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Malignant glioma is a formidable disease that commonly leads to death, mainly due to the invasion
of tumor cells into neighboring tissues. Therefore, inhibition of tumor cell invasion may provide an
effective therapy for malignant glioma. Here we report that nicotinic acid (NA), an essential vitamin,
inhibits glioma cell invasion in vitro and in vivo. Treatment of the U251 glioma cells with NA in vitro
results in reduced invasion, which is accompanied by a loss of mesenchymal phenotype and an increase
in cell-cell adhesion. At the molecular level, transcription of the adherens junction protein E-cadherin
is upregulated, leading to accumulation of E-cadherin protein at the cell-cell boundary. This can be
attributed to NA's ability to facilitate the ubiquitination and degradation of Snaill, a transcription

. factor that represses E-cadherin expression. Similarly, NA transiently inhibits neural crest migration in

. Xenopus embryos in a Snaill-dependent manner, indicating that the mechanism of action for NA in cell
migration is evolutionarily conserved. We further show that NA injection blocks the infiltration of tumor
cells into the adjacent brain tissues and improves animal survival in a rat model of glioma. These results
suggest that NA treatment may be developed into a potential therapy for malignant glioma.

Malignant glioma is a type of tumor that derives from the glial cells in the nervous system, including those of
neural crest origin'?. Patients commonly succumb to this deadly disease within 5 years upon being diagnosed®.
Glioma is classified into four distinctive pathological grades according to the World Health Organization (WHO).
Among them, grade IV, also called glioblastoma multiforme (GBM), is recognized clinically as the most frequent
and malignant category*. Currently, therapeutic strategies involve three approaches, which consist of maximal
tolerable surgical resection paired with radiation and chemotherapy. The combination of these therapies is able
to add only months of additional survival. The diffuse invasion of tumor cells into the surrounding brain tissues
imparts the major challenge for therapy. Although early radical surgical interventions attempt to remove the
entire affected brain hemisphere, patients are usually subjugated to cancer cells that had crossed into the other
hemisphere®. Even now, with advanced microsurgical techniques, recurrence is still often inevitable. Glioma typ-
ically reoccurs within 1-2 cm of the primary tumor®. Hence, a primary challenge is to prevent glioma cells from
uncontrolled migration and subsequent infiltration into other brain regions.

Cell migration is a finely tuned biological process that often involves epithelial-mesenchymal transition
(EMT). EMT was initially defined in the early 1980s by Elizabeth Hay’, who described changes from epithelial
to mesenchymal phenotype in the primitive streak of chick embryos. EMT is a process that is associated with
remarkable changes in cell adhesion, polarity and migratory properties. During EMT, epithelial cells lose their
adhesion and polarity, reorganize their cytoskeleton, and undergo changes in cell signaling that alter cell shape
and reprogram gene expression. EMT is typically characterized by upregulation of mesenchymal markers such as
Snaill and downregulation of epithelial markers such as E-cadherin. This process has been shown to be of critical
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Figure 1. U251 cells lose mesenchymal phenotype upon NA treatment. U251 cells were incubated with
PBS (control) or the indicated concentration of NA for 8 hr. Rhodamine phalloidin labeling for F-actin (red),
immunocytochemistry for 3-tubulin (green) and DAPI labeling for nuclei (blue) were carried out as described
in Methods. White arrowheads denote the long protrusions that consist mainly of microtubules, and the inset
in (D) shows an amplified image of the indicated protrusion. The percentage of cells with this type of long
protrusions was calculated for each treatment and summarized in (F). *P < 0.05; ***P < 0.001.

importance to normal developmental processes such as mesoderm and neural crest migration®’. Interestingly,
similar mechanisms are utilized in disease processes including wound healing, fibrosis and tumor metastasis'®'2.
Notably, EMT and EMT-like processes confer tumor cells with the ability to migrate, invade, and adopt stem
cell-like properties that largely account for immunosuppression and tumor recurrence'>!. Therefore, suppressing
EMT should contribute to cancer therapy in multiple facets.

Nicotinic acid (NA), a member of the vitamin B family, is well known for its functions in the treatment and
prevention of atherosclerosis. NA is one of the most effective agents that provide protection against cardiovascu-
lar risk factors by decreasing low-density and very low-density lipoprotein levels, while simultaneously increas-
ing high-density lipoprotein levels'®. Mechanistically, NA has been shown to downregulate cyclic adenosine
monophosphate, the major intracellular mediator of pro-lipolytic stimuli, thereby decreasing cellular levels of
free fatty acids'®. Recently, we and others reported that NA is also able to regulate intracellular calcium levels. Ma
et al. demonstrated that a high concentration (50 mM) of NA can regulate the activities of heat-sensitive capsaicin
receptors TRPV1-4, which are non-selective calcium-permeable cation channels. Meanwhile, we found that NA
causes a transient reduction but subsequent elevation in free intracellular [Ca?"] in NIH 3T3 cells. Treatment
with over 30 mM NA further leads to disassembly of the cytoskeleton in 3T3 cells and inhibition of intracellu-
lar melanosome transport in Xenopus embryos, effects that can be partially attributed to increased intracellular
[Ca2*]17-19,

