∗ l −1)+r e a l ( eigenV ( j , eigenH (2 , 2 ) ) ) ∗H( j

, : , 2 ∗ l )+He i g enco r r e c t (Enum, : , 2 ∗ l ) ;

115 % end

116 % end

117 % Heigen (Enum , : , : )=He i g enco r r e c t (Enum , : , : ) ;

118 % end

119 % end

120 % end

121 Spin ;

B.4 Perturbation
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1 % This i s the c a l c u a t i o n o f the f i n i t e matr ix e lement f o r a

number o f ho l e

2 % s t a t e s ” Fs ta te ” The c a l c u l a t i o n only has to be done once ,

which i s why

3 % eve ry th ing i s quoted . The i n t e r a c t i o n terms are s t o r ed in

VC f o r l i n e a r

4 % e l e c t r i c f i e l d , and GVC f o r g r ad i en t e l e c t r i c f i e l d .

5

6 % Fstate =56;

7 %

8 % WC=ze r o s ( Fstate , Fstate , 2 , 3 ) ;

9 % VC=ze r o s ( Fstate , Fstate , 3 ) ;

10 % GWC=ze r o s ( Fstate , Fstate , 2 , 3 ) ;

11 % GVC=ze r o s ( Fstate , Fstate , 3 ) ;

12 %

13 % fo r m=1: Fs ta te

14 % fo r n=1: Fs ta te

15 % fo r l =1:2

16 % fo r i =1:550524

17 % sump=0.0 ;

18 % fo r j =1:10

19 % sump=sump+H(m, i , 2 ∗ j −1)∗H(n , i , 2 ∗ j−2+

l )+H(m, i , 2 ∗ j ) ∗H(n , i , 2 ∗ j−l +1)∗((−1) ^( l −1) ) ;

20 % end

21 % WC(m, n , l , 1 )=WC(m, n , l , 1 )+sump∗PosSca le (

i , 1 ) ;

22 % WC(m, n , l , 2 )=WC(m, n , l , 2 )+sump∗PosSca le (

i , 2 ) ;
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23 % WC(m, n , l , 3 )=WC(m, n , l , 3 )+sump∗PosSca le (

i , 3 ) ;

24 % GWC(m, n , l , 1 )=GWC(m, n , l , 1 )+sump∗

PosSca le ( i , 1 ) ∗ PosSca le ( i , 2 ) ;

25 % GWC(m, n , l , 2 )=GWC(m, n , l , 2 )+sump∗

PosSca le ( i , 2 ) ∗ PosSca le ( i , 3 ) ;

26 % GWC(m, n , l , 3 )=GWC(m, n , l , 3 )+sump∗

PosSca le ( i , 1 ) ∗ PosSca le ( i , 3 ) ;

27 % end

28 % end

29 % VC(m, n , 1 )=complex (WC(m, n , 1 , 1 ) ,WC(m, n , 2 , 1 ) ) ;

30 % VC(m, n , 2 )=complex (WC(m, n , 1 , 2 ) ,WC(m, n , 2 , 2 ) ) ;

31 % VC(m, n , 3 )=complex (WC(m, n , 1 , 3 ) ,WC(m, n , 2 , 3 ) ) ;

32 % GVC(m, n , 1 )=complex (GWC(m, n , 1 , 1 ) ,GWC(m, n , 2 , 1 ) )

;

33 % GVC(m, n , 2 )=complex (GWC(m, n , 1 , 2 ) ,GWC(m, n , 2 , 2 ) )

;

34 % GVC(m, n , 3 )=complex (GWC(m, n , 1 , 3 ) ,GWC(m, n , 2 , 3 ) )

;

35 %

36 % end

37 % end

38 %

39 %

40

41 F(1 ) =0.0 ; % x d i r e c t i o n E f i e l d mV/Ans

42 F(2 ) =0.0 ; % y d i r e c t i o n mV/Ans

43 F(3 ) =0.01∗Eper (Enum) ; % z d i r e c t i o n in mV/Ans

44
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45 G=0.000 ;

46 G2=0;

47

48 % This i s to c a l c u l a t e the p o t e n t i a l at each i n d i v i d u a l

atomic s i t e . I t ’ s

49 % not r e qu i r e d f o r f i n i t e matr ix c a l c u l a t i o n .

50

51 f o r i =1:550524

52 PosSca le ( i , 8 ) =((F(1 )+G∗PosSca le ( i , 3 )+G2∗PosSca le ( i , 1 ) ) ∗

PosSca le ( i , 1 )+PosSca le ( i , 2 ) ∗F(2 )+PosSca le ( i , 3 ) ∗(F(3 )+G

∗( PosSca le ( i , 1 ) )−G2∗( PosSca le ( i , 3 ) ) ) ) ; % Po t en t i a l

at each po in t

53 end

54

55 V=ze r o s ( Fstate , Fs ta te ) ;

56

57 f o r m=1: Fs ta te

58 f o r n=1: Fs ta te

59 V(m, n )=VC(m, n , 1 ) ∗F(1 )+VC(m, n , 2 ) ∗F(2 )+VC(m, n , 3 ) ∗F

(3 )+2∗G∗GVC(m, n , 3 ) ;

60 end

61 end

62

63 M2=V;

64

65 f o r i =1: Fs ta te

66 M2( i , i )=E0( i )+V( i , i ) ;

67 end

68
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69 NE=so r t ( r e a l ( e i g (M2) ) ) ;

70 NEK( : ,Enum)=NE( : ) ;

71

72 eigenV=ze r o s ( Fstate , Fs ta te ) ; % e i g e nv e c t o r

a f t e r p e r tu rba t i on

73 eigenD=ze r o s ( Fstate , Fs ta te ) ; % d i a g ona l i z e d

matr ix a f t e r p e r tu rba t i on

74 eigenH=ze r o s ( Fstate , Fs ta te ) ;

75

76

77 eigenH=e i g (M2) ;

78 [ eigenV , eigenD ]= e i g (M2) ;

79

80 eigenH ( : , 2 ) =[1 : Fs ta te ] ;

81 eigenH ( : , 1 )=r e a l ( eigenH ( : , 1 ) ) ;

82 eigenH=sor t rows ( eigenH , [ 1 ] ) ;

83 eigenH=f l i p u d ( eigenH ) ;

84

85 f o r j =1: Fs ta te

86 f o r l =1:10

87 Heigen (Enum, : , 2 ∗ l −1)=r e a l ( eigenV ( j , eigenH (1 , 2 ) ) ) ∗H( j , : , 2 ∗

l −1)−imag ( eigenV ( j , eigenH (1 , 2 ) ) ) ∗H( j , : , 2 ∗ l )+Heigen (

Enum, : , 2 ∗ l −1) ;

88 Heigen (Enum, : , 2 ∗ l )=imag ( eigenV ( j , eigenH (1 , 2 ) ) ) ∗H( j , : , 2 ∗ l

−1)+r e a l ( eigenV ( j , eigenH (1 , 2 ) ) ) ∗H( j , : , 2 ∗ l )+Heigen (Enum

, : , 2 ∗ l ) ;

89 end

90 end
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B.5 Stark shift calculation

1 % This s c r i p t c a l c u l a t e d the s t a r k s h i f t o f an a rb i t ua ry

e l e c t r i c f i e l d

2 % given the f i n i t e matr ix Hamiltonian .

3

4 Enummax=50; % Def ine the number o f e l e c t r i c f i e l d s

5 Eper=z e r o s (1 ,Enummax) ; % Def ine the matr ix that c on t a i n s

the e l e c t r i c f i e l d at each d i r e c t i o n

6

7 f o r Enum=1:Enummax

8 Eper (Enum)=−100+(Enum−1) ∗4 ; % Def ine Eper in kV/cm

9

10

11 F(1 ) =0.0 ; % x d i r e c t i o n E f i e l d mV/Ans

12 F(2 ) =0.0 ; % y d i r e c t i o n mV/Ans

13 F(3 ) =0.01∗Eper (Enum) ; % z d i r e c t i o n in mV/Ans

14

15 G=0.000 ;

16 G2=0;

17 f o r i =1:550524

18 PosSca le ( i , 8 ) =((F(1 )+G∗PosSca le ( i , 3 )+G2∗PosSca le ( i , 1 ) ) ∗

PosSca le ( i , 1 )+PosSca le ( i , 2 ) ∗F(2 )+PosSca le ( i , 3 ) ∗(F(3 )+G

∗( PosSca le ( i , 1 ) )−G2∗( PosSca le ( i , 3 ) ) ) ) ; % Po t en t i a l

at each po in t

19 end

20

21

22 V=ze r o s ( Fstate , Fs ta te ) ;
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23

24

25 f o r m=1: Fs ta te

26 f o r n=1: Fs ta te

27 V(m, n )=VC(m, n , 1 ) ∗F(1 )+VC(m, n , 2 ) ∗F(2 )+VC(m, n , 3 ) ∗F

(3 )+2∗G∗GVC(m, n , 3 ) ;

28 end

29 end

30

31 M2=V;

32

33 f o r i =1: Fs ta te

34 M2( i , i )=E0( i )+V( i , i ) ;

35 end

36

37 NE=so r t ( r e a l ( e i g (M2) ) ) ;

38 NEK( : ,Enum)=NE( : ) ;

39

40 eigenV=ze r o s ( Fstate , Fs ta te ) ; % e i g e nv e c t o r

a f t e r p e r tu rba t i on

41 eigenD=ze r o s ( Fstate , Fs ta te ) ; % e i g en va lue

a f t e r p e r tu rba t i on

42 eigenH=ze r o s ( Fstate , Fs ta te ) ;

