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ABSTRACT

One significant challenge in neuroscience is understanding the cooperative be-

havior of large numbers of neurons. Neuroscientists have long postulated that infor-

mation processing is a result of the synchronicity of spike trains of large groups of

connected neurons. How this synchronous behavior produces complex behavior such

as planning, language, and emotion is not well understood. Models of brains neuronal

networks allow scientists to explore the impact of differential neuronal connectivity

using analysis techniques and information not available experimentally. However, en-

coding more and more biophysically realistic neurobiological models into computational

simulations combine increasing computing and data requirements. High-performance

computing (HPC) has enabled the simulation of brain at increasing levels of fidelity;

the amount of data produced by simulations on HPC systems is becoming increasingly

difficult to save and transform into scientific insights because of the memory/storage

characteristics of the systems.

The ability to process, analyze, and produce substantive scientific inferences

on data is becoming increasingly difficult. Furthermore, the growth in complexity of

brain models makes finding optimal input variable configurations hard, as performing

efficient parameter sweeps become impractical due to the increasing number of input

parameters and the need of narrowing down the parameters values. Coupling simula-

tion with analysis has been widely investigated in applications such as computational

fluid dynamics and other numerical simulations codes, but little work has been done

in integrating real-time analysis and interactive steering with brains neural network

simulations. Analysis of data produced by brain models is still relegated to traditional

post-processing and sequential scientific workflows.
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In this thesis, we claim that new workflows that leverage real-time analysis and

computational steering methods are required to overcome the increasing divide between

computational and I/O subsystem performance. We claim that there exists a need to

transform the end-to-end scientific HPC workflow from one that is non-transparent,

trial-and-error based, and static to one that is investigative, hypothesis-driven, and

adaptive. To this end, we design, implement, and evaluate a distributed computa-

tional steering environment (CSE) prototype for the GEneral NEural SImulation Sys-

tem (GENESIS) on HPC systems. First, we investigate how the diversification of

HPC hardware along with increasing model complexity impact performance and data

generation. We show that increasingly biophysically realistic brain models are com-

putationally feasible but require HPC resources to mitigate the burgeoning computing

and data requests of the associated simulations. Second, we investigate the integration

of an in situ analysis approach with a simulated multi-compartmental model of neo-

cortex. We assess our approach using both qualitative and quantitative methods. We

show that by eliminating the need for data movement, using only a local view of our

data, results in comparable scientific insights to those that are obtained via a global

post-simulation analysis. Third, we design, implement and demonstrate a working pro-

totype of a CSE that leverages data collected at run-time via in situ analysis, to steer

a GENESIS simulation in real time. We assess and quantify simulation perturbation

(i.e., overhead) and presentation latency of our prototype when steering a simulated

neuronal networks models on GENESIS.

The primary goal of this thesis is to show how the use of an environment such

as our CSE can support dynamic workflows in brains neural network simulation via

computational steering and can mitigate resource usage associated with more naive

trial-and-error based approaches. Our work is the first step towards a change in think-

ing from traditional static, post-simulation to dynamical, adaptive steering simulations

of realistic neurobiological models.
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Chapter 1

THESIS OVERVIEW

1.1 Problem, Motivation, and Proposed Solution

Numerical simulations of neuronal networks are critical in addressing a signif-

icant challenge in neuroscience, which is understanding the cooperative behavior of

large, diverse groups of neurons [1]. At present, little is known about how neurons

work together to form complex behavior such as speech, memory, and emotion. To

gain knowledge and better insight into the fundamentals of information processing in

the brain, scientists rely on large neuronal network models that simulate more than 105

neurons and 109 synaptic connections [2, 3, 4]. However, current networks are far from

approaching adequate representations of the biological complexity of the human brain

concerning the number of neurons and connections. Present HPC hardware fails to

keep pace with the increasing computational requirements of these simulations [5, 6].

Post-petascale computing is imperative, in meeting the computational resource

requirements of brain scale networks. New advancements in simulation technology

must be achieved that allows for numerical models to leverage the maximum compute

capability of new hardware efficiently. Also, increasingly sophisticated models demand

more from I/O subsystems and, as a consequence, these systems are overburdened

by the sheer amount of data being generated. The increasing compute-I/O gap has

caused traditional domain-specific analysis methods to cease to scale and efficiently

meet these demands [7, 8, 9]. New interactive and adaptive analysis workflows are

needed to analyze the data at its locale of generation. Resulting in a reduction of data

movement and granting the ability to perform “hypothesis-driven” data discovery.
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In this thesis, we propose a working prototype of a computational steering envi-

ronment (CSE) for simulated neuronal network models on the GEneral NEural SImula-

tion System (GENESIS). Our CSE enables the integration of flexible high performance

computing applications and analysis frameworks in a turnkey manner, facilitating dy-

namic and adaptable analytical workflows. Specifically, our approach moves in three

directions: we assess the impact of running simulations of neuronal networks on HPC

systems; we integrate in situ analysis into the simulations; and we use scientific knowl-

edge, captured with the in situ analysis, to steer the simulations.

1.1.1 Simulating Neuronal Networks on HPC Resources

Simulation of neuronal networks is fast becoming the primary vehicle for en-

abling scientific discovery in the neuroscience research community. The increasing use

of simulation for science is possible due to advances in computer hardware and sim-

ulation technologies for the modeling of small sub-cellular processes up to brain-scale

networks [10]. Neuroscientists use simulated models of neurobiological processes to val-

idate theory with observation and investigate the relationship between structure and

function. Additionally, these models are used to study highly dynamical systems where

in vitro and in vivo experimental data is not always readily available. The human brain

is complex and contains over 100 billion interconnected cells. However, with current

technology, it is impossible to achieve simulated networks at this scale.

The primary challenge for an application implementing neuronal network mod-

els based on scaled down models of neurons and synapses is the number of network

elements that have to reside in memory at any one time [6]. Research in simulation

technology has focused on the design of data structures to enable the simulation of

network models at increasing sizes [5, 10, 11, 12, 13]. In addition to the challenge of

representing large numbers of network elements in memory, the time needed to instan-

tiate a network is of concern [10]. As models become larger so do the computational

requirements and time required for instantiation, which has the potential to affect the

simulation performance negatively.
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In this thesis, we analyze the impact of HPC resources (i.e., single fat nodes and

high-end clusters) on performance, data generation, and science delivered by GENESIS

for increasingly large and complex models of the brain’s neocortex. We explore the

relationship between model fidelity (i.e., the level to which our model successfully

reproduces the behavior of neuronal networks in nature) and performance, by increasing

the number of cells simulated and the amount of synaptic connections between the cells

in more advanced models and we run the simulations on high-end clusters.

1.1.2 Integrating In situ Analysis into Simulated Neuronal Networks

Advancements in technology have enabled increases in the fidelity and resolu-

tion of neuronal network models [14]. A consequence of this has been a steep hike in

the rate at which neuronal network models generate data [15]. Traditionally, analysis

of neuronal network models is accomplished through the use of well-known, widely-

used post-simulation analysis workflows. Conventional workflows in high performance

computing involve the preparation of an application’s input, configuration of model

parameters, execution of the simulation, and concludes with the analysis and/or visu-

alization of the simulation’s results. This is performed as a post-processing step, usually

done in a sequential fashion [16, 17, 18]. However, the large amount of data produced

by high fidelity models is becoming increasingly difficult to save and transform into

scientific insights for runtime simulations. One attractive solution is to modify the data

analysis workflow from one that is accomplished post-simulation to one that is com-

pleted in situ at the cost of confining the analysis to the level of local data rather than

a single global view. The missing global view of data has the potential to introduce

inaccuracies in the simulation’s findings.

In this thesis, we present the integration of in situ analysis into a simulation of

the electrical activity of a brain’s neuronal network. We evaluate the accuracy of our

in situ analysis versus the traditional post-simulation analysis using both qualitative

and quantitative methods. We show that we gain meaningful global insights from local

data that are comparable to those that are obtained post-simulation using global data.

3



1.1.3 Steering Simulated Neuronal Networks on HPC Resources

Having the ability to monitor model behavior and attributes at runtime brings

many advantages: tuning model parameters can be accomplished more efficiently, al-

lowing combinations of model input parameters that yield nonsensical behavior to be

identified sooner; “what if” studies are possible leading to additional hypotheses being

formed instead of being generated from scratch [19]; early termination of simulation

if desired behavior is not observed. By integrating in situ analysis into our simulated

neuronal network model, we improve upon the traditional method of analysis that is

growing in impracticality. However, permitting the ability to monitor neuronal network

simulation behavior at runtime is only a partial solution to the impending compute-

I/O gap that is being exacerbated by every generation of new hardware [20, 14]. We

extend a step further by augmenting our in situ analysis with the ability to computa-

tionally steer the simulation at runtime. Computational steering enables one the ability

to direct and re-direct the execution flow of an HPC application on-line by changing

application-defined control parameters using a steering agent.

In this thesis, we propose, develop, and implement a computational steering

environment (CSE) for simulated neuronal networks executed on GENESIS. Our CSE

performs three primary functions. First, it monitors, extracts, and manages simulation

output at runtime. Second, it allows for the distributed analysis of intermediate simula-

tion results. Third, it enables the modification of model parameters at execution time.

We demonstrate our CSE by steering the electrical activity (i.e., excitation/inhibition

balance) of a simulated neuronal network at runtime through the manipulation of ex-

citatory and inhibitory neuronal connections. To assess our CSE, we examine it on

two points. First, we evaluate its’ ability to govern desired model behavior. Second,

we evaluate simulation perturbation as it relates to the overhead introduced by the

steering of our model. The results show that our method successfully directs model

execution flow while minimally impacting simulation performance.

4



1.2 Thesis Statement

In this thesis, we claim that neuronal network simulations must integrate in

situ analysis and simulation steering workflows to increase scientific throughput and

improve utilization of current and next-generation HPC systems. To this end, there

is the need to transform the end-to-end simulation workflow from one that is non-

transparent, trial-and-error based, and static to one that is investigative, hypothesis-

driven, and adaptive. To validate the thesis statement, we:

• study the impact of HPC resources on performance, data generation, and science
delivered by GENESIS for increasingly complex neuronal network models;

• integrate in situ analysis into a simulated neuronal network model, evaluating
our analysis using both qualitative and quantitative methods; and

• demonstrate the effectiveness of a distributed computational steering environ-
ment prototype designed to perform analysis and steer neurobiological simula-
tions on GENESIS.

1.3 Contributions

The contributions of this dissertation are as follows: In regards to the investigation of
the impact of HPC resources on performance, data generation, and science delivered
by GENESIS this thesis makes two contributions, we:

• study the impact of platforms (i.e., single fat node versus high-end cluster) and
their features on the performance and data generation for a small neuronal net-
work model; and

• assess the impact of model complexity (i.e., number of simulated neurons and level
of neuronal connectivity) on the performance and data generation for increasingly
larger neuronal network models.

In reference to the integration of in situ analysis into a simulated model of the neocor-
tex. In this thesis we make two contributions, we:

• describe the integration of our in situ analysis method for spectral analysis on top
of Dataspaces [21], a high performance middle-ware for general in situ analysis;
and

• demonstrate the accuracy of our method by comparing the results of the analysis
performed in situ to the analysis performed after the simulation (post-simulation)
using both qualitative and quantitative methods.
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Lastly, in this thesis we make three contributions for our computational steering envi-
ronment, we:

• describe a distributed computational steering environment for simulated neuronal
networks on GENESIS

• integrate a working computational steering prototype into a simulated neuronal
network model; and

• evaluate the performance our computational steering environment for simulated
neuronal networks on GENESIS.

1.4 Organization

The remainder of the thesis is organized as follows: Chapter 2 describes the

necessity of brain simulation in neuroscience, introduces our simulation platform GEN-

ESIS, reports on the current state of the art in in situ analysis frameworks and tools,

and closes with a description of computational steering. Chapter 3 presents our ex-

perimental study of the impact of platform and model complexity to the performance

and data generation of a simulated model of neocortex. Chapter 4 presents our work

in integrating in situ analysis into a numerical model of the neocortex simulated on

high performance computing resources. Chapter 5 describes the design, and imple-

mentation of our CSE prototype, along with a performance evaluation of our working

prototype of a computational steering environment. Additionally, we provide two suc-

cessful case studies of steering of our model. In Chapter 6 we summarize and discuss

the contributions of this thesis along with a description of future work.
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Chapter 2

BACKGROUND

In this chapter, we describe the necessity of brain simulation in neuroscience. We

explain the basics of brain modeling and simulation. We start off with a description

of how biological neuronal networks are represented as computational models. We

continue with an introduction of our simulation platform GENESIS, which we use

to execute the model on high-performance computing resources. We follow with a

characterization of the limitations of the traditional workflow. We then report on the

current state of the art in real-time analysis frameworks and tools. Finally, we conclude

with a description of computational steering and its general challenges.

The rest of this chapter is organized as follows. Section 2.1 explains the need for

computational neuronal networks and how the brain’s and other neuronal networks are

represented as simulated computational models. Section 2.2 introduces the principal

neurobiological simulation framework that we use in this thesis, GENESIS. Section 2.3

describes the limitations of the traditional approach of simulation and analysis. Sec-

tion 2.4 describes frameworks and methods supporting real-time analysis of large-scale

simulations. Section 2.5 introduces the concept of computational steering to drive

“what-if” scenario experimentation. Section 2.6 provides a discussion of this chapter.

2.1 Neuronal Network Modeling

2.1.1 State of Practice

Cognitive functions are the results of neuronal connectivity and the associated

neurons’ electrical activity. It is theorized that cortical processing is accomplished by

the synchronicity of the spike trains of large assemblages of neurons [22, 23]. Brain-

wide electrical activity can be observed using electroencephlography (EEG), where
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electrodes are placed non-invasively on the outside of the head/skull to record billions

of neurons simultaneously. EEG has been used successfully to study neuropathol-

ogy [24]. EEG records fluctuations that result from ionic current with the neurons of

the brain [25, 26]. An EEG contains a great deal of information about the functions

of the brain. This leads to a multitude of approaches for performing analysis on the

EEG using various spectral analysis methods.

EEG recordings consist of the spontaneous electrical activity of the brain over

a period of time [25]. Brain-wide electrical activity is often oscillatory with frequency

ranges from 1 to 100 Hz and has been shown to be associated with human cognition [27].

EEG signals are non-deterministic and are not restricted to special formations such as

the electrocardiogram sign (ECG). Due to these non-restrictions the parametric and

statistical analysis approaches are used (e.g., time-frequency analysis) [28]. The ability

to directly observe how fine-grained neuronal connectivity impacts the activity of the

brain is not feasible given the current state of in vivo human neuroimaging [3]. To

address this limitation large-scale models of the brain with high biophysical detail

have been developed. Accurate brain models are inherently computationally intensive

both in numbers of neurons (the cerebral cortex contains 14 to 20 billion neurons [29])

and regarding connectivity (the cerebral cortex contains trillions of synapses).

2.1.2 The Neocortex

The neocortex is a thin layered convoluted structure that surrounds the brain

of mammals with a surface area of approximately 2600cm2 and with a thickness of 3-4

mm [30]. Neurons in the neocortex are connected to one another by synapses. The

Neocortex consists of folds and ridges and comprises 76% of the volume in the human

brain [31]. The neocortex is the newest evolutionary development in the brain, and

because of this, gets its name “neo”. The neocortex is composed of different layers each

with specialized functionality. Additionally, on each layer, neurons are organized into

vertical structures called microcolumns. Neurons contained in the same microcolumn

share the same static and physiological dynamic properties [30].
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It has been long believed that connectivity within the brain is responsible for

the cognition and behavior of mammals such as perception, decision-making, and lan-

guage [32, 33, 34]. The neocortex is comprised of 80% excitatory and 20% inhibitory

neurons, which are named after the effect that they have on other neurons when they

spike [31]. Excitatory neurons spikes or action potentials cause other neurons to be

more likely to fire, where in contrast inhibitory neurons cause neighboring connected

neurons to be less likely to fire.

2.1.3 Representation of Simulated Neuronal Networks

Neuronal networks can be described as distance weighted, directed graphs where

graph nodes are neurons and the edges of the graph are the synaptic connections [35].

Neurons in the network interact with one another by communicating through the use

of point events called action potentials or spikes [35]. Spikes are propagated unidi-

rectionally with a specified delay from the neuron initiating the spike to the neuron

receiving the spike. If enough synaptic input is received from connected neurons, the

receiving neuron’s threshold will be exceeded, and the neuron will be caused to fire

continuing the propagation of the spike across the network [36].

At present how neuronal connectivity produces complex behaviors such as speak-

ing, understanding emotion, planning, and performing complicated motor tasks is

poorly understood. Understanding the brain not only helps us understand its bio-

logical functions but also contributes to the design of new emerging computing archi-

tectures such as neuromorphic computing [37]. Numerous initiatives have focused on

gaining a deeper understanding of how the brain functions. The Blue Brain Project

(BPP) [38] and the Brain Research through Advancing Innovative Neurotechnologies

(BRAIN) [39], have both achieved success in the simulation of important brain regions.

