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Abstract
Background: Although many QTL for various traits have been mapped in livestock, location confidence intervals
remain wide that makes difficult the identification of causative mutations. The aim of this study was to test the
contribution of microarray data to QTL detection in livestock species. Three different but complementary
approaches are proposed to improve characterization of a chicken QTL region for abdominal fatness (AF)
previously detected on chromosome 5 (GGA5).

Results: Hepatic transcriptome profiles for 45 offspring of a sire known to be heterozygous for the distal GGA5
AF QTL were obtained using a 20 K chicken oligochip. mRNA levels of 660 genes were correlated with the AF
trait. The first approach was to dissect the AF phenotype by identifying animal subgroups according to their 660
transcript profiles. Linkage analysis using some of these subgroups revealed another QTL in the middle of GGA5
and increased the significance of the distal GGA5 AF QTL, thereby refining its localization. The second approach
targeted the genes correlated with the AF trait and regulated by the GGA5 AF QTL region. Five of the 660 genes
were considered as being controlled either by the AF QTL mutation itself or by a mutation close to it; one having
a function related to lipid metabolism (HMGCS1). In addition, a QTL analysis with a multiple trait model
combining this 5 gene-set and AF allowed us to refine the QTL region. The third approach was to use these 5
transcriptome profiles to predict the paternal Q versus q AF QTL mutation for each recombinant offspring and
then refine the localization of the QTL from 31 cM (100 genes) at a most probable location confidence interval
of 7 cM (12 genes) after determining the recombination breakpoints, an interval consistent with the reductions
obtained by the two other approaches.

Conclusion: The results showed the feasibility and efficacy of the three strategies used, the first revealing a QTL
undetected using the whole population, the second providing functional information about a QTL region through
genes related to the trait and controlled by this region (HMGCS1), the third could drastically refine a QTL region.
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Background
In spite of success in QTL research for complex traits in
livestock species in the last twenty years, location confi-
dence intervals of many QTL are wide, possibly harboring
hundreds of genes. This is the major obstacle to finding
causative mutations underlying any QTL identified. In
addition, fine mapping techniques and positional cloning
to reduce the location confidence interval of the initial
QTL are time-consuming, especially for livestock species
compared to plant and animal models. This is mainly due
to a lack of inbred lines, long generation intervals, the cost
of maintaining each animal and also the difficulty of pro-
ducing transgenic or "knock-out" individuals to confirm
the causative nature of the mutation of the trait of interest.
Few mutations underlying QTL have therefore been iden-
tified in livestock (e.g., the DGAT1 gene in dairy cattle [1],
IGF2 gene in swine [2,3], GDF8 gene in sheep [4]etc, for
review see Ron & Weller [5] and Georges [6]). Several
groups have proposed combining QTL detection pro-
grams and high throughput transcriptome data to eluci-
date biological pathways associated with complex traits
and their underlying genetic determinants. [7-14]. This
new integrative approach, known as "Genetical Genomics
(GG)" or "Integrative Genomics", treats the expression
level of each gene present on a microarray as a quantita-
tive trait and use genetic markers to identify genomic
regions that regulate gene expression phenotypes. Such
regions are named eQTL (expression Quantitative Trait
Loci). Independently of the context of QTL identification
for a complex trait, the eQTL identification approach was
first applied in 2002 by Brem et al. [15] in order to under-
stand the genetic architecture of natural variations in gene
expression in yeast. This approach was soon extended to
eukaryotes [10,11,15-20]. An eQTL region close to the
physical location of a gene controlled by this region is
referred to as a cis-eQTL [10,15]. In such a case, a muta-
tion in the gene itself might be responsible for variability
in its own expression at the mRNA level. When an eQTL
region for a given gene maps to a location on the genome
other than the localization of this gene, it is referred to as
a trans e-QTL. Very little is known of the molecular nature
of cis-acting and (even more so) trans-acting eQTL
regions.

In the context of QTL identification for a complex trait,
GG studies have mainly been undertaken on plant or ani-
mal models such as flies [12], mice [10], rats [11], euca-
lyptus [13], Arabidopsis [14]. GG is not yet usually used
because it requires skills in both genetic and genomic
fields and the cost of microarray is high, which can be a
real limitation for GG in which several animals have to be
analyzed. The present study aims at testing the microarray
contribution to a QTL research program in livestock spe-
cies in which the population structure and marker density
are less favorable compared to animal models to QTL

localization (no consanguineous lines, low marker den-
sity...). Our question was therefore whether GG could be
transposed in livestock species to reduce a QTL region of
interest and to provide new functional information about
the causative mutation. To answer this question, this
study focused on chicken species, with abdominal fatness
as the complex trait. Although various QTL for the fatness
trait have been reported in this species [21], these QTL
regions remain wide and no causative mutation has been
clearly detected. We chose to apply three complementary
strategies integrating transcriptome data in order to
improve characterization of a QTL for abdominal fatness
(AF) previously detected on the chicken chromosome
GGA5 (p < 0.01) with an effect of 1 phenotypic standard
deviation [22]. Because of the cost of microarray, the
experimental design in the present study included 45
birds. Preliminary linkage analysis on this design revealed
the expected AF QTL on the distal GGA5 (p < 0.05) show-
ing that, despite the fairly small size of the experimental
design, it is possible to detect QTL with an effect of ~1
phenotypic standard deviation, thus justifying continuing
the study. One of the strategies used was based on dissec-
tion of the complex trait using the elementary gene expres-
sion profiles, as first performed in 2003 by Schadt et al.
[10]. To the best to our knowledge, no study using this
approach has been published since this first report. The
second strategy commonly used by authors working in
this context was based on the identification of genes with
eQTL co-localizing with the QTL responsible for the com-
plex trait of interest. The function of such genes can pro-
vide new functional information about the candidate
positional and functional gene sought in the QTL region
as causative to the trait of interest. Only one study con-
ducted in livestock species has been reported using this
approach [23]. In the present study, we used this strategy
in this way in order to characterize the QTL functionally;
we also used this strategy in another way using a multiple
trait model for QTL analysis in order to refine this QTL
region. A third approach was to use hepatic transcriptome
profiles to predict for each recombinant offspring the Q
versus q GGA5 AF QTL allele (at the mutation looked for)
inherited from its sire and then to refine the localization
of the GGA5 AF QTL after determining the recombination
breakpoints.

