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ABSTRACT

The research of this thesis lies in the area of extremal combinatorics. The word

“extremal” comes from the kind of problems that are studied in this field. In fact, if

a collection of finite objects (numbers, subsets, subspaces, graphs, etc.) satisfies some

restrictions then the following questions are of interest from the perspective of extremal

combinatorics: what is the maximum (minimum) size of those collections? what is the

structure of the collections of maximum (minimum) size?

For example, in extremal set theory one studies these questions for subsets of

[n] = {1, 2, . . . , n} subject to conditions such as the families of subsets are intersecting,

anti-chain, included in another family of subsets, etc. This field has seen a tremendous

growth in the past few decades. Remarkably, some of the results obtained in extremal

set theory can be generalized when, instead of subsets, other objects are considered.

The main results in this thesis are analogues of theorems in extremal set theory where,

instead of subsets, objects like groups and subspaces are considered. First, we focus on

generalizations of the Erdös-Ko-Rado theorem for permutation groups. In particular,

for the group PGL(2, q) we prove that intersecting families of maximum size are stable.

Moreover, for the group PSL(2, q) we prove that every intersecting family of maximum

size is a coset of a point stabilizer. Secondly, we study rank resilience property of

higher inclusion matrices of r-subsets vs. s-subsets. We prove that a q-analogue of

this property holds, that is, the rank of the higher inclusion matrices of r-subspaces

vs. s-subspaces is also resilient. Furthermore, we prove that this resilience property

holds over any field in the set case and over any field of characteristic coprime to q in

the vector space case.

It is well known that, in general, these analogues of classical results are hard

to prove. In fact, most of the proof ideas used to prove results in extremal set theory

viii



cannot be applied in a straightforward way. The main tools used here to prove our

results come from representation theory.

Representation theory is a branch of mathematics that studies algebraic struc-

tures by representing their elements as linear transformations of vector spaces. In-

deed, one of the objectives of this thesis is to highlight how some tools provided by

representation theory can be used to prove analogues of classical results in extremal

combinatorics.
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Chapter 1

INTRODUCTION

Extremal combinatorics is an area of discrete mathematics. The word extremal

comes from the kind of problems that are studied in this field. In fact, if a collection

of finite objects (numbers, subsets, subspaces, graphs, etc.) satisfies some restrictions

then the following problems are of interest from the perspective of extremal combina-

torics:

I What is the maximum (minimum) size of those collections?

II What is the structure of the collections attaining the maximum (minimum) size?

III What is the structure of the collections whose size is close to the maximum (min-

imum)?

Problem I is known as the upper or lower bound problem. In Problem II the

objective is to characterize the structure of extremal (in terms of size) collections,

therefore, this problem is known as the characterization problem. Similarly, in Problem

III the objective is to characterize the structure of the collections whose size is close to

the maximum. If the structure of these “almost” extremal collections is similar to the

structure of the collections of maximum size, then we say that the extremal collections

are stable. Hence, Problem III is know as the stability problem.

In particular, the area of extremal set theory studies the above three problems

for subsets of a finite set X subject to conditions such as the families of subsets are

intersecting, anti-chain, included in another family of subsets, etc [33]. This field

has seen an astonishing growth in the past few decades. As a consequence, many

proof techniques have been used and developed to solve extremal set problems; for
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example, the pigeonhole principle, inclusion-exclusion, induction, double-counting and

more recently the probabilistic and linear algebra methods.

Remarkably, some of the results obtained in extremal set theory can be gener-

alized when, instead of subsets, other objects are considered. The main results in this

thesis are analogues of extremal set theory theorems where, instead of subsets, objects

like groups and vector spaces are considered.

The Erdös-Ko-Rado (EKR) theorem [18] is a classical result in extremal set the-

ory. It states that if k < n/2, an intersecting family of k-subsets of [n] = {1, 2, . . . , n}

has size at most
(
n−1
k−1

)
; equality holds if and only if the family consists of all k-subsets

containing a fixed element from [n]. Intersecting families of maximum size are called

extremal families. Note that the EKR theorem solves Problems I and II for collections

of k-subsets of [n] constrained to be pairwise intersecting.

Some decades later, Frankl [19] completed the above program. He proved that

the extremal intersecting families of k-subsets are not only unique, but also stable: any

intersecting family of size close to the maximum is “close” in structure to an extremal

family. Here, we prove analogues of these characterization and stability results for

permutations groups. In particular, we consider the natural right actions of PGL(2, q)

and PSL(2, q) on the set of points of PG(1, q), where q is a prime power.

A general approach in mathematics is to associate an algebraic object with

the problem we want to study. The idea is that properties of the algebraic object

may give valuable information that can be helpful to solve the problem. This general

approach has been applied with success in extremal set theory where the notion of

higher inclusion matrices has been used to prove many results [9, 19, 20, 23, 29, 38,

57, 58]. In this thesis we consider the following definition of higher inclusion matrices

of r-subsets vs. s-subsets.

Definition 1. Let n ≥ r ≥ s ≥ 0 be integers and F a family of r-subsets of [n]. The

higher inclusion matrix WF
r,s is a (0, 1)-matrix with rows indexed by the r-subsets in F

and columns indexed by the s-subsets of [n]: the entry corresponding to R ∈ F and
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S ∈
(

[n]
s

)
1 is equal to 1 if S ⊂ R and 0, otherwise. If F =

(
[n]
r

)
we shall write Wr,s

instead of WF
r,s.

Let F be a family of r-subsets of [n]. The s-shadow of F , denoted by ∂rsF ,

consists of all s-subsets of [n] that are contained in some element of F . A fundamental

result in extremal combinatorics, the Kruskal-Katona theorem, gives a sharp lower

bound on the size of ∂rr−1F . In order to state the theorem, we note that for positive

integers m and r there are always unique integers mr > mr−1 > · · · > mj with j ≥ 0

such that m =
(
mr
r

)
+
(
mr−1

r−1

)
+ · · ·+

(
mj
j

)
.

Theorem 2. (Katona, [35]) Let r ≥ 1 and m ≥ 1. For every F ⊂
(

[n]
r

)
with m = |F|

we have

|∂rr−1F| ≥
(
mr

r − 1

)
+

(
mr−1

r − 2

)
+ · · ·+

(
mj

j − 1

)
.

The inequality is best possible for every r and m ≤
(
n
r

)
. Furthermore, if m =

(
mr
r

)
,

then equality holds if and only if F =
(
X
r

)
, where X is a mr-subset of [n].

The following classical result in extremal combinatorics is known as the Lovász

version of Kruskal-Katona theorem.

Theorem 3. (Lovász, [44]) Let F be a family of r-subsets of [n] such that |F| =
(
x
r

)
.

If s < r then |∂rsF| ≥
(
x
s

)
. Equality holds if and only if x is an integer and there exists

a subset X of [n] of size x such that F =
(
X
r

)
.

The above theorem can be proved in several different ways. Keevash [38] showed

that Theorem 1 follows immediately from the following result on the rank of higher

inclusion matrices.

Theorem 4. (Keevash, [38]) For every r > s > 0 there is a number nr,s so that if F

is a family of r-subsets of [n] with |F| =
(
x
r

)
≥ nr,s then rankQ(WF

r,s) ≥
(
x
s

)
. Equality

holds if and only if x is an integer and there exists a subset X of [n] of size x such that

F =
(
X
r

)
.

1 We denote by
(

[n]
s

)
the family of s-subsets consisting of all s-subsets of [n].
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To see how Theorem 3 follows from Theorem 4 (for large x), one simply observes

that rankQ(WF
r,s) is less than or equal to the number of nonzero columns of WF

r,s (which

is the size of the s-shadow). In order to prove Theorem 4, Keevash [38] showed that

the rank of the matrix Wr,s is resilient or robust, that is, one can remove many rows

(in an arbitrary way) of Wr,s without lowering its rank.

Theorem 5. (Keevash, [38]) Suppose 0 ≤ s ≤ r and 2r + s ≤ n. If F is a family of

r-subsets with |
(

[n]
r

)
\ F| ≤

(
n
s

)−1( n
r−s

)
then rankQ(WF

r,s) = rankQ(Wr,s).

Keevash went further to ask whether Theorem 5 remains true under the as-

sumption |
(

[n]
r

)
\ F| <

(
n−s
r−s

)
. This question was answered in the affirmative by Grosu,

Person and Szabó [29] for n large compared to r and s. Furthermore, Theorem 5 im-

plies that the s-shadow of every family of r-subsets of [n] whose size is close enough to(
n
r

)
is equal to

(
[n]
s

)
(although this observation follows immediately from the definition

of s-shadow). In the end of [29], the authors remarked that the resilience property of

the higher inclusion matrices has not been studied over fields of positive characteristic.

In this thesis we prove that the rank of Wr,s is resilient over any field K.

Moreover, we prove an analogue of Theorem 5 where instead of consider fam-

ilies of r-subsets we consider families of r-dimensional subspaces of a vector space of

dimension n over Fq.

Experience in extremal combinatorics has shown that these analogues of classical

results are hard to prove in general. In fact, most of the proof ideas used to prove results

in extremal set theory cannot be applied in a straightforward way. The main tools used

in this thesis to prove our results come from representation theory.

Representation theory [53] is a branch of mathematics that studies algebraic

structures by representing their elements as linear transformations of vector spaces.

Indeed, one of the objectives of this thesis is to highlight how some tools provided by

representation theory can be used to prove analogues of classical results in extremal

combinatorics. We expect to provide enough evidence to support our claim that the
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representation theory method is another powerful tool to attack problems in extremal

combinatorics.

1.1 Main Results of the Thesis

1.1.1 Stability of Intersecting Families in PGL(2, q)

We consider the right action of the 2-dimensional projective general linear group

PGL(2, q) on the projective line PG(1, q). A subset S of PGL(2, q) is said to be an

intersecting family if for every g1, g2 ∈ S, there exists x ∈ PG(1, q) such that xg1 = xg2 .

In [45], Meagher and Spiga studied Problems I and II for the group PGL(2, q)

acting on the set of points of the projective line PG(1, q). These authors proved that

the maximum size of an intersecting family in PGL(2, q) is q(q−1). Furthermore, they

also solved the characterization problem: Every intersecting family of maximum size

in PGL(2, q) is a coset of a point stabilizer.

In this thesis, we prove that intersecting families of maximum size in PGL(2, q)

are also stable; that is, an intersecting family in PGL(2, q) whose size is close to q(q−1)

must be close in structure to a coset of a point stabilizer. This result is stated more

precisely in Theorem 40. Moreover, in Theorem 41 we use this stability result to show

that if the size of S is close enough to q(q − 1) then S must be contained in a coset of

a point stabilizer. Note that our stability result completes the program for PGL(2, q),

that is, Problem I, II and III have been solved for PGL(2, q).

The main tools used to prove this result are the eigenvalue method and analysis

of Boolean functions on PGL(2, q). The eigenvalue method was introduced by Lóvasz

[43] as a new way to prove the EKR theorem. Since then, it has been used many times to

prove analogues of the EKR theorem [15, 26, 45, 57]. The analysis of Boolean functions

on finite groups has been an active research area especially in theoretical computer

science. A lot of work has been done in recent years to characterize Boolean functions

whose Fourier transforms are highly concentrated on some irreducible representations.

Friedgut, Kalai and Naor [22] proved that a Boolean function on Zn2 whose Fourier

transform is close to being concentrated on the first two levels, must be close to a

5



dictatorship (a function determined by just one coordinate). Furthermore, similar

results have been obtained for other abelian groups [1, 31]. Recently, Ellis, Filmus and

Friedgut [16] showed that similar results can be obtained for the symmetric group Sn.

Specifically, they proved that if the Fourier transform of a Boolean function f is highly

concentrated on the first two irreducible representations of Sn and 1
n!

∑
x∈Sn f(x) =

O( 1
n
) then f must be close to a union of cosets of points stabilizers.

1.1.2 Characterization of Intersecting Families of Maximum Size in PSL(2, q)

This work is in collaboration with L. Long, P. Sin and Q. Xiang.

We consider the action of the 2-dimensional projective special linear group

PSL(2, q) on the projective line PG(1, q). A subset S of PSL(2, q) is said to be an

intersecting family if for any g1, g2 ∈ S, there exists x ∈ PG(1, q) such that xg1 = xg2 .

In this thesis, we study Problem II for the group PSL(2, q) acting on PG(1, q)

when q is an odd prime power2. It is known, from the combined results of [3, 45], that

the maximum size of an intersecting family in PSL(2, q) is q(q − 1)/2. However, it

is only a conjecture that all intersecting families of maximum size are cosets of point

stabilizers. (See the second part of Conjecture 1 in [45].) In Theorem 46, we prove this

conjecture in the affirmative for all odd prime powers q.

To prove Theorem 46 we apply a general method for solving Problem II for

some 2-transitive groups. This technique was proposed by Ahmadi and Meagher in [3]

and they called it “The Module Method”. This method reduces the characterization

of intersecting families of maximum size to the computation of the C-rank of a matrix

whose definition is given below.

Definition 6. Let X be a finite set and G a finite group acting on X. An element

g ∈ G is said to be a derangement if its action on X is fixed-point-free. The de-

rangement matrix of G acting on X is the (0, 1)-matrix M , whose rows are indexed

by the derangements of G, whose columns are indexed by the ordered pairs of distinct

2 The case when q is a power of 2 was already solved in [45] because when q is even
one has PGL(2, q) = PSL(2, q).
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elements in X, and for any derangement g ∈ G and (a, b) ∈ X × X with a 6= b, the

(g, (a, b))-entry of M is defined by

M(g, (a, b)) =

 1, if ag = b,

0, otherwise.

The Module Method states that, under certain conditions, if the rank of the

derangement matrix M of G acting on X is equal to (|X| − 1)(|X| − 2), then the

cosets of point stabilizers are the only intersecting families of maximum size in G. This

technique has been applied to show that the cosets of points stabilizers are the only

intersecting families of maximum size for the symmetric group [26], the alternating

group [4], PGL(2, q) [45], and many others groups [3].

Thus, in order to prove Theorem 46 by applying the Module Method, it is

enough to show that the rank of the derangement matrix M of PSL(2, q) acting on

PG(1, q) is equal to q(q − 1). This result is proven in Theorem 47.

Our main tools in the proof of Theorem 47 are the representation theory of

PGL(2, q) and character sums over finite fields. We use representation theory to reduce

the problem of computing the rank of M to the problem of showing that q character

sums over PGL(2, q) are not equal to zero. It turns out that these character sums can

be written in terms of Legendre and Soto-Andrade sums (see Section 2.7). This is not

a surprise; it is well known that these finite fields character sums appear in connection

with the complex representation theory of PGL(2, q) [34]. To prove that the values of

these character sums are not equal to zero the following facts will be crucial:

1. The Legendre and Soto-Andrade sums (see Definitions 24 and 25) on Fq form

an orthogonal basis in the inner product space `2(Fq,m) [34], where m is the

measure assigning mass q + 1 to the points ±1 and mass 1 to all other points.

2. The Legendre sums may be expressed in terms of hypergeometric functions over

finite fields (see Section 2.5). These functions were introduced by Greene in [25]

and Katz in [37] and since that they have been extensively studied [2, 24, 34].
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1.1.3 Rank Resilience of Higher Inclusion Matrices

This work is in collaboration with Q. Xiang.

We generalize Theorem 5 in two directions. First, we prove that the rank of

Wr,s is resilient over any field K. In fact, Theorem 65 shows that if the size of F is

close to
(
n
r

)
then rankK(Wr,s) = rankK(WF

r,s). Furthermore, a similar result is proven

for higher inclusion matrices of r-subspaces vs. s-subspaces whose definition is given

below.

Definition 7. Let q = pt with t a positive integer and p a prime number. We denote

by Fq the finite field with q elements and by Fnq a n-dimensional vector space over Fq.

Let n ≥ r ≥ s ≥ 0 be integers and F a family of r-dimensional subspaces of Fnq . The

higher inclusion matrix of r-subspaces vs. s-subspaces, denoted by WF
r,s(q), is a (0, 1)-

matrix with rows indexed by the r-dimensional subspaces of F and columns indexed

by the s-dimensional subspaces of Fnq such that the entry corresponding to R ∈ F and

S ∈
[Fnq
s

]
is equal to 1 if S is a subspace of R and 0, otherwise. In the case when

F =
[Fnq
r

]
we shall write Wr,s(q) instead of WF

r,s(q).

In Theorem 75 we prove that the K-rank of Wr,s(q) is also resilient or robust

over any field K with char(K) 6= p. Therefore, if the size of F is close enough to
[
n
r

]
then rankK(Wr,s(q)) = rankK(WF

r,s(q)). This result implies that the s-shadow of every

family of r-subspaces of Fnq whose size is close enough to
[
n
r

]
is equal to

[Fnq
s

]
.

Our techniques to prove these resilience results are different from those used by

Keevash in [38] and Grosu, Person and Szabó in [29]. The main tool we use here to

prove Theorem 65 is a basis which provides a diagonal form for the higher inclusion

matrix Wr,s. This basis was found by Bier in [9]. Remarkably, if the size of F is close

to
(
n
r

)
then it also provides an almost diagonal form for the matrix WF

r,s. We shall use

this property to compute the rank of WF
r,s.

To prove Theorem 75 we proceed as in the proof of Theorem 65. Unfortunately,

to the best of our knowledge there is no q-analogue of Bier basis available. To deal with

this difficulty we use some results from representation theory of GL(n, q). The work

8



of James [32] and Frumkin and Yakir [23] explicitly shows a connection between the

rank of higher inclusion matrices and the Specht modules of GL(n, q). We apply some

properties of Specht modules of GL(n, q) to prove that the column space of WF
r,s(q)

contains at least rankK(Wr,s(q)) linearly independent vectors. This result is enough to

prove Theorem 75, because the rank of WF
r,s(q) is clearly bounded above by the rank

of Wr,s(q).

1.2 Organization of the Thesis

In Chapter 2 we recall some definitions and results that will be used in later

chapters. In the process we also introduce our notation. Section 2.6 requires some ad-

vanced knowledge of number theory. The reader may focus on the result of Proposition

23 and skip the rest of this section since only that result will be used later. In Chapter

3 we introduce EKR-problems for permutation groups. Furthermore, we give a brief

review of some techniques that have been used to solve these problems such as the

eigenvalue, module and Fourier analysis methods. In Chapter 4, applying the Fourier

analysis method we prove a stability result for intersecting families in PGL(2, q). In

chapter 5 we characterize intersecting families of maximum size in PSL(2, q) by ap-

plying the module method. In Chapter 6 and 7 we prove the resilience property of

the higher inclusion matrices Wr,s and Wr,s(q), respectively. We conclude the thesis in

Chapter 8, raising some open problems related to the work developed here.
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Chapter 2

PRELIMINARIES

In this chapter we recall some definitions and results that will be used in later

chapters, in the process we also introduce our notation. We start by reviewing standard

facts about general representation theory and Fourier transform on finite groups. We

continue reviewing some properties of the groups PGL(2, q) and PSL(2, q), and their

complex irreducible characters. Finally, we present a brief introduction to the study

of hypergeometric functions over finite fields and their connections with Legendre and

Soto-Andrade sums.

2.1 General Representation Theory

In this section we recall some basic notions and results from representation

theory. For more background, the reader may consult [53].

Definition 8. Let G be a finite group and K a field. A K-representation of G is a pair

(ρ, V ), where V is a finite dimensional K-vector space and ρ is a homomorphism from

G to the group of linear automorphisms of V . In this context, the vector space V is

called a G-module. Moreover, if dim(V ) = n then we say that (ρ, V ) is a representation

of G of degree n.

Assume that (ρ, V ) is a K-representation of some finite group G. A subspace

W of V is said to be a submodule of V if it is closed under the action of G; that is, for

any w ∈ W one has ρ(g)w ∈ W , for all g ∈ G. The G-module V contains at least two

submodules, W = V and W = {0}. These are called the trivial submodules. We say

that V is a reducible G-module if it contains a non-trivial submodule. Otherwise, V

is said to be irreducible.
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Definition 9. Let V and W be G-modules. A G-module homomorphism is a linear

transformation θ : V → W such that θ(ρ(g)v) = ρ(g)θ(v) for all g ∈ G and v ∈ V .

If θ is a bijection then we say θ is a G-module isomorphism and that V and W are

isomorphic G-modules.

The following fact follows directly from Definition 9.

Lemma 10. Let V and W be G-modules and θ : V → W a G-module homomorphism.

Then the kernel and image of θ are G-submodules of V and W , respectively.

Remarkably, G-module homomorphisms of irreducible modules are easy to char-

acterize. A classical result in representation theory deals with this characterization.

Lemma 11 (Schur’s Lemma). Let W1 and W2 be two irreducible G-modules. If θ :

W1 → W2 is a G-module homomorphism, then either

1. θ is a G-module isomorphism, or

2. θ is the zero map.

Let 〈·, ·〉 be an inner product defined on V . Let W be a subspace of V . We

define the orthogonal complement of W by

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈ W}.

We say that 〈·, ·〉 is invariant under the action of G if it satisfies that,

〈gv, gw〉 = 〈v, w〉 for all g ∈ G and v, w ∈ V.

Moreover, the next lemma establishes that when W is a G-submodule of V and the

inner product 〈·, ·〉 is G-invariant then W⊥ is not only a subspace of V but also a

submodule.

Lemma 12. Let V be a G-module, W a submodule of V , and 〈·, ·〉 an inner product

invariant under the action of G. Then W⊥ is a G-submodule.
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We denote by K[G] the vector space of K-valued functions on G. We equip

K[G] with the following inner product

〈χ, ψ〉G =
1

G

∑
g∈G

χ(g)ψ(g).

where χ and ψ are functions in K[G]. For a representation of G, we define the character

of the representation as follows.

Definition 13. Let (ρ, V ) be a K-representation of G. We define the function χρ

associated with ρ as the map given by

χρ : G → K

g 7→ Tr(ρ(g)),

where Tr denotes the trace of a linear transformation. We say that χρ is the character

associated with ρ.

If ρ is an irreducible representation then we say that χρ is an irreducible char-

acter. These functions have been extensively studied [53]. In particular, we recall the

orthogonality relations for characters.

Lemma 14. Let ρ1 and ρ2 be non-isomorphic irreducible representations of G. Then

their irreducible characters χρ1 and χρ2 are orthogonal, i.e. 〈χρ1 , χρ2〉G = 0.

For the rest of this section we consider complex representations. It is well known

that there exists a finite number of non-isomorphic complex irreducible representations

of G. The following result implies that every complex representation of G is isomorphic

to a direct sum of irreducible representations.