In the current study we assessed the effects of NA on the behavior of glioma cells. We found that NA inhibits
the invasion of U251 GBM cells by facilitating the ubiquitination and degradation of Snaill, a transcription factor
that promotes EMT. This mechanism is likely conserved through evolution, as NA also downregulates Snaill lev-
els and delays neural crest migration in Xenopus embryos. We also show that NA treatment inhibits the invasion
of C6 glioma cells allografted in the rat brain and improves survival of these rats. Based on these data, we propose
that NA treatment may be developed into an effective therapeutic method for malignant glioma.

Results

In vitro NA treatment causes loss of mesenchymal phenotype and reduced invasion of U251 cells.
We reported previously that high concentration of NA is able to disrupt cytoskeletal structures in 3T3 cells'’.
To assess if NA has any potential effects on malignant glioma, we treated cultured U251 GBM cells with various
concentrations of NA. High concentrations of NA (14 mM and above) detached U251 cells and led to apoptosis
(Yang X. et al., manuscript in preparation). By contrast, up to 7.0mM NA did not cause any detectable cell death
even after a prolonged period of treatment, as manifested by low annexin V and propidium iodide (PI) staining
in the majority of cells with or without NA treatment (20 hr; Fig. S1A-S1D). However, we noticed a significant
change in cell morphology with increasing concentrations of NA. The untreated U251 cells were mostly elongated
and mesenchymal-like (Fig. 1A-D). Staining for F-actin and 3-tubulin reveals that, similar to U87 GBM cells®,
U251 cells often formed long protrusions that are primarily made of microtubules but also contain some actin fila-
ments (white arrowheads in Fig. 1D,H; inset in Fig. 1D). Upon treatment with 3.5mM NA, some of the U251 cells
became rounded (Fig. 1IE-H), whereas 7.0 mM NA caused most cells to lose the mesenchymal phenotype and long

SCIENTIFICREPORTS | 7:43173 | DOI: 10.1038/srep43173 2



www.nature.com/scientificreports/

Opposite side

350

300 &
250 S

200 X
150 N
100 3
50
0

NA 3.5 mM

Cell No.

00 35 7.0
NA concentration (mM)
Seeded side

NA 7.0 mM H
ps 400

350 3

300 e

250 F 3

200 4

150 P

100 §

50
0

A 3.5 mM
07N RTINS 55

P

a

Cell No.

00 35 7.0
NA concentration (mM)

Figure 2. NA treatment inhibits U251 cell invasion in vitro. Transwell assays were carried out for U251
cells incubated in PBS (control) or the indicated concentration of NA as described in Methods. Images of cells
(stained with Giemsa) that invaded through the matrigel (A-C) or remained on the seeded side

(E-G) in a representative experiment are shown, and results of 15 different regions in 3 independent
experiments (5 regions per experiment) are summarized in (D) and H for the opposite and seeded sides,
respectively.

protrusions. Such a morphological change was accompanied by alterations in cytoskeletal structure: long F-actin
stress fibers were significantly reduced, and microtubules became more uniformly distributed throughout the cells
(Fig. 11-L).

Although most U251 cells treated with NA still retained their actin-based filopodia, the significant reduction
of cells with long protrusions that consist mainly of microtubules (Fig. 1M) suggests that NA may interfere with
the migration/invasion of U251 cells, as the motility of GBM cells has been shown to be independent of actin
polymers but dependent on microtubule assembly?’. To assess this possibility, we performed Boyden chamber
invasion assays. The invasive ability of U251 cells was considerably decreased with increasing concentrations of
NA, as indicated by fewer cells that migrated through the matrigel (Fig. 2A-D) and more cells that were retained
on the original seeded side (Fig. 2E-H). Thus NA inhibits the invasive ability of U251 cells, a main feature of GBM
cells that contributes to high lethality. We further tested if NA affects the invasion of other types of cancer cells.
As shown in Fig. S2A-S2H, 3.5 and 7.0 mM NA also reduced the invasive abilities of U87 GBM cells and B16F10
melanoma cells, suggesting that NA's effect on cell invasion is not limited to U251 cells.

