
IMPROVING NUMERICAL REPRODUCIBILITY AND STABILITY

IN LARGE-SCALE NUMERICAL SIMULATIONS ON GPUS

by

Philip Saponaro

A thesis submitted to the Faculty of the University of Delaware in partial fulfillment

of the requirements for the degree of B.S of Computer Science with Distinction.

Spring 2010

Copyright 2010 Philip Saponaro

All Rights Reserved

IMPROVING NUMERICAL REPRODUCIBILITY AND STABILITY

IN LARGE-SCALE NUMERICAL SIMULATIONS ON GPUS

by

Philip Saponaro

Approved: __

Michela Taufer, PhD

Professor in charge of thesis on behalf of the Advisory Committee

Approved: __

Lori Pollock, PhD

Committee member from the Department of Computer Science

Approved: __

Pak-Wing Fok, PhD

Committee member from the Board of Senior Thesis Readers

Approved: __

Ismat Shah, PhD

Chair of the University Committee on Student and Faculty Honors

iii

ACKNOWLEDGMENTS

I wish to thank my advisor, Michela Taufer, and my research partner,

Omar Padron, without whom none of this project would have been possible. I would

also like to thank my friends and family, who have supported me throughout my entire

college career.

This work was supported by the National Science Foundation grant

#0941318 ``CDI-Type I: Bridging the Gap Between Next-Generation High

Performance Hybrid Computers and Physics Based Computational Models for

Quantitative Description of Molecular Recognition'', and grant #0922657 ``MRI:

Acquisition of a Facility for Computational Approaches to Molecular-Scale

Problems''; by the U.S. Army, grant #YIP54723-CS ``Computer-Aided Design of

Drugs on Emerging Hybrid High Performance Computers'', by the Computing

Research Association through the Distributed Research Experiences for

Undergraduates (DREU), and by the NVIDIA University Professor Partnership

Program.

iv

TABLE OF CONTENTS

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

ABSTRACT .. ix

Chapter

1 INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Thesis Contribution .. 2

1.3 Thesis Outline ... 3

2 BACKGROUND .. 4

2.1 GPU Programming ... 4

2.2 Issues with GPU Precision ... 5

3 RELATED WORK .. 6

4 ENERGY DRIFTING IN MD SIMULATIONS .. 7

4.1 MD Code Organization .. 7

4.2 Drifting ... 11

5 REDEFINING FLOATING POINT ARITHMETIC ON GPUS 14

5.1 Composite Floating Point Numbers ... 14

5.2 Redefining Floating Point Operations .. 16

6 EVALUATION OF LIBRARY WITH SYNTHETIC CODES 19

6.1 Synthetic Suite .. 19

6.2 Global Summation .. 19

6.3 Do/Undo ... 25

7 EVALUATION OF LIBRARY WITH MD CODE ... 31

v

7.1 Evaluation Goals .. 31

7.2 Reengineering MD code .. 31

7.3 Molecular Systems and Computing Environment 37

7.4 Accuracy Study ... 37

7.4.1 Accuracy Study – Effect of Library on Total Energy 45

7.5 Performance Study .. 49

8 CONCLUSION AND FUTURE WORK ... 50

8.1 Conclusion .. 50

8.2 Future Work .. 50

vi

LIST OF TABLES

Table 1 Performance measured in MD steps per second for a 988 water, 18

NaI solvent system using different types of precision 13

Table 2 Results of a global summation for an array of 1,000 elements

summed using a single thread on GPU .. 24

Table 3 Results of a global summation for an array of 1,000 elements

summed using 1000 threads on GPU .. 24

Table 4 Results of a global summation for an array of 1,000 elements

summed using 100 threads on GPU .. 24

Table 5 Results of a global summation for an array of 1,000 elements

summed using 10 threads on GPU .. 25

Table 6 Performance of the do/undo program .. 30

Table 7 Performance of library in MD code ... 49

vii

LIST OF FIGURES

Figure 1 Flow chart of main MD code ... 8

Figure 2 Flow chart of single step of the MD simulation, which calculates

the energy due to each interaction .. 9

Figure 3 Flow chart of nonbondwlist, which calculates the energy due to

nonbonded interaction .. 10

Figure 4 Time profiles of the total energy for simulations of the 988 water,

18 NaI system.. ... 11

Figure 5 Data structure of float2 ... 15

Figure 6 Algorithm for composite precision floating point addition 16

Figure 7 Algorithm for composite precision floating point multiplication 17

Figure 9 Distribution of large numbers .. 21

Figure 10 Distribution of small numbers .. 21

Figure 11 General framework of the suite program (a) and one simple

example with * and / (b) ... 26

Figure 12 Accuracy of do/undo program .. 28

Figure 13 Flow chart of main MD code with library,

an extension of Figure 1 ... 34

Figure 14 Flow chart of nonbondwlist, which calculates the energy due to

nonbonded interaction. An extension of Figure 3 35

Figure 15 Pseudo code for pairInteraction function ... 36

Figure 16 Van Der Waal’s energy without adding in error, 988 system 38

Figure 17 Error calculated for Van Der Waal’s energy using library, 988

system ... 39

viii

Figure 18 Corrected Van Der Waal’s energy using library, 988 system 39

Figure 19 Electrostatic energy without adding in error, 988 system 40

Figure 20 Error calculated for electrostatic energy using library, 988 system 41

Figure 21 Corrected Electrostatic energy using library, 988 system 41

Figure 22 Van Der Waal’s energy without adding in error, 3665 system 42

Figure 23 Error calculated for Van Der Waal’s energy using library, 3665

system ... 43

Figure 24 Corrected Van Der Waal’s energy using library, 3665 system 43

Figure 25 Electrostatic energy without adding in error, 3665 system 44

Figure 26 Error calculated for electrostatic energy using library, 3665

system ... 44

Figure 27 Corrected electrostatic energy using library, 3665 system 45

Figure 28 Total Energy, 988 system. a) Without library. b) With library 47

Figure 29 Total Energy, 3665 system. a) Without library. b) With library 48

ix

ABSTRACT

The advent of general purpose graphics processing units (GPGPU’s)

brings about a whole new platform for running numerically intensive applications at

high speeds. Their multi-core architectures enable large degrees of parallelism via a

massively multi-threaded environment. Molecular dynamics (MD) simulations are

particularly well-suited for GPU’s because their computations are easily parallelizable.