Both projects leverage cheap commodity high-performance hardware to simulate thou-

sands of neurons simultaneously. Currently, it is understood that there is a strong

relationship between neuronal connectivity and functionally relevant brain activity [40].
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Directly observing neuronal activity of individual neurons is not possible given

the current state of in-vivo human neuroimaging [3]. To achieve brain-scale simula-

tions (i.e., 109 neurons and 1012 synaptic connections), larger neuronal networks models

are needed that are not currently available. These future networks, currently exceed

the capacity of small-to-medium sized clusters that are traditionally available to most

scientists in their own research facilities. To meet these growing computational de-

mands researchers have relied on massively parallel computing architectures installed

at high performance computing research centers which have fortunately increased in

availability.

To study the fundamental principles of information processing in the brain, sim-

ulated neuronal network models are used consisting of more than 105 neurons and 109

synaptic connections [10]. Simulation models of neuronal networks allow scientists to

explore the impact of differential neuronal connectivity, using analysis and simulation

environments. There has been increased development in the performance and capabil-

ity of neuronal network simulations in the past decade [11, 12, 13, 41, 42]. The focus

of these improvements have mainly targeted models that are less than the size of a

cubic millimeter of cortex (approximately 105 neurons) executed on which has become

the current dominant paradigm of high-performance computing (i.e., small to medium-

sized clusters). A major challenge to the simulation of neuronal networks is the large

number of synaptic inputs to a single neuron [6]. The number of synaptic connections

in these networks has been shown to exceed the current memory capacity of hardware

available to researchers [5]. Even if there were sufficient memory resources the large

amount of time need to construct/instantiate and simulate the network makes behav-

ioral optimizations to the model through parameter searches difficult. Balancing the

need for model fidelity and performance becomes increasingly important as model com-

plexity grows. To achieve neuron counts in the billions, we need a clearer understanding

of how model features impact computational performance and data generation.
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2.2 Simulation Frameworks and GENESIS

2.2.1 State of Practice

Simulation of neurobiological processes has established itself as a significant

part of the scientific analysis method in neuroscience. It is used to study the how

anatomical data relates to the physiological data available. Also, it is used to study non-

static systems that are difficult to study with the current state of the art of analytical

methods. Simulation frameworks and models used to study this behavior came into

prominence in the late 90’s and early 2000’s. Most analyses on brain networks were

done on datasets that described the large connection patterns of the rat [43], cat [44],

and monkey [45]. However, these were all partial network models. Scientist started

to see that only collecting and studying experimental data was not enough, to be

able to answer the fundamental questions of how neuronal circuits work. From this

conclusion, experimental neuroscientist saw the need to go from an observational to

a more quantitative approach for their study of neuronal networks. This has led to

scientist migrating to computational models to study network dynamics and is what we

now call computational neuroscience [46]. One of the first full simulated network models

was of the Caenorhabditis elegans (C. elegans) [47]. The C. elegans is a simple multi-

cellular organism consisting of approximately 1,000 cells and 302 neurons. “Due to the

simplicity of the organism C. Elegans were ideal for studying information processing in

neural networks. The next jump in network size came from the successful simulation

of a full cortical column of rat brain [43]. The most recent notable advancement in the

simulation neural networks has come from the Blue Brain Project and their simulation

of the entire rat brain [2].

2.2.2 General Neural Simulation System

GENESIS [48, 49, 50] is an object-oriented multi-function simulation package

that allows scientists to build scientifically rigorous neurobiological models of the brains

functions. Models in GENESIS simulate brain activity from the level of small sub-

cellular processes to sophisticated large neuronal networks. Individual neurons are
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Figure 2.1: GENESIS’ module components.

modeled using multiple compartments, generating realistic electrical activity in the

1-100 Hz frequency range. GENESIS was originally developed in the 1980’s by Dr.

James M. Bower’s in his laboratory at Caltech. GENESIS is designed to be easily

extensible and adaptable to run on large-scale clusters [51].

PGENESIS is the parallel extension of GENESIS and runs on a wide range of

hardware from single or networked workstations to supercomputers using the Message

Passing Interface (MPI) and the Parallel Virtual Machine (PVM) [52]. GENESIS simu-

lations are built from “objects” that are fed inputs, perform some type of mathematical

operation on them, and then based on the result of the operation, generates outputs

which are input to other “objects”. Neurons in GENESIS models are built from these

basic “objects” in a compartmental fashion [53]. These compartments are linked to

their ion channels and these channels are linked together to form multi-compartmental
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neurons which can form any required complexity needed.

GENESIS employs a high-level simulation language to configure and construct

neurons and their networks. GENESIS can be used both inter- and non-interactively [53].

GENESIS is written in C, using the X Window System, and the Portable Operating

System Interface (POSIX) for its I/O needs. Figure 2.1 shows an overview of the

modular structure of the GENESIS simulation from computation (i.e., solvers that

govern the gate channels of the simulated neurons) to the neurobiology (i.e., script-

ing language and module graphical user interface used to configure and construct the

neuronal networks). This overview has been recreated from the Book of GENESIS [48].

Read model 
script files

Define
connections

I/O?

Connections

Initialization

YES

Computation

Perform 
step

Connections

I/O?

YES

Figure 2.2: Workflow of GENESIS broken up into its initialization phase and its iter-
ative computation phase.

The workflow of a GENESIS simulation is shown in Figure 2.2 and can be broken

into two main phases: model initialization and model computation time. During the

initialization phase, GENESIS launches the model’s input scripts. The scripts hold the

initial status and values of the model. After parameters values have been initialized
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the model proceeds to establish connections between neurons according to probabilities

outlined in the initialization scripts. Once all connections have been completed, the

entire neural network is written to disk, if the I/O setting in GENESES is set to on.

This can be very time consuming, as we show later in this chapter. Following writing

the network out to disk, GENESIS enters the simulation phase. GENESIS runs for a

predefined maximum amount of steps; solving underlying model differential equations

and updating simulation variables at every time step. If I/O is on, GENESIS writes

out performance and brain-behavioral data to disk at each time step.

2.2.3 Simulation Frameworks Beyond GENESIS

Several simulators exist for large-scale neural modeling with parallel execution.

Parallel simulation of spike-coupled neural networks is supported in NEURON [54],

GENESIS [48], NEST [35], NCS [55]. and SPLIT [55], the research and development

in parallel simulation have been modest. Furthermore, I/O effects were not analyzed

previously for parallel simulations. There has been sparse research in regards to the

study of the impact of neural network parameterizations on performance and data

generation. Specifically scientists who have done work in this space have focused on

profiling communication but have not considered input/output. Hines et al. look at

how interprocessor spike communication affected total simulation time [56]. They fo-

cus on the spike exchange methods used such as MPI All Gather, and several methods

for non-blocking Mult-Send. Shehzad et al. addressed inter-processor spike communi-

cation. They improve MPI All Gather to remote memory access for NEURON. Our

work analyzes the impact of high-performance computing resources on compute perfor-

mance, data generation, and science delivered by the General Neural Simulation System

(GENESIS) for increasingly complex models of a regions of the brain’s neocortex.
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2.3 Traditional Analysis Approach

2.3.1 State of Practice

The onset of extreme-scale computing brings with it the promise of allowing

neuroscientists to examine the brain in silico at unprecedented fidelity and resolutions

not possible using traditional methods such as the electroencephalogram. The large

amount of data produced by high fidelity simulations is becoming increasingly difficult

to save and transform into scientific insights for runtime simulations. The ability to

process, analyze, and make substantive inferences on the simulation output is growing

in difficulty. Traditional workflows in high-performance computing involve the prepa-

ration of an application’s input, execution of the simulation, and concludes with the

analysis and visualization of the simulation’s results as a post-processing step, usu-

ally done in a sequential fashion. Growth in compute power, memory, and storage

in high-performance computing has enabled increasingly computationally demanding

and complex simulations. The input/output subsystems are struggling to meet the

application data management demands that are being exacerbated by the increasing

compute capability of current high-performance hardware. This trend is predicted to

continue into the foreseeable future.

The complexity of numerical codes and explosion of input parameters make find-

ing optimal configurations hard. Additionally, the data deluge brought forth by highly

anatomically detailed models are placing increased pressure on input/output subsys-

tems of current and next generation high-performance computing systems. Simulated

spike-coupled neuronal networks have been of high interest to the scientific community

for quite some time. Simulated neural networks produce massive amounts of data, have

a high degree of dimensionality, and are highly dynamic. Currently there are very few

simulation frameworks that allow for the analysis of simulation data in situ, with there

being none to our knowledge with the ability to be steered and directed interactively

at runtime.
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2.3.2 Limitations of Traditional Approach

Traditionally, analysis of simulated local field potentials are completed in a

centralized manner. This is performed once the simulation of the brain’s electrical

activity is completed (post-simulation analysis), where voltage potentials along with

spike data are moved to a centralized node where it is processed post-simulation. This

approach leads to three inherent drawbacks. First, analysis of data post-simulation

assumes that the chosen recurrence of data output is high enough to capture all relevant

model behavior. Second, knowledge is needed a priori regarding when desired electrical

activity occurs and the simulation can be terminated. Third, post-simulation analysis

eliminates the ability to use knowledge gleaned from data generated at runtime to

drive computational steering. To address these challenges, scientist are attempting to

bypass the I/O bottleneck through the use of in situ, where the analysis occurs at

the locale of data generation, thus eliminating the need to move raw simulation data

from persistent storage. The schematics of the two analysis workflows that we focus

on (i.e., the current post-simulation analysis and our new in situ analysis) are shown

in Figure 2.3.

2.4 Frameworks and Methods for In situ analysis

A solution to the above limitations is to modify the data analysis workflow

from one that is accomplished post-simulation to one that is completed in situ at the

cost of confining the analysis to the level of local data rather than a single global

view. The missing global view of data has the potential to introduce inaccuracies in

analysis results. Due to its local nature both spatially and locationally. In situ analysis

results are not necessarily identical to results obtained post-simulation. Successful in

situ analysis must identify a suitable window of data that is large enough to assure

the analysis scientific meaningfulness and, at the same time, small enough to fit in

memory, eliminating the need to swap data to storage. In situ analysis needs to meet

the following requirements: execute relatively fast, avoid moving simulation output,
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(a) Post-simulation Analysis (b) In-situ Analysis

Figure 2.3: Schematics of analysis workflows, post-simulation and in situ analysis.
In post-simulation analysis, output is stored on persistent storage (e.g., parallel file
system) then moved to a centralized node for post-processing. With an in situ ap-
proach analysis and simulation occur simultaneously on the same primary resources,
eliminating the need for data movement.

limit memory usage, and be accurate within some tolerance to results obtained from a

full global view of the data.

2.4.1 State of Practice

Increases in compute capability have far out-paced I/O bandwidth capacity [57].

Over the last decade, the compute performance of leadership class machines have in-

creased over several folds from teraflops to petaflops. Leadership class machines’ I/O

subsystems have failed to keep up with the increases in compute. This inequality

combined with the high level of data being generated by high fidelity simulations has

lead to a major bottleneck in the performance of leadership-class systems. There have

been efforts in addressing this imbalance. One of the primary solutions has been to

increase I/O performance by adding faster disk such as solid state disk drives set up as
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burst buffers [58]. However, adding faster disks will inevitably fail to keep up with the

increases in compute capability due to the associated cost. In addition to the cost, the

I/O challenge is worsened by the fact that large-scale applications fail to attain a sig-

nificant fraction of the peak input/output performance of high-performance computing

systems [59].

The necessity for novel in situ analysis techniques at the current and next-

generation systems has been documented in a number of workshop reports from orga-

nizations such as the Department of Energy as well as the National Science Founda-

tion [14, 20]. The obstacle this poses to traditional data-parallel post-simulation anal-

ysis such as visualization and analysis workflows have been widely examined [60, 61].

This call to action has prompted a surge in the developments of in situ and co-analysis

data processing approaches [62]. A major need in the analysis of the large amounts

of data produced by scientific applications is that it can be indexed, organized, and

annotated [63].

The use of data-staging, in which dedicated nodes are used as a buffer where

data is moved from compute to closely connected staging nodes before migration to

persistent storage, has been shown to assuage the I/O challenges of high-performance

machines. Data-staging nodes allow advantages over the traditional dedicated I/O

nodes of large-scale systems. Staging nodes allows the development of user-defined data

processing scripts to leverage their compute power. Projects such as DataStager [64],

and AcitiveSpaces [65], have studied the benefits of using data-staging to add value

to the traditional I/O pipeline from compute to storage. In each work, they demon-

strate how data-staging can be used with large-scale production level codes and their

associated tradeoffs. The drawback of data-staging is that it only supports limited

operations on the staged data such as transformations, curations, and pre-processing.

This leads to an underutilization of the dedicated staging nodes.

Many recent efforts have looked at using staging nodes to facilitate in situ anal-

ysis [66, 67]. Work in [62] explores integrating a combination of in situ and co-analysis

of S3D a massively parallel turbulent combustion code. They show how three common
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analysis algorithms can be transformed into massively parallel in situ and in-transit

workflows on high-performance computing. This work has shown how data staging and

in situ is successful at enabling analysis at execution time for a specific set of scientific

analyses; it does not include a comparison of post-simulation versus in situ results.

2.5 Computational Steering and Scientific Workflows

2.5.1 State of Practice

Computational steering has been identified as an important challenge since the

late 1990’s. A report published by the United States National Science foundation on

scientific visualization, determined in 1987 that computational steering will be an im-

portant tool for scientific discovery [68]. This early work targeted efforts in developing

computational visualization techniques that have the potential to increase scientific

productivity. Brooks argued in [69] that there is a “need to design generalized inter-

faces for visualizing, exploring, and steering scientific computations”. Brooks’ work

was some of the first in asking whether computer graphic technologies could be lever-

aged for scientific discovery. Additionally, early distinctions were made between the

interactive visualization stage of post-simulation analysis, it was argued by [70, 71] that

computational steering allows for both users of the application and the analysis algo-

rithms themselves to be “in the loop” of the actions that are taken by the application

in response to state changes.

More relatively recent work in [72] supported computational steering of large-

scale computational fluid dynamics (CFD) codes on large-scale clusters. In this work,

they focused on MPI-based CFD codes, optimizing them to be used with a computa-

tional steering environment. Ruess et al. in [73] described a computational steering

environment that enabled a “Human-in-the-loop” dynamic that allowed for a user’s

intuition and interpretation to be part of the analysis pipeline. Their work focused on

finite element models (FEM). There are a number of computational steering environ-

ments available. The Visualization and Applications Steering Environment (VASE) [74]
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is one of the earliest developed by the University of Illinois. VASE is designed for opti-

mizing algorithms and model exploration, VASE allows for users to perform parameter

explorations easily in addition to enabling portions of the application’s code to be

swapped out or replaced. SCIRun [75] developed in C++ out of the University of

Utah, provides algorithm and parameter exploration. SCIRun does not provide sup-

port for multiple users to steer the application. SCIRun’s intended purpose is to act as

a workbench for users to be able to debug and synchronously or asynchronously steer

large-scale applications.

The Program and Resource Steering System (Progress) [76] and its successor

Magellan [77] are developed out of Georgia Institute of Technology. Like most compu-

tational steering environments listed above Progress and Magellan specialize in behav-

ioral optimization and model exploration. Legacy applications can have interactivity

added with a simple annotation of their source code. This annotation can be very

focused, only revealing the most important steering parameters that affect model be-

havior. Lastly, CUMULVS [78] developed out of Oak Ridge National Laboratory is

broken up into two parts one for the application itself and the other for the visualiza-

tion and user-facing steering front end. CUMULVS allows for the dynamic coupling

of multiple independent visualization and steering front ends to be attached to an ap-

plication as it is running. The work in this thesis differentiates itself from the above

mentioned computational steering platforms in two ways. First, simulation data that

is used to make interpretations of the simulation’s behavior resides solely in memory.

By operating on data solely in memory, users can perform fast analysis on simulation

output. Second, it enables users to leverage powerful Python packages such has SciPy

and Numpy, in addition to popular R packages.

2.5.2 Scientific Workflows

Simulation through the use of large-scale computing systems is becoming a

larger and larger part of how today’s scientific advances are being achieved in both

neuroscience and the greater physical science community. These scientific advances are

20



made possible by complex computations on data that consist of several steps, including

the use of coupling different models, data sources, that can span across a distributed

computing resources [79]. An example of such a scientific workflow is a user retrieving

data from a distributed data source or model simulation, reformatting and transform-

ing the data, indexing and labeling the data, and then running several analyses on

the data. Each workflow is highly dependent on the application and the desired out-

put from the analysis. Workflow automation has been shown to increase productivity

when performing simulation-based experiment across many scientific disciplines [80].

This automation frees a user from being required to manage the analysis pipeline from

data generation to scientific dissemination. Additionally, this automation allows for the

workflow to be adaptable to the changing requirements of a simulation’s resource needs

(e.g., compute, memory) [81]. There is little activity in the computational neuroscience

community for automated scientific workflows, as increasingly realistic simulations re-

source requirements grow the case for new analysis workflows becomes stronger.