Theorem 15 (Maschke’s Theorem). Let G be a finite group and let V be a nonzero

G-module over C. Let {V1, . . . , Vn} is a complete set of non-isomorphic irreducible

representations of G. Then

V ∼= V ⊕m1 ⊕ V ⊕m2
2 ⊕ · · · ⊕ V ⊕mnn (2.1)

where each mi is a non-negative integer called the multiplicity of Vi in V .
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We will usually denote by Vχ the G-module associated with an irreducible char-

acter χ of G. Let χ1, . . . , χn be the characters associated with irreducible representa-

tions (ρ1, Vχ1), . . . , (ρn, Vχn), respectively. We can rewrite equation (2.1) in terms of

characters,

χρ = m1χ1 +m2χ2 + · · ·+mnχn.

Furthermore, there is a nice formula to express the integersmi in terms of the characters

χρ and χi. In fact, we have

mi = 〈χρ, χi〉G

for any irreducible character χi.

Let H be a subgroup of G and χ a character of G. We can easily note that if

we restrict χ to H then we get a character of H. We denote the restriction of χ to H

by ResHG (χ). On the other hand, if ψ is a character of H then we can get a character

of G using the following formula:

IndGH(ψ)(g) =
1

|H|
∑
x∈G

x−1gx∈H

ψ(x−1gx).

The character IndGH(ψ) is called the character induced by ψ from H to G. The following

result relates inner products of restricted and induced characters.

Theorem 16 (Frobenius Reciprocity Law). Let H ≤ G. Let χ and ψ be characters of

H and G, respectively. Then

〈ψ, IndGH(χ)〉G = 〈ResHG (ψ), χ〉H

where the inner product on the left is calculated in G and the one to the right in H.

2.2 Fourier Analysis

Let G be a finite group. We denote by C[G] the vector space of all complex

valued functions on G.
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Definition 17. Let R be a complete set of non-isomorphic irreducible matrix repre-

sentations of G. The Fourier transform of f ∈ C[G] is a matrix-valued function on

irreducible representations. Its value at the irreducible representation ρ ∈ R is

f̂(ρ) =
1

|G|
∑
s∈G

f(s)ρ(s).

We apply the Fourier transform to decompose the vector space C[G] into a direct

sum of subspaces indexed by the irreducible representations of G. For every ρ ∈ R, we

denote by V̂ρ the subspace of C[G] consisting of all functions whose Fourier transform

is supported only on ρ, more precisely,

V̂ρ = {f ∈ C[G] : f̂(ρ′) = 0, for all ρ′ 6= ρ, ρ′ ∈ R}.

Since the Fourier transform is an invertible linear transformation, we can write

C[G] =
⊕
ρ∈R

V̂ρ.

By abuse of notation, we will sometimes use V̂χρ to denote V̂ρ where χρ is the irreducible

character afforded by ρ.

Remark 18. In the previous section, we define Vχρ as the G-module associated with

the irreducible character χρ. There is a close relation between Vχρ and V̂χρ , in fact

V̂χρ
∼= Vχρ ⊕ · · · ⊕ Vχρ︸ ︷︷ ︸

n times

where n is the degree of ρ. Therefore, if the degree of ρ is n then Vχρ is a module of

dimension n and V̂χρ is a module of dimension n2.

Recall that we can make C[G] an inner product space. For any f, g ∈ C[G] we

define

〈f, g〉G =
1

|G|
∑
x∈G

f(x)g(x),

and we denote by ‖f‖G the Euclidean norm induced by this inner product

‖f‖G =

√
1

|G|
∑
g∈G

|f(g)|2.
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Let U be any subspace of C[G] and f ∈ C[G]. We denote by U⊥ the orthogonal

complement of U and by PU(f) the projection of f onto U . Thus, we can write

f = PU(f) + PU⊥(f).

For every 2-transitive group G, the vector space C[G] contains a subspace Vχstd

associated with an irreducible representation called standard representation. We review

some basic facts about this representation. Let X = {1, . . . , n} be a set and C[X] be

the vector space of all C-valued functions defined on X. For every i ∈ X, we define

ei as the function on X which takes the value 1 at i and 0 elsewhere. Let G be a

group acting on X on the right. This action turns C[X] into a representation of G of

degree n. Indeed, this representation is produced by a linear extension of the (left)

action defined by g(ei) = eig−1 for all g ∈ G and i ∈ X. The vector subspace Vχstd

spanned by the vectors {
∑n

i=1 xiei :
∑
xi = 0} is a subrepresentation of C[X] of degree

n − 1, known as the standard representation of G. We denote by χstd the character

afforded by the standard representation (we will refer to χstd as the standard character

of G). It follows by definition that for every g ∈ G, the value χstd(g) corresponds to

the number of elements in X fixed by g minus one. Furthermore, if the action of G on

X is 2-transitive then χstd is an irreducible character and there exists a subspace V̂χstd

of C[G] of dimension (n− 1)2.

2.3 The Groups PGL(2, q) and PSL(2, q)

Let Fq be the finite field of size q and Fq2 its unique quadratic extension. We

denote by F∗q and F∗q2 the multiplicative groups of Fq and Fq2 , respectively. Let GL(2, q)

be the group of all invertible 2 × 2 matrices over Fq and SL(2, q) the subgroup of all

invertible 2× 2 matrices with determinant 1. The center Z(GL(2, q)) of GL(2, q) con-

sists of all non-zero scalar matrices and we define PGL(2, q) = GL(2, q)/Z(GL(2, q))

and PSL(2, q) = SL(2, q)/ (SL(2, q) ∩ Z(SL(2, q))). If q is odd then PSL(2, q) is a

subgroup of PGL(2, q) of index 2, while if q is even then PGL(2, q) = PSL(2, q).

We denote by PG(1, q) the set of 1-dimensional subspaces of the space F2
q of

row vectors of length 2. Thus, PG(1, q) is a projective line over Fq and its elements
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are called projective points. An easy computation shows that PG(1, q) has cardinality

q + 1. From the above definitions, it is clear that the GL(2, q)-action on F2
q by right

multiplication induces a natural right action of the groups PGL(2, q) and PSL(2, q) on

PG(1, q). The action of the subgroup PSL(2, q) is 2-transitive, that is, given any two

ordered pairs of distinct points there is a group element sending the first pair to the

second. The action of PGL(2, q) is sharply 3-transitive, that is, given any two ordered

triples of distinct points there is a unique group element sending the first triple to the

second.

2.4 The Character Table of PGL(2, q)

We briefly describe the character table of PGL(2, q). We refer the reader to [48]

for a complete study of the complex irreducible characters of PGL(2, q). We start by

describing its conjugacy classes. By abuse of notation we will denote the elements of

PGL(2, q) by 2× 2 matrices with entries from Fq.

First note that, the elements of PGL(2, q) can be collected into four sets: The set

consisting of the identity element only; the set consisting of the non-scalar matrices with

only one eigenvalue in Fq; the set consisting of matrices with two distinct eigenvalues

in Fq; and the set of matrices with no eigenvalues in Fq. Recall that the elements of

PGL(2, q) are projective linear transformations so if {x1, x2} are eigenvalues of some

g ∈ PGL(2, q) then {ax1, ax2} are also eigenvalues of g for any a ∈ F∗q. Hence, the

eigenvalues of elements in PGL(2, q) are defined up to multiplication by elements of

F∗q.

The identity of PGL(2, q), denoted by I, defines a conjugacy class of size 1.

Every non-identity element of PGL(2, q) having only one eigenvalue in F∗q is conjugate

to

u =

 1 1

0 1

 .

The conjugacy class of u contains q2 − 1 elements. The elements having two distinct
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eigenvalues in Fq are conjugate to

dx =

 x 0

0 1


for some x ∈ F∗q \ {1}. Moreover, dx and dy are conjugated if and only if x = y or

x = y−1. The size of the conjugacy class containing dx is q(q + 1) for x ∈ F∗q \ {±1}

and q(q + 1)/2 for x = −1 (note that when q is even there is no element of order 2 in

F∗q). Finally, the elements of PGL(2, q) with no eigenvalues in F∗q are conjugate to

vr =

 0 1

−r1+q r + rq


for some r ∈ F∗q2 \ F∗q. The matrices vr have eigenvalues {r, rq}. Hence, vr1 and vr2 lie

in the same conjugacy class if and only if r1F∗q = r2F∗q or r1F∗q = r−1
2 F∗q. The size of

the conjugacy class containing vr is q(q − 1) if r ∈ F∗q2 \ (F∗q ∪ jF∗q) and q(q − 1)/2 if

r ∈ jF∗q, where j is an element of F∗q2 such that j2 ∈ F∗q (again when q is even there is

no element of order 2 in F∗q2/F
∗
q).

The complex irreducible characters of PGL(2, q) are described in Table 2.1.

They also come in four families. First the characters λ1 and λ−1 correspond to repre-

sentations of degree 1. Here λ1 is the trivial character and the values of λ−1 depend

on a function δ which is defined as follows: δ(x) = 1 if dx ∈ PSL(2, q) and δ(x) = −1

otherwise, similarly, δ(r) = 1 if vr ∈ PSL(2, q) and δ(r) = −1 otherwise (note that

λ−1 arises only when q is odd).

Secondly, the characters ψ1 and ψ−1 correspond to representations of degree

q. The character ψ1 is the standard character which is an irreducible character of

PGL(2, q). Thus, for every g ∈ PGL(2, q), the value of ψ1(g) is equal to the number

of projective points fixed by g in PG(1, q) minus 1. The values of ψ−1 depend on the

function δ defined above and it arises only when q is odd.

The third family of irreducible characters is known as the principal series of

PGL(2, q). These characters correspond to representations of degree q + 1 and their
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Table 2.1: Character table of PGL(2, q)

I u dx d−1 (q odd) vr vi (q odd)
λ1 1 1 1 1 1 1

λ−1 (q odd) 1 1 δ(x) δ(−1) δ(r) δ(i)
ψ1 q 0 1 1 −1 −1

ψ−1 (q odd) q 0 δ(x) δ(−1) −δ(r) −δ(i)
ηβ q − 1 −1 0 0 −β(r)− β(rq) −2β(i)
νγ q + 1 1 γ(x) + γ(x−1) 2γ(−1) 0 0

values depend on multiplicative characters of Fq. In fact, the label γ in Table 2.1 runs

through all the homomorphism γ : F∗q → C of order greater than 2 up to inversion.

Finally, the fourth family is known as the cuspidal characters of PGL(2, q). They

correspond to representations of degree q−1 and their values depend on multiplicative

characters of Fq2 . In fact, the label β in Table 2.1 runs through all homomorphism

β : F∗q2/F
∗
q → C of order greater than 2 up to inversion. Note that every β corresponds

to a unique multiplicative character of Fq2 which is trivial on F∗q.

We define some subsets of multiplicative characters of Fq and Fq2 . We use these

sets as indexes for the irreducible representations of PGL(2, q).

Definition 19. Assume that q is an odd prime power. We denote by A and B a fixed

selection of characters γ and β, as defined above, up to inversion of size (q − 3)/2

and (q − 1)/2, respectively. Therefore, the principal series and cuspidal irreducible

characters of PGL(2, q) are given by {νγ}γ∈A and {ηβ}β∈B, respectively.

2.5 Hypergeometric Functions over Finite Fields

A (generalized) hypergeometric function with parameters ai, bj is defined by

n+1Fn

a1 a2 · · · an+1

b1 · · · bn

; x

 =
∑
k≥1

(a1)k · · · (an+1)k
(b1)k · · · (bn)k

xk

k!
,

where a0 = 1 and for k ≥ 1 (a)k = a(a + 1) · · · (a + k − 1) is called the Pochhammer

symbol.
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Hypergeometric functions over finite fields were introduced independently by

John Greene [25] and Nick Katz [37]. In this paper, we consider Greene’s hypergeo-

metric sum, however, note that the two definitions differ only in a normalizing factor

for cases related to our discussion.

In this section and throughout this thesis we denote by ε and φ the trivial and

quadratic multiplicative characters of Fq, respectively. Also, we adopt the convention

of extending multiplicative characters by declaring them to be zero at 0 ∈ Fq. Let

γ0, γ1, γ2 be multiplicative characters of Fq and x ∈ Fq. Greene defines the following

finite field analogue of a hypergeometric sum

2F1

γ0 γ1

γ2

; x; q

 = ε(x)
γ1γ2(−1)

q

∑
y∈Fq

γ1(y)(γ2γ
−1
1 )(1− y)γ−1

0 (1− xy). (2.2)

Since the seminal work of Greene and Katz a lot of work has been done on

special functions over finite fields, in particular generalized hypergeometric functions.

In this section, we recall some definitions and results that we will use later in this

thesis.

Following Greene [25], we introduce other n+1Fn functions inductively as follows.

For multiplicative characters A0, A1, . . . , An and B1, . . . , Bn of Fq and x ∈ Fq, define

n+1Fn

A0 A1 · · · An

B1 · · · Bn

; x; q

 :=

AnBn(−1)

q

∑
y∈Fq

nFn−1

A0 A1 · · · An−1

B1 · · · Bn−1

; y; q

An(y)AnBn(1− y)

The following lemma is a generalization of Lemma 2.2 in [2].

Lemma 20. For any non-trivial multiplicative character γ of Fq,

q 4F3

γ γ−1 φ φ

ε ε ε
; 1; q

 =
∑
y∈Fq

φ(y)2F1

φ φ

ε
; y; q


2F1

γ γ−1

ε
; y; q


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Proof. The lemma follows from the recursive definition of n+1Fn. First,

q 4F3

γ γ−1 φ φ

ε ε ε
; 1; q

 = φ(−1)
∑
x∈F∗q

φ(x)φ(1− x) 3F2

γ γ−1 φ

ε ε
; x; q


=

1

q

∑
x∈F∗q

∑
y∈F∗q

φ(x)φ(1− x)φ(y)φ(1− y)2F1

γ γ−1

ε
; xy; q

 .
Now replacing y with y/x, x with xy and using equation (2.2) we get,

q 4F3

γ γ−1 φ φ

ε ε ε
; 1; q

 =
1

q

∑
x∈F∗q

∑
y∈F∗q

φ(1− 1

x
)φ(1− xy)φ(y)2F1

γ γ−1

ε
; y; q


=

∑
y∈Fq

φ(y)2F1

φ φ

ε
; y; q


2F1

γ γ−1

ε
; y; q

 .

Like their classical counterparts hypergeometric functions over finite fields sat-

isfy many transformation formulas [24, 25, ?]. In particular, the next one will be useful

for our purpose.

Lemma 21. (Greene, [25]) For x ∈ Fq with x 6= 0 we have,

2F1

φ φ

ε
; x; q

 = φ(x)2F1

φ φ

ε
;

1

x
; q

 .
2.6 Some Related Arithmetic Results

We first introduce some more notation. Let p be an odd prime and K a finite

Galois extension of Q unramified at p and OK the ring of algebraic integers of K. Then

at each prime ideal p of OK above p, the quotient OK/p ∼= Fq is a finite field extension

of Fp of size q = ps for some s ≥ 1. Note that for every p and s it is possible to realize Fq
in this way. Let Q be the algebraic closure of Q and GK := Gal(Q/K) be the absolute

Galois group of K. Let ` be a prime and Q` be the local `-adic field. Below, we will

use some results in finite dimensional `-adic Galois representations. A dimension-m
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representation ρ of GK is a continuous homomorphism from GK to GLm(L) where L =

Q` or an extension of Q`. When such a representation ρ arises from algebraic equations

(or varieties), it ramifies at only finitely many prime ideals of OK . To describe ρ up to

semisimplification, it is sufficient to compute all ρ(Frobp) for unramified p where Frobp

denotes the (geometric) Frobenius conjugacy class of GK at p. (Frobp is the inverse

of the arithmetic Frobenius Frp, which on the residual field level sends x to x|O/p|.)

For example, the `-adic cyclotomic character ε` : GQ → Q∗` which is a 1-dimensional

representation defined by ε`(Frp) = p for each prime p 6= `. For more details, see [54].

An important source of Galois representations arises from modular forms. Instead of

giving the precise definition of modular forms which are graded by their weights, we

will point out a few things most relevant to our discussion. It is customary to express

modular forms as Laurent series in q = e2πiz (not to be confused with the prime power

q). The Dedekind eta function is defined by η(z) := q
1
24

∏∞
n=1(1 − qn). A typical

example of modular form is ∆(z) = η(z)24. The function ∆(z) is of weight k = 12

and satisfies ∆(z + 1) = ∆(z). We use τn to denote its nth Fourier coefficient. It is

known due to Ramanujan and Mordell that for each prime p and natural number n,

the following recursion holds: τnp − τnτp + pk−1τn = 0. This means ∆(z) is a Hecke

eigenform (and other Hecke eigenforms satisfy similar Hecke recursions). Ramanujan

conjectured that |τp| < 2p(12−1)/2 = 2p11/2 for each prime p. Motivated by Ramanujan’s

observation and based on the pioneering work of Eichler-Shimura, Deligne obtained

the following important result. For each integral weight k ≥ 2 (cuspidal) modular

form f with Fourier coefficient {an(f)}n≥1 (we assume the character is trivial) and

prime `, there is a 2-dimensional representation ρ`,f : GQ → GL2(L) (where L is the

completion of Q(a1(f), a2(f), · · · ) at any place above `) such that for almost all primes

p, the characteristic polynomial of ρ`,f (Frp) is of the form T 2 − ap(f)T + pk−1 with

two eigenvalues, denoted by αp, βp, each having complex absolute value p(k−1)/2. Thus

|Trρ`,f (Frp)| = |ap(f)| ≤ 2p(k−1)/2.
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To motivate the later discussion, we will review the relation between the hy-

pergeometric function 2F1

1
2

1
2

1
; x

 and its finite field analogues. For each fixed

x ∈ Q \ {0, 1}, the cubic equation Ex : t2 = s(s − 1)(1 − xs) in two variables s, t

defines an algebraic curve over Q whose compatification is a genus 1 curve. It is

known as an elliptic curve and possesses an abelian group structure as topologically

the curve over C is isomorphic to C/Λx where Λx is a rank-2 Z-lattice. It has a

unique up to scalar holomorphic differential ωx := ds
t

= ds√
s(s−1)(1−xs)

and for |x| < 1,

∫ 1

0
ωx = π · 2F1

1
2

1
2

1
; x

, see [5]. Let ` be an auxiliary prime, for any integer n ≥ 1,

the subgroupEx[`
n] of `n-division points of Ex, is isomorphic to (Z/`nZ)2. As all tor-

sion points of Ex have coordinates in Q, the group GQ acts as group automorphisms

on the group Ex[`
n]. Upon choosing generators of Ex[`

n], one has a homomorphism

from GQ to GL2(Z/`nZ). As n varies, the division points Ex[`
n] vary compatibly using

the multiplication by ` map [`] : Ex[`
n+1]→ Ex[`

n]. Taking the inverse limit of Ex[`
n]

and tensoring with Q`, one obtains a representation ρ`,Ex : GQ → GL2(Q`). This

representation is unramified for almost all primes p and at each unramified prime p,

Trρ`,Ex(Frobp) = p + 1 − #(Ex/Fp), which is denoted by ap(Ex). By [47] by Ono, it

is known that when x 6= 0, 1 mod p, ap(Ex) = −p 2F1

φ φ

ε
; x; p

. In other words,

there exists a 2-dimensional representation ρ`,Ex of GQ such that for almost all primes

p,

−p 2F1

φ φ

ε
; x; p

 = Trρ`,Ex(Frobp). (2.3)

By the Taniyama-Shimura-Weil conjecture (now a Theorem and it implies the Fermat

Last Theorem), there exists a weight-2 Hecke eigenform f such that ρ`,Ex is isomorphic

ρ∨`,f , the dual of ρ`,f . Consequently, for almost all primes p,∣∣∣∣∣∣p 2F1

φ φ

ε
; x; p

∣∣∣∣∣∣ = |ap(Ex)| = |ap(f)| < 2p1/2.
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This can be generalized from Fp to Fq naturally since if −p 2F1

φ φ

ε
; x; p

 = αp+βp

then −q 2F1

φ φ

ε
; x; q

 = αsp+βsp, following from the fact that the conjugacy classes

Frobp and Frobsp agree, where |OK/p| = ps.

For other generalized hypergeometric functions, the roles of the elliptic curves

Ex are replaced by the so-called hypergeometric motives described in [37, 52]. In [8],

Beukers, Cohen and Mellit gave a realization of hypergeometric motives defined over Q

on explicit hypergeometric varieties based on toric varieties. A different way to realize

hypergeometric motives over any number field was given in [24]. Following [8], for

4F3

 1
n

n−1
n

1
2

1
2

1 1 1
; 1

 with n = 2, 3, 4 or 6, the following varieties can be used to

replace the roles of Ex above respectively:

W2,2,2,2 :
x1 + x2 + x3 = x4 + x5 + x6 = x7 + x8 + x9 = x10 + x11 + x12 = 0

28x2
1x

2
4x

2
7x

2
10 = x2x3x5x6x8x9x11x12

W2,2,3 :
x1 + x2 + x3 + x4 = x5 + x6 + x7 = x8 + x9 + x10 = 0

3324x3
1x

2
5x

2
8 = −x2x3x4x6x2x7x9x10

W2,4 :
x1 + x2 + x3 + x4 + x5 = x6 + x7 + x8 = 0

210x4
1x

2
6 = −x2x3x4x5x7x8

W2,6 :
x1 + x2 + x3 + x4 + x5 = x6 + x7 + x8 = 0

3328x6
1x

2
6 = x3

2x3x4x5x7x8.

Now we state the needed result from hypergeometric motives due to Katz [37]

and Rodriguez-Villegas [52] which is analogous to (2.3) for the Ex case. Let n = 2, 3, 4, 6

and assume K contains Q(ζn), where ζn denotes a primitive nth root of unity. This

implies q ≡ 1 mod n and hence Fq has a primitive order n character γp.

Theorem 22 (Katz, Rodriguez-Villegas). Notation as above. Let n = 2, 3, 4, or 6

and assume K contains Q(ζn) and ` be any fixed prime. There exists a 3-dimensional
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continuous representation σ`,n : GQ(ζn) → GL3(Q`(ζn)) such that at each prime ideal p

coprime to 2n · ` and the discriminant of K with residue field size q,

−q3 · 4F3

γp γ−1
p φ φ

ε ε ε
; 1; q

 = Tr σ`,n(Frobp)

where γp denotes any primitive order n character of Fq. Moreover, σ`,n is isomorphic

to a direct sum of ρ`,n,1 and ρ`,n,2 of GQ(ζn) with dimension 2 and 1 respectively. The

characteristic polynomial of ρ`,n,1(Frobp) (resp. ρ`,n,2(Frobp)) is a degree-2 (resp. 1)

polynomial whose coefficients are in Z[ζn] and with each roots of complex absolute value

q3/2 (resp. q).

Here, we give some idea on how to obtain it explicitly from numeric data. In

[37], Katz described `-adic representations σ`,n of GQ associated with the given sets of

hypergeometric data, which are { 1
n
, n−1

n
, 1

2
, 1

2
} and {1, 1, 1, 1}. Here we only consider

the semisimplification of σ`,n. The corresponding character sums, up to normalizing

factors agree with q3 · 4F3

γp γ−1
p φ φ

ε ε ε
; 1; q

. The dimension of the representation,

is determined by the local zeta functions defined by

exp

 ∞∑
s=1

q3s · 4F3

γp γ−1
p φ φ

ε ε ε
; 1; qs

T s/s
 .