Significant performance improvements are observed when single precision floating

point arithmetic is used. However, this performance comes at the cost of accuracy: it is

widely acknowledged that constant-energy (NVE) MD simulations accumulate errors

as the simulation proceeds due to the inherent errors associated with integrators used

for propagating the coordinates. A consequence of this numerical integration is the

drift of potential energy as the simulation proceeds. Double precision arithmetic

partially corrects this drifting but is significantly slower than single precision and is

comparable to CPU performance.

To address this problem, we present development of a library of

mathematical functions that use fast and efficient algorithms to improve numerical

reproducibility and stability of large-scale simulations. We test the library in terms of

its performance and accuracy with a synthetic code that emulates the behavior of MD

codes on GPU, and then we present results of a first integration of our library in a MD

code. These first results show correction of the drifting with a performance much

better than double precision.

1

Chapter 1

INTRODUCTION

1.1 Motivation

Large scale simulations are being moved to parallel platforms such as the

GPU. These simulations can be run at longer time scales with a much better

performance; however, small errors accumulate over time and skew the results.

Molecular Dynamics (MD) simulations are excellent targets for GPU

accelerators since most aspects of MD algorithms are easily parallelizable. Enhancing

MD performance can allow the simulation of longer times and the incorporation of

multiple scale lengths. Constant energy (NVE) dynamics is performed in a closed

environment with a constant number of atoms (N), constant volume (V), and constant

energy (E). With single precision GPUs, constant energy simulations present

significant drift of the energy values for long simulations (of the order of 30

nanoseconds) [7]. So for example, the components of the potential energy, i.e., the

electrostatic and Van der Waals energies, converge towards zero (e.g., the negative

electrostatic energy increases towards zero and the positive Van der Waals energy

decreases towards zero) rather than remaining constant as expected.

The problem is not simply due to the fact that some operations on GPU

are not IEEE compliant [10, 11]. This phenomenon is also observed when IEEE

complaint operations are used on GPUs, and for the same simulations when performed

on double precision GPUs. In the latter case the divergence is very small and in all

cases it is not related to an erroneous implementation of the MD algorithm [6].

2

Furthermore, MD simulations are among other large-scale numerical

simulations that, when performed on parallel systems, suffer from being very sensitive

to cumulative rounding errors. These errors depend both on the implementation of

floating point operations and on the way calculations are performed in parallel: final

results can differ significantly among platforms and number of parallel units used

(threads or processes) [9]. Overall, numerical reproducibility and stability of results

cannot be guaranteed in large-scale simulations. By “reproducibility and stability” we

mean that results of the same simulation running on GPU and CPU lead to the same

scientific conclusions. Over time, these small errors accumulate and skew the final

results; the longer the simulation, the larger the error.

 Because of their parallelism and power, GPUs are able to run longer

simulations in a shorter amount of time than CPUs [13, 1, 8, 7]. However, this comes

at a higher cost in numerical reproducibility and stability. Threads, which are single

lightweight processes that run in parallel, can be scheduled at different times, leading

to different errors, and ultimately, different final results. This, combined with longer

simulations and lack of IEEE compliance in some hardware operations, can lead to

erroneous conclusions.

1.2 Thesis Contribution

The contribution of this thesis is as follows:

 1) We developed a mathematical library, built upon previous literature

[14], by implementing a set of mathematical operations for floating point arithmetic to

improve numerical reproducibility and stability of large-scale parallel simulations on

GPU systems. Our proposed approach uses a new numeric type composed of multiple

3

single precision floating point numbers. We call numbers of this type “composite

precision floating point numbers”.

2) Since MD codes are very complex to deal with, the library validation in

terms of accuracy and performance of our library is performed on a suite of synthetic

codes that simulate the MD behaviors on GPU systems. The suite includes a global

summation that reproduces errors in total energy summations and a do/undo set of

programs that reproduces drifting in single energy computations. We present results

that show the accuracy of composite precision arithmetic is comparable to double

precision, and the performance comparable to single precision.

3) After validating the library with the suite of synthetic codes, we

integrate the library with the MD code. We present preliminary results of the accuracy

and performance of the MD code using composite precision arithmetic.

1.3 Thesis Outline

The paper is organized as follows: Chapter 2 provides a short overview of

GPU programming and accuracy issues in GPU calculations; Chapter 3 discusses the

state of the art in the field; Chapter 4 shows the energy drifting in MD simulations;

Chapter 5 describes our composite floating point arithmetic; Chapter 6 presents the

synthetic suite used for assessing accuracy and performance of our approach; Chapter

7 shows the results of integrating our composite precision with the MD code; and

Chapter 8 concludes the paper and presents future work.

4

Chapter 2

BACKGROUND

2.1 GPU Programming

GPUs are massively parallel multithreaded devices capable of executing a

large number of active threads concurrently. A GPU consists of multiple streaming

multiprocessors, each of which contains multiple scalar processor cores. For example,

NVIDIA’s G80 GPU architecture contains 16 multiprocessors, each of which contains

8 cores, for a total of 128 cores which can handle up to 12,288 active threads in

parallel. In addition, the GPU has several types of memory, most notably the main

device memory (global memory) and the on-chip memory shared between all threads

in a block.