NA upregulates cell-cell adhesion by promoting Snaill ubiquitination and degradationin U251 cells.
A characteristic of migratory mesenchymal-like cells, as opposed to non-migratory epithelial-like cells, is weaker
cell-cell adhesion. We therefore examined if NA treatment of U251 cells affects cell-cell adhesion. Western blot
and quantitative RT-PCR (RT-qPCR) analyses reveal that treatment of U251 cells with 3.5 and 7.0 mM NA for
4hr resulted in upregulated protein and mRNA levels of E-cadherin (Fig. 3A,B,D,E), a major component of the
adherens junctions. This was further validated by immunocytochemistry results, which show that there was an
increase in E-cadherin signal at the cell-cell boundaries upon NA treatment (Fig. 3G-]J). Similarly, tight junction
protein ZO-1 also increased drastically (Fig. S3A-S3C), suggesting that overall cell-cell adhesion was enhanced.

EMT is a common mechanism that cells of the epithelial origin utilize to initiate migration during developmental
processes and tumor metastasis?’. A hallmark of EMT is the downregulation of cell-cell adhesion molecules such as
E-cadherin and ZO-1. Because glial cells are developmentally derived from the neuroepithelial lineage, and glioma cells
are known to undergo EMT-like process to become invasive?>*, the upregulation of both E-cadherin and ZO-1 indi-
cates that the EMT-like process is inhibited in U251 cells treated with NA. The zinc-finger transcription factor Snaill
is able to recruit several chromatin-modifying enzymes to the E-cadherin promoter, thereby epigenetically silencing
E-cadherin expression in migratory tumor cells?*?. Although Snaill does not seem to regulate the transcription of
Z0O-1, ectopically expressed Snaill has been shown to reduce ZO-1 protein levels post-transcriptionally?. Hence we
went on to assess the effects of NA treatment on Snaill expression. Incubation of U251 cells in increasing concentra-
tions (3.5 and 7.0mM) of NA for 4 hr resulted in decreasing levels of Snaill protein (Fig. 3A,C), which correlated well
with increasing levels of E-cadherin protein and mRNA (Fig. 3B,E). However, no decrease in snaill transcript was
detected (Fig. 3D,F), indicating that the regulation of Snaill by NA is post-transcriptional.
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Figure 3. NA upregulates E-cadherin expression by promoting ubiquitination and degradation of Snaill.
U251 cells were treated with PBS (control) or the indicated concentration of NA for 4 hr. (A-C) Western blot
analyses for whole-cell lysates were performed with an anti-E-cadherin antibody. Membranes were stripped
and reblotted for Snaill and 3-actin. Representative images of Western blots are shown in A, and relative
intensity of E-cadherin and Snaill normalized against 3-actin was calculated and summarized in

(B,C), respectively. (D-F) Total RNA was extracted, and RT-PCR was carried out for the transcripts of
E-cadherin, snaill, and GAPDH. Representative images of semi-quantitative RT-PCR are shown in (D) and
relative expression levels of E-cadherin and snaill (normalized against GAPDH), as determined by RT-qPCR,
are shown in (E,F) respectively. NS, not significant; **P < 0.01; ***P < 0.001. (G-J) Cells were fixed and
processed for DAPI staining (blue) and immunocytochemistry for E-cadherin (green). (K) U251 cells were
treated with MG132 and NA or PBS (control), IP was carried out for cell lysates with an anti-Snaill antibody,
and Western blot was performed with an anti-ubiquitin antibody. Western blot for whole-cell lysates (WCL) was
also performed separately with an anti-Snaill antibody.

Because Snaill is known to be degraded through the ubiquitin-proteasome pathway?, we asked if NA regu-
lates Snaill ubiquitination and/or degradation. Pre-treatment of U251 cells with the proteasome inhibitor MG132
abolished the effect of 7.0 mM NA on Snaill protein levels, and co-immunoprecipitation (co-IP) assays detected
elevated levels of ubiquitin associated with Snaill upon treatment with NA (Fig. 3K). Together these results sug-
gest that NA boosts ubiquitin-proteasome-mediated Snaill degradation as well as cell-cell adhesion.

To determine if the regulation of cell-cell adhesion by NA depends on its ability to promote Snaill degrada-
tion, we tested if exogenously overexpressed Snaill could reverse the increase in E-cadherin level in NA-treated
U251 cells. As shown in Fig. 4A-F, overexpression of Snaill did abrogate the effects of NA on inducing the mRNA
and protein expression of E-cadherin. Immunocytochemistry data further confirm the loss of E-cadherin at
cell-cell boundaries caused by Snaill re-expression (Fig. 4G-L). We conclude from the above data that NA upreg-
ulates cell-cell adhesion in U251 cells by facilitating the ubiquitination and turnover of Snaill.