By Dwork, these zeta functions are rational functions in T of the same degree for

generic p. In these cases, they are degree-3 polynomials from which we know σ`,n is

3-dimensional. Also data reveal that for p coprime to 2n` the characteristic polynomial

of σ`,n(Frobp) has three roots, two of them of absolute value q3/2 and one has absolute

value q. For the claimed decomposition of σ`,n, the existence of ρ`,n,1 is shown in the

next proof.

Proposition 23. Notation as the above theorem. For each n = 2, 3, 4 or 6, there

is weight-4 Hecke cuspidal eigenforms fn which gives rise to a 2-dimensional Galois

representation ρ`,fn of GQ such that ρ`,n,1 ∼= ρ∨`,fn|GQ(ζn)
, the restriction of ρ∨`,fn to GQ(ζn);
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ρ`,n,2 is isomorphic to ε−1
` |GQ(ζn)

⊗χdn where ε` denotes the `-adic cyclotomic character

and dn = −1,−3,−1, 2 for d = 2, 3, 4, 6 respectively and χdn notes the character of

GQ(ζn) with kernel GQ(
√
dn,ζn). Consequently,∣∣∣∣∣∣q3 · 4F3

γp γ−1
p φ φ

ε ε ε
; 1; q

+ φ(−1)γn(−1)q

∣∣∣∣∣∣ ≤ 2q3/2.

The final conclusion is a generalization of Theorem 2 in [2].

Proof. We first determine ρ`,n,1 geometrically and then ρ`,n,2.

Note that it is possible to realize the Galois representations σ`,n as Galois rep-

resentations arising from étale cohomology groups of algebraic varieties Wn. Using

the recipe of [8], the Wn is computed as W2,2,2,2, W2,2,3,W2,4,W2,6 for n = 2, 3, 4, 6

respectively. According to [7] by Batyev and van Straten, the smooth model of each

Wn is a rigid Calabi-Yau threefold defined over Q. (Calabi-Yau three-folds are higher

analogues of elliptic curves which play important role in String theory. A Calabi-Yau

threefold is said to be rigid if its h2,1 Hodge number equals 0.) The construction of [8]

implies that Galois representation of GQ(ζn) arising from the third étale cohomology of

Wn, which is 2-dimensional ρ`,Wn , is isomorphic to a subrepresentation of σ`,n. In [28],

Gouvea and Yui showed that each ρ`,Wn is modular in the sense that it is isomorphic

to the dual of a 2-dimensional `-adic Deligne representation associated to an explicit

weight-4 cuspidal Hecke eigenform fn. Knowing these modular forms explicitly allows

us to compute the values of the traces of ρ`,n,1(Frobp), which agree with the pth Fourier

coefficients ap(fn) of fn for primes p coprime to 2n`. For each Wn, the restriction of the

Deligne representations associated with fn to GQ(ζn) will be ρ`,n,1. In [55], van Geemen

and Nygaard showed that f2 = η(2z)4η(4z)4 where η(z), is the Dedekind eta function

introduced before. (The same result for a different algebraic model of W2 was obtained

in [56] by Verrill and in [2] by Ahlgren and Ono.) Similarly f4 = η(4z)16

η(2z)4η(8z)4
. Also f3

(resp. f6) corresponds to the Hecke eigenform labelled by 36.4.1.a (resp. 72.4.1.b) in

the LMFDB database [40] respectively. See also [51, 59] for related discussions.
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Now we turn our attention to ρ`,n,2. Firstly, by Theorem 22

ρ`,n,2(Frobp) = −p3 · 4F3

γp γ−1
p φ φ

ε ε ε
; 1; p

− ap(fn)

for p ≡ 1 mod n from which we observe that ρ`,n,2(Frobp) ∈ Z as both the finite

hypergeometric sums and ap(fn)’s are integers. Also ρ`,n,2 is the restriction of a Galois

representation of GQ restricted to GQ(ζn), as each Wn is defined over Q. Combining

with Theorem 22, we know ρ`,n,2 is isomorphic to ε−1|GQ(ζn)
tensoring another character

χdn which has order at most 2. By its construction, σ`,n is unramified outside of 2n`,

so ρ`,n,2 is also. Knowing the ramification allows us to nail down the possibilities for

the character χdn readily.

Note that the final conclusion of the proposition is a direct consequence of the

previous ones.

2.7 The Vector Space `2(Fq,m)

Let m : Fq → C be m(x) = 1 + qD1(x) + qD−1(x) where Da(x) is 1 if x = a and

0 otherwise. We denote by `2(Fq,m) the vector space of complex-valued functions on

Fq equipped with the Hermitian form

〈f1, f2〉`2 =
∑
x∈Fq

f1(x)f2(x)m(x).

Note that the following character sums are elements of `2(Fq,m).

Definition 24. For any multiplicative character γ of Fq, the Legendre sum with respect

to γ is defined as

Pγ(a) =
1

q

∑
x∈F∗q

γ(x)φ(x2 − 2ax+ 1), for all a ∈ Fq.

Definition 25. For any multiplicative character β of Fq2 , the Soto-Andrade sum with

respect to β is defined as

Rβ(a) =
1

q(q − 1)

∑
r∈F∗

q2

β(r)φ((r + rq)2 − 2(a+ 1)r1+q), for all a ∈ Fq.
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The Legendre and Soto-Andrade sums have appeared several times in the liter-

ature in connection with the irreducible representations of PGL(2, q) [34]. In fact, we

will encounter them in Section 4 in our study of some character sums over PGL(2, q).

In this section, we recall some properties of these sums that will be useful for us in the

coming sections.

The next lemma shows that the Legendre and Soto-Andrade sums form an

orthogonal basis of `2(Fq,m).

Lemma 26. (Kable, [34]) The set

L =

{
Pε −

q − 1

q
, Pφ, Pγ, Rβ : γ ∈ A, β ∈ B

}
is an orthogonal basis for the space `2(Fq,m), where A and B are the sets introduced

in Definition 19 with |A| = q−3
2

and |B| = q−1
2

. The square norm of the elements of

this basis are as follows: ∥∥∥∥Pε − q − 1

q

∥∥∥∥2

`2
=

q2 − 1

q
,

‖Pφ‖2
`2 =

q2 − 1

q2
,

‖Pγ‖2
`2 =

q − 1

q
,

‖Rβ‖2
`2 =

q + 1

q
.

If we normalize the basis given by Lemma 26 then we can easily obtain an

orthonormal basis of `2(Fq,m). We denote the elements of this orthonormal basis by

{P ′ε , P ′φ, P ′γ, R′β : γ ∈ A, β ∈ B}.

The next lemmas list some elementary properties of the Legendre and Soto-

Andrade sums that we will need later. Lemma 27 implies that the Legendre sum with

respect to the trivial character is easy to evaluate. This is not true for Legendre sums

with respect to characters of higher orders. On the other hand, Lemma 28 shows that

the Legendre and Soto-Andrade sums are easy to evaluate at ±1. Lemma 29 implies

that the values of these sums are real numbers.
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Lemma 27. The values of the Legendre sum with respect to ε are,

Pε(a) =


q−2
q
, if a = ±1,

−2
q
, if a 6= ±1.

Lemma 28. Let γ and β be characters from the sets A and B, respectively. Then

Pγ(1) = −1/q and Rβ(1) = 1/q. Moreover,

Pγ(−1) = −γ(−1)

q
, Rβ(−1) = −β(i)

q

where i ∈ F∗q2 satisfies that i2 ∈ F∗q.

Lemma 29. For every γ ∈ A, β ∈ B and a ∈ Fq we have

Pγ−1(a) = Pγ(a) and Rβ−1(a) = Rβ(a).

The following result establish a relation between Legendre sums and hypergeo-

metric sums over finite fields. This fact will be crucial later in this paper.

Lemma 30. (Kable, [34]) If γ is a nontrivial character of Fq and a ∈ Fq \ {±1} then

Pγ(a) = 2F1

γ γ−1

ε
;

1− a
2

; q

 .
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Chapter 3

ERDÖS-KO-RADO PROBLEMS

In this chapter we introduce EKR-problems for permutation groups. Further-

more, we give a brief review of some techniques that have been used to solve these

problems.

Let X be a finite set and G a finite group acting on X. A subset S of G is

said to be an intersecting family if for every g1, g2 ∈ S there exists an element x ∈ X

such that xg1 = xg2 . Like in the original EKR-problem, we call intersecting families of

maximum size extremal families. Moreover, intersecting families whose sizes are close

to the maximum are called almost extremal families.

The following problems about intersecting families in G are considered to be

the basic problems in EKR theory.

I (Upper Bound) What is the maximum size of an intersecting family?

II (Characterization) What is the structure of extremal families?

III (Stability) Are almost extremal families similar in structure to the extremal ones?

The above three problems were solved for the symmetric group Sn. Indeed,

Deza and Frankl [21] proved that the maximum size of an intersecting family in Sn

is (n − 1)!. Moreover, they conjectured that the cosets of points stabilizers are the

only extremal families. This conjecture turned out to be rather harder to prove than

one might expect. It was first proved by Cameron and Ku [11], and independently by

Larose and Malvenuto [41]. Finally, the stability of extremal families in Sn was settled

by Ellis [14], who proved that for any ε > 0 and n > N(ε), any intersecting family of

size at least (1− 1/e+ ε)(n− 1)! must be strictly contained in an extremal family.
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In [45], Meagher and Spiga studied Problems I and II for the group PGL(2, q)

acting on the set of points of the projective line PG(1, q). These authors proved that

the maximum size of an intersecting family in PGL(2, q) is q(q − 1). Furthermore,

they also solved the characterization problem: Every intersecting family of maximum

size in PGL(2, q) is a coset of a point stabilizer. In [46], they went one step further to

solve Problems I and II for the group PGL(3, q) acting on the points of the projective

plane PG(2, q).

In the next sections we go over some techniques to solve these EKR-problems

for permutation groups.

3.1 The Eigenvalue Method

The eigenvalue method has been used several times to get upper bounds on the

size of intersecting families for EKR-type problems. The first step of the method is to

reformulate the problem in graph theory terminology. Indeed, the problem of finding

the maximum size of an intersecting family in a group G is equivalent to the problem

of finding the maximum size of an independent set in a certain graph. Then, we can

apply a classical result in spectral graph theory, known as Hoffman’s bound, to get an

upper bound on the size of an independent set. The following variant of Hoffman’s

theorem will be enough for the purposes of this thesis.

Theorem 31. (Hoffman’s bound, [43]) Let Γ be a k-regular, n-vertex graph. Let A be

the adjacency matrix of Γ and let λmin be the minimum eigenvalue of A. If S is an

independent set in Γ, then
|S|
n
≤ −λmin

k − λmin

.

If equality holds then the characteristic function 1S of S satisfies:

1S ∈ V1 ⊕ Vλmin

where V1 is the vector space spanned by the all-ones vector and Vλmin
is the λmin-

eigenspace.
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To associate every intersecting family in G with an independent set of a graph,

we introduce the notion of Cayley graph.

Definition 32. Let Y be an inverse-closed subset of G. The Cayley graph on G

generated by Y is the graph with vertex set G such that there is an edge between

g1, g2 ∈ G if and only if g1g
−1
2 ∈ Y . We denote this graph by Cay(G, Y ).

Recall that an element g ∈ G is a derangement if for any x ∈ X we have that

x 6= xg. Denote by D the set of derangements in G. We define Γ as the Cayley graph

on G with generating set D. This graph is known as the derangement graph of G. Note

that every independent set in Γ corresponds to an intersecting family in G. Hence, an

upper bound on the size of independent sets in Γ is also an upper bound on the size of

intersecting families in G.

To apply Hoffman’s bound, we need to compute the eigenvalues of Γ. Note that

the set of derangements D is a union of conjugacy classes and inverse-closed. A result

of Babai and Diaconis-Shahshahani shows that under these conditions the eigenvalues

of Γ are closely related to the irreducible characters of G.

Lemma 33. (Babai [6], Diaconis-Shahshahani [12]) Let G be a finite group, and let R

be a complete set of irreducible representations of G. Let Y ⊂ G be inverse-closed and

conjugation invariant, and let Cay(G, Y ) be the Cayley graph on G with generating set

Y . For every ρ ∈ R, the vector subspace V̂χρ of C[G] is an eigenspace of Cay(G, Y )

with eigenvalue
1

χρ(1)

∑
y∈Y

χρ(y),

where χρ is the irreducible character of ρ. Moreover, if λ is an eigenvalue of Cay(G, Y )

corresponding to the irreducible representations {ρ1, . . . , ρs} ⊂ R then the dimension

of the λ-eigenspace is
∑s

i=1 χρi(1)2.

Since Γ satisfies the conditions of Lemma 33, we conclude that to compute the

eigenvalues of Γ we just need to evaluate the character sum 1
χ(1)

∑
x∈Dq χ(x) for every

irreducible character χ of G.
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For example, consider the natural right action of PGL(2, q) on PG(1, q). Meagher

and Spiga [45] applied the eigenvalue method to find an upper bound on the size

of intersecting families in PGL(2, q). First, using the character table of PGL(2, q)

(Table 2.1) and Lemma 33, it is possible to compute the eigenvalues of the graph

Γ = Cay(PGL(2, q), Dq) for every q where Dq is the set of derangements of PGL(2, q).

q even λ1 ψ1 ηβ νγ

eigenvalues q2(q−1)
2

− q(q−1)
2

q 0

q odd λ1 λ−1 ψ1 ψ−1 ηβ νγ

eigenvalues q2(q−1)
2

− q(q−1)
2

− q(q−1)
2

q−1
2

q 0

Note that when q is even the smallest eigenvalue arises only from ψ1 which is

the standard character of PGL(2, q). Moreover, when q is odd the smallest eigenvalue

arises from ψ1 and λ−1.

Now it follows from Hoffman’s bound that the maximum size of an intersecting

family in PGL(2, q) is q(q − 1). Since the cosets of point stabilizers in PGL(2, q) are

intersecting families of size q(q − 1) this implies that the upper bound is tight. Thus,

intersecting families of maximum size in PGL(2, q) contain exactly q(q − 1) elements.

3.2 The Module Method

The module method developed by Ahmadi and Meagher [4] is a technique to

characterize intersecting families of maximum size in a 2-transitive group G acting on

a set X. As was remarked at the Introduction, the main ingredient of this method is

the computation of the rank of the derangement matrix M of G (see Definition 6). In

this section, we briefly explain the main steps of the module method.

For every x, y ∈ X, we denote by Tx,y the coset of a point stabilizer sending x

to y. Note that because G is 2-transitive it is easy to conclude that |Tx,y| = |G|/|X|.

Furthermore, Tx,y is an intersecting family for every x, y ∈ X.

We say that G has the EKR property, if the size of any intersecting subset of G

is bounded above by the size of a point stabilizer in G. Further, G is said to have the
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strict EKR property if the only maximum intersecting subsets of G are cosets of the

point stabilizers. The module method can be used to prove that a 2-transitive group

has the strict EKR property.

The standard character χstd is an irreducible character for any 2-transitive group

(see Section 2.2). Therefore, the vector space C[G] can be decomposed as

C[G] = V̂1 ⊕ V̂χstd ⊕
⊕
χ

V̂χ

where V̂1, V̂χstd are the vector subspaces of complex-valued functions onG whose Fourier

transform has support on the trivial and the standard representation, respectively, and

χ runs over all irreducible characters of G except for the trivial and standard ones.

Let 1Tx,y be the characteristic vector of Tx,y. It was proved in [4] that 1Tx,y lies

in V̂1 ⊕ V̂χstd for any x, y ∈ X. In fact a stronger result was proven.

Lemma 34. (Ahmadi and Meagher, [4]) The vectors {1Tx,y : x, y ∈ X} form a spanning

set for V̂1 ⊕ V̂χstd.

Let Γ be the derangement graph associated with the action of G on X and D

the set of derangements in G. It follows from Lemma 33 that − |D|
|X|−1

is an eigenvalue

of Γ because
1

χstd(1G)

∑
g∈D

χstd(g) = − |D|
|X| − 1

,

where 1G is the identity of G. Now, if − |D|
|X|−1

corresponds to the smallest eigenvalue

of Γ then Hoffman’s bound implies that the maximum size of an intersecting family is

|G|/|X|. Therefore, if the eigenvalue arising from the standard character is the smallest

then the cosets of points stabilizers are intersecting families of maximum size.

Now, we are ready to state the module method.

Theorem 35. (Ahmadi and Meagher, [4]) Let G be a 2-transitive group acting on X.

Assume the following conditions hold:

1. the maximum size of an intersecting family in G is |G|/|X|,
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2. the characteristic vector of any intersecting family of maximum size lie in the

vector subspace V̂1 ⊕ V̂χstd of C[G].,

3. the rank of the derangement matrix M of G is (|X| − 1)(|X| − 2),

then G has the strict EKR property.

If a group G acting on X satisfies conditions 1 and 2 then the module method

reduces the problem of characterizing intersecting families of maximum size in G to the

computation of the rank of M . In particular, if the rank of the derangement matrix

M is (|X| − 1)(|X| − 2) then the only intersecting families of maximum size are the

cosets of point stabilizers.

The module method has been applied to characterize intersecting families of

maximum size for the symmetric group, the alternating group, PGL(2, q), Mathieu

groups, etc. Moreover, as was remarked at the Introduction we will apply this method

to characterize extremal families in PSL(2, q).

For example, let’s apply the module method to prove that the cosets of points

stabilizers are the only extremal families in PGL(2, q). From the previous section

we already know that the maximum size of an intersecting family in PGL(2, q) is

q(q − 1). Therefore, the cosets of point stabilizers in PGL(2, q) are extremal families

and PGL(2, q) has the EKR property. Moreover, Hoffman’s bound gives information

about the characteristic function of any extremal family. Indeed, if S is an intersecting

family of maximum size then its characteristic function 1S is contained in V̂λ1 ⊕ V̂ψ1

when q is even, and in V̂λ1 ⊕ V̂ψ1 ⊕ V̂λ−1 when q is odd. In the next lemma, we show

that it is possible to improve this result in the case when q is odd.

Lemma 36. Let q be odd. Let S ⊂ PGL(2, q) be an intersecting family of size q(q−1)

and denote by 1S its characteristic function. Then

1S ∈ V̂λ1 ⊕ V̂ψ1 .

To prove Lemma 36, we will need the following result proved by Meagher and

Spiga in [45].
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Lemma 37. (Meagher and Spiga, [45]) Consider the natural right action of PSL(2, q)

on the projective points of PG(1, q). Let DPSL be the set of derangements of PSL(2, q).

Every independent set of maximum size in Cay(PSL(2, q), DPSL) has size q(q − 1)/2.

Proof of Lemma 36. We already know that 1S ∈ V̂λ1 ⊕ V̂ψ1 ⊕ V̂λ−1 . The vector space

V̂λ−1 is one dimensional so V̂λ−1 = spanC{λ−1}. Hence, it is enough to show that

〈1S, λ−1〉 = 0.

Recall that PSL(2, q) is a subgroup of Gq. The irreducible character λ−1 is a

function on Gq such that λ−1(g) = 1 if g ∈ PSL(2, q) and −1, otherwise. Therefore,

〈1S, λ−1〉 = 0 if and only if exactly half of the elements in S are in PSL(2, q).

From Lemma 37 it follows that he maximum size of an intersecting family in

PSL(2, q) is q(q − 1)/2. Therefore, at most q(q − 1)/2 elements of S are contained in

PSL(2, q).

Since PSL(2, q) is a subgroup of index 2, there exists g′ ∈ Gq such that Gq =

g′PSL(2, q)∪ PSL(2, q). Assume to the contrary, that more than q(q − 1)/2 elements

of S are contained in g′PSL(2, q). If we multiply each of these elements by g′ then we

get an intersecting family in PSL(2, q). This is a contradiction because the maximum

size of an intersecting family in PSL(2, q) is q(q − 1)/2. Therefore, exactly half of the

elements in S are contained in PSL(2, q).

From Lemma 36 we conclude that the action of PGL(2, q) on PG(1, q) satisfies

conditions 1 and 2 of Theorem 35 because ψ1 is the standard character of PGL(2, q).

Thus, to prove that PGL(2, q) has the strict EKR property is enough to show that the

derangement matrix M of PGL(2, q) acting on PG(1, q) has rank q(q− 1). For details

about the computation of the rank of M see [45].

3.3 The Fourier Analysis Method

The Fourier analysis method has been used in the area of analysis of Boolean

functions with great success in recent years [1, 22, 31]. The main idea is very simple:

study the Fourier transform of a Boolean function to conclude something about its
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structure. Indeed, given a group G and a Boolean function f ∈ C[G], if we know that

the Fourier transform of f is highly concentrated on some subset of the irreducible

representations of G then, what can we say about the structure of f?

It turns out that the Fourier analysis method can be used to solve EKR stability

problems. Let G be a group acting on a set X and Vλmin
the eigenspace corresponding

to the smallest eigenvalue of the derangement graph of G. The spectral method consists

on two steps:

1. Fourier characterization: Prove that the Fourier transform of the characteris-

tic function of every intersecting family in G whose size is close enough to the

maximum is highly concentrated on V1 ⊕ Vλmin
.

2. Structural characterization: Prove that the structure of Boolean functions whose

Fourier transforms are highly concentrated on V1⊕Vλmin
is similar to the structure

of Boolean functions whose Fourier transforms are completely supported on V1⊕

Vλmin
.

For example, in [16] Ellis, Filmus and Friedgut applied the Fourier analysis

method to solve the stability problem for intersecting families in the symmetric group

Sn. We describe the main steps of their work.

Consider the natural action of Sn on [n]. As was remarked earlier, Deza and

Frankl [21] proved that the maximum size of an intersecting family in Sn is (n − 1)!.

Moreover, the cosets of points stabilizers are the only extremal families (this was first

proved by Cameron and Ku [11], and independently by Larose and Malvenuto [41]).

Let Γn be the derangement graph of Sn acting on [n]. For any i, j ∈ [n] we

denote by Ti,j the coset of a point stabilizer sending i to j. It follows from Hoffman’s

theorem that the characteristic function 1Ti,j of any coset of a point stabilizer lies in the

subspace V1⊕Vmin, where Vmin is the eigenspace associated with the smallest eigenvalue

of Γn.

The following lemma is known as the stability version of Hoffman’s bound.