43

44

45 eigenH=e i g (M2) ;

46 [ eigenV , eigenD ]= e i g (M2) ;

47

48 eigenH ( : , 2 ) =[1 : Fs ta te ] ;
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49 eigenH ( : , 1 )=r e a l ( eigenH ( : , 1 ) ) ;

50 eigenH=sor t rows ( eigenH , [ 1 ] ) ;

51 eigenH=f l i p u d ( eigenH ) ;

52 end

53 Sta rk sh i f tE001=z e r o s (3 ,Enummax) ;

54

55 f o r i =1:Enummax

56 Sta rk sh i f tE001 (1 , i )= Eper ( i ) ;

57 Sta rk sh i f tE001 (2 , i )= NEK(56 , i ) ;

58 Sta rk sh i f tE001 (3 , i )= NEK(55 , i ) ;

59 end

B.6 Spin wavefunction calculation

1 sumplus=z e r o s (1 ,Enummax) ;

2 summinus=z e r o s (1 ,Enummax) ;

3 k=1;

4

5 Sz1=z e r o s (550524 ,Enummax) ;

6 Sx1=ze r o s (550524 ,Enummax) ;

7 Sy1=ze r o s (550524 ,Enummax) ;

8

9 f o r k=1:Enummax

10 H30e=squeeze ( Heigen (k , : , : ) ) ;

11 % H30e=squeeze (H(k , : , : ) ) ;

12 HP30=power (H30e , 2 ) ;

13 PH30=sum(HP30 , 2 ) ;

14 FinalH30=[ Pos i t i on , PH30 ] ;

15

16
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17 f o r i =1:10

18 H30ezup ( : , i )=H30e ( : , i ) ;

19 H30ezdown ( : , i )=H30e ( : , i +10) ;

20 end

21

22 Szup ( : , k )=sum( power (H30ezup , 2 ) , 2 ) ;

23 Szdown ( : , k )=sum( power (H30ezdown , 2 ) , 2 ) ;

24

25 f o r i =1:550524

26 f o r j =1:10

27 Sz1 ( i , k )=Sz1 ( i , k )+H30ezup ( i , j )^2−H30ezdown ( i , j ) ^2 ;

28 Sx1 ( i , k )=Sx1 ( i , k )+2∗H30ezup ( i , j ) ∗H30ezdown ( i , j ) ;

29 end

30 f o r j =1:5

31 Sy1 ( i , k )=Sy1 ( i , k )−2∗H30ezup ( i , 2 ∗ j ) ∗H30ezdown ( i , 2 ∗ j −1)+2∗

H30ezup ( i , 2 ∗ j −1)∗H30ezdown ( i , 2 ∗ j ) ;

32 end

33 end

34

35

36

37 l =1;

38 j =1;

39 f o r i =1:550524

40 i f ( FinalH30 ( i , 1 )+FinalH30 ( i , 2 ) > 0)

41 sumplus ( k )=sumplus ( k )+FinalH30 ( i , 8 ) ;

42 Szupplus (k , l )=Szup ( i , k ) ;

43 Szdownplus (k , l )=Szdown ( i , k ) ;

44 l=l +1;
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45 e l s e

46 summinus ( k )=summinus ( k )+FinalH30 ( i , 8 ) ;

47 Szupminus (k , j )=Szup ( i , k ) ;

48 Szdownminus (k , j )=Szdown ( i , k ) ;

49 j=j +1;

50 end

51 end

52

53 Sz1sum (k )=sum( Sz1 ( : , k ) ) ;

54 Sx1sum(k )=sum( Sx1 ( : , k ) ) ;

55 Sy1sum(k )=sum( Sy1 ( : , k ) ) ;

56

57

58 end

59 %

60 % Szp lus=sum( Szupplus , 2 )−sum( Szdownplus , 2 ) ;

61 % Szminus=sum( Szupminus , 2 )−sum( Szdownminus , 2 ) ;

B.7 Spin binning and integration

1 % This i s the program that b in s the atomic s i t e s and

summarize a l l sp in in

2 % the quantum dot to a s i n g l e p lane . This programs works but

there ’ s a

3 % d i f f e r e n t way to s o l v e t h i s problem : Create a mesh matr ix

that c on t a i n s the

4 % coo rd i n a t e s a (x , y ) plane , where each mesh−g r i d cove r s one/

s e v e r a l b a s i s o f

5 % Ga−As atomic s i t e . Then sea r ch through the p o s i t i o n f i l e

and a l l o c a t e the
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6 % sp in data a c c o rd i n g l y to the g r i d . I su spe c t t h i s w i l l c o s t

more time but

7 % I could be wrong .

8

9 Enum=29;

10 b i n f a c t o r =2; % b i n f a c t o r i s r e l a t e d to numbers

o f atoms to bin

11 z l ow l im i t =−0.5; % lower bond o f the s i n g l e QD

12 z h i g h l im i t =9.5 ; % h ighe r bond o f the s i n g l e QD

13

14 % Addin the a t om i s t i c sp in in f o rmat i on i n t o p o s i t i o n matr ix .

15

16 f o r i =1:550524

17 Pos i t i o n ( i , 8 )=i ;

18 Pos i t i o n ( i , 9 )=Sx1 ( i ,Enum) ;

19 Pos i t i o n ( i , 1 0 )=Sy1 ( i ,Enum) ;

20 Pos i t i o n ( i , 1 1 )=Sz1 ( i ,Enum) ;

21 end

22 j =1;

23

24 % Create a d i f f e r e n t p o s i t i o n 2 matr ix that c on t a i n s a l l the

o r i g i n a l

25 % informat ion , wh i l e conb in ing the c a t i on s i t e s and anion

s i t e s i n t o the

26 % same coo rd i na t e .

27

28 Pos i t i on2=z e r o s (550524 ,11) ;

29 f o r i =1: l eng th ( Po s i t i o n ( : , 1 ) )
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30 i f ( Po s i t i o n ( i , 7 ) == 1)

% As s i t e s

31 Pos i t i on2 ( j , : )=Po s i t i o n ( i , : ) ;

32 j=j +1;

33 e l s e

34 Pos i t i on2 ( j , 1 : 3 )=Po s i t i o n ( i , 1 : 3 ) −0.25;

% Ga s i t e s

35 Pos i t i on2 ( j , 4 : 1 1 )=Po s i t i o n ( i , 4 : 1 1 ) ;

36 j=j +1;

37 end

38 end

39

40 % Create the binned p o s i t i o n / sp in matr ix and s o r t the matr ix

with d i f f e r e n t

41 % Z va lue .

42

43 b inn ing=Pos i t i on2 ;

44 b inn ing=so r t r ows ( binning , [ 3 ] ) ;

45

46 % Se l e c t one o f the z p lane va lu e s and ex t r a c t a l l the data

i n t o

47 % binn i ngp l o t .

48

49 j =1;

50 Zp=−0.5;

51 f o r i =1: l eng th ( Po s i t i on2 ( : , 1 ) )

52 i f ( b inn ing ( i , 3 ) == Zp)

53 b inn i ngp l o t ( j , : )=b inn ing ( i , : ) ;

54 j=j +1;
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55 end

56 end

57

58 % Find the atomic s i t e in Po s i t i on2 where th e r e x and y

l o c a t i o n matches

59 % the ones in b inn ingp lo t , and i n t e g r a t e t h e i r sp in data .

60

61 f o r i =1:550524

62 f o r j =1: l eng th ( b i nn i ngp l o t ( : , 1 ) )

63 i f ( Po s i t i o n ( i , 3 ) > z l ow l im i t && Pos i t i o n ( i , 3 ) <

zh i g h l im i t && Pos i t i on2 ( i , 1 )==b inn i ngp l o t ( j , 1 ) &&

Pos i t i on2 ( i , 2 )==b inn i ngp l o t ( j , 2 ) )

64 b inn i ngp l o t ( j , 9 : 1 1 )=b inn i ngp l o t ( j , 9 : 1 1 )+

Pos i t i on2 ( i , 9 : 1 1 ) ;

65 end

66 end

67 end

68

69 % fu r t h e r b inn ing the data in (x , y ) p lane by 2 .

70

71 f o r i =1: l eng th ( b i nn i ngp l o t ( : , 1 ) )

72 i f (mod( b i nn i ngp l o t ( i , 2 ) , 1 ) ~= 0)

73 b inn i ngp l o t ( i , 2 )=b inn i ngp l o t ( i , 2 ) −0.5;

74 end

75 i f (mod( b i nn i ngp l o t ( i , 1 ) , 1 ) ~= 0)

76 b inn i ngp l o t ( i , 1 )=b inn i ngp l o t ( i , 1 ) −0.5;

77 end

78 end

79 i =2;
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80 whi l e ( i < l eng th ( b i nn i ngp l o t ( : , 1 ) ) )

81 i f ( b i nn i ngp l o t ( i , 1 ) == b inn i ngp l o t ( i −1 ,1) &&

b inn i ngp l o t ( i , 2 ) == b inn i ngp l o t ( i −1 ,2) )

82 b inn i ngp l o t ( i −1 ,9 :11)=b inn i ngp l o t ( i −1 ,9 :11)+

b inn i ngp l o t ( i , 9 : 1 1 ) ;

83 b inn i ngp l o t ( i , : ) = [ ] ;

84 e l s e

85 i=i +1;

86 end

87 end

88

89 % At t h i s point , b i nn i ngp l o t should con ta i n s l im i t amount o f

x , y s i t e and

90 % th e i r c oo rd i na t e should be i n t e g e r . each s i t e should

conta in the

91 % in fo rmat i on o f the wave funct ion / sp in ampl i tude i n t e g r a l

around that (x , y ) l o c a t i o n .

