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Abstract. The problem of locating the Pareto-optimal points of a differentiable mapping
F : MY — R” is studied, with the domain MY a differentiable N-dimensional submanifold-
without-boundary in a euclidean space RVo and Ny > N > n. The case in which the domain is
the closure of a bounded, regular, open subset of RY is also discussed. The search is initiated
from these observations: for a manifold-domain, (1) the image of any Pareto optimum lies in
the boundary of the range of F; (2) a point of the boundary of the range of F that also lies in
the range must be the image of a singular point of F', i.e., must appear amongst the singular
values of the map. Further conditions are then needed to distinguish which of the singular values
should be discarded because they belong to the interior of the range; local tests of this sort are
given for the bicriterial case (n = 2). A search procedure based on the present developments
can systematically determine all of the Pareto optima for sufficiently simple F'. The conditions
established here may be regarded as analogues of the classical ones for the determination of the
global extrema of a real-valued differentiable function. The results proven are illustrated with

simple examples, including plots of the ranges, singular points, and singular values.
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0. Introduction.

We study the problem of locating the Pareto-optimal points for a differentiable map F' : D — R".
For the most part, the domain D, is assumed to be a differentiable N-dimensional submanifold-
without-boundary MY in a euclidean space RMo, with Ny, > N > n > 2 (which includes the
special case in which M” is an open subset of some RN with N > 2). Some of the results that
we establish can be extended to the case in which D is a differentiable N-dimensional manifold-
without-boundary in a euclidean space RVe (again, with N, > N > n > 2). However, we prefer to
maintain throughout the submanifold-hypothesis, since the underlying machinery—tangent spaces,
differentiable maps, etc.—is much more accessible (¢f ., e.g., Appendix B here), while the analysis
is correspondingly more tractable for that case. One can also consider the domain as contained
in an infinite-dimensional Hilbert space; we intend to examine in a separate note the analogous
developments in that setting.

Another situation of frequent occurrence in applications is that in which Dy is the closure X of
a bounded, open, regular subset of R ; such a case we propose to treat by a “reduction” to several
applications of the submanifold-domain case, through dissection of the domain X into its interior
and boundary submanifold-pieces. For the sake of definiteness in these introductory remarks, we
are thinking of the submanifold-domain D = MY with Ny > N > n > 2, unless otherwise noted.

We want to exploit the most elementary observation concerning the Pareto optima, wiz., that
if one has a sufficiently good “atlas” of the range Ry of F' in R*, then the images of the Pareto
points of F' can be picked out, owing to the characteristic locations of those images on the boundary
of the range of F', whence the Pareto points themselves can be identified. Specifically, for the
implementation of such an approach one would wish to know (i) the set *Rp = ORr N Ry,
comprising the points of the boundary 0R [ of the range of F' that also lie in the range R itself,
along with (ii) a vector indicating the “local mapping direction” at each point of *R ; at “regular”
points of the boundary, more specifically, where the boundary is sufficiently smooth and the interior
of the range is locally nonvoid, the interior normal to R will serve to indicate the local mapping
direction. This motivates the search for an analytical means of identifying the set *R j, which we
call the included boundary of the range of F. In fact, as we show here in Section 2, when F' is
differentiable (in the submanifold-domain setting) there is readily at hand a useful condition that is
necessary for the inclusion of a value F(§) in ORp: € must be a singular point of F, i.e., a point
for which the rank of the differential DF'(£) has less than the maximal value n. Thus, the included
boundary of the range of F' is to be found within the set of singular values of F and the Pareto
minima of F' must lie amongst the singular points of F. This fact is completely elementary and
follows directly from the inverse-function theorem of classical analysis, so it is surprising that such
a simple connection has apparently not been remarked and pursued before.

Unfortunately, however, it is generally not the case that every singular value belongs to the
boundary of the range, a circumstance greatly complicating any search for 0*R [ that is based on
the singular-value necessary condition. Indeed, it is very common to find that F' maps many of its
singular points into the interior R° of its range, so one is forced to seek additional tests aimed at
determining how a given singular value is situated relative to R .. This leads naturally to interesting
excursions into the differential geometry and topology of maps between euclidean spaces and the
study of singularities of smooth maps.

Of course, the ultimate aim should be the formulation of a systematic and reliable procedure
for the location of all of the Pareto optima of a given mapping F. This is an ambitious project,
not only because of the many cases and pathologies that arise to be handled, but especially because
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of the numerical difficulties (entailing the solution of nonlinear systems of equations) inherent in
the global searching that will always be in some measure unavoidable. In any event, we can claim
only that the results reported here provide just a start on such a program. On the other hand, the
procedures developed in this article will in fact serve to locate all of the Pareto optima for smooth
maps F' that are sufficiently simple to permit reliable analytical global searching for preimages. In
more complex examples, such searching must be carried out discretely and, consequently, will be
much less reliable.

After recalling the basic definitions in Section 1, we establish simple first results about the
location of the images of Pareto minima, identify the cases to be studied, and introduce some
standard notations. Section 1 ends with some observations on the special case in which F is a
continuous injection of a subset of RV into itself. There is a fundamental difference between the
case in which the dimensions of the domain-manifold and the codomain satisfy 1 < N < n and that in
which N > n > 2; throughout, we shall restrict attention to the latter setting, which would appear
to be the more common one for applications. Under this hypothesis, the fundamental condition
that is necessary for the inclusion of an image-point in the boundary of the range is developed in
Theorem 2.2 of Section 2. In the second part of that section we provide some information about the
general structure of the singular points and singular values of a differentiable mapping. In Section 3
we block out the major steps in proposed “systematic” procedures for locating the Pareto minima of
a sufficiently smooth mapping F', first for the manifold-domain case, then for the compact-domain
case. The procedures are at present tentative in some aspects, since we leave certain eventualities
to be dealt with on an ad hoc basis. One can regard Section 3 as placing in context the statements
proven in Sections 2, 4, and 5, in particular, Theorems 2.2, 4.1, and 5.1, which are the main results.

Following the fairly general settings of Sections 1, 2, and 3, for the development of further
discriminatory tests we restrict attention to only the simplest of the many cases to be studied. That
is, in Sections 4 and 5 we examine only the bicriterial setting, in which n = 2. Already in that case we
find the formulation and proof of definitive statements to be nontrivial. In particular, Theorems 4.1
and 5.1, presented and proven in Sections 4 and 5, respectively, apply only in the bicriterial case.
Theorem 4.1 pertains to the special case in which Dy is an open set in RY, while Theorem 5.1
is concerned with the more general setting, where D is a sufficiently smooth NN-submanifold in
some R™o. Each statement provides conditions of a local nature sufficient to decide whether a given
singular value belongs to the interior of the range of F' or to the “local boundary” of the range of F'
(which may be more familiarly known as the set of points at which the range is “folded”; cf., the
definitions given in Section 3). The theorems also show how one can compute the “local mapping
direction” at a point of the included boundary of the range, when the appropriate conditions are
met, a calculation essential for the final determination of Pareto-optimal points. Section 6 contains
a number of elementary but pertinent examples included to demonstrate in the simplest manner
the general considerations covered by the theorems proven in the preceding sections. The examples
are not provided with the intent of establishing the viability of the search procedure outlined in
Section 3; instead, the illustrations are chosen primarily for their aptness in capturing the ideas
and observations developed in Sections 2 through 5. Strictly speaking, a full understanding of all
of Section 6 requires every result of the paper, but one can browse at any stage with profit the
examples presented there. Some concluding remarks are made in Section 7.

Two appendices are included. In Appendix A we develop some needed facts concerning “bi-

i

quadratic maps,” in particular, a few properties of the range of such maps. Appendix B contains a

brief review of the simplest definitions and results about (differentiable) submanifolds of euclidean
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spaces. The material there consists of basic definitions and results taken primarily from the presen-
tation of FLEMING [9] and augmented with the required definitions and some elementary facts about
differentiable mappings from one submanifold into another.

It is possible to regard several of the statements proven here as analogues of the classical
necessary conditions and sufficient conditions employed in the search for the local extrema of a
real-valued differentiable function f : ’Df — R (i.e., for n = 1), when ’D]c is, say, an open subset
of some RMo. Thus, the necessary condition here in Theorem 2.2 is the analogue of the “first-
derivative test”—the assertion that f can take an extreme value only at a critical point, so that all
extreme values are to be found amongst the critical values. The statements of Theorems 4.1 and
5.1, requiring more smoothness of the mapping, involve conditions on the definiteness properties of a
certain quadratic form constructed from the second quadratic differential of F' acting on the nullspace
of its first differential; these conditions correspond to a “second-derivative test,” a counterpart of
the Hessian-matrix criteria appropriate in the case of a twice-differentiable real-valued f. Here also
(the present form of) our statements have an “indeterminate” case, in which the quadratic form is
semidefinite and the test fails to give information (and so should be extended to some condition on
higher-order differentials).

The present “direct analytical” approach to the search for Pareto optima is just the pursuit of
an obvious strategy that would surely have been undertaken long ago if the basic necessary condition
of Theorem 2.2 had been recognized. Instead, previous searches for Pareto optima have proceeded
by exploiting devices such as “scalarization,” “brute-force but judicious” plotting of points of the
range, and /or restrictions to circumstances involving special features such as convexity; cf ., e.g., [4],
(5], [10], [16], [17], and [18]. By “scalarization” is meant the replacement of the original “vector”
problem, involving an R"-valued map F', by a parametric family of scalar optimization problems
involving real-valued functions constructed by forming linear combinations of the components of F,
with the coefficients playing the role of the parameters generating the family. For example, AUBIN [4]
shows that if the domain Dy, is a convex set and the components of F' are convex functions, then the
scalarization device based upon the formation of convez linear combinations of the components of
F produces a family of minimization problems whose solutions yield all of the weak Pareto minima
of F. We anticipate that the usual sort of situation will evolve, viz., that each approach, including
that proposed here, will perform well on its own class of problems, with no one method serving to
handle the entire universe of mappings whose Pareto-optimal points are wanted.

Throughout, we consider the location of Pareto minima, as we may, without loss of generality.



1. Pareto minima.

Recall that the Pareto minima are of central interest in settings such as the design of systems or
processes and the selection of strategies in multi-person coGperative games, where one would like

to adjust the operating conditions so as to *

‘make simultaneously as small as possible” a number n
(> 2) of costs, or losses. The Pareto-optimization approach is of particular importance when the
costs are “conflicting,” in the sense that working to decrease some of them may have the effect of

increasing others.

For definiteness, let us describe the basic ideas within the context of an optimal-control problem.
Suppose that the state of a system under study is completely fixed by assigning values to the N,
real (control) variables &, &, ..., & Ny’ with the provision that the control-point & := (&;,...,& No)
be constrained to lie in an admissible set D C RNo. Assume further that we have identified n
costs Fy(§),. .., F, (€) associated with operating the system at each control point &, so that we have
n real-valued functions F, : Dp =+ R, k = 1,...,n, defined on the set of admissible controls; this
produces a map F = (F,,...,F,) : Dp — R*, with F(§) := (F,(¢),...,F,(£)) for £ € Dp. We
would like to control the system to “operate at minimal cost,” in some useful sense. Of course, it will
not in general happen that the costs reach global—or even local—minimum values at some single
control point (although the analysis should subsume that possibility, in particular, by automatically
notifying us of any such point(s)). In such a situation, it is reasonable to seek the control-points
&0 enjoying the property that, relative to £, no other control point in Dy (1) realizes at least one
strictly lower cost while (2) increasing none of the costs. Such a point £° is called “a strong global
Pareto minimum of F”; in general, many such points will exist, so that, even after all have been
found, there will remain the question of selecting one of them as the “best,” or “least-cost,” control
point of the system, in a trade-off decision, perhaps based on some other criteria. That is, the
identification of the Pareto minima will afford the opportunity to effect a choice of control point
through some subsequent additional weighting of the costs. These ideas underlie the

Definitions. Let F' = (F17"'7Fn) : {DF C IRNO} — R™. Then F has a strong local Pareto
minimum at £ € Dy iff there is a neighborhood W,y of F(£°) in R™ such that the condition

F(§) <F (&%) fork=1,...,n and  F;(§) < F;(&°) forsomeje{l,...,n}, (1LL1)
or, equivalently,
F(&) <F(e) fork=1,..n and  F(§) £ F(E) (112

holds for no £ € Dy with F(£) € Wicoy- F has a strong global Pareto minimum at & € Dy iff
the inequalities in (1.1.1) hold for no £ € Dg. (Obviously, a strong global Pareto minimum is also
a strong local Pareto minimum.) We denote the set of strong local [global] Pareto minima of F by
1_Iloc-F [by HF]

Remark. It is important to note that the definition of a strong Pareto minimum, whether local
or global, is based upon the behavior of the map on its entire domain, and not merely locally to
the point in question. That is, the preceding definition in the local case is not constructed as “F
has a strong local Pareto minimum at £° € D, iff there is a neighborhood Ugo of €9 such that the
inequalities in (1.1) hold for no § € U, NDy” (which is, at least for a continuous F', a necessary but
not generally sufficient condition for F to possess a strong local Pareto minimum at £° according
to the actual definition). In fact, it is easy to construct, and common to encounter, points £°
satisfying the latter weaker condition but for which the image F(£°) lies in the interior of the range

5



of F', so that such points have no minimum property at all when this is reckoned relative to the full
domain. This usually happens because F fails to be injective, so that another portion of the domain
is mapped to cover a point fulfilling only the weaker condition. The difficulty here captures the
essentially global nature of the problem of locating the Pareto minima of a given map. Indeed, the
identification and exclusion of points satisfying only the cited weaker property is a major issue to
which we devote a good deal of effort, but even with the results that we present here, some global
searches will still be ultimately required, in general.

The form of the definitions given above is somewhat awkward to use in application. There are
alternate characterizations of Pareto minima that both facilitate the analysis and assist in visual-
ization. Thus, for example, it is easy to use the conclusions of the following lemma to sketch the
typical local and global situations in the case when n = 2. We employ the notation

Qp:={yeR"|y#0, y;<0forj=1,...,n}

for the “closed negative 2"ant” in R with the origin removed.

Lemma 1.1. Let F = (F,...,F,) : {Dp Cc RNo} — R". Then F has a strong local Pareto
minimum at £ € Dy iff there exists a neighborhood W0y C R* of F(£°) such that either of these
conditions obtains:

(i-) Wiy NRp N {F(&°) + Q5 } = @, i.e., the translate F(£°) + QF does not meet the range
of F inside WF(go);

(ii.) for every £ € Dy such that F(§) € W
je{l,...,n}.

F has a strong global Pareto minimum at £° € Dy, iff either of these conditions obtains:

¢y, either F(§) = F(£°) or F;(€°) < F;(§) for some

(iti.) RpN{F (&) + Q3 } = @, i.e., the translate F(£°) + QF does not meet the range of F;
(iv.) for every £ € Dy, either F(§) = F(£°) or F;(£°) < F;(&) for some j € {1,...,n}.

In particular, it follows that if F has either a strong local or global Pareto minimum at £&° € Dy,
then F(£°) lies in the boundary OR . of the range of F.

Proof. (i) and (). Let £° € Dy. The translate F/(£°) + OF can be written as
FE)+Qp:={F()+2]2€ 90} ={yeR"|y#F(E), y,<F () fork=1,...,n}.

From the latter characterization it is clear that, if WF(go) is a neighborhood of F(£°), the set
F(€%) + QF meets Wiy N Ry iff there is some £ € Dy such that F() € W g0y and (1.1.2)
holds, i.e., iff €2 is not a strong local Pareto minimum for F. This proves (i). The proof of (i) is
constructed in the same manner by omitting mention of the neighborhood WF(go).

(i) and (iv). Clearly, an equivalent form of the definition of “strong local Pareto minimum” is
phrased as “F has a strong local Pareto minimum at £° € D, iff there is a neighborhood WF(go) of
F(€°) in R™ such that the negation of condition (1.1.2) holds for every £ € Dy such that F(£) €
Wip(eoy.”  Statement (44) results from this observation by explicitly writing out the negation of
condition (1.1.2). The proof of (i) runs in essentially the same way by omitting the neighborhood
Wreo)-

The final assertion of the Lemma follows immediately from (i) and (#ii). In fact, let F have a
strong local [global] Pareto minimum at £&° € Dy. Then, by (i) [by (iii)], any sequence contained
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in F(£%) + QF and converging to F(£°) eventually lies [completely lies] outside the range of F, so
F(£9) belongs to the boundary OR . [

Remarks. (1.) From Lemma 1.1, it is easy to check that a point £ € Dy at which some one of the
component-functions F, takes on an absolute minimum value will be a strong local Pareto minimum
of F'; such a point will be a strong global Pareto minimum if the absolute minimum is taken on only
at £°. Apparently, a point of local minimum of one of the F, may or may not be a local Pareto
minimum of F.

(2.) Some investigators introduce a “weak global Pareto minimum” of F' = (Fl, .. .,Fn) : {DF C
RMo} — R™ as a point £&° € Dy for which the strict inequalities F} (§) < F,(¢°) for k= 1,...,n
hold for no £ € Dg; cf., e.g., AUBIN [4]. Equivalently, with the “negative 2"ant” in R" denoted by

Q":={yeR"|y; <0 forj=1,...,n}

a weak global Pareto minimum of F is a point £ € Dy, for which the intersection R, N {F(§) + Q"}
is void. Weak local Pareto minima can be introduced in a similar manner. The reader can make
a sketch of the range of F' and the translated cones Qf and O™ for the case n = 2 to picture the
distinction between “strong” and “weak” Pareto minima. In particular, it should be clear that it
is more desirable to be able to locate the strong Pareto minima. However, we will not need to
make such a distinction in the present developments, so we shall not introduce the weak points, and
henceforth (usually) drop the qualifier “strong” in referring to Pareto minima.