36



Lemma 38. (Ellis, [13]) Let Γ be a k-regular, n-vertex graph with eigenvalues k =

λ1 ≥ λ2 ≥ · · · ≥ λn = λmin. Let K = max{i : λi > λmin}. Let S be an independent

set in Γ. We denote by U the direct sum of the subspaces V1 and Vmin, where V1 is the

subspace spanned by the all 1’s vector and Vmin is the eigenspace associated with the

λmin eigenvalue. Let PU denote orthogonal projection onto U . Then

‖1S − PU(1S)‖2 =
1

n

∑
v∈v(Γ)

|1S(v)− PU(1S)(v)|2 ≤ (1− α)|λmin| − kα
|λmin| − |λK |

α

where α = |S|/n.

Note that we can apply Lemma 38 to solve the Fourier characterization step of

the spectral method. To do this we need to know the spectrum of the derangement

graph Γn. This task was accomplished in [50] by Renteln. This author proved that

the minimum eigenvalue λmin of Γn arises only from the standard character χstd and

is equal to −dn/(n− 1), where dn is the number of derangements in Sn. Furthermore,

from his work it is also possible to conclude that λK = O(dn/n
2), where K is the

integer defined in the statement of Lemma 38. Also, note that applying the principle

of inclusion-exclusion we get that dn = n!(1/e+ o(1)).

Now, let S be an intersecting family in Sn such that |S| = αn!. Using Lemma

38 we conclude that

‖1S − PU(1S)‖2
Sn ≤ (1− αn)(1 +O(1/n))α (3.1)

where U = V̂1 ⊕ V̂χstd .

Since we know that the maximum size of an intersecting family in Sn is (n− 1)!

then α ≤ 1/n. If the value of α is close to 1/n then S is an intersecting family whose

size is close to the maximum. On the other hand, Equation 3.1 implies that if α is

close to 1/n then the Fourier transform of 1S is highly concentrated on the trivial and

standard representation. Therefore, the characteristic function of every intersecting

family in Sn whose size is close enough to (n− 1)! is highly concentrated on U .
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The second step of the Fourier analysis method requires to study the structure

of Boolean functions whose Fourier transforms are highly concentrated on some irre-

ducible representations. For this particular case we need to study Boolean functions

in C[Sn] whose Fourier transforms are highly concentrated on the trivial and standard

representation. The following remarkably theorem deals with the characterization of

these Boolean functions.

Theorem 39. (Ellis, Filmus and Friedgut, [16]) There exists absolute constants C0, ε0 >

0 such that the following holds. Let S ⊂ Sn, with |S| = αn!, where α < 1/n, and let

1S ∈ C[Sn] be the characteristic function of S, so that ‖1S‖2
Sn

= α. Let PU(1S) denote

the orthogonal projection of 1S onto U = V̂1 ⊕ V̂χstd. If ‖1S − PU(1S)‖2
Sn
≤ εα, where

ε ≤ ε0, then there exists i, j ∈ [n] such that

‖1S − Ti,j‖2
Sn ≤ C0(ε1/2 + 1/n)/n.

In fact, Theorem 39 is a particular case of a more general theorem proved by the

authors in [16]. Theorem 39 proves that every Boolean function with squared norm less

than 1/n and whose Fourier transform is highly concentrated in U is close in structure

to a coset of a point stabilizer. Since the characteristic function of every intersecting

family whose size is close to (n − 1)! has squared norm less than 1/n and a Fourier

transform concentrated in U , the stability result follows from Theorem 39.
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Chapter 4

STABILITY FOR INTERSECTING FAMILIES IN PGL(2, q)

In [45], Meagher and Spiga proved that the maximum size of an intersecting

family in PGL(2, q) is q(q − 1). Furthermore, they also solved the characterization

problem: Every extremal family in PGL(2, q) is a coset of a point stabilizer. In this

thesis we prove that extremal families in PGL(2, q) are also stable, that is, an almost

extremal family in PGL(2, q) must be close in structure to a coset of a point stabilizer1.

We make this statement explicit in the following theorem.

Theorem 40. There exists an absolute constant C0 such that the following holds. Let

S ⊂ PGL(2, q) be an intersecting family with |S| = (1− δ)q(q−1), where 0 ≤ δ ≤ 1/2.

Then there exists a coset of a point stabilizer T ⊂ PGL(2, q) such that

|S4T | ≤ C0

(
δ1/2 +

1

q + 1

)
|S|,

where 4 is the symmetric difference of sets.

Using Theorem 40 and some properties of intersecting families in PGL(2, q) we

get the following stronger result on almost extremal families in PGL(2, q).

Theorem 41. There exists an absolute constant δ0 > 0 such that the following holds.

If S ⊂ PGL(2, q) is an intersecting family with |S| ≥ (1 − δ0)q(q − 1), then S is

contained within a coset of a point stabilizer in PGL(2, q).

Theorem 41 is a direct analogue of the Cameron-Ku conjecture proved by Ellis

in [14].

1 A point stabilizer in PGL(2, q) is a subgroup that fixes a particular element of
PG(1, q).
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The proof of Theorem 40 is an application of the Fourier analysis method (Sec-

tion 3.3), therefore, it is divided into two parts. First, we prove that the Fourier

transform of the characteristic function of the almost extremal families are highly con-

centrated on two irreducible representations of PGL(2, q). Second, we use this Fourier

characterization of almost extremal families to get structural information. In particu-

lar, we note that most of the ideas used in [16], can be used to characterize Boolean

functions on PGL(2, q) whose Fourier transforms are highly concentrated on the trivial

and standard representations of PGL(2, q). This partially answers a question of Ellis,

Filmus and Friedgut in [17]. These authors asked if there were others groups (besides

Sn) for which there is an elegant characterization of Boolean functions whose Fourier

support is concentrated on certain irreducible representations. Actually, in Section 4.2,

we explain that 3-transitive groups satisfying certain extra conditions have a similar

characterization.

The proof of Theorem 41 follows from Theorem 40 and some basic properties

of intersecting families in PGL(2, q).

4.1 Fourier Characterization

Let S be an intersecting family of maximum size in PGL(2, q). It follows from

Section 3.2 that the Fourier transform of 1S is supported only on the irreducible rep-

resentations affording the characters λ1 and ψ1. In this section, we prove that the

characteristic functions of almost extremal families in PGL(2, q) have Fourier trans-

forms highly concentrated on the irreducible representations affording the characters

λ1 and ψ1. To do this we apply a stability version of Hoffman’s bound (this term

was coined by Ellis in [13]). The next two lemmas show that if an intersecting fam-

ily S ⊂ PGL(2, q) satisfies that |S| is close to q(q − 1) then 1S must be close to

U := V̂λ1 ⊕ V̂ψ1 .

Lemma 42. Let S be an intersecting family in PGL(2, q). If q is a power of 2 then,

‖PU⊥(1S)‖2
PGL(2,q) ≤

(
1− |S|

q(q − 1)

)
‖1S‖2

PGL(2,q).
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Proof. First, to ease notation we will denote by 〈·, ·〉 and ‖·‖ the inner product and norm
in C[PGL(2, q)]. Let A be the adjacency matrix of the graph Γ = Cay(PGL(2, q), Dq)
where Dq is the set of derangement in PGL(2, q). Let {x1, . . . , xN} ⊂ C[PGL(2, q)] be
an orthonormal basis of real eigenvectors for A (recall that A is symmetric). Let θi be
the eigenvalue of A such that Axi = θixi, for 1 ≤ i ≤ N . Note that,

• 1S =
∑N

i=1 εixi where εi = 〈1S, xi〉 for every i = 1, . . . , N .

• ‖1S‖2 =
∑N

i=1 ε
2
i .

• 〈1S, 1〉 = ‖1S‖2 = ε1.

Let x1 be the all 1′s vector with eigenvalue q2(q− 1)/2. Since every intersecting

family corresponds to an independent set in the graph Γ we get

0 = 1TSA1S =
N∑
i=1

θiε
2
i = θ1ε

2
1 +

∑
i:i 6=1,θi 6=λmin

θiε
2
i −

q(q − 1)

2

∑
i:θi=λmin

ε2i , (4.1)

where λmin = −q(q − 1)/2.

Recall that the second smallest eigenvalue of Γ is zero. Therefore, from equation

(4.1) we obtain the following inequality

θ1‖1S‖4 − q(q − 1)

2

∑
i:θi=λmin

ε2i ≤ 0. (4.2)

By definition we have

‖PU⊥(1S)‖2 =
∑

i:i 6=1,θi 6=λmin

ε2i ,

hence ∑
i:θi=λmin

ε2i = ‖1S‖2 − ‖1S‖4 − ‖PU⊥(1S)‖2. (4.3)

Combining (4.2) and (4.3) we get

‖PU⊥(1S)‖2 ≤
(

1− |S|
q(q − 1)

)
‖1S‖2.

The next lemma deals with the case q odd. The proof is a little more complicated

because in that case the minimum eigenvalue of Γ is afforded by two distinct irreducible

characters, ψ1 and λ−1.

41



Lemma 43. Let S be an intersecting family in Gq such that |S| = (1 − δ)q(q − 1),

δ > 0. If q is an odd prime power then

‖PU⊥(1S)‖2
PGL(2,q) ≤

(
1− |S|

q(q − 1)

)
‖1S‖2

PGL(2,q) +

(
δ

q + 1

)2

.

Proof. Using the notation introduced in the proof of Lemma 42 we get

q2(q − 1)

2
‖1S‖4 − q(q − 1)

2

∑
i:θi=λmin

ε2i ≤ 0. (4.4)

Recall that the vector space V̂λ−1 is one dimensional. Hence, we denote by

xλ−1 the only eigenvector in the set {xi}Ni=1 contained in Vλ−1 . We claim that ε2λ−1
=

〈1S, xλ−1〉2 ≤ (δ/(q + 1))2.

Note that xλ−1 is the irreducible character λ−1. Hence, xλ−1 is a function on

PGL(2, q) such that xλ−1(g) = 1 if g ∈ PSL(2, q) and −1, otherwise. Besides, note

that S∩PSL(2, q) and S∩(PGL(2, q)\PSL(2, q)) have size at most q(q−1)/2 because

the maximum size of an intersecting family in PSL(2, q) is q(q− 1)/2. Putting all the

above remarks together

ε2λ−1
= 〈1S, xλ−1〉2

=
1

|PGL(2, q)|2
(|S ∩ PSL(2, q)| − |S ∩ (PGL(2, q) \ PSL(2, q))|)2

≤
(

δ

q + 1

)2

. (4.5)

By definition we have

‖PU⊥(1S)‖2 =
∑

i:i 6=1,θi 6=λmin

ε2i + ε2λ−1
,

hence ∑
i:θi=λmin

ε2i = ‖1S‖2 − ‖1S‖4 − ‖PU⊥(1S)‖2 + ε2λ−1
. (4.6)

Combininig (4.4), (4.5) and (4.6) we get

‖PU⊥(1S)‖2 ≤
(

1− |S|
q(q − 1)

)
‖1S‖2 +

(
δ

q + 1

)2

.
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4.2 Structural Characterization

In this section we give a characterization of the structure of Boolean functions

on PGL(2, q) whose Fourier transform is highly concentrated on U . The technique

used to prove this result is from [16]. In that paper, Ellis, Filmus and Friedgut proved

that if a Boolean function on Sn has Fourier transform that is highly concentrated

on the first two irreducible representations of Sn (which correspond to the trivial and

standard representation) then it must be close to a union of cosets of points stabilizers.

Their proof is only based on the fact that the action of Sn on [n] is 3-transitive.

Let G be a group acting 3-transitively on a set X. It is well-known (and easy to

show) that the standard representation is irreducible for any 2-transitive group. Also,

recall that V̂1 and V̂χstd are the vector subspaces of complex-valued functions on G

whose Fourier transform have support on the trivial and the standard representation,

respectively. The following proposition is a generalization of Theorem 1 from [16]2.

Proposition 44. There exist absolute constants C1, ε1 > 0 such that the following

holds. Let G be a finite group acting 3-transitively on a set X of size n. Let S ⊂ G with

|S| = (1− δ)|G|/n, where 0 ≤ δ < 1/2. Let U = V̂1 ⊕ V̂χstd. If ‖PU⊥(1S)‖2
G = ε‖1S‖2

G,

where ε ≤ ε1, then there exists T ⊂ G such that T is a coset of the stabilizer of an

element of X, and

|S4T | ≤ C1

(
ε1/2 +

1

n

)
|S|.

The proof of this proposition is exactly the same as the proof of Theorem 1

in [16]. Since the action of PGL(2, q) on PG(1, q) is 3-transitive, Proposition 44 can

be used to characterize Boolean functions on PGL(2, q) whose Fourier transform are

highly concentrated on U . Recall that U is the vector subspace of all of complex-

valued functions on PGL(2, q) whose Fourier transform has support on the trivial and

the standard representation.

2 Actually, Proposition 44 is a generalization of a special case of Theorem 1 from [16].
To fully generalize that theorem we need to consider S ⊂ G with |S| = c|G|/n, where
c = o(n).
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Corollary 45. There exist absolute constants C1, ε1 > 0 such that the following holds.

Let S ⊂ Gq with |S| = (1 − δ)q(q − 1), where 0 ≤ δ < 1/2. If ‖PU⊥(1S)‖2
PGL(2,q) =

ε‖1S‖2
PGL(2,q) where ε ≤ ε1, then there exist α, β ∈ PG(1, q) such that Tα,β satisfies that

|S4Tα,β| ≤ C1

(
ε1/2 +

1

q + 1

)
|S|.

Now we are ready to prove Theorem 40.

Proof of Theorem 40. First, to ease notation we will denote by ‖ · ‖ the norm in

C[PGL(2, q)]. We choose C0 = max(4
√

2√
ε1
,
√

2C1) where C1 and ε1 are the absolute

constants from Corollary 45. With this choice of C0, if ε1/2 ≤ δ ≤ 1/2 then the

statement of the theorem holds trivially with any choice of a coset of a point stabilizer

T .

Now, we consider the case where δ < ε1/2. By assumption we know that

|S| = (1−δ)q(q−1). Thus, it follows from Lemmas 42 and 43 that ‖PU⊥(1S)‖2 ≤ δ‖1S‖2

when q is even and ‖PU⊥(1S)‖2 ≤ 2δ‖1S‖2 when q is odd. This implies that the

characteristic function 1S is highly concentrated on U . Hence, we can apply Corollary

45 to conclude that

|S4T | ≤ C0

(
δ1/2 +

1

q + 1

)
|S|,

where T is some coset of a point stabilizer.

Theorem 40 implies that almost extremal families are almost contained in a

coset of a point stabilizer. Furthermore, we can refine this result to conclude that

almost extremal families are fully contained in a coset of a point stabilizer.

Proof of Theorem 41. First assume that q ≤ 4C0−1, where C0 is the absolute constant

from Theorem 40. Note that we can choose δ1 > 0 small enough such that for all

q ≤ 4C0 − 1 we have

(1− δ1)q(q − 1) > q(q − 1)− 1.

Hence, if S is an intersecting family of PGL(2, q) with |S| ≥ (1 − δ1)q(q − 1) then

|S| = q(q − 1). Therefore, by the characterization of intersecting families of maximum
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size in PGL(2, q) given in [45], we conclude that S must be equal to a coset of the

stabilizer of a point.

Now, we assume that q > 4C0 − 1. It is clear that if we choose δ2 such that

0 ≤ δ2 ≤ 1/(16C2
0) then

C0

(
δ

1/2
2 +

1

q + 1

)
<

1

2
. (4.7)

From Theorem 40 it follows that if |S| ≥ (1− δ2)q(q − 1) then

|S4T | ≤ C0

(
δ

1/2
2 +

1

q + 1

)
|S|, (4.8)

where T is a coset of a point stabilizer. Combining (4.7) and (4.8), we get that |S4T | <
1
2
q(q − 1).

Suppose without loss of generality that T = Tα,α for some α ∈ PG(1, q). Assume

for a contradiction that there exists g ∈ S such that αg = β with β ∈ PG(1, q), β 6= α.

We use this assumption to estimate the size of Tα,α \ S.

If h ∈ S ∩ Tα,α then g−1h contains at least one fixed point (recall that S is an

intersecting family). Hence, the elements h ∈ Tα,α such that g−1h is a derangement

must be contained in Tα,α \ S.

We compute the number of derangements in g−1Tα,α = Tβ,α. The number

of derangements in Tα,α is zero. Thus, the q2(q−1)
2

derangements in PGL(2, q) are

contained in
⋃
δ 6=α Tδ,α. Using the 2-transitivity of the action of PGL(2, q) on PG(1, q),

we get that the number of derangements in Tδ,α is the same for every δ 6= α. Indeed, for

any two distinct δ, δ′ ∈ PG(1, q) with δ, δ′ 6= α, let m ∈ PGL(2, q) such that αm = α

and δm = δ′. Then the bijection Φ : PGL(2, q) → PGL(2, q) : g 7→ m−1gm satisfies

Φ(Dq) = Dq, and Φ(Tδ,α) = Tδ′,α, so |Tδ′,α ∩Dq| = |Φ(Tδ,α ∩Dq)| = |Tδ,α ∩Dq|.

Therefore, the number of derangements in Tβ,α is q(q − 1)/2. Hence, there are

at least q(q − 1)/2 elements in Tα,α \ S which implies

|S4Tα,α| ≥
q(q − 1)

2
.

Thus, we get a contradiction. Finally, we choose the universal constant δ0 to be equal

to min(δ1, δ2).
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Chapter 5

INTERSECTING FAMILIES OF MAXIMUM SIZE IN PSL(2, q)

Throughout this chapter we assume that q is an odd prime power. It is known,

from the combined results of [3, 45], that the maximum size of an intersecting family

in PSL(2, q) is q(q−1)/2. However, it is only a conjecture that all intersecting families

of maximum size are cosets of point stabilizers. (See the second part of Conjecture 1

in [45].) In this paper, we prove that the second part of Conjecture 1 in [45] is true for

all odd prime powers q.

Theorem 46. Let S be an intersecting family in PSL(2, q) of maximum size. Then

S is a coset of a point stabilizer.

To prove Theorem 46 we apply a general method for solving the characterization

EKR-problem for some 2-transitive groups. This technique was proposed by Ahmadi

and Meagher in [3] and they called it “The Module Method” (see Section 3.2). This

method reduces the characterization of intersecting families of maximum size to the

computation of the rank of a derangement matrix (Definition 6 ). Recall that the

derangement matrix of G acting on X is the (0, 1)-matrix M , whose rows are indexed

by the derangements of G, whose columns are indexed by the ordered pairs of distinct

elements in X, and for any derangement g ∈ G and (a, b) ∈ X × X with a 6= b, the

(g, (a, b))-entry of M is defined by

M(g, (a, b)) =

 1, if ag = b,

0, otherwise.

The Module Method states that, under certain conditions (given in Theorem 35),

if the rank of the derangement matrix M of G acting on X is equal to (|X|−1)(|X|−2),
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then the cosets of point stabilizers are the only intersecting families of maximum size

in G.

Since it is known that the maximum size of an intersecting family in PSL(2, q) is

q(q−1)/2 and that the characteristic function of every intersecting family of maximum

size lies in the subspace V̂1⊕ V̂χstd of C[PSL(2, q)], then in order to prove Theorem 46

by applying the Module Method, it is enough to show that the rank of the derangement

matrix M of PSL(2, q) acting on PG(1, q) is equal to q(q− 1). Therefore, Theorem 46

follows directly from the next theorem.

Theorem 47. Let M be the derangement matrix of PSL(2, q) acting on PG(1, q).

Then the C-rank of M is q(q − 1).

Exactly the same statement for PGL(2, q) is proved in [45, Prop. 9], so we must

first examine why the proof does not immediately carry over to PSL(2, q). In [45] the

matrix M>M represents a certain PGL(2, q)-module endomorphism of a permutation

module. The main calculation is to show, for each irreducible constituent character of

this module, that the image of M>M is not annihilated by the corresponding central

idempotent. Consequently, the image also contains the character as a constituent,

and the rank result follows due to the fact that the module in question is almost

multiplicity-free, in the sense that, with one exception, each irreducible constituent

character occurs with multiplicity one. If one attempts to follow the same procedure

for PSL(2, q) one runs immediately into the problem that the PSL(2, q)-constituents

of the permutation module have high multiplicity. Fortunately, this obstacle can be

sidestepped by observing that although we are working in PSL(2, q), our sets and

permutation modules admit the action of PGL(2, q), and for the larger group the

permutation module has the property of being almost multiplicity-free. A more serious

difficulty arises when one attempts to show that the central idempotents have nonzero

images in the permutation module. As for PGL(2, q), the problem boils down to

showing that certain sums of character values are not zero. For PGL(2, q), these sums

could be estimated by elementary arguments. However, the sums for PSL(2, q) appear
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to be much harder to deal with, and our proof proceeds by reformulating the sums

as character sums over finite fields and applying some deep results on hypergeometric

functions over finite fields. The finite field character sums which appear are Legendre

and Soto-Andrade sums (see Section 2.7). This is not a surprise; it is well known that

these sums appear in connection with the complex representation theory of PGL(2, q)

[34].

The rest of this Chapter is organized as follows. In Section 5.1, we show that

the rank of the derangement matrix M is equal to the dimension of the image of a

PGL(2, q)-module homomorphism. We use this fact to reduce the problem of comput-

ing the rank of M to that of showing some explicit character sums over PGL(2, q) are

not equal to zero. In Section 5.2, we find some formulas to express those character

sums over PGL(2, q) in terms of Legendre and Soto-Andrade sums. Finally, in Section

5.3, we prove Theorem 47.

5.1 A PGL(2, q)-module Homomorphism

In this section we show that the rank of the derangement matrix M of PSL(2, q)

is equal to the dimension of the image of a certain PGL(2, q)-module homomorphism.

Actually, we will show that N = M>M is a matrix representation of a PGL(2, q)-

module homomorphism. We will use this fact to compute the rank of M .

5.1.1 The Matrix N

We identify the points of the projective line PG(1, q) with elements of the set

Fq ∪ {∞}, by letting a ∈ Fq denote the point spanned by (1, a) ∈ F2
q and denoting by

∞ the point spanned by (0, 1). We consider the natural right action of PGL(2, q) on

PG(1, q). Let a ∈ Fq ∪ {∞} and g ∈ PGL(2, q). We use ag to denote the element in

PG(1, q) obtained by applying g to a. The action of PGL(2, q) on PG(1, q) is faithful.

Hence, we can associate with each element of PGL(2, q) a permutation of the q + 1

elements of PG(1, q). Moreover, recall that an element g ∈ PGL(2, q) is said to be a

derangement if its associated permutation is fixed-point-free.
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Definition 48. Let Ω be the set of ordered pairs of distinct projective points in

PG(1, q). The matrix N is a q(q + 1) by q(q + 1) matrix whose rows and columns

are both indexed by the elements of Ω; for any (a, b), (c, d) ∈ Ω we define

N(a,b),(c,d) = the number of derangements of PSL(2, q) sending a to b and c to d.

Note that the above definition of N agrees with our former definition, N =

M>M . Hence, basic linear algebra implies that rankC(M) = rankC(N). The next

lemma gives information about the entries of N .