92 % We would l i k e to f u r t h e r reduce the x , y s i t e s to make the

sp in diagram

93 % more v i s u a l l y appea l i ng .

94

95 % This f o l l ow i n g b inn ing sequence i s s p e c i f i c a l l y wr i t t en to

accommodate

96 % the data s t r u c t u r e o f the x and y coo rd i ana t e s . The concept

i s to bin

97 % every y c o o rd i n a t e s wh i l e ma inta in ing the same x . The data

i s then s t o r ed at

98 % matrix b inn ingxb in .

99
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100 b inn i ngp l o t=so r t r ows ( b inn ingp lo t , [ 1 ] ) ;

101

102 b inn ingxb in=z e r o s ( round ( l eng th ( b i nn i ngp l o t ( : , 1 ) ) /( b i n f a c t o r ) )

+1 ,11) ;

103 j =1;

104 k=1;

105 f o r i =1: l eng th ( b i nn i ngp l o t ( : , 1 ) )−1

106 b inn ingxb in ( j , 1 )=b inn i ngp l o t ( i , 1 ) ;

107 b inn ingxb in ( j , 2 )=b inn ingxb in ( j , 2 )+b inn i ngp l o t ( i , 2 ) ;

108 b inn ingxb in ( j , 3 )=b inn i ngp l o t ( i , 3 ) ;

109 b inn ingxb in ( j , 4 : 8 )=b inn i ngp l o t ( i , 4 : 8 ) ;

110 b inn ingxb in ( j , 9 )=b inn ingxb in ( j , 9 )+b inn i ngp l o t ( i , 9 ) ;

111 b inn ingxb in ( j , 1 0 )=b inn ingxb in ( j , 1 0 )+b inn i ngp l o t ( i , 1 0 ) ;

112 b inn ingxb in ( j , 1 1 )=b inn ingxb in ( j , 1 1 )+b inn i ngp l o t ( i , 1 1 ) ;

113 i f (mod(k , b i n f a c t o r ) ~= 0 && b inn i ngp l o t ( i , 1 ) ~= b inn i ngp l o t (

i +1 ,1) )

114 b inn ingxb in ( j , 2 )=b inn ingxb in ( j , 2 ) /k ;

115 k=1;

116 j=j +1;

117 e l s e i f (mod(k , b i n f a c t o r ) ~= 0)

118 k=k+1;

119 e l s e i f (mod(k , b i n f a c t o r ) == 0 && b inn i ngp l o t ( i , 1 ) ==

b inn i ngp l o t ( i −1 ,1) )

120 b inn ingxb in ( j , 2 )=b inn ingxb in ( j , 2 ) / b i n f a c t o r ;

121 k=1;

122 j=j +1;

123 end

124 end

125
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126 % This f o l l ow i n g code does a s im i l a r job except in a

d i f f e r e n t d i r e c t i o n .

127

128 b inn ingxb in=so r t r ows ( b inningxbin , [ 2 ] ) ;

129 b inn ingxb inyb in=z e r o s ( round ( l eng th ( b inn ingxb in ( : , 1 ) ) /(

b i n f a c t o r −1) ) +1 ,11) ;

130 j =1;

131 k=1;

132 f o r i =1: l eng th ( b inn ingxb in ( : , 1 ) )−1

133 b inn ingxb inyb in ( j , 1 )=b inn ingxb inyb in ( j , 1 )+b inn ingxb in ( i

, 1 ) ;

134 b inn ingxb inyb in ( j , 2 )=b inn ingxb in ( i , 2 ) ;

135 b inn ingxb inyb in ( j , 3 )=b inn ingxb in ( i , 3 ) ;

136 b inn ingxb inyb in ( j , 4 : 8 )=b inn ingxb in ( i , 4 : 8 ) ;

137 b inn ingxb inyb in ( j , 9 )=b inn ingxb inyb in ( j , 9 )+b inn ingxb in ( i

, 9 ) ;

138 b inn ingxb inyb in ( j , 1 0 )=b inn ingxb inyb in ( j , 1 0 )+b inn ingxb in ( i

, 1 0 ) ;

139 b inn ingxb inyb in ( j , 1 1 )=b inn ingxb inyb in ( j , 1 1 )+b inn ingxb in ( i

, 1 1 ) ;

140 i f (mod(k , b i n f a c t o r ) ~= 0 && binn ingxb in ( i , 2 ) ~=

binn ingxb in ( i +1 ,2) )

141 b inn ingxb inyb in ( j , 1 )=b inn ingxb inyb in ( j , 1 ) /k ;

142 k=1;

143 j=j +1;

144 e l s e i f (mod(k , b i n f a c t o r ) ~= 0)

145 k=k+1;

146 e l s e i f (mod(k , b i n f a c t o r ) == 0 && binn ingxb in ( i , 2 ) ==

binn ingxb in ( i −1 ,2) )
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147 b inn ingxb inyb in ( j , 1 )=b inn ingxb inyb in ( j , 1 ) /

b i n f a c t o r ;

148 k=1;

149 j=j +1;

150 end

151 i f i == leng th ( b inn ingxb in ( : , 1 ) )−1

152 b inn ingxb inyb in ( j , 1 )=round ( b inn ingxb inyb in ( j , 1 ) /

b i n f a c t o r ) ;

153 end

154 end

155

156 % At the end , we w i l l s imp l i f y the matr ix b inn ingxb inyb in and

e l im i n a t e a l l

157 % the emply e l ements .

158

159 k=1;

160 whi l e ( k < l eng th ( b inn ingxb inyb in ( : , 1 ) ) )

161 k=k+1;

162 i f ( b inn ingxb inyb in (k , 7 ) == 0)

163 b inn ingxb inyb in (k , : ) = [ ] ;

164 k=k−1;

165 end

166 end

167 %

168 % fo r i =1: l eng th ( b inn ingxb inyb in ( : , 2 ) )

169 % i f mod( b inn ingxb inyb in ( i , 2 ) , 1 ) ~= 0

170 % binn ingxb inyb in ( i , 2 )=b inn ingxb inyb in ( i , 2 ) +0.5 ;

171 % end

172 % i f mod( b inn ingxb inyb in ( i , 1 ) , 1 ) ~= 0
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173 % binn ingxb inyb in ( i , 1 )=b inn ingxb inyb in ( i , 1 ) +0.5 ;

174 % end

175 % end

176 % %

177 % binn ingxb inyb in=so r t r ows ( b inn ingxb inyb in , [ 2 , 1 ] ) ;

178 % binn ingxb inyb in2=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) , 11 ) ;

179 % j =1;

180 % fo r i =1: l eng th ( b inn ingxb inyb in ( : , 1 ) )−1

181 % binn ingxb inyb in2 ( j , 1 )=b inn ingxb inyb in ( i , 1 ) ;

182 % binn ingxb inyb in2 ( j , 2 )=b inn ingxb inyb in ( i , 2 ) ;

183 % binn ingxb inyb in2 ( j , 3 )=b inn ingxb inyb in ( i , 3 ) ;

184 % binn ingxb inyb in2 ( j , 4 : 8 )=b inn ingxb inyb in ( i , 4 : 8 ) ;

185 % binn ingxb inyb in2 ( j , 9 )=b inn ingxb inyb in2 ( j , 9 )+

b inn ingxb inyb in ( i , 9 ) ;

186 % binn ingxb inyb in2 ( j , 1 0 )=b inn ingxb inyb in2 ( j , 1 0 )+

b inn ingxb inyb in ( i , 1 0 ) ;

187 % binn ingxb inyb in2 ( j , 1 1 )=b inn ingxb inyb in2 ( j , 1 1 )+

b inn ingxb inyb in ( i , 1 1 ) ;

188 % i f b inn ingxb inyb in ( i , 1 ) ~= binn ingxb inyb in ( i +1 ,1)

189 % j=j +1;

190 % end

191 % end

192

193 % fo r k=1: l eng th ( b inn ingxb inyb in2 ( : , 1 ) )

194 % i f ( b inn ingxb inyb in2 (k , 6 ) == 0)

195 % binn ingxb inyb in2 ( k : l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , : )

= [ ] ;

196 % break ;

197 % end
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198 % end

199 %

200 %

201 % c l e a r Xplane Xpos Yplane Ypos Zplane Zpos Sxplane Syplane

Szp lane ;

202 % j =1;

203 % Xplane=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

204 % Yplane=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

205 % Zplane=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

206 % Xpos=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

207 % Ypos=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

208 % Zpos=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

209 % Sxplane=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

210 % Syplane=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

211 % Szplane=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

212 % Zactua l=z e r o s ( l eng th ( b inn ingxb inyb in2 ( : , 1 ) ) , 1 ) ;

213 %

214 % fo r i =1: l eng th ( b inn ingxb inyb in2 ( : , 1 ) )

215 % Xplane ( j )=b inn ingxb inyb in2 ( i , 1 ) ∗ 0 . 5 6 5 ;

216 % Xpos ( j )=b inn ingxb inyb in2 ( i , 1 ) ;

217 % Yplane ( j )=b inn ingxb inyb in2 ( i , 2 ) ∗ 0 . 5 6 5 ;

218 % Ypos ( j )=b inn ingxb inyb in2 ( i , 1 ) ;