With the definitions set, we consider how one might develop a systematic and direct procedure
for finding all of the Pareto minima of a given function F : {DF C RNO} — R™. As we have noted,
our strategy is based on the fundamental observation, made in Lemma 1.1, that the images of the
Pareto-minimal points, both local and global, lie in the boundary OR [ of the range. Therefore,
more precisely, these images belong to the included boundary 0* Ry := ORp N Ry of the range of
F, i.e., they belong both to the range and to its boundary. (For any subset A of a topological space,
we call 0*A := AN O0A the included boundary of A; we may use this term even when we know A to
be closed, so that 0*A = 0A.) Indeed, the basic necessary condition, developed in the next section,
will assist only in the location of points of the included boundary of the range, so we are taking care
now to point out that this is all that is required. Accordingly, the first aim is the identification of
O*Ry, and its preimage F~'{0*R }, which is to be followed by a search in the latter set for the
Pareto minima. The separation of the local and global Pareto minima requires a final global study
with knowledge of the entire boundary of the range.

Since we are ultimately to infer the locations of the Pareto minima by picking out their images
from amongst all the points of the included boundary of the range, it is important to develop a
test for effecting this discrimination. For this, we can exploit Lemma 1.1.7 and 44, which indicate
how the images of Pareto minima occupy characteristic locations within that boundary. We give at
this point a simple and convenient sufficiency test, implied by those statements in Lemma 1.1 and
applying wherever there is enough local regularity of the boundary of the range of F'. Although we
do not “officially” restrict attention to the case N > n until the next section, this will be the only
setting in which the conditions make sense, since we need the interior of the range to be locally
nonvoid—a circumstance that will never obtain when N < n. The test is conducted by looking
for a distinguishing property of the interior normal to the boundary of the range at the image of
a prospective Pareto minimum. The statement is not definitive; e.g., we cannot use it to examine
those situations in which the range locally has void interior, and even when the regularity conditions
are fulfilled there will be exceptional cases that are not covered.
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To begin, we need a definition of “regularity” of a set at a point of its boundary that generalizes
the one usually stated for an open set. We continue to denote by A° the interior of a set 4 in a
topological space.

Definition. Let Q be a subset of R™; here, n > 2 and Q need not be open. Let z € 2. We
say that Q is C¥-regular at z for some positive integer k iff there exists a neighborhood U, of z
and a C*-function &, on U, such that grad ®,(z) # 0 and Q°NU, = {y € U, | ®,(y) >0} while
onnu, = {y elU, | o (y)=0 } We usually say simply “regular at z” in place of “C'-regular at

:L..”

Remarks. Retain the setting and notation of the preceding definition. Let 2 be regular at 2 € 0f2.

(1.) Of course, we may suppose that grad ®,(y) # 0 for each y € U,. Further, it is easy to check
that QNU, =Q°NU,, 00NU, =0{°}NU,, and {R"\Q}NU, = {y €U, |<I>z(y) <0}.

(2.) It follows from the definition that dQ N U, is an (n — 1)-submanifold of class C*, while Q° “lies

on one side of its boundary”

in the neighborhood U, of x. Thus, there is a unique unit-normal ¥
to 002 at = such that z + s lies in Q° for all sufficiently small positive s; we call U the interior
unit-normal to 02 at x and any positive multiple of ¥ an interior normal at x. In the present

setting, of course, an interior normal at z is given by grad ®,(x).

Lemma 1.2. Let F : {Dy C RN} — R". Suppose that { € Dy with F(§) € Ry and the range
R is regular at F(£).

(¢.) If all of the (Cartesian) components of an interior normal to ORy at F (&) are positive,
then £ is a local Pareto minimum of F.

(#.) If at least one of the (Cartesian) components of an interior normal to ORy at F(§) is
negative, then & is not a local Pareto minimum of F'.

Remark. It is easy to construct borderline cases, i.e., with all of the components of an interior
normal to OR at F(£) nonnegative and at least one vanishing, for which ¢ is a Pareto minimum
and other such cases in which £ is not a Pareto minimum.

Proof. Let U Fe) and ¢ F(e) be as in the definition of regularity of R at F'(£); we may suppose that
Up(g) 1s a ball centered at F'(§).

(7) Suppose that all of the components of an interior normal to R at F(§) are positive. Then
we may assume that all of the components of grad F(g)(z) are positive for every z € U Fe)" If
Yy €UpN {F(&)+ Qf}, there is some Y¢ on the line segment joining F'(£) and y for which we have

Bpe)(¥) = Py (U) = Pre) (F(E) = grad @pe) (ye) - (v — F(€)) <0,

so that y € R .. By Lemma 1.1.i, we conclude that F has a local Pareto minimum at &.

(#) Now assume that at least one of the components of an interior normal to OR i at F'(§) is negative.
In this case, it is easy to construct points y € Up )N {F(&)+ Qy} such that ®p e (y) > 0, i.e., such
that y € R, so that £ cannot be a local Pareto minimum of F'. For the simplest example, suppose
k is such that @F(g),k(F(f)) < 0; then we may suppose that @F(g),k(z) < 0 for every z € UF(&)'
Construct y € R by y; := F;(§) for j # k and y, := F}(§) — € for a positive € taken sufficiently
small so that y € Uy ). Then we have y € Up ) N {F(¢) + Qp}, while the mean-value theorem
implies that @, (y) >0. [



In Propositions 4.1 and 5.1, when n = 2 and the domain Dy, is a submanifold, we show how one
can compute a normal to the boundary of the range at an appropriate point; moreover, following
the statements of Theorems 4.1 and 5.1 we indicate how one can use those theorems to decide which
normals are interior normals, all under appropriate regularity hypotheses. Presently, we have no
condition on F itself that we know to be sufficient to ensure all of the requisite regularity. For
example, we have not shown that the hypotheses of Theorems 4.1 and 5.1 suffice to guarantee that
the range of F is regular at a singular value of the sort considered there. Consequently, Lemma, 1.2
must now be considered simply as a statement that a certain test will work under the reasonable
circumstances that one expects to prevail in most cases.

The nature of the domain D of the mapping F' is a crucial element in the analysis. We want
to treat two types of domains that commonly occur in the modelling of physical circumstances.

A. Dy is an N-dimensional differentiable submanifold-without-boundary MY in some RMo,
with Ny > N.

Of course, the submanifold MY here may be compact. This case can arise in practice,
e.g-, when there are constraint conditions of the form @, (&, - ,{NO) =0,j=1,...,Ny—
N, with a full-rank condition on the differential of the map & = (<I>1, ..,® Ny— N). Of
particular importance is the special situation in which

A,. Dy is an open set U in RN (when N, = N).

Indeed, not only is it easier to follow the arguments and visualize the underlying geometry
of case (A,), it will become clear that the open-set-domain setting must be mastered as a
prerequisite to the understanding of all the others.

B. D; is a (nonvoid!) compact and regularly closed set X in RY with piecewise-smooth
boundary 9X.

By regularly closed we mean, as usual, that X is the closure of its interior: K° = K. This
case can occur, e.g., when there are simple inequality bounds on the permissible variation
of the control variables and/or the costs.

However, with one exception our theorems are set only in case (A) (and (Ay)). Roughly speaking,
the examination of case (B) is to be reduced to that of successive applications of case (A), by seeking
separately the included boundaries of the images F(X°) and F(8X) of the interior and boundary of
X. The legitimacy of this reduction may not be immediately evident, so some explanation is in order.
Accordingly, in Section 3 we provide some analysis of case (B). In particular, we show there that
none of the Pareto minima of case (B) is lost by effecting this splitting into two subproblems, and
indicate how the three boundaries dF(X), dF(X°), and 0F (0XK) are relatively situated in general.

Thus, except for the indicated discussion in Section 3, a brief observation at the end of this
section, and an example in Section 6, we shall be concerned here with case (A). Therefore, un-
less otherwise indicated, F' will generally denote a mapping F' : MY = R of the N-dimensional
submanifold-without-boundary MY c R into the euclidean space R™, with Ny >N >n > 2
when N = N,, we consistently denote the common value by N. Moreover, in the latter special
setting, we may use the notation U in place of MY to remind ourselves that the domain is an open
subset of RV .

Other sorts of domains can occur in applications. For example, natural constraints in models
of physical problems may lead to a domain which is the closure of an N-dimensional manifold in
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R with N < N,. Such problems can be attacked by proceeding along the lines of the approach
indicated here for Case B.

As we have done to this point, we shall always denote the components of the function F' by
F;,j=1,...,n,s0 that F = (F,..., F,). The euclidean norm of z € R¥ we denote by |x|k; the
euclidean inner product of z, y € RF we shall indicate simply by z - y, leaving the dimension % to
be inferred from the context. The open ball in R* of radius » > 0 and centered at z is denoted
B*(z), while its boundary is written as S¥(x). The standard unit basis-vectors of RNo are written
el), j =1,...,N,, while those of R* are indicated by ¢™") and ¢(?). For brevity and convenience,
we sometimes abuse language and notation by referring to an R¥-vector as a “point” of RF and wice
versa; the intended meaning here is clear, and the practice should cause no confusion. We are lax in
distinguishing the terms “differential” and “derivative”; the terminology is not standardized in the
literature. Again, the context will eliminate any possible ambiguity. Finally, the term “manifold”
will always mean “manifold-without-boundary,” since we consider only the latter structures; a similar
restriction applies to the term “submanifold.”

By way of orientation, we close this Section 1 with observations concerning a special situation
in the case with Ny = N =n, i.e.,, with F : {Dp C RV} — R"; here, either case (A,) (open-set
domain) or case (B) (compact, regularly closed domain) is permitted. Sometimes in the applica-
tions one encounters an F' in such a setting that is injective. The well-known Brouwer theorem
on invariance of domain then permits one to qualitatively describe the situation regarding Pareto
minima—and under merely the hypothesis of continuity for F'.

Theorem (BROUWER). Let F': {U C RV} — RY be a continuous injection of the open subset U
of RN into RN . Then F is an open mapping; in particular, F (U) is open in RV

Proof. One can consult e.g., [7] for references to works containing proofs of the theorem. []

Example 1.1. Let F: {U C RV} — RY be exactly as in the Brouwer theorem. Since the range
Rp = F(U) is open, the included boundary 0*R . of the range is void. Therefore, such an F' has
no Pareto-optimal points.

Remark. Consider the case N = n = 2 and suppose that the mapping F : {U C R?} — R?, with
U open, is holomorphic when regarded as a complex-valued function on the complex domain U. As
pointed out by A. E. LIVINGSTON [13], in this setting the analyticity of F alone implies that it is an
open mapping, and so, just as in Example 1.1 (which relied on the assumed injectivity of F' and the
Brouwer Theorem), again F' can have no Pareto-optimal points, since the included boundary of its
range is void. Of course, this conclusion is completely independent of any hypothesis of injectivity
for F'.

Example 1.2. Again with F : {U ¢ RY} —» RY and U open, now replace the hypotheses of
continuity and injectivity of F’ with the conditions that F' is differentiable and has no singular points.
The inverse-function theorem now implies that F' is an open mapping, just as under the Brouwer
hypotheses, so F' is devoid of Pareto-optimal points in this setting, as well. It is illuminating to
review this remark in light of the developments of the next section (where the definition of “singular
point” is recalled and a statement of the inverse-function theorem is given).

Example 1.3. Let F : {X c RV} — R" be a continuous injection, where X is compact and
regularly closed. (Thus, F is a homeomorphism of X onto F(fK) .) We shall check that F' here maps
the boundary 90X of its domain onto the boundary OF (IK) of its range; from this, it will follow
immediately that any Pareto-optimal point of F must lie on XK. To prove that F(9X) = 0F (X),
we show first that F/(X°) = F(X)°: the Brouwer theorem says that F(X°) is open in RV, which
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implies that F(X°) C F(X)°; the reversed inclusion just follows from the continuity of F, which
gives F~1(F(X)°) c (F1(F(X)))° = X°. From the partition X = X° U 8K of X and the
injectivity of F' we get the partition F(X) = F(X°) UF(0X) of F(X), which we can now rewrite as
F(UC) = F(UC)O U F(@JC). On the other hand, we also have the partition F(JC) = F(SC)O UoF (JC),
following just from the fact that F (iK) is closed. From these observations, we can conclude that
F(0X) = 0F (X), as claimed.

Example 1.4. CARMICHAEL [5] discusses an example from mechanics, involving a fixed loading of a
simple symmetric five-member truss comprising bars of just two cross-sections. The design problem
consists in choosing the two cross-sectional areas of the members of the truss so as to Pareto-minimize
the weight and a certain sum of deflections of two chosen nodes of the truss. There are constraints
imposed: neither the cross-sectional areas nor the individual deflections of the two selected nodes are
permitted to exceed certain given values. The underlying mapping, carrying each admissible pair of
cross-sectional areas into a pair consisting of a corresponding weight and node-deflection sum, is of
the form F : X — R?, with X a curvilinear quadrilateral in R2. It is easy to determine the explicit
rule of the mapping F', close examination of which reveals its injectivity. Consequently, the situation
is just as in the preceding Example 1.3 (with N = 2). The Pareto-minimal points of F' can therefore
be determined by searching along the boundary of X, using an obvious strategy for computation of
the interior normal at an image-point on the boundary of the range.
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2. The fundamental necessary condition for the included boundary of the range.

We pointed out in Lemma 1.1 that F(£) lies in the included boundary 0*Rp := ORp N Ry of
the range of the mapping F' whenever £ € Dy, is a Pareto minimum (global or local) of F. We can
exploit this observation to narrow the search for Pareto-minimal points. Indeed, our first main result
is simply a condition necessary for the inclusion F(£) € 0*R to obtain, when N, > N > n > 2 and
the domain D, is an N-dimensional submanifold M" c RMo of class O and £ € M™. We have the
partition of the range given by

RF :RFOU {3RF0RF} ZRFOUa*RF, (21)

so the negation of any condition sufficient to ensure that a value F(§) lie in R > will yield a condition
necessary for F(£) to lie in 8*Rp. A little reflection reveals that the well-known inverse-function
theorem of analysis affords a condition of the former sort. Accordingly, we begin by recalling a
statement of this theorem:

Theorem 2.1 (Inverse-Function Theorem). Let U C RY be an open set and F : U — RV
a mapping of class C? (¢ > 1). Let £ € U and suppose that the Jacobian determinant JF (&) is
nonzero. Then there exists an open neighborhood Uy of £ contained in U for which the image F'(U)
is open in RY | while the restriction F | Ue : U = F(Uyg) is a C?-diffeomorphism.

Proof. Cf., e.g., FLEMING [9] or APOSTOL[2]. []

From this statement, in the special setting F' : {U C RY} — RV it is immediate that the
equality JF(£) = 0 for some & € U, i.e., the singularity of the differential DF(¢) : RV — RV is
necessary for the inclusion F(§) € *Rp. It requires only a bit more work to extend this result to
a more general case.

To that end, we recall some useful ideas. If U C RY is open and F : U — R is a mapping of class
C1, then the rank of F at £ € U is the rank of the differential DF(£) : RN — R®. More generally,
if M” is an N-dimensional submanifold of class C" of a euclidean space R¥o and F : MY — R»
is of class C', then the rank of F at &€ € MY is the rank of the differential DF(£) : TgMN - R”;
cf., e.g., Appendix B. Of course, the second case here subsumes the first, since an N-submanifold
of RV is, by definition, simply an open set.

Definitions. Let 1 < N < N,. Let F : MY = R” be a map of class C? on the N-dimensional
submanifold-without-boundary M® ¢ RMo of class C', and let £ € MY: ¢ is a singular point of F
iff the rank of F' at £ is less than n; € is a regular point of F iff it is not a singular point of F, i.e.,
iff the rank of F at £ is n, so that the differential DF'(£) is surjective. We denote by X F the set of
singular points of F. A point z € R" is a singular value of F iff the inverse image F~'{z} contains
a singular point of F, i.e., iff x is the image of some singular point; otherwise (including the case in
which F~1{z} is void), = is a regular value of F.

Remark. The terms introduced here are not fully standardized in the literature. Thus, some
authors define a “singular point” to be a point at which the rank of F is less than its maximal value
min {N,n}; when N > n, which is the case of present interest, the two definitions yield the same
points. Moreover, the terms “critical point” and “critical value” are sometimes used in place of
“singular point” and “singular value,” respectively, while other writers reserve those words to apply
only in the case in which F' is real-valued, i.e., when n = 1.

Within the present context of the search for the boundary of the range, confusion may arise
from the fact that a singular value may be the image of a regular point, as well as of a singular
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point. Consequently, we introduce additional terms allowing us to discriminate more precisely for
present purposes.

Definition. We say that a singular point £ € M” of a class-C* map F : MY — R” on the N-
dimensional submanifold-without-boundary M” ¢ RNo of class C" is a completely singular point iff
F (&) has no preimage that is a regular point of F’; naturally, in that case, we refer to F'(§) as a
completely singular value. The set of completely singular points of F' we denote by ¥*F":

S*F:={¢(eXF| F'{F(&} -contains no regular point of F }.

Still considering F' : MY — R", suppose that N < n: then F will map a full neighborhood of any
regular point in M” to an N-dimensional smooth submanifold of R"; ¢f., e.g., CHILLINGWORTH [6].
That is, roughly, the range of F' is of “smaller dimension” than the codomain R". In the contrary
case, when N > n, F' will map appropriate relatively open neighborhoods of regular points to open
sets in R™. This points up the distinction between the two cases N < m and N > n, which are
essentially different geometrically with regard to the topological location in the range of the images
of Pareto minima, as simple schematic examples will show. Henceforth, we shall suppose that we
are in the latter setting (which seems to be the more common one for applications). Under this
restriction, we can establish

Theorem 2.2. Let Ny > N > n > 1 and suppose that MY c RMo is an N-dimensional submanifold-
without-boundary of class C. Let F : MY — R™ be of class C*.

(i.) If €0 € MY is a regular point of F, then F(£°) belongs to the interior R° of the range of
F.

