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Abstract
This expository paper is concerned with the direct integral formulations

for boundary value problems of the Helmholtz equation. We discuss unique
solvability for the corresponding boundary integral equations and its relations
to the interior eigenvalue value problems of the Laplacian. Based on the inte-
gral representations, we study the asymptotic behaviors of the solutions to the
boundary value problems when the wave number tends to zero. We arrive at
the asymptotic expansions for the solutions, and show that in all the cases, the
leading terms in the expansions are always the corresponding potentials for the
Laplacian. Our integral equation procedures developed here are general enough
and can be adapted for treating similar low frequency scattering problems.

1 Boundary value problems

Let Ω be a bounded domain in IRn, n = 2, 3 with a smooth boundary Γ and Ωc :=
IRn \ Ω be its exterior domain. We begin with the Helmholtz equation

∆u+ k2u = 0 in Ω (or Ωc) , (1)
∗Correspondence addressee
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where ∆ = ∇2 denotes the standard Laplace operator in IR2, n = 2, 3. This equation
arises in connection with the wave propagation. In acoustics, k := ω/c denotes the
complex wave number, and u corresponds to the acoustic pressure field. Here ω and
c are the frequency and the speed of sound. In order to avoid resonance states, we
assume that Im k ≥ 0. We are interested in the solution of (1), when the wave number
k is small, the low frequency acoustics. We present here some results concerning the
low frequency behavior of the solution of (1) developed in [9] and in the recent work
[10]. These results are obtained by using boundary integral equation methods. The
solution behaviors depend on the specific boundary conditions to be considered : the
Dirichlet boundary condition

u|Γ = ϕ, (2)

or the Neumann boundary condition:

∂u

∂n
|Γ = ψ. (3)

Here and in the sequel, ∂/∂n always denotes the normal derivative with respect to
the unit outward normal to Γ. The functions ϕ and ψ are given data. In acoustic
scattering, (2) and (3) are the conditions for modeling the situations for soft and hard
scatterers, respectively.

For the equation (1) in the exterior domain Ωc, one requires the so–called Som-
merfeld radiation conditions,

u(x) = O(|x|−(n−1)/2) and
∂u

∂ |x|
(x)− iku(x) = o

(
|x|−(n−1)/2

)
, (4)

where i is the imaginary unit.( see, e.g., [5]). These conditions select the outgoing
waves; they are needed for uniqueness of the exterior Dirichlet and Neumann prob-
lems. The pointwise condition (4) can be replaced by a more appropriate and weaker
version of the radiation condition given by F.Rellich,

lim
R→∞

∫
|x|=R

|∂u
∂n

(x)− iku|2ds = 0 . (5)

This form is to be used in the variational formulation of exterior boundary value
problems.

In this paper we are confined to the following four classes of boundary value
problems:

The interior Dirichlet problem (IDP), (1) in Ω, (2),
The exterior Dirichlet problem (EDP), (1) in Ωc, (2), (4),

The interior Neumann problem (INP), (1) in Ω, (3),
The exterior Neumann problem (ENP), (1) in Ωc, (3), (4).
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In the next section, we consider the boundary potentials associated with the equation
(1) and discuss the reductions of the these boundary value problems to the boundary
integral equations. Section 3 contains four basic boundary integral operators. We
introduce the Calderon projectors and give the basic mapping properties. The solv-
abilities of the boundary integral equations will also be discussed. These are essential
and can be served as the mathematical foundations for the boundary element meth-
ods. Our main results concerning the low frequency behaviors of the solutions to the
boundary value problems are presented in Section 4.

2 Boundary integral operators

To reduce the boundary value problems to boundary integral equations, we begin
with the Green representation for the solution of (1)

u(x) = ±
{∫

Γ
Ek(x, y)

∂u

∂n
(y)dsy −

∫
Γ
u(y)

∂Ek(x, y)

∂ny
dsy

}

:= ±
{
Vk
∂u

∂n
(x)−Wku(x)

}
for all x ∈

{
Ω,
Ωc,

(6)

where the ± sign corresponds to the interior and the exterior domain, respectively.
Here, Vk and Wk are referred to as the single- and double- layer potentials, and
Ek(x, y) is the fundamental solution of the Helmholtz equation defined by