2.5.3 Interactive Data Visualization

Today, the majority of large-scale applications are executed in a batch processing

mode. Batch processing is when a group of tasks are organized together in a collection

called a job and several jobs are executed without any kind of manual intervention

from the user. The user controls the execution of the job through the use of submission

scripts where the user defines the required resources for the application as well as how

the output data should be managed once the simulation has been terminated (e.g.,

synching the data to archival resources for long-term storage). Since there is not a

method for interacting with the simulation while it is running the user must wait for

the simulation to terminate before being able to observe whether the simulation was

fruitful by analyzing it’s post-simulation output.

Traditionally, analysis of simulation output has been performed through the uti-

lization of interactive data visualization. Interactive data visualization is the interactive

navigation and visualization of large amounts of data produced by high-performance
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computing applications. Interactive data visualization is the task that everyone en-

visions when one thinks about the traditionally scientific analysis workflow. In this

workflow a simulation is first configured with any input data and is configured us-

ing input scripts which determine the size of the simulation, the size of the problem

domain, and the amount of time that the simulation runs. Once the simulation has

been executed to termination, the raw output data is moved to dedicated visualization

resource. Here, static datasets produced by the simulation are visualized in an way

in which the user has full control over what data is presented at the time of analysis.

The user is able to navigate freely through the data, transforming it ways that are

needed for the type of analysis that needs to be performed. Most large interactive data

visualization methods use offline post-processing steps to reduce data size.

2.5.4 Computational Steering

Figure 2.4: Schematics of computational steering workflow, the simulation is interac-
tively controlled by the user. Inferences from analysis and visualization are directed
back into the simulation enabling “what-if” scenarios.
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Computational steering is the on-line monitoring of intermediate simulation re-

sults and interactive modification of model parameters of long-running high-performance

computing jobs for model exploration or performance improvement. Computational

steering has many applications. First, it makes possible the adjustment of algorithm

parameters for which performance randomly varies, is highly dependent on input data,

or for which the behavior at execution time is not well understood. Another application

is in modeling and simulation codes having the ability to monitor and modify model

parameters at runtime enabling scientists to terminate low-yielding or unproductive

simulations pre-maturely and to perform efficient parameter sweeps across parameter

configurations.

One of the primary uses of computational steering is the interactive visualization

of simulation data. However, this can be confused with interactive data visualization in

which the user manipulates and produces visualizations of data post-simulation. The

primary distinguishing feature of computational steering and interactive data visualiza-

tion is that the former allows the user to make inferences and knowledge gained from

the data to drive the simulation’s behavior towards more desirable problem spaces.

Figure 2.5 depicts how information is used to steer an application (i.e., GENESIS) on

large-scale clusters. Note that data is not written to persistent storage but is instead

contained only in memory. The user can interact with the memory-resident data and

use knowledge gained at simulation time to steer GENESIS.

Figure 2.5 shows the two points in the parameter space (P1, P2) and (P ′1, P ′2)

and their solutions and corresponding visualizations respectively. If time is one of the

parameters in the parameter space then changes to one of the parameter will affect the

direction that the simulation will take. Steering the application through time facilitates

hypothesis-driven experimentation through “what if” interactions and fast debugging.

This means that the user does not have to go back to the start of the simulation to

make changes to input parameters, enabling the user to decide at runtime to modify a

parameter at a particular moment to study tangential behavior.
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Figure 2.5: Parameter space resulting from two steering variables, with two of the
solutions corresponding from two points in the parameter space with their visual rep-
resentations.

2.5.5 Steering Challenges

There are several challenges when integrating a computational steering environ-

ment for numerical simulations such as the simulated neuronal network which is the

focus of this thesis. One major challenge in the implementation of a steering envi-

ronment is providing a way for steering actions to be distributed to the simulations

that are being monitored. A computational steering environment must address this

challenge by making an effort to maintain the integrity of the computations of a sim-

ulation. Safeguarding integrity is done through a devoted effort to ensure minimal

latency and computational perturbation and consistency [82]. We define latency as

the difference in time between the event taking place and when the event is observed

or acted upon by the user. Understanding the degree of latency in our CSE will pro-

vide a quantifiable measure of our CSE’s ability to keep pace with model events and

provide a method for users to conduct science in an intuitive and familiar to which is

traditionally accomplished in a wet lab.

Monitoring an application is essential in the study of dynamic models that are
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distributed across diverse resources. Domain scientists who leverage numerical models

of physical processes rely on simulation monitoring to perform behavior optimization

on the model. In addition to enabling the study of application behavior, monitoring

is also used for performance optimization. Understanding how different algorithms

and data structures perform under different conditions is a very common scenario

for performance optimization. However, to monitor an application, the application

must be instrumented with additional source code. Injecting additional source code

into an application can have unforeseen consequences on simulation performance. We

label this negative effect on simulation performance, instrumentation overhead. We

define instrumentation overhead as the increase in execution time of an application

due to instrumentation. Simulation perturbation can be defined the degree to which

a numerical computation is slowed or negatively affected (i.e., overhead) due to the

presence of steering instrumentation.

Finally, consistency presents a major challenge in the implementation of a com-

putational steering environment. When presenting information to the user its of the

utmost importance to present the user with up-to-date information. In a distributed

setting, collecting data from multiple sources might result in inconsistent views that

give an erroneous picture of the model’s behavior [83]. These inconsistencies are a

consequence of receiving data from multiple sources and integrating these data sources

into a cohesive data stream to the user. Due to the distributed nature of HPC applica-

tions, data might come in at different times resulting in a stream of events that are not

representative of the true model behavior. This stream, when presented to the user

could possibly be misleading and result in incorrect interpretations of model behavior.

2.6 Discussion

To investigate the origin and functional role of the brains electrical activity in

specific frequency ranges, neuroscientists are leveraging biologically accurate simulated

models of the brain. Models of neuronal networks allow scientists to explore the im-

pact of differential neuronal connectivity using analysis techniques and information
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not available experimentally. These models are inherently computationally intensive

requiring more resources from both memory and I/O subsystems than what is currently

available to most small research teams. Recently research in the simulation of neuronal

network models has undergone a multitude of advances. Computational neuronal net-

work models of are approaching sizes on the order of 105 neurons and 109 synaptic

connections. However, this size is nowhere near what is needed to fully simulate the

human brain which is theorized to be comprised of 1010 neurons and 1012 synaptic

connections which are 1,000 times more than the number of stars in the Milky Way

galaxy.

Traditional approaches for analysis of data-intensive applications are reaching

their limit in providing practical methods for scientific discovery. It’s no longer effective

to rely on I/O subsystem to provide suitable bandwidth for off-site data analysis of

simulation output. We have to move away from approaches that require the data to

be moved to the analysis, but leverage approaches that allow for the analysis at the

site of the data. To meet the demands of these data-intensive simulations, we need to

design, implement, and utilize novel scientific analysis workflows that utilize modern

analysis techniques such as in situ, in transit, and computational steering.

The rise in the complexity of simulated models have increased the need for anal-

ysis tools that offer a higher level of interactivity. Computational steering has been

an active research area since the early 1980’s. One of the earliest applications was

to computational fluid dynamic codes simulated on high-performance computing re-

sources. However, computational steering has yet to be integrated in the computational

neuronscience scientific workflow. The computational neuroscience community is still

relegated to traditional analysis approaches that fail to scale to meet the demands of

increasingly realistic brain models. By transitioning to richer interactive data anal-

ysis pipelines via computational steering, neuroscientist will be able to go from one

experiment per execution of a simulated model to multiple experiments per execu-

tion. Increasing analysis throughput and reducing the end-to-end scientific discovery

pipeline.
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Chapter 3

NEURONAL NETWORK MODELS ON HPC RESOURCES

In this chapter, we study the performance of neocortex simulations using GENE-

SIS. Specifically, we study the impact of platforms (i.e., single fat nodes versus high-end

clusters) and their features on the performance and data generation for a small scale

model of neocortex. We assess the impact of the neocortex model’s complexity (i.e.,

number of neurons and neuronal connectivity) on the performance and data generation

for increasingly large versions of a simulated neocortex model on high-end clusters. Ad-

ditionally, we use this chapter to highlight the relationship between initialization cost

of simulating our neuronal networks and model complexity.

The rest of this chapter is organized as follows. Section 3.1 we describe the

neocortex model and associated output files used in this thesis. Section 3.2 presents

tests we use to evaluate the impact of simulation platform and their features along

with model complexity on performance and data generation. Section 3.3 presents the

results of our tests that show that realistic modeling of neocortex functions are feasible

but requires high-performance computing to mitigate the growing computing and data

demands of the associated simulations. Section 3.4 we conclude and with a discussion

of lessons learned and a description of future work.

3.1 Neocortex Model and Associated Output Files

The brain model we target in this thesis simulates the neocortex which comprises

the outer gray matter of the brain [84]. The neocortex is organized into six layers and

is home to roughly 14 - 20 billion neurons. In mammals the neocortex underlies close to

all sensory and cognitive processing [84]. The model consists of 23 different neuronal

cell types, each with its own set of parameters and dynamics. Our baseline model
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represents a 150 x 150 x 2871 µm patch of cortex. The simulated cortical patch is

broken into multiple regions. Each region contains a N by N matrix of micro-columns.

Micro-columns are vertical columns which extend through the six layers of the brain

and are believed to be the smallest functional unit of the neocortex. Each micro-

column contains an identical set of neurons. Micro-columns are typically arranged in a

square and separated by 25e−5 µm along either the x or y axes. There are two kinds of

connections made between neurons within the model, short and long range connections.

Short-range connections are intra-regional connections. Long range connections are

connections made across regions to other neurons in neighboring regions. Memory

consumption in our neuronal network model are dependent on two aspects: the first

being the size of the brain model (e.g., the size of the simulated patch in terms of

neurons) and the second being the number of processes used for the simulation.

Figure 3.1 shows the typical workflow of an execution of the model which is done

in a sequential fashion. The user starts by initializing the model. Examples of model

initialization is setting the total amount of biological time and number of neurons to

be simulated. After the model is fully configured the user then starts the simulation

in batch-processing mode. During this time the user has zero ability to interact with

the model, waiting until the model has reach the pre-defined biological time. Upon the

completion of the simulation the user transports all raw simulation output from a large

parallel file system (PFS) to a smaller cluster with access to its local storage. This

can be costly due to the fact that the local storage does not have the capabilities of

a PFS. After all the raw simulation data has been moved, the user performs post-hoc

analysis on the output gaining insights into model behavior that occurred during the

simulation. Lastly, after the analysis is complete the user takes insights gained during

the analysis phase and moves that knowledge back into the next parameterization and

execution of the model. The user can now a priori to execution, determine where he

would like the simulation to go. To perform I/O, the model relies on the Portable

Operating System Interface for Unix (POSIX) calls (e.g., fwrite) to create, read from,
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(a) Initiate and start simulation (b) Move data to local storage

(c) Perform analysis on local storage (d) Apply knowledge back into simulation

Figure 3.1: Sequential workflow for a single execution of GENESIS. (a) The user
parameterizes the model and starts execution in non-interactive match mode (b) After
simulation is complete the user moves all raw simulation from a PFS to dedicated local
storage, (c) user performs analysis on model, (d) user takes lessons learned and apply
back to model.
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and write files to disk. POSIX provides an application programming interface stan-

dard in addition to some interfaces to shells and utilities. If the I/O is turned on, a

simulation of the neocortex subsystem creates seven main file types. During the initial-

ization, GENESIS writes a set of files which contain biologically relevant information

useful to interpret model results. These files are: a list of neurons and times receiving

Poisson distributed input spikes (randomspikehist files), a file describing the connec-

tivity (randomspike connections), and a file describing the long-range connections, and

short-range connections. At the end of each iterative step, GENESIS writes spikehist

files, local field potential (LFP) files, and membrane files. Spikehist files contain all

the normal spikes fired by neurons within a column. Each line describes the spiking

cell and the time of the spike. This file records an important aspect of information

transmission in the model – a line in the file means that MPI messages were sent from

the cell to its connected children at the stated time. Randomspikehist files are similar

to spikehist, however the difference is that this file records spikes not from normal neu-

rons but from Poisson processes (with a mean fire rate). These represent input to the

model from background activity in other non-modeled parts of the brain. Short-range

and long-range connection files record incoming and outgoing messages from the cell.

Randomspike connections record messages from Poisson processes. LFP files are the

summed extracellular electrical activity of neurons recored at fixed electrode positions.

Membrane files record the membrane potential (voltage) for all neurons of a given type

in the column.

3.2 Evaluation Methodology

3.2.1 Hardware Platform Impact on Model Performance

To understand the impact of platform selection on performance and data gen-

eration, we use a simple model of the neocortex as our baseline model and we call it

M(1, 2x2). The model consists of 16 GENESIS processes (nodes) as shown in Fig-

ure 3.2a. The 16 processes are partitioned into four regions of the model as shown in

Figure 3.2b. Each process simulates 2 by 2 micro-columns, separated by 25e − 6 on
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both the x and y axis as shown in Figure 3.2c. A unit of time within the simulation

is 50 µs in length. In our model each micro-column holds roughly 23 neurons. Thus

each GENESIS process in the baseline model is simulating approximately 92 neurons.

Each cell has a probability of establishing a long-range and short-range connection

with another cell as shown in Figure 3.2d. Short-range connections consists of those

connections that can occur within a node or within a region. Long-range connections

are those connections that occur inter regionally.

(a) 16 processes simulating 23 neurons (b) Processes broken into four regions

(c) Each process simulates four micro-
columns

(d) Inter-region long range and intra-region
short range connections

Figure 3.2: Baseline model simulated among 16 GENESIS processes (a) with its 16
processes partitioned into four regions of the model (b), each process dealing with 2 x
2 micro columns (c) and with a connectivity level to control the amount of short-range
and long-range connections (d).

We focus our study on three platforms which exemplify the landscape of high

performance hardware available: Unitank, Spirit, and Excalibur. Our first machine,

Unitank, is a single fat node, consisting of a large amount of cores, disk, and memory
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in a single machine. Fat nodes such as Unitank, represent commodity Linux machines

that are available to single researchers. It is a two-socket Dell R710, with Intel(R)

Xeon(R) CPU E7-8837 processors clocked at 2.67 GHz. Each socket has a 16-core pro-

cessor. In total there is 512 GB of memory. Our second machine is Spirit, representing

a traditional high-end commodity cluster available to research groups at most universi-

ties. Spirit is a small scale SGI ICE X cluster of 54, 368 cores with a peak performance

of 1.5 PFLOPS, and 3,398 compute nodes with 16 cores per node. Each core is an Intel

Xeon E5-2699v3 clocked at 2.3 GHz with 32 GB of memory per node. Spirit runs Suse

Linux, has a FDR 14x InfiniBand, and supports Enhanced LX Hypercube for each in-

terconnect. The third machine, Excalibur, represents a high-end cluster commissioned

by an organization such as the Department of Defense or Department of Energy. It is

a Cray XC40 supercomputer with a peak performance of 3.7 PFLOPS. Excalibur has

100, 160 cores and 3, 130 nodes. Each node has a total of 32 Intel Xeon E5-2698 cores

clocked at 2.3 GHz; each core has 128 GB of memory.

We measure execution time to initialize the model and time spent in computa-

tion performing iterative solver steps. We consider two types of I/O settings: with I/O

when GENESIS writes to disk verbosely at the end of the initialization and at each

iteration step, and without I/O when GENESIS writes no data to disk for the entire

simulation. With I/O, for each type of files generated, we measure the number of files,

the total size of files, the files’ mean size, standard deviation, and number of lines.

For the version of GENESIS used in our work, each write operation generates a new

line in the output files and thus the number of lines is synonymous with the number

of writes. We consider two types of simulations: time-bounded simulations where we

set a fix amount of total execution time for GENESIS (i.e., 1 hour or 2 hours), and

iteration-bounded simulations where we set GENESIS to run for a fix number of iter-

ative steps (i.e., 500 steps or 0.025 seconds of neocortex simulated time). We run both

types of simulations with and without I/O. Each test is repeated 10 times on each one

of the three platforms. On Unitank, the processes share the platform share memory.

On Spirit and Excalibur, each GENESIS process runs on its own compute node and
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has full access to the node’s resources.

3.2.2 Neuronal Network Model Impact on Performance and I/O

The base model M(1, 2x2) is simple and thus, it provides limited insights in the

neocortex activities. The model’s I/O is modest and thus, it does not substantially

impact performance. These conclusions are not true for a model whose complexity has

been increased (i.e., with a larger number of neurons and cell connectivity). An increase

in model complexity is synonymous with an incrementally detailed representation of

neocortex activities and consequently, a decrease in performance along with an increase

data generation (or I/O). The level of details in the model and its required computing

resources (e.g., memory) restricts our work to the high-end cluster Excalibur.

Figure 3.3: First model extension: Increasing the number of neurons

Figure 3.3 shows our first model extension. We first increase the number of

neurons that are simulated within the model and measure performance. In our first set

of tests, we configure the model to simulate 4, 16, and 64 micro-columns per process.