(ii.) (Fundamental necessary condition.) If & € MY and F(£°) € ORy, then £ is a
completely singular point of F'. Thus, the preimages of the points of the included boundary
of the range of F', and hence, in particular, all local Pareto minima of F, lie amongst the
completely singular points of F':

I, .F C F'(0*Rp) C T*F. (2.2)

Of the several arguments available for the proof of Theorem 2.2, we shall present one that
readily admits of generalization to the case in which the domain of F is contained in an infinite-
dimensional Hilbert space. To that end, we begin with a special case of the “constant-rank theorem,”
a full version of which is given as Theorem 2.4.4 of CONLON[7]. As pointed out in [7], although
the constant-rank theorem is usually proven by an appeal to the inverse-function theorem, the two
statements are equivalent. For the particular case that is needed presently, we provide a variant of
the proof given in [7] that can be generalized to accommodate an infinite-dimensional domain.

Lemma 2.1. Let N > n > 1. Let U be open in RN and F : U — R® be a mapping of class
C'. Suppose that F has (maximal) rank n at £&° € U. Then there are an open set U C RV and a
diffeomorphism ® : U — U50 of U onto an open neighborhood U,, C U of €° such that

Fo(b(fl,...,§N) = (fl,...,§n) for every &= (51,...,§N) el.

Proof . Since the differential DF (£°) : RV — R™ is surjective, we can find Al,..., h" in RV such that
the set {DF(£%)h!,...,DF(£°)h™} of images is linearly independent, and so spans R". The collec-
tion {h',...,h"} must also then be linearly independent, so that the span HY :=sp {h,...,h"}
is an n-dimensional subspace of RY, while the restriction DF (%) | HY is a bijection of H}Y onto
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R". With {.(®¥}/'_ denoting an orthonormal basis chosen for HY, if N > n we adjoin elements to

form an orthonormal basis {L(k) };EVZI for RV,

Let the C'-mapping ¥ : RV — RN be defined by setting

n n N
B =+ Y (RO - MO =S R+ 3 (£ ®)B, for £eRY;
k=1 k=1

k=n+1

if N = n, of course the second sum in the latter form is absent. For the differential D¥ (&) at any
¢ € RY we readily find

DU (E)h = h+ Z{dFk(f)h —h- L(k)}L(k) for heRV.

k=1
Now, observe that DW(£0) : RV — RV is bijective. In fact, if h € RN and D¥(£°)h = 0, we find
that dF} (&) h=0fork=1,...,nand h-1® =0for k=n+1,..., Nif N > n. The latter set
of equalities says that h € HY while the former set implies that DF(£°)h = 0; upon recalling that
DF (fo) | HY is bijective, we see that h = 0, which establishes the claim. With this, we can apply
the inverse-function theorem (Theorem 2.1) to ¥ to conclude that there is an RN -neighborhood Uso

of £° such that the restriction T:=1 | Ugo is a C'-diffeomorphism of UEO onto the open set ‘Il(Ugo);
we may suppose that Uepo C U, by replacing Uso with the intersection U N Ugo, if necessary.

Denoting the standard unit-basis vectors for R* by e(®), k=1, ..., n, it is easy to see that
. n
Fol¥'(¢) = Z{C B () for every ¢ € ¥(Uy).
k=1

In fact, for ¢ = 1IJ(§C) with &€ € Ugo, so that Fk(éc) =C-1® k=1,...,n, weget Fo \T!_I(C) =
F(&9) = -, F, (€9)e®, whence the result follows. Finally, let Z : RY — RV denote the isometric
isomorphism such that Z:.*) = e(®) the standard unit-basis vector for RV, for k = 1, ..., N.
As one can check, the proof of the lemma is now completed by setting U:=1"1 (1II(U 0)) and

13
O:=U1607:U > U,. 0

Proof of Theorem 2.2. Suppose that statement (i) has been proven. Then, if £ € MY and
F(€%) € ORf, (i) and the partition of R given in (2.1) combine to imply that F(£°) can have no
regular preimage, i.e., that £° is completely singular. Thus, statement (i) will follow as soon as (1)
is established, so we restrict attention to the latter from this point.

Suppose first that IV, = IV, so the domain of F' is an open set MY =UCRN. Let € € U be
a regular point of F, so DF(£0) has (maximal) rank n. Then we can apply Lemma 2.1, from which
it follows directly that F' maps the neighborhood Uy, of &% onto an open neighborhood of F(£°) in
R". Indeed, the projection operator & — (&i,...,&,), carrying RN onto R", is an open mapping,
and, continuing to employ the notation of Lemma 2.1, F(Ugo) coincides with the image of the open
set U under this projection. In particular, we can assert that F(£°) belongs to the interior R;° of
the range of F'.

We consider next the setting F' : MY — R, in which the domain of F is an N-dimensional
submanifold-without-boundary M" of class C* in R¥ and N < N,. This case is reduced to the
previous one by the use of codrdinate systems for MY. Again, with €2 € M” a regular point
of F, we must show that F' maps £° into the interior R;°. For this, we choose any codrdinate
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system (U, g) for MY with € in the codrdinate patch U; since every value of the composition
Fog™:{g(U) Cc RV} - R is a value of F itself, it suffices to show that F o g=! carries some
open neighborhood of g(£°) in the open subset g(U) C RY onto an open set in R”. But this follows
immediately from the first part of the proof and the assumption that £° is a regular point of F.
That is, F o g~! has (maximal) rank n at g(£°), since F has rank n at £ (cf., e.g., Appendix B).
(Since g is a homeomorphism, it is also clear that F' maps an open neighborhood of £° in MY onto
an open neighborhood of F(£°) in R™.) Consequently, statement (i) is now proven. As noted, this
effectively completes the proof of the theorem. []

Remark. Consider the case n = 1 of Theorem 2.2, i.e., when F' is R-valued. Then, it is clear that
the included boundary of the range in R will lie within the set of extreme values that F' takes, if any,
on the various components of its domain; we already know that these extreme values are amongst
the images of the critical points of F—which is in agreement with the theorem.

As a corollary of the proofs of Lemma 2.1 and Theorem 2.2, we point out an extension of the
well-known open-mapping theorem for a transformation from an open subset of RY into RY and
having no singular points; cf., e.g., APOSTOL [2]. This is inserted in passing just because it does not
seem to be explicitly enunciated in the basic texts. First, we verify the useful result in

Lemma 2.2. Retain the hypotheses and notation of Theorem 2.2. The set of regular points of F is
. N
open in M.

Proof . Let €2 € MY be a regular point of F. When N, = N and the domain MY is an open subset
of RV, some n x n submatrix of the Jacobian matrix of F' at £° has nonvanishing determinant; the
same submatrix has nonvanishing determinant in a neighborhood of ¢°, implying the result for that
setting. The general case is reduced to the previous case by the use of a coérdinate system, in the
usual manner. ]

Corollary 2.1. Retain the hypotheses and notation of Theorem 2.2. The restriction of F' to its set
of regular points is an open mapping.

Proof. This follows directly from Lemma 2.2 and the proofs of Lemma 2.1 and Theorem 2.2. In fact,
in the latter two arguments it was shown that each regular point possesses an open neighborhood
(which we may suppose to comprise regular points, according to Lemma 2.2) that is mapped onto
an open set in R”. This implies the open-mapping property claimed. [

As a simple first example of application of Theorem 2.2, we consider the case of an analytic
function.

Example. Let F' : 2 — C be analytic, where 2 is an open subset of C. To apply Theorem 2.2, we
regard ) as an open subset of R*> and F as a map into R?, i.e., now F;, = ReF and F, = ImF.
It is easy to see that the singular points of F' are those points in Q at which Fy, F,,, — F},5F,,
vanishes; by accounting for the Cauchy-Riemann equations, we see that these are just the points
at which |Fl,1|2 + |F2, 1|2 vanishes. Consequently, the singular points of F' are the zeros of its
derivative F' (qua analytic function). Moreover, all of the singular points are rank-0 in this case.
The points of the included boundary of the range of F, if any, are to be found amongst the singular
values, { F(z) | F'(z) = 0 }. However, according to the observation made in Section 1, the included
boundary of the range of such a map is void. This is our first example of the common situation in
which a map takes some or all of its singular points to the interior of its range. Finally, we also note
that, if F' is nonconstant, its singular points have no point of accumulation in 2. Thus, for such
mappings we find nothing like the curves of singular points and corresponding curves of singular
values that we hypothesize in the later theorems and observe in the examples given in Section 6.
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Having established for the Pareto-optimization problem the fundamental importance of identi-
fying the collection of singular points of a given mapping F', we should proceed by next gathering
whatever general qualitative and quantitative information is available concerning the set X F. Ac-
cordingly, in the remainder of this section we supply some orientation on the general structure of
the set of singular points, supposing always that F : {M" C RNo} — R” (with N > n) is at least of
class C'. The specific aim here is twofold. First, in Sections 4 and 5 with N > n = 2, we invariably
assume that we are working on a 1-manifold that is contained in the set of rank-1 singular points of
F, and we want to justify that hypothesis now by indicating that it is, in some sense, the “usual”
setting. In addition, we want to review some of the basic relations that one might use to set up a
numerical sheme for computing the singular points of a given mapping.

We just observed in Lemma 2.2 that the set of regular points of F is open in MmN , so that the set
3 F of singular points of F is closed in MY, In general, many singular points of F' will be mapped to
the interior of the range, i.e., not every singular point of F' is mapped to the boundary of the range.
However, just from the continuity of F, it is clear that the set { { € SF | F(£) € Ry } of singular
points that are mapped to the interior of the range is open in X F', so that its complementary set
{¢£ € SF|F(¢) € 9Rp } of singular points mapped to the boundary of the range must be closed in
Y F. Further, we recall Sard’s Theorem (cf., e.g., [7]), which says in the present context that the
set of singular values F(ZF) has Lebesgue measure zero in R". This statement always holds, even
though the set of singular points may have nonzero measure in M~ (e.g., for a map that is constant
on some subset of nonzero measure in M™).

Beyond these general facts, however, there are evidently few unqualified assertions that can be
made. For example, it is not generally true that X F is itself a manifold of some dimension, nor
will one even find that the singular points of a given rank always form a manifold. On the other
hand, there are some statements of this sort that can be made about classes of so-called “generic
mappings,” which will be dense in the collection of all smooth maps equipped with a certain topology.
For example, ARNOL’D, ET AL. [3] present and prove the “corank-product formula,” which we shall
state for the present specialized setting, with the codomain-manifold being just R™.

For this, and from this point onward, it is essential to have a notation permitting clear distinction
between sets of singular points of various ranks. Accordingly, we shall denote the set of singular
points of F' of rank g, with ¢ < n, by X,F. The set of regular points of F' (for which the differential
has its maximal rank n) we then naturally indicate by ¥,F. In the Thom-Boardman notation
frequently used in the literature on singularities of smooth maps, the symbol ¥¥ F indicates the set
of points & € MY for which DF(£) has null space of dimension v; thus, with N carrying its usual
significance here, the two notations are related by ¥*F =¥, _ F.

Theorem (the “corank-product formula”). For a (smooth) “generic” map F : MY - R,
each set ¥, F (¢ < n) is a smooth submanifold of MN, of codimension equal to the product of the
coranks:
N —dimX,F = (N - o)(n — 0);

in particular, if N — (N — g)(n — g) < 0 then % F is empty.

For “generic” maps and n = 2, e.g., the product formula asserts that the set X;F of rank-1
singular points forms a 1-submanifold of MY, while the rank-0 singular points ¥, F will be absent.
On the other hand, it is not difficult to construct apparently innocuous examples for which these

results do not hold at all. Thus, while the structure of ¥ F must be completely studied for each
F from the first, we shall accept the preceding theorem as providing at least some indication of a
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justification in this initial study for the hypotheses that are imposed in Sections 4 and 5. In any
event, the latter hypotheses are local, and never require, say, that ¥, F' be a manifold, which is part
of the (global) assertion of the co-rank product formula.

Given ¢ € MY, there are a number of equivalent ways in which to formulate the condition
that the differential DF(£) be rank-deficient. Some of these are useful for the general analysis, and
some are useful in the formulation of numerical schemes for actually locating the singular points.
In general, it is easy to see that £ is a singular point of the differentiable mapping F' : MY - Re
iff the set {gradMFl &), .., gradyF, (§)} of manifold gradients of the components of F' is linearly
dependent; cf., e.g., Appendix B, for the development of the “manifold gradient.” Thus, to locate
the singular points one seeks all £ € MY for which there exists a corresponding n-vector ('“j);:1
satisfying

n

n
ZujgradMFj ()=0  and Z,u? =1.
Jj=1 Jj=1
In particular, the rank-0 singular points will show up as those £ € M such that grady(F;(§) =0
for j = 1,...,n. For example, when n = 2 we seek the points & in M” at which the gradients
grady  F (§) and gradyF, (&) either are nonzero and parallel or at least one vanishes; if exactly one
of the gradients vanishes, then £ is a rank-1 singular point, while ¢ is rank-0 if both vanish.

From this condition involving the linear dependence of the set of gradients, we get a convenient
formulation of the singular-point condition in terms of a square matrix: the singular points of F'
are precisely those points at which the determinant of the n x n Gram matrix of the collection of
gradients of the components of F' vanishes, i.e., at which the matrix has nontrivial nullspace. This is
so because the rank of the differential D F(£) coincides with the dimension of the subspace spanned
by the set of n gradients of the components of F' at £, which is just the rank of the Gram matrix of
the same collection of gradients. The latter assertion follows directly from

Proposition 2.1. Let (H, (-, -)y) be an inner-product space and {x,,} _, a (finite) subset of H.
Then

dim sp {Xm}z;:l = rank {(Xla Xm)H}nxn'

n

. . . . . n
Moreover, a linear combination ) _, ¢,,X,, is the zero-element of H iff the n-vector (c,,). _, of

coefficients is in the nullspace of the Gram matrix {(x;;X,) g}, .

Proof. The second conclusion here is added for the sake of completeness. The proofs of both
statements are straightforward, involving only standard arguments, so we omit them. []

Now we consider the case F : U — R", with U an open subset of RY; this situation is, of
course, also important for local examinations which may be necessary in the study of the general
manifold-domain case. To locate the singular points in this setting, one can seek the points in U
at which all of the n*"-order minors of the n x N matrix of partial derivatives of components of F'
vanish. We shall discuss this in further detail for (the bicriterial case) n = 2 and under additional
smoothness requirements on F', restrictions that we impose in the considerations of Section 4.

Accordingly, let F : U — R? be of class C2, with U open in RY. For each m € {1,...,N} we
introduce the open subset U,, C U by

Uy = { € € U|(Fr,n(9)" + (Fo (€)” > 0}
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if one of these sets is empty, the problem has been poorly formulated, so we may suppose that each

U,, is nonvoid. Corresponding to an integer m € {1,..., N}, it is convenient to write
7, for j=1,....m—-1 (if1<m<N), (23)
o= 2.3
P 41, for j=m,...,N=1 (if1<m<N);

then the ordered (N — 1)-tuple ( j[m])j.v_l is obtained by just removing m from the ordered N-tuple

=1
(j)j.vzl. With this notation, we define for the same m the mapping ¥, : U,, — RV~ by

lIlm (&) = (FQam(E)Flaj[m] (6) - Fla m(é-)ij[m] (&));V:_lla for each § € um;

T, (€) is essentially the collection of values of the (N — 1) 2°4-order minors of the matrix of DF(£)
in which the m'® column participates. If each such minor vanishes at a point of U,,,, then it is easy
to see that every 2 x 2 minor of the matrix of DF (&) vanishes. It follows readily that the zero-set
(5,F), ={fel, | T, (§) =0} of ¥ is just the collection of rank-1 singular points of F that
lie in U,,,:

(%F) =3%,FnU,, for m=1,..,N,

and, in fact, &, F = U~ _, (2,F), , i.e., that every rank-1 singular point of F' is to be found in at
least one of these NV zero-sets. Further, it is just as easy to check that each of the subsets

[£1F],, = (5F),,n{€ €U, |rankDW, () =N =1}, form=1,...,N,

is either void or a l-manifold contained in £,F. In passing, we note that, when [%,F] does
form a 1-manifold, one can find its tangent and normal spaces explicitly by computing appropriate
derivatives of ¥, .

Thus, we can locate all of the rank-1 singular points of F' by determining all of the (£,F)_,
and we can find 1-manifolds contained in ¥, F by identifying all of the [Z; F] . To be sure, these
sets will not generally be disjoint. For example, if we should find that U,, = U for some m, then we
can work entirely with the corresponding ¥, alone, to find all of £, F' and the manifold [, F] _,
which we would expect to be, in some sense, the “largest” 1-manifold contained in ¥, F'.

Here are some first examples illustrating the preceding construction; the conclusion of the
corank-product theorem holds for neither.

Example 2.1. Let F : R? — R? be defined by taking F(§) := (& — 3)2 - (& - 4)2 and F,(§) :=

(&4 - 3)2 + (& - 1)2, The matrix of DF () is 2 (Eg :gg _EZ :11; ), whence we find that X F

consists of the two lines given by £, = 3 and &, = 5/2, and that X F is void, so that all of the singular
points are rank-1. It is easy to check that U; = { £ € R? |§1 # 3} and ¥, (§) = —4(& — 3)(2&, — 5)
for & # 3. Tt follows that the set (X, F), and the 1-manifold [E,F], coincide, and comprise the
two rays obtained by removing the point (3,5/2) from the line given by &, = 5/2. Further, one finds
U, = R? and ¥y(€) = 4(&, — 3)(2&, — 5) for & € R?. Therefore, the set (£, F), is just the union of
the two lines given by & = 3 and &, = 5/2. Meanwhile, the 1-manifold [ElF]2 is composed of the
four rays obtained by removing the point (3,5/2) from (EIF) 5> since the map ¥, clearly has but one
(rank-0) singular point, at (3,5/2). Thus, while the set ¥; F of rank-1 singular points do not form
a 1-manifold in this example, each singular point except (3,5/2) has a relatively open neighborhood
in ¥, F that is a 1-manifold.
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Example 2.2. Consider the mapping F : R® — R? given by Fj (£) := £ + &3 + £2 and F,(£) := £2.