Ek(x, y) =


i

4
H

(1)
0 (k|x− y|) in IR2,

eik|x−y|

4π|x− y|
in IR3,

(7)

where H
(1)
0 denotes the modified Bessel function of the first kind. We note that for

n = 2, Ek(x, y) has a branch point for IC 3 k → 0. In the representation formula (6),

the traces µ± := u±|Γ and σ± := ∂u
∂n

±|Γ are the Cauchy data of the solution u on Γ.
We have denoted by v+ and v− the restriction v|Γ from Ω and Ωc, respectively. These
Cauchy data are related by the boundary integral equations:

(
µ±

σ±

)
=


1

2
I ∓Kk ±Vk

±Dk
1

2
I ±K

′

k


(
µ±

σ±

)
on Γ. (8)

Here Vk, Kk, Kk, Dk are the four basic boundary integral operators defined by

Vkσ(x) :=
∫
Γ
Ek(x, y)σ(y)dsy , Kkµ(x) :=

∫
Γ

∂

∂ny
Ek(x, y)µ(y)dsy,

K ′
kσ(x) :=

∫
Γ

∂

∂nx
Ek(x, y)σ(y)dsy , Dkµ(x) := − ∂

∂nx

∫
Γ

∂

∂ny
Ek(x, y)µ(y)dsy,
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and these are the boundary potentials. The matrices of boundary integral operators

C± :=


1

2
I ∓Kk ±Vk

±Dk
1

2
I ±K

′

k

 (9)

are referred to as the Calderon projectors with respect to the domain Ω and Ωc respec-
tively. The Calderon projector maps the Cauchy data into itself. We note that the
solution u in the domain Ω (or Ωc) is completely determined from the representation
(6), provided one knows its Cauchy data on the boundary Γ. In the classical Hölder
function spaces, the boundary integral operators in (9) have the mapping properties
as follows.

Theorem 2.1 Let Γ ∈ C2 and 0 < α < 1, a fixed constant. Then the boundary
integral operators in (9) define continuous mappings in the following spaces,

Vk : Cα(Γ) −→ C1+α(Γ),
Kk : C1+α(Γ) −→ C2+α(Γ),
K ′
k : Cα(Γ) −→ C1+α(Γ),

Dk : C1+α(Γ) −→ Cα(Γ).

Similar mapping properties are also available in the Sobolev spaces (see, e.g., [10]).

Theorem 2.2 For Γ ∈ C2, the following operators are continuous for |s| ≤ 1/2:

Vk : H−1/2−s(Γ) −→ H1/2+s(Γ),

Kk : H1/2+s(Γ) −→ H3/2+s(Γ),

K ′
k : H−1/2+s(Γ) −→ H1/2+s(Γ),

Dk : H1/2+s(Γ) −→ H−1/2+s(Γ).

We remark that for smooth boundary, Γ ∈ C∞, the above theorem remains valid
for s ∈ IR, while for the Lipschitz domain, Γ ∈ C0,1, again |s| ≤ 1/2, but Kk

and K ′
k are only continuous as the mappings Kk : H1/2+s(Γ) −→ H1/2+s(Γ), and

K ′
k : H−1/2+s(Γ) −→ H−1/2+s(Γ) (see, e.g., [6]).

3 Exceptional or irregular frequencies

From (8) we see that the Cauchy data of a solution of (1) in Ω (or Ωc) are related
to each other by two boundary integral equations. As is well known, for regular
elliptic boundary value problems only half of the Cauchy data on Γ is given. For
the remaining part, the two equations from (8) define an over determined system of
boundary integral equations which may be used for determining the complete Cauchy
data. In general any combination of them can serve as a boundary integral equation
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for the missing part of the Cauchy data. Hence the reduction from a boundary value
problem to a boundary integral equation is by no means a unique process. However,
the so-called direct approach for formulating boundary integral equations becomes
rather simple, if one considers the Dirichlet or the Neumann problem. Each one of
the boundary integral equations in (8) can be employed for these problems.

For the interior and exterior Dirichlet problems, (IDP) and (EDP),

µ = ϕ = u|Γ on Γ is given .