The configurations are called M(1, 2x2), M(1, 4x4), and M(1, 8x8) respectively. Note

that M(1, 2x2) is our baseline model. Each micro-column holds 23 simulated neurons;

therefore our three models simulate 1, 472, 5, 888, and 23, 552 neurons respectively. We
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configure the tests to run in a time-bound setting and in a step-bound setting. As in

Section 3.3.1, for our time-bound tests we examine how the increase of neurons impact

initialization time. For step-bound tests, we measure how computation times change,

as we increase the number of neurons in the model. We measure the impact of I/O on

each of these configurations by simulating the model with and without I/O.

Figure 3.4: Second model extension: Increasing the number of connections

Figure 3.4 shows our first model extension. In a second set of tests, we keep the

number of micro-columns and number of neurons constant (i.e., 64 micro-columns and

the 23,552 neurons respectively) but increase the level of connectivity between neurons

from the connectivity factor equal to 1 in M(1, 8x8), to 1.5 in M(1.5, 8x8), and to 2 in

M(2, 8x8), respectively. In terms of synaptic connections, the models consist of 2,000,

3,000, and 4,000 synaptic connections correspondingly. By increasing the connectivity

factor to 1.5 in M(1.5, 8x8), the number of connections increases by 50%, compared

to M(1, 8x8), whereas M(2, 8x8) increases its connections between neurons by 100%.

Additionally, we increase the total time GENESIS runs from our original time limit

of 1 hour to 2 hours because for such a complex model, the initialization time for this

model can approach and exceed 1 hour. Each micro-column is composed of roughly 23
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neurons and the number of neurons is held constant across the three models but their

degree of connectivity increases.

3.3 Results

3.3.1 Platform Impact on Performance and I/O Results

We run simulations of the baseline model M(1, 2x2) in parallel by using 16

processes. On Unitank, the 16 processes are hosted on the single server and share the

same shared memory. On Excalibur and Spirit, each process is hosted on a node.
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Figure 3.5: Time-bounded execution times and neocortex simulated times of the M(1,
2x2) model on Unitank, Spirit, and Excalibur, without I/O (WO) and with I/O (W).

Figures 3.5 shows the performance of the baseline model M(1, 2x2) on Unitank,

Spirit, and Excalibur as bar charts for time-bounded simulations of 1 hour, while I/O

is turned off and on. The blue bars represent the amount of time spent in initialization.

The one-time step consists of reading the model scripts, parameterization of the model

based on the values outlined in the script, establishing the neural network, and writing
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the network out to disk, if the I/O is on. The brown bars represent the time to perform

the iterative solver steps (i.e., simulating the neocortex functions). Without I/O, the

simulation does not write any scientific and statistical information to disk. With I/O,

after each compute step, descriptive behavioral statistics are written out to disk (e.g.,

number of spikes in a micro-column). The number above each bar is the total amount

of simulated time of neuronal network activity that the model achieves in 1 hour of

simulation time. This value can be considered a measurement of the amount of science

performed by the model.

In Figure 3.5, we see that Spirit and Excalibur have small initialization times

and deliver over 1 second of simulated brain activity. Excalibur simulates in average

1.25 seconds without I/O and 1.21 with I/O, whereas Spirit simulates in average 1.32

seconds without I/O and 1.25 with I/O. Spirit narrowly outperforms Excalibur in the

amount of science delivered because of its faster processor with a larger L3 cache. On

the other hand, Unitank takes a significantly large amount of time to initialize the

model, and thus it only simulates close to 0.85 seconds and 0.80 seconds without and

with I/O respectively. The higher cost in initialization for Unitank is due to contention

of the 16 processes to access the shared memory; the contention results in a larger

initialization time and less time for the iterative steps and thus less science delivered

to the scientists. The time to initialize the model is a function of the amount and

type of resources available for the simulations. The comparison of overall performance

without and with I/O outlines how the baseline model M(1, 2x2) is not substantially

impacted by the write operations. With I/O, Excalibur science delivered decreases of

3.5%, whereas Spirit and Unitank show a decrease in delivered science of 5.1% and

5.7% respectively.

The simulations in Figure 3.5 reaches different simulated time (amount of it-

erative steps performed) but all simulations perform the same initialization and write

to disk the same amount of data, if I/O is on. Therefore, a comparison of the perfor-

mance for the initialization times can provide us with valuable insights on the impact
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of I/O on initialization across the three platforms. Data written during the initializa-

tion are stored in files of three types (i.e., randomspike, long-range, and short-range).

Table 3.1 describes the average sizes of these files (in Byte), number of writes per files,

and number of files performed during the initialization of the time-bound simulation

of M(1, 2x2). The small amount of writing is consistent with the small impact of I/O

on initialization performance in Figure 3.5.

File size (Bytes) Number of Writes
File Type µ σ µ σ

Quantity

Randomspike 253 7 8 0 1,040
Long-range 4,028 50 51 51 592
Short-range 73,066 71,172 50 51 1,041

Table 3.1: Amount and type of writing performed by a time-bound simulation of
the baseline model M(1, 2x2) during the initialization phase (i.e., mean values µ and
standard deviation σ).
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Figure 3.6: Step-bounded execution times for 500 steps (0.25 seconds of neocortex
simulated time) of the M(1, 2x2) model on Unitank, Spirit, and Excalibur, without
I/O (W) and with I/O (W).
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Figure 3.6 shows the performance on each platform without and with I/O for

iteration-bound simulations (i.e., when a fix number of 500 iterative steps is executed).

When comparing the wall-clock time of 500 iteration steps, we see how Excalibur offers

the best performance. Excalibur is able to simulate 500 steps in roughly 110 seconds

without I/O and 127 seconds with I/O. Spirit is able to simulate 500 steps in roughly

167 seconds without I/O and 221 seconds with I/O. Excalibur outperforms Spirit be-

cause of its faster interconnect which allows the supercomputer to establish connections

between neurons quicker, and to begin computation earlier. Finally, Unitank is able to

simulate 500 steps in roughly 1,348 seconds without I/O and 1,474 seconds with I/O.

The comparison of the times for the iterative steps outline how for a small model such

as M(1, 2x2) the simulation time is very similar across platforms and the performance

gains is mainly related to the cost of the initialization.

Table 3.2 shows the amount and type of writing performed by the step-bound

simulations of the baseline model M(1, 2x2) during the fix number of iteration steps

(i.e., 500). Data written during the iterative steps are stored in four types of files (i.e.,

spikehist, randomspikehist, LFP, and membrane). The amount of data written over the

500 steps of the step-bound simulations of model M(1, 2x2) and the associated writing

frequencies are quite modest for a large-scale scientific simulation. The comparisons of

simulation times without and with I/O outline a slight increase of time associated to

the I/O operations; the increase is modest as the amount of data written to disk is.

File size (Bytes) Number of Writes
File Type µ σ µ σ

Quantity

Spikehist 1,091 21 26 0.5 16
Randomspikehist 262 88 8 3 16
LFP 11,836 523 500 0 80
Membrane 25,714 7,391 500 0 336

Table 3.2: Amount and type of writing performed by a 500 step-bound simulation of
the baseline model M(1, 2x2) during the computation phase (i.e., mean values µ and
standard deviation σ).
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3.3.2 Model Impact on Performance and I/O Results

Figure 3.7 presents the results of time-bound simulations of the three models

(i.e., M(1, 2x2) M(1, 4x4), and M(1, 8x8)) on Excalibur. The number of compute nodes

does not change for the three models and in each test, we run one GENESIS process

per compute node. GENESIS is configured to run for 1 hour of wall-clock time. We

measure the total simulated time of the neocortex functions achieved, the time spent

during the model initialization, and the iterative computations or steps. Simulated

time achieved within the hour is shown above each of the respective bars. Figure 3.7

shows each of the model’s performance without I/O and with I/O is on.
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Figure 3.7: Impact of increasing the number of neurons on performance and neocortex
simulated times for Excalibur’s time-bound simulations without and with I/O.

When comparing the simulated time of the neocortex functions without I/O

across the three models, we observe that the simulated time decreases by ≈ 2/3 when

moving from 4 to 8 micro-columns per node (i.e., from 1.25 seconds to 0.45 seconds)

and becomes ≈ 1/15 when moving from 4 to 64 micro-columns per node (i.e., from 1.25

39



seconds to 0.03 seconds). Simulations of M(1, 2x2) with I/O exhibit a slight decrease

in simulated time of 3.3% compared to the same simulations with I/O; simulations

of M(1, 4x4) with I/O exhibit a decrease in simulated time of 4.6%. However, when

increasing the amount of micro-columns to 64 as it is in M(1, 8x8) the simulated

time substantially decreases by ≈ 60% compared to the simulations with I/O. In the

neocortex models considered in our work, connections among neurons are established

through the passing of synchronous buffered MPI messages in the initialization phase,

prior to the computation. At the end of the initialization phase, the entire network

of interconnected neurons is written to disk. As the number of neurons increase, the

number of connecting neurons and the associated MPI-based communications increase;

at the same time, the number of networks of interconnected neurons written to disk

increases.

Figure 3.7 outlines how the increasing number of connecting neurons and net-

works of interconnected neurons can cause an increase in initialization times, and ul-

timately, a decrease in science delivered when the amount of neurons is very large.

When the models are small in number of connecting neurons, such as for M(1, 2x2)

and M(1,4x4), the number of connecting neurons is still modest. Hence, without I/O,

M(1, 2x2) simulations spend an average of 40 seconds in the initialization phase; and

M(1, 4x4) simulations spend an average of 102 seconds in the same initialization phase.

With I/O, the initialization times only slightly increase. For M(1, 2x2) simulations and

M(1, 4x4) simulations both experience a slight increase in initialization time (i.e., M(1,

2x2) spends an average of 51 seconds in the same initialization phase and M(1, 4x4)

spends an average of 192 seconds).

On the other hand, when the models have a larger number of connecting neurons,

for example with 64 micro-columns in M(1, 8x8), we observe that the initialization time

increases substantially even without I/O. Without I/O the increase in initialization

time is mainly due to the increase in connections among the 23,552 neurons. With

I/O, the further increase of 100% compared with the same initialization without I/O

from 985 seconds to 1,922 seconds can be explained by measuring the volume of files
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produced during the initialization as the number of cell increases. Table 3.3 shows

the amount of writing for the files randomspike, long-range, and short-range when

the number of neurons increases. As we increase the number of neurons, the files

that are written to disk during the initialization phase of the simulation grow in size.

While models M(1, 2x2) and M(1, 4x4) generate limited amount of data that explains

the slight increase of initialization time and decrease in simulated time when I/O is

on, M(1, 8x8) with its 64 micro-columns data generates gigabytes of data during the

initialization alone, causing the further increase in initialization time and decrease of

simulated time observed in Figure 3.7.

File size (Bytes) Number of Writes
File Type µ σ µ σ

Quantity

M(1, 2x2)
Randomspike 253 7 8 0 1,040
Long-range 4,028 50 51 51 592
Short-range 73,066 71,172 50 51 1,040

M(1, 4x4)
Randomspike 257 6 8 0 4,160
Long-range 16,298 16,298 177 202 2,368
Short-range 294,830 287,697 177 202 4,160

M(1, 8x8)
Randomspike 259 6 8 0 16,640
Long-range 55,134 65,681 684 809 9,472
Short-range 1.19e+03 1.16e+03 684 809 16,640

Table 3.3: Amount and type of writing performed by a time-bound simulation of models
M(1, 2x2), M(1, 4x4), and M(1, 8x8) during the initialization phase (i.e., mean values
µ and standard deviation σ).

Figure 3.8 presents the results of step-bound simulations of the three models

M(1, 2x2), M(1, 4x4), and M(1, 8x8) on Excalibur. Each model runs the same number

of iterative steps. Therefore, we focus on how time spent in computation is affected

by the number of neurons simulated. In Figure 3.8, we observe that by increasing the

number of neurons, the computation time increases. From M(1, 2x2) to M(1, 4x4),

the computation time increases of 75%; from M(1, 2x2) to M(1, 4x4), the computation

time is 10x larger. In the step-bound tests, we observe no major differences in time
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when I/O is on or off. Table 3.4 shows the size, quantity, and frequency of writes for
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Figure 3.8: Impact of increasing number of neurons on performance for Excalibur’s
step-bound simulations of 500 steps (0.25 seconds of neocortex simulated time) without
and with I/O.

the files that are written after each step of the computation phase. Although the size

of files produced at each step increases as we increase the number neurons, the volume

of these files are not large enough to affect performance in a significant way. We can

thus deduce that it is feasible continue to increase the amount of neurons within the

model without severely impacting the amount of time it takes to simulate the model

with I/O on.

In a second set of tests, we keep the number of micro-columns and number of

the neurons constant (i.e., 64 micro-columns and the 23,552 neurons respectively) but

increase the level of connectivity between neurons from the connectivity factor equal

to 1 in M(1, 8x8), to 1.5 in M(1.5, 8x8), and to 2 in M(2, 8x8), respectively. In terms

of synaptic connections, the models consist of 2000, 3000, and 4000 synaptic connec-

tions correspondingly. By increasing the connectivity factor to 1.5 in M(1.5, 8x8), the
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File size (Bytes) Number of Writes
File Type µ σ µ σ

Quantity

M(1, 2x2)
Spikehist 1091 21 8 0.5 16
Randomspikehist 262 88 8 3 16
LFP 11,836 523 500 0 80
Membrane 25,714 7,391 500 0 336

M(1, 4x4)
Spikehist 4,476 62 106 1 16
Randomspikehist 1,116 263 34 8 16
LFP 11,882 34 500 0 80
Membrane 90,200 29,560 500 0 336

M(1, 8x8)
Spikehist 26,016 6,163 594 132 16
Randomspikehist 4,648 575 141 17 16
LFP 11,841 47 500 0 80
Membrane 348,177 118,239 500 0 336

Table 3.4: Amount and type of writing performed by a step-bound simulation of models
M(1, 2x2), M(1, 4x4), and M(1, 8x8) during the computation phase (i.e., mean values
µ and standard deviation σ).

number of connections increases by 50%, compared to M(1, 8x8), whereas M(2, 8x8)

increases its connections between neurons by 100%. Additionally, we increase the total

time GENESIS runs to 2 hours because for such a complex model, the initialization

time for this model can approach and exceed 1 hour. Each micro-column is composed

of roughly 23 neurons and the number of neurons is held constant across the three

models but their degree of connectivity increases.

Figure 3.9 shows the time-bound simulations of the models. With I/O turned off,

the simulated time decreases by 50% and the initialization time increases by 50%, with

an increase of 50% in cell connections. The slowdown is associated to the increase in

connectivity that proportionally increases both the synchronous buffered MPI messages

exchanged in the initialization phase. With I/O tuned on, the simulated time further

decreases in average of roughly 21% and the initialization time increases in average

of 41%, as the number of synaptic connections written to disk increases. Table 3.5

motivates the performance lost in terms of amount and type of writing performed by

43



C=1.0
WO I/O

C=1.0
W I/O

C=1.5
WO I/O

C=1.5
W I/O

C=2.0
WO I/O

C=2.0
W I/O

0

2000

4000

6000

8000

10000

Ti
m

e 
(S

ec
on

ds
) .075 .064 .041 .032 .024 .017

Initialization Computation

Figure 3.9: Impact of increasing cellular connectivity on performance and neocortex
simulated times for Excalibur’s time-bound simulations without and with I/O.

the time-bound simulations with I/O. From the table we observe that as we increase

the amount of connectivity in the model the size of the files also increased. Moreover,

the amount of writes to the files associated with the initialization phase increases.

Figure 3.10 shows the step-bound simulations for the three models. As we

increase connectivity, computation time during the simulation stays relatively flat.

Moreover, increasing connectivity does not significantly increase the effect of I/O during

computation phase (i.e., within 1% with and without I/O). The impact of connectivity

on performance during the computation phase is not tangible due to the fact that

the files that are influenced by connectivity are written in the initialization phase.

Furthermore, we observe that by increasing the connectivity, no increase in the level

of spiking within the model is observed and the number of files associated with the

iterative step is too small to be a bottleneck to the simulation performance.
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File size (Bytes) Number of Writes
File Type µ σ µ σ

Quantity

M(1, 2x2)
Randomspike 259 6 8 0 4,160
Long-range 55,134 65,681 684 809 2,368
Short-range 1.2e+03 1.2e+06 684 809 4,160

M(1, 4x4)
Randomspike 259 6 8 0 16,640
Long-range 82,258 95,936 1,019 1,182 9,472
Short-range 1.7e+03 1.7e+03 1,019 1,182 16,640

M(1, 8x8)
Randomspike 259 6 8 0 16,640
Long-range 109,623 127,045 1,355 1,565 9,472
Short-range 2.3e+06 2.3e+06 1,355 1,565 16,640

Table 3.5: Amount and type of writing performed by a time-bound simulation of models
M(1, 2x2), M(1, 4x4), and M(1, 8x8) during the initialization phase (i.e., mean µ and
standard deviation σ).
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Figure 3.10: Impact of increasing cellular connectivity on performance for Excalibur’s
step-bound simulations of 500 steps (0.25 seconds of cortex simulated time) without
and with I/O.
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3.4 Discussion

Advances in hardware technology and simulation methods have enabled scientist

to analyze data and behavior that is not available in vitro or in vivo at unprecedented

scales. However, the resolution of data available via simulation is far from the resolution

and detail to that of real-life experimentation. At present, current HPC hardware fail to

meet the computational and data demands of higher fidelity models, forcing scientists

to use scaled-down models. To increase the quality of science achievable via simulation

more work is needed in researching new data structures and simulation technologies

which efficiently leverage present and next-generation HPC hardware. Investigating

the impact of model complexity on simulation performance is important if we are to

be able to accurately predict the needs of future increasingly complex models. Current

models are orders of magnitude less than what is needed to study brain-level behavior.