Lemma 49. Let a, b, c, d ∈ Fq ∪ {∞}. Then,

1. N(a,b),(a,b) =
(q − 1)2

4
, ∀(a, b) ∈ Ω.

2. N(a,b),(c,d) = 0, if a = c, b 6= d or a 6= c, b = d.

3. N(a,b),(b,a) =

 0, if q ≡ 1 mod 4,

(q − 1)/2, if q ≡ 3 mod 4,
∀(a, b) ∈ Ω.

4. (a) N(0,∞),(1,0) =

 (q − 1)/4, if q ≡ 1 mod 4,

(q − 3)/4, if q ≡ 3 mod 4.

(b) N(0,∞),(1,d) =
q − 3

4
− φ(1− d)

2
− 1

4

∑
x∈F∗q

φ((x+ x−1)2 − 4d), ∀d 6= 0, 1,∞.

Moreover, the value of N(a,b),(c,d) for any (a, b), (c, d) ∈ Ω is given by one of the above

expressions.

Proof. Let g be an arbitrary element in PGL(2, q). Note that for every h ∈ PSL(2, q)

sending a to b and c to d, the element g−1hg ∈ PSL(2, q) sends ag to bg and cg to dg.

Hence the entries of N satisfy the following property

N(a,b),(c,d) = N(ag ,bg),(cg ,dg), (5.1)

because PSL(2, q) is a normal subgroup of PGL(2, q) and the set of derangements in

PSL(2, q) is closed under conjugation. To prove Lemma 49 we proceed case by case.
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• Case 1.

Recall that N(a,b),(a,b) is the number of derangements in PSL(2, q) sending a
to b. From (5.1) and the 2-transitivity of PGL(2, q) we conclude that N(a,b),(a,b) =
N(c,d),(c,d) for any (a, b), (c, d) ∈ Ω. The total number of derangements in PSL(2, q)
is q(q − 1)2/4 and this number can also be written as

q(q − 1)2

4
=

∑
b∈PG(1,q)

b6=a

N(a,b),(a,b), for any fixed a ∈ PG(1, q),

which implies that N(a,b),(a,b) = (q − 1)2/4 for every (a, b) ∈ Ω.

• Case 2.

Every element of PSL(2, q) is related to a permutation of projective points
in PG(1, q). This implies N(a,b)(a,d) = 0 and N(a,b)(c,b) = 0 whenever b 6= d and
a 6= c.

• Case 3.

Using the 2-transitivity of PGL(2, q) and (5.1) we can assume without loss of
generality that a = 0 and b = ∞. The elements gλ ∈ PSL(2, q) sending 0 to ∞
and ∞ to 0 are of the form

gλ =

(
0 λ
−λ−1 0

)
, λ ∈ F∗q.

This representation of elements in PSL(2, q) is redundant because gλ and g−λ
represent the same element of PSL(2, q). Let ξ be an element in F∗q such that
〈ξ〉 = F∗q. Hence, the set {gλ : λ = ξi, i = 1, . . . , (q−1)/2} corresponds precisely
to the (q − 1)/2 elements in PSL(2, q) sending 0 to ∞ and ∞ to 0.

Recall that gλ is a derangement if and only if its eigenvalues are not in Fq.
Thus, gλ is a derangement if and only if its characteristic polynomial,

pλ(t) = det

∣∣∣∣ −t λ
−λ−1 −t

∣∣∣∣ = t2 + 1,

is irreducible over Fq.
If q ≡ 1 (mod 4) then −1 is a square in Fq; so pλ(t) is reducible for every

λ ∈ F∗q. Hence N(a,b),(b,a) = N(0,∞),(∞,0) = 0 in this case. On the other hand, if
q ≡ 3 (mod 4) then −1 is not a square in Fq; this implies that pλ(t) is irreducible
for every λ ∈ F ∗q . Thus N(a,b),(b,a) = N(0,∞),(∞,0) = (q − 1)/2.

• Case 4.
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Every element of PSL(2, q) sending 0 to ∞ and 1 to d is of the form

gλ =

(
0 −λ
λ−1 λ−1d+ λ

)
, λ ∈ F∗q.

Again note that gλ and g−λ represent the same element of PSL(2, q). The matrix
gλ is a derangement if and only if its characteristic polynomial,

pλ(t) = det

∣∣∣∣ −t λ
λ−1 λ−1d+ λ− t

∣∣∣∣ = t2 − (λ−1d+ λ)t+ 1,

is irreducible over Fq. To compute N(0,∞)(1,d) it is enough to count the number
of values of λ such that pλ(t) is reducible.

If pλ(t) is reducible then there exist x and y in F∗q such that

pλ(t) = t2 − (λ−1d+ λ)t+ 1 = (t− x)(t− y) = t2 − (x+ y)t+ xy.

Hence, xy = 1 and x + y = λ−1d + λ. Assume without loss of generality that
y = x−1. If there exist values of λ such that gλ has eigenvalues {x, x−1} then
they have to satisfy the following quadratic equation

λ2 − (x+ x−1)λ+ d = 0. (5.2)

– Case 4 (a):

If we assume d = 0 then λ = 0 is a solution of (5.2), however, that
solution is not admissible by the definition of gλ. Hence, we just consider
the solution λ = x + x−1 for every x ∈ F∗q. Moreover, note that x and x−1

generate the same value of λ. In fact, we can relate to each set {x, x−1} a
unique value of λ.

Let q ≡ 1 (mod 4) and k ∈ F∗q be an element of order 4. Note that the
set {k, k−1} does not generate any admissible value of λ. Thus, the number
of values of λ such that pλ(t) is reducible is (q − 1)/2. Therefore,

N(0,∞),(1,0) =
1

2

(
q − 1− q − 1

2

)
=
q − 1

4
.

On the other hand, if q ≡ 3 (mod 4) then F∗q does not have an element of
order 4. This implies that every set {x, x−1} ⊂ F∗q generates an admissible
value of λ. Thus, the number of values for λ such that pλ(t) is reducible is
(q + 1)/2 and N(0,∞),(1,0) = (q − 3)/4.

– Case 4 (b):

The number of solutions of (5.2) in Fq is given by 1 +φ((x+ x−1)2− 4d).
In this case, we also have that x and x−1 generate the same values of λ.
Thus, the number of values of λ ∈ F∗q such that pλ(t) is reducible is

2(1 + φ(1− d)) +
1

2

∑
x∈F∗q
x 6=1,−1

(1 + φ((x+ x−1)2 − 4d)),
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Therefore, for d 6= 0, 1,∞,

N(0,∞),(1,d) =
1

2
[q − 1− (2(1 + φ(1− d)) +

1

2

∑
x∈F∗q
x 6=1,−1

(1 + φ((x+ x−1)2 − 4d))]

which gives the desired formula for N(0,∞),(1,d).

Corollary 50. Let d ∈ Fq, d 6= 0, 1. The number of derangements of PSL(2, q) sending

0 to ∞ and 1 to d can be expressed in terms of the Legendre sum with respect to φ.

Specifically,

N(0,∞),(1,d) =
q − 1

4
− φ(1− d)

2
− q

4
Pφ(2d− 1). (5.3)

Proof. To prove this corollary we use part 4(b) of Lemma 49 and the following com-

putation, ∑
x∈F∗q

φ((x+ x−1)2 − 4d) =
∑
x∈F∗q

φ(x2 − 2(2d− 1)x+ 1)(1 + φ(x))

= −2 + qPφ(2d− 1)

5.1.2 A Permutation PGL(2, q)-module

In this section we define a PGL(2, q)-module V and a PGL(2, q)-module homo-

morphism TN from V to V . We use the subscript N to emphasize that N is the matrix

associated with TN with respect to a certain basis of V .

Recall that we denote by Ω the set of ordered pairs of distinct projective points

in PG(1, q). Let V be the C-vector space spanned by the vectors {eω}ω∈Ω, therefore,

the dimension of V is q(q + 1).

We define a right action of PGL(2, q) on the basis {eω} of V . Specifically, if

ω = (a, b) then

eω · g = eωg = e(ag ,bg)
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for any g ∈ PGL(2, q). Thus, V is a right permutation PGL(2, q)-module. The next

lemma shows that V has a very simple decomposition into irreducible modules; apart

from Vλ−1 and Vψ1 each irreducible module of PGL(2, q) appears exactly once.

Let 〈χ, ψ〉PGL(2,q) denote the inner product of the characters χ and ψ of PGL(2, q)

(see Section 2.1).

Lemma 51. Let Vχ denote an irreducible module of PGL(2, q) with character χ. Then

the decomposition of V into irreducible constituents is given by,

V ∼= Vλ1 ⊕ V ⊕2
ψ1
⊕ Vψ−1 ⊕

⊕
β∈B

Vηβ ⊕
⊕
γ∈A

Vνγ

Proof. Let π be the character afforded by the PGL(2, q)-module V . By definition we

have

π(g) = |{ω ∈ Ω : ωg = ω}|

hence the character π has an easy description,

1 u dx vr

π q(q + 1) 0 2 0

Now let Vχ be an irreducible representation of PGL(2, q) and χ its irreducible

character. It is known ([53, Chapter 2, Theorem 4]) that the multiplicity of Vχ in V is

equal to the character inner product 〈π, χ〉PGL(2,q). Now, the lemma follows by direct

calculation using the character table of PGL(2, q).

For a, b ∈ PG(1, q), consider the following vectors in V,

la,b =
∑

p∈PG(1,q)
p 6=a,b

(e(a,p) − e(b,p)) + e(a,b) − e(b,a) (5.4)

ra,b =
∑

p∈PG(1,q)
p 6=a,b

(e(p,a) − e(p,b)) + e(b,a) − e(a,b) (5.5)

We use these vectors to define the following vector subspaces of V ,

V1 = spanC{la,b : a, b ∈ PG(1, q)} and V2 = spanC{ra,b : a, b ∈ PG(1, q)}

In fact, the next lemma shows that V1 and V2 are PGL(2, q)-submodules of V .
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Lemma 52. The vector subspaces V1 and V2 satisfy the following properties,

1. dimC(V1) = dimC(V2) = q

2. V1 ∩ V2 = {0}

3. V1 and V2 are PGL(2, q)-submodules of V

4. V1
∼= V2 as PGL(2, q)-modules

Proof. Note that the vectors defined in (5.4) and (5.5) satisfy the following relations,

la,b − la,c = lc,b and ra,b − ra,c = rc,b

for all a, b, c ∈ PG(1, q) with a 6= b 6= c. Hence, fixing a ∈ PG(1, q) we get that

{la,b : b ∈ PG(1, q), b 6= a} and {ra,b : b ∈ PG(1, q), b 6= a} are basis for V1 and V2,

respectively.

To prove the conclusion in part (2) we proceed by contradiction. Assume there

exists v ∈ V1 ∩ V2 with v 6= 0. Hence we can write,

v =
∑

p∈PG(1,q)
p 6=a

αpla,p =
∑

p∈PG(1,q)
p 6=a

βpra,p (5.6)

where not all αp and βp are equal to zero.

For a fix b ∈ PG(1, q), the vector la,b is the only one in the set {la,p}p∈PG(1,q)

that contains e(b,a). On the other hand, every vector of the form ra,p contains e(b,a) .

Therefore, using (5.6) we get,

αb =
∑

p∈PG(1,q)
p 6=a

βp

which implies that the values of the coefficients αp in (5.6) are all the same. Analo-

gously, we can show that the values βp in (5.6) are the same. Thus, we can rewrite

equation (5.6) in the following way,∑
p∈PG(1,q)

p 6=a

la,p =
β

α

∑
p∈PG(1,q)

p 6=a

ra,p
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where α =
∑

p 6=a βp and β =
∑

p 6=a αp. This implies that β/α = 1/q, a contradiction.

To prove part (3) it is enough to note that la,b · g = lag ,bg and ra,b · g = rag ,bg

for all a, b ∈ PG(1, q) with a 6= b. For part (4) consider the function θ from V1 to V2

defined by θ(la,b) = ra,b for all a, b ∈ PG(1, q) with a 6= b; we extend the definition of

θ to all elements of V1 linearly. Now, from the definition of θ we see that clearly

θ(l(a,b) · g) = θ(l(a,b)) · g

for all g ∈ PGL(2, q) and (a, b) ∈ Ω. Therefore, θ is a PGL(2, q)-module isomorphism.

This completes the proof of part (4).

Lemma 53. The submodules V1 and V2 are isomorphic to Vψ1.

Proof. This result follows directly from Lemmas 51 and 52. If we consider the decom-

position of V into irreducible constituents, we note that each irreducible representation

appears only once, except for Vψ1 . Therefore, because V1 is isomorphic to V2, we must

have Vψ1
∼= V1

∼= V2.

We now define a linear transformation TN from V to V . We first define TN on

the basis {eω}ω∈Ω of V by

TN(e(a,b)) =
∑
ω∈Ω

Nω,(a,b)eω

for any (a, b) ∈ Ω, and then extend the definition of TN to all elements of V linearly. It

follows from the definition of TN that N is the matrix associated with TN with respect

to the basis {eω}ω∈Ω of V . Therefore, the dimension of the image of TN is equal to the

rank of the derangement matrix M of PSL(2, q) acting on PG(1, q).

Lemma 54. The linear transformation TN defined above is a PGL(2, q)-module ho-

momorphism from V to V .

Proof. To prove the lemma we just need to check that the next equation

TN(e(a,b) · g) = TN(e(a,b)) · g (5.7)
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holds for all g ∈ PGL(2, q) and (a, b) ∈ Ω. First, consider the left hand side of (5.7).

From the definition of TN it follows that

TN(e(a,b) · g) = TN(e(ag ,bg)) =
∑
ω∈Ω

Nω,(ag ,bg)eω.

Furthermore, note that using equation (5.1), the right hand side of (5.7) can be

written as

TN(e(a,b)) · g =
∑
ω∈Ω

Nω,(a,b)eωg =
∑

ωg−1∈Ω

Nωg−1 ,(a,b)eω =
∑
ω∈Ω

Nω,(ag ,bg)eω

which implies that (5.7) holds. This completes the proof of the lemma.

5.1.3 The Image of TN

Recall that the rank of the derangement matrix M of PSL(2, q) acting on

PG(1, q) is equal to the dimension of the image of TN . Since TN is a PGL(2, q)-module

homomorphism (Lemma 54) we can use some tools from representation theory to com-

pute the dimension of the image of TN . We start by observing that the submodules V1

and V2 are in the kernel of TN .

Lemma 55. The subspaces V1 and V2 lie in the kernel of TN .

Proof. First, recall that the derangement matrix M is a q(q− 1)2/4 by (q+ 1)q matrix

whose rows are indexed by the derangements of PSL(2, q) and whose columns are

indexed by elements of Ω. For any derangement g ∈ PSL(2, q) and (a, b) ∈ Ω we have

M(g, (a, b)) =

 1, if ag = b,

0, otherwise.

Furthermore, also by definition we have N = M>M . Thus, the lemma follows from

the following observation

Mla,b = 0 and Mra,b = 0 for all a, b ∈ PG(1, q), with a 6= b,

and the fact that for a fix a ∈ PG(1, q) the sets {la,b : b ∈ PG(1, q), b 6= a} and

{ra,b : b ∈ PG(1, q), b 6= a} are basis of V1 and V2, respectively.
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From Lemma 53 and 55, we conclude that the restriction of TN to 2Vψ1 is the

zero map. It follows that the dimension of the image of TN is at most q(q − 1). Now,

we consider the restriction of TN onto the other irreducible constituents of V . To do

that we apply Schur’s lemma.

Let χ be the irreducible character corresponding to an irreducible representation

of PGL(2, q) appearing as a constituent of V . Schur’s lemma implies that,

TN(Vχ) ∼= Vχ or TN(Vχ) = {0}.

Thus, either the dimension of the restriction of TN to Vχ is zero or is equal to the

dimension of Vχ. Hence, to study the image of Vχ under TN for any

χ ∈ {λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A}

we proceed in the following way:

1. Consider the vector e(0,∞) ∈ V .

2. Project e(0,∞) onto Vχ using the following scalar multiple of a central primitive

idempotent

Eχ =
∑

g∈PGL(2,q)

χ(g−1)g.

Therefore, the projection of e(0,∞) onto Vχ is equal to

Eχ(e(0,∞)) =
∑

g∈PGL(2,q)

χ(g−1)e(0g ,∞g) =
∑

(a,b)∈Ω

[ ∑
0g=a,∞g=b

χ(g−1)

]
e(a,b).

where g in the inner sum runs over all elements in PGL(2, q) sending 0 to a and

∞ to b.

3. To prove that TN(Vχ) ∼= Vχ it is enough to show that the (0,∞) coordinate

of TN(Eχ(e(0,∞))) is not equal to zero. This is equivalent to showing that the

following character sum is not equal to zero:

TN,χ := TN(Eχ(e(0,∞)))(0,∞) =
∑

(a,b)∈Ω

[ ∑
0g=a,∞g=b

χ(g−1)

]
N(0,∞),(a,b), (5.8)
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where g in the inner sum runs over all elements in PGL(2, q) sending 0 to a and

∞ to b.

Therefore, we get the following lower bound on the rank of the derangement

matrix M , ∑
χ

dim(Vχ) ≤ rank(M), (5.9)

where χ in the sum on the left hand side of (5.9) runs through the set of irreducible char-

acters from {λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A} satisfying that TN,χ 6= 0. In particular, if TN,χ

is not zero for all χ ∈ {λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A} then the rank of the derangement

matrix M is equal to q(q− 1). We conclude that to prove Theorem 47, it is enough to

show that the values of the character sums TN,χ with χ ∈ {λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A}

are not equal to zero. This will be our objective in the next two sections.

5.2 The Character Sums
∑

0g=∞,∞g=0

χ(g−1) and
∑

0g=∞,1g=d

χ(g−1)

The sums TN,χ are character sums over PGL(2, q). In general, it is not easy

to get tight bounds on the values of characters sums over non-abelian groups. For-

tunately, the close relationship between the irreducible characters of PGL(2, q) and

the multiplicative characters of Fq and Fq2 allows us to conclude in Section 5.3 that

the expressions TN,χ are not equal to zero. In this section, we show that we can

express the sums TN,χ in terms of characters sums over finite fields for every χ ∈

{λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A}.

First, we consider TN,χ when χ = λ1. In this case, we know that λ1(g) = 1 for

any g ∈ PGL(2, q). Moreover, there are precisely q − 1 elements of PGL(2, q) sending

0 to ∞ and a to b for any a, b ∈ PG(1, q). Therefore, we can compute (6.5) explicitly

for χ = λ1:

TN,λ1 = (q − 1)
∑

(a,b)∈Ω

N(0,∞)(a,b) = (q − 1)(q + 1)
(q − 1)2

4
,

where we have used Lemma 49 to obtain the last equality. Thus, from the analysis

given in Section 5.1.3 we conclude that TN(Vλ1)
∼= Vλ1 .
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The other irreducible characters of PGL(2, q) are not so easy to handle. The

next lemma gives an expression for TN,χ with χ ∈ {ψ−1, {ηβ}β∈B, {νγ}γ∈A} which will

be helpful to write (6.5) in terms of character sums over finite fields.

Lemma 56. Let χ be any irreducible character of PGL(2, q) from the set

{ψ−1, {ηβ}β∈B, {νγ}γ∈A}.

Let h be the unique element of PGL(2, q) sending 0 to 0, 1 to ∞, and ∞ to 1. If

q ≡ 1 mod 4 then

TN,χ =
(q − 1)3

4
− q − 1

2

∑
0g=∞,∞g=0

χ(g−1) + (q − 1)
∑
b∈F∗q
b6=1

 ∑
0g=∞,1g=bh

χ(g−1)

N(0,∞),(1,b),

and if q ≡ 3 mod 4 then

TN,χ =
(q − 1)3

4
+

∑
0g=∞,∞g=0

χ(g−1) + (q − 1)
∑
b∈F∗q
b 6=1

 ∑
0g=∞,1g=bh

χ(g−1)

N(0,∞),(1,b).

Proof. From (6.5) and Lemma 49 we get,

TN,χ =
(q − 1)2

4

∑
0g=0,∞g=∞

χ(g−1) +

[ ∑
0g=∞,∞g=0

χ(g−1)

]
N(0,∞),(∞,0)

+
∑
b∈F∗q

[ ∑
0g=∞,∞g=b

χ(g−1)

]
N(0,∞),(∞,b) +

∑
a∈F∗q

[ ∑
0g=a,∞g=0

χ(g−1)

]
N(0,∞),(a,0)

+
∑
a,b∈F∗q
a6=b

[ ∑
0g=a,∞g=b

χ(g−1)

]
N(0,∞),(a,b)

We denote by PGL(2, q)0,∞ the subgroup of PGL(2, q) fixing 0 and ∞. Analo-

gously, PGL(2, q)0 denotes the subgroup of PGL(2, q) fixing 0. Applying the Frobenius

Reciprocity Theorem [53, Chapter 7, Theorem 13], we obtain the following equations:

〈Res(χ), 1〉PGL(2,q)0,∞ = 〈χ, π〉PGL(2,q) and 〈Res(χ), 1〉PGL(2,q)0 = 〈χ, λ1 + ψ1〉PGL(2,q)
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where π is the permutation character defined in the proof of Lemma 51 and 1 is the

trivial character of the groups PGL(2, q)0,∞ and PGL(2, q)0, respectively. Using these

equations and the transitivity of PGL(2, q) we evaluate the following character sums,∑
0g=0,∞g=∞

χ(g−1) = q − 1,
∑
0g=0

χ(g−1) = 0,
∑
∞g=∞

χ(g−1) = 0.

Note that χ(kgk−1) = χ(g) for any k ∈ PGL(2, q) because χ is a character.

Thus, from the above equations and the 2-transitivity of PGL(2, q) we get∑
0g=∞

χ(g−1) =
∑
∞g=0

χ(g−1) = 0.

Now assume that q ≡ 1 (mod 4). From Lemma 49 we have N(0,∞),(∞,b) =

N(0,∞),(a,0) = (q − 1)/4 for all a, b ∈ F∗q. Hence, using the above analysis we can write,

∑
b∈F∗q

[ ∑
0g=∞,∞g=b

χ(g−1)

]
N(0,∞),(∞,b) =

q − 1

4

∑
b∈F∗q

[ ∑
0g=∞,∞g=b

χ(g−1)

]

=
q − 1

4

[∑
0g=∞

χ(g−1)−
∑

0g=∞,∞g=0

χ(g−1)

]

= −(q − 1)

4

∑
0g=∞,∞g=0

χ(g−1),

and using the same ideas we get

∑
a∈F∗q

[ ∑
0g=a,∞g=0

χ(g−1)

]
N(0,∞),(a,0) = −(q − 1)

4

∑
0g=∞,∞g=0

χ(g−1).

A similar computation works for the case when q ≡ 3 mod 4.