Here the missing Cauchy datum on Γ is σ =
∂u

∂n |Γ
. Thus, for instance, we may use

either the boundary integral equation of the first kind

Vkσ(x) =
1

2
ϕ(x) +Kkϕ(x), x ∈ Γ , (10)

or boundary integral equation of the second kind

(
1

2
I −K ′

k)σ(x) = Dkϕ(x), x ∈ Γ (11)

for the unknown σ in case of (IDP). On the other hand, for the Neumann Problems,
(INP) and (ENP),

σ = ψ =
∂u

∂n
|Γ on Γ is given .

Here the missing Cauchy datum on Γ is µ = u|Γ. Then, for the (INP), the corre-
sponding boundary integral equations for the unknown µ now read

Dkµ(x) = (
1

2
I −K ′

k)ψ(x), x ∈ Γ, (12)

(
1

2
I +Kk)µ(x) = Vkψ(x), x ∈ Γ. (13)

We have collected all these formulations in the second column in Table 1.
The unique solvability for these boundary integral equations are important. In

particular, for k 6= 0 and for given ϕ ∈ C1+α(Γ), (10) is uniquely solvable with
σ ∈ Cα(Γ), except for certain values of k ∈ IC which are the so–called exceptional or
irregular frequencies of the boundary integral operator Vk. For any irregular frequency
k0, the operator Vk0 has a nontrivial null space ker Vk0 = span {σ0j}. The eigenso-
lutions σ0j are related to the eigensolutions u0j of the interior Dirichlet problem for
the Laplacian,

−∆u0 = k2
0u0 in Ω ,

u0|Γ = 0 on Γ ,
(14)

according to

σ0j =
∂u0j

∂n
|Γ .

5



Moreover, the solutions are real–valued and

dim kerVk0 = dimension of the eigenspace of (14).

As is known, the eigenvalue problem (14) admits denumerable infinitely many eigen-
values k2

0l. They are all real and have at most finite multiplicity. Moreover, they can
be ordered according to size 0 < k2

01 < k2
02 < · · · and have +∞ as their only limit

point. When k0 is an eigenvalue, (10) admits solutions in Cα(Γ) if and only if the
given boundary values ϕ ∈ C1+α(Γ) satisfy the orthogonality conditions∫

Γ

ϕσ0ds =
∫
Γ

ϕ
∂u0

∂n
ds = 0 for all σ0 ∈ kerVk0 . (15)

Correspondingly, for ϕ ∈ C1+α(Γ), the boundary integral equation (10) has solutions
σ ∈ Cα(Γ) if and only if (15) is satisfied.

For the exterior Dirichlet problem (IDP), from (8) again we obtain a boundary
integral equation of the first kind,

Vkσ(x) = −1

2
ϕ(x) +Kkϕ(x) , x ∈ Γ , (16)

which differs from (10) only by a sign in the right–hand side. Hence, the exceptional
values k0 are the same as for the interior Dirichlet problem, namely the eigenvalues of
(14). If k 6= k0, (16) is always uniquely solvable for σ ∈ Cα(Γ), provided ϕ ∈ C1+α(Γ).
For k = k0, in contrast to (IDP), (EDP) remains uniquely solvable. However, (16)
now has eigensolutions, and the right–hand side always satisfies the orthogonality
conditions∫

x∈Γ

(
−1

2
ϕ(x) +Kk0ϕ(x)

)
σ0(x)dsx

=
∫
x∈Γ

ϕ(x)
{
−1

2
σ0(x) +K ′

k0
σ0(x)

}
dsx = 0 for all σ0 ∈ ker Vk0 ,

since σ0 is real valued and the single layer potential Vk0σ0(x) vanishes identically for
x ∈ Ωc. The latter implies

∂

∂nx
Vk0σ0(x) = −1

2
σ0(x) +K ′

k0
σ0(x) = 0 for x ∈ Γ .