Being able to predict within ballpark range the computational needs of future models

will eliminate the possibility of under procurement of hardware.

In this chapter, we analyze the impact of HPC resources (i.e., single fat nodes

and high-end clusters) on performance, data generation, and science delivered by GEn-

eral NEural SImulation System (GENESIS) for increasingly complex models of the

brain’s neocortex. Subsection 3.3.1 showed that there is a discrepancy between the

diverse platforms used for neural network simulation. Initialization time we the main

factor for the loss in simulated biological time. We saw that by migrating the model to

HPC we were able to increase our scientific throughput by 57%. In subsection 3.3.2 we

explored the effects of model complexity on scientific throughput and data generation.

As we increased the complexity of the models we witnessed super linear growth in

initialization time. And, as a consequence of this, a loss in simulated biological time.

The cost of initializing the model is a challenge to larger simulations in the model, in

the following chapters we present our solutions for overcoming this obstacle.

At present, most domain scientists perform their simulation studies on simple

fat nodes such as the one used in this study. The principal reason for this is cost, larger

clusters are just not economically practical. By migrating the model from a single fast
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node to an HPC cluster we were able to increase the amount of parallel hardware at our

disposal and as a result were able to increase our scientific throughput. Additionally,

we are able to identify the propagation of events via the synaptic connections as the

primary culprit in why the execution time is increasing, and therefore more focus should

be placed on how to better accomplish this task in hardware.

Lastly, we list the limitations of this and directions for future work. In this, we

focused on the GENESIS simulation system and a single model of a neuronal patch.

Due to the narrow focus of this work, it is possible that our observations are not ones

that can be made in general for other neuronal networks. However, we are strongly con-

fident that our generalizations are applicable to most simulated spike-coupled neuronal

networks executed on HPC. In addition, this worked focused on observing the impact

of model complexity to overall execution time. Future work will consist of an analysis

of how model complexity impacts resource utilization (i.e., memory and CPU). Finally,

GENESIS is a CPU only code, understanding how accelerators can be leveraged for

the simulation of simulated neuronal networks is a direction of future work.
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Chapter 4

INTEGRATION OF IN SITU ANALYSIS & TRADEOFFS

In the previous chapter we studied the effects of model complexity on scientific

throughput. When increasing the complexity of the model we witnessed a large growth

in the amount of time spent in initialization the model. This presents a challenge to

larger more complex simulations. In this chapter, we look to address the above men-

tioned challenge, we explore the integration of in situ analysis. We evaluate the in situ

analysis using both statistical and empirical methods and present a study of the anal-

ysis’ resource consumption and scaling ability. We show how our in situ analysis can

generate substantive scientific insights comparable to post-simulation analysis, despite

its local data view.

The rest of this chapter is organized as follows. Section 4.1 describes the integra-

tion of in situ analysis with a model of neocortex, along with the analyses performed in

detail. Section 4.2 presents tests we use to evaluate the validation of our in situ analysis

method using both empirical and statistical techniques. Section 4.3 summarizes the

current status of the research for this thesis.

4.1 In Situ Analysis

In chapter 3 we introduce the sequential workflow for the simulation of neuronal

networks models executed on GENESIS. We highlight one of the main impediments to

scientific throughput, which is the movement of data from the parallel file system on

the large-scale cluster to the local storage of a dedicated analysis machine. In this chap-

ter we address another pitfall of the sequential workflow, which is the underutilization

of computational resources. Figure 4.1 demonstrates what we mean by the underuti-

lization of resources. When the user performs analysis on the data, HPC resources
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are unused and thus idol. In contrast, during simulation time the analysis resources

are not used. Our solution to improve utilization and as a consequence improving

scientific throughput is to couple analysis with simulation. By coupling simulation

and analysis we enable the user to increase scientific yield, allowing more analysis per

execution, reducing the impact of initialization cost. Figure 4.1c shows the evolution of

our methodology we now couple the analysis with the simulation on the HPC resources.

4.1.1 GENESIS and Analysis

Simulating neuronal network models assists in the study of the functional con-

nectivity of the brain. The type of simulations that we augment with our in situ

analysis method is a simulation of a patch of neurons in the neocortex using the Gen-

eral Neural Simulation System (GENESIS) [49] software suite.

The neocortex comprises the outer gray matter of the brain [84] and is organized

into six layers and is home to roughly 14-20 billion neurons, responsible for the majority

of sensory and cognitive processing in mammals [84]. The human neocortex measures

at approximately 2.4 mm in thickness and with its folds (sulci and gyri) make up 76%

of the brains volume. All mammals have the same number of the layers. It has been

estimated that there are 100,000,000 cortical minicolumns each comprising about 110

neurons each [85]. The neocortex is comprised of different “compartments” that each

perform different functions.

Our model of the neocortex is composed of 14 biophysically detailed neuron

types, organized into six layers representing a 150 x 150 x 2871 µm patch of cortex.

The simulated domain of the model is comprised of a matrix of micro-columns, which

are vertical columns that extend through the six layers of the brain. In our simula-

tions, each column contains 16 neurons. Individual neurons are modeled using multiple

compartments to generate realistic electrical activity in the 1-100 Hz frequency range

as an emergent property of the underlying physics. In this paper, our analyses focus

on two main components in the model which are the local field potential (LFP) and

the membrane potential (MP). LFP are the distance weighted sum of the simulated
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(a) HPC resources “idle” during analysis (b) Analysis resources “idle”

(c) Analysis occurs with simulation

Figure 4.1: Underutilization of HPC resources occur at two different times. First is
when the user is performing analysis on the simulation output after the simulation
has terminated. During this time the resources that are dedicated to running the
simulation are left unused while the user is performing analysis. Second is when the
user is taking intuitions and knowledge gained from the analysis and using those to
configure and re-run the simulation. During this time the dedicated analysis resources
are left unused.

extracellular electrical activity as measured at fixed electrode positions. MP are the

electrical potential difference between the interior and exterior of a single compartment

of a cell. In our analysis approach, we focus on the membrane potential at the main

body of the neuron, known as the soma.

GENESIS is the general software suite that we augment with our in situ analysis
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method. GENESIS enables scientists to build biologically accurate neuronal network

models including our neocortex model. GENESIS is very powerful and its models

can range from the simple level of small sub-cellular processes to sophisticated large

neuronal networks. GENESIS is written in C++ and utilizes the Message Passage

Interface (MPI) for communication. Simulations executed using GENESIS are solved

in discretized timesteps in which, ordinary differential equations governing individual

compartments of the model are solved. A significant challenge to the scalability of

neuronal simulators on high-end clusters is the limited amount of memory available

per core. Memory consumption in our brain simulations are dependent on two aspects:

the size of the brain model (e.g., the size of the simulated patch in terms of neurons)

and the number of processes used for the simulation. Figure 4.2 demonstrates the

memory requirements of GENESIS as we increase the number of processes from 16 to

4,096 processes when simulating a patch of neurons in the neocortex of approximately

256 to 70,000 neurons. The results are collected on the Air Force Research Laboratory’s

Thunder supercomputer. Thunder is an SGI ICE X system, that is comprised of over

3,000 compute nodes. Thunder is configured with 128 GB (118 GB available to user)

of memory per node and has 36 Intel E5-2699 cores clocked at 2.3 GHz. With 16

processes, GENESIS requires 3 GB of RAM. As we increase our simulation size to

4,096 processes (i.e., 288 nodes), GENESIS memory requirements greatly increases to

115 of the 118 GB of user available memory. Model scales higher than 4,096 MPI

processes are not possible due to memory being completely saturated and GENESIS

being terminated prematurely due to lack of free memory and is killed by the operating

system kernel.

4.1.2 Scientific Analysis and In Situ Approach

We perform our primary analysis on the output of the GENESIS simulations

mimicking the neocortex behavior. We use both a traditionally used post-simulation

approach and our in situ analysis approach.

From the scientific point of view, we use power spectral density estimation to
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Figure 4.2: GENESIS memory usage when scaling the simulated neuronal network from
a network size of 16 (256 neurons) to 4,096 (70,000 neurons) MPI processes running
on AFRL Thunder supercomputer.

estimate the power of the extracellular voltages surrounding neurons. Spectral analysis

is a sub-form of time series analysis which is concerned with quantitatively character-

izing relationships between series of samples ordered in time. Here this analysis allows

us to understand the frequency content of the extracellular voltages and determine how

samples are different or are related to one another.

Implementation-wise, we perform spectral analysis by transforming voltages

from the time domain (i.e., local field potential or LFP activity) to the frequency

domain (i.e., power spectral density or PSD estimates) and by observing which fre-

quencies exhibit the highest power/energy. Local field potential activities are a con-

tinuous process and are comprised of a series of continuously varying voltages in time.

We employ Belch’s method [86] to calculate the power spectral density estimate of the

LFP and perform our PSD estimation as a Short-time Fourier transform (SIFT). Pads

show what frequencies exhibit the strongest oscillatory activity in the model, and are
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the primary way of visualizing electrical activity in the brain.

To electrical activity in specific frequency ranges, neuroscientists are leveraging

biologically accurate simulated models of the brain. Models of neuronal networks al-

low scientists to explore the impact of differential neuronal connectivity using analysis

techniques and information not available experimentally. These models are inherently

computationally intensive requiring more resources from both memory and I/O sub-

systems than what are currently available to most small research teams. Recently

research in the simulation of neuronal network models have undergone a multitude of

advances. Computational neuronal network models of are approaching sizes on the

order of 105 neurons and 109 synaptic connections. However, this size is nowhere near

what is needed to fully simulate the human brain which is theorized to be comprised

of 1010 neurons and 1012 synaptic connections which is 1,000 times more than the

number of stars in the Milky Way galaxy.

In order to meet the demands of these compute intensive simulations we need to

design, implement, and utilize novel scientific analysis workflows that utilize modern

analysis techniques such as in situ, in transit, and computational steering.

However, modeling realistic neurobiological processes and encoding them in

computer simulations is challenging, as increasing computing and data requirements

are all of concern. The large amount of data produced by high fidelity simulations are

becoming increasingly difficult to save and transform into scientific insights for runtime

simulations. One attractive solution is to modify the data analysis workflow from one

that is accomplished post-simulation to one that is completed in situ. The integration

of in situ analysis enables interactive methods for analyzing neuronal network models

such as computational steering allowing for scientists to transform their their workflow

one that is static to one that is dynamic and hypothesis driven.move from a global

view (i.e., post-simulation analysis) to a local view (i.e., in situ analysis) of the data,

we transform the STFT to work on a reduced subset of the local field potential signal

by introducing sliding windows that shift over the local field potential signal with a

sliding size of 10,000 timesteps. Choosing the length of the window for the STFT is
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non-trivial. The selection is dependent on the analysis and data at hand. Increasing

the window length increases accuracy in frequency but negatively effects time resolu-

tion and resource usage (i.e., specifically memory usage) and vice versa. Our approach

performs analysis on one window of memory resident data at the time, meaning we are

only concerned at the time of analysis with the data that fits within a single window.

In other words, once a simulation begins, at each timestep of the simulation we are

analyzing data that is present in memory (i.e., spatial locality) and contained within

the current window (i.e., temporal locality). We have no view of future states of the

model nor past collected knowledge before the window of interest. As we will show in

Chapter 5 we use this local knowledge to steer the on-going brain simulation.

4.1.3 Integration of In situ Analysis

We build our in situ analysis on top of a general framework such as DataS-

paces [21], a light-weight, scalable, and flexible abstraction to an in-memory staging

area. DataSpaces enables the coordination of multiple components and services in ad-

dition to supporting dynamic coupling of applications. DataSpaces provides a set of

query operators for the asynchronous insertion and retrieval of data to the storage space

via RDMA for direct memory-to-memory data transfers. While DataSpaces provides

a set of operators for the asynchronous insertion and retrieval of data to the storage

space via RDMA, we still need to mold the framework to plug into the GENESIS

simulations and to integrate the specific application analyses described in section 4.1.

For each simulation process, we allocate a dedicated storage area from the global data

domain of DataSpaces’ shared abstraction space. Each analysis process ingests, in-

dexes, and stores its respective column’s data up to the defined window length into its

allocated sub-domain. For each compute node we reserve two cores for the analysis

while the rest are fully available for our simulations. All analysis is performed on data

held in memory eliminating the need to write data to persistent storage.

To perform the in situ analysis (i.e., the transformation from the time to the

frequency analysis and the extraction of knowledge on the ongoing simulation in terms
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of extracellular voltages surrounding neurons), we write scripts using popular Python

libraries SciPy and NumPy and plug the scripts into the adapted DataSpaces frame-

work. SciPy contains modules for popular scientific and engineering tasks and signal

processing. We heavily leverage the signal processing module of SciPy, which provides

a method for estimating the spectral density of a signal using the periodogram method.

NumPy supports the computation of large multi-dimensional arrays along with matri-

ces. It provides an extensive selection of mathematical methods for the processing of

arrays. The Python NumPy packages provides similar functionality to that which can

be found in MATLAB.

While our work in this paper targets a specific simulated neuronal network model

(i.e., the simulation of a patch of connected neurons in the neocortex), our overall

workflow that combines simulations and in situ analysis can be used with other types

of simulations using GENESIS or other software suites (i.e., NEST, NEURON, and

Brian) with the same input models and output (i.e., local field potentials, membrane

potentials, and spike output patterns).

4.2 Qualitative and Quantitative Validation

As outlined in section 4.1, we observe electrical activity through the use of spec-

tral analysis of electrical potentials. Time-frequency analysis has been used successfully

to study EEG signals. The STFT is one of the most fundamental methods of time-

frequency analysis. STFT analysis allows for the simultaneous presentation of both

the time and spectral content of the signal, which has been shown to improve feature

extraction in EEG signals [87]. A STFT is implemented by introducing a fixed-sized

sliding window to an input signal. We move this fixed-size sliding window by 10,000

timesteps at a time so that we have overlapping windows. Choosing the length of the

window or the number of samples for the STFT is non-trivial. The selection of window

size is highly dependent on the analysis, with the choice of window size raising a trade-

off between frequency and time resolution. Increasing the window size provides a more
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accurate view of changes in frequency. However, lengthening the analysis window nega-

tively impacts the time resolution and monitoring changes in power over time becomes

difficult. Vice versa, decreasing the window size improves time resolution but decreases

the frequency resolution thus reducing the detail in the power spectrum. The major

challenge is to find a length that can satisfy the requirements on both domains satis-

fying the necessary balance needed to facilitate computational steering. We perform

both qualitative and quantitative comparisons of the spectral estimates (a) when using

post-simulation estimates once the simulation is completed and all the simulation data

is available versus (b) when using runtime, in situ estimates with data window lengths

ranging from smaller-in-size 60,000 simulation timesteps to larger 200,000 simulation

timesteps at different simulation phases (i.e., the initialization, in the middle, and the

final phase of a simulation). Our simulations are performed on the Air Force Research

Laboratory’s Thunder supercomputer described in the previous section.

4.2.1 Qualitative Analysis

Qualitatively, we visually compare the post-simulation estimates to the in situ

estimates by examining differences in the estimates’ spectral content. We present the

resulting scenarios from the three window lengths of 60,000, 100,000, and 200,000

timesteps using the in situ estimates in Figures 4.3a, 4.3b, and 4.3c, respectively. In

each figure, the in situ estimates are in light-gray and the post-simulation estimates are

in red. To ensure consistency across phases of a simulation, results are shown for each

simulation in its initialization phase (i.e., between 90,000 and 150,000 timesteps for

the smallest window of 60,000 timesteps; between 90,000 and 190,000 timesteps for the

middle-size window of 100,000 timesteps; and between 90,000 and 290,000 timesteps

for the largest window of 200,000 timesteps) and two following phases that we called

middle phase (i.e., between 130,000 and 190,000 timesteps for the smallest window of

60,000 timesteps; between 170,000 and 270,000 timesteps for the middle-size window of

100,000 timesteps; and between 130,000 and 330,000 timesteps for the largest window

of 200,000 timesteps) and final phase (i.e., between 190,000 and 250,000 timesteps for
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the smallest window of 60,000 timesteps; between 270,000 and 370,000 timesteps for the

middle-size window of 100,000 timesteps; and between 170,000 and 370,000 timesteps

for the largest window of 200,000 timesteps). By choosing the smallest window length

of 60,000 timesteps or a slightly larger window length of 100,000 timesteps, we observe

results in our in situ estimates that suffer from visible fluctuations compared with the

observed post-simulation estimates. The fluctuations substantially reduce with a larger

window length of 200,000 timesteps, suggesting the need for such a window length. At

a window length of 200,000 timesteps our in situ results that are generated at runtime

are visually comparable to analysis results obtained post-simulation (i.e., once the

simulation has terminated). In other words, with a window of 200,000 timesteps, we are

gaining meaningful scientific insights as the simulation evolves that were traditionally

observable only once the simulation had terminated. Another empirical observation

is that the fluctuation behavior described above does not depend on the simulation

phase. In other words, window length is the factor driving accuracy and, when too

small of a window is selected, its impact is tangible across the different simulation’s

phases.