Here, the matrix of DF(£) is found to be 2 (gl 32 g?’ ); by inspection, we see that the singular
3

points comprise the 3-axis {{ € R® |£, =& =0} and the 1,2-plane {{ € R® |& =0}. Of these
singular points, (0,0,0) is rank-0 while all others are rank-1. In particular, ¥; F' here contains a
2-manifold, the punctured 1,2-plane. One can verify that U, = {f €R3 |§1 # 0} and ¥, (§) =
(0,=&,&) for & # 0. It follows that (¥, F), is the 1,2-plane with the 2-axis deleted, but [, F],
is void, since ¥, is of rank 1 at each point. (Of course, our construction does not pick up the
“pathological” 2-manifold of rank-1 singular points here.) The results for m = 2 are similar, but for
m =3 we get Ug = {{ € R® | & # 0} and U4(8) = (§&5,6,&;) for & # 0. From these expressions,
it follows that (%, F), and [¥,F], are identical and coincide with the 3-axis with (0,0, 0) removed.

In the theorems of Sections 4 and 5, which provide local tests that assist in deciding whether
a given singular value lies in the interior or on the boundary of the range, we impose various local-
regularity hypotheses on the behavior of F' near the singular-point preimage of the singular value
under consideration. It seems best to describe those assumptions here, in the discussion of the
general structure of the sets of singular points and values.

For the statement of these hypotheses, we first recall that a differentiable map G : M — N,
taking the m-manifold M into the n-manifold A” (both without-boundary), is an immersion iff the
rank of G is m at each point of M (for which it is necessary that m < n); G is an imbedding iff
it is an immersion and also a homeomorphism of M onto G(M) when the latter is equipped with
the topology inherited from A. One can show that the range G(M) of an imbedding G from an
m-manifold M into an n-manifold A is an m-submanifold of N cf., e.g., [15].

With F : MY — R? a sufficiently smooth mapping carrying the sufficiently smooth N-
submanifold MY c RV into R?, and €2 € M” a rank-1 singular-point of F, we impose in the
later sections the hypotheses (H.1) and (H.2) given here. An additional condition (H.3) is described
in Section 4.

H.1. There is an open interval J; := (t;,%,) in R and a C'-imbedding x : J, — MY with
x(t) € 5, F for t; <t < t, and £ = x(t,) for some ¢, € (t;,t,).

That is, the hypothesis requires that x be a homeomorphism of J; onto x(fJO) of class C' and that
x'(t) be nonzero for each ¢t € J; (so that x is of constant rank 1). These conditions guarantee
that x(J,) is a 1-submanifold of M”™ containing the singular point ¢° and contained in ¥, F. It
suffices to suppose here that there is a C'-injection y taking some interval (t’l,t’z) into ¥, F' such
that x (o) = €% and x'(t,) # 0, with #{ < ¢, < th. The setting of (H.1) can then be realized by
possibly shrinking the interval (t{,t5) to some (t;,t,).

One should note that the conditions of (H.1) do not require that X(JO) be a relative neighborhood
of €% in ¥, F'. To see this, one can, for example, take £° to be the singular point (3,5/2) in Example 2.1
above, and let x be given on R by either ¢t — (3,t) (with t, = 5/2) or t — (¢,5/2) (with ¢, = 3).
In fact, x(Jy) could be a subset of a 2-manifold contained in £, F (as in Example 2.2). However,
if £9 should have a relative neighborhood in ¥; F that is a 1-manifold (which will be the “usual”
situation), then the range of x must coincide with that 1-manifold in a neighborhood of £°.

H.2. The composition F o x : J, — R? is a C'-imbedding (so that the restriction F|x(J,) :
x(Jp) = R? is a C'-imbedding of the manifold x(J,) into R?).

More explicitly, the condition requires that F o x be a homeomorphism of J, onto F o x(Jy), of class
C', and (Fox)'(t) be nonzero for each ¢ € J, so that F o is of constant rank 1. Hypothesis (H.2)
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ensures that F(x(Jy)) is a 1-submanifold of R?, containing the singular value F'(€°) and contained
in the singular values F(EIF). It is sufficient to suppose here that F o x is an injection of class C!
taking an interval (¢],t}) into R? in such a way that x(t,) = £° and (F o X)'(to) # 0, for some ¢,
with ] < to < th; perhaps by replacing the interval (¢{,t}) with a smaller one (t,t,), the required
setting will obtain.

Clearly, the derivative condition (Fo X)'(to) # 0 will be fulfilled provided that the tangent vector
X' (o) to the singular-point curve x (Jy) at £ = x(¢,) does not belong to the nullspace N'(DF(£°))
of the differential of F at £°. In case the singular point £° has a relative neighborhood in ¥, F' that
is a 1-manifold and the inclusion x’(t,) € N (DF(£°)) does hold, it is natural and common to find
the corresponding singular-value F({O) called in the literature a cusp, since the singular-value curve
F(x(3y)) will exhibit such a “spike” at F(x(t,)); we may use the same term for brevity in referring
to this situation, and even when £° has no 1-manifold neighborhood in 3, F'.

The situation here for hypothesis (H.2) is similar to that noted for (H.1), in that the condition
(H.2) does not imply that F(x(J,)) is a relative neighborhood of the singular value F(x(t,)) in the
set of singular values. This can be seen by examining the image of the singular point (3,5/2) of
Example 2.1, taking for x the map ¢ — (3,t), t € R. In that case, the image F(x(t,)) is the point
(=9/4,9/4) and the image F(x(J,)) is the parabola in R* shown in Figure 11, which is not a relative
neighborhood of the image point in the set of singular values (although it is a 1-submanifold in R?).
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3. Procedures for finding the local Pareto minima.

In this section we describe the projected steps in systematic procedures for finding the local Pareto
minima of an R"-valued differentiable mapping F' : Dp — R", in each of the cases (A) and (B),
identified in Section 1. While the procedures can be demonstrated with simple examples in which
they are completely successful, there are formidable numerical difficulties to be overcome in their im-
plementation in a reasonably general setting involving mappings of technical significance. Moreover,
a search carried out in case (B) will generally be more difficult and lengthy than one for case (A),
if only because the former involves multiple applications of the latter—but usually there will be
additional complications. In any event, since there are presently situations that we either cannot
recognize or cannot handle, the procedures that we outline are not now definitive. The ultimate
interest lies in the global Pareto minima; these are to be found in a final comparison once the local
Pareto minima have been identified using the procedures described here.

Ignoring these obstacles for the present, our principal aim here is an outline and discussion
of the ideas underlying the searches, which are prerequisite to their efficient numerical realization.
In particular, we wish to place in their proper context the most important contributions to the
procedures that are made here, in Theorem 2.2 and Theorems 4.1 and 5.1.

We already indicated that the procedure in any case is based first on the final assertion of
Lemma 1.1, viz., that the image of each local Pareto-minimal point lies on the boundary of the
range of F. Now, in case (A) the submanifold-domain M" is just right for initiation of the search
for O*Rp directly from the necessary condition established in Theorem 2.2 (¢f. the inclusions in
(2.2)). However, in case (B) we must first break the sufficiently regular compact domain X into its
interior and the pieces of its (topological) boundary that do form submanifolds, apply case (A) to
find the included boundary of the range of the restriction of F' to each piece, and finally adjust the
combined results to arrive at the boundary of the range of F' itself (which coincides in this case with
the included boundary of the range, since X is compact).

We proceed to examine each case more fully.

Case A. Now we suppose that F : MY — R is defined on the differentiable N-dimensional
submanifold-without-boundary MY c RN, with Ny > N >n > 2. Here are the broad steps of the
plan for this case, each of which we shall amplify subsequently:

A.I. Locate the set ¥ F of singular points of F'.

A.II. Locate and discard those points of X F that are mapped to the interior Rz°, leaving
F~H{o*Rp}.
A_ITI. Locate II,_ . F within F’l{ﬁ*RF}.

loc

It is convenient to summarize the steps as we have for purposes of simplicity of the exposition, but
we must append a caveat: at each stage we aim to eliminate, by whatever means available and as
soon as possible, all singular points that cannot be Pareto minima (or, equivalently, all singular
values that cannot be images of Pareto minima). Thus, we may not need to examine all of ¥ F' when
we reach step (A.II), and/or we may not need to search through (or even know) all of F~'{0*R . }
when we reach step (A.III).

The partition of the range given in (2.1) is important in the search procedure, since it implies
that we can find 8* R in step (A.II) just by removing from F(ZF) those points that lie in the
interior R°. To explain the utility of this latter course and certain other aspects of the program, as
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well as to understand the origins of the various difficulties that arise, some preliminary orientation
is needed.

Once we have found that some £ € M” belongs to $F, we must determine whether F(£) is
contained in Rz’ or in R . Of course, we would much prefer to employ for this a decision procedure
that is local, rather than global, in nature. By “local” we mean that we can decide which inclusion
F(§) € Ry’ or F(€) € ORp obtains by examining the behavior of F (and perhaps of its derivatives)
in any conveniently small neighborhood of ¢; by “global” we indicate either that the decision requires
discovery of some or all of the other preimages of F(§) and a study of the mapping behavior near
those other points in MmN or, worse, that we must find and study the action of F' on certain open
sets whose images do not contain F(£) but have it as a limit point. Unfortunately, it usually
transpires that we must confront a global examination at some stage(s), so we should concentrate
on minimizing the amount of domain-wide searching that is required; for this, the partition (2.1)
evidently offers the best opportunity, since testing for inclusion in R;° appears by all means to be
easier than testing for inclusion in OR ;. Indeed, it seems that there are no usable conditions—local
or global—sufficient to ensure directly that F' maps a given singular point to the “global boundary”
OR . In this connection, Theorems 4.1 and 5.1 are attractive because they offer local tests. On the
other hand, while the first assertion of each of those theorems provides conditions sufficient to ensure
that a point is mapped to what we call the “local included boundary of the range” (the terminology
is explained below), values of the latter sort need not be contained in OR i, but may still belong to
Ry". However, in the second statement of each theorem we do give local conditions under which it
is certain that a singular point is mapped to the interior R ..

In pursuing a strategy based on the identification of points of Rz’, it is important to keep in
mind that there are, in a certain definite sense, only two alternatives for the local behavior of a
mapping F : MY — R™: for any £ € M, either

(i.) F(¢) € F(Ug)o for every M”-neighborhood Ug of &
or
(ii.) F(&) € 6F(U§) for some M” -neighborhood Uy of {&—in which case also F'({) € 6F(V§) for
every neighborhood V; of £ that is contained in U

In fact, whenever U, is a neighborhood of £ in MY we have the partition F(U) = F(U) oU@*F(Ug),
from which the two alternatives follow. Now, in the former case we certainly have F(£§) € R°, but
in the latter case we can draw no conclusion, i.e., even though (ii) holds, F(§) may still be in
either Ry or R, as various examples show. Obviously, alternative (ii) must obtain if F(€) does
belong to R -, and, indeed, in that case we shall have F(§) € B*F(Ug) for every M -neighborhood
Ug of £ Leaving aside the possibility of some sort of degeneracy, such as the mapping of a full
neighborhood of £ to a point or to a manifold of dimension less than n, the inclusion in (é) is by
itself geometrically suggestive, since it indicates, roughly, that the mapping action may have “folded”
the original neighborhood and placed F'(€) on the “crease”; the terms here are most apt in the case
n = 2, when the range is in the plane. Now, even though it may appear from a local viewpoint
that F(€) belongs to OR when (i) occurs, it is impossible to decide on the basis of such a local
examination alone whether this is indeed the case, for one frequently finds that F'(§) belongs in fact
to Ry°. The difficulty here usually arises because a neighborhood of some other preimage of F(&)
is mapped to a neighborhood of F'(§). Dealing with precisely this circumstance constitutes one of
the main obstacles in the search for Pareto minima with the present method.

In this regard, it is clearly of importance to understand the possible ways in which an image
F (&) can belong to the interior R;’, i.e., to discern all of the ways in which an open set containing
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F (&) can be formed in Rp. Again, in a certain sense there are only two possibilities: either there
is a preimage £’ of F'(§) and a neighborhood Uy, of £’ such that (F({') =) F(§) € F(Ug,)O or there
is no such preimage. In the latter case, any neighborhood of F(£) that is contained in R must be
built up as a union of images that either overlap or just fit together to form a set containing F(&)
in its interior. This second case, which we have a tendency to regard as “pathological,” evidently
happens with sufficient frequency that we should be concerned about how to recognize it when it
does occur.

We introduce some descriptive terms that are convenient for making reference to the various
alternatives:

Definitions. Let F : MY — R*. Let € R and £ € F~'{z}, so that 2 = F(£). We shall say that
z is locally covered by F from £ iff x € F‘(Ug)o whenever Uy is an MmN -neighborhood of £&. We shall
say that the range Ry is folded at x with respect to £ iff there exists an MmN -neighborhood Ue of £
such that z € OF(Uy); by O, R we denote the set of all points at which R is folded (with respect

to some preimage). We frequently refer to Ry as the local included boundary of the range of

F'; it is then natural to distinguish its subset * R as the global included boundary of the range of

*
loc

F. Alternately, the set 0*R can be called the genuine included boundary of the range of F and
O R\ O Ry =0 Rrp Ry the spurious included boundary of the range.

Remarks. (1.) For z € Ry, precisely one alternative holds with respect to a given preimage &:
either z is locally covered by F' from & or the range is folded at x with respect to &; but relative to
a second preimage, the other alternative may obtain.

(2.) Clearly, each regular value of F is locally covered by F from any and every (regular-point!)
preimage of that regular value; a singular value that is not completely singular will be covered in
just the same way, from a regular preimage. However, examples show that a singular value may also
be locally covered from a singular-point preimage. In Theorem 4.1.7 and Theorem 5.1.i7 we give
conditions sufficient to ensure that F(£) is locally covered from the rank-1 singular point £ in the
case n = 2 and when F' has additional smoothness.

(3.) Of course, if the range of F is folded at F'(§) with respect to &, then ¢ is necessarily a singular
point of F. Theorem 4.1.i and Theorem 5.1.7 provide sets of conditions under which one is certain
that the range of F' is folded at F'(§) with respect to &, when the latter is a rank-1 singular point
and n = 2, again for a smoother F.

(4.) The term “fold” has long been in use in the study of singularities of smooth maps, where
it was introduced for the same descriptive purpose. We shall continue to say that the range is
“folded at F'(£) with respect to &” and “F(£) belongs to the local included boundary” even when
some degeneracy occurs, e.g., even when F' is constant in a neighborhood of ¢, and the geometric
motivation for the term breaks down.

The local mapping direction. As usual, let F : MY — R™ be of class C1, with M” a differentiable
N-submanifold-without-boundary in RNo. Let ¢ be a singular point of F' with F(¢) contained in the

local included boundary R of the range. With sufficient local regularity of F', we can introduce

*

loc
in a natural way a vector indicating the “local mapping direction” of F’; when F'(£) is a point of the
(genuine) boundary of the range at which the range is regular (¢f. the definition given in Section 1),
this local mapping direction will just coincide with that of the interior normal to OR . For this,
let U, be an MY -neighborhood of ¢ such that F(£) € OF (U) and suppose that F(Uy) is regular at
F(&); in this case, we say that the local included boundary is regular at F(§), or F(£) is a regular

point of the local included boundary. Thus, there is a neighborhood of F(£) in 6F(U§) that is an
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(n—1)-submanifold of class C* and F(UE)o lies on one side of its boundary in an R™-neighborhood of
F(€). Moreover, there is a unique unit-normal & to F (Uy) at F(€) such that F(§)+sv lies in F(U,)°
for all sufficiently small positive s; we call any positive multiple of such a normal 7 a mapped-side
normal ot F(£), and refer to the direction of a mapped-side normal as the local mapping direction
at F(¢).

In this terminology, in Lemma 1.2 it was shown how the determination of the mapped-side
normal at a regular point F(£) of the genuine included boundary 0*R p—which is, in that case,
just the interior normal—frequently permits one to decide whether £ is a Pareto minimum. But
it is also sometimes helpful to know how to compute such a normal, more generally, at any given
(appropriate) point of ;.
interior or to the genuine boundary of the range; we return to this point below. Following the

R, when one is trying to determine whether that point belongs to the

statements of Theorems 4.1 and 5.1, we indicate how one can compute the local mapping direction
from the derivatives of F', when n = 2 and appropriate conditions are fulfilled.

Now we can lay out in more detail the indicated three steps into which the proposed search
procedure naturally falls, keeping in mind the standing hypotheses concerning the mapping F' in
case (A).

A.L. Find the set ¥ F of singular points of F, along with the rank of each singular point.

Numerical procedures for effecting this search can be based upon the points discussed at the end of
Section 2 or similar considerations.

A.1.0 Apply to each singular point all available tests of a local nature.

This “intermediate step” is inserted here with the aim of minimizing the number of later global
searches that may be needed. Thus, given a singular point &, we should apply at this stage any local
tests that we may have, such as Theorem 4.1 or 5.1, giving conditions under which one can assert
whether the range is folded at F'(£) with respect to £ or F'(£) is locally covered from &; in the latter
case, & can be discarded.

For example, one can review Remarks (2) and (3), supra, for the information that may be
obtained from Theorem 4.1 or 5.1. Those theorems presently apply only under various conditions
restricting their applicability, e.g., the bicriterial assumption (n = 2) and the hypothesis of strong
nondegeneracy.

Theorems 4.1 and 5.1 may be regarded as analogues of the classical “second-derivative test”
based on the definiteness properties of the Hessian matrix at a critical point in the case n = 1.
Indeed, just as the latter test may be inconclusive, Theorem 4.1 or 5.1 may also fail to provide
information, even when applicable.

The computation of the local mapping direction is another useful test that should be applied
at this stage to as many singular points and values as possible. That is, while it is discussed under
step (A.III) at the very end, this test should be employed at the earliest moment to eliminate all
singular values known to be on the local boundary of the range (with respect to some preimage) but
for which the mapped-side normal is found to have at least one negative component. In this way,
we may obviate the conduct of global searches for preimages for large numbers of singular values,
which is required in step (A.IT). Inspection of Examples 6.4, 6.5, and 6.6 will indicate that this is
so. On the other hand, such an examination will also reveal many values in the interior of the range
that also lie on the local boundary of the range and have “the correct” local mapping direction, and
so cannot be discarded by this tactic.
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A.IL Eliminate from X F its intersection with F~1{R°}, leaving F~1{0*R}.