Results
Animal design and microarray setup
Previous studies using a three-generation design per-
formed by inter-crossing two experimental chicken lines
divergently selected on abdominal fatness have revealed 6
QTL for abdominal fatness (AF) on GGA1, 3, 5 and 7 in
male meat-type chickens, [22,24]. Different recombinant
backcross 1 (BC1) and BC2 males were then produced to
refine AF QTL on chromosome 5 by crossing F1 sires het-
erozygous for these QTL with lean line dams [22,24]. The
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present study focused on a BC1 chicken sire (and its 71
BC2 male offspring) known to be heterozygous for the AF
QTL on the chicken distal GGA5 chromosome, the other
QTL on GGA1, 3 and 7 were not detected in this family.
Our aim was to integrate hepatic transcriptome data to
refine the location confidence interval of this AF QTL on
GGA5 and to characterize it functionally. To reduce the
cost of microarray experiments, only 46 animals ran-
domly selected for AF values from the 71 BC2 male off-
spring were studied. Using a 20 K chicken oligo array (Ark-
genomics), 20461 gene expression measurements were
obtained from the livers of these animals. One microarray
was discarded from the 46 because of lower hybridization
signals, confirming the good quality of the technical pro-
cedures (see Materials and Methods), and leaving a total
of 45 birds for further study. Fifty-five percent of the
20461 genes (11213) were selected as expressed in the
liver (see Materials and Methods), among which a human
ortholog with a HUGO symbol for 4002 genes was deter-
mined. The raw and normalized microarray data were
deposited in the Gene Expression Omnibus (GEO) public
repository [25]. The accession number for the series is
GSE12319 and the sample series can be retrieved with
accession numbers GSM309564 to GSM309609.

Preliminary linkage analysis on this 45 offspring sub-
group revealed the expected AF QTL on the distal GGA5
with a significant effect of 1.03 phenotypic standard devi-
ation and no QTL on GGA1, 3 and 7. Its location confi-
dence interval (CI) extended from 156 cM to 187 cM, with
the most probable location at 173 cM. This CI was in
agreement with the 165-184 cM CI previously detected in
a F2 design of 1300 birds [26]. The overall strategy to
improve characterization of the distal GGA5 AF QTL is
shown in Figure 1 and began with first selecting genes cor-
related with the trait of interest.

Selection of 660 genes "correlated" with the AF trait
Six hundred sixty genes were found to be "associated"
with the AF trait by analysis of their correlation with AF (P
< 0.05 at the gene level) or their differential expression
between the 10 fattest and 10 leanest birds out of the 45
(P < 0.05 at the gene level). Despite the absence of correc-
tion for multiple tests, principal component analysis
(PCA) generated with the 660 transcript levels showed
appropriate separation between fat and lean chickens on
the two principal components, explaining 30% of the data
variance (Additional file 1).

Approach 1: Refining GGA5 AF QTL by dissection of the AF 
complex trait using the 660 gene-set transcriptome 
profiles
This approach aimed at "dissecting" the AF trait by sepa-
rating the offspring into homogenous subgroups using
the 660 transcript profiles. We performed two-way hierar-

chical cluster analysis (HCA) on the 45 offspring and the
660 genes related to AF. The double HCA presented in Fig-
ure 2A distinguished four bird groups. Initial observation
of these subgroups showed that most of the 10 leanest
birds were in subgroup 1 (6/10) whereas the 10 fattest
birds were distributed randomly. We then performed sep-
arate QTL analyses on the population, removing one or
two groups from the four. As shown in Figure 2B, linkage
analysis on AF with the GGA5 markers using groups 1 and
4 showed a slight increase in LRT (12.6) at 174 cM, which
contributed to a small reduction in the location confi-
dence interval for GGA5 AF QTL from 156 cM-187 cM (31
cM) to 158 cM-184 cM (26 cM). This QTL vanished by
linkage analysis of subgroups 2 and 3. Interestingly, the
linkage analysis with two subgroups 2 and 3 suggested an
AF QTL at 102 cM on GGA5. We previously detected this
QTL using a larger experimental design (1300 birds) [26].
The addition of subgroup 4 to subgroups 2 and 3 made
this QTL significant (Figure 2B) with an effect on the AF
trait of 1.19 phenotypic standard deviation. No AF QTL
was detected for other subgroup combinations on GGA1,
GGA3 or GGA7.

In order to improve the understanding of the characteris-
tics of the subgroups obtained by HCA, we calculated (on
the basis of the marker information only) the probability
of each offspring receiving from its sire the Q or q haplo-
type for the two QTL at 102 cM and 175 cM; we consid-
ered only birds having a probability > 0.95 (43 and 35
birds for the two QTL at 102 cM and 175 cM, respec-
tively). For the two AF QTL detected, the animal labels on
Figure 2A show the distribution of birds for which the AF
value was in disagreement with the paternal Q/q haplo-
type. A large proportion of these birds were included in
subgroups whose suppression allowed an increase in
power of QTL detection (subgroup 1 for the QTL at 102
cM and subgroups 2 and 3 for QTL at 175 cM). These
results may explain the better power of linkage analysis
using this "subgroup" strategy.