219 % Zplane ( j )=( z l ow l im i t+zh i g h l im i t ) ∗ 0 . 5 6 5/2 ;

220 % Zpos ( j )=Po s i t i o n ( b inn ingxb inyb in2 ( i , 8 ) , 3 ) ;

221 % Zactua l ( j )=PosSca le ( b inn ingxb inyb in2 ( i , 8 ) , 3 ) /10 ;

222 % Sxplane ( j )=b inn ingxb inyb in2 ( i , 9 ) ;

223 % Syplane ( j )=b inn ingxb inyb in2 ( i , 1 0 ) ;

224 % Szplane ( j )=b inn ingxb inyb in2 ( i , 1 1 ) ;

225 % j=j +1;
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226 % end

227 % fo r i =1: l eng th ( Sxplane )

228 % Sxplane ( i )=Sxplane ( i ) ∗Magn i f i c a t i on ;

229 % Syplane ( i )=Syplane ( i ) ∗Magn i f i c a t i on ;

230 % Szplane ( i )=Szplane ( i ) ∗Magn i f i c a t i on ;

231 % end

B.8 Spin texture generation (1 graph)

1 % Spin d i s t r i b u t i o n in z=0 plane

2 Zp=1; % Zplane va lue

3 Enum=29;

4 Magn i f i c a t i on =200;

5

6

7 c l e a r Xplane Xpos Yplane Ypos Zplane Zpos Sxplane Syplane

Szp lane ;

8 %

9 binn ingxyz ;

10 j =1;

11 Xplane=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

12 Yplane=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

13 Zplane=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

14 Xpos=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

15 Ypos=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

16 Zpos=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

17 Sxplane=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

18 Syplane=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

19 Szplane=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;

20 Zactua l=z e r o s ( l eng th ( b inn ingxb inyb in ( : , 1 ) ) ) ;
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21

22

23

24 f o r i =1: l eng th ( b inn ingxb inyb in ( : , 1 ) )

25 Xplane ( j )=PosSca le ( b inn ingxb inyb in ( i , 8 ) , 1 ) /10 ;

26 Xpos ( j )=Po s i t i o n ( b inn ingxb inyb in ( i , 8 ) , 1 ) ;

27 Yplane ( j )=PosSca le ( b inn ingxb inyb in ( i , 8 ) , 2 ) /10 ;

28 Ypos ( j )=Po s i t i o n ( b inn ingxb inyb in ( i , 8 ) , 2 ) ;

29 Zplane ( j )=Zp ∗0 . 5 6 5 ;

30 Zpos ( j )=Po s i t i o n ( b inn ingxb inyb in ( i , 8 ) , 3 ) ;

31 Zactua l ( j )=PosSca le ( b inn ingxb inyb in ( i , 8 ) , 3 ) /10 ;

32 Sxplane ( j )=b inn ingxb inyb in ( i , 9 ) ;

33 Syplane ( j )=b inn ingxb inyb in ( i , 1 0 ) ;

34 Szplane ( j )=b inn ingxb inyb in ( i , 1 1 ) ;

35 j=j +1;

36 end

37 f o r i =1: l eng th ( Sxplane )

38 Sxplane ( i )=Sxplane ( i ) ∗Magn i f i c a t i on ;

39 Syplane ( i )=Syplane ( i ) ∗Magn i f i c a t i on ;

40 Szplane ( i )=Szplane ( i ) ∗Magn i f i c a t i on ;

41 Xplane ( i )=Xplane ( i )−1;

42 Yplane ( i )=Yplane ( i )−1;

43 end

44 f i g u r e s p i n=f i g u r e ( ’ un i t s ’ , ’ normal i zed ’ , ’ p o s i t i o n ’ , [ . 1 . 1 0 . 8

0 . 8 ] , ’ Color ’ , [ 0 . 8 0 . 8 0 . 8 ] , ’ V i s i b l e ’ , ’ on ’ ) ;

45 s e t ( gca , ’ FontS ize ’ , 16 ) ;

46

47

48 % ha_topdown=subp lo t ( 5 , 5 , 1 ) ;
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49 % % Dome ;

50 %

51 % fo r i =1: l eng th ( Sxplane )

52 % arrowhandle=arrow3Dmaxy ( [ Xplane ( i ) , Yplane ( i ) , Zplane ( i )

] , [ Sxplane ( i ) , Syplane ( i ) , Szp lane ( i ) ] , ’ r ’ , 0 . 6 5 ) ;

53 % se t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 2 , 0 . 4 , 0 . 9 ] ) ;

54 % se t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 9 , 0 . 2 , 0 ] ) ;

55 % arrowhandle (1 , 1) . AmbientStrength =0.7 ;

56 % arrowhandle (1 , 2) . AmbientStrength =0.7 ;

57 % arrowhandle (1 , 2) . D i f f u s eS t r eng th =0.9 ;

58 % hold on ;

59 % end

60 % i f (mod(Zp∗4 ,2 ) == 0)

61 % t i t l e ( [ ’ a l l p lane top down ’ ] , ’ FontSize ’ , 1 8 ) ;

62 % e l s e

63 % t i t l e ( [ ’ a l l p lane top down ’ ] , ’ FontSize ’ , 1 8 ) ;

64 % end

65 % x l ab e l ( ’ x ’ , ’ FontSize ’ , 1 6 , ’ Pos i t i on ’ , [ 0 , −10 , −9 .5 ] ) ;

66 % y l ab e l ( ’ y ’ , ’ FontSize ’ , 1 6 , ’ Pos i t i on ’ , [ 1 0 , 0 . 5 , − 9 . 5 ] ) ;

67 % z l a b e l ( ’ z ’ , ’ FontSize ’ , 1 6 , ’ Pos i t i on ’ , [ −9 .5 , −9 ,0 ] ) ;

68 % ax i s ( [−8.5 8 . 5 −8.5 8 . 5 −2 2 ] ) ;

69 % ha_topdown . CameraPosit ion =[6 .3457 , −27.0545 , 1 4 4 . 5 7 8 0 ] ;

70 % ha_topdown . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

71 % ha_topdown . Po s i t i o n =[0 .0556 , 0 .4366 , 0 .2570 ,

0 . 4 7 8 6 ] ;

72 % ha_topdown . Color = [ 1 , 1 , 1 ] ;

73 % ha_topdown . GridColor

=[0 . 313725490196078 ,0 . 313725490196078 ,0 . 313725490196078 ] ;

74 % l i g h t i n g gouraud ;
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75 % caml ight r i g h t ;

76

77 % ha_45=subp lo t ( 5 , 5 , 3 ) ;

78 % fo r i =1: l eng th ( Sxplane )

79 % arrowhandle=arrow3Dmaxy ( [ Xplane ( i ) , Yplane ( i ) , Zplane ( i )

] , [ Sxplane ( i ) , Syplane ( i ) , Szp lane ( i ) ] , ’ r ’ , 0 . 6 5 ) ;

80 % se t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 2 , 0 . 4 , 0 . 9 ] ) ;

81 % se t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 9 , 0 . 2 , 0 ] ) ;

82 % arrowhandle (1 , 1) . AmbientStrength =0.7 ;

83 % arrowhandle (1 , 2) . AmbientStrength =0.7 ;

84 % arrowhandle (1 , 2) . D i f f u s eS t r eng th =0.9 ;

85 % hold on ;

86 % end

87 % i f (mod(Zp∗4 ,2 ) == 0)

88 % t i t l e ( [ ’ a l l p lane 45 degree ’ ] , ’ FontSize ’ , 1 8 ) ;

89 % e l s e

90 % t i t l e ( [ ’ a l l p lane 45 degree ’ ] , ’ FontSize ’ , 1 8 ) ;

91 % end

92 % x l ab e l ( ’ x ’ , ’ FontSize ’ , 1 6 , ’ Pos i t i on ’ , [ 0 , −10 , −9 .5 ] ) ;

93 % y l ab e l ( ’ y ’ , ’ FontSize ’ , 1 6 , ’ Pos i t i on ’ , [ 1 0 , 0 . 5 , − 9 . 5 ] ) ;

94 % z l a b e l ( ’ z ’ , ’ FontSize ’ , 1 6 , ’ Pos i t i on ’ , [ −9 .5 , −9 ,0 ] ) ;

95 % ax i s ( [−8.5 8 . 5 −8.5 8 . 5 −2 2 ] ) ;

96 % ha_45 . CameraPosit ion =[33 .8820 , −111.1006 , 3 4 . 7 6 5 8 ] ;

97 % ha_45 . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

98 % ha_45 . Po s i t i o n =[0 .3806 , 0 .4610 , 0 .2500 , 0 . 4 0 ] ;

99 % ha_45 . Color = [ 1 , 1 , 1 ] ;

100 % ha_45 . GridColor

=[0 . 313725490196078 ,0 . 313725490196078 ,0 . 313725490196078 ] ;

101 % l i g h t i n g gouraud ;
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102 % caml ight r i g h t ;

103

104 ha_f la t=subp lo t ( 5 , 5 , 5 ) ;

105 f o r i =1: l eng th ( Sxplane )

106 arrowhandle=arrow3Dmaxy ( [ Xplane ( i ) , Yplane ( i ) , Zplane ( i ) ] , [

Sxplane ( i ) , Syplane ( i ) , Szp lane ( i ) ] , ’ r ’ , 0 . 6 5 ) ;

107 s e t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 2 , 0 . 4 , 0 . 9 ] ) ;

108 s e t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 9 , 0 . 2 , 0 ] ) ;

109 arrowhandle (1 , 1) . AmbientStrength =0.7 ;