That is, here one seeks to throw out all of the remaining singular points that are mapped to the
interior of the range. It is convenient to split this step into three parts.

A.IlL.1. Find and discard all remaining £ € ¥ F such that F(£) has a regular-point preim-
age (from which it is then locally covered).

Here we are to pare the still-eligible singular points down to (perhaps a subset of) the completely
singular points X*F', by executing for each remaining £ € X F a global search for a regular preimage
of F(£); as soon as one such preimage is found, we shall know that F(£) lies in R;°, so £ can be
eliminated. In particular, those points of the local included boundary 5
regular points in the domain will be eliminated in this computation. A major portion of the global

R that are also images of

examination is required in this step.

A.I1.2. Find and discard all remaining £ € ZF such that F (&) is locally covered from the
singular point £ itself .
The singular points in question here are those for which the testing of step (A.I.0) is either inapplica-
ble or inconclusive, and so must be treated on an ad hoc basis. On the other hand, the examinations
required now are local, since we can ignore here the possibility that two completely singular points
have the same image under F, simply by studying each of these points in turn.

A.I1.3. Find and discard all remaining £ € T F such that F(£) belongs to Ry’ but is
locally covered from no preimage.

If the singular point £ has survived to this stage, then the range is folded at F'(£) with respect to
&, while F(£) is locally covered from none of its preimages, since local covering from both types of
preimages—regular and singular—has by now been checked and ruled out. Therefore, as we have
already observed, F(§) can lie in R;° only because it is covered by a union of images, none of which
contains F'(§) in its interior. The analysis of this circumstance is difficult but essential, since we
are trying to decide which singular points are mapped to the boundary of the range by retaining
precisely those that are not mapped to the interior. While here again we may have to rely in general
upon ad hoc devices such as graphical inspection of the images of many judiciously selected points,
we can indicate some approaches that are applicable in various common situations.

First we present a (nonlocal) test pertaining to the case in which the singular value under

examination has just one singular-point preimage under F.

Proposition 3.1. Let F : MY — R" be a differentiable mapping of the C* N-dimensional
submanifold-without-boundary MY c RN into R™, with Ny > N > n > 2, and assume that
F' possesses a continuous extension F to the closure of M in RMo. Suppose further that

, converges in R must be bounded. (%)

any sequence (fj);il in MY for which (F(fJ)):i
Let £° € SF and suppose that the range of F is folded at F(£°) with respect to £°.

(i) If F{F(¢%)} = {€°}, i.e., if € is the only preimage of F(¢°) under the extension F,
then F(£%) € IR,

(#.) If MY is closed in RNo, then F(£°) € OR . if £ is the only preimage of F(£°) under F
itself .
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Remark. Hypothesis (x) of Proposition 3.1 obtains if either M” is bounded in RN or M" is
unbounded but we can assert that the image of any unbounded sequence under F' is unbounded, as
may happen when, e.g., the components of F' are (nonconstant) polynomials.

Proof. Obviously, statement (i4) will follow immediately once (%) is established, so we consider
only the proof of the latter. Suppose, contrary to the claim, that F({O) € R;°. Then, with U,
denoting a neighborhood of £ in MY such that F(£°) € OF (U,), there is a sequence (§j);.)i1 such
that (F(¢& ))j; lies outside of F(U,) and converges in R” to F(£°). Because of the hypothesis

(%), the sequence (§j ):’;1 is bounded, so we may suppose it converges to some £ in the closure of
MY, by replacing the original sequence with a convergent subsequence and adjusting the notation
if necessary. The limit £*° belongs to the closure of MY, with

F (g = 1i n J = 1i J = 0

F(¢*) = lim F(¢) = lim F(¢') = F(&°),
which requires that £ = €%, since F'(£°) has only the preimage £° under the extension F. But this
is impossible, since (& );‘;1 must lie outside of the neighborhood Uy, (since (F(& ));’il lies outside
of F (UO)), and so cannot converge in MY to &%, The contradiction implies that F(EO) € IRy,
completing the proof. [J

Now we briefly consider the case in which a completely singular value F(£) has two or more
singular-point preimages from none of which it is locally covered. In fact, as in Proposition 3.1,
when M” is not closed in R¥o but F has continuous extension to the closure of M”" one should
reckon the number of preimages by accounting also for any additional ones that arise under the
continuous extension F of F (and which therefore lie on the topological boundary of MmN ). In fact,
the existence of a preimage under F indicates that there is some region at the boundary of MY that
is mapped by F to a set whose boundary will contain F(£), and which therefore may contribute to
a neighborhood of F(£).

Consider the bicriterial case, n = 2: if we discover curves of singular values passing through F(£)
and nontangent there, then it is difficult to make a general statement. However, in Section 6 we offer
two examples, Example 6.3 and Example 6.4, in each of which there is an entire curve T" of singular
values such that each value has two singular-point preimages from neither of which it is locally
covered. Now, in Example 6.3 at each value on T' the local mapping directions associated with the
two preimages are opposite, and one discovers the two half-neighborhoods of each value combining to
form a full neighborhood, whence I is in the interior of the range of F’; this can be seen in Figure 7,
by studying the blue and the cyan mapped-side normals. On the other hand, Example 6.4 exhibits
the opposite behavior: at each value on I' the mapped-side normals coincide, so full neighborhoods
are not formed from the half-neighborhoods. Since there are no other preimages of any of these
singular values, they must in fact lie on the global boundary of the range; the graphical evidence
appearing in Figure 12 illustrates this phenomenon.

Even these simple examples display the complexity of the mapping interactions that are possible,
and so must be anticipated, in the analysis of this step (A.IL3).

A.IIL. Find the local Pareto minima II,  F' by examining the mapping behavior in a neighbor-
hood of each point of F~*{*R}.

We assume now that we have completely determined the preimage F~'{8*R . }. We must examine
each singular point £ such that F(§) € ORp and retain only those that prove to be local Pareto
minima. If Ry is regular at F(£), then we should calculate the mapped-side normal at F(§), i.e.,
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the interior normal to the boundary of the range at F(£) (if this has not already been found in
step (A.L0)), and apply Lemma 1.2; the exceptional cases for which this computation is inconclusive
(i.e., when the components of the interior normal are nonnegative and at least one is zero) must be
separately considered. We already mentioned that the determination of the mapped-side normal at
appropriate points of Jj R is described in Sections 4 and 5 for the bicriterial case, in conjunction
with the statements of Theorems 4.1 and 5.1. On the other hand, if R fails to be regular at F(§),
we have presently no systematic procedure to offer; some ad hoc investigation proceeding from the
fundamental condition given in Lemma 1.1 is required to decide whether £ is a local Pareto minimum.
For example, included here are those cases in which the range degenerates locally to form a manifold
of dimension less than n (such as a curve in the bicriterial setting); the interior of the range must
be locally void in such situations, so that there will be no regular points on such a manifold.

Case B. Now we suppose that F': X — R” is defined on the compact and regularly closed subset
K C RN, with N, > n > 2. We assume also that X has “sufficiently regular” boundary. As always,
our initial aim is the identification of the included boundary of the range, which here is the entire
boundary OF (fK) Already, it was indicated that the strategy for analysis in this case (B) begins
with the separate location of the included boundaries of the images F (X°) of the interior and F (0K)
of the boundary. The first of these is a case-(A) problem; in the simplest situation, when X is an
(Ng — 1)-submanifold of class C! in RNo | the second task will also fall under case (A). In any event,
we must know how to combine the results of the separate included-boundary determinations to
arrive ultimately at the desired boundary OF (X) of the entire range. To shed light on this question,
we offer

Proposition 3.2. Let F : X — R® be continuous, in which the domain X C RV is compact and
regularly closed.

(i.) The boundary OF(X) satisfies
OF(X) C {8F(5K°) N F(J<°)} u {8F(69<) n{r" \F(TK")}}; (3.1)
the inclusion in (3.1) may be proper.

(ii.) We have F(X) = F(X°) and OF(X) C dF(X°).

(ii3.) The equality F(X)° = F(X°)° holds iff F(X) = OF(X°) holds; when they obtain, the
inclusion in (3.1) can be replaced by equality.

Remarks. Maintain the setting of the Proposition. Of course, here we have OF(X) = 8*F(X)
and OF(0X) = 0*F(0X), since F(X) and F(0X) are (compact and so) closed. The two sets
appearing within large braces on the right in (3.1) are obviously disjoint. The inclusion (3.1) says
that we can find all of 9F(X) by a two-step procedure, looking separately in F(X°) for 0*F (X°) :=
OF(X°) N F(X°) (involving an application of case (A)) and in F(8X) for F(0XK) N {R™ \ F(X°)}
(involving further application(s) of case (A)). Of course, for the latter we must also have some means
for deciding whether a point lies in F(X°) or in its complement. However, when the inclusion is
proper, we will pick up in this way points that do not lie in 8F(X); some other examination is
necessary to identify and discard such points.

Proof. The results are almost purely topological, i.e., are essentially independent of any special
properties of the present setting involving continuous maps between euclidean spaces. We prove
first (i), then the first half of (iii), then establish all but the final assertion of (4) and complete the
proof of (#4). A counterexample then serves to finish the proof of (4).
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(ii). From the equality KX = X° and the continuity of F, we see that F(X) = F(W) C F(X°).
On the other hand, we certainly have F(X°) C F(X), so, since the compactness of F(X) implies
that it is closed, the reverse inclusion F(X°) C F(X) also follows. This establishes the equality
F(X) = F(X°). From the latter result and the inclusion F(X°)° C F(X)°, we get

OF(X°) = F(X°) \ F(X°)* = F(X) \ F(X°)° > F(X) \ F(X)° = F(X) \ F(X)® = 0F(X),

completing the proof of (i).

(ii3). By assuming that F(X)° = F(X°)°, we find, having (ii) and again using the fact that F(X)
is closed, that

OF(X) = F(X) \ F(X)° = F(X°) \ F(X°)° = 0F(X°).
Conversely, if we suppose that OF(X) = dF(X°) and note that A = A° UJA whenever A is a subset
of a topological space, we get

F(X)° = F(X) \ 8F(X) = F(K°) \ 8F(X) = {F(JC°)° U aF(9<°)} \ OF(X°) = F(X°)°,

the latter equality holding because F(X°)° and F(X°) are disjoint. Thus, the two equalities are
indeed equivalent. We complete the proof of (iii) during the proof of (7).

(7). We begin with the partition
OF(X) = {aF(:Jc) N F(iK")} u {ap(ac) N {r" \F(JC")}},
whence it is clear that (3.1) will follow once we have proven that

OF(X) N F(X°) C 8F(X°) N F(X°) (3.2)
and
OF(K) N {R™ \ F(X°)} C OF(0XK) N {R™ \ F(X°)}, (3.3)

while the proof of (iii) will be complete if we show that equality holds in both (3.2) and (3.3) when
the equivalent equalities in the statement of (74) obtain. Clearly, (3.2) holds in view of the inclusion
OF(X) C OF(X®), established in (#), while the inclusion in (3.2) can certainly be strengthened to
equality when we know that 8F(X) = 0F(X°). Turning to the verification of (3.3), let us begin by
showing that

OF (X) N F(8X) C 0F (0X). (3.4)

Since 0K is compact, F'(0K) is also compact, and therefore closed, so we have the partition F'(0X) =
F(0X)° UOF(0K). Now let z € 0F (X) N F(9X), and suppose that z € F(9X)°: since F(9K)° C
F(X)°, we would then have z € F(X)° N dF(X), which is impossible. We conclude then that
z € OF (0X), establishing (3.4). (Actually, one can show further that 8F (X) N F(8X) = 0F (X) N
OF(0X).) Now, returning to (3.3), let z € 9F(X) N {R" \ F(X°)}: then z € F(X) \ F(X°),
which implies that z € F (83(), since we have the partition KX = X° U 0K. Therefore, we have
z € OF (X) N F(8X), whence (3.4) gives z € OF (0%K); this effectively completes the proof of (3.3).
Finally, suppose that we also know that F(X)° = F(X°)°; to see that the inclusion in (3.3) can
then be replaced by equality, let z € OF(0XK) N {R" \ F(X°)}. Then z € F(X) but z ¢ F(X°);
it follows that = ¢ F(X°)°, so with our assumed relation we also get ¢ F(X)°. Therefore,
r € F(X)\ F(X)° = 0F(X). With this, we can assert that equality must hold in (3.3). Now (iii)
has been proven.
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We conclude the proof of (i), and of the Proposition, by citing Example 3.1, infra, in which
equality between the sets F(X)° and F(X°)° and between the sets 0F(X) and F (X°) fails to hold
and the inclusion in (3.1) is strict. The example indicates that difficulties arise when dealing with a
mapping whose range does not lie locally on one side of its boundary. [J

Example 3.1. Let N = n = 2. Take X to be the closure of the upper half of the unit disk centered
at the origin; let F' be the map with components given by Fj (z,,z,) := 27 — 23, Fy(z,,25) := 23,5,
i.e., F'is just 2z = 22 with z = z; +iz,. Then F(X) is the closed unit disk, while F'(X°) is the open
disk with the closed slit from (0,0) to (1,0) removed (and so is open); OF (0K) is the union of the
unit circle and the slit, so 0F(0K) = 0F(X°). Clearly, F(X)° 2 F(X°)° and 0F(X) G OF(X°),
while dF(X°) N F(X°) is void and OF (0K) N {R™ \ F(X°)} = dF (8K), so equality does not hold in
(3.1).

We shall consider case (B) in more detail only in the nicest situation, already identified, in
which the boundary X is an (N, — 1)-submanifold of R of class C!. We also suppose that, by
some means, we have shown that equality holds in (3.1). Under these simplifying circumstances,
the strategy indicated for case (B) and the conclusions of Proposition 3.2 are implemented through
these steps:

B.I. Find the included boundary 8*F (X°).
Here, one applies the procedure of case (A) to the restriction F | X° of F' to the interior of X.

B.IIL. Find the (included) boundary OF (0%K).

Now the procedure of case (A) is to be used for analyzing the restriction F' | 0K of F' to the boundary
of X.

BL.III. Find and discard all the points of OF (0X) that also belong to F(X°).

Evidently, here we are forced to conduct global searches for preimages of the points of OF (69() that
belong to K°. Succeeding in this, we produce the set OF(8K) N {R" \ F(X°)}, whence, according
to the assumed equality in (3.1), we shall have identified the entire boundary 9F (X) as the union
of two disjoint sets. Consequently, we also have the desired preimage F_1{6F(5€)}.

B.IV. Find I, F within F~'{dF(X)}.

loc

Here, just as in case (A), we can use Lemma 1.2 to test a point ¢ of the preimage F~'{9F(X)} such
that the range F(X) is regular at F(£), by computing and inspecting the local mapping direction
at F(£). For regular points of F(X°) N F(X°) the local mapping direction is available from the
computations of step (B.I); for regular points of 9F (0K) N {R™\ F(X°)} the local mapping direction
is known from the analysis of step (B.II). Once again, however, we have no systematic attack to
recommend for cases in which the range is not regular at F(£); a special study must be undertaken
for such points.

We complete our discussion of case (B) by remarking on the situation in which F' has no singular
points in the interior of its domain; this seems to occur sufficiently frequently in applications that
it is worthwhile clarifying the implications. (If F' has no singular points in case (A), the included
boundary of the range of F' must be empty, which implies simply that F' has no Pareto minima.)
Suppose then that the restriction of F' : X — R to the interior X° has no singular points. Then no
point of X° is mapped to the boundary of the range of F, so 8F(X) lies entirely in the image F(9XK)
of the boundary of the domain, and in fact, according to Proposition 3.2, lies in the boundary
OF(0X) of that image. The entire boundary of the range can then be identified by finding and
discarding those points of 0F (0X) that are contained in F'(X°).

This completes our outline of the proposed search procedures for both cases (A) and (B).
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4. Discrimination of singular values: the open-set domain.

As discussed in Section 3, once we have identified the singular points of F' we need further tests for
distinguishing between those (completely) singular points with images lying on the boundary of the
range and those with images contained in the interior of the range, which will enable us to discard
the latter. For a next step in this analysis, we develop conditions sufficient to identify singular values
at which the range is folded with respect to a given singular-point preimage (which therefore have a
chance of belonging to the boundary of the range) and singular values that are locally covered from
a singular preimage (which therefore lie in the interior of the range). From this point on, we restrict
attention to the bicriterial case n = 2. In the present section, in particular, for the main result in
Theorem 4.1, we take up the case of a mapping F : U — R? defined on an open set U C RV, with
N > 2, and consider in the next Section 5 the more general case of an F' defined on a submanifold
in a euclidean space.

The statement in Theorem 4.1 can be regarded as a sort of analogue of the Hessian-matrix
criterion for identifying whether a critical value of a real-valued function f : U — R is a local
minimum, local maximum, or saddle point. In particular, we require more smoothness of F' in the
formulation of the test.