Approach 2: refining distal GGA5 AF QTL by eQTL 
mapping
Selection of genes correlated with the AF trait and having an eQTL 
colocalizing with GGA5 AF QTL
Out of the previously selected 660 genes, we identified 46
genes (6.9%) that had an eQTL (p-value < 0.1) that colo-
calized with the location confidence interval of the GGA5
AF QTL (156-187 cM). Among the 11213 genes analyzed,
285 genes (2.3%) had an eQTL that mapped in the GGA5
AF QTL. Therefore, using the 660 genes correlated with
the AF trait led to a 3-fold increase in genes (6.9% against
2.3%) having an eQTL colocalizing with the GGA5 AF
QTL. The same analysis was performed on the other chro-
mosomes (GGA1, GGA3 and GGA7), and no enrichment
of genes with an eQTL in a particular region of these chro-
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mosomes was observed in this 660 gene-set, probably
because of the absence of other AF QTL regions on these
chromosomes. As previously observed with the AF QTL
analysis, the design of 45 animals allowed us to detect sig-
nificant eQTL regions with an effect on an expression trait
of about 1 within-family residual standard deviation, with
probably some false positives (no correction for multiple
tests). Maximum likelihood ratio test (LRT) locations of
eQTL for the 46 previously selected genes were evenly dis-
tributed over the 156-187 cM location confidence interval
of the GGA5 AF QTL. Correlations between gene expres-
sions were variable (from ~0 up to 0.7 and -0.64), suggest-
ing different independent gene networks. These results
strongly suggested that this 46 gene-set reflected at the

mRNA level the impact of different linked mutations in
the location confidence interval of the GGA5 AF QTL.

Selection of the genes regulated by the GGA5 AF QTL mutation or a 
mutation close to it
To select the closest eQTL mutations to the location of the
GGA5 AF QTL mutation, we performed 46 linkage analy-
ses on the residual AF value corrected for each transcript.
Genes could be sorted by this step according to the degree
of correlation between their transcript levels and AF trait
and/or the high proximity of the maximum LRT location
for their eQTL with one of the AF QTL. As a result, 12
genes out of the 46 genes effectively corrected the AF QTL
(P > 0.1).

Synthetic view of the different transcriptome approaches used to refine abdominal fatness QTL on GGA5Figure 1
Synthetic view of the different transcriptome approaches used to refine abdominal fatness QTL on GGA5. (a) 
Correlation and differential expression analysis revealed 660 gene mRNA levels related to abdominal fat values (P < 0.05 at the 
gene level). (b) Expression QTL analysis performed on 11213 genes detected 285 genes for which mRNA levels were regu-
lated by an eQTL which colocalized with the GGA5 AF QTL confidence interval (CI). Venn diagram shows that 46 gene mRNA 
levels were correlated with AF value and regulated by an eQTL colocalized with the AF QTL confidence interval. (1) First 
approach: QTL analysis was performed on different animal subgroups identified by double HCA carried out with the 45 animals 
and the 660 gene mRNA levels. (2) Second approach: we performed 46 new QTL analyses for residual abdominal fat values 
conditioned by each of the 46 gene mRNA levels. We thus identified 12 genes for which AF values conditioned by their mRNA 
level did not allow detection of residual AF QTL (p > 0.1), 5 of which were validated by qRT-PCR methodology. A multivariate 
analysis was then carried out combining a synthetic variable for the 5 gene mRNA levels and the AF trait to refine the QTL 
region of interest. (3) Third approach: We used the 5 gene mRNA levels to predict the Q/q allele at the causative mutation for 
each recombinant by discriminate analysis (DA) or logistic regression (LR). Supplementary marker genotyping localized in the 
AF QTL confidence interval made it possible to define the most probable AF confidence interval QTL. Aims for each approach 
are indicated in bold.
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Validation by RT-PCR
Because of the high probability of false positives (no cor-
rection for multiple tests) we needed to validate these
results using another method of mRNA quantification.
Expression of the 12 genes was quantified by qRT-PCR.
The previous results were confirmed for 5 genes. This 5
gene-set was considered to be the best gene-set giving new
information about the position of the causative mutation
underlying AF QTL and possibly about the impact at the
mRNA level of this mutation for some of them. We there-
fore used these 5 genes to refine confidence interval of AF
QTL location and also analyzed their functions to identify
those likely to be regulated by the mutation itself.

Functional analysis of the 5 gene-set
According to the V3.2 annotation of the 20 K chicken oli-
gochip (see Materials and Methods), 3 of the 5 genes of
interest had a precise gene name: HGMCS1, TCF3 and
SALL4. RIGG10516 and RIGG19646 genes both encode a
hypothetical protein. A gene-by-gene bibliography indi-
cated that TCF3 and SALL4 are both transcriptional factors
involved in large molecular processes such as B-cell devel-
opment and pluripotent stem cell generation, respec-
tively. Neither seems to be directly involved in lipid
metabolism. However, HGMCS1 (3-Hydroxy-3-Methyl-
Glutaryl-CoA Synthase 1) is clearly involved in lipid
metabolism, more precisely in cholesterol synthesis [27].