110 arrowhandle (1 , 2) . AmbientStrength =0.7 ;

111 arrowhandle (1 , 2) . D i f f u s eS t r e ng th =0.9 ;

112 hold on ;

113 end

114 i f (mod(Zp∗4 ,2 ) == 0)

115 t i t l e ( [ ’ a l l p lane f l a t ’ ] , ’ FontS ize ’ , 18 ) ;

116 e l s e

117 t i t l e ( [ ’ a l l p lane f l a t ’ ] , ’ FontS ize ’ , 18 ) ;

118 end

119 x l a b e l ( ’ x ’ , ’ FontS ize ’ , 16 , ’ Po s i t i o n ’ , [ 0 , −10 , −9 .5 ] ) ;

120 y l a b e l ( ’ y ’ , ’ FontS ize ’ , 16 , ’ Po s i t i o n ’ , [ 1 0 , 0 . 5 , − 9 . 5 ] ) ;

121 z l a b e l ( ’ z ’ , ’ FontS ize ’ , 16 , ’ Po s i t i o n ’ , [ −9 .5 , −9 ,0 ] ) ;

122 ax i s ( [−8.5 8 . 5 −8.5 8 . 5 −2 2 ] ) ;

123 ha_f la t . CameraPosit ion =[51 .3208 ,−109.7842 , 3 . 6 8 8 1 ] ;

124 ha_f la t . P r o j e c t i o n= ’ p e r s p e c t i v e ’ ;

125 ha_f la t . Po s i t i o n =[0 .71 , 0 .4679 , 0 . 2 5 , 0 . 4 ] ;

126 ha_f la t . Color = [ 1 , 1 , 1 ] ;

127 ha_f la t . GridColor

=[0 . 313725490196078 ,0 . 313725490196078 ,0 . 313725490196078 ] ;

128 l i g h t i n g gouraud ;
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129 caml ight r i g h t ;

130

131

132

133

134

135 % hold on ;

136 % hb=subp lo t ( 5 , 5 , 2 1 ) ;

137 % arrowhandle=arrow3Dmaxy4 ( [ 0 , 0 , 0 ] , [ 1 / s q r t ( 2 ) ,1/ s q r t ( 2 ) , 0 ] , ’ r

’ , 0 . 5 ) ;

138 % se t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 6 , 0 . 4 , 0 . 9 ] ) ;

139 % se t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 5 , 0 . 2 , 0 . 8 ] ) ;

140 % arrowhandle (1 , 1) . AmbientStrength =0.7 ;

141 % arrowhandle (1 , 2) . AmbientStrength =0.7 ;

142 % arrowhandle (1 , 2) . D i f f u s eS t r eng th =0.9 ;

143 % x l ab e l ( ’Bx ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 0 , −1 . 5 , −0 . 65 ] ) ;

144 % y l ab e l ( ’By ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 1 . 5 , 0 , − 0 . 5 ] ) ;

145 % z l a b e l ( ’ Bz ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ −1 . 2 , −1 . 2 , 0 ] ) ;

146 % t i t l e ( ’ Magnetic F i e l d B(1 , 1 , 0 ) 1(T) ’ , ’ FontSize ’ , 1 0 ) ;

147 % ax i s ([−1 1 −1 1 −0.5 0 . 5 ] ) ;

148 % hb . CameraPosit ion=[ 53 .0738 ,−223.3648 , 3 5 . 1 5 4 9 ] ;

149 % % he . Parent . PlotBoxAspectRatio

= [1 , 0 . 780025875322314 , 0 . 425423608921794 ] ;

150 % hb . Po s i t i o n =[0 .0637 , 0 .0945 , 0 .1820 , 0 . 1 6 1 0 ] ;

151 % hb . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

152 % hb . LineWidth=1;

153 % hb . GridColor

=[0 . 313725490196078 ,0 . 313725490196078 ,0 . 313725490196078 ] ;

154 % hb . GridAlpha =0.2 ;
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155 % l i g h t i n g gouraud ;

156 % caml ight r i g h t ;

157

158 %

159 % hold on ;

160 % hs=subp lo t ( 5 , 5 , 2 3 ) ;

161 %

162 % arrowhandle=arrow3Dmaxy4 ( [ 0 , 0 , 0 ] , [ Sx1sum(Enum) , Sy1sum(Enum)

, Sz1sum (Enum) ] , ’ r ’ , 0 . 5 ) ;

163 % se t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 2 , 0 . 4 , 0 . 9 ] ) ;

164 % se t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 9 , 0 . 2 , 0 ] ) ;

165 % arrowhandle (1 , 1) . AmbientStrength =0.7 ;

166 % arrowhandle (1 , 2) . AmbientStrength =0.7 ;

167 % arrowhandle (1 , 2) . D i f f u s eS t r eng th =0.9 ;

168 % x l ab e l ( ’ Sx ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 0 , −1 . 2 , −1 . 2 ] ) ;

169 % y l ab e l ( ’ Sy ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 1 . 2 , 0 , − 1 . 2 ] ) ;

170 % z l a b e l ( ’ Sz ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ −1 . 2 , −1 . 2 , 0 ] ) ;

171 % S t i t l e=s p r i n t f ( ’ Net Spin Sx=%.1d , Sy=%.1d , Sz=%.1d ’ , Sx1sum(

Enum) , Sy1sum(Enum) , Sz1sum (Enum) ) ;

172 % t i t l e ( S t i t l e , ’ Fonts i ze ’ , 1 3 ) ;

173 % ax i s ([−1 1 −1 1 −1 1 ] ) ;

174 % hs . CameraPosit ion =[5 .1447 , −15.9800 , 4 . 2 6 2 6 ] ;

175 % hs . LineWidth=1;

176 % hs . Po s i t i o n =[0 .4223 , 0 .0705 , 0 .1860 , 0 . 2 7 4 0 ] ;

177 % hs . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

178 % hs . GridColor

=[0 . 313725490196078 ,0 . 313725490196078 ,0 . 313725490196078 ] ;

179 % hs . GridAlpha =0.2 ;

180 % l i g h t i n g gouraud ;
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181 % caml ight r i g h t ;

182

183

184

185 % subp lo t ( 5 , 5 , 2 4 ) ;

186 % hs2=qu ive r ( 0 , 0 , Sx1sum(Enum) , Sy1sum(Enum) ) ;

187 % x l ab e l ( ’ Sx ’ , ’ FontSize ’ , 1 0 ) ;

188 % y l ab e l ( ’ Sy ’ , ’ FontSize ’ , 1 0 ) ;

189 % hs2 . LineWidth=2;

190 % hs2 . MaxHeadSize=2;

191 % hs2 . Parent . Po s i t i o n =[0 .6184 , 0 .1439 , 0 .0582 ,

0 . 0 9 0 4 ] ;

192 % hs2 . Parent . CameraUpVector=[−0.0411 , 0 .0912 , 0 ]

193 % hs2 . Color = [ 0 . 9 , 0 . 2 , 0 . 2 ] ;

194

195

196 %

197 % hold on ;

198 % he=subp lo t ( 5 , 5 , 2 5 ) ;

199 % i f ( abs ( Eper (Enum) ) > 25)

200 % arrowhandle=arrow3Dmaxy3 ( [ 0 , 0 , 0 ] , [ − Eper (Enum) / s q r t ( 2 ) , Eper (

Enum) / s q r t ( 2 ) , 0 ] , ’ r ’ , 0 . 5 ) ;

201 % se t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 1 , 0 . 8 , 0 . 2 ] ) ;

202 % se t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 1 , 0 . 8 , 0 . 5 ] ) ;

203 % arrowhandle (1 , 1) . AmbientStrength =0.7 ;

204 % arrowhandle (1 , 2) . AmbientStrength =0.7 ;

205 % arrowhandle (1 , 2) . D i f f u s eS t r eng th =0.9 ;

206 %

207 % x l ab e l ( ’Ex ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 0 , −250 , −230 ] ) ;

185



208 % y l ab e l ( ’Ey ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 2 50 , 0 , −180 ] ) ;

209 % z l a b e l ( ’ Ez ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ −230 , −230 ,0 ] ) ;

210 % E t i t l e=s p r i n t f ( ’ E l e c t r i c F i e l d (−1 ,1 ,0) %d(kV/cm) ’ , Eper (

Enum) ) ;

211 % t i t l e ( E t i t l e , ’ Fonts i ze ’ , 1 0 ) ;

212 % ax i s ([−180 180 −180 180 −180 180 ] ) ;

213 % he . CameraPosit ion =[597 .8 ,−2424.8 , 1 8 6 6 . 3 ] ;

214 % he . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

215 % he . LineWidth=1;

216 % e l s e

217 % arrowhandle=arrow3Dmaxy2 ( [ 0 , 0 , 0 ] , [ − Eper (Enum) / s q r t ( 2 ) , Eper (

Enum) / s q r t ( 2 ) , 0 ] , ’ r ’ , 0 . 5 ) ;

218 % se t ( arrowhandle ( 1 ) , ’ FaceColor ’ , [ 0 . 1 , 0 . 8 , 0 . 2 ] ) ;

219 % se t ( arrowhandle ( 2 ) , ’ FaceColor ’ , [ 0 . 1 , 0 . 8 , 0 . 5 ] ) ;

220 % arrowhandle (1 , 1) . AmbientStrength =0.7 ;

221 % arrowhandle (1 , 2) . AmbientStrength =0.7 ;

222 % arrowhandle (1 , 2) . D i f f u s eS t r e ng th =0.9 ;