As always, we require at least that F' be differentiable at each point of U. Then for each £ € U
the differential of F at ¢ is the linear operator DF(£) : RN — R? given by

N
dF, (Yh =grad Fy (&) -h =Y F,, ;(&)h;

DF(&)h := o ,  for heRV. (4.1)

N
dFy(§)h = grad Fy(€) - h =Y _Fy, ;(6)h;
j=1

For a regular point &, this operator has (maximal) rank 2, so that the set {grad Fy(£), grad F,,(£)}
of gradients is linearly independent; DF(£) then carries RY onto R?, with (N — 2)-dimensional null
space N'(DF(¢)) formed by the orthogonal complement of sp {grad F (€), grad F;,(€)} in RN. For
a singular point £ of rank 1, which is the case of greatest interest for us, the differential DF (&)
has rank 1, i.e., has range of dimension 1, and so N(DF(§)) is of dimension N — 1. This rank-1
case occurs precisely when the set {grad F| (€),grad F,(£)} of gradients is linearly dependent but
not both gradients vanish; the span of the gradients is then of dimension 1 and the (N — 1)-
dimensional orthogonal complement of this span in RV coincides with the null space N'(DF(£)).
Further, it is easy to see that the range of DF(&) at the rank-1 singular point £ € U is the span
of the vector Fl,j(f)r:(l) + Fz,j(g)e@) in R2, with j denoting any integer in {1,..., N} such that
[Fl,j(ﬁ)]2 + [Fz,j(§)]2 > 0 (there exists at least one such 7). Finally, £ € U is a singular point of
rank 0 iff DF(£) is the trivial operator, i.e., iff grad F} (§) = grad F;,(§) = 0; the null space is then
all of RV,

In all of the reasoning of this section, we impose at least hypotheses (H.1) and (H.2) of Section 2.
Thus, £° € U always denotes a rank-1 singular point of F' contained in a 1-manifold of rank-1 singular
points that is the range of a Cl-imbedding x : (t;,%,) — U, so we have x(t) € ¥, F for t, <t < t,
and &° = x(t,) for some ty € (t;,t,). Moreover, the composition ¢t — F(x(t)) € R, t; < t < t,,
is supposed to be a C'-embedding of the interval (¢,t,) into R?, whose range is then a 1-manifold
comprising singular values of F. The derivative of the latter imbedding is ¢ — DF(x(t))x'(t) =
{grad Fy (x(t)) - x'(t) }e + {grad F, (x(t)) - x'(¢) }¢'?, which must be nonzero for t, <t < t,, i.e.,
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x'(t) ¢ N(DF(x(t))) for those t. Recalling the common terminology noted in Section 2, we can say
that no point of the curve of singular values, including F(ﬁo), is a cusp.

It is important to point out how one can compute tangent (and normal) vectors to the curve
t — F(x(t)) of singular values without explicit calculation of x’(t)—indeed, even without knowledge
of x. The simple recipe for this is given in Proposition 4.1.4i, and follows readily from a fundamental
fact describing how any smooth curve passing through a rank-1 singular point in a certain manner
must behave under the mapping F'.

Proposition 4.1. Let N > 2. Let F : U — R? be of class C' on the open set U C RY. Suppose
that £° is a rank-1 singular point of F for which hypotheses (H.1) and (H.2) hold.

1.) Let t — ((t) € U, for t; <t < t,, be a class-C", smooth curve with range in U suc

(i) L () € U, for ¢, ,, be a class-C? h ith range in U such
that ((ty) = x(t,) (= &°) and ('(ty) ¢ N(DF()). Then the curves t — F(x(t)) and
t — F(((t)) have the same tangent vectors at the point F(£°).

(ii.) Let j denote any integer in {1,...,N} such that [Fl,j(fo)](/z + [FQ,]-(ﬁo)]2 > 0 (there
exists at least one such j). Then the vector F\, ;(£°)e™™) + F,, ;(¢°)e® is a tangent vector
to the singular-value curve t — F(x(t)) at the point F(£°).

Proof . (). Since N'(DF(£°)) has dimension N — 1 and does not contain X'(t,) (which is nonzero),
we can write {'(tg) = agX'(ty) + v, for some ay € R and v, € N (DF(£)); «p must be nonzero,
since ('(ty) ¢ N'(DF(£°)). With these observations, we get

(Fo C)I(to) = DF(((t)) ¢ (to) = DF (%) {agx'(to) + vo} = agDF (x(to)) X' (to) = a(F °X)I(to);

which completes the proof of ().

(i3). Conmstruct a curve ¢ in RY through £° and parallel to the unit basis-vector el/) by setting
C(t) == €%+ (t —ty)eW, for t, <t < t,. Then ((t,) = £° and ('(t,) = e\, so that

DF(EO)CI(to) = {gradFl (EO) 'e(j)}g(l) + {gradFQ(fo) 'e(j)}5(2) = F1>j(£0)5(1) + F27j(€0)6(2) #0,

and we can apply part (i) of the Proposition. We conclude that a tangent vector to the singular-
value curve at F'(£°) is given by the derivative of ¢ — F(((t)) evaluated at t = ty; a computation
almost the same as the one just effected then produces the result claimed. [J

Remarks. (1) Retain the setting of Proposition 4.1. Then ny := F,,;(¢%)e® — F,;(¢%)e®
is a normal vector to the singular-value curve t — F(x(t)) (t; < t < t,) at the point F(£°). If
F(fo) is a regular point of the local boundary of the range, then one of +n will give a mapped-side
normal; Theorem 4.1 permits the formulation of a test for determining which normal gives the local
mapping direction, so we complete the argument begun here following the statement of that theorem.
Recalling Lemma 1.2, and now supposing that F(£°) lies on the genuine boundary of the range,
already it is apparent that if the slope of the line of action of n, is negative, i.e., if the components
Fy,;(€°) and Fy,;(£°) are nonzero and of the same sign, then £° cannot be a Pareto minimum.
Otherwise, if the slope of the line of action of n, is positive, i.e., if the components F, ; (.fo) and
Fy,; (50) are nonzero and of opposite sign, then we must examine further, to decide which of £n,
is the mapped-side normal and inspect the signs of its components.

(2.) Maintaining the previous setting, if F},;(£°) = 0 while F,, ;(€°) # 0, then the singular-value
curve at F' (§0) has a vertical tangent; the tangent will be horizontal if the second component vanishes
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and the first is nonvanishing. These simple observations are useful in finding points on the boundary
of the range that may delimit images of Pareto minima.

Now we can develop the local discrimination tests of Theorem 4.1, under the restrictions noted.
That is, while maintaining the hypotheses (H.1) and (H.2), we shall provide conditions sufficient to
allow us to decide whether the given singular value F’ (EO) is a fold point of the range or a point
locally covered from £°. The reasoning involves simple applications of Taylor’s formula to study
the manner in which F maps points of the translated (N — 1)-dimensional nullspace of DF (£°).
Consequently, in preparation for these arguments, we record some of the implications of Taylor’s
formula in such a case.

First, consider a real function f: U — R of class C%. Let £ € U and h € RV, and suppose that
the closed line segment from & to & + h lies in U. Then there is a (&, h) € [0, 1] such that

FE+R) = F(O) + A ©h+ 5a> (&) + 550 1€+ D(E, Rhs )

in which \
d?f(¢;h) : Zf,gk
Jsk=1
and - for (€U and heRN.
d’f(¢;h) Zf:]kl Vhjhy by
3.k,l=1 )

It is frequently more convenient to use the integral form of the remainder term, given by

N

1
@ roEmmn =3 3 { [ a2 ule+ smyds .

J.k, =1

Then for F : U — R2? of class C?, and under the same hypotheses on ¢ and h, by applying the
preceding to each component of F' we find

F(+h)=F(&)+DF(@h+ %DQF(& h) + Ry F (& h),

with

Fys i (©)hjhy

J k=1

*F(&h) =

Fy; i (E)hjhy
1

o~
Il

™M= 1=

25

N

Z {/ (1—s)? 1,jkz(§+sh)ds}hjhkhl

J.k,l=1

N
1

Jrk,l=1

and

{/ (1-3s) FQ,]k,(£+sh)ds}h hyhy

For fixed €, the map h — D?F(&h) € R?, for h in any given subspace of RV, is a (symmetric,
homogeneous) biquadratic map; cf ., Appendix A. It is shown in Proposition A.1 that the range of
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such a map is a convex cone with vertex at the origin (including the possible degenerate cases) in
the plane; this is of central importance in the formulation of the sufficient conditions given here.

Now, with x : (¢;,t,) — RY denoting, as always, the C'-imbedding of hypotheses (H.1) and
(H.2), with range in £, F, for each t € (¢,,1,) let {I/,SJ)} ! denote a basis for N(DF(x(t))). Then,

when t € (t,,t,) and the argument x(t) is displaced by an element Z;v:11 fjl/,f’ ) of N (DF(x(t))),
we get just

F(x(t)+§§j'/§j))= () + 50°F (x( ,Zs, (’)>+R3F(x(t);§§jvt(j)), (42)

in which we have, explicitly,

N N-1
Z By, pg (X(2) Z§ )Zéky(k)
=1

N-1 0 ol —

2 . N\ = T -
F(x(t),;@-ut )=1" - k
> Fi(x) T 64 3 6od?

p,q=1 Jj=1

N
k)
Z{ZEW D e
P,q=1

- , (4.3)

Z { Z FQ’M(X(t Vt(;)’/gc }é-jgk

J.k=1 *p,q=1

with I/t(J ) denoting the component of I/(] ) with respect to the standard unit-basis vector e® for RV .

As we noted, the singular-point discrimination test of Theorem 4.1 has been formulated by
using the previous expressions to study the manner in which F' maps the translated null space
x(t) + N(DF(x(t))) of its differential at x(¢). In particular, (4.2) and (4.3) are crucial throughout
the development, bringing out the natural origin of the role of biquadratic maps. These forms
indicate that, in a certain sense, the behavior of F' is essentially determined near singular points
not by its first differential, but by its second—unless the latter degenerates, which is a case that we
leave for a later investigation.

The test consists simply in examining the definiteness properties, i.e., the nature of the eigen-
values, of a certain quadratic form on the nullspace N (DF(£)) that is associated with the selected
rank-1 singular point £° and constructed from the derivatives of F' at £°. There is a simple geomet-
ric interpretation of both the quadratic form and its definiteness properties, which we explain after
stating the result. Actually, we prefer to use a form Qg : R¥ ! — R, defined instead on RV !, by
virtue of the choice of a basis for the (V — 1)-dimensional subspace N (DF(£%)) of RV . Accordingly,

let {u(()j )};v:—11 denote a basis for N'(DF(£°)) and choose any integer m from {1,..., N} such that
[F17m0 (60)]2 + [F2’m0 (50)]2 > 0 Set

N-1
0 (€) i= By (€0)d°F, (50 Zf “’) —Fl,mo(fO)d2F2<£°; gjuéj’)

N-—1
{ S (B (€)Frp(€)  Fro, <§°>Fz,pq<ﬁ°>]ué£vé’;’}5,@,
j.k=1 \p,q=1

for each £ = (&))" e RV 1. (4.4)
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Clearly, the definiteness properties of Q0 are independent of the particular choice of basis for the
null space, so that the essential aspects of the quadratic form depend upon only F and £°.

We also find it convenient—but it is not clear to what extent it is necessary—to restrict attention
to singular points £° that are “not too pathological.” Specifically, we shall consider here only those
singular points that we call “strongly nondegenerate.”

Definition. Let F : MY — R” be of class C? on the sufficiently smooth N-submanifold-without-
boundary MY c RN and mapping into R™. A singular point £ € MY of F is strongly nondegenerate
iff D*F(&;v) is nonzero whenever v is a nonzero element of N'(DF(¢)).

It may be helpful here to recall that the set of points at which a quadratic form vanishes is a
cone, called the zero-cone of the form; this cone contains the zero-subspace of the form, which is
just the nullspace of the matrix of the quadratic form. Then we can say that a singular point &
of F is strongly nondegenerate precisely when the intersection of the zero-cones of the quadratic
forms d’F, (& -) on RY for k= 1,...,n and N (DF(¢)) is just {0}. In that case, we see that the
magnitude of D*F(¢; -) has a positive lower bound ¢, on the unit sphere in A'(DF(¢)), so that

ID’F(&v)|, > clvlk  for v e N(DF(E)).

With this terminology, we can state the additional hypothesis on which we rely in the proofs of both
Theorem 4.1 and Theorem 5.1; it is not presently clear how this restriction can be relaxed:

H.3. The rank-1 singular point £° of F is strongly nondegenerate.

Observe that the hypothesis (H.3) does not imply that £° has a relative neighborhood in ¥, F' that
is a 1-manifold; a counterexample is afforded by the point (3,5/2) in Example 2.1.

Theorem 4.1. Let F : U — R? be of class C° on the open set U C RY, with N > 2. Suppose
that €% € U is a rank-1 singular point of F for which the conditions (H.1)-(H.3) hold. Let the
corresponding quadratic form Qg0 on RN~ be defined as in (4.4).

(i.) If the quadratic form Qg is definite, then the range is folded at the singular value F (£°)
with respect to £°.

(4.) If F : U — R? is of class C° and the quadratic form Qg is indefinite, then the singular
value F(€°) is locally covered by F from &°.

(#41.) If the quadratic form Q.o is semidefinite, no conclusion can be drawn about the singular
value F (50), i.e., it may be either on the local boundary of the range of F' or locally covered
by F from €°.

Remarks. Some remarks preliminary to the proof will aid in maintaining orientation.

(1.) While the hypothesis of strong nondegeneracy of the singular point £° is apparently used
explicitly only in the proof of assertion (i), this condition is necessary for the definiteness of the
form Qg that is required in assertion ().

(2.) The proof of the theorem given here is rather tedious in some places and rather delicate in
others. In following the argument, it is helpful to keep in mind the underlying geometry associated
with the mapping F and its differentials, and the geometric significance of the conditions (7)—
(#4). The needed facts are isolated and proven in Proposition A.2, which describes how one can
discern the position of a line through the origin relative to the convex-cone range of a biquadratic
map, according to the definiteness properties of a certain associated quadratic form. To use those
results in the interpretation of the present situation, we first note that, by Proposition 4.1.ii, the
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vector Fy, (€0)e® + Fyym, (€°)e® is a tangent to the singular-value curve t — F(x(t)) at the
point F(£°) = F(x(t,)). Moreover, the map given on R¥=1 by £ — D2F(§°;Z;V__11 §j1/(gj)) is a

biquadratic map, so its range comprises a (perhaps degenerate) convex cone with vertex at the origin
in R? (Proposition A.1). Consequently, by Proposition A.2, the conditions of (i) definiteness, (i)
indefiniteness, or (iii) semidefiniteness of Q.o imply, respectively, that the line through the origin
and parallel to the tangent vector Fy, ,_ (£9)e® + Fyym, (€°)e® (4) meets this cone only at the
origin, () contains a ray belonging to the interior of the cone, or (4i4) contains a ray lying in the
boundary of the cone; here, we are using the hypothesis that £° is a strongly nondegenerate singular
point of F'. Thus, for the present purposes, we may say that the important aspects of the mapping
behavior of F' near a singular point are determined by the action of its second quadratic differential
on the null space of its first differential at the singular point, in particular, by the position of the
convez-cone image of the nullspace relative to the singular values. Roughly speaking, if (i) the cone
does not “cover the singular value,” then neither does the map itself, and a fold occurs, so that the
singular value is at least on the local boundary of the range, and must be studied further. On the
other hand, if (i7) the cone “covers the singular value,” then the full map does likewise, whence the
singular value lies in the interior of the range. The borderline case, in which (é4) the cone boundary
is tangent to the curve of singular values, must be examined separately.

(3.) In the case N = 2, the null space N'(DF(£°)) has dimension 1, so the quadratic form Qg is
defined on R, and therefore cannot be indefinite, i.e., must be either definite or trivial (semidefinite).
Put another way, when N = 2 the cone-image of the nullspace N'(DF(£°)) under the second
quadratic differential is just a (one-dimensional) ray or line. In any event, only (i) and (#i1) can
occur for N = 2.

(4.) According to the theorem, the test of a point £° can be conducted by finding and inspecting the
signs of the eigenvalues of the (N — 1) x (N — 1) matrix with typical entry appearing in the braces
on the right in (4.4). For this, a basis {Véj )}j.vz_ll for the null space N (DF(£°)) must actually be
constructed. In fact, in the proof of the theorem we need to know also that there is for each ¢ in an
interval (t,,t,) about t, a basis {v}’ )};\:11 for the null space V'(DF (x(t))) such that the resultant
maps t — V,fj ) are continuous or even of class C', so we shall at this stage offer one method for
producing such bases. We can proceed most easily here by noting that the subspace N'(DF (x(t)))
is just the orthogonal complement of the span of grad Fj(x(t)) in RV, with [ € {1,2} chosen so
that the indicated gradient is nonzero. Recall the definition of the integer j[m], corresponding to
m € {1,...,N} and j € {1,...,N — 1}, which is given in (2.3). With the integer m, as in the
statement of the theorem, we can suppose that [; has been chosen and the interval (¢;,t,) has been
adjusted so that Flo sy (x(t)) # 0 for every t € (t;,t,). Then it is easy to check that a basis for the

(N — 1)-dimensional null space of DF (x(t)) is given for each t € (¢,,t,) by {V,gj ) };.V:_ll, with

j (Gm 1) .
v = Fy ) = By ((@)e e, for j=1,. N -1,

1
and, moreover, that the dependence ¢t — V,gj ) is of class C"! for each j- In the proof of Theorem 4.1, we
shall suppose that the interval (t,,t,) is sufficiently short and that this extension has been effected.
For brevity, we shall continue to write Vé’ ) in place of u§g ), which should cause no confusion.

Finding a mapped-side normal. Maintain the setting and notation of Theorem 4.1. We already
established, in Lemma 1.2 and Section 3, the importance of the computation of a mapped-side

normal at a regular point of the local included boundary of the range, and especially at a point of
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the global included boundary itself. Further, our observation in Remark 1 following Proposition 4.1
enables us to compute a normal n, to the curve of singular values described by F oy at F(£°). Now,
the statement of Theorem 4.1 permits us to complete the determination of a mapped-side normal by
choosing the correct one of +n; we point this out prior to the proof, to avoid obscuring the simplicity
of the calculation. Thus, suppose we have determined that the quadratic form Qo is definite, as
in statement (i) of the theorem, so that the range is folded at F(£°) with respect to £&° = x(t,),
and assume that the local boundary of the range of F is regular at F(£°). For any £ € RV~!, the

vector D*F (50; Zjvz_ll §j1/éj )) will point from F(£°) into the image of a neighborhood of £° under
F. That is, for sufficiently small s > 0, the point F(£°) + 5D2F<§0; E;\Sl ijéj)) will lie in the

image of such a neighborhood. Therefore, if the inner product of D*F ({0; Z;V:_ll §j1/(gj)) and the

normal Fy, ,, (€°)e®™) — Fy,,, (€°)e®® to the singular-value curve at the point F(£°) is positive,
then the direction of this normal is the local mapping direction, i.e., the normal is a mapped-side
normal; otherwise (since we can suppose the inner product to be nonzero), the negative of that
normal vector will be a mapped-side normal. Upon reviewing the definition of Qg , we see that the
conclusion can be phrased alternately in terms of the specific definiteness property of the quadratic
form Qgo. Thus, when the local boundary of the range of F' is regular at F'(£°),

if Qg is positive-definite [negative-definite], then the normal Fy,,, (£2)e® — Fiym, (£%)e®
[negative of this normal] is a mapped-side normal to the local boundary of the range at F(£°).