Injection of NA leads to reduced Snaill levels and delayed neural crest migration in Xenopus
embryos. The vertebrate neural crest cells are highly migratory stem cells that are induced at the neural plate
border (NPB) during gastrulation. These cells subsequently undergo EMT to delaminate from the closing neural
tube, migrate to various destinations and give rise to a wide range of derivatives including neurons and glia of
the peripheral nervous system?. Similar to cancer cells, migration of neural crest cells from the neural tube also
depends on transcription factors that regulate EMT, including Snaill and Snail28. The Xenopus cranial neural
crest (CNC) is frequently used as an easily accessible and manipulable in vivo model for studying the mechanisms
underlying EMT®-32, To test if NA regulates EMT and migration of CNC cells, we injected 70 ng NA into one cell
of 2-cell stage Xenopus embryos (with a final NA concentration of ~5mM). In vitro transcript of 3-galactosidase
was co-injected as a lineage tracer, and the uninjected side served as a negative control. The induction of CNC
can be subdivided into two steps: the initial formation of the NPB, as indicated by the expression of transcription
factors such as Pax3, Zicl and Msx1 (also called NPB specifiers), and subsequent specification of the CNC, as
indicated by the expression of another set of transcription factors such as Snaill and Snail2 (also called CNC
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Figure 4. Snaill reverses the effects of NA on E-cadherin expression. U251 cells were treated with PBS
(control) or 7.0 mM NA for 4 hr, or transfected with a plasmid expressing Snaill and then treated with 7.0 mM
NA for 4 hr. (A) Western blot analyses for whole-cell lysates were performed with an anti-E-cadherin antibody.
Membranes were stripped and reblotted for Snaill and 3-actin. Representative images of Western blots are
shown in A, and relative intensity of E-cadherin and Snaill normalized against 3-actin was calculated and
summarized in (B,C) respectively. (D-F) Total RNA was extracted, and RT-PCR was carried out for the
transcripts of E-cadherin, snaill, and GAPDH. Representative images of semi-quantitative RT-PCR are shown in
(D), and relative expression levels of E-cadherin and snaill (normalized against GAPDH), as determined by RT-
qPCR, are shown in E and E respectively. NS, not significant; *P < 0.05; **P < 0.01; ***P < 0.001. (G-L) Cells
were fixed and processed for DAPI staining (blue) and immunocytochemistry for E-cadherin (green).

specifiers)***4. Notably, some of the CNC specifiers, including both Snaill and Snail2, also control EMT and
CNC migration at later stages (see discussion above). At late gastrula stage (stage ~12) when the CNC had just
been induced, we did not observe any effect of NA on the expression of any of the NPB specifiers (msx1, pax3,
or zicl) or CNC specifiers (snaill or snail2), suggesting that both steps of CNC induction occurred normally
(Fig. S4A-S4F). At stage ~18, the CNC had emerged from the neural tube and started to migrate in three separate
streams (Fig. 5A). By contrast, in embryos injected with NA, the CNC failed to migrate from the neural tube on
the injected side, although it migrated normally on the uninjected side (Fig. 5B,D). At stage ~20 (several hours
later), CNC started to migrate in three streams on the injected side (data not shown), probably because NA was
metabolized by this time. Thus NA transiently inhibited CNC migration but had no effect on the induction of
CNC.

One possible explanation for the delayed CNC migration is that NA decreases the levels of EMT inducers
such as Snaill, as we observed in U251 cells in vitro. To test this hypothesis, we injected embryos with an mRNA
encoding myc-tagged Xenopus Snaill, and compared the levels of exogenously expressed Snaill in embryos
with and without co-injected NA. Both whole embryo lysates and dissected CNC showed reduced Snaill pro-
tein levels upon NA treatment (Fig. 5E-G), although the amount of injected Snaill-myc mRNA was the same
in embryos with and without NA co-injection. This is consistent with the ability of NA to downregulate Snaill
post-transcriptionally, as we observed in U251 cells (Fig. 3). To further assess if NA interferes with CNC migration
via Snaill, we took advantage of an inducible Snaill-glucocorticoid receptor (GR) fusion protein, which resides in
the cytoplasm until addition of the GR agonist dexamethasone triggers Snaill nuclear import*. Dexamethasone
was added at the beginning of gastrulation (stage 10-10.5) to avoid earlier developmental defects that could be
caused by Snaill overexpression. As shown in Fig. 5C,D, overexpression of Snaill completely rescued the delayed
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Figure 5. NA inhibits CNC migration in Xenopus embryos by inducing Snaill degradation. (A-D) Xenopus
embryos were injected in one blastomere at 2-cell stage with PBS (control; A), NA (70 ng; B), or NA combined
with mRNA encoding GR-fused Snaill (C). To induce nuclear translocation of Snaill, dexamethasone was
added at stage 10-10.5 (C). Embryos were cultured to stage ~18 and processed for in situ hybridization for
snail2. The injected side (on the right and denoted with an asterisk) was labeled with co-injected 3-galatosidase
(red), and arrows indicate the directions of migration of the three CNC streams. A representative embryo from
each group is shown in (A-C), and quantitative results are summarized in (D). (E) Embryos were injected with
mRNA encoding myc-tagged Snaill, and cultured with or without NA until stage 15-17 (shortly before CNC
migration). Western blot was carried out with an anti-myc antibody for whole-embryo lysates or lysates of
dissected CNC. Representative images of Western blots are shown in (E), and relative intensity of myc-tagged
Snaill normalized against 3-actin was calculated and summarized in (F) (whole embryos) and (G) (CNC).