Accordingly, the representation formula (6) in Ωc with u|Γ = ϕ and ∂u
∂n |Γ = σ will

generate a unique solution for any σ solving (16).
The relations between the eigensolutions of the BIEs and the interior eigenvalue

problems of the Laplacian are given explicitly in column three of Table 1. We observe
that for the exterior boundary value problems the exceptional values k0 and k1 of the

6



Eigensolutions u0 or u1 Eigensolutions Solvability
BVP BIE for BVP and for BIE, σ0, σ1 or µ0, µ1 Conditions

Exceptional values k0, k1 for given ϕ,ψ

(1) Vkσ = ( 1
2
I +Kk)ϕ (D0):

IDP
(2) ( 1

2
I −K′

k)σ = Dkϕ ∆u0 +K2
0u0 = 0 in Ω, σ0 = ∂u0

∂n |Γ

∫
Γ
σ0ϕds = 0

(1) Vkσ = (− 1
2
I +Kk)ϕ u0|Γ = 0 on Γ

EDP
(2) ( 1

2
I +K′

k)σ = −Dkϕ Vk1σ1 = u1 on Γ
None

(1) Dkµ = ( 1
2
I −K′

k)ψ
(N0) :

INP
(2) ( 1

2
I +Kk)µ = Vkψ

∆u1 + k1u1 = 0 in Ω
µ1 = u1|Γ on Γ

∫
Γ
µ1ψds = 0

(1) Dkµ = −( 1
2
I +K′

k)ψ
∂u1
∂n |Γ

= 0 on Γ

ENP
(2) ( 1

2
I −Kk)µ = −Vkψ (D0) Dk0µ0 = ∂u0

∂n |Γ

None

Table 1: Summary of the boundary integral equations for the Helmholtz equation
and the related eigenvalue problems

corresponding boundary integral operators depend on the type of boundary integral
equations derived by the direct formulation. For instance, we see that for (EDP), k0

are the exceptional values for Vk whereas k1 are those for (1
2
I +K ′

k).
It is worthy mentioning that for the exterior boundary value problems, the solv-

ability conditions of the corresponding (BIE) at the exceptional values are always
satisfied due to the special forms of the corresponding right-hand sides. For the in-
direct approach, this is not the case anymore (see, e.g.,[5]). There are various ways
to modify the boundary integral equations so that some of the exceptional values
will not belong to the spectrum of the boundary integral operator anymore. In this
connection, we refer to [1], [2] and the recent work [3], [4], to name a few.

4 Low frequency behavior

Of particular interest is the case k → 0 which corresponds to the low–frequency
behavior. This case also determines the large–time behavior of the solution to time–
dependent problems if (1) is obtained from the wave equation by the Fourier–Laplace
transformation. As will be seen, some of the boundary value problems will exhibit a
singular behavior for k → 0.

The singular behavior can be obtained from the explicit asymptotic expansions of
the boundary integral equations in Table 1. The latter then follows directly from the
series development of the fundamental solutions and their derivatives. To illustrate
the idea, let us consider the fundamental solution Ek(x, y) in (7) for n = 2. We see
that for small kr

Ek(x, y) =
i

4
H

(1)
0 (kr) = E(x, y)− 1

2π
(log k + γ0) + Sk(x, y) . (17)
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Here

E(x, y) = − 1

2π
log|x− y|

denotes the fundamental solution for the 2-dimensional Laplace equation,

γ0 = c0 − log 2− i
π

2
with c0 ≈ 0.5772 , Euler’s constant ,

and

Sk(x, y) =
i

4
H

(1)
0 (kr) +

1

2π
(log(kr) + γ0)

= − 1

2π
{log(kr)

∞∑
m=1

am(kr)2m +
∞∑
m=1

bm(kr)2m} ,

am =
(−1)m

22m(m!)2
, bm = (γ0 − 1− 1

2
− · · · − 1

m
)am .

As can be seen from the above expansions, the term log k appears in (17) explicitly
which shows that Vk is a singular perturbation of V (the corresponding boundary
integral operator Vk with Ek replaced by E). We have shown in [10] that the other
boundary integral operators are regular perturbations of the corresponding operators
of the Laplacian.