223 % x l ab e l ( ’Ex ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 0 , −24 , −4 ] ) ;

224 % y l ab e l ( ’Ey ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ 2 4 , 0 , − 3 . 5 ] ) ;

225 % z l a b e l ( ’ Ez ’ , ’ FontSize ’ , 1 0 , ’ Pos i t i on ’ , [ −23 , −23 ,0 ] ) ;

226 % ax i s ([−18 18 −18 18 −3 3 ] ) ;

227 % he . CameraPosit ion=[ 53 .0738 ,−223.3648 , 3 5 . 1 5 4 9 ] ;

228 % he . LineWidth=1;

229 % E t i t l e=s p r i n t f ( ’ E l e c t r i c F i e l d ( 1 , 1 , 0 ) %d(kV/cm) ’ , Eper (Enum

) ) ;

230 % t i t l e ( E t i t l e , ’ Fonts i ze ’ , 1 0 ) ;

231 % he . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

232 % end

233 % he . Po s i t i o n =[0 .7733 , 0 .1017 , 0 .1876 , 0 . 1 6 1 3 ] ;
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234 % he . P r o j e c t i o n =’ p e r sp e c t i v e ’ ;

235 % he . GridColor

=[0 . 313725490196078 ,0 . 313725490196078 ,0 . 313725490196078 ] ;

236 % he . GridAlpha =0.2 ;

237 % l i g h t i n g gouraud ;

238 % caml ight r i g h t ;

239

240 % f i g u r e s p i n . InvertHardcopy = ’ o f f ’ ;

241 %

242 % d i g i t s ( 2 ) ;

243 % f i l ename=s p r i n t f ( ’%d ’ ,Enum) ;

244 % % saveas ( f i g u r e s p i n , f i l ename , ’ jpeg ’ ) ;

245 % saveas ( f i g u r e s p i n , f i l ename , ’ t i f f ’ ) ;

246 c l e a r f i g u r e s p i n ;

247

248 c l e a r Po s i t i on2 b i nn i ngp l o t b inn ingxb in b inn ingxb inyb in ;

B.9 Spin movie generation

1 % Spin movie

2 SpinImage1=c e l l ( 5 7 , 1 ) ;

3 SpinImage2=c e l l ( 6 0 , 1 ) ;

4 SpinImage3=c e l l ( 2 2 , 1 ) ;

5

6 f o r i =1:57

7 Image f i l ename=s p r i n t f ( ’%d . t i f ’ , i ) ;

8 % fu l lname= f u l l f i l e ( ’ p i c t u r e s cy l i nd e r ’ , Image f i l ename ) ;

9 SpinImage1{ i }=imread ( Image f i l ename ) ;

10 Imageperframe1=4;

11 end
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12

13 % fo r i =1:60

14 % Imagef i l ename=s p r i n t f ( ’%d . t i f ’ , i ) ;

15 % fu l lname= f u l l f i l e ( ’ Camera r o t a t i o n top down to f l a t ’ ,

Image f i l ename ) ;

16 % SpinImage2{ i }=imread ( fu l lname ) ;

17 % Imageperframe2=1;

18 % end

19 %

20 % fo r i =1:22

21 % Imagef i l ename=s p r i n t f ( ’%d . t i f ’ , i ) ;

22 % fu l lname= f u l l f i l e ( ’ top down ’ , Image f i l ename ) ;

23 % SpinImage3{ i }=imread ( fu l lname ) ;

24 % Imageperframe3=4;

25 % end

26

27 % cr e a t e the v ideo w r i t e r with 1 f p s

28 wr i te rObj = VideoWriter ( ’ Spin animation a l l p lane E(−1 ,1 ,0)

3 ang l e ’ ) ;

29 wr i te rObj . FrameRate = 10 ;

30 % wri te rObj . Qua l i ty =80;

31 % open the v ideo w r i t e r

32 open ( wr i t e rObj ) ;

33 f o r u=1: l eng th ( SpinImage1 )

34 f o r v=1: Imageperframe1

35 wr i teVideo ( wr iterObj , SpinImage1{u}) ;

36 end

37 end

38
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39 % fo r u=1: l eng th ( SpinImage2 )

40 % fo r v=1: Imageperframe2

41 % wri teVideo ( wr iterObj , SpinImage2{u}) ;

42 % end

43 % end

44 %

45 % fo r u=1: l eng th ( SpinImage3 )

46 % fo r v=1: Imageperframe3

47 % wri teVideo ( wr iterObj , SpinImage3{u}) ;

48 % end

49 % end

50 c l o s e ( wr i t e rObj ) ;

B.10 Arrowplot modified from online sources

1 f un c t i on arrowHandle = arrow3Dmaxy ( pos , de l taVa lues ,

colorCode , stemRatio )

2

3 % arrowHandle = arrow3D ( pos , de l taVa lues , colorCode ,

stemRatio )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %

5 % Used to p l o t a s i n g l e 3D arrow with a c y l i n d r i c a l stem

and cone arrowhead

6 % pos = [X,Y, Z ] − s p a t i a l l o c a t i o n o f the s t a r t i n g po in t

o f the arrow ( end o f stem )

7 % de l t aVa lue s = [QX,QY,QZ] − de l t a parameters denot ing

the magnitude o f the arrow along the x , y , z−axes ( r e l a t i v e

to ’ pos ’ )
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8 % colorCode − Color parameters as per the ’ su r f ’ command .

For example , ’ r ’ , ’ red ’ , [ 1 0 0 ] a re a l l examples o f a

red−c o l o r ed arrow

9 % stemRatio − The r a t i o o f the l eng th o f the stem in

propo r t i on to the arrowhead . For example , a c a l l o f :

10 % arrow3D ( [ 0 , 0 , 0 ] , [ 1 0 0 , 0 , 0 ] , ’ r ’ , 0 . 8 2 )

w i l l produce a red arrow o f magnitude 100 , with the

arrowstem spanning a d i s t an c e

11 % of 82 ( note 0 . 82 r a t i o o f l eng th 100) wh i l e

the arrowhead ( cone ) spans 18 .

12 %

13 % Example :

14 % arrow3D ( [ 0 , 0 , 0 ] , [ 4 , 3 , 7 ] ) ; %−−−− arrow with d e f a u l t

parameters

15 % ax i s equa l ;

16 %

17 % Author : Shawn Arseneau

18 % Created : September 14 , 2006

19 % Updated : September 18 , 2006

20 %

21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 i f narg in <2 | | narg in >4

23 e r r o r ( ’ I n c o r r e c t number o f i nput s to arrow3D ’ ) ;

24 end

25 i f numel ( pos )~=3 | | numel ( de l t aVa lue s )~=3

26 e r r o r ( ’ pos and/ or de l t aVa lue s i s i n c o r r e c t d imens ions

( should be th r e e ) ’ ) ;
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27 end

28 i f narg in <3

29 co lorCode = ’ i n t e r p ’ ;

30 end

31 i f narg in <4

32 stemRatio = 0 . 7 5 ;

33 end

34

35 X = pos (1 ) ; %−−−− with t h i s notat ion , th e r e i s no need to

t r an spo s e i f the use r has chosen a row vs c o l v e c t o r

36 Y = pos (2 ) ;

37 Z = pos (3 ) ;

38

39 [ sphi , s theta , s rho ] = car t2 sph ( de l t aVa lue s ( 1 ) ,

d e l t aVa lue s ( 2 ) , d e l t aVa lue s ( 3 ) ) ;

40

41 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CYLINDER ==

STEM ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 cy l i nde rRad iu s = 0 .2∗ srho ;

43 i f ( c y l i nde rRad iu s > 0 . 0 8 )

44 cy l i nde rRad iu s = 0 . 0 8 ;

45 end

46 cy l i nde rLeng th = srho ∗ stemRatio ;

47 [CX,CY,CZ] = c y l i n d e r ( cy l i nde rRad iu s ) ;

48 CZ = CZ. ∗ cy l i nde rLeng th ; %−−−− l eng then

49

50 %−−−−− ROTATE CYLINDER

51 [ row , c o l ] = s i z e (CX) ; %−−−− i n i t i a l r o t a t i o n to

c o i n c i d e with X−ax i s
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52

53 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [CX( : ) , CY( : ) , CZ ( : ) ] ) ;

54 CX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

55 CY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

56 CZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

57

58 [ row , c o l ] = s i z e (CX) ;

59 newEll = r o t a t ePo i n t s ( de l taVa lues , [CX( : ) , CY( : ) , CZ ( : ) ] )

;

60 stemX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

61 stemY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

62 stemZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

63

64 %−−−−− TRANSLATE CYLINDER

65 stemX = stemX + X;

66 stemY = stemY + Y;

67 stemZ = stemZ + Z ;

68

69

70 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CONE ==

ARROWHEAD

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

71 coneLength = srho ∗(1− stemRatio ) ;

72 coneRadius = cy l i nde rRad iu s ∗ 1 . 5 ;

73 i n c r = 8 ; %−−−− Steps o f cone increments

74 c on e i n c r = coneRadius / i n c r ;

75 [ coneX , coneY , coneZ ] = c y l i n d e r ( cy l i nde rRad iu s ∗1.5:−

c on e i n c r : 0 ) ; %−−−−−−−−−− CONE

76 coneZ = coneZ . ∗ coneLength ;
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77

78 %−−−−− ROTATE CONE

79 [ row , c o l ] = s i z e ( coneX ) ;

80 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

81 coneX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

82 coneY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

83 coneZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

84

85 newEll = r o t a t ePo i n t s ( de l taVa lues , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