Two-way Hierarchical Cluster Analysis (HCA) of the 45 animals and 660 gene-set (A) and AF QTL analyses (B)Figure 2
Two-way Hierarchical Cluster Analysis (HCA) of the 45 animals and 660 gene-set (A) and AF QTL analyses 
(B). (A) HCA color matrix display obtained with the 660 genes (Y axis) and the 45 chickens (X axis). Dark/light blue bars indi-
cate the 20 fattest chickens (dark bars correspond to the extreme fat chickens (F1 to F10), light bars the next (F11 to F20)); 
dark/light orange bars indicate the 20 leanest chickens (dark bars correspond to the extreme lean chickens (L1 to L10), light 
bars the next L11 to L20); colorless bars correspond to the 5 intermediate chickens (I). The two final letters of the animal 
labels, indicate the Q or q haplotype inherited from the sire, with a probability > 95% for the QTL at 102 cM (first letter) or 
the QTL at 175 cM (second letter); × indicates a probability < 95%. For the two QTL, animals with discrepant AF values and q/
Q haplotype are indicated by arrows. Long arrows indicate the 10 most extreme animals with AF value in discordance with q/
Q haplotype. Short arrows indicate the 10 lowest extreme animals (F11 to F20 and L11 to L20). (B) Interval mapping for the 
AF trait on chromosome 5, with the whole family (blue) and without one or two subgroups observed by HCA (other colors). 
The chromosome-wide significance thresholds at the 5% level (-) are displayed. The 10% level (- -) obtained for analysis with-
out subgroups 1 (light blue), 4 (yellow) or 1 and 4 (green) are also displayed. The genetic distances (cM) and likelihood ratio 
test (LRT) are shown on the X-axis and Y-axis, respectively.
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Refining GGA5 AF QTL by mapping of the 5 gene-set combined 
variable
To take advantage of the correlation between the 5 expres-
sion traits and the AF trait and of their eQTL localized
close to GGA5 AF QTL, we applied a multivariate model
to refine GGA5 AF QTL. QTL detection with such a model
can be more powerful and more precise than a single trait
detection [28]. Because multivariate analysis is time con-
suming, we before generated a new synthetic variable
(CV5) combining the 5 genes. Already used in the same
context by Lan et al. [29], Principal Component Analysis
(PCA) was appropriate to reduce the dimensions of the
gene expression data. We then added together all 5 gene
variables by weighting them with their PCA coordinates
on the first axis. The first axis that explained 41.2% of the

data variance effectively separated the 10 extreme fat and
lean offspring, confirming that the GGA5 AF QTL had a
substantial effect on the AF trait in this family (Additional
File 2A). Note that HMGCS1 and RIGG10516 contributed
most to this first axis (Additional File 2B). Indeed
HMGCS1 and RIGG10516 expressions were the most
highly correlated with the AF trait among the 46 gene-set
(0.42 and -0.43, respectively). We then performed QTL
detection using a multivariate model [28] considering the
combined variable (CV5) and AF trait. As indicated in Fig-
ure 3, we then detected a QTL on GGA5 at 176 cM with
high significance (P < 0.001). No QTL was detected on the
other three chromosomes (GGA1, GGA3 and GGA7) (Fig-
ure 3). The maximum LRT was considerably increased for
the multivariate analysis (19.9) compared to the univari-

Detection on chromosomes 1, 3, 5 and 7 of QTL for AF trait using a single trait or multi-trait modelFigure 3
Detection on chromosomes 1, 3, 5 and 7 of QTL for AF trait using a single trait or multi-trait model. The multi-
trait model concerned the AF trait combined with the HMGCS1 gene or the synthetic variable combining the 660 gene-set or 
the 5 gene-set. The chromosome-wide significance threshold at the 5% level for the AF QTL analysis (- - -) is indicated by a 
dashed blue horizontal line. On chromosome 5, the 1‰ level threshold (-) for the multivariate QTL analysis using AF and the 
synthetic variable combining the 5 gene-set is indicated by a red line. The genetic markers and genetic distances (cM) are 
shown on the X-axis. The likelihood ratio test (LRT) is shown on the Y-axis.
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ate analysis with the AF trait only (10.2). These results led
to a reduction of the location confidence interval of GGA5
AF QTL (from 156-187 cM (31 cM) to 166-184 cM (18
cM)) (Table 1), thus allowing a substantial reduction in
numbers of positional candidate genes (from 100 to 46).

The next step was to use these 5 genes to refine the loca-
tion of this QTL with another approach (Figure 1).

Approach 3: Refining distal GGA5 AF QTL by prediction of 
the paternal Q/q GGA5 AF QTL mutation, using the 5 
gene-set for the recombinant birds
The aim of this approach was to predict the GGA5 AF QTL
mutation (Q versus q) for the recombinant animals inher-
ited from the sire, using their transcriptome profiles for
the 5 gene-set considered to be the best signature of the Q/
q AF QTL haplotype containing the Q/q mutation. The
principle of this strategy is summarized in Figure 4. First,
we determined the Q versus q haplotype (corresponding
to the whole confidence interval of the GGA5 AF QTL)
inherited from the sire for all offspring, using only the
marker genotypes in the GGA5 AF QTL confidence inter-
val as information. We thus determined with certitude
such a haplotype for 32 offspring: 16 animals received the
paternal QTL Q haplotype and 16 the q haplotype. For
these offspring, the Q (versus q) haplotype contained
with certitude the Q (versus q) GGA5 AF allele at the caus-
ative mutation. Second, using the transcriptome profiles
for the 5 genes previously detected as the best possible sig-
nature of the location of Q versus q GGA5 AF QTL muta-
tion, we looked for the best gene expression combination
discriminating the 16 Q from the 16 q animals using two
methods, g.e. discriminant analysis and logistic regression
(see Methods). Third, we used the results of this analysis
to predict the paternal Q versus q allele received by each
recombinant animal, using their 5 gene-set transcriptome
profiles. The two methods gave the same allele prediction

with high probability (> 88%) for 8 recombinants out of
the 13 (I3, L2, L19, F5, F9, F14, L13 and L6, presented in
Additional File 3). To determine recombination break-
points, we then developed three novel microsatellite
markers between SEQF0079 and SEQF0082 at 166 and
187 cM, respectively, and genotyped the 5 most interest-
ing recombinant animals among the 8 (Additional File 3).
As indicated in Table 1, the Q or q allele prediction for
these animals made it possible to refine the CI of the
GGA5 AF QTL at 7 cM (166-173 cM). The physical loca-
tions of this interval were 54.16 to 55.2 Mb (1 Mb) on
GGA5. This significant reduction was consistent with the
reductions obtained by the other two approaches. Thus
the number of best positional candidate genes was
reduced from 100 to 12 genes, of which 3 have a precise
gene name (AKT1, CDC14, NUDT14). No biological rela-
tionships with HMGCS1 were clearly identified.