The CUDA language library facilitates the use of GPUs for general

purpose programming by providing a minimal set of extensions to the C programming

language. From the perspective of the CUDA programmer, the GPU is treated as a

coprocessor to the main CPU. A function that executes on the GPU, called a kernel,

consists of multiple threads each executing the same code, but on different data, in a

manner referred to as “single instruction, multiple data” (SIMD). Further, threads can

be grouped into thread blocks, an abstraction that takes advantage of the fact that

threads executing on the same multiprocessor can share data via the on-chip shared

memory, allowing a limited degree of cooperation between threads in the same block.

Finally, since GPU architecture is inherently different from a traditional CPU, code

5

optimization for the GPU involves different approaches, which are described in detail

elsewhere [10, 11].

2.2 Issues with GPU Precision

As noted in the CUDA Programming Guide [10, 11], CUDA implements

single precision floating-point operations e.g., division and square root operations, in

ways that are not IEEE-compliant. Their error, in ULP(Units in the Last Place) is

nonzero. While addition and multiplication are IEEE-compliant, combinations of

multiplication and addition are treated in a nonstandard way that leads to incorrect

rounding and truncation.

6

Chapter 3

RELATED WORK

Numerical reproducibility and stability for chaotic applications was

addressed for massively parallel CPU-based architectures in [9]. The work in [9] does

not address emerging high performance paradigms such as GPU programming and

their novel architectures. An approach similar to ours was theoretically suggested in

[14]. We build our work upon these two contributions with MD simulations as the

targeted large-scale numerically intensive application. Specifically, in [14] a

theoretical method for capturing error in computation on GPU was described, but was

never implemented. We implement and validate these methods on the GPU.

Arbitrary precision mathematical libraries are a valuable approach used in

the 70s and 80s to address the acknowledged need for extended precision in scientific

applications. As outlined in [12, 3, 2], high precision calculations can indeed be

achieved using arbitrary precision libraries and these libraries can solve several

problems, e.g., correct numerically unstable computation when even double precision

is not sufficient. Existing libraries target CPU platforms, not GPUs. Most libraries are

open source, e.g., MPFR C library for multiple precision floating point computations

with correct rounding under LGPL (http://www.mpfr.org/) and the ARPREC

C++/Fortran-90 arbitrary precision package from LBNL (http://crd.lbl.gov/

dhbailey/mpdist/). One critical aspect of these libraries is their complexity. Our

approach targets GPUs, is simpler to implement, and can be easily integrated in

existing CUDA codes.

7

Chapter 4

ENERGY DRIFTING IN MD SIMULATIONS

4.1 MD Code Organization

Molecular Dynamics simulations, being chaotic applications, make perfect

examples of unstable applications when executed on parallel computers. Small

changes during intermediate computations (such as Van der Waals and electrostatic

energies or global summations of the various energies) accumulate to yield

substantially different final results [4].

 The MD code we used for GPUs, which was presented in other work [7],

is organized as follows in Figure 1. The program reads initial input parameters, such

as length of the simulation and output file names, loads any check pointing

information, and then enters the main loop. This main loop performs a single step of

the MD simulation, and then prints the results to a file at regular intervals defined by

the user. After the simulation has completed the number of steps as described in the

input parameters, the program frees any allocated memory and then ends.

 A single step of the MD simulation is composed of calculating energies

due to different types of interactions, seen below in Figure 2. There are five types of

interactions: bond, angle, dihedral, Van Der Waal’s, and electrostatic. The energy due

to each interaction is calculated, stored, and are later summed together to give the total

energy of the simulation. In this thesis, we consider the non-bond energy (ie Van Der

Waal’s and electrostatic energies). Figure 3 shows the high level view of calculating

the non-bond energy.

8

Figure 1 Flow chart of main MD code

9

Figure 2 Flow chart of single step of the MD simulation, which calculates the

energy due to each interaction

10

Figure 3 Flow chart of nonbondwlist, which calculates the energy due to

nonbonded interaction

11

4.2 Drifting

In constant energy MD simulations, the total energy of the simulation

should stay the same. However, we observe that the total energy “drifts” over time. By

drifting we mean the total energy slowly increases or decreases over time, instead of

staying constant.

 To study the energy behavior of NVE MD simulations on GPUs, we

examined previous work in which the total energy was measured over the course of a

30 ns simulation for the 988 water system using the MD code for GPUs. A time step

size of 1 fs was used, so this test simulation is 30 million MD steps long. The results

are shown below in Figure 4.

Figure 4 Time profiles of the total energy for simulations of the 988 water, 18

NaI system. Results are shown using default single precision, single

precision with correction for nonstandard rounding and truncation,

and double precision.

12

Four profiles with different types of precision (single and double

precision) and different implementations of the single precision operations sum,

multiplication, and division, are shown. The first (single precision with +, *, and /)

demonstrates that the use of default single precision arithmetic leads to a very large

drift over the 30 ns simulation. CUDA implements these operations in ways that are

not IEEE-compliant. The second (single precision with _fadd_rn, _fmul_rn, and

_fdividef) still demonstrates the same drifting despite addition and multiplication

which are IEEE compliant. The third (single precision with _fadd_rn, _fmul_rn, and

_fdiv_rn) exhibits drifting similar to the other two profiles despite the introduction of

an IEEE-compliant division, suggesting that the cause of drifting goes beyond the

implementation of single operations. The fourth profile (double precision) in Figure 4

is the result of using double precision arithmetic and shows no significant drift, except

for the very small amount expected normally in long NVE simulations.