86 headX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

87 headY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

88 headZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

89

90 %−−−− TRANSLATE CONE

91 V = [ 0 , 0 , s rho ∗ stemRatio ] ; %−−−− c e n t e r l i n e f o r

c y l i n d e r : the mu l t i p l i e r i s to s e t the cone ’ on the

rim ’ o f the c y l i n d e r

92 Vp = ro t a t ePo i n t s ( [ 0 0 −1] , V) ;

93 Vp = ro t a t ePo i n t s ( de l taVa lues , Vp) ;

94 headX = headX + Vp(1 ) + X;

95 headY = headY + Vp(2 ) + Y;

96 headZ = headZ + Vp(3 ) + Z ;

97 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

98 hStem = su r f ( stemX , stemY , stemZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;
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99 hold on ;

100 hHead = su r f ( headX , headY , headZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

101

102 i f nargout==1

103 arrowHandle = [ hStem , hHead ] ;

104 end

1 f un c t i on arrowHandle = arrow3Dmaxy ( pos , de l taVa lues ,

colorCode , stemRatio )

2

3 % arrowHandle = arrow3D ( pos , de l taVa lues , colorCode ,

stemRatio )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %

5 % Used to p l o t a s i n g l e 3D arrow with a c y l i n d r i c a l stem

and cone arrowhead

6 % pos = [X,Y, Z ] − s p a t i a l l o c a t i o n o f the s t a r t i n g po in t

o f the arrow ( end o f stem )

7 % de l t aVa lue s = [QX,QY,QZ] − de l t a parameters denot ing

the magnitude o f the arrow along the x , y , z−axes ( r e l a t i v e

to ’ pos ’ )

8 % colorCode − Color parameters as per the ’ su r f ’ command .

For example , ’ r ’ , ’ red ’ , [ 1 0 0 ] a re a l l examples o f a

red−c o l o r ed arrow

9 % stemRatio − The r a t i o o f the l eng th o f the stem in

propo r t i on to the arrowhead . For example , a c a l l o f :
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10 % arrow3D ( [ 0 , 0 , 0 ] , [ 1 0 0 , 0 , 0 ] , ’ r ’ , 0 . 8 2 )

w i l l produce a red arrow o f magnitude 100 , with the

arrowstem spanning a d i s t an c e

11 % of 82 ( note 0 . 82 r a t i o o f l eng th 100) wh i l e

the arrowhead ( cone ) spans 18 .

12 %

13 % Example :

14 % arrow3D ( [ 0 , 0 , 0 ] , [ 4 , 3 , 7 ] ) ; %−−−− arrow with d e f a u l t

parameters

15 % ax i s equa l ;

16 %

17 % Author : Shawn Arseneau

18 % Created : September 14 , 2006

19 % Updated : September 18 , 2006

20 %

21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 i f narg in <2 | | narg in >4

23 e r r o r ( ’ I n c o r r e c t number o f i nput s to arrow3D ’ ) ;

24 end

25 i f numel ( pos )~=3 | | numel ( de l t aVa lue s )~=3

26 e r r o r ( ’ pos and/ or de l t aVa lue s i s i n c o r r e c t d imens ions

( should be th r e e ) ’ ) ;

27 end

28 i f narg in <3

29 co lorCode = ’ i n t e r p ’ ;

30 end

31 i f narg in <4
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32 stemRatio = 0 . 7 5 ;

33 end

34

35 X = pos (1 ) ; %−−−− with t h i s notat ion , th e r e i s no need to

t r an spo s e i f the use r has chosen a row vs c o l v e c t o r

36 Y = pos (2 ) ;

37 Z = pos (3 ) ;

38

39 [ sphi , s theta , s rho ] = car t2 sph ( de l t aVa lue s ( 1 ) ,

d e l t aVa lue s ( 2 ) , d e l t aVa lue s ( 3 ) ) ;

40

41 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CYLINDER ==

STEM ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 cy l i nde rRad iu s = 0 . 7 5 ;

43 cy l i nde rLeng th = srho ∗ stemRatio ;

44 [CX,CY,CZ] = c y l i n d e r ( cy l i nde rRad iu s ) ;

45 CZ = CZ. ∗ cy l i nde rLeng th ; %−−−− l eng then

46

47 %−−−−− ROTATE CYLINDER

48 [ row , c o l ] = s i z e (CX) ; %−−−− i n i t i a l r o t a t i o n to

c o i n c i d e with X−ax i s

49

50 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [CX( : ) , CY( : ) , CZ ( : ) ] ) ;

51 CX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

52 CY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

53 CZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

54

55 [ row , c o l ] = s i z e (CX) ;
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56 newEll = r o t a t ePo i n t s ( de l taVa lues , [CX( : ) , CY( : ) , CZ ( : ) ] )

;

57 stemX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

58 stemY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

59 stemZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

60

61 %−−−−− TRANSLATE CYLINDER

62 stemX = stemX + X;

63 stemY = stemY + Y;

64 stemZ = stemZ + Z ;

65

66 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CONE ==

ARROWHEAD

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

67 coneLength = srho ∗(1− stemRatio ) ;

68 coneRadius = cy l i nde rRad iu s ∗ 1 . 5 ;

69 i n c r = 4 ; %−−−− Steps o f cone increments

70 c on e i n c r = coneRadius / i n c r ;

71 [ coneX , coneY , coneZ ] = c y l i n d e r ( cy l i nde rRad iu s ∗1.5:−

c on e i n c r : 0 ) ; %−−−−−−−−−− CONE

72 coneZ = coneZ . ∗ coneLength ;

73

74 %−−−−− ROTATE CONE

75 [ row , c o l ] = s i z e ( coneX ) ;

76 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

77 coneX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

78 coneY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

79 coneZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;
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80

81 newEll = r o t a t ePo i n t s ( de l taVa lues , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

82 headX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

83 headY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

84 headZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

85

86 %−−−− TRANSLATE CONE

87 V = [ 0 , 0 , s rho ∗ stemRatio ] ; %−−−− c e n t e r l i n e f o r

c y l i n d e r : the mu l t i p l i e r i s to s e t the cone ’ on the

rim ’ o f the c y l i n d e r

88 Vp = ro t a t ePo i n t s ( [ 0 0 −1] , V) ;

89 Vp = ro t a t ePo i n t s ( de l taVa lues , Vp) ;

90 headX = headX + Vp(1 ) + X;

91 headY = headY + Vp(2 ) + Y;

92 headZ = headZ + Vp(3 ) + Z ;

93 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

94 hStem = su r f ( stemX , stemY , stemZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

95 hold on ;

96 hHead = su r f ( headX , headY , headZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

97

98 i f nargout==1

99 arrowHandle = [ hStem , hHead ] ;

100 end
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1 f un c t i on arrowHandle = arrow3Dmaxy ( pos , de l taVa lues ,

colorCode , stemRatio )

2

3 % arrowHandle = arrow3D ( pos , de l taVa lues , colorCode ,

stemRatio )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %

5 % Used to p l o t a s i n g l e 3D arrow with a c y l i n d r i c a l stem

and cone arrowhead

6 % pos = [X,Y, Z ] − s p a t i a l l o c a t i o n o f the s t a r t i n g po in t

o f the arrow ( end o f stem )

7 % de l t aVa lue s = [QX,QY,QZ] − de l t a parameters denot ing

the magnitude o f the arrow along the x , y , z−axes ( r e l a t i v e

to ’ pos ’ )

8 % colorCode − Color parameters as per the ’ su r f ’ command .

For example , ’ r ’ , ’ red ’ , [ 1 0 0 ] a re a l l examples o f a

red−c o l o r ed arrow

9 % stemRatio − The r a t i o o f the l eng th o f the stem in

propo r t i on to the arrowhead . For example , a c a l l o f :

10 % arrow3D ( [ 0 , 0 , 0 ] , [ 1 0 0 , 0 , 0 ] , ’ r ’ , 0 . 8 2 )

w i l l produce a red arrow o f magnitude 100 , with the

arrowstem spanning a d i s t an c e

11 % of 82 ( note 0 . 82 r a t i o o f l eng th 100) wh i l e

the arrowhead ( cone ) spans 18 .