4.2.2 Quantitative Analysis

While the qualitative assessment confirms that as the window’s length increases

the amount of variability in the STFT decreases, its use cannot be extended beyond the

visualization of the information. For steering our simulations at runtime, we need to

quantitatively define a suitable window length that provides accurate scientific insights

and, at the same time, does not result in memory spilling over to disk in an automatic

way. Note that the memory and not the CPU is the principle contended resource

between simulations and analysis [10]. To quantify the suitable window length for

simulations’ steering, we perform three statistical tests: (1) we measure the mean

absolute spectral difference of estimates across frequency spectra; (2) we compare error

versus window length and variation versus window length; and last (3) we perform the

Wilcoxon Rank Sums Test for different window lengths and relate the accuracy to the
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(a) Power spectral estimate of single column of simulated local field potential using window
length of 60,000 samples.

(b) Power spectral estimate of single column of simulated local field potential using window
length of 100,000 samples.

(c) Power spectral estimate of single column of simulated local field potential using window
length of 200,000 samples.

Figure 4.3: Power spectral density estimate of simulated local field potential using
window lengths 60,000, 100,000, 200,000.

memory usage. The three tests cross-validate each other outcomes.

Mean absolute spectral difference of estimates across frequency spectra: We first,

evaluate the accuracy of computing the STFT over the varying field potentials during

the simulation time using the spectral difference of the in situ estimates and post-

simulation estimates. To this end, we measure the mean absolute spectral difference
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Figure 4.4: Spectral difference using windows 60,000, 100,000, and 200,000 timestep
window lengths. The difference is taken from the analysis results obtained post-
simulation in terms of the mean absolute spectral difference of estimates across the
entire frequency spectrum.

of estimates across the frequency spectrum for the three windows lengths used in the

qualitative assessment (i.e., 60,000, 100,000, and 200,000 timesteps). We consider a

simulation of at least 800,000 timesteps that is evolving and has passed its initialization

phase. Figure 4.4 shows the mean spectral difference between the windows and the

baseline across 10 frequency bands over the range of 0-99 Hz. Our smallest window of

60,000 timesteps has the greatest spectral difference from the baseline through all fre-

quency bands, confirming the difficulty that the shorter windows have with estimating

the power spectra. In particular, the smallest window struggles the most at both edges

of the spectrum: the power is mis-estimated by almost 10 × 108 dB/Hz at its worst.

The longest window length of 200,000 samples produces the greatest accuracy, with

the smallest recorded mean difference of 1 dB/Hz. In other words, our largest win-

dow length of 200,000 timesteps does the greatest job at consistently representing the
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spectral content and features across spectrum with a lower, less variable mean abso-

lute spectral difference. The observation confirms what we observed in the qualitative

assessment (in section 4.2.1); here our findings rely on statistical metrics that can be

computed automatically and thus can be used immediately at runtime, for example,

in simulation steering.
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Figure 4.5: Error vs. window length

Error versus window length and variation versus window length: To expand

our quantitative assessment beyond the three window lengths considered above, we

measure the error and variation for different window lengths with a finer granularity

ranging from 60,000 timesteps to 800,000 timesteps. To quantify the error between our

in situ analysis spectral estimates and the post-simulation spectral estimates, we use

the root mean squared error (RMSE) which is the standard deviation of the residuals or

prediction errors. RMSE is a negatively slanted score thus, lower values are better. We

choose RSME over other measurements of error because it has the benefit of associating

greater weight and penalizes large errors, making it a better indicator of performance
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differences. For our computation of RMSE we use the mean RMSE of the overlapping

windows of the STFT from the post-simulation signal, averaging the errors to a single

value. Figure 4.5, shows the RMSE for window length 60,000 to 800,000. We utilize

the traditional “elbow criterion” to evaluate the window length’s contribution to the

reduction in error. Here we increase the window’s length until we observe that further

increasing the window’s length does not significantly decrease the error. We observe the

largest reduction in error occurring when the window length is increased from 60,000

to 200,000 timesteps. After 200,000 timesteps further increasing our window’s length

no longer substantially decreases the observable error.
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Figure 4.6: Variation vs. window length

To quantify the variation of the in situ and post-simulation analysis estimates,

we use the coefficient of determination. The coefficient of determination also known as

the R2 score provides a measure of how well the in situ estimates represent the “true”

power provided by the post-simulation estimate. It is a measure that is indicative of

the level of explained variability in a data set. We use this measure to explain the level
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of difference in variation among the post-simulation and in situ analysis results. The

coefficient of determination in Figure 4.6 explains the difference in variation among

post-simulation and in situ estimates by ranging between 0 and 1. A coefficient value

closer to the value of one means that our in situ estimates are similar to the post-

simulation estimates, and vice versa, a coefficient value closer to zero means a large

dissimilarity. Figure 4.6 indicates that by increasing the window length, we decrease

the variation among the estimates but the variation reaches a value of 0.98 as we reach

the 200,000 timesteps. Once again, further increasing the window length does not

result in a significant increase in the coefficient.

Evaluating descriptive statistics we see the same trend. We focus on the mean

and variance. We compare their ability to accurately represent the overall post-

simulation mean and variance for our window lengths. Computing the mean post-

simulation and for each of the respective windows gives values of −1.046e−07, −1.042e−

07, −9.947e − 08, −9.763e − 08 db/Hz. Using a window length of 200,000 provides

very accurate estimation of the mean. This holds true for all window sizes greater

than 120,000. Any window size smaller than 120,000 no longer accurately captures the

mean. All window lengths are able to capture the variance accurately, this is due to

the fact that the data produced by the model is stationary.

Wilcoxon Rank Sums Test for different window lengths: Last, we compare power

spectral estimates from post-simulation with estimates from in situ analysis by using

a Wilcox on Rank Sums test (WEST) and relate the test values achieved with the

memory usage for each window length. Specifically, the two inputs to our WEST are:

(1) the PSD that results from post-simulation processing and (2) the PSD computed in

situ using the specified window length. The null hypothesis is that the post-simulation

and the in situ estimates are statistically identical populations. We compute the test

using 95% confidence which results in an α of 0.05. If the results of our WRST are

greater than our α, then we fail to find any evidence that the two signals are not

from the same statistical distribution and thus conclude that the in situ results can

be used for substantive scientific observations. Table 4.1 shows results of our WRST
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together with the associated memory usage for window lengths ranging from 60,000 to

300,000. In the table we observe that we need to increase the window length to increase

accuracy in our in situ results. However, accuracy is not a “free” comodity because

neurobiological simulations are memory bound. While providing the simulation with as

much accuracy as possible is desirable, by arbitrarily increasing the window length we

introduce the potential of negatively impacting simulation performance by using more

memory than is available. Its vital to find the minimum window length that provides an

accurate representation of simulation behavior at runtime but does not cause memory

spill. Our WRST reinforces our observations from the qualitative comparison of the

PSD of the field potentials. Window lengths under 200,000 timesteps fail to exceed our

expected α and thus do not accurately represent the correct behavior of the model. At

200,000 timesteps, we receive a p-value of .06 exceeding our α of .05, and thus we fail

to find evidence that the in situ results are different than the post-simulation analysis

results and conclude that the estimates are usable for making substantive observations

about the model behavior. Increasing the window’s length further, increases our p-

value but at the cost of increasing the memory requirement of storing the varying field

potential data in our memory resident staging area. As we showed in 4.1.2, memory is

the primary contended resource when combining simulations and anlayses of neuronal

network models. Thus, we determine that 200,000 timestep window provides sufficient

accuracy for analysis while minimize memory usage.

We have demonstrated through both qualitative and quantitative methods that

using a window length of 200,000 timesteps is the minimum length window that pro-

vides sufficient accuracy for our in situ analyses while also minimizing memory usage.

Qualitatively, a 200,000 timestep window provides spectral estimates that retain impor-

tant features in the frequency content while greatly reducing fluctuations. Additionally,

we showed that using a window of length 200,000 timesteps results in spectral estimates

that are statistically indistinguishable from estimates obtained post-simulation. By

choosing the minimal window length that provides statistically comparable estimates

we are able to reduce the memory footprint of the analysis. Through our ability to
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Wilcoxon Rank Sums Test
Window Size (timesteps) P-value Memory Per Process (MB)

60,000 <0.01 48
80,000 <0.01 64
100,000 <0.01 80
120,000 <0.01 96
140,000 <0.01 112
160,000 <0.01 128
180,000 <0.01 144
200,000 0.06 160
220,000 0.06 176
240,000 0.27 192
260,000 0.51 208
280,000 0.91 224
300,000 0.95 240

Table 4.1: Wilcoxon Rank Sums Test (WRST) and memory usage results across win-
dow lengths ranging from 60,000 to 300,000 steps.

locally collect meaningful information about the simulation we eliminate data move-

ment while maintaining our capacity to make substantive scientific insights at execution

time.

4.3 Discussion

Coupling analysis alongside computation will be imperative in mitigating the

impending challenges to data-intensive workflows in future generation computing. In

future generations of high-performance computing, it will no longer remain practical to

transport data to the analysis. Instead, analysis will have to occur at the location the

data is generated decreasing the impact of I/O bottlenecks to the end-to-end scientific

analysis pipeline. There is a need for increased attention to the design and imple-

mentation of new analytical frameworks that allow scientist to perform pre-processing,

analysis, and interactive data visualization with minimal data movement. In addi-

tion, there is a need to understand efficient ways in analyzing the diverse landscape of
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HPC applications. There is no one-size-fit-all method, and designing optimal analysis

workflows will require a deeper understanding of the applications themselves.

In this chapter, we looked to address the challenge of the increasing cost of the

instantiation of the model (i.e., initialization cost). Initialization cost is unavoidable in

the current iteration of our model. Because of this, we proposed the integration of in

situ analysis. By integrating in situ we allow for more science to be done per execution

of the model. We evaluate the accuracy of in-situ analysis results using three qualitative

measures the Wilcoxon Rank Sums test statistic, Root Mean Squared error, and the

Coefficient of Determination. We compare the resulting spectral estimates of both the

in-situ approach with the post-simulation approach. We observe that we can reduce

the amount of data needed to perform analysis, while also achieving qualitatively and

quantitatively comparable scientific insights, by using smaller windows of data than our

post-simulation approach. In this chapter, we also highlight the fact that increasing

the window size for better accuracy results in an increase in memory. This shows

that increasing the window size is not “free” and memory use must be of a concern.

Increasing the amount of science that can be accomplished per execution by coupling

analysis with simulation reduces the cost of initialization. However, it does not remove

the cost. The need to re-initiate the model every time parameter modifications are

needed is still a problem. In the next chapter we look to take things a step forward by

integrating computational steering into our model.

Our work solely focused on evaluating analysis performed through the use of

in-memory data staging and custom tailored analysis methods. We are aware that

there are other methods for enabling runtime analysis of HPC applications. In this

workm our goal was to understand how temporality of our analysis impacts the degree

of science achievable in situ. Because of this, it was important that we build on the

light-weight framework DataSpaces, which allows for a higher level of control over

how data is managed. This level of control is not easily possible with other I/O

frameworks. Additionally, in our implementation of in situ analysis, the analysis was

not fully integrated into the course code of the monitored application. Instead our in
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situ analysis ran concurrently with the application extracting simulation output and

performing analysis solely in memory. The major benefit of having the analysis no

reside in application source code is that our framework remains application agnostic

and is easily modifiable to be used with an entirely different simulation framework.
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Chapter 5

COMPUTATIONAL STEERING IN SIMULATED NEURAL
NETWORKS

We leverage knowledge gleaned from in situ analysis to steer a neuronal network

simulation. Specifically, we first implement then integrate a working prototype of a

computational steering environment into our simulation environment supporting neu-

ronal network models on GENESIS. Our computational steering environment allows

for the dynamic modification of model attributes and parameters at runtime, enabling

the ability to perform hypothesis-driven simulation. Having the ability to modify pa-

rameters at runtime transforms our scientific analysis workflow from one in which we

are restricted to one experiment per execution, which was the case with the tradi-

tional workflow, to multiple experiments per execution. This results in our ability to

study the highly complex internal structure of large-scale simulated neuronal networks

models on GENESIS.

The rest of this chapter is organized as follows. Section 5.1 describes our im-

plementation of a prototype to computationally steer a GENESIS simulation and the

challenges associated with doing so. Section 5.2 demonstrates the steering capability

of our CSE in two scenarios excitatory/inhibitory modulation and pulse stimulus injec-

tion. Section 5.3 provides a performance evaluation of our steering method. Section 5.4

concludes with a discussion for this chapter.

5.1 Steering Simulated Neural Networks with GENESIS

5.1.1 Necessity

Neurons in the brain communicate through point events called spikes [88]. A

single neuron receives input from many different sources which influence firing activity.
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Complex cognitive behavior is believed to be generated by the coordinated activity

of large groups of neurons. For the brain to be able to form sophisticated signal

patterns needed for complex behavior the balance between excitation and inhibition

(E/I balance) activity must be maintained [89]. Inhibitory signals in the brain decrease

the likelihood that a receiving neuron will fire. On the other hand, an excitatory signal

in the brain makes a neuron more likely to fire. Inhibitory and excitatory signals

are used in collaboration to keep excitation in the brain in check. It is postulated

that real life neuronal networks operate in a sort of “equilibrium”. Excitatory and

inhibitory neurons manage correlated levels of activity [90]. Brain activity dominated

by excitatory signals would only be capable of exciting itself in repeated bursts of

activity (i.e. epileptic seizure). Brain activity dominated by inhibitory signals will

only be capable of low activity not enough to facilitate synchronization among brain

diverse areas [91]. For healthy brain activity, you need to reside in the middle which

generates complex patterns of activity. Studying the balance of E/I is becoming more

important due to the belief that it plays a big role in the complex patterns of the

brain. Low E/I ratios are associated with Schizophrenia, whereas high E/I ratios are

associated with Autism. Even greater excesses of E/I are associated with epileptic

seizures [92].

Neuronal network models are known to have very complex dynamics and to

switch fluidly between different biologically relevant functional states. The models

presented in this paper have been tuned to produce electrical activity with mathemat-

ical properties that are associated with the local field potentials thought to underlie

activity recorded using electroencephalogram. The local field potential is the distance

weighted sum of simulated voltages in all neuronal compartments. LFP activity con-

tributing to different frequency ranges in electroencephalogram are associated with

task performance in behavioral experiments. Activity in the alpha range (8 to 13 Hz)

is associated with background brain activity, while activity in the gamma range (40

to 100 Hz) has been associated with perceptual binding [93]. Computational neu-

roscientists explore potential neuronal mechanisms underlying functional behavior by

68



manipulating model parameters.

For this thesis, our computational steering focuses on enabling the investiga-

tion of network dynamics under different connectivity configurations, specifically we

investigate the role of inhibitory and excitatory synaptic connections in the neocortex,

through the manipulation of excitatory/inhibitory modulation. Additionally, we use

knowledge extracted from in situ analysis with a window length of 200,000 timesteps

to drive our neocortex model’s oscillatory activity. Our initial setting targets two of

the four major EEG frequency bands: alpha (8-13Hz) and beta (13-40Hz).

5.1.2 Components

Mulder et al., in a survey of computational steering environments [94], de-

fined three components that constitute a computational steering environment for high-

performance computing applications. Listed were a component for monitoring and

interacting with the HPC application, a communication and data transfer layer for

handling steering request and managing data, and the monitored application. We

leverage these three components and integrate them into our steering-based computa-

tional environment which also consists of the user interface (UI), interaction manager

(IM), and data manager (DM). We show an overview of all three in Figure 5.1, where

black arrows show the flow of control in our CSE.

The first component of our CSE is the DM. The DM leverages our previous work

in integrating in situ analysis in Chapter 4. We build our DM on top of DataSpaces,

which facilitates distributed analysis and steering. DataSpaces provides a light-weight,

scalable, as well as flexible shared abstraction to a memory-resident data staging area

where in-memory storage space is allocated locally at each node. The DM provides the

primary method for which users perform interactive analysis and data visualization on

memory resident model output. Data in the model is handled by the data manager

which is responsible for presenting data to the user. The DM enables users to index, la-

bel, and perform fast in-memory transformations on the data and other pre-processing.
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Figure 5.1: A adaptation of the Mulder et al. [94] definition of steering environment
for our neural networks simulations.