For longer simulations, longer than 100 ns, even double precision GPUs

start showing a drifting behavior. Previous work shows the drifting to the lack in

numerical reproducibility and stability already observed in conventional distributed

systems such as clusters [9]. Here, the effect is significantly enhanced since the

simulation is effectively performed on a ”cluster” of greater than 32 or 64 cores

(processors).

Using double precision does not completely eliminate drifting on current

GPU systems as we noted in our previous work [7]. Moreover, double precision

arithmetic dramatically reduces performance to levels comparable to that of CPUs (12

times slower), as shown in Table 1. Therefore, simply using double precision is not an

acceptable solution.

13

Table 1 Performance measured in MD steps per second for a 988 water, 18

NaI solvent system using different types of precision

MD code Platform Precision steps/s

CHARMM-GPU

CHARMM-GPU

CHARMM-GPU

CHARMM-GPU

CHARMM CPU

CHARMM CPU

CHARMM CPU

CHARMM CPU

Tesla S1070

Tesla S1070

Tesla S1070

Tesla S1070

1 CPU

2 CPUs

4 CPUs

8 CPUs

Doub. Prec., +, *, /

Sing. Prec., +, *, /

Sing. Prec.,faddrn,fmulrn, /

Sing. Prec.,faddrn,fmulrn,fdivrn

35.23

377.92

423.54

129.87

34.34

64.95

116.62

186.05

14

Chapter 5

REDEFINING FLOATING POINT ARITHMETIC ON GPUS

5.1 Composite Floating Point Numbers

The major flaw in traditional floating point numbers is that an accurate

representation of values with many significant bits is not possible as the less

significant bits may be truncated. However, if the value considered has “clusters” of

contiguous significant bits with a large number of zeros separating them, a more

accurate representation can be achieved with separate floating point numbers

(intuitively one for each cluster, although not necessarily) for which each cluster of

bits corresponds to a portion of the mantissa, which are the bits that contain the

significant digits of the number. Note that each cluster is significant in different orders

of magnitude. We propose to represent a value as the sum of two floating point

numbers of arbitrarily varying orders of magnitude. This allows us to capture the

significant parts of the value for numbers that exhibit these properties and affords

scientists a better compromise between performance and reliability on GPU systems.

In particular, we propose that numerical reproducibility and stability of large-scale

simulations are achievable on GPUs with the use of composite precision floating point

arithmetic. The composite precision floating point number is a data structure

consisting of two single precision floating point numbers, value and error. The value

of a floating point number, n, is expressed as the sum of the two floats, with nerror <<

nvalue:

n = nvalue + nerror

15

When calculating the sum or product of two numbers, the approximation

of the error in their result is much lower in magnitude when compared to the result

itself. Both result components can be preserved by representing the final result as the

sum of the truncated result and the approximation of its error. In other words, we can

think of the value component of the number as the result of a calculation and the error

component as an approximation of the error carried in the calculation. For this

representation on GPUs, we used the float2 data type that is available in CUDA

(Figure 5).

Figure 5 Data structure of float2

Errors in each calculation are carried through operations on GPUs. The conversion

from float2 structures back to float structures is a simple matter of adding the value

and error terms. In large-scale simulations, we observe how errors accumulate so that

when converting float2 back to float, the final result does not neglect the error

component. The individual errors that would have been truncated under traditional

single precision floating point operations add up and ultimately impact the final

reported value, resulting in more stable numerics.

16

5.2 Redefining Floating Point Operations

The algorithms used for performing composite precision floating point

addition, multiplication, and division are defined in terms of multiple single precision

additions, subtractions, and multiplications as well as a single precision floating point

reciprocal. These algorithms are referred to as being “self compensating” - they

perform the calculation as well as keep track of inherent error. The algorithm used for

the addition and multiplication are based on algorithms proposed in [14, 9].

The implementation of the composite precision floating point addition is

presented in Figure 6 and requires four single precision additions and four

subtractions. The subtraction is implemented the same as the addition, with the

exception that the signs of y2.value and y2.error are reversed before performing the

sum. The error equation involves calculating the lower bits of the sum.

Figure 6 Algorithm for composite precision floating point addition

17

For the composite precision floating point multiplication presented in

Figure 7, each operand is expressed as the sum of their value and error components

and the resulting product is symbolically expanded into a sum of four terms. The first

is the value stored in z2.value and the sum of the others is stored in z2.error. For this

multiplication, four single precision multiplications and two single precision addition

operations are required.

Figure 7 Algorithm for composite precision floating point multiplication

The composite precision floating point division implementation in Figure

8 represents the ratio of two numbers as the product of the dividend and the reciprocal

of the divisor. The problem of calculating a reciprocal is, in turn, posed as a root

finding problem: Given a floating point number a, its reciprocal is another floating

point number b such that b
-1

 − a = 0. The process of finding the root of this function is

based on Karps method, an extension of the Newton-Raphson method. Our algorithm,

presented in Figure 8, extends the algorithm in [14].

18

Figure 8 Algorithm for composite precision floating point division

19

Chapter 6

EVALUATION OF LIBRARY WITH SYNTHETIC CODES

6.1 Synthetic Suite

Errors within the MD simulation are caused by two main parts. The first is

the summation of all different energies. The second source of error comes from

calculating the energies themselves. To validate the composite precision library, we

need to verify that it does capture the correct amount of error over many performed

calculations.