12 %

13 % Example :

14 % arrow3D ( [ 0 , 0 , 0 ] , [ 4 , 3 , 7 ] ) ; %−−−− arrow with d e f a u l t

parameters
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15 % ax i s equa l ;

16 %

17 % Author : Shawn Arseneau

18 % Created : September 14 , 2006

19 % Updated : September 18 , 2006

20 %

21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 i f narg in <2 | | narg in >4

23 e r r o r ( ’ I n c o r r e c t number o f i nput s to arrow3D ’ ) ;

24 end

25 i f numel ( pos )~=3 | | numel ( de l t aVa lue s )~=3

26 e r r o r ( ’ pos and/ or de l t aVa lue s i s i n c o r r e c t d imens ions

( should be th r e e ) ’ ) ;

27 end

28 i f narg in <3

29 co lorCode = ’ i n t e r p ’ ;

30 end

31 i f narg in <4

32 stemRatio = 0 . 7 5 ;

33 end

34

35 X = pos (1 ) ; %−−−− with t h i s notat ion , th e r e i s no need to

t r an spo s e i f the use r has chosen a row vs c o l v e c t o r

36 Y = pos (2 ) ;

37 Z = pos (3 ) ;

38
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39 [ sphi , s theta , s rho ] = car t2 sph ( de l t aVa lue s ( 1 ) ,

d e l t aVa lue s ( 2 ) , d e l t aVa lue s ( 3 ) ) ;

40

41 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CYLINDER ==

STEM ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 cy l i nde rRad iu s = 25 ;

43 cy l i nde rLeng th = srho ∗ stemRatio ;

44 [CX,CY,CZ] = c y l i n d e r ( cy l i nde rRad iu s ) ;

45 CZ = CZ. ∗ cy l i nde rLeng th ; %−−−− l eng then

46

47 %−−−−− ROTATE CYLINDER

48 [ row , c o l ] = s i z e (CX) ; %−−−− i n i t i a l r o t a t i o n to

c o i n c i d e with X−ax i s

49

50 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [CX( : ) , CY( : ) , CZ ( : ) ] ) ;

51 CX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

52 CY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

53 CZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

54

55 [ row , c o l ] = s i z e (CX) ;

56 newEll = r o t a t ePo i n t s ( de l taVa lues , [CX( : ) , CY( : ) , CZ ( : ) ] )

;

57 stemX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

58 stemY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

59 stemZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

60

61 %−−−−− TRANSLATE CYLINDER

62 stemX = stemX + X;

63 stemY = stemY + Y;
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64 stemZ = stemZ + Z ;

65

66 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CONE ==

ARROWHEAD

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

67 coneLength = srho ∗(1− stemRatio ) ;

68 coneRadius = cy l i nde rRad iu s ∗ 1 . 5 ;

69 i n c r = 8 ; %−−−− Steps o f cone increments

70 c on e i n c r = coneRadius / i n c r ;

71 [ coneX , coneY , coneZ ] = c y l i n d e r ( cy l i nde rRad iu s ∗1.5:−

c on e i n c r : 0 ) ; %−−−−−−−−−− CONE

72 coneZ = coneZ . ∗ coneLength ;

73

74 %−−−−− ROTATE CONE

75 [ row , c o l ] = s i z e ( coneX ) ;

76 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

77 coneX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

78 coneY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

79 coneZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

80

81 newEll = r o t a t ePo i n t s ( de l taVa lues , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

82 headX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

83 headY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

84 headZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

85

86 %−−−− TRANSLATE CONE
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87 V = [ 0 , 0 , s rho ∗ stemRatio ] ; %−−−− c e n t e r l i n e f o r

c y l i n d e r : the mu l t i p l i e r i s to s e t the cone ’ on the

rim ’ o f the c y l i n d e r

88 Vp = ro t a t ePo i n t s ( [ 0 0 −1] , V) ;

89 Vp = ro t a t ePo i n t s ( de l taVa lues , Vp) ;

90 headX = headX + Vp(1 ) + X;

91 headY = headY + Vp(2 ) + Y;

92 headZ = headZ + Vp(3 ) + Z ;

93 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

94 hStem = su r f ( stemX , stemY , stemZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

95 hold on ;

96 hHead = su r f ( headX , headY , headZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

97

98 i f nargout==1

99 arrowHandle = [ hStem , hHead ] ;

100 end

1 f un c t i on arrowHandle = arrow3Dmaxy ( pos , de l taVa lues ,

colorCode , stemRatio )

2

3 % arrowHandle = arrow3D ( pos , de l taVa lues , colorCode ,

stemRatio )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %
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5 % Used to p l o t a s i n g l e 3D arrow with a c y l i n d r i c a l stem

and cone arrowhead

6 % pos = [X,Y, Z ] − s p a t i a l l o c a t i o n o f the s t a r t i n g po in t

o f the arrow ( end o f stem )

7 % de l t aVa lue s = [QX,QY,QZ] − de l t a parameters denot ing

the magnitude o f the arrow along the x , y , z−axes ( r e l a t i v e

to ’ pos ’ )

8 % colorCode − Color parameters as per the ’ su r f ’ command .

For example , ’ r ’ , ’ red ’ , [ 1 0 0 ] a re a l l examples o f a

red−c o l o r ed arrow

9 % stemRatio − The r a t i o o f the l eng th o f the stem in

propo r t i on to the arrowhead . For example , a c a l l o f :

10 % arrow3D ( [ 0 , 0 , 0 ] , [ 1 0 0 , 0 , 0 ] , ’ r ’ , 0 . 8 2 )

w i l l produce a red arrow o f magnitude 100 , with the

arrowstem spanning a d i s t an c e

11 % of 82 ( note 0 . 82 r a t i o o f l eng th 100) wh i l e

the arrowhead ( cone ) spans 18 .

12 %

13 % Example :

14 % arrow3D ( [ 0 , 0 , 0 ] , [ 4 , 3 , 7 ] ) ; %−−−− arrow with d e f a u l t

parameters

15 % ax i s equa l ;

16 %

17 % Author : Shawn Arseneau

18 % Created : September 14 , 2006

19 % Updated : September 18 , 2006

20 %
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21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 i f narg in <2 | | narg in >4

23 e r r o r ( ’ I n c o r r e c t number o f i nput s to arrow3D ’ ) ;

24 end

25 i f numel ( pos )~=3 | | numel ( de l t aVa lue s )~=3

26 e r r o r ( ’ pos and/ or de l t aVa lue s i s i n c o r r e c t d imens ions

( should be th r e e ) ’ ) ;

27 end

28 i f narg in <3

29 co lorCode = ’ i n t e r p ’ ;

30 end

31 i f narg in <4

32 stemRatio = 0 . 7 5 ;

33 end

34

35 X = pos (1 ) ; %−−−− with t h i s notat ion , th e r e i s no need to

t r an spo s e i f the use r has chosen a row vs c o l v e c t o r

36 Y = pos (2 ) ;

37 Z = pos (3 ) ;

38

39 [ sphi , s theta , s rho ] = car t2 sph ( de l t aVa lue s ( 1 ) ,

d e l t aVa lue s ( 2 ) , d e l t aVa lue s ( 3 ) ) ;

40

41 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CYLINDER ==

STEM ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

42 cy l i nde rRad iu s = 0 . 0 5 ;

43 cy l i nde rLeng th = srho ∗ stemRatio ;
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44 [CX,CY,CZ] = c y l i n d e r ( cy l i nde rRad iu s ) ;

45 CZ = CZ. ∗ cy l i nde rLeng th ; %−−−− l eng then

46

47 %−−−−− ROTATE CYLINDER

48 [ row , c o l ] = s i z e (CX) ; %−−−− i n i t i a l r o t a t i o n to

c o i n c i d e with X−ax i s

49

50 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [CX( : ) , CY( : ) , CZ ( : ) ] ) ;

51 CX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

52 CY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

53 CZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

54

55 [ row , c o l ] = s i z e (CX) ;

56 newEll = r o t a t ePo i n t s ( de l taVa lues , [CX( : ) , CY( : ) , CZ ( : ) ] )

;

57 stemX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

58 stemY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

59 stemZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

60

61 %−−−−− TRANSLATE CYLINDER

62 stemX = stemX + X;

63 stemY = stemY + Y;

64 stemZ = stemZ + Z ;

65

66 %∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CONE ==

ARROWHEAD

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

67 coneLength = srho ∗(1− stemRatio ) ;

68 coneRadius = cy l i nde rRad iu s ∗ 1 . 5 ;
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69 i n c r = 8 ; %−−−− Steps o f cone increments

70 c on e i n c r = coneRadius / i n c r ;

71 [ coneX , coneY , coneZ ] = c y l i n d e r ( cy l i nde rRad iu s ∗1.5:−

c on e i n c r : 0 ) ; %−−−−−−−−−− CONE

72 coneZ = coneZ . ∗ coneLength ;

73

74 %−−−−− ROTATE CONE

75 [ row , c o l ] = s i z e ( coneX ) ;

76 newEll = r o t a t ePo i n t s ( [ 0 0 −1] , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

77 coneX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

78 coneY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

79 coneZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

80

81 newEll = r o t a t ePo i n t s ( de l taVa lues , [ coneX ( : ) , coneY ( : ) ,

coneZ ( : ) ] ) ;

82 headX = reshape ( newEll ( : , 1 ) , row , c o l ) ;

83 headY = reshape ( newEll ( : , 2 ) , row , c o l ) ;

84 headZ = reshape ( newEll ( : , 3 ) , row , c o l ) ;

85

86 %−−−− TRANSLATE CONE

87 V = [ 0 , 0 , s rho ∗ stemRatio ] ; %−−−− c e n t e r l i n e f o r

c y l i n d e r : the mu l t i p l i e r i s to s e t the cone ’ on the

rim ’ o f the c y l i n d e r

88 Vp = ro t a t ePo i n t s ( [ 0 0 −1] , V) ;

89 Vp = ro t a t ePo i n t s ( de l taVa lues , Vp) ;

90 headX = headX + Vp(1 ) + X;

91 headY = headY + Vp(2 ) + Y;

92 headZ = headZ + Vp(3 ) + Z ;
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93 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

94 hStem = su r f ( stemX , stemY , stemZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

95 hold on ;

96 hHead = su r f ( headX , headY , headZ , ’ FaceColor ’ , colorCode ,

’ EdgeColor ’ , ’ none ’ ) ;

97

98 i f nargout==1

99 arrowHandle = [ hStem , hHead ] ;

100 end
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Appendix C

REPRINTS RIGHTS

The respective publishers provided permissions for reprinting figures published

in this dissertation. A list for all the permissions is attached.

Figure C.1: Reprint rights obtained from Rightslink
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Figure C.2: Reprint rights obtained from SCIPRIS
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