This second formulation is convenient, since we must determine the definiteness properties of the
quadratic form Qg0 to apply Theorem 4.1 in any event, so we can identify the mapped-side normal
with essentially no extra work when it turns out that Qg is definite and the conclusion of (i) is
assured. Finally, when we know that F(£°) is actually in OR j,, we can use our determination of the
interior normal in conjunction with Lemma 1.2 to decide whether £ is a local Pareto minimum (un-
less some component of the normal vanishes while all components are nonnegative). The conclusions
drawn here are corroborated in various of the examples discussed in Section 6.

Proof of Theorem 4.1. Since it is helpful to keep in mind that £° is the image x(,), we shall as a
rule use the latter notation to indicate the singular point under study.

(i.) Suppose that the quadratic form Q¢o is definite: we shall construct an RN -neighborhood U, 5
of x(t,) such that F(x(t,)) € OF (Uy), thereby showing directly that F(x(t,)) is a fold point of
the range. The neighborhood Uj is to be built up by “leafing together” neighborhoods of zero
in N(DF(x(t))) translated by x(t), as ¢ runs through (¢,,%,). That is, let us define the map
U (t;,ty) x RN~! — RN by setting

N1
U(t, &) :=x(t) + Z £J-V§j), for ¢, <t<t, and ¢e€RNL.
j=1

As explained above, we can suppose that the maps ¢ — ng) are of class C* on (¢,,t,), so that ¥ is
of class C1. A short computation shows that the matrix of the differential D¥(#,,0) is given by

N—
(o) v e YY)

0
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here, the column-vectors of the matrix are displayed. By hypothesis, F o x is an imbedding, so that
x'(ty) does not belong to the nullspace N'(DF(x(t,))) (F(x(t,)) is not a cusp). It follows that the
columns of the matrix of D¥(%,,0) are linearly independent, and therefore that D¥(¢,,0) : RY — RV
is injective. Immediately, the inverse-function theorem shows that ¥ maps an open neighborhood
of (t5,0) € RY contained in (¢;,,) x RNV~ diffeomorphically onto a full open RY -neighborhood of
x(ty). Then, for any sufficiently small § > 0, ¥ maps the open neighborhood (t, —d, to+38) x By ~*(0)
of (t,0) onto a “leaved” open neighborhood Uy := ¥ ((t, — J,t, + &) x By ~'(0)) of x(t,) in RY.

We claim that F(x(t,)) € 0F (Uy) for some § > 0. To see that this is so, consider the line
[, C R? normal to the singular-value curve at F(x(ty)). According to Proposition 4.1.ii and the
notation established here, [, can be parametrized by

F27m0 (X(to))
—Fism, (x(t))

Let [ and [} denote the parts of [, corresponding to o < 0 and o > 0, respectively. To verify our
claim, it clearly suffices to produce a positive § such that the image F(U 6) does not meet (at least)
one of [, and [}.

o F(x(ty)) +o ( ) for o € R.

Then let § > 0. Suppose that ¢ # 0 and there are t° € R with t; —d < 1 < t; + 6 and
& € RV~ with [€7|y_; < & such that F maps the corresponding point ¥ (¢”,£%) € Uy to the point
on the normal line corresponding to o, i.e., such that
F27 mg (X(tO)) )

)+ Y evd ) = F(x(ty) +o (
( Z ‘ > ( 0)) _F17m0 (X(to))

we suppose through the remainder of the proof of (i) that o, t7, and £” satisfy these conditions
and are related by (4.5). We shall show that, provided ¢ is sufficiently small, either all such o are
positive or all such o are negative, thereby completing the proof of (i). To this end, we first use
(4.2) to rewrite the lefthand side of (4.5); a rearrangement then yields

( F2:m0(X(t0)) >
—F, m (X(to))
o 1 2 o gy o, (5) o gy o, (4)
= {F() - Fxtt) } + 07 () X g2 ) + B (xS ). (46)

=1 =1

(4.5)

Upon taking the R?-inner products in (4.6) successively with the vectors 7, := Fy,,, (X (to))e™ +
Fy,m, (x(ty))e® and ny = Fy, (x(tg))e® — Fyym, (x(t))e ), a (nonzero) tangent and normal
to the curve of singular values at F(X(to)), respectively, we obtaln

0= {F(x(t7)) - F(x(ts))} -7, + {%DQF(x(t”);Igﬁ”vﬁ)) . R3F<X(t”);]§§‘7u§£))}

and

a|nto|2 = {F(X(t”)) - F(X(to))} ‘n; + %ng (&%)

1 N—-1 N—-1 i N—-1
+§{D2F(X(t"); "Vt(ﬁ)) - DzF(x(to); ;-’Vt(j))} 0y + R F (X(t"); ;’Vt(ﬁ)) Ty
1

j=1 j=
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in (4.6.2), we used the equality Qo (£7) = D*F (X(to); E;V;ll 53-’1/,5({)) -1, . We shall establish from

(4.6.1) an estimate of the form
F(xt") — F(x(t)) || < Maley_,, (4.6.3)

holding for some positive constant M,, independent of o, provided that § is sufficiently small (recall
that [t7 —t,| < 6, §”|N_1 < d, and (4.5) holds), and then use this to show that the first term on
the right in (4.6.2) has a bound of the form

‘{F(X(t")) - F(x(to))} -nto‘ < Mylec|  F(E), (4.6.4)

again holding for some positive constant M; and for any sufficiently small positive d, in which f is
a nonnegative function such that lim;_,; f(t) = 0.

Let us first suppose that (4.6.3) and (4.6.4) are true for such ¢ and check that then the claimed
result follows. Because Q.o is definite in the present case, there is a positive constant ¢, for which

1960 (€)| > co€[5_,»  forall &eRN-L.

Also, it is easy to see that the third and fourth terms on the right in (4.6.2) are bounded in magnitude
by M3|t" — t0| |§‘7|fv_1 and M4|§"|?v_1, respectively, with positive-constant multiples M5 and My,
again independent of o, and again for all sufficiently small positive §. In view of (4.6.4) and the limit
property cited for the nonnegative function f figuring in that estimate, it is now clear that whenever
6 > 0 is sufficiently small and (4.5) holds with ¢ and £° satisfying |t‘7 - t0| < 6 and |£"|N_1 <9,
the absolute value of the sum of the first, third, and fourth terms on the righthand side of (4.6.2) is
bounded by

Mye7 [y S (1) + Mot — €7 [, + M7 [,

= {MF(87) + My 17— to] + M€ Hle7 [y < 1€ v <512,

implying, in turn, that the entire righthand side of (4.6.2) has, under the same conditions, the same
sign as Qgo (§‘7); the same is then true of 0. As explained, this completes the proof of statement (%),
modulo the verification of (4.6.3) and (4.6.4).

For the latter proofs, we denote by ?to and ﬁto the unit vectors corresponding to T, and n; ,

respectively. We derive the estimate (4.6.3) from the obvious equality
2 2 2
= {(Fxt) - F(xt)) 7, } +{(F(x(t) - F (x(ta)) ) -5, } - (4.6.5)

2

[P (x(t*)) - F(x(to)
In fact, from the derivative relation

F(x(t) — F(x(t))

tllglo t— tO - ato Tto’
holding for some nonzero a; , we find that
F(x(t)) — F(x(t F(x(t)) — F(x(t
lim () (x(t)) Ty | = |at ||Tt | >0 and lim (x(®) (x(t0)) -fi, =0.
t—t, t—1, 0 oll"tol2 t—t, t—1, 0
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Clearly, there is then a d; > 0 for which

‘F(X(t)) - F(x(ty)
t—t,

F(x(t)) — F(x(ty)) P

— p for 0<|t—t] <4y,

tO 0

1
< §|at0 | |Tt0 |2 <

so that [{F(x(t)) — F(x(to))} -ﬁt0| < {F(x@®) - F(x(t))} -i't0| for such t, which gives, with
(4.6.5),

‘F@wﬁ—F@@Mﬁ<2“F@Mﬂ—F@%»)ﬁJ2 for 0< [t —ty] <5
The latter inequality, when coupled with an estimate of the form
‘(F(X(t”)) — F(X(to))) 'Tto‘ <M, for 0<[t7 —to| <5
which clearly follows from the relation (4.6.1), now yields the estimate claimed in (4.6.3), provided

that ¢ is a sufficiently small positive number.

With (4.6.3) established, (4.6.4) follows readily. Indeed, since F'(x(-)) is injective on an interval
containing , we can write, again for any sufficiently small § > 0,

F(x(t7)) = F(x(t))

|F(x(t7)) — F(x(

{ F(x(t7)) = F(x(t))
[F(x(t7)) = F(x(t))

F(x(t7)) — F(x(ty)) .

LT,
[F(x(t) = F(x(t))], "
in which ¢ is adjusted to be either +1 or —1 so that

F(x@®) — F(x(ty)) =i,

(FO) = F(x(t) ) n, | = [F(xt) - Fx(t))]

- ‘F(X(t")) - F(X(to))|2

~
S—r

0

< M1|§U

’
2

|2
N-1

B2 TF((0) — Fx()]s

obtains. This is just the form claimed in (4.6.4).

Proof of (ii.) Now we suppose that the quadratic form Qo is indefinite and show that F (x(ty)) €
F(U )O for every RY -neighborhood U of x(t,). For this, it suffices to show that for each sufficiently
small 6 > 0 there can be found 7§ > 0 such that the ball Bfg (F(x(ty))) C R?, of radius r§ and
centered at F(x(ty)), is contained in the image F(Uy), in which the neighborhoods U; C RV are
just those introduced in part (i) of the proof. By the indefiniteness of the quadratic form Q0, we can
find and fix £~ and £* € RV ! for which Qs (£7) < 0 and Qg (€1) > 0. With ¢ denoting throughout
any positive number sufficiently small that Uy C U, we shall in fact prove (i) by showing that

there exist t; € (ty — d,t, +d) and r§ > 0 such that whenever A € Bf; (0) there

can be found (%2 € R? satisfying x(t;) + Zj\:ll{ (gd,A)lg + (C5’A)2§j+}yt(j) € U

and (47)

N-1
F(to) + A= F(xtt) + S {(¢),& + (@2),6 ).

i.e., by showing that the covering can be accomplished at a constant value of ¢ chosen sufficiently
close to t,. We conduct the proof of this claim in two steps: first, roughly speaking, we secure the
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result when F' is replaced by the first approximating terms from Taylor’s formula for F restricted to
the translated null spaces x(t)+N (DF (x(t))); subsequently, we use the first step in conjunction with
a perturbation result closely connected to the Newton-Kantorovich method to verify the statement
for the full mapping F. (It is in the use of the latter that we require the additional smoothness of
F.)

Step (ii.1). For each t € (t;,t,), we introduce the corresponding linear operator N, : R? —
N(DF(x(t))) by setting

N-1
{66 +6g il =GNl + N, for (eR,

=1

in which we have written

N-1 N-1
L= 6v)  and NZ= Y€, (4.8)
j=1 j=1

and then define the biquadratic map B(-;t) : R? — R?, depending upon the parameter t, as essen-
tially the restriction of the second quadratic differential of F at x(t) to the subspace of N'(DF (x(t)))
spanned by N} and N7:

B, (¢t) = (AV¢) - ¢
B(G1) = gD F(x(@iN¢) = ( ’ PV cew, tE (tyty); (49)
By(Git) = (AP¢) - ¢

here, the 2 x 2 matrices Agl) and .A,EQ) have the entries

.A(l) Z Flqu NJ NE

tg>

for j,k,1=1and 2. (4.10)

p,q 1

The strong nondegeneracy of the singular point x(¢,) clearly implies the strong nondegeneracy of
the biquadratic map B(-;t,), i.e., according to the definition given in Appendix A, the positivity
of |B(7t0)|2
sufficiently near to t,, i.e., that there are positive numbers ¢, and 7, such that

on the unit circle $2(0). Tt follows that B(-;t) is strongly nondegenerate for all ¢

|B(C;t)|2 > col¢|? whenever (€ R? and [t —t4| < 7. (4.11)
In fact, the map (¢,¢) — |B(¢;t)|, = |%D2F(X(t); N,()|, is continuous on (t,,t,) x R? and positive
when t = t; and ¢ # 0. In particular, the map is bounded below by a positive ¢; on the compact set
{to} x $2(0), whence it follows by a simple continuity and compactness argument that there is an
Mo > 0 for which the map is bounded below by ¢, := ¢,/2 on (ty — ng,to + 1) % S7(0). From this,
(4.11) follows immediately.

Each B(-;t) carries R? onto a convex cone with vertex at the origin in R? (cf. Proposition A.1);
we denote this cone by C; := Ry, = B(R?;t). By Proposition A.2.ii, the strong nondegeneracy
of the map B(-;1,), the indefiniteness of Q.0, and the choice of {~ and £T together imply that the
cone Cto contains at least one ray in the tangent line to the singular-value curve at F’ (x(to)). Indeed,
to verify this we need only observe that the quadratic form

C= Foym, (x(t6)) B1 (G to) — Fysom, (x(t0)) Ba(G3 to) = %ng (GE +6E7), (eR,
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is indefinite, since its value is negative at (1,0) and positive at (0, 1).

In this Step (ii.1), we show that there is a positive d, and (at least) one of the intervals (to —
dy,,to) and (to,to+dy ), call it J; , such that for any ¢ contained in J; , the point F'(x(to)) — F (x(t))
lies in the interior C; of the range of the map B(-;t), i.e.,

for each ¢ € J; there exists r, > 0 such that for every A € Bft (0) there can be found
¢h® € R? satisfying (4.12)
B(Gy™;t) = F(x(to)) + A = F(x(1))-
To establish (4.12), we introduce a quadratic form keo(-;) on R?, depending upon the parameter

te (t15t2)a by

keo (1) = { Ba(x(to)) = Fo(x(®)) }a2F (x(8): Ni€) = { Py (x(to) = Fa (x(8)) }e? Py (x0); M)

—2{ {R(x(t) - B (x(0) } B0 = {Fux(t0) - i () } Bl 0}

for (€R? and t; <t<t,.

Upon inspection of this definition, we see with the help of Proposition A.2.ii that if ¢ is sufficiently
near t, and there exist ¢’ and " € R? such that the product ko (¢';t)keo (¢"; 1) is negative, so that the

quadratic form is indefinite for that ¢, then we can assert that at least one of :t{F (x(to)) = F (x()) }

lies in the interior of the convex-cone range of B(-;t). Let us show that this condition obtains, with
¢'=(1,0) and ¢" = (0, 1), for each ¢ in some neighborhood of .

For this, we first observe that the chain rule clearly implies, for each ¢ € R?,

. 1
lim
t—ty t — tO

keo (G5) = —{grad B (x(t)) - X' (to) }d*F (x(to); N, €)

+ {grad Fy (x(to)) - X'(t) }d* By (x(t); Ny, ).

Now we exploit the hypothesis that €0 = x(t,) is a rank-1 singular point of F. In fact, since the
matrix {F

1y m (X(to))} N has rank 1, each of its 2 x 2 minors must vanish; in particular, the N — 1
2x

minors involving the (mg)™ column vanish, so we have

F17m(x(t0))F27m0 (X(to)) - FQJm(X(tO))F17mO (X(to)) =0 for m=1,...,N.
Therefore, by setting

F1am(X(t0))

Foo ) L Fom (xt)) 20

am(to) =

Fupld) )
By, my (X(t0)) £ Fiom, (x(t0) =0,

we can writ
° ’ Flv m (X(to)) =y (tO)Fh mg (X(to))

Fy, m(x(to)) = au (to) Fa, mg (x(t))
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By using these relations and recalling the definition of Q.0, we find

li

t—ty t — t

(¢5t) = {Za (to xm(to)}QEO(C1£ +GEF), forall (=(¢,() € R

it is important to observe, and easy to check, that the factor in braces here is nonzero because
the composition F' o x has nonzero derivative at ¢,. Consequently, we can conclude that there is a
positive §; for which %Tltgkéo ((1,0);t) and %?161(50((0, 1);t) are of constant but opposite sign for
0< |t - t0| < Jg. Then ko((1,0);t) and keo((0,1);¢) themselves are of constant but opposite sign
for ty — dy <t < ty and also for ¢y < t < ¢y + &,. Therefore, for each ¢ with 0 < |t - t0| < 6y at least
one of the points £{F (x(t,)) — F(x(t)) } lies in the interior C¢; if both points lie in the interior then
the cone C, must be all of R. In turn, there are just two alternatives: either

(a.) there is a positive §, and at least one of the corresponding one-sided intervals (¢, — 6t0 ,to)
and (g, o + dy_) such that F(x(ty)) — F(x(t)) lies in the interior C§ for every t in the
interval while —{F(x(to)) — F(x(t)) } lies in the interior for no ¢ in the interval

or

(b.) there is no such interval as in (a), i.c., there are sequences (t;)°_ and () with
t, Sty and t} N\ to, such that —{F(x(ty)) — F(x(t1))} € Cps forn > 1.

In case (a), (4.12) clearly holds and we are done, so we proceed to the examination of case (b). In
fact, we shall show that (b) implies the existence of an open interval about ¢, such that C, = R? for
every t in the interval; of course, with this we shall be able to conclude that (4.12) holds also in this

second case.