MD codes are very complex, thus we developed a suite of synthetic codes

that reproduce rounding errors in MD. The suite is comprised of two programs

emulating iterative calculations of energy terms with their energy fluctuations typical

of MD simulations and the observed drifting. The first program is a global summation

program that reproduces errors in total energy summations in MD. The second

program is a do / undo program that produces drifting in single energy computations

in MD. The do/undo is done by performing an operation on a value, and then applying

its inverse (e.g., multiplication and division, or self multiplication and sqrt). The

truncation of intermediate results produce the drifting behavior observed.

6.2 Global Summation

The global summation program calculates the sum of a large set of

numbers with a high variance in magnitude. Since computers can only store a fixed

20

amount of significant digits, when adding very small numbers with very large

numbers, the small numbers may be neglected. In other words, the small number

contributes too small a portion to the result and the number of significant digits needed

to represent it is more than what is available. The final result is very sensitive to the

order in which the numbers are summed.

To assess how our composite precision floating point arithmetic library

improves the numerical reproducibility and stability in a global summation

calculation, we randomly generated an array of 1000 numbers filled with very large

O(10
6
) and very small O(10

−6
) values. The distribution of values was purposefully

made symmetric: whenever we generated a number, the next number generated was its

negative. This gave us a numerical benchmark from which to judge the effectiveness

of our algorithms: the advantage of knowing, a priori, the correct sum to be zero.

Figures 9 and 10 show the distribution of the numbers used for the validation: Figure 9

shows the numbers with absolute value larger than 1 (up to 10
6
) and Figure 10 shows

the numbers with absolute value smaller than 1 (on the order of 10
−6

).

21

Figure 9 Distribution of large numbers

Figure 10 Distribution of small numbers

22

The sum of the array was computed multiple times on a GPU, each time

with a different sorting order. We considered a sum in increasing order, a sum in

decreasing order, and four independent trials in which the array was shuffled into

random configurations. We summed the array using different representations of the

numbers, i.e., single (float) and double precision as well as our software composite

precision (float2), and with different numbers of threads. The tests were performed on

one GPU of the Tesla S1070 system. Table 2 shows results of our global summation

for an array of 1,000 elements summed using a single thread on GPU. In other words,

the sum was performed sequentially by a single thread on the GPU. Table 3 shows

results of our global summation for the same array of 1,000 elements summed using

1,000 threads on GPU. In this case, the summation is done by the CPU when the array

values are returned to the host. Table 4 and Table 5 show results of our global

summation for the same array of 1,000 elements summed using 100 threads on GPU

and 10 threads on GPU, respectively. In this case, the summations were partially

performed on GPU and partially on CPU.

In all cases, because of the way the array of values is built, we expected

the result to be zero. However, in only a few cases was this actually observed, even

with double precision. If compared with the float representation (single precision), our

composite representation is able to correct the results significantly (i.e., between 4 and

5 orders of magnitude) and provides results closer to the double precision solution

than the single precision representation. On average, our float2 implementation is

having errors on the order of 1e − 5 to 1e − 7, which are far better than using regular

floats. Moreover, the standard deviation for float2 is also much lower (i.e., the

standard deviation for double is on the order of 1e−8 to 1e−9, for float2 of 1e−4 to

23

1e−5, and for float of 1e+0). Thus, our implementation is getting more stable results

with tighter bounds on the error than regular floating point numbers.

24

Table 2 Results of a global summation for an array of 1,000 elements

summed using a single thread on GPU

Sorting float double float2

Unsorted, shuffled (1)

Unsorted, shuffled (2)

Unsorted, shuffled (3)

Unsorted, shuffled (4)

Sorted descending

Sorted ascending

-4.8750e+00

-2.1250e+00

1.6250e+00

-5.0000e-01

-7.0000e+00

7.0000e+00

6.1521e-09

6.8585e-10

8.4459e-09

-1.5134e-09

9.3132e-09

-9.3132e-09

-1.9423e-05

5.2670e-05

-4.3361e-05

1.1444e-05

0.0000e+00

0.0000e+00

Table 3 Results of a global summation for an array of 1,000 elements

summed using 1000 threads on GPU

Sorting float double float2

Unsorted, shuffled (1)

Unsorted, shuffled (2)

Unsorted, shuffled (3)

Unsorted, shuffled (4)

Sorted descending

Sorted ascending

-4.8750e+00

-2.1250e+00

1.6250e+00

-5.0000e-01

-7.0000e+00

7.0000e+00

6.1521e-09

6.8585e-10

8.4459e-09

-1.5134e-09

9.3132e-09

-9.3132e-09

-1.9423e-05

5.2670e-05

-4.3361e-05

1.1444e-05

0.0000e+00

0.0000e+00

Table 4 Results of a global summation for an array of 1,000 elements

summed using 100 threads on GPU

Sorting float double float2

Unsorted, shuffled (1)

Unsorted, shuffled (2)

Unsorted, shuffled (3)

Unsorted, shuffled (4)

Sorted descending

Sorted ascending

-2.1250e+00

0.0000e+00

1.0000e+00

7.5000e-01

-3.0000e+00

3.0000e+00

-5.1223e-09

3.1432e-09

-1.3970e-09

-1.8626e-09

0.0000e+00

0.0000e+00

0.0000e+00

6.9618e-05

7.6294e-05

-7.6294e-06

0.0000e+00

0.0000e+00

25

Table 5 Results of a global summation for an array of 1,000 elements

summed using 10 threads on GPU

Sorting float double float2

Unsorted, shuffled (1)

Unsorted, shuffled (2)

Unsorted, shuffled (3)

Unsorted, shuffled (4)

Sorted descending

Sorted ascending

-1.0000e+00

-6.2500e-01

-7.5000e-01

5.0000e-01

8.0000e+00

-8.0000e+00

0.0000e+00

1.2515e-09

-4.6566e-10

-1.8626e-09

4.4703e-08

-4.4703e-08

-1.2207e-04

1.2207e-04

1.2207e-04

-9.1553e-05

3.0518e-04

-3.0518e-04

6.3 Do/Undo

In the do/undo program, we consider multiple kernels to handle different

operations and their inverses. The program consist of the iterative execution of an

operation followed by its inverse using random numbers, e.g., the randomly generated

operand x (or array of operands X) is iteratively multiplied and divided by a series of

randomly generated operands y (or an array of randomly generated operands Y). The

randomly generated operands x and y (or array of operands X and Y) can be either

positive or negative and are randomly chosen within an interval whose maximum

absolute value is defined by a seed. Figure 11(a) shows the general program

framework and Figure 11(b) shows an example of our synthetic program for the

multiplication and division. The randomly generated values help to emulate the energy

fluctuations in MD simulations.