Let a, b ∈ F∗q with a 6= b. Using the 3-transitivity of the action of PGL(2, q) on

PG(1, q) and (5.1) we conclude that N(0,∞),(a,b) = N(0,∞)(1,bh) where h ∈ PGL(2, q) is

the unique element sending 0 to 0, ∞ to ∞ and a to 1. Moreover, using the definition

of h we obtain ∑
0g=a,∞g=b

χ(g−1) =
∑

0g=1,∞g=bh

χ(g−1).
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Therefore, putting all these together we get that

∑
a,b∈F∗q
a6=b

[ ∑
0g=a,∞g=b

χ(g−1)

]
N(0,∞),(a,b) = (q − 1)

∑
b∈F∗q
b 6=1

[ ∑
0g=1,∞g=b

χ(g−1)

]
N(0,∞),(1,b)

= (q − 1)
∑
b∈F∗q
b 6=1

 ∑
0g=∞,1g=bh

χ(g−1)

N(0,∞),(1,b).

It follows from Lemma 56 that we can write TN,χ in terms of the character sums∑
0g=∞,∞g=0

χ(g−1) and
∑

0g=∞,1g=d

χ(g−1).

The next four lemmas show that these character sums can be be written in terms of

character sums over finite fields for all χ ∈ {ψ−1, {ηβ}β∈B, {νγ}γ∈A}.

Lemma 57. Let i be an element of F∗q2 such that i2 ∈ F∗q. Then,∑
0g=∞,∞g=0

ψ−1(g−1) = φ(−1)(q − 1),∑
0g=∞,∞g=0

νγ(g
−1) = γ(−1)(q − 1) for all γ ∈ A,∑

0g=∞,∞g=0

ηβ(g−1) = −β(i)(q − 1) for all β ∈ B.

Proof. The elements in PGL(2, q) sending 0 to ∞ and ∞ to 0 are of the form,

gλ =

 0 λ

1 0

 with λ ∈ F∗q.

To evaluate the character sums in this lemma we need to know to which conjugacy

classes these elements belong. Note that the characteristic polynomial of gλ is pλ(t) =

t2 − λ.

First, recall that the eigenvalues of gλ are defined up to multiplication by an

element of F∗q. Now, if λ is a square in F∗q then pλ(t) is reducible and gλ has eigenvalues

±
√
λ ∈ F∗q. This implies that gλ lies in the conjugacy class d−1 whenever λ is a square.
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On the other hand, if λ is not a square the roots of pλ(t) lie on F∗q2 and they correspond

to elements of order 2 in F∗q2/F
∗
q. Therefore, whenever λ is not a square we see that gλ

lies on the conjugacy class vi.

Since there are equal number of squares and nonsquares in F∗q, the lemma follows

from the character table of PGL(2, q) and Lemma 49.

Lemma 58. For every γ ∈ A and d ∈ F∗q \ {1} we have∑
0g=∞,1g=d

νγ(g
−1) = qPγ(2d− 1).

Proof. The elements in PGL(2, q) sending 0 to ∞ and 1 to d are of the form,

gλ =

 0 αλ

α α(d− λ)

 with λ, α ∈ F∗q.

To evaluate the sum in this lemma we need to know to which conjugacy classes

these elements belongs. However, we need to do this just for those elements which are

not derangements because νγ(g) = 0 if g is a derangement.

Note that different values of α correspond to the same element gλ in PGL(2, q).

Indeed, as was remarked earlier the eigenvalues of gλ are defined up to scalar multipli-

cation.

The characteristic polynomial of gλ is pλ(t) = t2 − α(d − λ)t − α2λ and its

eigenvalues are,

t = α

(
(d− λ)±

√
(d− λ)2 + 4λ)

2

)
.

Thus, if
√

(d− λ)2 + 4λ ∈ F∗q then there exists α ∈ F∗q such that the eigenvalues of gλ

are {1, x} for some x ∈ F∗q. This implies that gλ is contained in the same conjugacy

class as dx (see Section 2.4). Here, we assume that dx with x = 1 corresponds to the

element u ∈ PGL(2, q) defined in Section 2.4.

For a fixed d ∈ F∗q \{1} and x ∈ F∗q we want to know for how many λ ∈ F∗q there

exists some α such that gλ has eigenvalues {1, x}. From the above analysis it is clear

that d, x, α and λ must satisfy the equation below:

pλ(t) = t2 − α(d− λ)t− α2λ = (t− x)(t− 1) = t2 − (x+ 1)t+ x.
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This implies that α satisfies the following quadratic equation,

dα2 − (x+ 1)α + x = 0. (5.10)

Therefore, given x ∈ F∗q and d ∈ F∗q \ {1}, the number of values of λ ∈ F∗q such

that gλ is conjugate to dx is equal to

1 + φ((x+ 1)2 − 4xd) if x 6= −1 and (1 + φ((x+ 1)2 − 4xd))/2 if x = −1.

Furthermore, it is important to note that every element gλ having eigenvalues

{1, x} also has eigenvalues {1, x−1}. Hence, given d ∈ F∗q \ {1}, the elements x and x−1

are related to the same values of λ. Now using the above remarks and the character

table of PGL(2, q) we get,∑
0g=∞,1g=d

νγ(g) = (1 + φ(1− d))γ(1) +

(
1 + φ(d)

2

)
(2γ(−1))

+
1

2

∑
x 6=1,−1
x∈F∗q

(1 + φ((x+ 1)2 − 4xd))(γ(x) + γ(x−1))

=
∑
x∈F∗q

γ(x)φ(x2 − 2(2d− 1)x+ 1)

= qPγ(2d− 1).

Finally, applying basic properties of characters and Lemma 29 we obtain∑
0g=∞,1g=d

νγ(g
−1) =

∑
0g=∞,1g=d

νγ(g) = qPγ−1(2d− 1) = qPγ(2d− 1).

Lemma 59. For every β ∈ B and d ∈ F∗q \ {1} we have,∑
0g=∞,1g=d

ηβ(g−1) = −qRβ(2d− 1).

Proof. Recall that the elements in PGL(2, q) sending 0 to ∞ and 1 to d all take the

form,

gλ =

 0 αλ

α α(d− λ)

 with λ, α ∈ F∗q.
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To evaluate the sum in this lemma we have to know to which conjugacy classes

these elements belong. However, since ηβ(g) = 0 if g has two fixed points, we will pay

attention to derangements and the elements fixing one point only (see Section 2.4).

We know that if r ∈ F∗q2 \F∗q is an eigenvalue of gλ then gλ is a derangement with

eigenvalues {r, rq} contained in the same conjugacy class as vr. On the other hand,

if r ∈ F∗q is the only eigenvalue of gλ then this implies that gλ has exactly one fixed

point and it is conjugated to u. In fact, when r ∈ F∗q every element of the form vr is

conjugated to u.

Fix r ∈ F∗q2 . We want to know for how many values of λ ∈ F∗q there exists α such

that gλ has eigenvalues {r, rq}. From the characteristic polynomial of gλ the following

equation is obtained

t2 − α(d− λ)t− α2λ = t2 − (r + rq)t+ rq+1,

which implies that α ∈ F∗q must satisfy the quadratic equation below

dα2 − (r + rq)α + rq+1 = 0. (5.11)

Distinct solutions of (5.11) generate distinct values of λ unless r ∈ iFq where i

is an element of F∗q2 satisfying that i2 ∈ F∗q. Hence, given r ∈ F∗q2 and d ∈ F∗q \ {1}, the

number of λ ∈ F∗q such that gλ is conjugated to vr is equal to:

1 +φ((r+ rq)2− 4drq+1) if r ∈ F∗q2 \ iF∗q and (1 +φ((r+ rq)2− 4drq+1))/2 if r ∈ iF∗q.

Moreover, note that every element gλ having eigenvalues {r, rq} also has eigen-

values {ar, (ar)q} for any a ∈ F∗q. Thus, r and ar are related to the same value of λ for
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every a ∈ Fq. Therefore,∑
0g=∞,1g=d

ηβ(g−1) =
1

q − 1

∑
r∈F∗q

(1 + φ((r + rq)2 − 4drq+1))(−β(1))

+
1

q − 1

∑
r∈iF∗q

(
1 + φ((r + rq)2 − 4drq+1)

2

)
(−2β(i))

+
1

2(q − 1)

∑
r∈F∗

q2
\{F∗q ,iF∗q}

(1 + φ((r + rq)2 − 4drq+1))(−β(r)− β(rq))

= − 1

q − 1

∑
r∈F∗

q2

φ((r + rq)2 − 4drq+1))β(r)

Now, the lemma follows from Definition 25.

Lemma 60. For every d ∈ F∗q \ {1} we have,∑
0g=∞,1g=d

ψ−1(g) = qPφ(2d− 1).

Proof. From the character table of PGL(2, q) it follows that,

ψ−1(g) =



0 if g ∈ u

1 if g ∈ dx and dx ⊂ PSL(2, q)

−1 if g ∈ dx and dx ⊂ PGL(2, q) \ PSL(2, q)

−1 if g ∈ vr and vr ⊂ PSL(2, q)

1 if g ∈ vr and vr ⊂ PGL(2, q) \ PSL(2, q)

(5.12)

Thus, to evaluate the sum
∑

g ψ−1(g) we need to know: how many elements

sending 0 to ∞ and 1 to d belong to each of the five categories considered in (5.12).

In fact, these counting problems follow from the proof of Case (4) of Lemma 49.

For the sake of clarity, we recall some simple facts. There are q − 1 elements

in PGL(2, q) sending 0 to ∞ and 1 to d, and half of them are in PSL(2, q). It was

proved by Meagher and Spiga [45] that if 1−d is a square in F∗q then (q− 1)/2 of these

elements are derangements. On the other hand, if 1− d is not a square then (q + 1)/2

of these elements are derangements.
First, assume that 1 − d is a square. We can divide the (q − 1)/2 elements of

PSL(2, q) sending 0 to ∞ and 1 to d into three categories:
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• 2 fix just one point.

•
1

4

∑
x∈F∗q ,x 6=1,−1

(1 + φ((x+ x−1)2 − 4d)) fix exactly two points.

•
q − 5

4
− 1

4

∑
x∈F∗q

φ((x+ x−1)2 − 4d)) are derangements.

A similar analysis can be carried out when 1 − d is not a square. Specifically,
from the (q − 1)/2 elements of PSL(2, q) sending 0 to ∞ and 1 to d,

• There are no elements fixing exactly one point.

•
1

4

∑
x∈F∗q ,x 6=1,−1

(1 + φ((x+ x−1)2 − 4d)) fix two points.

•
q − 1

4
− 1

4

∑
x∈F∗q

φ((x+ x−1)2 − 4d)) are derangements.

Putting all the above remarks together and assuming that 1− d is a square we

obtain,∑
0g=∞,1g=d

ψ−1(g) =
1

4

∑
x∈F∗q ,x 6=1,−1

(1 + φ((x+ x−1)2 − 4d))

−

q − 1

2
− 2− 1

4

∑
x∈F∗q ,x 6=1,−1

(1 + φ((x+ x−1)2 − 4d))


−

q − 5

4
− 1

4

∑
x∈F∗q

φ((x+ x−1)2 − 4d))


+

q − 1

2
− q − 5

4
+

1

4

∑
x∈F∗q

φ((x+ x−1)2 − 4d))


= 2 +

∑
x∈F∗q

φ((x+ x−1)2 − 4d)

= 2 +
∑
x∈F∗q

φ(x2 − 2(2d− 1)x+ 1)(1 + φ(x))

= qPφ(2d− 1).

The case when (1− d) is not a square follows from similar computations.
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5.3 The Restriction of TN onto Vψ−1, Vνγ and Vηβ

In this section, we study the restriction of TN onto the irreducible constituents,

Vψ−1 , {Vνγ}γ∈A and {Vηβ}β∈B, of V . From Schur’s Lemma we know that the restriction

of TN onto any irreducible module is an isomorphism or the zero map. The next

theorem shows that the restriction of TN onto Vηβ is a PGL(2, q)-module isomorphism

for every β ∈ B. To ease the notation, in this section we will denote by ‖ · ‖ and 〈·, ·〉

the norm and inner product in `2(Fq,m), respectively.

For the proofs below, we will need the following function in `2(Fq,m),

f : Fq → C

x 7→ φ(1− x)Pφ(x)
.

Note that the norm of f is closely related to the norm of Pφ,

‖f‖2 =
∑
x∈Fq

f(x)2m(x) =
∑
x∈Fq
x 6=1

Pφ(x)2m(x) = ‖Pφ‖2 − q + 1

q2
= 1− 1

q
− 2

q2
,

where we have used Lemma 26 to obtain the last equality.

Theorem 61. For every β ∈ B we have

TN(Vηβ) ∼= Vηβ .

Proof. It suffices to show that TN,ηβ 6= 0 for all β ∈ B. Using (5.3), Lemma 56, 57 and

59, and after some computations the following expression for TN,ηβ is obtained:

TN,ηβ =
(q − 1)

4

q2 + q + (q + 1) β(i)φ(−1) + q2
∑

b∈F∗q ,b 6=1

Rβ(2bh − 1)Pφ(2b− 1)

 ,
(5.13)

where i ∈ F∗q2 such that i2 ∈ F∗q. We will show that the expression on the right hand

side of (5.13) is not equal to zero.

We claim that the character sum∑
b∈F∗q ,b 6=1

Rβ(2bh − 1)Pφ(2b− 1) (5.14)
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can be expressed in terms of the function f . Recall that h is the unique element in

PGL(2, q) sending 0 to 0, 1 to ∞ and ∞ to 1. Hence, if b ∈ F∗q and b 6= 1 then

bh 6= 0, 1,∞. Moreover, we have the following formula for bh when b ∈ F∗q and b 6= 1,

bh =
b

b− 1

which implies that (bh)h = b for any b ∈ Fq. Thus, we can rewrite the sum in (5.14) as,∑
b∈F∗q ,b 6=1

Rβ(2bh − 1)Pφ(2b− 1) =
∑

b∈F∗q ,b6=1

Pφ(2bh − 1)Rβ(2b− 1).

Using the relation between Legendre sums and hypergeometric sums given by

Lemma 30 and the transformation formula in Lemma 21, the following expression for

Pφ(2bh − 1) is obtained

Pφ(2bh−1) = 2F1

φ φ

ε
;

1

1− b
; q

 = φ(1−b)2F1

φ φ

ε
; 1− b; q

 = φ(1−b)Pφ(2b−1),

for b ∈ Fq, b 6= 0, 1. Putting all the above remarks together we conclude that∑
b∈F∗q ,b 6=1

Rβ(2bh − 1)Pφ(2b− 1) =
∑

b∈F∗q ,b 6=1

φ(1− b)Pφ(2b− 1)Rβ(2b− 1)

= φ(2)
∑

x∈Fq ,x 6=±1

φ(1− x)Pφ(x)Rβ(x)

= φ(2)

(
1 +

1

q

)1/2

〈f,R′β〉 − (q + 1)
β(i)φ(−1)

q2

where i is an element of F∗q2 such that i2 ∈ F∗q.

Therefore, combining the above expression for (5.14) and (5.13), we can also

express TN,ηβ in terms of the function f ,

TN,ηβ =
q2(q − 1)

4

[
1 +

1

q
+ φ(2)

(
1 +

1

q

)1/2

〈f,R′β〉

]
. (5.15)

Recall that {P ′ε , P ′φ, P ′γ, R′β : γ ∈ A, β ∈ B} is an orthonormal basis of `2(Fq,m).

Thus, we can write f in terms of this orthonormal basis,

f = 〈f, P ′ε〉P ′ε + 〈f, P ′φ〉P ′φ +
∑
γ

〈f, P ′γ〉P ′γ +
∑
β

〈f,R′β〉R′β.
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and also the squared norm of f ,

‖f‖2 = 〈f, P ′ε〉2 + 〈f, P ′φ〉2 +
∑
γ

〈f, P ′γ〉2 +
∑
β

〈f,R′β〉2.

where we have used the fact the coefficients in the expansion of f are all real (cf.

Lemma 29).

On the other hand, we know that the squared norm of f is 1 − 1/q − 2/q2.

This implies that the square of every coefficient of the form 〈f, g〉 is less than 1 for all

g ∈ {P ′ε , P ′φ, P ′γ, R′β : γ ∈ A, β ∈ B}. In particular, 〈f,R′β〉2 ≤ 1 − 1/q − 2/q2 for all

β ∈ B. This together with (5.15) proves this theorem.

Unfortunately, the argument used in the proof of Theorem 61 cannot be applied

to show that the restriction of TN onto the irreducible module Vψ−1 is a PGL(2, q)-

module isomorphism. To deal with this case we exploit the connection between Leg-

endre sums and Hypergeometric sums shown by Kable in [34].

Lemma 62. Let γ be a nontrivial multiplicative character of Fq. Then

φ(2)q2〈f, Pγ〉 = q3
4F3

γ γ−1 φ φ

ε ε ε
; 1; q

+ φ(−1)γ(−1)q.

Proof. Applying Lemma 20 and 30 we obtain,

φ(2)q2〈f, Pγ〉 = φ(2)q2
∑
x∈Fq
x 6=±1

φ(1− x)Pφ(x)Pγ(x) + q2Pφ(−1)Pγ(−1)m(−1)

= q2
∑
y∈F∗q
y 6=1

φ(y)2F1

φ φ

ε
; y; q


2F1

γ γ−1

ε
; y; q

+ φ(−1)γ(−1)(q + 1)

= q2
∑
y∈Fq

φ(y)2F1

φ φ

ε
; y; q


2F1

γ γ−1

ε
; y; q

+ φ(−1)γ(−1)q

= q3
4F3

γ γ−1 φ φ

ε ε ε
; 1; q

+ φ(−1)γ(−1)q.
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Theorem 63. If q ≥ 7 then,

TN(Vψ−1)
∼= Vψ−1 .

Proof. It suffices to show that TN,ψ−1 6= 0. Using (5.3), Lemma 56, 57 and 60, and

after some computations we get

TN,ψ−1 =
(q − 1)

4

q2 − 2q − 3− q2
∑

b∈F∗q ,b 6=1

Pφ(2bh − 1)Pφ(2b− 1)

 .
Let f be the function in `2(Fq,m) defined before the statement of Theorem 61.

By Lemma 21 and 30 we see that the sum∑
b∈F∗q ,b 6=1

Pφ(2bh − 1)Pφ(2b− 1)

can be written in terms of the function f . In particular,∑
b∈F∗q ,b 6=1

Pφ(2bh − 1)Pφ(2b− 1) =
∑

b∈F∗q ,b 6=1

φ(1− b)Pφ(2b− 1)Pφ(2b− 1)

= φ(2)
∑

x∈Fq ,x 6=±1

φ(1− x)Pφ(x)Pφ(x)

= φ(2)〈f, Pφ〉 −
q + 1

q2
.

Thus, TN,ψ−1 can be expressed in terms of f :

TN,ψ−1 =
(q − 1)

4

[
q2 − q − 2− φ(2)q2〈f, Pφ〉

]
. (5.16)

We claim that φ(2)q2〈f, Pφ〉 ≤ 2q3/2. This claim together with (5.16) immedi-

ately implies that TN,ψ−1 6= 0 for every q ≥ 7.

To prove our claim we note that the character sum φ(2)q2〈f, Pφ〉 can be written

in terms of a hypergeometric sum 4F3. Letting γ = φ in Lemma 62,

φ(2)q2〈f, Pφ〉 = q3
4F3

φ φ φ φ

ε ε ε
; 1; q

+ q.

Therefore, our claim follows directly from the final conclusion of Proposition 23.
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To study the restriction of TN onto Vνγ we consider two cases. First, if γ is a

character whose order is not equal to three, four or six then we can apply arguments

similar to the ones used in the proof of Theorem 61 to prove that the restriction is

an isomorphism. On the other hand, different ideas have to be used to show that the

same result holds when γ has order three, four or six. The next two theorems deal

with these cases.

Theorem 64. Assume that q ≥ 11. If γ ∈ A then

TN(Vνγ )
∼= Vνγ .

Proof. We proceed as we did in the proof of Theorem 61. To prove this theorem it is

enough to show that TN,νγ 6= 0.

From (5.3), Lemmas 56, 57 and 58, and after some computations the following

expression for TN,νγ is obtained:

TN,νγ =
(q − 1)

4

q2 − 3q − (q + 1) γ(−1)φ(−1)− q2
∑

b∈F∗q ,b 6=1

Pγ(2b
h − 1)Pφ(2b− 1)

 .
Applying Lemma 21 and 30 it is possible to write the sum of products of Leg-

endre sums in terms of the function f . In fact,

∑
b∈F∗q ,b 6=1

Pγ(2b
h − 1)Pφ(2b− 1) = φ(2)

(
1− 1

q

)1/2

〈f, P ′γ〉 − (q + 1)
γ(−1)φ(−1)

q2
.

Therefore, for every γ ∈ Γ we have

TN,νγ =
q2(q − 1)

4

[
1− 3

q
− φ(2)

(
1− 1

q

)1/2

〈f, P ′γ〉

]
. (5.17)

Recall that

‖f‖2 = 〈f, P ′ε〉2 + 〈f, P ′φ〉2 +
∑
γ

〈f, Pγ〉2 +
∑
β

〈f,R′β〉2 = 1− 1

q
− 2

q2
. (5.18)

where {P ′ε , P ′φ, P ′γ, R′β : γ ∈ A, β ∈ B} is an orthonormal basis of `2(Fq,m). Equation

(5.18) implies that at most one of the coefficients 〈f, g〉 with g ∈ {P ′ε , P ′φ, P ′γ, R′β : γ ∈
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A, β ∈ B} can be close to 1. On the other hand, it is clear from (5.17) that TN,νγ = 0

if and only if the coefficient 〈f, P ′γ〉 is close to 1.

To prove the theorem we proceed by contradiction. Assume that there exists

γ ∈ A such that TN,νγ = 0. Hence, it follows from equation (5.17) that

〈f, P ′γ〉2 = 1− 5

q
+

4

q(q − 1)
. (5.19)

Let Gal(Q(ζq−1)/Q) be the Galois group where ζq−1 is a primitive (q−1)-th root

of the unity. If γ is a nontrivial character whose order is not equal to three, four or

six, there exists σ ∈ Gal(Q(ζq−1)/Q) such that γσ 6= γ and γσ 6= γ−1. Now, applying

the Galois automorphism σ to both sides of (5.19) we conclude that

σ
(
〈f, P ′γ〉2

)
= σ

(
1− 5

q
+

4

q(q − 1)

)
〈f, P ′γσ〉2 = 1− 5

q
+

4

q(q − 1)
.

Thus, 〈f, P ′γ〉2 and 〈f, P ′γσ〉2 are equal to 1− 5
q

+ 4
q(q−1)

which is a contradiction because

at most one of the coefficients 〈f, g〉 with g ∈ {P ′ε , P ′φ, P ′γ, R′β : γ ∈ A, β ∈ B} can be

close to 1. Assume now γ ∈ A is a character of order 3, 4 or 6. From equation (5.17)

we get the following expression for TN,νγ ,

TN,νγ =
(q − 1)

4

[
q2 − 3q − φ(2)q2〈f, Pγ〉

]
.