Discussion
The first approach consisted of "dissection" of the com-
plex AF trait by grouping the offspring in accordance with
their 660 gene transcriptome profiles. Schadt et al. [10]
were the first to use this strategy and they improved the
significance of a fatness QTL previously detected on a
chromosome and even detected a new QTL on another.
We found similar results in the present study. First, we
found an increase in the LRT of GGA5 AF QTL by using
subgroups 1 and 4. Second, despite the small size of our
experimental design (45 animals), we detected using sub-
groups 2 and 3 an AF QTL at 102 cM on GGA5, as previ-
ously detected using an experimental design with 1300
birds [26]. These results show the power of the approach.
In view of the polygenic influence on the complex traits,
the variations in abdominal fatness are probably due to
variations in several biological pathways, impacted by
multiple mutations acting separately or in interaction.
Transcriptome data offer the possibility of dissecting such

Table 1: Summary of reduction of GGA5 AF QTL using the 3 approaches

Confidence interval (CI) of GGA5 
AF QTL according to the strategy 
used

cM1 Significance level2 CI (cM)3 CI(Mb)4 Gene number5 QTL effect/SD6

Initial AF QTL CI 173 * 156-187 (31) 52-58 (6) 100 1.03

First approach 175 * 158-184 (26) 52.2 - 57 (4.8) 74 1.56
Second approach 176 *** 166-184 (18) 54 - 57 (3) 46 /
Third approach / / 166-173 (7) 54.16 - 55.1 (1.04) 12 /

Overlapped CI taking into account 
all approaches

/ / 166-173 (7) 54.16-55.1 (1.04) 12 /

1 The most probable location for QTL in Kosambi cM. 2 Chromosome-wide significance levels (* = P < 0.05; *** = P < 0.001). 3 Location of 95% CI 
in cM according to drop off method. Total length (in cM) of CI is indicated in brackets. 4 Location of 95% CI in Mb. Total distance (in Mb) for the CI 
extrapolated to the closest markers is indicated in brackets. 5 Gene numbers present in the 95% CI according to NCBI database source. 6 SD: 
within-family residual standard deviation.



BMC Genomics 2009, 10:575 http://www.biomedcentral.com/1471-2164/10/575

Page 8 of 14
(page number not for citation purposes)

a complex trait in more elementary phenotypes (gene
expressions correlated with the trait) and therefore make
it possible to separate the population into genetically
homogenous subgroups using transcriptome profiling.
Some combinations of subgroups possibly reflect the
effects of a precise mutation whereas others reflect the sig-
nature of other mutations. In this study, we showed the
over representation in some subgroups of birds for which
the AF value was in disagreement with the paternal Q/q
haplotype of the two GGA5 AF QTL, thus increasing the
QTL detection power when they were removed. These
results indicate that the QTL each significantly affect only
a subset of the population analyzed. This heterogeneity

observed between offspring clearly demonstrates the com-
plexity underlying traits such as fatness. In summary, the
660 genes correlated with the AF allowed classification of
offspring in a relevant way to dissect AF QTL on the GGA5
chromosome, despite the small number of animals ana-
lyzed.

To the best of our knowledge, no study using this
approach has been published since the first publication in
2003 [10]. Our results obtained with a livestock design
and those of Schadt et al. obtained with mice indicate that
the identification of subgroups in a population on the
basis of transcriptome profiles would be an effective way

Summary of the third strategyFigure 4
Summary of the third strategy. This approach was divided into two major steps. First, non-recombinant animals in the 
GGA5 AF QTL confidence interval were selected. Discriminant analysis (DA) or Logistic Regression (RL) were then carried 
out with the 5 genes to distinguish a specific transcriptome profile between the Q or q allele at the causative mutation. Second, 
previously established DA or RL were used to predict a most probable Q or q allele at the causative mutation for each recom-
binant animal in the GGA5 AF QTL confidence interval. New markers were then developed and genotyped (not shown on the 
figure) to define each recombination breakpoint. Comparison between recombinant offspring then enabled us to define the 
most valuable location of the causative mutation (line in red).
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to improve the power of QTL detection by linkage analy-
sis.

The second strategy aimed at improving characterization
of GGA5 AF QTL by eQTL mapping. Such a strategy is
widely used in the context of QTL detection of complex
traits using transcriptome data [10,11,19,23,30-37]. The
principle is to identify genes correlated with the complex
trait that have an eQTL co-localizing with the QTL of
interest. Most of these authors then focused on genes with
a function related to the complex trait and having a cis-
eQTL, allowing them to hypothesize that the mutation
responsible for the complex trait is in the cis-eQTL gene
[10,30,32,34-37]. In our study, no cis-eQTL was detected
among the 46 genes correlated with the AF trait and hav-
ing an eQTL in the GGA5 AF QTL region. Correlation pairs
between these genes strongly suggested that these 46
trans-eQTL gene expressions were probably controlled by
different mutations in the location confidence interval of
the GGA5 AF QTL, as previously commented by Georges
[6] and Schadt et al. [8]. Because the CI of the QTL was
large (31 cM), we therefore selected 5 genes that effec-
tively corrected the AF QTL (P > 0.1), and therefore likely
to be controlled by the mutation sought or by a mutation
close to it. Functional analysis of these 5 genes was still
limited by the partial functional annotation of genes.
However, we identified one gene related to lipid metabo-
lism that could be affected by the mutation sought. This
gene encodes HGMCS1, known to be involved in choles-
terol metabolism. We have recently shown that its regula-
tion in response to fasting is different in chickens
compared to mammals [38]. Further experiments will be
necessary to clarify its role in fatty acid metabolism and its
regulation in chickens in order to target a potential regu-
latory gene in the distal GGA5 AF QTL.