*P <0.05.

CNC migration caused by NA. These results suggest that similar to the inhibition of EMT-like process and inva-
sion in U251 cells, NA exerts its effect on CNC migration through regulation of Snaill.

NA treatment blocks glioma cell invasion and improves survival in vivo.  Given the effects of NA
on the U251 GBM cells in vitro and Xenopus CNC in vivo, it was tempting to evaluate if NA can block glioma
invasion in an animal model. To this end we allografted rats with C6 glioma cells, and conducted on-site NA
injections starting from day 4 after grafting. A single dosage of 31 pg NA (5ul of 50 mM NA) was injected into
the allograft everyday for 20 consecutive days. We then sacrificed the rats and assessed the infiltration of tumor
cells into normal brain tissues by examining 5 randomly selected allograft regions in brain slices collected from
each rat. As compared with normal brain tissues, H&E stained C6 cells displayed nuclear atypia that is charac-
teristic of high-glade glioma (arrows in Figs 6A,B and S5). In the control group injected with PBS, C6 glioma
cells frequently infiltrated into normal brain tissues, and only <5% of all chosen regions had a clear boundary
between tumor and normal brain (Figs 6A,C,E,G and S5A-S5C). By contrast, in >60% of the chosen regions in C6
allografted rats treated with NA, we observed a clear boundary with fewer tumor cells infiltrating normal brain
tissues (Figs 6B,D,EG and S5D-S5F). The intermediate filament protein Nestin is abundantly expressed in certain
high-grade gliomas as well as embryonic cerebrum, but not in normal adult brain tissues***”. Our immunohis-
tochemistry results for Nestin show less intermingling between tumor and non-tumor cells in NA-treated brain
slices as compared with control (Fig. 6H-M), further confirming that NA inhibits the infiltration of C6 glioma
cells into normal brain tissues. Finally, we determined if NA can improve the survival of C6-allografted rats. As
shown in Fig. 6N, ~70% of the allografted rats that were continuously administered with NA were still alive on
day 58. This is in stark contrast with the control group, which all died by day 24 (Fig. 6N). Thus NA displayed
significant beneficial effects on glioma in vivo.

Discussion

Although NA and its derivatives have been intensively studied for decades, new functions and mechanisms
of action for them continue to emerge. Recently, we reported that treatment of 3T3 cells with high concentra-
tions of NA leads to dynamic changes in intracellular calcium concentration and disassembly of the cytoskeletal
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Figure 6. NA injection inhibits C6 glioma cell invasion in vivo and improves survival in a rat model of
glioma. Rats allografted with C6 cells were injected with PBS (control) or NA as described in Methods.

(A-G) Brain slices were collected and H&E staining was carried out. Representative images of brain slices
collected from rats injected with PBS or NA are shown in (A-F) (with indicated magnification), and
quantitative results from both groups (6 rats/group) are summarized in G. Arrows indicate C6 glioma cells.

***P < 0.001. (H-M) Brain slices were processed for DAPI staining (blue) and immunocytochemistry for Nestin

(red). (N) NA significantly improved the survival of C6-allografted rats as compared with control (PBS; n =25
for each group, P < 0.001).

structures'’. These observations prompted us to test if NA has any effects on malignant glioma cells, which are
known for their high invasive activity. We found that treatment with relatively lower concentrations of NA caused
loss of mesenchymal phenotype in U251 cells and inhibited glioma invasion in vitro and in vivo. At the molecular
level, NA promoted Snaill degradation and enhanced cell-cell adhesion, suggesting inhibition of an EMT-like
process in glioma cells.

The roles of EMT in glioma cell migration remain controversial, mainly due to the physiological difference
between glial and epithelial cells along with the lack of an E-cadherin to N-cadherin switch, which is charac-
teristic of EMT, in glioma cells®®%. In fact, most malignant glioma cells express very low levels of endogenous
E-cadherin (Figs 3 and 4)*-*1. However, accumulating evidence in the recent years strongly indicates the exist-
ence of an EMT-like process, sometimes referred to as “glial-to-mesenchymal transition”, that plays important
roles in regulating GBM cell invasion®.. A key observation was that the majority of GBM cells are mesenchymal
(Fig. 1)*-*1, providing an explanation for the lack of E-cadherin expression and high invasive activity of these
cells. While multiple EMT regulators are involved in controlling the mesenchymal phenotype of GBM cells, the
zinc-finger transcription factor Snaill is of particular interest. Snaill expression correlates well with WHO tumor
grade, and is elevated in clinically recurrent malignant glioma after treatment with ionizing irradiation**-*4.
Depletion of Snaill causes reduced expression of mesenchymal markers and loss of mesenchymal phenotype,