By Lemma 62, φ(2)q2〈f, Pγ〉 = q3
4F3

γ γ−1 φ φ

ε ε ε
; 1; q

 + φ(−1)γ(−1)q. By the

final conclusion of Proposition 23, TNνγ 6= 0.

Finally, we are ready to prove Theorem 47.

Proof of Theorem 47. Recall that in Section 5.1.3 we proved the following lower and up-

per bounds on the rank of the derangement matrix M of PSL(2, q) acting on PG(1, q),

∑
{χ: TN,χ 6=0}

dim(Vχ) ≤ rank(M) ≤ q(q − 1). (5.20)
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These bounds imply that if TN,χ is not zero for every χ ∈ {λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A}

then the rank of M is q(q − 1).

If q ≥ 11 then it follows from Theorems 61, 63 and 64 that TN,χ 6= 0 for

all χ ∈ {λ1, ψ−1, {ηβ}β∈B, {νγ}γ∈A}. Furthermore, for every q ≤ 11 computational

experiments have shown that the rank of M is exactly q(q − 1).
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Chapter 6

THE RANK RESILIENCE PROPERTY OF Wr,s

Recall that Wr,s denotes the higher inclusion matrix of r-subsets vs. s-subsets.

In this chapter we present some results about the rank of the matrices Wr,s over fields

of various characteristics. We also discuss some of the proof techniques that have

been applied to obtain those results. Moreover, we prove that the rank of Wr,s is

resilient over any field K. This result is a generalization of Theorem 5 proved by

Keevash. In fact, the next theorem shows that if the size of F is close to
(
n
r

)
then

rankK(Wr,s) = rankK(WF
r,s). To simplify notation, for any family F of r-subsets we

denote by F c the family of r-subsets
(

[n]
r

)
\ F .

Theorem 65. Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subsets of [n]. If

|F c| ≤ n
r
− 1 then rankK(Wr,s) = rankK(WF

r,s).

6.1 The Rank of Wr,s

The ranks of the inclusion matrices Wr,s have been extensively studied. It was

proved by Gottlieb [27] that the matrix Wr,s has full rank over Q. Later, Linial and

Rothschild [42] computed the rank of Wr,s over any field K of characteristic 2. Finally,

Wilson [58] found a beautiful formula for the rank of Wr,s over any field K when

n ≥ r + s. The formula is given by

rankK(Wr,s) =
∑
j∈Y

(
n

j

)
−
(

n

j − 1

)
,

where Y = {j : 0 ≤ j ≤ s,
(
r−j
s−j

)
6=K 0}. This formula was also proven by Frankl [20],

Bier [9] and Frumkin and Yakir [23] using different ideas.
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In this section we discuss Bier’s proof of Wilson’s rank formula for Wr,s. The

main idea of Bier is to find bases with respect to which the matrix Wr,s becomes

diagonal. In fact, once we have a diagonal form for Wr,s the computation of its rank

becomes trivial.

Let K be an arbitrary field. For every 0 ≤ r ≤ n, we denote by M r the K-

vector space spanned by the r-subsets of [n]. Hence, the set of r-subsets of [n] forms a

“canonical basis” of M r. Let ϕj,r : M j → M r be the linear transformation such that,

for every j-subset A of [n],

ϕj,r(A) =
∑
A⊆R

R,

where the sum is over all r-subsets containing A. Note thatWr,j is the matrix associated

with ϕj,r with respect to the canonical basis of M j and M r.

For any j-subset A of [n], with 0 ≤ j ≤ r, we denote by 〈A〉r the image of A

under the linear transformation ϕj,r. In [20], Frankl introduced the notion of rank for

a subset of [n].

Definition 66. (Frankl, [20]) Let A be any subset of [n]. One associates a walk w(A)

with A on the x-y plane. The walk w(A) goes from the origin to (n−|A|, |A|) by steps

of length one, the i-th step to the right or up according as i /∈ A or i ∈ A holds. The

rank of A, denoted by rk(A), is defined as |A| − l where l is the largest integer such

that w(A) reaches the line y = x+ l.

From the above definition, it follows that if A is a j-subset then its rank is at

most min(j, n− j). For every 0 ≤ j ≤ n/2, we define

S(j) =

{
A ∈

(
[n]

j

)
: rk(A) = j

}
.

Note that the elements of S(j) are in one to one correspondence with the standard

tableaux of shape (n − j, j). In fact, in [20] it was proved that |S(j)| =
(
n
j

)
−
(
n
j−1

)
.

Therefore, for every r ≤ n/2 we have that | ∪rj=0 S(j)| =
(
n
r

)
which is precisely the

dimension of the vector space M r.
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The following theorem gives a basis of M r indexed by the elements of S(j) with

j from 0 to r.

Theorem 67. (Bier, [9]) Let 0 ≤ r ≤ n/2. The vectors {〈A〉r : A ∈ S(j), 0 ≤ j ≤ r}

form a K-basis for M r.

We will refer to the basis given by Theorem 67 as the Bier basis of M r. For

the sake of completeness we explain in detail Bier’s proof of Theorem 67 and later we

show that the condition r ≤ n/2 can be removed. The next lemma will be used in the

proof of Theorem 67.

Lemma 68. (Bier, [9]) Let r be a positive integer. For any set j-subset A of [n] with

j < r,(
r − j
l

)
〈A〉r +

l∑
i=1

(−1)i
(
r − j − i
l − i

)∑
Ti

〈Ti〉r = 0 for all l = 1, . . . , r − j (6.1)

where the inner sum is taken over all Ti with |Ti| = j + i and A ⊂ Ti.

Proof. Let R be a r-subset containing A. In the first term of equation (6.1), R appears(
r−j
l

)
times. Moreover, in each sum

∑
〈Ti〉r the set R appears

(
r−j
i

)
times. Therefore,

R appears in the left hand side of equation (6.1) exactly,(
r − j
l

)
+

l∑
i=1

(−1)i
(
r − j − i
l − i

)(
r − j
i

)
=

l∑
i=0

(−1)i
(
r − j
i

)(
r − j − i
l − i

)
which is equal to 0 by the principle of inclusion-exclusion.

Proof of Theorem 67. To prove this theorem we will show that,

spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t} = spanK{〈A〉r : A a j-subset of [n], for 0 ≤ j ≤ t}

(6.2)

for any 0 ≤ t ≤ r. This is enough because taking t = r we conclude that the set of

vectors in the left hand side of (6.2) span M r and because |∪rj=0S(j)| =
(
n
r

)
, they form

a basis.
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We prove equation (6.2) by induction. Let’s start with some definitions that

we will use. For any set A = {a1 < . . . < aj} with r(A) < |A|, there exists a unique

integer m = mA, 1 ≤ m ≤ j such that am < 2m and ai ≥ 2i for all i > m. On the

other hand, if r(A) = |A| then ai ≥ 2i for all i, so m = mA = 0.

To prove (6.2), first note that spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t} is clearly

contained in spanK{〈A〉r : A a j-subset of [n], for 0 ≤ j ≤ t}, hence it is enough to

prove the assertion in the opposite direction. We will show that,

spanK{〈A〉r : A a j-subset of [n], for 0 ≤ j ≤ s} ≤ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t}

(6.3)

for every s from 0 to t.
We proceed to prove (6.3) by induction on s and in the parameter m of a subset

defined above. Notice that,

• The assertion is trivially true for s = 0.

• Assume that for 0 < s < t we have:

1. 〈B〉r ∈ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t}, for all B, |B| < s.

2. 〈B〉r ∈ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t}, for all B, |B| = s and mB < m.

We can assume number 2 because for a s-subset B with mB = 0 it is trivial to

notice that 〈B〉r ∈ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t} (actually, in this case B ∈ S(j)).

Hence, we want to show that for every set B with |B| = s and mB = m we have

that 〈B〉r ∈ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t}.

Let B = I ∪X with

I = {b1 < b2 < . . . < bm} and X = {bm+1 < . . . < bs}

such that bm < 2m and bi ≥ 2i for all bi ∈ X (so |B| = s and mB = m). For any U ⊆ I

we define,

[U ∪X] =
∑
U⊆J

〈J ∪X〉r

where the sum is taken over all sets J = {j1 < j2 < . . . < jm} with jm < 2m containing

the set U . Notice that J ∪X is a s-subset with mJ∪X = m.
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Claim 69. Let U be a proper subset of I then

[U ∪X] ∈ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t}

Proof. We use lemma 68 with A = U ∪X and l = m− |U |,(
k − |U ∪X|

l

)
〈U ∪X〉r +

l∑
i=1

(−1)i
(
k − |U ∪X| − i

l − i

)∑
Ti

〈Ti〉r = 0

l−1∑
i=0

(−1)i
(
k − |U ∪X| − i

l − i

)∑
Ti

〈Ti〉r + (−1)l
∑
Tl

〈Tl〉r = 0

The terms to the left of the above expression are contained in spanK{〈A〉r : A ∈

S(j), 0 ≤ j ≤ t} by induction hypothesis because the sets Ti have cardinality lower

than s. We can rewrite the term to the right as,∑
Tl

〈Tl〉r =
∑

Tl:mTl<m

〈Tl〉r +
∑

Tl:mTl=m

〈Tl〉r

and again the term to the left belongs to spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t} by

induction hypothesis. Now, because [U ∪X] =
∑

Tl:mTl=m
〈Tl〉r, we conclude that,

[U ∪X] =
l−1∑
i=0

(−1)i+l+1

(
r − |U ∪X| − i

l − i

)∑
Ti

〈Ti〉k −
∑

Tl:mTl<m

〈Tl〉k

Claim 70. For any I ⊂ {1, 2, . . . , 2m− 1} with |I| = m,∑
U⊆I

(−1)|U |[U ∪X] = 0.

Proof. By definition we have,∑
U⊆I

(−1)|U |[U ∪X] =
∑
U⊆I

(−1)|U |
∑
U⊆J

〈J ∪X〉r. (6.4)

Consider any set R ∈
(

[n]
r

)
. We want to count how many times the subset R

appears in the expression (6.4). We assume that X ⊆ R and that |R∩{1, 2, . . . , 2m−1}|
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is at least m, otherwise, R does not appear in (6.4). Define l1 = |R ∩ I| and l2 =

|(R \ I) ∩ {1, . . . , 2m− 1}|, hence R appears in (6.4), exactly,(
l1
0

)(
l1 + l2
m

)
−
(
l1
1

)(
l1 + l2 − 1

m− 1

)
+ · · · =

m∑
i=0

(−1)i
(
l1
i

)(
l1 + l2 − i
m− i

)
which is equal to 0 by the principle of inclusion-exclusion.

From Claim 70 it follows that,

〈B〉r +
∑
U⊂I

(−1)|J |[U ∪X] = 0,

hence,

〈B〉r = [I ∪X] = (−1)m+1
∑
U⊂I

(−1)|U |[U ∪X].

Therefore, using Claim 69 we have,

〈B〉r = spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ t}.

Corollary 71. Let 0 ≤ r ≤ n. The vectors {〈A〉r : A ∈ S(j), 0 ≤ j ≤ min(n − r, r)}

form a K-basis for M r.

Proof. Assume r > n/2 because for r ≤ n/2 the corollary reduces to Theorem 67. We

need to prove that,

spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ n− r} = M r

Let R be any r-subset of [n]. We claim that,

R =
∑
U⊂Rc

(−1)|U |〈U〉r (6.5)

where Rc is the complement of R with respect to [n]. The set R appears in the right

hand side of equation (6.5) exactly once because the empty set is the only subset of Rc

that is also a subset of R. Any other r-subset B appearing in the right side of equation
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(6.5) satisfies that |B ∩Rc| = l with l = 1, . . . , n− k. Hence, the set B appears in the

right hand side of equation (6.5) exactly,

1−
(
l

1

)
+

(
l

2

)
− · · ·+ (−1)l

(
l

l

)
which is equal to 0. From equation (5.2), we know

spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ n−r} = spanK{〈A〉r : A a j-subset of [n], for 0 ≤ j ≤ n−r}

therefore, equation (6.5) implies that R ∈ spanK{〈A〉r : A ∈ S(j), 0 ≤ j ≤ n− r}.

It follows from Corollary 71 that there is a Bier basis of M r for every r from 0

to n.

6.2 Resilience Property

In this section we use the Bier bases to prove the resilience of the rank of the

higher inclusion matrices Wr,s over any field K.

By definition of ϕs,r, it is trivial to note that for 0 ≤ s ≤ r ≤ n/2,

ϕs,r(〈A〉s) =

(
r − j
s− j

)
〈A〉r

for every A ∈ S(j) with j = 0, 1, . . . , s. Therefore, the matrix of ϕs,r with respect to

the Bier bases {〈A〉s : A ∈ S(j), 0 ≤ j ≤ s} of M s and {〈A〉r : A ∈ S(j), 0 ≤ j ≤ r} of

M r has a diagonal form. This proves that dimK(im(ϕs,r)) is equal to,∑
j∈Y

|S(j)| =
∑
j∈Y

(
n

j

)
−
(

n

j − 1

)

where Y = {j : 0 ≤ j ≤ s,
(
r−j
s−j

)
6=K 0}. This is precisely the K-rank formula given by

Wilson for the matrix Wr,s in [58].

Let Sn denote the group of permutations of [n]. If σ ∈ Sn then for any r-subset

A we define σ(A) = {σ(a) : a ∈ A}. In the same way, if F is a family of r-subsets then

σ(F) = {σ(A) : A ∈ F}. The next lemma shows that we have a lot of freedom in the

way we can remove rows from Wr,s without affecting its K-rank.
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Lemma 72. Assume that 0 ≤ s ≤ r ≤ n/2. Let F be a family of r-subsets of [n]. If

there exist some σ ∈ Sn such that σ(F c) ⊆ S(r) then rankK(Wr,s) = rankK(WF
r,s).

Proof. First, assume F c ⊂ S(r). We define the following linear transformation from

M s to M r

ϕF
c

s,r(S) =
∑
S⊂R

R−
∑

T∈Fc,S⊂T

T, for all S ⊂ [n], |S| = s,

where in the first sum R runs over all r-subsets of [n] containing S, and in the second

sum T runs over all r-subsets of [n] containing S such that T ∈ F c. It is clear from its

definition that dimK(imϕF
c

s,r) = rankK(WF
r,s).

Note that for every j-subset A with 0 ≤ j ≤ s and rank(A) = j we have

ϕF
c

s,r(〈A〉s) =

(
r − j
s− j

)
〈A〉r −

∑
T∈Fc,A⊂T

(
r − j
s− j

)
T. (6.6)

Recall that by assumption F c ⊆ S(r), so any T ∈ F c is actually a basis element of the

Bier basis of M r. Thus the matrix corresponding to ϕF
c

s,r with respect to the Bier bases

of M r and M s is almost diagonal.

We will use the following simple result from linear algebra.

Claim 73. Let v1, . . . , vm be linearly independent vectors of a K-vector space V . Let

z1, . . . , zm be vectors in V such that span{v1, . . . , vm} ∩ span{z1, . . . , zm} = {0}. Then

v1 + z1, . . . , vm + zm are linearly independent vectors in V .

Let W be the subspace spanned by the following set of linearly independent

vectors {(
r − j
s− j

)
〈A〉r : A ∈ S(j), j ∈ Y

}
.

It is clear from the definition of the Bier basis of M r that

W
⋂

span

{ ∑
T∈Fc,A⊂T

(
r − j
s− j

)
T : A ∈ S(j), j ∈ Y

}
= {0}.

Therefore, by the above claim and equation (6.6) we conclude that the vectors⋃
j∈Y

{
ϕF

c

s,r(〈A〉s) : A ∈ S(j)
}

81



with Y = {j : 0 ≤ j ≤ s,
(
r−j
s−j

)
6=K 0} are linearly independent. This implies that

dimK(imϕF
c

s,r) ≥
∑
i∈Y

(
n

j

)
−
(

n

j − 1

)
.

Hence, Lemma 72 follows from the trivial upper bound rankKW
F
r,s ≤ rankKWr,s and

Wilson’s rank formula.

Now, if F c * S(r) then by assumption there exists σ ∈ Sn such that σ(F c) ⊆

S(r). We use σ to define the following invertible linear transformations,

Φσ
r : M r → M r

R 7→ σ(R)
,

Φσ
s : M s → M s

S 7→ σ(S)
.

From the above definitions it follows that

ϕF
c

s,r = (Φσ
r )−1 ◦ ϕσ(Fc)

s,r ◦ Φσ
s .

Thus, dimK(imϕF
c

s,r) = dimK(imϕ
σ(Fc)
s,r ) which implies Lemma 72.

The next corollary is an immediate consequence of Lemma 72.

Corollary 74. Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subsets of [n].

If ∣∣∣∣∣ ⋃
A∈Fc

A

∣∣∣∣∣ ≤ n− r (6.7)

then rankK(WF
r,s) = rankK(Wr,s).

Proof. First note that by definition, if an r-subset A of [n] satisfies that A ∩ [r] = ∅

then A ∈ S(r). The assumption in (6.7) implies that there exists σ ∈ Sn such that

σ(A) ∩ [r] = ∅ for all A ∈ F c. Therefore, σ(F c) ⊆ S(r).

Note that Theorem 65 follows from Corollary 74 because every family of r-

subsets F satisfying that |F c| ≤ n
r
− 1 also satisfies inequality (6.7).
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Chapter 7

THE RANK RESILIENCE PROPERTY OF Wr,s(q)

Recall that Wr,s(q) denotes the higher inclusion matrix of r-subspaces vs. s-

subspaces. In this thesis we generalize Theorem 5 in two directions. In Chapter 6

we proved that the rank of Wr,s is resilient over any field K. Now, in this chapter

we prove a similar result for higher inclusion matrices of r-subspaces vs. s-subspaces.

Indeed, we prove that the K-rank of Wr,s(q) is resilient or robust over any field K with

char(K) 6= p. As we did in the set case, we denote by F c the family of r-subspaces[Fnq
r

]
\ F .

Theorem 75. Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subspaces of Fnq
and K a field with char(K) 6= p. If |F c| ≤ n

r
−1 then rankK(Wr,s(q)) = rankK(WF

r,s(q)).

We start by presenting some results about the rank of these matrices over fields

of different characteristic. We also discuss some of the proof techniques that have been

applied to obtain those results. Finally, in Section 7.2 we prove Theorem 75.

7.1 The Rank of Wr,s(q)

The ranks of the matrices Wr,s(q) have been extensively studied. However, the

results are not as complete as in the set case. It was proven by Kantor [36] that if

s ≤ min(r, n − r) then the Q-rank of W r,s(q) is
[
n
s

]
. Later, Frumkin and Yakir [23]

proved that if the characteristic of K is not equal to p, where q = pt, and n ≥ r + s

then the K-rank of Wr,s(q) is given by a q-analogue of Wilson’s formula. Indeed,

rankK(Wr,s(q)) =
∑
j∈Y

[
n

i

]
−
[
n

i− 1

]
, (7.1)
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where Y = {i : 0 ≤ i ≤ s,
[
r−i
s−i

]
6=K 0}. If the characteristic of K is equal to p then

the problem of finding the p-rank of Wr,s(q) is open in general. However, under the

additional condition s = 1, Hamada [30] gave a formula for the p-rank of Wr,1(q).

It is important to remark that although there are at least four different proofs

([9, 20, 23, 58]) of Wilson’s rank formula, only the idea of Frumkin and Yakir has

been generalized to find a formula for the rank of the matrix Wr,s(q) over K when

char(K) 6= p. This is an indication that the generalization of classical results from

extremal set theory is a difficult task.

Remarkably, Frumkin and Yakir proposed an uniform approach to finding a

rank formula for both Wr,s and Wr,s(q) using exactly the same steps. Their main idea

is to apply some results from representation theory. Indeed, they realized that Wr,s and

Wr,s(q) are matrices associated with an Sn- and a GL(n, q)-module homomorphisms,

respectively. Moreover, it is well known that there is a close relationship between

the representation theory of Sn and the representation theory of GL(n, q). Therefore,

many statements about a Sn-module homomorphism have a natural analogue for a

corresponding GL(n, q)-module homomorphism.

In fact, the work of James [32] shows that there are striking similarities between

the representation theory of Sn and GL(n, q). We recall some of these analogies that

will be helpful later. Let K be a field. For each partition λ of n, we may define a

Sn-module Sλ over K, known as the Specht module, such that if K = C then the

Specht modules are a complete set of pairwise non-isomorphic irreducible modules of

Sn. Moreover, each Specht module corresponds to the intersection of the kernels of

certain Sn-module homomorphisms. The dimension of the Specht module is given by

the hook-length formula; in the case of partitions with two parts there is a simpler

formula. Let λ = (n− r, r). The Specht module Sλ has dimension
(
n
r

)
−
(
n
r−1

)
.

Now assume that the characteristic of K is not equal to p. Again, for each

partition λ of n, we may define a GL(n, q)-module Sλ over K, also known as the

Specht module. If K = C then the Specht modules are a complete set of pairwise non-

isomorphic unipotent irreducible modules of GL(n, q). Moreover, each Specht module
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corresponds to the intersection of the kernels of certain GL(n, q)-module homomor-

phisms. The dimension of the Specht module is given by a q-analogue of hook-length

formula; again for the case of partitions with two parts there is a simpler formula. Let

λ = (n− r, r). Then the Specht module Sλ has dimension
[
n
r

]
−
[
n
r−1

]
.

We briefly recall the main idea used by Frumkin and Yakir to prove equation

7.1. For every 0 ≤ r ≤ n, we denote by M r
q the K-vector space spanned by the

r-dimensional subspaces of Fnq . Hence, the set of r-dimensional subspaces forms a

“canonical basis” of M r
q .

Recall that GL(n, q) is the group of all invertible linear transformations from

Fnq to Fnq . Every element of GL(n, q) induces a permutation on the set of r-dimensional

subspaces of Fnq . Thus, M r
q is a GL(n, q)-module for every 0 ≤ r ≤ n.

Consider the linear transformation ϕj,r : M j
q → M r

q which maps every j-

dimensional subspace X to

ϕj,r(X) =
∑
X⊆R

R,

where the sum runs over all the r-dimensional subspaces containing X. Note that

Wr,j(q) is the matrix associated with ϕj,r with respect to the canonical bases of M j
q

and M r
q . Furthermore, it follows from Definition 9 that ϕj,r is a GL(n, q)-module

homomorphism because for every g ∈ GL(n, q) we have that g · ϕj,r = ϕj,r · g.