26

Figure 11 General framework of the suite program (a) and one simple

example with * and / (b)

For our assessment, we generate a random x, then repeatedly multiply and

divide it by a random y each iteration. We perform this computation with 1,000,000

iterations and we considered different ranges of x and y:

• Trial 1: x = (1, 100), y = (1, 100)

 - Figures 12(a) and 12(b)

• Trial 2: x = (1e5, 1e6), y = (1e−6, 1e−5)

 - Figures 12(c) and 12(d)

• Trial 3: x = (1e−6, 1e−5), y = (1e5, 1e6)

 - Figures 12(e) and 12(f)

We performed our tests on one GPU of the Tesla S1070 system with single and double

precision as well as with our composite precision. We measured both accuracy (in

terms of drifting as the simulations evolve) and performance (in terms of the total time

needed to execute the 1,000,000 iterations on the GPU). The iterations were performed

using a single thread. We also considered two different scenarios: in a first scenario x

27

was multiplied by y and then divided; in a second scenario x was divided by y and

then multiplied.

 Figure 12 shows the results and associated drifting. Independently from

the range of the x and y values and from the order of the operations (multiplication

followed by division or vice versa), for single precision computations, we observed

the same drifting as in MD simulations shown in Figure 4. The linear growth of the

do/undo single precision errors is caused by the lack of bits to represent the real

number. The representation is simply cut off at a certain number of digits, and thus the

errors are always in the same direction. For double precision, we do not observe any

drifting, probably because of the too small number of iterations and the larger number

of bits used to represent the values. In all cases, our composite precision significantly

corrects the drifting. However, our composite precision multiplication and division

operations are still not commutative; indeed, there are different results depending on

the ordering of these operations. This is caused by the error calculations in the

multiplication and division codes. To find the error for divisions, we calculate the

difference between the initial parameter x, and x after one iteration of y*x/y. For

multiplications, on the other hand, we multiply the errors together from the previous

run. Since the division code scales down the error, while the multiplication scales up

the error, we get different results depending on the ordering. Note that the error itself

has errors, and therefore scaling in different directions can still affect the final result.

28

Figure 12 Accuracy of do/undo program

29

An important aspect of our approach is the cost of improving numerical

reproducibility and stability. For the three trials in Figure 12, we measured and

compared the time to run the 1,000,000 iterations with different precision, i.e., single

precision, double precision, and composite precision. The results of these tests are

shown in Table 6. As expected, for our synthetic do/undo programs, double precision

is, on average, 182% slower than single precision floating point arithmetic. This is

even worse, as seen in Figure 1, in actual applications such as our MD codes. The

prohibitive cost of double precision computations (three times slower than single

precision calculation) does not justify the associated accuracy for routine scientific

applications. On the other hand, the reduced computational efficiency due to our

composite precision is marginal (7% in average) while the accuracy is comparable to

the double precision accuracy, demonstrating that our approach allows us to combine

double precision accuracy with single precision performance. The values in the table

are average values and each test was repeated three times.

30

Table 6 Performance of the do/undo program

Trial 1 Op1 = *, Op2 = / Op1 = /, Op2 = *

 Avg(s) Stdv(s) Avg(s) Stdv(s)

Single Precision

Double Precision

Composite Precision

15.4

44.2

16.71

0.04

0.26

0.03

15.95

44.25

16.97

0.04

0.21

0.02

Trial 2 Op1 = *, Op2 = / Op1 = /, Op2 = *

 Avg(s) Stdv(s) Avg(s) Stdv(s)

Single Precision

Double Precision

Composite Precision

15.4

44.16

16.71

0.03

0.08

0.04

15.95

44.10

16.96

0.04

0.02

0.01

Trial 3 Op1 = *, Op2 = / Op1 = /, Op2 = *

 Avg(s) Stdv(s) Avg(s) Stdv(s)

Single Precision

Double Precision

Composite Precision

15.4

44.06

16.74

0.03

0.01

0.01

15.94

44.06

16.94

0.04

0.09

0.03

31

Chapter 7

EVALUATION OF LIBRARY WITH MD CODE

7.1 Evaluation Goals

By integrating the library into the MD code, we expect to evaluate the

library’s effect on the drifting described in section 4.2. We expect the energy values to

become more constant, with a performance better than double precision.

7.2 Reengineering MD code

Integrating the library into the MD code is not as simple as replacing

regular mathematical operations with function calls. Since the library requires we store

both the value and error of a single-precision floating point number, we need to

allocate additional space in memory for the error. Moreover, the library functions take

float2 numbers and return float2 numbers; therefore, we must convert regular floating

point numbers to float2 composite precision numbers. Finally, at the end of the

program, we need to add in the error to the printed results.

The process of integrating the library with the MD code is shown in

Figures 13-15. The underlined red text designates what was added or changed in the

MD code for the library to work.