Moreover, the whole 5 gene-set considered as a signature
of the mutation underlying the QTL of interest or a muta-
tion close to it may be useful to refine this QTL using a
multivariate model that takes advantage of the correlation
between these 5 expression traits and AF. Multivariate
analysis combining the CV5 variable and the AF trait led
to a significant increase in maximum LRT compared to the
AF trait. This result supported the hypotheses of the exist-
ence of QTL affecting both AF and CV5 at the same posi-
tion or the existence of different close mutations in
linkage disequilibrium. We were unable to reach a conclu-
sion with such a small number of animals analyzed. How-
ever, this result makes it possible to reduce the location
confidence interval of GGA5 AF QTL from 156-187 cM
(31 cM) to 166-184 cM (18 cM).

Finally, an original approach to refine a QTL region was
proposed in this study. We used the same 5 gene-set to
find the best gene expression combination discriminating

the paternal Q from q haplotypes (corresponding to the
whole confidence interval of the GGA5 AF QTL) and used
it to predict the Q versus q mutation received by the
recombinant animals. Genotyping these birds with addi-
tional markers drastically reduced the region to 166-173
cM (7 cM). Contrary to conventional approaches used to
refine a QTL, such a strategy avoided generating new off-
spring to test the QTL genotype of the recombinant birds
and saved on high levels of genotyping, thus gaining time
and saving money. However, it is important to remember
that it was based on the relevance of the gene-set consid-
ered as the signature of the QTL mutation or mutations
close to it.

The gains in power and precision of QTL detection offered
by approaches 1 and 2 were probably limited by the low
density of markers and size of the experimental design
used in this study (45 birds). Nevertheless, these
approaches allowed substantial reduction of the GGA5 AF
QTL region (20% up to 50%). Approach 3 was more effec-
tive (80% reduction), depending on the recombination
breakpoints in the recombinant birds. This third approach
allowed us to refine the GGA5 AF QTL from 156-187 cM
(31 cM) to a most probable location confidence interval
of 166-173 cM (7 cM) (Table 1). It can be seen that this
reduction of GGA5 AF QTL region was consistent with the
other more limited reductions obtained by the other two
approaches. Unfortunately, a gene by gene bibliography
analysis did not allow us to propose a good functional
and positional gene candidate as regulator of HMGCS1
and the AF trait.

Conclusion
Our results showed the value of using "Genetical Genom-
ics (GG)" to characterize QTL responsible for complex
trait variability in livestock. The originality of this study
was to propose complementary approaches allowing a
reduction of a QTL region and also providing functional
information on it. The most common way to use GG in
the QTL detection field is to identify an eQTL region colo-
calizing with a QTL of interest, making it possible to pro-
pose candidate genes possibly regulated by the QTL
mutation. In the present study, we identified HGMCS1
that could be affected by the GGA5 AF QTL. In addition,
as previously reported by Schadt et al. [10] using a differ-
ent animal design, we showed that the identification of
animal subgroups on the basis of their transcriptome pro-
files is an effective way to partially eclipse the polygenic
effects which interfere in classical QTL analyses. Such an
approach improves the precision of previously detected
QTL and also localizes new ones. Finally, the original pro-
cedure, consisting of predicting QTL mutation allele for
recombinant animals using a haplotype signature based
on transcriptome profiles, may lead to drastic reduction of
the QTL region. Detection of causative gene mutations
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underlying the GGA5 AF QTL will be further studied by
increasing marker density in the QTL region and the
number of animals analyzed, the number of recom-
binants being crucial in QTL detection analyses. Because
of the availability in the future of high marker density
combined with the drastic price reduction of microarrays,
larger eQTL experimental designs are expected in livestock
and this should accelerate identification of causative
genes responsible for economic trait variability.

Methods
Animals and experimental procedures
All animals were bred at INRA, avian experimental unit
UE1295, F-37380 Nouzilly, in accordance with European
Union guidelines for animal care and under the authori-
zation 6290 delivered to Nadine Sellier by the French
Ministry of Agriculture. A three-generation design was
generated by-intercrossing two experimental meat-type
chicken lines that were divergently selected on fatness
[39], referred to as fat (FL) and lean (LL) lines. First gener-
ation F1 birds were generated from 14 FL males mated
with 24 LL females and 4 LL males mated with 8 FL
females. A full genome scan in one F2 experimental
design bird allowed us to identify several QTL for AF and
to refine one of them located on chromosome 5, and 81
backcross (BC1) males were produced from an F1 male
(known to be heterozygous for the GGA5 AF QTL) mated
with 10 LL females. One of the BC1 animals, recombinant
for the paternal chromosome in the QTL region, was
mated with 8 LL females to generate 71 male BC2 animals
obtained in four hatches. Progeny testing demonstrated
that this male was heterozygous for the GGA5 AF QTL and
was therefore chosen for transcriptome analysis. Forty-six
animals were randomly chosen from the 71 birds to be
analyzed by microarray procedures. BC2 chickens were
fed ad libitum using a conventional starter diet (0-3
weeks: 12.8 MJ of metabolizable energy) and then a grow-
ing broiler diet (4-9 weeks: 13.0 MJ of metabolizable
energy). Light/dark periods were 24 h light for the first 2
days, then 14 h light/10 h night up to slaughtering. At 4
weeks of age, blood samples were collected for DNA
extraction and genotyping. At 9 weeks of age, the birds
were fed ad libitum for a minimum of 4 hours after over-
night fasting and then weighed and sacrificed by electrical
stunning in the experimental processing plant. Following
sacrifice, livers were collected, quickly frozen in liquid
nitrogen and stored at -80°C until RNA extraction for
transcriptome analyses. After evisceration, carcasses were
stored overnight at 4°C before dissection and weighing of
abdominal fat.