The DM is responsible for extracting data from the application and placing it within

the virtual dataspace.

The second component is our interaction manager. The interaction manager

interacts with the steering instrumentation that resides in the script files that control

the GENESIS execution flow. Our interaction manager is responsible for the modifica-

tion and management of the neuronal network model script files that are used to steer

the model. The interaction manager is also responsible for the modification of the en-

vironment variables that the steering instrumentation uses to know when to enact the

steering changes. The interaction manager sends user steering actions to the steering

instrumentation that resides alongside the simulation and analysis. Each of the three

components are executed by separate processes, and as a consequence, the components

do not all have to reside on the same node. This allows for the components to be
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distributed.

The last component of our CSE, is a text-based user interface (TUI) written in

Python. A user of our CSE asserts control over the environment through the use of

our TUI . Our TUI allows a user to select modifiable application parameters and define

their properties. Once one or more changes have been applied, a flag is set locally at

the compute node. This flag is used by the steering instrumentation to know when

new steering actions are pending and need to be applied to the monitored application.

Steering actions are essentially the modification of parameters that are predefined by

the CSE. Users navigate a hierarchical menu to select and modify parameters at run

time. In addition to the modification of parameters, our TUI acts as the primary

method for interacting with the data manager and interaction manager. The TUI is

the intermediary between the DM and IM and allows them to communicate with one

another.

The challenge of addressing the high volume and velocity of data produced by

numerical simulations can be dealt with in many ways from a software engineering

point of view. Using strongly typed compiled languages like C offer performance.

However this comes at the cost of a loss of flexibility and extensibility of the code.

More modern popular languages like Python, R, and MATLAB offer straight forward

interfaces but do not offer the same level of performance as traditional HPC languages

C and C++. For our method of interactive computational steering, we use a hybrid of

both approaches. For tasks where performance is necessary, such as data ingestion of

the model’s output, we use C. For task where extensibility and flexibility are important,

such as analysis of simulation output we use Python. We use Python for all analysis

and steering functionality. Python provides excellent debugging, expressive syntax,

and support for modularity. We integrate the two languages through the use of the

Python/C API [95].
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5.1.3 Implementation

For this thesis, we enable two kinds of steering. The first kind of steering is

steering a pulse input square wave injection. The injection current pulses on and off

for a duration of time injecting electrical current into the simulated neurons. The

second kind of steering that we implement is the manipulation of synaptic weights

which control the inhibitory and excitatory balance of the model. Traditionally, after

network parameter configuration and simulated element creation, the neuronal network

model executes uninterrupted until it reaches a completion time pre-set by the user,

which is routinely on the order of several simulated seconds. The user is not able to

direct execution flow by modifying parameters during this time. Conventionally, to

modify network parameters, the user must stop and restart the simulation which we

demonstrated in Chapter 3 is very costly.

To enable steering, we modify the primary script file of the neuronal network

model, known as the Neocortex.g file. The Neocortex.g file is ingested by every process

and is responsible for instantiating all simulated model elements either directly or

indirectly. It controls network instantiation and drives model execution flow. We

replace the non-interactive method of driving execution flow with our method which is

based on a centralized control loop (i.e., main loop). By augmenting the Neocortex.g

file we enable interactive event based steering. Our control loops detect events (i.e., user

steering actions, flags set by in situ analysis) by actively sampling the state of global

environment variables that are set by the user and automatically by the in situ analysis.

We determine the frequency of environment variable polling, by controlling the length

of the steering step. Based on the status of the environment variables the control

loops drive execution flow of the simulation through the use of conditional expressions

(i.e., if-else statements) that determine whether the parameters of simulated elements

need updating or should remain unchanged. Our control loop can be as involved as

we need, enabling the execution of dynamic simulation scenarios. Polling of events

continues throughout model execution until the simulation reaches completion.

When a steering action is initiated the TUI creates a very small output text
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file with a list of modified application parameters. An environment variable flag is set

signaling to the control loop that a steering action is pending. Upon the beginning

of the next steering step, the IM sets the specified parameters to their new values.

However, these changes do not take effect until the IM calls on the model to call a

routine that sets the value of field(s) in the data structure of a specified element. Once

the routine has been called, changes to the parameters of simulated elements are no

longer pending and take effect before the next simulation step. The IM then runs a

check routine which verifies the consistency and well being of the simulated elements

and reports any issues to the user. If needed, a reset routine will be initiated which

returns the simulation to its original conditions. A barrier is administered to make

sure that all processes complete their respective consistency checks successfully before

the model can progress further in time. If there are no consistency issues reported then

the simulation continues execution until it reaches the next steering step when then

the process repeats itself until reaching the pre-defined maximum amount of simulated

time.

5.1.4 Synaptic Connections

We now discuss how we enable steering of synaptic connections within our

model. In addition to augmenting the Neocortex.g file to allow for event-based steer-

ing, we add the ability for the dynamic modification of the synaptic weights. During

model instantiation, synaptic connections between neurons are statically created. The

creation of connections between neurons is controlled by probabilities which are pre-

defined likelihoods that one neuron type will establish connections to another neuron

type. By increasing this probability a neuron of type A is more likely to connect to a

neuron of type B and so on. Once the simulation begins there is no way to change the

connectivity in the model. However, we are able to modify the weights and scales of

the connections between neurons. Modifying a neuron’s influence over other neurons

through manipulation of synaptic weights, allows us to get around the restriction of the

statically defined connections. By controlling the weights of the synaptic connections
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we can essentially “turn off” connections between neurons by reducing their weight

to zero. This is equivalent to removing a connection since a weight of zero does not

influence on the firing activity of neighboring neurons it is connected to.

In this thesis, we focus on enabling the ability to dynamically govern the level

of excitation (i.e., firing activity) within our model. To accomplish this we leverage

existing model parameters which influence the synaptic weights of inhibitory and exci-

tatory neurons. By enabling the ability to modify these model parameters at runtime

we create the ability to define the minimum and maximum ranges of synaptic weights.

We define the maximum and minimum weights on a neuron type by neuron type basis.

Equation 5.1 shows how the maximum weights are calculated in our model for each

neuron type. Each neuron type has a base weight which is represented by Cellbasewgt,

this weight is modified by a multiplier which scales the weight with the addition of

an offset. We avoid changing the base weights and focus solely on the weight mul-

tiplier and offset. Equation 5.2 demonstrates how the minimum weight of synaptic

connections are defined.

CellMAXwgt = Cellbasewgt ∗ weightMultiplier + offset (5.1)

CellMINwgt = 0 + offset (5.2)

Making the multiplier large will result in a very high ceiling for the synaptic

weight and will increase its maximum potential influence on other neurons. Making the

multiplier small results in a maximum weight with a low ceiling reducing its maximum

potential influence on neighboring neurons. The minimum weight is controlled by an

offset value which we can be increased to make the floor weight higher and prevent the

weight from taking on to less of a value. When the user wants to make a modification

to the synaptic weights of the model, the user submits a steering request with new

weight multipliers. This request gets pushed to the IM which initiates the model to

compute new ranges for the synaptic weights. Upon the completion of this, the IM
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forces the model to re-instantiate the weights by calling a routine that instantiates the

weight field of the synapses, setting the synapses maximum and minimum weights.

The final step is the propagation of the new weights throughout the network. The final

weight is computed by finalwgt = wgt + (wgt ∗ randomNumber). Synaptic weights

are not allowed to go negative even if the user specifies a negative weight multiplier,

instead the weight will be set to zero.

5.1.5 Current Injection

We now discuss how we enable steering of current injection within our model.

Steering stimulus current injection is relatively more simple than steering the strength

of connections. Just like the modification of the synaptic connections, we control the

stimulus current within the central control loop located in the main input file to the

model. Initially, upon creation of the network a pulse injection object is created. A

pulse injection object accepts three arguments; these are the length, delay, and level

of the current injection. The length corresponds to the how long the pulse injection

occurs. The delay corresponds to how long the current is turned off between injections.

Lastly, the level corresponds to the strength or amplitude of the current injection. The

injection objects are then propagated to the simulated elements (i.e., neurons). When a

user initiates a current injection steering action, the user specifies the length, amplitude,

and delay of the current injection. This is reassigned to the existing current injections

objects; a consistency check is made to ensure there are no issues with the reassigned

values. If not the simulation proceeds and current will be injected at the conclusion of

the specified delay time.

To steer the pulse stimulus injection we create multiple pre-defined stimulus

configurations that are increasing in amplitude of their injection. We leverage our in

situ analysis which monitors the level of activity in the model using spectral analysis

enabling automated steering. If the intensity of activity is not at our desired level we

automatically initiate a steering action which assigns a greater amplitude multiplied

by some scalar to the stimulus current. The scalar acts as similar to how momentum
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is used in gradient decent search problems. At the start of steering the scalar is very

large and causes large large increases and decreases in the amplitude. However, with

each successive steering action the size of the scalar is reduced thus reducing the effect

of the change to the amplitude.

5.2 Examples of Successful Steering in GENESIS

5.2.1 Pulse Stimulus Current Injection

In the initial phase of our simulation, the power (or energy density) of our

neocortex system is concentrated in the alpha range around 11Hz: 60% of the power

in the simulation is coming from the model oscillating in the alpha’s frequency range

and 20% from the beta’s frequency range (in Figure 5.4b). The other two bands

(i.e., delta 0-4Hz and theta 4-8Hz) have less impact on the simulation’s power (i.e.,

less than 20% combined) and thus are not represented in the figure. Under these

circumstances, the intensity of the spectral estimates of our model exhibit a power

peak that is concentrated in the alpha range around 11Hz (in Figure 5.4a).

Our workflow combining the GENESIS simulation and in situ analysis (in Fig-

ure 2.3) steers the power, initially concentrated in the alpha range, to move and con-

centrate it in the beta range. To this end, we set up our simulation into six epochs,

with each epoch consisting of 200,000 timesteps (i.e., coinciding with the length of our

analysis window). At each epoch, our in situ analysis monitors the relative contri-

bution to the power (in Figure 5.4b) and injects a stimulus current by modifying the

square wave pulse injection in our neuronal network model’s input files. The stimulus’

level is automatically controlled and adjusted based on the relative power.

As we move across time epochs, our workflow initially injects a higher stimulus

level (see Figure 5.4d). For example, at the second epoch, the intensity of the stimulus

increase from 0.5 to 15. This increase impacts the contribution of power in the beta

range that consequently increases to narrowly overtake the power contribution of the

frequencies in the alpha range. By observing the substantial change in power contri-

butions, our workflow reduces the current intensity rate of the stimulus level by 66%,
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(a) Initial PSD

(b) Relative power in alpha and beta bands

(c) Final PSD

(d) Stimuli levels

Figure 5.2: Example of steering our neocortex simulation by automatically tuning the
intensity of a stimulus current injection to increase the contribution to the power in
13-40Hz frequency range (i.e., figure 5.4b). Figure 5.4d shows the stimulus level across
the six time epochs occurring every 10 seconds during the simulation. Figures 5.4a and
5.4c show the initial and final spectral power estimates of the simulation as a result of
our tuning.

setting the intensity from 15 to 20. At the third epoch, the contribution of the beta

range is approximately half of the power, while the alpha range is providing around a

third of power. As we are approaching the end of the simulation, the intensity rate of

the stimulus level diminishes as the alpha and beta contributions become flat around

20% and 60% of the relative power respectively, inverting the initial conditions of the

neocortex system. In other words, the change in the relative power results in a shifting

of our model from a lower frequency in the 10Hz range to a higher frequency in a

range between 13-40Hz. Figure 5.4c shows the resulting spectral estimate at the end

of the sixth epoch. We can see an increase in the power above 16Hz affirming that we
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accomplished our task of driving the model’s oscillatory activity, from predominantly

existing in the alpha (power spectral density shown in gray) to predominantly existing

in the beta wave range while running the simulation. In a traditional scenario based on

post-simulation analysis, a scientist would have been required to run the simulation,

learn about the initial relative power, stop the simulation to adjust the square wave

pulse injection, and re-run the simulation. The unknown estimate of a suitable value

for the square wave pulse injection would have required the manual stop and restart

of one or more simulation, incurring into the heavy initialization costs of GENESIS

simulations shown in Chapter 3. By effectively combining the simulation and in situ

analysis in a single workflow, we can adjust the simulation power and identify the

proper setting parameter for such an adjustment at runtime.

5.2.2 Excitatory/Inhibitory Modulation

The objective of this case study is to demonstrate our ability to steer the balance

of excitation and inhibition in our neuronal network model. We demonstrate the success

of this by showing a simple example in which we increase the excitation of the model

while decreasing the inhibition. Our goal is to increase the activity in the model which

we observe visually through the change in spike density and the time between spikes

known as the inter-spike interval time. We compare a baseline model (no steering) to

a model in which we increase the excitation.

Figure 5.3, and Figure 5.4 shows the spike density and inter-spike interval times

for the P23RS neuron respectively. The spike density is computed by counting the

number of spikes that occur every 50 milliseconds. The mean inter-spike interval time

is calculated by computing the difference between two successive spikes. We execute

the model for 80,000 timesteps or 4 seconds of simulated brain activity. We observe

that the spike density is pretty level with increases in the density of spikes occurring

intermittently throughout the simulation. The mean spike density for the P23RS

neurons for our baseline model are 14, 22, 24, and 25 respectively. This results in a mean

of 21 spikes per 50 milliseconds with a standard deviation of 5 spikes. Additionally,
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(a) Spike density of P23RSa cell.
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(b) Spike density of P23RSb cell.
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(c) Spike density of P23RSc cell.
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(d) Spike density of P23RSd cell.

Figure 5.3: Spike density of P23RS neurons for a baseline model. Our baseline model
represents the default behavior of the model when we do not apply any steering actions.
The spike density remains relative constant during model execution with intermittent
increases in spiking. For our baseline model we observe a mean spike density of of 21
spikes per 50 milliseconds.

we observe that the majority of the inter-spike interval times are relatively steady. We

observe the average mean inter-spike interval time is .027, .017, .015, and .016. This

results in the P23RS neuron having an average mean inter-spike interval time of .019

with a standard deviation of 5e− 3.

Figures 5.5 and 5.6 show the results of our steering when we attempt to increase

the excitation in the model by manipulating the synaptic weights our model. At

40,000 timesteps we increase the scale at which excitatory neuronal activity impact

neighboring neurons, and we decrease the scale at which inhibitory neuronal activity

impact neighbors. This results in an overall increase in synaptic activity which we
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(a) Inter-spike interval of P23RSa cell.
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(b) Inter-spike interval of P23RSb cell.
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(c) Inter-spike interval of P23RSc cell.
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(d) Inter-spike interval of P23RSd cell.

Figure 5.4: Inter-spike interval time for of P23RS neurons for a baseline model. For
our baseline model we observe a mean inter-spike interval time of 19 milliseconds.

observe in the spike density. Each of our examples displays a relatively steep increase

in the spike density around the two-second mark. This is where we modify the synaptic

weights through our steering instrumentation. The mean spike density is 29, 36, 37,

and 36 per 50 milliseconds respectively. Resulting in an overall mean spike density of

34 spikes per milliseconds, which is a 61% increase in activity. As a consequence of

the increasing spike density, we observe a relatively steep reduction in the inter-spike

interval time for the P23RS cell. The average mean inter-spike interval times for each

of the P23RS subtypes are .018, .011, .011, .012 respectively, which results in an overall

mean inter-spike interval time of .013, and a standard deviation of 3e−3 a reduction of

46% in the mean inter-spike interval time. At the start of the simulation, we observe a

mean inter-spike interval time of 19 milliseconds after our steering action of increasing

the level of excitation in the model, the mean inter-spike interval time decreases to a

mean of 8 milliseconds, a mean decrease of 10 milliseconds.
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(a) Spike density of P23RSa cell.
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(b) Spike density of P23RSb cell.
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(c) Spike density of P23RSc cell.
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(d) Spike density of P23RSd cell.

Figure 5.5: Spike density of P23RS neurons for our steered model. At two seconds we
see a sharp increase in the spike density going from 21 spikes per 50 milliseconds to 36
per 50 milliseconds.

5.3 Performance Evaluation

In this section, we present a performance evaluation of our CSE. We look at two

different measurements of performance, presentation latency and simulation perturba-

tion. In 5.3.1, we evaluate presentation latency with respect to the user interacting

with the CSE with the goal of monitoring the simulation. In 5.3.2 we focus on sim-

ulation perturbation measuring instrumentation overhead and how it affects overall

execution time of the application.

We perform our experiments on an SGI Ice X Thunder system at the Air Force

Research Laboratory with a peak performance of 5.2 PFLOP. Thunder has 3,216 stan-

dard memory compute nodes each with 128 GB of memory and 36 cores clocked at
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(a) Inter-spike interval of P23RSa cell.
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(b) Inter-spike interval of P23RSb cell.
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(c) Inter-spike interval of P23RSc cell.
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(d) Inter-spike interval of P23RSd cell.