In Figure 13, we see that the main flow of the MD code stays the same;

however, there are two main changes to the program. First, for each variable, v, that is

involved with calculating the energy (the values we are trying to fix), we add a new

variable, v_err, and allocate space for it. At the end of the program, we free that

32

memory. Secondly, when the program is printing the results, we must add the error

variables into the results. This is as easy as it sounds; for each energy that we are

printing, we can simply say energy_tot = energy_val + energy_err.

None of the functions described in Figures 1-3 are changed; the flow

remains the same. The majority of changes in the MD code are within the function

nonbondwlist, which calculates the energies due to nonbonded interactions (Van der

Waal’s and electrostatic energies). The changes to that function can be seen in Figure

14. The error variables must be passed as parameters, which are then passed down into

the pairInteraction function. The results of the calculations are then stored in the

globalA array (acceleration array), with the values and associated errors stored

separately.

The pairInteraction function is what actually calculates the electrostatic

energy, the Van Der Waal’s energy, and acceleration of each atom. The changes to

pairInteraction are shown in Figure 15. For each single precision floating point

variable x, we must create a corresponding float2 variable so that the library functions

can work. So, we have written two functions to easily convert floating point numbers

to float2. The first takes two floating point numbers – a value and an error – and

combines them into one float2 variable. The latter takes a single floating point number

and returns a float2. Note that since a single precision floating point number is not

perfectly accurate, there is an associated error that is calculated and put into the error

slot. The rest of the function is converted in a straightforward way – each operation is

replaced with the corresponding library function call. For example, x + y is replaced

with my_add(x2,y2). Finally, the only difference at the end of the function is that we

33

must remember to store the error using the space allocated at the very beginning of the

program.

34

Figure 13 Flow chart of main MD code with library, an extension of Figure 1

35

Figure 14 Flow chart of nonbondwlist, which calculates the energy due to

nonbonded interaction. An extension of Figure 3

36

Figure 15 Pseudo code for pairInteraction function

37

7.3 Molecular Systems and Computing Environment

For the study of accuracy and performance, we conducted tests on two

different sized molecular systems. The first system consists of 988 water molecules,

18 Na+ ions, and 18 I− ions.. The second, larger system consists of 3665 water

molecules, 70 Na+ ions, and 70 I− ions. Both tests were run on a GPU of Nvidia’s

Tesla S1070 system.

The 988 system was chosen because it is the same system used in 4.2 to

describe the drifting. The 3665 system was chosen to have another, larger system for

comparison.

7.4 Accuracy Study

To assess how our composite precision floating point arithmetic library

improves the numerical reproducibility and stability in the actual MD code, we tested

how our library affected the electrostatic and Van Der Waal’s energies. We expect that

with single precision, as described in section 4.2, the energies will drift instead of

staying constant. However, when we apply our library, we expect the values to be

constant.

All simulation tests were run for 10,000,000 MD steps, with each MD

time step being 1 fs. Therefore the total MD simulation time for each run is 10ns.

Below are the results from the 988 system.

Figures 16-18 show the Van Der Waal’s energy. Figure 16 shows the

energy without using the library. Figure 17 shows the error calculated by the library,

and Figure 18 shows the corrected energy using the library. Notice that the Van Der

38

Waal’s energy drifts about 100 from where it started, and is moving towards zero. The

error calculated at each step corresponds to the amount the energy has drifted since the

beginning. After adding this error to the original value, the energy remains constant

over the 10ns simulation.

Figure 16 Van Der Waal’s energy without adding in error, 988 system

39

Figure 17 Error calculated for Van Der Waal’s energy using library, 988

system

Figure 18 Corrected Van Der Waal’s energy using library, 988 system

40

Figures 19-21 show the electrostatic energy. Figure 19 shows the energy

without using the library, Figure 20 shows the error calculated by the library, and

Figure 21 shows the corrected energy using the library. Again, the energy is drifting

towards zero (notice the values are negative in this case). After adding in the error, we

can see from 3ns to 10ns the energy is constant. However, from 0 to 3ns, the amount

of error calculated is too high.

Figure 19 Electrostatic energy without adding in error, 988 system

41

Figure 20 Error calculated for electrostatic energy using library, 988 system

Figure 21 Corrected Electrostatic energy using library, 988 system

Next, we will examine the 3665 system.

Figures 22-24 show the Van Der Waal’s energy. Even in this larger

system, the energy is still drifting towards zero. After adding in the error, we can see

42

the energy remain constant over the entire simulation, which verifies what we

examined earlier in the smaller system.

Figure 22 Van Der Waal’s energy without adding in error, 3665 system

43

Figure 23 Error calculated for Van Der Waal’s energy using library, 3665

system

Figure 24 Corrected Van Der Waal’s energy using library, 3665 system

44

Figures 25-27 show the electrostatic energy. The energy is still drifting

towards zero, as in the smaller system (notice the values are negative). And again,

after adding in the error, we can see from 3ns to 10ns the energy is constant, and from

0-3ns the error calculated is too high. So this confirms what we observed in the

smaller system.

Figure 25 Electrostatic energy without adding in error, 3665 system

Figure 26 Error calculated for electrostatic energy using library, 3665 system

45

Figure 27 Corrected electrostatic energy using library, 3665 system

We observed that in both 988 and 3665 systems, the Van Der Waal’s

energy was corrected by the library. However, in both cases there is an anomaly in the

error calculated around 3ns. And in both electrostatic calculations, we see that from 0-

3ns the error calculated is too high. These anomalies could be explained by recording

error that is too high for a few of the atoms, which could be caused by errors in the

boundary condition calculation between those atoms. Or the anomalies could simply

be the result of mistakes made when integrating the library. In either case, more

testing could be done to find the cause, and until the cause is found the error can be

scaled down for the offending atoms.