SCIENTIFICREPORTS | 7:43173 | DOI: 10.1038/srep43173



www.nature.com/scientificreports/

as well as inhibition of GBM cell invasiveness in vitro and in vivo*>#>4-47_These effects are accompanied by an
increase in E-cadherin level similar to what we observed here with NA treatment**” (Figs 3 and 4), suggesting
that E-cadherin expression is normally repressed by Snaill in malignant glioma, and that such a repression is
reversible. Thus at least some malignant glioma cells can be considered as cells that have undergone a reversi-
ble EMT-like process to become mesenchymal and invasive, and NA treatment may provide a novel method to
reverse this process and inhibit the invasion of these tumor cells.

The molecular mechanisms that regulate neural crest EMT and migration are evolutionarily conserved and
highly similar to the mechanisms that regulate cancer EMT and migration/invasion®#*%°. In addition, recent evi-
dence suggests that some types of glioma are neural crest-derived'?, making the neural crest an excellent model
for studying glioma cell invasion. For instance, a recent study shows that chemical compounds that inhibit CNC
migration in Xenopus embryos also inhibit GBM cell invasion in mice®. In the current study we found that NA
promotes degradation of Snaill, a major EMT regulator whose function is evolutionarily conserved®**4%, in both
U251 GBM cells and the Xenopus CNC. This finding provides another example of the close relationship between
developmental and pathological EMT, and supports the use of non-mammalian vertebrates such as Xenopus as
simple and more accessible models to identify and characterize drug candidates for cancer therapy. Furthermore,
the inhibition of CNC migration by NA in Xenopus embryos also implies a potential risk of CNC-related birth
defects in babies whose mothers take high dosages of NA during early pregnancy (e.g., for treating cardiovascular
diseases).

To better evaluate the therapeutic potential of NA, it is important to understand the mechanism of action for
NA in malignant glioma. At this point it is not clear if the inhibition of glioma invasion by NA is related to its abil-
ity to elevate intracellular calcium levels, as we reported previously for 3T3 cells'’, but we did observe transient
calcium spikes in U251 cells induced by 3.5 and 7.0 mM NA (data not shown). In addition, activation of either
hydroxyl-carboxylic acid receptor 2 (HCA,; previously known as GPR109A or HM74a) or TRPV channels, two
types of NA receptors, can induce calcium influx®"*2. Current efforts are therefore focused on testing if blocking
calcium signaling can interfere with the effects of NA on glioma invasion. The studies of NA as a vitamin in
glioma pathology can be traced back to more than half a century ago®. Nicotinamide, the amide of NA that has
the same vitamin function but does not affect lipid metabolism®*, has also been shown to have tumor suppressor
activity>>*. However, our preliminary results suggest that nicotinamide does not mimic NA in causing any of the
effects on glioma cells that we observed here (data not shown). Moreover, the concentrations of NA that we used
to achieve an inhibition of U251 cell invasion in vitro (mM level) were much higher than the recommended daily
dosage of NA as a vitamin, but comparable to those used for preventing cardiovascular diseases”’. Thus instead
of functioning as a vitamin, NA likely inhibits glioma invasion through specific receptors such as HCA, and/or
TRPVs, which do not respond effectively to nicotinamide'*. Interestingly, both HCA, and TRPVs have been
shown to regulate PI3K/Akt signaling®-%, a signaling pathway that is upstream to control GSK-33-mediated
phosphorylation and subsequent ubiquitination of Snail16>%*. Hence it will be of interest to investigate if NA
affects the activation of GSK-3(3 and/or Akt and, if so, how these effects are related to intracellular calcium levels.
Another important question is whether NA could induce the differentiation of glioma stem cells, as reported
recently for other anti-cancer drugs such as taxol®. Although we did not observe any apparent changes in the
level of stemness marker Nestin or differentiation marker 3-tubulin with immunostaining (Figs 1 and 6],K),
more quantitative methods such as real-time RT-PCR and Western blot are needed to determine if there are any
relatively subtle effects of NA on glioma differentiation.

The inhibition of GBM invasion in vivo by NA (Fig. 6) suggests that it can be used prior to surgery to prevent
tumor recurrence. Additionally, 5-fluorouracil (5-FU), an antimetabolite that is being actively tested for treatment
of malignant glioma®, has been reported to cause NA deficiency®. This raises an intriguing possibility of using
NA in combination with 5-FU for treating malignant glioma. Given that Snaill is a key EMT regulator in many
types of cancer, it is also possible that NA has beneficial effects on other invasive tumors. Indeed, our results sug-
gest that the invasion of malignant melanoma cells is also inhibited by NA (Fig. S2E-S2H), pointing to a general
role of NA in regulating tumor invasion.