Figure 5.6: Inter-spike interval time for of P23RS neurons for our steered model. At
two seconds into the simulation we see an abrupt decrease in the time between spikes.
This coincides with the sharp increase in spike density shown in Figure 5.5

2.3 GHz. Thunder uses the Lustre file system to manage its Infiniband FDR 14X file

system. In our in situ analysis experiments, the simulation is executed on 16 of the 36

cores of a node. We execute an analysis process for each simulation process resulting

in the 16 of the remaining 20 cores being used for our analysis.

5.3.1 Latency

Presentation latency is the difference in time between and event occurring in

the monitored application and the presentation of the event through some visualization

to the user. If the latency of visualizations presented to the user is too high, the

results shown will not be representative of current model behavior [96]. The user’s

interpretations and decisions will be inconsistent with what is actually occurring in

the system [96]. The user will initiate steering interactions on model behavior that

is no longer present. One of the primary tenets of in situ analysis is that analysis
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should be executed sufficiently fast. Increasing the size of analysis window increases

the accuracy results but at the cost of an increase in the latency between when behavior

is occurring in the simulation and when it is presented to the user for interpretation. It

also decreases the time resolution of the analysis which is important for the “human-

in-the-loop” dynamic of computational steering.

With the selected window length of 200,000 timesteps for our runtime analysis,

we measure the presentation latency for computing spectral analysis of the monitored

application. We compare this latency with the primary method of performing analysis

post-simulation. We observe the presentation latency as we increase the number of

processes and the size of brain model (i.e., the neuronal network). Figure 5.7 shows

the presentation latency when performing spectral analysis of the neuronal network as

the size of the network increases from 16 to 4,096 MPI processes. As we increase the

number of processes, the post-simulation analysis’ presentation latency grows linearly:

a larger number of processes have to read their data from the centralized file system

sequentially. On the other hand, the time to perform the analysis and present the

visualizations to the user via our CSE stays flat at under 14 seconds: the increasing-

in-size analysis is distributed across the increasing number of nodes. The result is a

large time saving in comparison to the traditional sequential analysis.

We also compare the presentation latency of analysis for a data window of

200,000 timesteps with the time needed to generate the data at runtime. Figure 5.8

shows the average execution time for performing both spectral analysis (visualization)

and descriptive statistics along with the duration of the GENESIS simulation gener-

ating data over a window of 200,000 timesteps. The execution time of the spectral

analysis and statistics on the window are 1.3 and 14 seconds respectively. These are

dwarfed by the GENESIS’ duration time which approaches 485,000 seconds. This

demonstrates that our analysis approach meets one of the primary tenets of successful

in situ analysis: its execution time is fast relative to the simulation’s time by several

orders of magnitude. Allowing for low latency presentation of model behavior to the

user.
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Figure 5.7: Presentation latency for performing spectral analysis in situ and post-
simulation analysis time on simulation sizes 16 to 4,096 MPI processes. As we increase
the size of the network the post-simulation analysis method greatly increases in size.
At 4,096 MPI processes the post-simulation method needs approximately 50 min to
complete. This is opposed to our in situ method which only needs 13 seconds to
complete.

5.3.2 Simulation Perturbation

For this thesis we quantify simulation perturbation by measuring the observed

difference in the execution time of our application with and without steering instru-

mentation.

Its important to investigate how the model performance is affected under the

CSE when we scale to larger network sizes. Increasing network size increases the

potential for inconsistencies in the computations and also the presentation of data to

the user for interpretation. To mitigate the risks of introducing additional inconsistency

in the model its imperative to make sure the components of the model and the CSE

itself are properly synchronized through the used of barriers and other synchronization

methods. These barriers increase the potential of additional overhead. Figure 5.9
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Figure 5.8: Comparison of our in situ analysis execution time in relation to the duration
of GENESIS simulation generating a window of data over 200,000 timesteps when using
4,096 MPI processes.

shows the execution time of our model with and without steering instrumentation as

we increase the network size from 16 processes to 256 processes. Over top of each bar

group we place the percentage of overhead incurred due to instrumentation. At 16

processes on a single node we see approximately 2% overhead which amounts to the

simulation running for an additional minute when instrumented for steering. As we

increase the network size further we see an increase in overhead. This is a result of

more neurons and synaptic connections being simulated. As the network is increased

it is distributed across more nodes this leads to spike events having to travel further

across the network to neurons that are not within the same region as the neuron that

generated the spike. This leads to non-uniform simulation step times. Processes who

complete a simulation step fast have to wait for slow processes to complete their step

before moving to the next step.
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Figure 5.9: Execution overhead of steering instrumentation when increasing the num-
ber of neurons from 16 MPI processes on a single node to 256 MPI processes on 16
nodes. At 256 processes the steering instrumentation incurs approximately 9% over-
head increasing the execution time of the simulation by 84 minutes.

5.4 Discussion

Simulation will continue to play a major role in the study of physical phenomena.

At present, computational neuroscience simulations are performed on a trial-and-error

basis. Computational models are simulated then stopped multiple times. With each

start and stop the input parameters to the model are changed. Changing the over-

all behavior of the model in an iterative fashion until the desired model behavior is

achieved. This start-stop method is extraordinarily costly and continues to be a pri-

mary bottleneck in the end-to-end scientific discovery pipeline. As the complexity of

models increases so does the need for tools that enable rich interactive steering and

analysis. There is a significant need for new methods that allow the user to participate

in the simulation. In this thesis, we attempt to address this need by developing and

integrating a working prototype of a computational steering environment for simulated

neuronal networks on GENESIS.
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In this chapter, we define and describe the major components of our CSE that

allow for the steering of model behavior. We detail how these components operate

together to steer both the synaptic weights and simulated external stimulus current that

is injected into the model. We illustrate our ability to steer by showing two successful

case studies of steering. In our first case study, we demonstrate our ability to steer the

simulation by driving the model from the alpha wave range to the beta wave range.

Enabling the ability to influence model behavior in this way allows scientist to better

understand the spiking nature of neurons under external stimuli. The second case study

demonstrated our ability to manipulate the level of excitation in the model through the

steering of the synaptic weights. Through our efforts, we were able to increase the level

of spiking activity in the model resulting in a decrease in the inter-spike interval time.

Enabling the control of the excitation/inhibition balance in the model allows scientist

to better understand how this balance plays a role in epilepsy and autism. Finally,

we present a characterization of the performance of our CSE prototype. We show its

ability to provide presentations of model behavior with reasonable latency. We also

show the performance overhead incurred by instrumenting the model with the ability

to steer. We demonstrate that we can achieve less than 9% overhead when scaling to

256 MPI processes.

Instrumenting our model with the ability to be steered introduced additional

overhead. We believe that the additional overhead is a cost users are willing to pay if

it means they have increased control and interaction with their simulations. It is still

unknown of whether computational steering of simulated neuronal networks is practical

at large scales. We envision our CSE being used in smaller use-cases such as debugging

for performance and iterative behavior optimization.
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Chapter 6

DISCUSSION AND FUTURE WORK

6.1 Summary

Advancements in simulation methods have enabled scientist to study physical

phenomena at greater resolutions. Scientists are relying more on simulation to be one

of their primary means of scientific discovery and knowledge acquisition. Neuroscien-

tists have leveraged simulated neuronal networks to understand the fundamentals of

information processing in the brain. Traditionally access to HPC hardware has been

limited to large universities and governmental groups. However, Moore’s Law has re-

sulted in computing technology increasing in speed and at the same time decreasing

in cost. The adherence of the computing industry to Moore’s Law has resulted in

small research groups the opportunity to procure small to medium-in-size clusters that

traditionally they could not afford.

The democratization of HPC hardware has produced unprecedented heterogene-

ity in both hardware and its use. This hardware diversity poses a significant challenge

to many domain-specific scientists, due to their lack of expertise in high-performance

computing. Most researchers in the physical sciences do not have the necessary ex-

pertise to address high-performance computing bottlenecks and challenges. This lack

of expertise results in scientists restricting their simulations to scaled down models

that do not reflect the actual behavior of the natural processes they are modeled after.

Most domain-specific applications are not written for HPC and do not scale well past

a few nodes. Understanding the resource requirements and performance of models of

increasing fidelity is extremely important if we are to create simulations that accurately

portray their real-life counterparts.
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We address this challenge in Chapter 3, where we analyzed the influence of

HPC resources (i.e., single fat nodes and high-end clusters) on performance and data

generation. Additionally, we focused on the science delivered by GEneral NEural SIm-

ulation System (GENESIS) for increasingly complex models of the brain’s neocortex.

Subsection 3.3.1 showed that there is a discrepancy between the diverse platforms used

for neuronal network simulation. We observed that scientific throughput is greatly

increased by migrating the model to HPC hardware from a network of workstations

(NOW). Traditionally most domain-specific researchers perform their simulation on

single fat nodes or NOW that have access to large quantities of memory and compute

cores. This is because medium and large-scale clusters are not monetarily practical.

Also, most researchers are still reluctant to the idea of remote distributed computing.

Furthermore, in subsection 3.3.2 we explored the effects of model complexity on

scientific throughput and data generation. We observed that model instantiation is the

primary area of concern in simulating neuronal networks, due to the sheer amount of

connections that are generated and propagated by, and to, all neurons in the simulation

during the creation of the network. Increasing the complexity of the models resulted in

super-linear growth in the time needed to instantiate the network. This “cost” resulted

in a decrease in scientific throughput. The cost of instantiating the model poses a

major challenge in the simulation of larger networks. Long network instantiations

make performing systematic parameter optimization on large networks impractical.

More attention needs to be paid to the design of new data structure and algorithms

that enable faster model instantiation.

We believe network instantiation will be exacerbated by the increase in concur-

rency promised by next-generation computing. This challenge will be combined with

the increasing difference in performance between the compute and I/O subsystems. In

next-generation simulation, it will no longer be practical to move huge amounts of data

from the parallel file system of a large-scale HPC cluster to the dedicated resources of

an analysis machine. Instead, analysis will have to occur at the location the data is

generated. Resulting in a lessening of the impact of I/O bottlenecks to the end-to-end
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scientific analysis pipeline. Increased attention must be paid to the design and imple-

mentation of new analysis frameworks. These new frameworks will allow scientist to

perform pre-processing, analysis, and interactive data visualization with minimal to

zero data movement.

In Chapter 4, we proposed the integration of in situ analysis as a solution for

mitigating the impact of network instantiation to scientific throughput. By enabling

monitoring of model behavior and analysis at runtime we allow more science to be

accomplished per execution of the model. This “piggybacking” of more science per

execution increase in scientific throughput. However, transforming an analysis workflow

that is accomplished primarily post-simulation to one that is performed in situ is non-

trivial. In moving to an in situ workflow, we give up our global view of data for one that

is local in both time and space. This reduction in data scope increases the probability

of inaccuracies in analysis results. To address this, we evaluated the accuracy of in-

situ analysis results using three qualitative measures the Wilcoxon Rank Sums test

statistic; Root Mean Squared error and the Coefficient of Determination. We compared

the resulting spectral estimates of both the in-situ approach with the post-simulation

approach. We observed that reducing the amount of data needed to perform analysis,

does not eliminate our ability to achieve qualitatively and quantitatively comparable

scientific insights.

We also study the impact of our analysis in regards to memory consumption. We

conclude that increasing the window size is not “free”, and attention must be paid to

the memory consumption of analyses. For neuronal networks, memory is the primary

resource of contention. It is important that analyses minimize memory use. Our work

highlights the tradeoff between memory utilization and accuracy of the analyses. The

choice of the level of accuracy should be made on a case by case basis. We are well

aware that there will be scenarios in which accuracy will be sacrificed for low memory

overhead and vice versa.

In Chapter 5 we enabled the ability to leverage in situ analysis results to steer

our simulated neuronal network. To this end, we described, developed, and integrated
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a working prototype of a computational steering environment for simulated models

on GENESIS. We demonstrate results that show that our efforts bring us closer to

achieving our goal of transforming the analysis workflow from that is opaque and trial-

and-error based, to one that is transparent and hypothesis-driven.

We defined and describe the major components of our CSE that enables the

steering of model behavior. We explain how our CSE components operate to steer

two major factors in the network, synaptic weights, and simulated external stimulus

current. We show our ability to steer the model by demonstrating two simple, successful

case studies. These case studies are used to show in a straightforward way our ability

to make changes at runtime to influence model behavior. In our first case study, we

show our ability to drive model activity from the alpha wave range (which is the default

frequency range of the model) to the beta wave range. We accomplish this by enabling

the modification of a pulse stimulus current which we inject into the model. We show

the success of our efforts by visualizing the spectral estimate prior to our steering and

after our steering. In our second case study, we demonstrate our ability to steer by

controlling the balance of excitation and inhibition through the modification of the

influence of excitatory and inhibitory synaptic weights. Our goal in this case study

was to demonstrate our ability to increase and decrease excitation in the model. We

depict our success by showing the spike density and inter-spike interval time for a

single neuron type in our model before and after steering. We show that through our

steering efforts we can increase the spike rate of our model decreasing the inter-spike

interval time. Finally, we present a performance characterization of the impact of the

computational steering instrumentation to execution time. We observe approximately

less than 10% overhead when we scale to 256 MPI processes.

6.2 Limitations and Opportunities

This thesis focused on the design of a CSE for GENESIS-based models. We fo-

cused solely on GENESIS, and this might place limitations on the overall impact of this

work. However, GENESIS presents a great example of existing legacy applications. We
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are strongly confident that our generalizations apply to most simulated spike-coupled

neuronal networks and legacy applications executed on HPC. Additionally, our ob-

servations may not be reflective of what would be observed when integrating a CSE

into newer simulation frameworks. The number of steerable parameters in our CSE is

small. Our CSE only allows for two different types of steering. There are numerous

other parameters that we would like to have the ability to steer. Furthermore, in Chap-

ter 4 we only showed the impact of temporality on the accuracy of performing spectral

analysis on our model. We showed that we were able to get both qualitatively and

quantitatively comparable analysis results to those obtain post-simulation, but these

findings may not translate to other types of analyses. More data-intense analyses might

display higher sensitivity to temporality. Lastly, our study of how model complexity

impacts performance only concerned itself with the growth in execution time. Though

this is an important metric, a finer grain study of how complexity impacts compute

and memory usage would make our study stronger. Understanding how design choice

impacts resource utilization for both the GENESIS framework and the model would

be very valuable.

The landscape of HPC hardware is becoming increasingly heterogeneous. Ad-

ditionally, memory hierarchies are also increasing in complexity. New technology such

as field-programmable gate arrays (FPGAs) and general purpose graphical processing

units (GPGPUs) are becoming cheaper. As a consequence of the decreasing cost of

accelerators, accelerators are growing in prevalence in high-end clusters and single fat

node machines. The increasing penetration of accelerators has presented opportunities

for the co-location of analysis on the accelerator alleviating the computational burden

on the CPU. Users are requesting richer analysis pipelines in addition to faster through-

put on their analysis making it imperative to perform analysis on the resources that

yield the fastest results. Studies have shown how accelerators can speed up scientific

simulation and analysis [97, 98, 99]. However, the co-location and coordination of anal-

ysis with scientific simulation is non-trivial, additional research is needed to address
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these challenges. Methods for performing analysis described above may not be appli-

cable to new hardware architectures and memory hierarchies. Future architectures will

require new methods and workflows that are tuned to exploit the hardware.

Opportunities for future work consists of an analysis of how model complexity

impacts resource utilization (i.e., memory and CPU). GENESIS is a CPU only code,

understanding how accelerators (e.g, GPGPUs and Xeon Phi) can be leveraged for the

simulation of neuronal network models is of high value. Additionally, we would like to

understand to what extent does having only a local view of data impact the scope of

analysis we can perform. Also, ideally we would like to integrate data extraction to in-

memory staging, directly into GENESIS. This would avoid the need to write any data

to disk. At the moment our implementation ingests data from disk into our staging

area for analysis. We would also like for collaborative steering. Theoretically this is

possible with our current prototype. However, it has not been confirmed. Currently

analysis performed is “home-grown”, future work will consist of integrating popular

neuroinformatic packages and applications from the community to create a richer anal-

ysis and steering experience. Moreover, we would like to integrate finer grained steering

behavior and study the impact this has on simulation performance. Lastly, we would

like to integrate basic checkpoint-management functionality. Through this work, it

has become clearer that this functionality is a large part of many scientific discovery

methods.

6.3 Broader Impact

This thesis has sought to address the challenge of enabling hypothesis-driven

simulation of neuronal network models through the employment of a working proto-

type of a computational steering environment. Next-generation computing will bring

unprecedented concurrency. This degree of parallelism will heighten the need for tools

that enable collaborative science to be accomplished on HPC. Also, it will increase the

need for tools that allow for users to link several existing domain-specific applications

ad-hoc to create dynamic workflows. To our knowledge, the works presented in this
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thesis are the first of its kind in the design and implementation of a prototype to steer

neuronal network models on GENESIS. Furthermore, in this thesis, we advance the

ongoing discussion of how to efficiently progress the state of knowledge acquisition in

high-performance computing. Our work presents a blueprint for the design of a com-

putational steering environment for neuronal networks. We highlight and attempt to

tackle key challenges in the integration of monitoring and steering.
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