7.4.1 Accuracy Study – Effect of Library on Total Energy

Below are Figures 28 and 29, which show the results of using the

corrected Van Der Waal’s and electrostatic energies in the 988 and 3665 systems,

respectively.

46

Within the 988 system, we can see that the total energy drifts without the

library (single precision). However, when the Van Der Waal’s and electrostatic

energies are corrected, we can see the total energy looks very similar to the

electrostatic graph seen in Figure 21. This is due to the fact that the electrostatic

energy is the largest value, and thus contributes the most to the total energy.

Within the 3665 system, we see a similar pattern. The total energy clearly

is drifting without the library. And when we use the corrected Van Der Waal’s and

electrostatic energies, the total energy follows the electrostatic graph seen in Figure

27. Notice that for both the 988 and 3665 systems, the total energy appears to be

constant after about 3ns.

47

Figure 28 Total Energy, 988 system. a) Without library. b) With library

48

Figure 29 Total Energy, 3665 system. a) Without library. b) With library

49

7.5 Performance Study

We measure the cost of using the composite precision library with the MD

code compared to using single or double precision. To test the performance, we ran

simulations of both the large and small systems with single precision, double

precision, and composite precision. The length of the simulations was 100,000 MD

steps (.1ns). Below is a table summarizing the results. Note that the current

implementation of the code does not include any optimization and thus the

performance results are preliminary,

Table 7 Performance of library in MD code

Molecular System

Size

Precision Total time MD steps/sec

3000 atoms Single 250.8 400

3000 atoms Double 2742.7 36.46

3000 atoms Composite 925.4 111.1

11135 atoms Single 672.3 148.7

11135 atoms Double 5310.4 18.8

11135 atoms Composite 2043.9 48.9

In the case of the smaller system, double precision is 10.97 times slower

than single precision, while the composite precision is 3.60 times slower. In the larger

system, double precision is 7.90 times slower than single precision, while the

composite precision is 3.04 times slower. In both cases, although the composite

precision library is slower than single precision, it always outperforms double

precision.

50

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this thesis we show how numerical reproducibility and stability of

large-scale numerical simulations with chaotic behavior such as MD simulations is

still an open problem when these simulations are performed on multi-threaded systems

such as GPUs. We propose to solve this problem using composite precision floating

point arithmetic. In particular, we present the implementation of a composite precision

floating point library and we show how our library allows scientists to successfully

combine double precision accuracy with single precision performance for a suite of

synthetic codes emulating the behavior of MD simulations on GPU systems. We also

show how the library can be integrated and used within real applications to improve

numerical reproducibility and stability.

8.2 Future Work

As discussed in chapter 6.1, integrating the library into an application is

not trivial. New variables must be created and allocated memory, while operations

must be replaced with function calls to the library. The manual integration of the

composite precision library is error-prone and tedious; however the process can be

described in terms of a pattern that can be automated. Future work includes the design

and implementation of a parser that identifies code sections in which the composite

51

precision can be beneficial as well as a converter that integrates the library

automatically. This converter should automatically optimize the code for performance.

52

References

[1] J. A. Anderson, C. D. Lorenz, and A. Travesset. General Purpose Molecular

Dynamics Simulations Fully Implemented on Graphics Processing Units. J.

Comput. Phys., 227:5342–5359, 2008.

[2] D. H. Bailey. High-precision Floating-point Arithmetic in Scientific Computing.

IEEE Computing in Science and Engineering, pages 54–61, 2005.

[3] D. H. Bailey, D. Broadhurst, Y. Hida, X. S. Li, and B. Thompson. High

Performance Computing Meets Experimental Mathematics. In

Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, pages 1–12, 2002.

[4] M. Braxenthaler, R. Unger, D. Auerbach, J. Given, and J. Moult. Chaos in Protein

Dynamics. Proteins, 29:417425, 1997.

[5] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus. CHARMM: A Program for Macromolecular Energy,

Minimization, and Dynamics Calculations. J. Comp. Chem., 4:187–217, 1983.

[6] J. Davis, B. Bauer, M. Taufer, and S. Patel. Molecular Dynamics Simulations of

Aqueous Ions at the Liquid-Vapor Interface Accelerated Using Graphics

Processors. In Submitted to Review, 2009.

[7] J. E. Davis, A. Ozsoy, S. Patel, and M. Taufer. Towards Large-Scale Molecular

Dynamics Simulations on Graphics Processors. In BICoB ’09: Proceedings of

the 1st International Conference on Bioinformatics and Computational

Biology, pages 176–186, 2009.

53

[8] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand, A. L.

Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande. Accelerating molecular

dynamic simulation on graphics processor units. J. Comput. Chem., 30:864–

872, 2009.

[9] Y. He and C. H. Q. Ding. Using Accurate Arithmetics to Improve Numerical

Reproducibility and Stability in Parallel Applications. In ICS ’00: Proceedings

of the 14th international conference on Supercomputing, 2000.

[10] H. Nguyen. GPU Gems 3. 2008.

[11] NVIDIA. NVIDIA CUDA - Programming Language. 2008.

[12] D. M. Smith. Using Multiple-precision Arithmetic. Computing

 in Science and Engineering, 5:88 – 93, 2003.

[13] J. Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco,

 and K. Schulten. AcceleratingMolecular Modeling Applications

 with Graphics Processors. J. Comput. Chem., 28:2618–

 2640, 2007.

[14] A. Thall. Extended Precision Floaing Point Numbers for

 GPU Computation. In Poster at ACM SIGGRAPH, Annual

 Conference on Computer Graphics, 2006.