DNA extraction and marker genotyping
Genomic DNA was extracted from blood samples (100 Pl)
from the 71 male BC2 according to the modified phenol/

chloroform method [40]. DNA was quantified by the
saran method [41] or optical density reading and diluted
to 10 ng/PL. Genotyping for chromosomes 1, 3, 5 and 7
was performed for 11, 7, 10 and 5 markers, respectively
(Additional Files 4 and 5). Fluorescence-labelled micros-
atellites were analyzed on an ABI 3100 DNA sequencer
(Applied Biosystems, Foster City, CA, USA). Genotypes
were interpreted using both the GenoMapper™ software
(Applied Biosystems, Foster City, CA, USA) and the
GEMMA database [42]. The Kosambi genetic distances in
centi-Morgans (cM) were newly estimated with all ani-
mals using the "build" option in the CriMap linkage pro-
gram [43]. Marker order was explored using the FLIPS
command until the marker order that maximized the like-
lihood was obtained.

RNA isolation
Total RNA was extracted with TRIzol® reagent (Invitrogen,
Cergy Pontoise, France) according to the manufacturer's
instructions. Quality and concentration of extracted RNA
were assessed using a 2100 Bioanalyzer (Agilent Technol-
ogies, Massy, France).

Microarray procedures
Array slides
The 20 K chicken array printed in singlets was produced
by ARK-Genomics (Roslin Institute - UK: http://www.ark-
genomics.org), and the array design was published in the
ArrayExpress [44] repository with Accession N° A-MEXP-
820 ArrayExpress 2003 and in the Gene Expression Omni-
bus with the name GPL5480 [25]. The functional annota-
tions used in the present study (version V3.2) are available
on the web site: http://www.sigenae.org. They were
obtained by a bioinformatics procedure developed by
SIGENAE (INRA-France) [45].

mRNA labeling, hybridization and data acquisition
All these procedures were as previously described by
Desert et al. [38]. Briefly, 5 Pg of each mRNA sample were
reverse-transcribed and Cy5 fluorescence-labeled. Each
Cy5-labeled mRNA sample was hybridized to the micro-
array with the same Cy3-labeling reference probe accord-
ing to the procedure of Transcriptome-Biochip Laboratory
of Genopole "Toulouse Midi-Pyrénées" (France). The ref-
erence RNA pool was made up from equal amounts of
RNA derived from all liver samples. The fluorescence ratio
for each gene reflected the relative abundance of the
mRNA of interest in each experimental sample compared
with the same reference mRNA. The reference thus made
it possible to take into account any eventual "spot × array"
interaction.

Fluorescence signals were detected with a laser scanner
(GenePix 4000A from Axon Instrument, CA) keeping a

http://www.ark-genomics.org
http://www.ark-genomics.org
http://www.sigenae.org
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constant PMT gain for each channel. The images were
then analyzed with GenepixPro 4.0 software (Axon instru-
ments, Inc., Union City, CA). The raw files were stored in
genepix files compatible with the LIMMA library of the R-
project statistical and Bioconductor environment [46]
which was used for the normalization and analysis of the
data.

Data filtering
The first step was to select the genes considered as
expressed in the liver (roughly 60% expected) showing a
good contrast between spot and background intensities
(SNR (Signal to Noise Ratio) defined as greater than 2).
Among the 20461 genes on the microarray, we selected
11590 genes (57%) and eliminated one microarray for
which the average SNR was equal to 1.5. We then removed
377 genes for which a minimum of 20% of spots among
the 45 microarrays did not respect the 2 criteria: i) absence
of the genepix flag (automatically performed by Genepix-
Pro 4.0 [47]) and ii) symmetry of the spot. A total of
11213 genes were finally selected. Finally we targeted the
isolated "bad" spots that did not conform to the two cri-
teria in order to avoid taking them into account during the
normalization procedure (2.8% of spots).

Data normalization
The procedure was previously described by Desert et al.
[38]. The Cy5/Cy3 ratio used was expressed as the Log2 of
the ratio of median pixel intensity of the red and green
spots. Median Log2 ratio values were then normalized
(ratio centered on zero) according to the hypothesis that
the majority of gene expressions did not differ between
two samples. The normalization was performed by a non-
linear regression method (Lowess fitness) [48] to take into
account the intensity dependence of the fluorescence bias.

Data analyses
Raw data analyses were performed using a code written in
R and softwares from the open-source Bioconductor
Project [46]. The animal labels were defined as follows: F1
to F20 for the 20 fattest animals, L1 to L20 for the 20 lean-
est animals and I for the 5 intermediates. Analysis of vari-
ance between the 10 fattest (F1-F10) and 10 leanest
chicken (L1-L10) groups for the AF trait value were per-
formed with "aov" function. Two-way Hierarchical Clus-
ter Analysis (HCA) was performed using the "hclust"
function with "1-cor" as distance function and "ward" as
aggregation criterion; the "heatmap" function was used to
generate images. Principal Component Analysis (PCA)
was performed with the "pca" function of the FactoMiner
library. The predictions of Q versus q allele at the QTL
mutation for the recombinants were estimated by discri-
minant analysis or a logistic regression model using the
"lda" and "glm" functions of R, respectively.