NA is widely used as an antidyslipidemic drug, and the abundant safety data that are available may greatly
facilitate its potential future trials in other diseases such as cancer. We show here that daily injections of 5ul of
50 mM NA were able to inhibit C6 GBM cell invasion and improve the survival of allografted rats. The overall
dosage (31 pg per rat per day) was equivalent to or slightly below the dietary intake reference for NA as a vitamin
(14-18 mg per person per day). Therefore, we do not expect any severe side effects on the other parts of the body.
However, whether the initial high local concentration of NA could lead to damages to surrounding neurons or
glia in the brain remains to be examined. Other potential adverse effects that could be caused by the transient
high local concentration of NA include flushing®. Flushing is mediated by HCA, and TRPV channels, which may
also mediate the anti-tumor activity of NA that we report here. Fortunately, this side effect is not life-threatening
and may be acceptable for the treatment of highly deadly diseases such as malignant glioma. In conclusion, our
results reveal a novel function of NA in regulating tumor cell invasion, and support the potential application of
NA as a therapy for malignant glioma.

Methods

Reagents and cells. High-purity (>99.5%) NA was purchased from Sigma (Cat. # 72309). U251 glio-
blastoma cells and C6 cells were provided by the Cell Bank of Type Culture Collection of Chinese Academy of
Sciences (Shanghai, China). U251 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Hyclone)
supplemented with 10% fetal calf serum (Hyclone), and C6 cells in F12K medium (Sigma) supplemented with
15% equine serum and 2.5% fetal bovine serum (FBS; both sera were from Hyclone). Both cells were incubated at
37 °C with 30% humidity and 5% CO,.
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Flow cytometry analyses of apoptosis. Cell apoptosis was assessed by using the Annexin-V Apoptosis
Detection kit (Becton-Dickinson) and following the manufacturer’s instruction. Fluorescence intensity was meas-
ured by a Becton-Dickinson FACSVantageSE flow cytometer. Original data were analyzed by the WinMDI 2.9
software and presented in the form of dot plots, with fluorescein isothiocyanate (FITC)-conjugated Annexin-V
as X axis and PI as Y axis.

Invasion assays. Transwell membranes were precoated with 24 mg/ml matrigel (R&D Systems, USA), and
cells were incubated for 8 hr (for U251 and U87) or 5 days (for BI6F10). Cells on the top surface of the insert
(seeded side) were fixed with methanol, stained with Giemsa solution and counted under a microscope in 5 ran-
domly selected fields (200 x ). Alternatively, cells on the seeded side were removed with a cotton swab, and cells
adhering to the lower surface were fixed, stained and counted.

Immunocytochemistry. U251 cells were cultured on Lab-Tek chamber slides (Sigma). After treatment
with PBS or NA, the cells were fixed with 4% paraformaldehyde and permeabilized with 0.4% Triton X-100
at room temperature. The cells were then blocked with 5% bovine serum albumin (BSA; Sigma) and incu-
bated with the primary antibody at 4 °C overnight. Primary antibodies used were: 3-tubulin (BD Transduction
Laboratories™ 556321, 1:400), E-cadherin (BD Transduction Laboratories™ 610181, 1:400), and ZO-1 (Abcam
ab59720, 1:50). The cells were subsequently incubated with PE or FITC-conjugated secondary antibody (Santa
Cruz Biotechnology) at room temperature, and labeled with DAPI (Sigma) to identify cell nuclei®. F-actin stress
fibers were labeled with Rhodamine phalloidin (Invitrogen Life Technologies R415, 5units/ml) in PBS for 15 min
at room temperature as described'’. Fluorescence was detected using an Olympus IX81S1F-3 laser confocal scan-
ning microscope.

RT-PCR. The mRNA levels of target genes were analyzed using semi-quantitative RT-PCR. Total RNA was
extracted from U251 cells with an RNA Simple total RNA kit (Tiangen, Beijing, China), and reverse transcrip-
tion was performed using the M-MLV first strand kit (Invitrogen). Reverse transcription products were then
amplified by semi-quantitative PCR using the HotStart Taq master mix kit (Tiangen). Following a “hot start” at
95°C for 3 min, samples were cycled at 95°C for 305, 55 °C for 305, and 72 °C for 20s. The total numbers of cycles
used were: 26 cycles for E-cadherin, 28 cycles for snaill and 20 cycles for GAPDH. The samples were then given
a final 5 min extension at 72 °C. RT-qPCR was carried out with the SYBR Green master mix (Thermo Fisher
Scientific), and samples were analyzed using a QuantStudio™ 7 Flex Real-Time PCR System. Following a “hot
start” at 50 °C for 2 min and 95 °C for 10 min, samples were cycled at 95 °C for 10 min, 60 °C for 30, and 72°C
for 30 s for 40 cycles. The samples were then given a final 5min extension at 72 °C. Primers used for PCR were:
5-CGAGAGCTACACGTTCACGG-3' (forward) and 5'-GGGTGTCGAGGGAAAAATAGG-3' (reverse) for
E-cadherin, 5-ACTGCGACAAGGAGTACACC-3’ (forward) and 5'-GAGTGCGTTTGCAGATGGG-3' (reverse)
for snaill, and 5'-TGTGGGCATCAATGGATTTGG-3/(forward) and 5-ACACCATGTATTCCGGGTCAAT-3’
for GAPDH.