We denote by ϕ∗j,r the transpose of ϕj,r such that the matrix of ϕ∗j,r with respect

to the canonical bases of M j
q and M r

q is equal to the transpose of Wr,j(q). Frumkin and

Yakir proved that the Specht module S(n−j,j) is contained in the image of ϕ∗j,r for every

j ≤ r and j + r ≤ n. This fact is crucial to proving that the K-rank of the matrix

Wr,≤s(q) =
[
Wr,0(q) Wr,1(q) · · · Wr,s(q)

]
is equal to

s∑
j=0

dimK(S(n−j,j)) =
s∑
j=0

[
n

j

]
−
[

n

j − 1

]
=

[
n

s

]
where we are assuming that

[
n
−1

]
= 0.
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Lemma 76. (Frumkin and Yakir) Let K be a field with char(K) 6= p. If s ≤ r and

r + s ≤ n then the K-rank of Wr,≤s(q) is equal to
[
n
s

]
.

Now, the q-analogue of Wilson’s rank formula follows easily from Lemma 76.

7.2 Resilience Property

7.2.1 The GL(n, q)-module M r
q

In this section, we assume that K is a field of characteristic coprime to q = pt,

containing a primitive p-th root of unity. We use the notation introduced in Section

7.1; but from now on assume that r ≤ n/2.

The Specht module S(n−r,r) is the submodule of M r
q defined by

S(n−r,r) =
⋂
j<r

{
kerφ : φ ∈ HomGL(n,q)(M

r
q ,M

j
q )
}
,

where HomGL(n,q)(M
r
q ,M

j
q ) is the set of all GL(n, q)-module homomorphisms from M j

q

to M r
q .

In [32], James proved that the dimension of S(n−r,r) over K is equal to
[
n
r

]
−
[
n
r−1

]
.

He also proved the following important result about Specht modules.

Theorem 77. (The Submodule Theorem) Let 〈·, ·〉 be the inner product on M r
q such that

for any two r-dimensional subspaces X, Y of Fnq we have that 〈X, Y 〉 = 1 if X = Y and

0, otherwise. If W is a submodule of M r
q then either S(n−r,r) ⊆ W or W ⊆ (S(n−r,r))⊥.

Recently, in [10] Brandt et al. found a basis of S(n−r,r) which is indexed by

standard tableaux of shape (n− r, r). We introduce some definitions and results from

[10] to describe this “standard basis”.

Consider a rectangular array of boxes of size r by n − r with r ≤ n − r, as

appears in the following figure:

...
· · ·

· · ·
...

n− r

r
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It is known that every r-subset A of [n] can be represented by a path connecting

the top left corner with the right bottom corner of the above array of boxes. Specifically,

the i-th step is south or east according as i ∈ A or i /∈ A holds. For example, the r-

subsets contained in S(r) correspond to the paths that do not cross the main diagonal

of the array of boxes.

We denote by P (n − r, r) the set of all paths connecting the top left with the

bottom right corner of an array of boxes of size r by n− r.

Example 78. Consider n = 5 and r = 2,

so the path corresponding to this figure is π = ESESE where E stand for east and S

for south. Hence, the 2-subset of [5] corresponding to π is {2, 4}.

We impose the reverse lexicographic order on the set of paths P (n− r, r). For

example, the elements of P (2, 2) are ordered in the following way:

SSEE < SESE < SEES < ESSE < ESES < EESS.

Given any path π ∈ P (n − r, r) we can fill the boxes below π using elements

from Fq. For example, for n = 7 and r = 3,

a1

a2 a3

a4 a5 a6

where ai ∈ Fq and π = ESESESE. The following well known result establishes a

bijection between these objects and r-dimensional subspaces of Fnq . A proof can be

found in [10].

Lemma 79. (Brandt et al., [10]) Choosing a path π ∈ P (n− r, r) and then filling the

boxes below the path with elements of Fq is a way of encoding a r-dimensional subspace

of Fnq . Every such subspace can be uniquely encoded in this way.
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The proof of Lemma 79 relates the reduced echelon form of a subspace with a

path π and a filling for that path. In fact, if a 3-dimensional vector subspace of F7
q has

the following reduced echelon form
a 1 0 0 0 0 0

b 0 1 0 0 0 0

c 0 0 d 1 0 0


then the path and filling corresponding to this vector subspace is,

a

b

c d

with π = ESSESEE.

For every r-subspace X of Fnq we will denote by π(X) the path corresponding

to X.

Definition 80. (Brandt, Dipper, James, and Lyle. [10]) Suppose that v ∈ M r
q , and

write

v =
∑

X∈[F
n
q
r ]

cXX, where cX ∈ K.

1. For each path π, let

v(π) =
∑

X:π(X)=π

cXX.

2. If v 6= 0, then let greatest(v) be the greatest1 path π ∈ P (n − r, r) such that

v(π) 6= 0.

3. If v 6= 0, then let top(v) = v(greatest(v)).

4. If U is a subspace of M r
q and π ∈ P (n− r, r), then let

U(π) = {u(π) : 0 6= u ∈ U and greatest(u) = π} ∪ {0}.

1 Greatest with respect to the reverse lexicographic order imposed on P (n− r, r)
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Let θ be an additive character of Fq. Suppose that X and L are r-dimensional

subspaces of Fnq such that π(X) = π(L). Let χL be the linear character defined by

χL(X) =
r∏
i=1

n−r∏
j=1

θ(li,jxi,j)

where li,j and mi,j denote the (i, j)-entries in the filling corresponding to L and X,

respectively (here we are assuming that the boxes above the path are filled with zeros).

Using the character χL it is possible to define the following element of M r
q

eL =
∑

X:π(X)=π(L)

χL(−X)X

for every L ∈
[Fnq
r

]
. Furthermore, the orthogonality relations for linear characters imply

that the sets{
eL : L ∈

[
Fnq
r

]}
and

{
eL : L ∈

[
Fnq
r

]
with π(L) = π

}
form a basis of M r

q and M r
q (π), respectively.

Definition 81. (Brandt et al., [10]) Let π ∈ P (n− r, r) be a path connecting the top

left with the bottom right corner of an array of boxes of size r by n − r. Label the

corners of the array by ordered pairs (i, j) with i = 1, . . . , r+1 and j = 1, . . . , n−r+1.

For every corner (i, j), we define r(i, j) = j − i. Let X be a r-dimensional subspace of

Fnq such that π(X) = π. We say that X is good if its associated filling of the boxes to

the south of π with elements of Fq satisfies the following condition: for each corner (i, j)

through which the path π passes, the matrix with bottom left and top right corners

having coordinates (r + 1, 1) and (i, j), respectively, has rank at most r(i, j). If X is

not good then we say it is bad.

Note that Definition 81 implies that if a path π ∈ P (n− r, r) crosses the main

diagonal of the array of boxes then there is no good r-dimensional subspace X with

π(X) = π. Therefore, it follows that if L is a good r-dimensional subspace of Fnq then

π(L) ∈ S(r). The next theorem gives a basis for the Specht module S(n−r,r).
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Theorem 82. (Brandt et al., [10]) For every good r-dimensional subspace L of Fnq
there exists a vector zL ∈ M r

q with top(zL) = eL such that the set {zL : L good} forms

a basis of S(n−r,r).

As was remarked earlier, every path π ∈ P (n − r, r) that does not cross the

main diagonal is related to a unique subset in S(r). Thus, by abuse of notation we will

denote also by S(r) the set of paths that do not cross the main diagonal. Since the

elements of S(r) are in one to one correspondence with the standard tableaux of shape

(n − r, r), it follows that Theorem 82 provides a basis of S(n−r,r) which is indexed by

standard tableaux, i.e. a “standard” basis.

To prove Theorem 75 we will need to introduce another submodule of M r
q .

Consider the linear transformation ϕj,r : M j
q → M r

q which maps every j-dimensional

subspace X to

ϕj,r(X) =
∑
X⊆R

R,

where the sum goes over all the r-dimensional subspaces containing X. Moreover, for

any j-dimensional subspace X of Frq, with j ≤ r, we denote by 〈X〉r the image of X

under the linear transformation ϕj,r.

Note that Wr,j(q) is the matrix associated with ϕj,r with respect to the canonical

bases of M j
q and M r

q . Therefore,

dimK(im(ϕj,r)) =
∑
i∈Y

[
n

i

]
−
[
n

i− 1

]
, (7.2)

where Y = {i : 0 ≤ i ≤ j,
[
r−i
j−i

]
6=K 0}. Furthermore, it follows from Definition 9 that

ϕj,r is a GL(n, q)-module homomorphism because for every g ∈ GL(n, q) we have that

g · ϕj,r = ϕj,r · g.

Consider the following subspace of M r
q ,

Ur−1 = ϕ0,r(M
0
q ) + ϕ1,r(M

1
q ) + · · ·+ ϕr−1,r(M

r−1
q ).

Lemma 10 implies that Ur−1 is a GL(n, q)-module. This module was studied by

Frumkin and Yakir in [23]. They proved that the dimension over K of Ur−1 is
[
n
r−1

]
.
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7.2.2 Proof of Theorem 75

In this section we prove Theorem 75. Our approach will be similar to the one

used in the proof of Theorem 65. However, because we do not have a q-analogue of Bier

basis for M r
q we will apply the results from representation theory that were introduced

in the previous sections.

For π ∈ P (n− r, r), define the leading term of π to be the number of E moves

before the first S move. We denote by S(r)< the set of paths in S(r) whose leading

term is strictly less than r and by S(r)≥ the set of paths in S(r) whose leading term

is greater than or equal to r. Thus by definition we have that

S(r) = (S(r)<) ∪
(
S(r)≥

)
.

Lemma 83. If K is a field of characteristic coprime to q containing a primitive p-th

root of unity then

Ur−1 ∩
⊕

π∈S(r)≥

M r
q (π) = {0}.

Proof. Consider the inner product over M r
q defined in the statement of Theorem 77. A

straightforward application of the Submodule Theorem implies that Ur−1 is contained in

the orthogonal complement of the Specht module S(n−r,r). Thus, for every z ∈ S(n−r,r)

and v ∈ Ur−1 we have that 〈z, v〉 = 0.

It follows from Definition 81 that every r-dimensional subspace L of Fnq with

π(L) ∈ S(r)≥ is a good subspace. Therefore, if π ∈ S(r)≥ then the set of vectors

{eL : L good and π(L) = π} is a basis of M r
q (π). Combining this fact with Theorem

82, we conclude that the Specht module S(n−r,r) contains a vector wL, for every L with

π(L) ∈ S(r)≥ such that top(wL) = L.

Given any vector v ∈ M r
q we can use the canonical basis of M r

q to represent

v as a column vector. We arrange the canonical basis with respect to the reverse

lexicographic order, therefore, on the top we have the subspaces related to the paths

in S(r)≥, then the subspaces whose associated path is an element of S(r)<, and finally

the ones associated with paths in P (n− r, r) \ S(r).
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Now, given an arbitrary basis of Ur−1, we consider its representation as column

vectors with respect to the canonical basis. Applying column operations on this basis

we can get a new basis of Ur−1 in reduced echelon form such that the leading ones

appear from left to right and from the bottom to the top.

We claim that no leading one of this basis appears on a row indexed by a

subspace L with π(L) ∈ S(r)≥. Note that this is enough to prove Lemma 83.

To prove our claim we proceed by contradiction. Suppose that after column

operations one of the basis elements v′ of Ur−1 has a leading one in an entry indexed

by a subspace L with π(L) ∈ S(r)≥. Therefore, 〈v′, wL〉 = 1 which is a contradiction

because Ur−1 ⊆ (S(n−r,r))⊥.

Now we prove a vector space analogue of Lemma 72. To state this result we

introduce some notation. For any g ∈ GL(n, q) and any family F of r-subspaces of Fnq
we denote by g(F) the family of r-subspaces {g(X) : X ∈ F}. Furthermore, consider

the following set of r-dimensional vector subspaces of Fnq :

S(r)≥q =

{
X ∈

[
Fnq
r

]
: π(X) ∈ S(r)≥

}
.

Thus, S(r)≥q is the set of r-subspaces of Fnq whose associated path is in S(r) and has

leading term greater than or equal to r.

Lemma 84. Suppose 0 ≤ s < r ≤ n/2. Let F be a family of r-dimensional subspaces

of Fnq and K a field with char(K) 6= p. If there exists g ∈ GL(n, q) such that g(F c) ⊆

S(r)≥q then

rankK(WF
r,s(q)) = rankK(Wr,s(q)).

Proof. Note that without loss of generality we can assume that K contains a primitive

p-th root of unity. Indeed, if K does not contain a primitive p-th root of unity then

we can extend K to a larger field and this does not change the rank of the matrices

Wr,s(q) or Wr,s(q)
F .
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First, assume that F c ⊆ S(r)≥q . Consider the following subspaces of M s
q ,

Wj = ϕ0,s(M
0
q ) + ϕ1,s(M

1
q ) + · · ·+ ϕj,s(M

j
q ). (7.3)

for j from 0 to s. It is clear that

W0 ⊂ W1 ⊂ · · · ⊂ Ws. (7.4)

Furthermore, Frumkin and Yakir proved that the dimension of Wj over K is
[
n
j

]
.

Therefore, it follows from equations (7.3) and (7.4) that M s
q has a basis with the

following property: for all j from 0 to s,
[
n
j

]
−
[
n
j−1

]
of the elements of the basis are

of the form 〈X〉s with X ∈
[Fq
j

]
. For every j from 0 to s, we denote by Bj a set of

j-dimensional subspaces of Fnq with cardinality
[
n
j

]
−
[
n
j−1

]
chosen in such a way that

s⋃
j=0

{〈X〉s : X ∈ Bj}

is a basis of M s
q .

The definition of ϕs,r implies that

ϕs,r(〈X〉s) =

[
r − j
s− j

]
〈X〉r (7.5)

for all X ∈ Bj with j from 0 to s.

Let Y = {j : 0 ≤ j ≤ s such that
[
r−j
s−j

]
6= 0} and Z = {j : 0 ≤ j ≤

s such that
[
r−j
s−j

]
= 0}. Equations (7.2) and (7.5) imply that the set⋃

j∈Z

{〈X〉s : X ∈ Bj}

forms a basis of the kernel of ϕs,r. Therefore, the set⋃
j∈Y

{〈X〉r : X ∈ Bj} (7.6)

forms a basis for the image of ϕs,r so in particular these vectors are linearly independent

in M r
q .
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Now, we proceed in the same way as in the proof of Lemma 72. Consider the

following linear transformation from M s
q to M r

q

ϕF
c

s,r(S) =
∑
S⊆R

R−
∑

T∈Fc,S⊆T

T,

where R runs over all r-dimensional subspaces of Fnq containing S, and T runs over all r-

dimensional subspaces of Fnq containing S such that T ∈ F c. It is clear from definition

that dimK(imϕF
c

s,r) = rankKW
F
r,s(q). Furthermore, note that for every X ∈ Bj with

0 ≤ j ≤ s we have that,

ϕF
c

s,r(〈X〉s) =

[
r − j
s− j

]
〈X〉r −

∑
T∈Fc,X⊆T

[
r − j
s− j

]
T.

Note that Claim 73 and Lemma 83 imply that the vectors⋃
j∈Y

{
ϕF

c

s,r(〈X〉s) : X ∈ Bj

}
are linearly independent in M r

q . Therefore,∑
j∈Y

[
n

j

]
−
[

n

j − 1

]
≤ dimK(imϕF

c

s,r).

Hence, Lemma 84 follows from the trivial upper bound rankKW
F
r,s(q) ≤ rankKWr,s(q)

and the q-analogue of Wilson’s rank formula for Wr,s(q).

Now, if F c * S(r)≥q then by assumption there exists g ∈ GL(n, q) such that

g(F c) ⊆ S(r)≥q . Like in the proof of Lemma 72, we can use g to define the following

invertible linear transformations,

Φg
r : M r

q → M r
q

R 7→ g(R)
,

Φg
s : M s

q → M s
q

S 7→ g(S)
.

From the above definitions, it follows that

ϕF
c

s,r = (Φg
r)
−1 ◦ ϕg(Fc)s,r ◦ Φg

s.

Hence, dimK(imϕF
c

s,r) = dimK(imϕ
g(Fc)
s,r ) which implies Lemma 84.
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In the statement of the next corollary, given a r-dimensional subspace X, we

denote also by π(X) the unique subset of [n] corresponding to the path associated with

X.

Corollary 85. Suppose that 0 ≤ s < r ≤ n/2. Let F be a family of r-subspaces of Fnq .

If the family F satisfies that ∣∣∣∣∣ ⋃
X∈Fc

π(X)

∣∣∣∣∣ ≤ n− r (7.7)

then rankK(WF
r,s(q)) = rankK(Wr,s(q)).

Proof. Lemma 84 implies that is enough to show that there exists g ∈ GL(n, q) such

that g(F c) ⊆ S(r)≥q . Recall that every r-dimensional subspace of Fnq can be represented

by a unique r by nmatrix in reduced echelon form. The condition
∣∣⋃

X∈Fc π(X)
∣∣ ≤ n−r

implies that there are at least r columns that do not contain a leading one for any of

the subspaces in F c. Let i1 < i2 < · · · < il be the indices of the columns corresponding

to the leading ones of all subspaces in F c. By assumption we have that l ≤ n − r

so there exists a permutation sending il → n, il−1 → n − 1, . . . , i1 → n − l + 1 where

n− l + 1 > r.

This implies that there exists a linear transformation g sending every X ∈ F c

to a subspace g(X) such that none of the leading ones of the reduced echelon form of

g(X) appears on the first r columns, therefore, g(X) ∈ S(r)≥q for every X ∈ F c.

Theorem 75 is an immediate consequence of Corollary 85 because every family

of r-subspaces F satisfying that |F c| ≤ n
r
− 1 also satisfies inequality (7.7).
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Chapter 8

OPEN PROBLEMS

In this chapter we raise some problems related to the work we have done in this

thesis.

In Chapter 4 we prove that extremal families in PGL(2, q) are not only unique,

but also stable: any intersecting family in PGL(2, q) of size close to q(q − 1) must be

close in structure to a coset of a point stabilizer. Actually, Theorem 41 implies that

for q sufficiently large the cosets of point stablizers are the only extremal families in

PGL(2, q). This result was already proven by Meagher and Spiga [45] using different

methods.

It is possible to apply the ideas used in this thesis to prove similar results for

some 3-transitive groups. Let G be a finite group acting 3-transitively on a finite set

X. Suppose that this action satisfies the following conditions:

1. The maximum size of an intersecting family in G is |G|/|X| (note that this

number is equal to the size of a coset of a point stabilizer in G).

2. The standard character is the unique irreducible character affording the minimum

eigenvalue of the derangement graph Cay(G,D) where D is the set of derange-

ments in G (recall that since D is inverse-closed and conjugation-invariant there

is a correspondence, given by Lemma 33, between the eigenvalues of Cay(G,D)

and the irreducible characters of G).

Thus, applying Hoffman’s bound it follows that the characteristic vector of any

intersecting family of maximum size lies in the vector subspace V̂1 ⊕ V̂χstd of C[G].

Recall that V̂1 and V̂χstd are the vector subspaces of complex-valued functions on G
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whose Fourier transforms have support on the trivial and the standard representation,

respectively.

Now, let S ⊂ G be an intersecting family. If the size of S is close to |G|/|X|

and the size of the gap between the smallest and the second-smallest eigenvalue of

Cay(G,D) is big enough then we can use analogues of Lemmas 42 and 43 to conclude

that the characteristic function 1S is close to V̂1 ⊕ V̂χstd . Moreover, as was remarked

in Section 4.2, the result of Ellis, Filmus and Friedgut in [16], for Boolean functions

on Sn, can be generalized to any 3-transitive action of a finite group on a finite set.

Thus, if 1S is close to the vector space V̂1 ⊕ V̂χstd then it must be close in structure to

some coset of a point stabilizer in G. Therefore, we can use these ideas to prove that

extremal families in G are unique and stable. In fact, the above analysis give more

evidence to support the following conjecture.

Conjecture 86. (Meagher and Spiga, [45]) Let G be a finite group acting 3-transitively

on a finite set X. Every intersecting family of maximum size is a coset of a point

stabilizer.

In this thesis we consider the natural right action of PSL(2, q) on PG(1, q),

where q is an odd prime power. Using the eigenvalue method, it was proved in [3, 45]

that the maximum size of an intersecting family in PSL(2, q) is q(q − 1)/2. Meagher

and Spiga [45] conjectured that the cosets of points stabilizers are the only intersecting

families of maximum size in PSL(2, q). Here, we prove their conjecture in the affirma-

tive using tools from representation theory of PGL(2, q) and deep results from number

theory.

For future research, one could consider the stability problem concerning inter-

secting families of PSL(2, q). The stability of intersecting families for permutation

groups has been studied during the past few years (cf. [14, 22, 49]). We conjecture

that extremal families in PSL(2, q) are also stable. The precise statement is given

below.
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Conjecture 87. Let S be an intersecting family in PSL(2, q) with q an odd prime

power. Then there exists δ > 0 such that if |S| ≥ (1− δ)q(q− 1)/2 then S is contained

within a coset of a point stabilizer.

In this thesis, Theorem 5 proved by Keevash in [38] was generalized in two

directions. First, we showed that the rank of the matrix Wr,s is resilient over any

field, i.e. if the size of a family F of r-subsets of [n] is close enough to
(
n
r

)
then

rankK(Wr,s) = rankK(WF
r,s) for any field K. Note that a better result was proved in

[29] under the additional assumption that K is a field of characteristic zero. In fact,

under this assumption it is known that rankK(Wr,s) = rankK(WF
r,s) for every family of

r-subsets F satisfying that |F c| <
(
n−s
r−s

)
(when n is big enough) and this bound is the

best possible over fields of characteristic zero. We conjecture that, similar to the case

of characteristic zero, the rank of the matrix Wr,s is resilient to the deletion of O(nr−s)

rows over any field.

Conjecture 88. Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subsets of [n].

If n is big enough and |F c| <
(
n−s
r−s

)
then rankK(Wr,s) = rankK(WF

r,s) for every field K.

Note that over fields of positive characteristic is it not known if
(
n−s
r−s

)
is the best

upper bound.

On the other hand, we proved a q-analogue of Theorem 5. Indeed, if the size

of a family F of r-subspaces of Fnq is close enough to
[
n
r

]
then rankK(Wr,s(q)) =

rankK(WF
r,s(q)) for any field K whose characteristic is not equal to p, where q = pt.

The condition in Theorem 75 on the size of F c seems too restrictive. In fact

the striking similarities between the K-rank formulas of the matrices Wr,s and Wr,s(q)

together with the results of Theorems 65 and 75 is enough evidence for us to make the

following conjecture.

Conjecture 89. Assume that 0 ≤ s < r ≤ n/2. Let F be a family of r-subspaces

of Fnq and K a field with char(K) 6= p. If n is big enough and |F c| <
[
n−s
r−s

]
then

rankK(Wr,s(q)) = rankK(WF
r,s(q)).
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Note that over fields of characteristic zero
[
n−s
r−s

]
is the best upper bound, how-

ever, this has not be proven for fields of positive characteristic.
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