Real time quantitative RT-PCR (qRT-PCR) assay
Reverse transcription (RT) was carried out using the high-
capacity cDNA archive kit (Applied Biosystems, Foster
City, CA) according to the manufacturer's protocol.
Briefly, 200 PL of each reaction mixture containing 20 PL
of 10× RT buffer, 8 PL of 25× dNTPs, 20 PL of 10× random
primers, 10 PL of MultiScribe Reverse Transcriptase (50 U/
PL), and total RNA (10 Pg) was incubated for 10 min at
25°C followed by 2 h at 37°C. A 1/10 or 1/20 dilution
(depending on the gene) of each RT reaction was further
used for real time quantitative PCR (qPCR). cDNA sam-
ples were mixed with 20 Pl ABsolute SYBR Green Mix
(Abgene, UK) and 300, 450 or 600 nM (according to the
gene) of specific reverse and forward primers. Reaction
mixtures were incubated in an iCycler iQ Multicolour
Real-Time PCR Detector (Bio-Rad, Marne la Coquette,
France) programed to perform one cycle (95°C for 15
min) and 40 cycles (95°C for 15 s and 59°C for 45 s). A
melting curve program was then performed for each gene
to check the presence of a single product with a specific
melting temperature. For each sample and each gene, PCR
runs were performed in duplicate. For each gene, serial
PCR reactions constructed with 2-fold serial dilutions
from a pool of the cDNA samples were systematically
added on each microplate for the calibration curve and
determination of the amplification rate (R) of the Taq
polymerase. For all genes, the amplification rates were
within the range 99% to 100% and could be considered
as equal to 1. Thus, for the same sample, the gene expres-
sion level could be normalized relative to the B-actin
expression level.

QTL and eQTL mapping
Before QTL analyses, the AF trait values of the sire family
(71 birds) were adjusted for hatch and dam effects by two-
way variance analysis, including body weight at slaughter
as a covariate (SAS GLM procedure). For the eQTL analy-
ses, no adjustment of the gene variables was performed
for hatch and dam effects because of the small size of the
population studied (45 birds). QTLMAP software based
on an interval mapping method described by Elsen et al.
[49], was used to detect QTL (or eQTL) affecting the AF
trait (or a gene expression phenotype). Gene expression
values were obtained by microarray or qRT-PCR proce-
dure. The statistical variable for testing the presence of one
QTL (or eQTL) versus no QTL (or no eQTL) at one location
was an approximate likelihood ratio test (LRT) [50]. Sig-
nificance thresholds were empirically determined for AF
QTL and transcript level eQTL from 2000 simulations.
The widely used "one LOD drop-off method" was applied
to obtain 95% confidence intervals of the QTL location
[51]. QTLMAP software was also used to perform multi-
variate QTL analysis. As only two traits (CV5 and AF) was
studied, we were able to apply a multivariate model with
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a multinormal penetrance distribution, which is the most
powerful and accurate method, even though it is time
consuming [28].
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Additional File 1
Principal Component Analysis (PCA) for the 45 animals with the 660 
gene-set. The gene variables for the PCA were scaled to give them the 
same importance. X-axis and Y-axis represent the first and second princi-
pal components that explained 21.7% and 10% of animal dispersion, 
respectively. (A) Individual factor map. The 20 extreme fat and lean ani-
mals (F1-F10 and L1-L10) are indicated in red and blue, respectively. 
The next 20 fat and lean birds and intermediate animals are indicated in 
black. B: Gene factor map.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-575-S1.PPT]

Additional File 2
Principal Component Analysis (PCA) for the 45 animals with the 5 
gene-set. The gene variables for the PCA were scaled to give them the 
same importance. X-axis and Y-axis represent the first and second princi-
pal components that explained 41.2% and 23% of animal dispersion, 
respectively. (A) Individual factor map. The 20 extreme fat and lean ani-
mals (F1-F10 and L1-L10) are indicated in red and blue, respectively. 
The next 20 fat and lean birds and intermediate animals are indicated in 
black. B: Gene factor map.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-575-S2.PPT]

Additional File 3
Prediction of the paternal Q or q allele at the causative mutation for 
recombinant animals and estimation of the most valuable location for 
AF QTL. On the basis of genetic marker information only, we determined 
for each recombinant animal the Q (orange box) or q haplotype (green 
box) inherited from its sire covering the 36 cM confidence interval of the 
distal GGA5 AF QTL. White box represents undetermined Q or q haplo-
type region. Q or q allele at the causative mutation for each recombinant 
animal was then determined by the discriminant analysis (DA) or logistic 
regression model (LR) (see Methods) using its 5 gene-set transcriptome 
profiles. All the recombinants (lines in gray) for which the probability of 
the prediction by the two methods was not greater than 88% were not con-
sidered. This prediction for each recombinant helped us to isolate the most 
probable region for causative mutation location. Black dotted boxes repre-
sent regions for which the localization of the causative mutation was 
excluded. Taking recombinants together, the most probable causative 
mutation location is indicated by a blue square. New markers next geno-
typed (SEQALL0402, SEQF0081 and SEQALL0540) are indicated in 
blue italic letters to define the recombination breakpoints. Comparison 
between F5, F9, F14, L13 and L6 recombinant offsprings then helped us 
to define the most valuable location of the causative mutation (new blue 
square). 1 Microsatellite marker names located on the distal part of chro-
mosome 5; in italics the markers added to determine recombination 
points. 2 Location for each marker in centiMorgan (cM) or Megabase 
(Mb).3 Q or q haplotype inherited from the sire; "0" indicates undeter-
mined paternal allele. 4 AF values for each recombinant animal are shown 
as a rough guide. 5 and 6 Allele predicted at the causative mutation (Q or 
q) by discriminant analysis (DA) or logistic regression model (LR) using 
the 5 gene-set, respectively. "/": undetermined allele.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-575-S3.XLS]

Additional File 4
International genetic markers used. Markers were chosen from interna-
tional available markers (Groenen et al, 2000, Genome Res, 10:137-
147), or developed for this program (Abasht et al 2006, Genet Sel Evol, 
38(3):297-311; see additional file 5).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-575-S4.PDF]

Additional File 5
New microsatellite markers developed from the chicken genome 
assembly. (galGal3, http://genome.ucsc.edu/cgi-bin/hgGateway).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-575-S5.PDF]
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