Microinjection of Xenopus embryos and in situ hybridization. In vitro fertilization, embryo cultur-
ing, preparation of mRNA, microinjection, and whole mount in situ hybridization were conducted as described™®.
For each embryo, 70 ng of NA was injected into one blastomere at 2-cells stage'”. The gluococorticoid receptor
(GR) fusion construct for inducible expression of Xenopus Snaill was prepared and injected as described®®, and
nuclear translocation of Snaill was induced by addition of dexamethasone at stage 10-10.5. For in situ hybridi-
zation, embryos were collected at desired stages and the probes for msx1, pax3, zicl, snaill and snail2 were used
as described previously®®-70.

Western blot and IP.  Western blot analyses for whole-cell lysates were performed with the following pri-
mary antibodies: E-cadherin (1:5000), Snaill (Santa Cruz sc-28199, 1:2000), and ZO-1 (1:1000). Detection
was carried out using HRP-conjugated secondary antibodies and enhanced chemiluminescence substrate (GE
Healthcare), and the relative signal intensity was measured using ImageJ]. Membranes were stripped and reblot-
ted for 3-actin (Sigma-Aldrich A5316, 1:1,000) as a loading control. For IP, U251 cells were treated with 100 nM
MG132 (R&D System) for 8 hr, washed 3 times with fresh PBS, and then cultured overnight (8-12 hr) with NA
or PBS (control). Cells were subsequently lysed in PBS + 1% NP-40 containing a protease inhibitor cocktail
(Roche). Cell lysates were incubated on ice with 0.2 pug anti-Snaill antibody for 2 hr, followed by a 2-hr incubation
with protein A-Sepharose beads. Beads were then washed with ice-cold radioimmunoprecipitation assay buffer.
The bound proteins were dissociated by incubating in SDS-PAGE loading buffer at 95 °C for 10 min and subse-
quently subjected to Western blot analysis. Immunoblotting was performed using the antibody for ubiquitin (Cell
Signaling Technology, 1:2,000).

To determine the effect of NA on Snaill in Xenopus, embryos were injected with 70 pg mRNA encoding
myc-tagged Snaill with or without 70 ng NA in each blastomere at 2-cell stage and cultured to stage 15-17.
CNC explants were dissected from these embryos as described previously®>”!. Whole-embryos or dissected CNC
explants were subsequently lysed in modified TNE lysis buffer (50 mM Tris-HCI (pH 7.4), 150 mM NaCl, 0.5 mM
EDTA, and 0.5% Triton X-100) containing protease inhibitor cocktail (Roche), and processed for Western blot
with an anti-myc antibody (Sigma-Aldrich C3956, 1:10000)".

Evaluation of C6 cell invasioninrats. A rat glioma model was established to test the in vivo effect of NA.
The C6 glioma cells were orthotopically injected to the right striatum of Sprague-Dawley (SD) rat brains through
a pre-settled stainless steel tube. NA and control (PBS) were also injected through the tube. When the treatment
was completed, the rats were sacrificed by anesthesia overdose and their brain tissues removed and embedded
immediately in optimal cutting temperature compound. The brain tissues were subsequently cut into slices (7-pm
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thick) with a Leica CM 1850 cryostat microtome. Brain slices were fixed with 95% ethanol and stained with hema-
toxylin and eosin (both were from Sigma). For immunohistochemistry, brain slices were fixed with 4% para-
formaldehyde for 30 min, followed by blocking with 5% BSA for 1 hr at room temperature. The slices were then
incubated with rabbit anti-Nestin polyclonal antibody (Millipore) at 4 °C overnight, washed, incubated again with
phycoerythrin-conjugated secondary antibody (Santa Cruz Biotechnology) for 45 min at room temperature, and
stained with DAPI to label nuclei. After being sealed with neutral mounting medium (Jiangyuan, Jiangsu, China),
the slices were observed under an Olympus upright microscope.

Ethics statement. Methods involving live animals were carried out in accordance with the guidelines and
regulations enacted and enforced by Chinese National Ministry of Science and Technology as well as National
Ministry of Health. All experimental protocols were approved by the Institutional Lab Animal Ethics Committee
at Kunming University of Science and Technology, Kunming, China.
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