In the following let us consider the analysis for the integral equation of the first
kind (10) for (IDP). From (17), we see that

V σ + ω + Skσ =
1

2
ϕ+Kϕ+Rkϕ (18)

with

ω = − 1

2π
(log k + γ0)

∫
Γ

σds . (19)

Here

Kϕ =
∫
Γ

∂

∂ny
E(x, y)ϕ(y)dsy

is the corresponding double-layer boundary integral operator for the Laplacian and
Rkϕ := (Kk −K)ϕ. The right hand side of (18) is bounded. This suggests that the
solution of (18), (19) can be decomposed in the form of an asymptotic expansion,

σ = σ̃ + α1(k)σ̃1 + σR ,
ω = ω̃ + α1(k)ω̃1 + ωR ,

(20)

where the leading terms σ̃, ω̃ correspond to boundary densities from the Laplacian
and satisfy the system [7], [8],

V σ̃ + ω̃ =
1

2
ϕ+Kϕ and

∫
Γ

σ̃ds = 0 (21)
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with
ω̃ = 0 .

The first perturbation terms σ̃1, ω̃1 are independent of k with the coefficient α1(k) =
o(1) as k → 0. The remainders σR, ωR are of order o(α1(k)). To construct σ̃1 and ω̃1,
we employ equation (18) with (19) and (20). As k → 0 we arrive at

V σ̃1 + ω̃1 = 0 ,∫
Γ

σ̃1ds = 1 , (22)

where we appended the last normalizing condition for σ̃1 in order to obtain nontrivial
solution pair σ̃1, ω̃1. However if we insert (20) into (19) with ω̃ = 0, then from∫
Γ σ̃ds = 0, and

∫
Γ σ̃1ds = 1, we see that

α1(k) =

{
−1

1 + 2πω̃1(logk + γ0)−1

}
(
∫
Γ
σR ds− ωR) = O(σR).

Hence, without loss of generality, we may set α1(k) = 0 in (20). Now from (18) and
(19) with (20) this leads to the equations for the remainder terms σR, ωR:

V σR + ωR + SkσR = Rkϕ− Skσ̃ ,∫
Γ

σRds+ 2π(log k + γ0)
−1 ωR = 0 , (23)

which can be solved by the regular perturbation techniques.
By substituting the boundary densities into the representation formula (6), we

obtain the asymptotic behavior of the solutions to the BVPs for small k. In all the
cases, we arrive at the following asymptotic expression

u(x) = ±[Vσ̃(x)−Wũ(x)] + C(x; k) +R(x; k), (24)

where the ± sign corresponds to the interior and exterior domain and x ∈ Ω or Ωc as
in (6). For the Dirichlet problems, ũ|Γ = ϕ and for the Neumann problems, σ̃|Γ = ψ
on Γ are the given boundary data, respectively, whereas the missing densities are
the solutions of the corresponding BIEs presented above. In Formula (24), C(x; k)
denotes the lowest order of perturbation terms in Ω or Ωc, whereas R(x; k) denotes
the remaining boundary potentials. The behavior of both for k → 0 is summarized
in Table 2 below. The remainders R(x; k) are of the orders as shown in the table,
uniformly in x ∈ Ω for the interior problems and in compact subsets of Ωc only, for
the exterior problems. It should be mentioned that not all our results presented in
Table 2 are new. Some similar results obtained by other methods are also available.
In this connection, we refer in particular to the work [11], [12].
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BVP C(x; k) R(x; k) n

O((k log k)2) n = 2
IDP 0

O(k2) n = 3

−ω̃ O((k log k)2) n = 2

EDP −k{V σ̃1(x) + i
4π

∫
Γ

σ̃ds} O(k2) n = 3

−{ 1
k2 − 1

2π

∫
Ω

log |x− y|dy} 1
|Ω|

∫
Γ

ψds O(k2 log k) n = 2

INP −{ 1
k2 + 1

4π

∫
Ω

1
|x−y|dy}

1
|Ω|

∫
Γ

ψds O(k2) n = 3

1
2π

(log k + γ0)
∫
Γ

ψds O((k log k)2) n = 2

ENP − ik
4π

∫
Γ

ψds O(k2) n = 3

Table 2: Low frequency characteristics

Acknowledgment

This work was supported by the Air Force Office of Scientific Research, Air Force Ma-
terial Command, USAF, under Grant F9620-96-1-10039. The views and conclusions
contained herein are those of the author and should not be interpreted as necessarily
representing the office policies or endorsements, either expressed or implied, of the
Air Force Office of Scientific Research or the US government.

References
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