Continuing under case (b), we also have, owing to the hypothesis that F(x(-)) is injective,

. . . —1 R .
the inclusions 75 := |F(x(t£)) — F(x(t,))|, {F(x(t1)) — F(x(t))} € Cps for all m > 1. Letting
n — oo in each of these, it is easy to see that we get

F(x(tn)) = Fx(t) _ . DF(x(t))X (to)
nooo Mmoo [F(x(ty)) = Fx(t)) |, [DF (x(te))x'(to) ],

=: £7,;

clearly, the limiting vectors 7, here are just the two unit-tangent vectors to the singular-value
curve at F'(x(t,)), i.e., the unit vectors generated from Fy, ,,_ (x(t))eW) + F, m, (x(to))e® and its
negative. We claim that both of these lie in the cone Cto' Once we have proven this, it will follow
immediately that C = R2, since the cone is convex and we have already decided that at least one
of the limits lies in the interior of Cy,- Consider first the “+” case: for each n > 1, let (}' € R* with
75 = B(¢F;th). Tt is easy to see that the resultant sequence (Cn) , is bounded in R?. Indeed, by

virtue of inequality (4.11) and the convergence of (t})"" | to ty, we have
Co|C;f|2 |B(¢Hth)], =|#F], =1 for all sufficiently large n.

Then there exists a subsequence (Cn )Oo converging to some (; € R2. From the equalities %;Fk =

k=1
(§+ t+ ) we obtain 7, = B(({; t,) by letting k — oo, and so conclude that 7 € C; . The argument
in the « case is analogous, and leads to the inclusion —7, € C; . As noted, we can now assert

that C750 = R2. The reasoning is completed by observing that the entries of the matrices defining
the biquadratic maps B(-;t) : R — R? for ¢, < t < t, are continuous functions of the parameter ¢,
since they are obtained from the second partial derivatives of the components F; and F, of F' and
the continuous basis-vector maps ¢t — 1/(’ ). In Proposition A.4 it is shown under these conditions
that the set {t € (t;,t,) |C, := B(R?;t) = R? } is open. Therefore, in this case there exists an entire
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open interval containing ¢, such that we can find CS’A € R? satisfying (4.12) for each ¢ in the interval
and every A € R2.

This completes the first step of the proof of (). Before passing to the second step, we prepare
?
2

an estimate for the norms |Cé’ of the elements figuring in (4.12). First, since F(x(-)) is injective

on (t;,t,), we may, and shall, suppose that the length of the interval jto and the radii of the discs
in (4.12) are adjusted so that

0 <7, <|F(x(t) — F(x(ty)) |§ < |F(x(®) — F(x(t))|, for te Jy,- (4.13.1)

It follows directly from (4.12) that B(¢®;t) does not vanish for ¢ € J,, and |A|, < r,, and the

same then must be true of (g Of course, (4.13.1) also implies that r,|F(x(t)) — F(x(t,)) |;1 -0
as t =t in J, . Moreover, from (4.12) and the nondegeneracy inequality (4.11) we find that

co| G212 < |BGES51)], = | F(x(t) = F(x(®)) + A,
< |F(x(to)) = F(x(®))|, + . < 2|F(x(t)) — F(x(®))],

for t€J, with [t —to| <my and A €R® with |A], <r,. (4.13.2)

Step (#i.2). Now we establish the desired full result in (4.7). Observe at the outset that the equality
required in (4.7) can be recast in the form

%DzF(X(td)ENtJCé’A) + Ry F (x(t5); Ny, ¢*2) = F(x(t)) + A = F(x(t)),

B(C*5ts) + Ry (C75t5) = F(x(t)) + A — F(x(ts)), (4.14)

in which we have introduced the notation R, (G t) == RyF(x(t); N,C), so that

N 1
Z {/ (1- 3)2F1ajkl (X(t) + SNtC) ds} (NtC)j(NtC)k(NtC)l
1| jki=1\"70
Ryt =5 4

1
{/0 (1= 8)2Fy, jjq (x(8) + sN,Q) ds} (NtC)j(NtC)k(NtC)l

jokl=1

for ¢ <t<t, and ¢ €R® with [¢|, sufficiently small. (4.15)

It is important to observe that the products of the components of N, appearing in (4.15) have the
form

(N,€); (Vi) (Ni€), = @G DG+ (DR Grafiy (G GHadu (DG, for CER, te (t,ty),
(4.16)
in which the a%l(-) are continuous on (t¢;,%t,). The smoothness properties of Rj3 in both its
arguments follow from those of x, the original map F', and the basis-vector maps t — l/t(J ),
To prove the existence of the numbers required in (4.7), we shall apply the following statement
of KANTOROVICH AND AKILOV [11], describing sufficient conditions under which the solvability of a
“perturbed” problem follows from the solvability of a “base” problem.
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Lemma 4.1. Let X and Y be Banach spaces with maps 7, R : {BQ* (x9) C X} =Y of class C* on
the ball B . (x,), where ¢* > 0 and x, € X satisfies

7T(X0) =0.

Suppose also that the second derivatives n'' and R" are continuous on some closed ball 2, := B ,(x,)
(with 0 < p < ¢*), while the derivative 7' (xy) : X — Y is invertible. Set

Yo = “[WI(XO)]AR(XO)HX,
M= “[WI(XO)]ARI(XO)HB(X)a

7 1= sup ||l (o)) ™ (7" + B") ()| g cm -

XEQQ
If the inequalities
Y072 1 1-V1-2h 7
<1, hi=———-<—, and <o 4.17
’71 (1 _ 71)2 2 h 1 _ ,_yl ( )

hold, then there exists x; € , such that 7(x;) + R(x;) = 0.

Proof.. This is an immediate consequence of Theorem XVIIIL.2.1 of KANTOROVICH AND AKILOV [11];
cf ., the explicit development in Section XVIIL.2.6 of [11]. [

Remarks. (1) The finiteness of v, is not an issue in our application of this result, since the Banach
spaces will be finite-dimensional, so that the closed ball 2, will be compact. Then the inequalities
(4.17) required in the statement of Lemma 4.1 will clearly be satisfied if the norms ||R(x0)|| x
and ”R,(XO)“B(X,Y)
satisfaction of the three inequalities quantifies what is meant here by a “small perturbation.”

of the perturbation and of its derivative at x, are sufficiently small. Indeed,

(2) Here, the second derivatives 7''(x) and R"(x) are regarded in the natural manner as elements
of the Banach space B(X?2,Y) of bounded bilinear Y-valued operators on X x X; cf. [11]. Then,
for example, [7'(x,)] ! (7" + R")(x) is an element of B(X?, X); the norm of such a composition is
bounded above by the product ||[7r’(x0)]*1||B(Y7X)|| (7" + R”)(X)HB(XQ’l,) of the norms, just as in
more familiar settings.

In applying Lemma 4.1 to establish (4.7), the forms of (4.12) and (4.14) suggest that we take

ts,A

X=Y=R,n(-)=B(-;t;) = {F(x(t;)) + A= F(x(t5))}, R(-) = Ry (-5t5), and x = (" (as
in (4.12)), all for an appropriate value of t; € (t,t,) with |t5 —to| < 4, chosen to ensure that the
hypotheses of the Lemma are fulfilled, and for any A € R? with |A|2 <7} for ry := Ty, -

With J, as in (4.11), for > 0 we shall denote by J, (n) the interval {te I, ||t —to| <m}-
Since x(ty) lies in the open set U, a simple continuity argument shows that there is a positive g,
such that

N-1
x(t) + Z {C1§j_ + §2§j}u§") el whenever |t — t0| <20, and |C|2 < 20,-

i=1
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Then, for each t with |t —t,| < 2g, the map { = F(x(t) + (; N} + (,N?) is defined in the disc
B2 o (0) C R?, since we may also suppose that the interval (t, — 20, + 200) is contained in (¢;,,).
Setting

in{QQ0 J }
96 =1m 5 — )
3 2\/§max{|§ IN—1s 1€ vz}
we can find 5, > 0 with 5, < min {2g,,7,} for which

2

a‘F(x(t)) — F(x(ty)) ‘2 <9¢;  whenever te€J, (n).

According to (4.13.2), we have then also |C£’A|2 < g; fort €9y (n;) and |Al, < ;. It follows that
the map ¢ — F(x(t) + (N} + (,N}) is defined in a neighborhood of the closed disc st( o),
in fact, in the open disc ngé (¢4*), whenever t € 9y, (m) and A € R? with |A|, < r;, since then
1€l < 209 if [¢ = G5, < 205

The explicit form of the map B is given in (4.9), (4.10), and (4.8), while that of the remainder-
map Ry is displayed in (4.15) with (4.16). The latter two equalities show that there is a positive
M, such that

|Ris (Cost) |, < Mo|Gols for |G|, < oo and |t —t,] < o (4.18.1)

Whenever they are defined, the derivatives B'((y;¢) and Ry ((o;t) (reckoned with respect to
the first argument) are just the operators that we have been denoting by DB(({,;t) and DRy (Cos 1),
respectively. The action of the derivative B'((y;t) is given by

(A¢) ¢
B'((p;t)¢ =2 , for (€R?, te (t,ty), (4.19)

(AP¢) ¢

with the matrices Aﬁ” and A§2) appearing in (4.10). We shall use these explicit expressions to prove
that there are positive numbers c; and 73 such that

the operator B’ ( S’A; t) is injective and the norm of its inverse is bounded by
4.20

|1B'( é’A;t)]_IH < |C—£3A|_ for t€7J, (n;) and A€ R? with |A|2 <y (4.20)

0 [2

(recall that none of the CS’A vanish); the proof of this essential bound we defer until after it is

clear that it does indeed enable us to establish (4.7) (¢f. (4.14)). For the norm of the operator

ng] ({o;t) it suffices to use the simple upper bound given in terms of the partial derivatives of the

component-functions of R[3] by

2 2 3
“RE3] (C0§t)||B(R2) < {Z Z |R[3]l’m(C0;t)|2} ) for |C0|2 < 20, |t—t0| < 2g-

I=1 m=1

In fact, from this and an inspection of (4.15) and (4.16), by recalling that F' is now supposed to be
of class C® we see that there is a positive M; such that

1R (C03 1) | ey < My|Gls for [Gl, <ep and |t —to| < oo (4.18.2)
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The second derivatives B"((;t) and Ry ((;t) are bilinear operators taking R? x R? into R2.
More precisely, when |§ |2 < 2py and |t - t0| < 2p, we have

N
Z Rigjir (G 1) GG0
Pya=1

n (G (¢ ¢ = for ¢, ¢" € R,

N

" Rigpyr pg(GOGCY

pyq=1

with a similar expression for the action of B” (C ; t); again, we rely here on the additional smoothness
hypothesized for F'. From these forms, upper bounds on the bilinear-operator norms in terms of the
second-order partial derivatives of the component-functions are found as

D=

1B (¢t “B( R2)2 2) <2{Z Z I( A(l) 2} 7

=1 p,g=1
and

R (60 e < {zzmsn,m ” |} |

=1 p,gq=1
(at least) for |¢|, < 20y and |t —t,| < 2gy. It follows that there is an M, > 0 such that
1B (¢; t)||3((m2)2,1ra2) <M, and |Rf(¢ t)”B((R2)2,R2) < M,
it [cl, <200 and |t—ty| <oy  (418.3)

(a factor |C |2 can be appended to the second bound, but is not needed here).

Use of (4.20) along with (4.18.1), (4.18.2), and (4.18.3), respectively, shows that there is a
positive 7, < min {gy,7,,75} such that for any t € T, (ny) and A € R? with |A|2 < r, we have the

inequalities
= [[B'(G %5 6)] ™ Rigg (63 0)],, < |C A, e My |5 = M|,
= G501 G5 e < T 261600 = TG,
and B
Yy = |<—<§gis% 1B (G625 6] (B + Riy) (G )| e ey < |€éc,—3A|22M2 = ﬁ

With the preparatory estimates thus completed, we see next that we can find 7, > 0 with

1y < 1y for which

3‘F(X(t‘)) - whenever ¢ €7, (ny).

— 2
F(X(to))‘ < {min{ L , ,i —, % ,05}}
2 20, 16M,M, o, /7
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Therefore, recalling (4.13.2), we get

|C(t),A|2 < min{ whenever t €37, (ny) and |A|2 <7y

1 1 v 05 Q}
2M, 16MM, o, [i7

Now we choose any ¢; € J, with [t; —to| < min {d,7,,7,}, and set 7} := ry,- Then for any A € R?
with |A|2 <rj, we find

, 1 A2 0
m < M|, <y and Yo < My|¢? 2 <
whence
Yot M, NI —VI=32h
(1_,)/1 <4|Ct5,A| ’YO <4M2M0| |2 < 4 and h 1_,}/1 <2(2,YO) <Q§J

in which we used the fact that the real function s — s~'{1 — /1 —2s} is increasing on (—oo, %]
By comparing the inequalities required in (4.17), we see finally that we can apply Lemma 4.1 to
conclude that there exists ¢ with |C‘5’A Ct’s’ | < o, and satisfying (4.14). Moreover, we find

that
)

V2max {|¢7 |y 1, 1T Iy 1}

from which it follows readily that |(C5’A)1§’ + (C‘s’A)2£+|N_1 < & whenever |A|2 < ry; for those
same A € R?, upon recalling that |t5 — t0| < § we see that

€22, < |6 foiin |, + 05 < 205 <

N-—1
x(ts) + 30 {(C52), &5 + (2,67 Wl e U,
j=1

as required in (4.7).

Now the proof of statement (4¢) is completed by returning to verify (4.20). The argument begins
with an explicit computation and norm-estimation of [B’({,;t)]71¢ for ¢ € R?, when (, € R? is not
a singular point of B(-;t). From the expression for the differential B'((;;t)¢, given in (4.19) for ¢,
¢ € R?, it is easy to see that B'((y;t) : R — R? is invertible for some ¢, i.e., that (, is a regular
point of the biquadratic map B(-;t), iff the quadratic form §(-;t) given on R? by

B¢ 1) = (AN, (A0), = (A0), (A0,

is nonzero at (y; cf., also, Proposition A.3. In that case, a simple computation followed by an
obvious estimation produces [B'({,;t)] !¢ and the inequality

| (1)C0|2 + |A§2)C0
(ﬁ(Co? ))

I[B' (Go; 1)) ¢|5 < |2|c|2 for (€R2 and te€ (t,t,).

With this, it is clear that (4.20) will follow once we have shown that there can be found ¢4 > 0 and
13 > 0 such that

B2t > [, for te€T, (ny) and A€R with |A], <r,. (4.21)
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For this, suppose the contrary: then there are sequences (tn)m_ from J, with ¢, = t; as n — o
o . n=1 0
and (A,) ", from R? with A, <r; for each n > 1, such that

|ﬂ(§é"’A";tn)| < %|§é"’A"|; for each n > 1.
We have remarked that none of the CS’A vanish; the normalized elements ég"’A" = |Cé"’A" |; ICS"A"
then satisfy | ﬂ(&é"’A";tn)| < % for each n and contain a subsequence converging to some 58 with
|§8|2 = 1 for which we find 8(C0;t,) = 0. The strong nondegeneracy implies that B((8;ty) # 0,
as one can see from (4.11). According to Proposition A.3.ii, ({ is therefore a singular point of the
biquadratic map B(-;t,) and the image B((0;t,) lies on the boundary 9Cy, of the range C; :=
RB(_;tO) of B(-;tg).

On the other hand, by recalling that none of the B( S’A; t) vanish, and by denoting convergent
subsequences again with the same symbols as the original, we also have

A~ ~t ,An tn7An
B((0;to) lim B((" " "5t,) lim B((, itn)

1B($to)], ™ |BE mit)], " B st |,

e Flli) -~ ) +8, |
n—oo |F(x(ty)) — F(x(t,) + Anl,  n=oe [F(x(ty)) — F(x(t,)) ],

here, the final equality on the right holds because

|An| Tt

i) = F) ], ~ TF@) —Fx@), . * ">
by (4.13.1), and

~ (= A,
O BT 2}
A

in which we used the abbreviation ®, := F(x(to)) —F(x(t,)) and denoted by &)tn the corresponding
vector of unit norm. The limit in (4.22) is clearly a (unit-) tangent vector to the singular-value curve
at F(X(to)). But this is impossible, since it implies that at least one ray on the tangent line to the
singular-value curve at F(x(t,)) lies in the boundary of the convex-cone range C, of B(-;ty),

F(x(t) = F(x(t,) + A, F(x(t) — Fx(t,))
|F(x(ty) — F(x(t,) + Aul,  |F(x(t) — F(x(tn))],

?

2

contradicting our previous observation that the tangent line has at least one ray lying in the interior
of that convex cone (based on the original indefiniteness hypothesis, the choice of £~ and &1, and
the strong nondegeneracy of the singular point x(t,)). We conclude that (4.21) is correct. As noted,
this completes the proof of statement (i) of the theorem.

Proof of (ii1): Here we cite two simple examples to show that either possibility can obtain in the
case of a semidefinite quadratic form Q, i.e., the singular value F(fo) in such a case belongs to
the local boundary in some examples but is locally covered by F from £° in others.

Example 4.1.1. Let F : R® — R? be defined by setting

8+8+¢&

!
—~
)
~
I

) for gE(£17§27§3)€R37
27+ +6

e
~
I
N
Il
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i.e., F is the biquadratic map on R® generated by the symmetric matrices

100 2 0 0
AV =10 1 0 and A®:=[0 1 0];
00 1 00 1

cf., Appendix A. We shall show that the point £° := (0,0,1) (for example) is a nondegenerate,
rank-1 singular point of F for which the corresponding singular value F/(£°) = (1,1) lies on the
boundary R, while the quadratic form Qo is semidefinite.

It is easy to identify the range of F here. In fact, we know that R is a convex cone in R? with
vertex at the origin (Appendix A), and it is obvious now that the cone lies in the first quadrant of
R2. Moreover, it is simple to check that the slope of the ray in R? from the origin through F(£)
satisfies 1 < F,(€)/F;(€) < 2 for any nonzero £ € R? and that the ratio does take on the limit-values
1 and 2; in particular, the slope of the ray through F(£°) is just 1. From these observations it
follows that the range of F' is the closed cone in the first quadrant bounded by the rays from the
origin with slopes 1 and 2, hence that F(£°) belongs to the boundary OR ..

From the matrix 2 (2551 ? ?) of partial derivatives, one finds the singular points as the
1 & &

union of the l-axis { (£,,0,0)|& € R} and the 2,3-plane { (0,&,,&3)|&,& € R }; all of these are
rank-1 except (0,0,0), which is rank-0. The Hessian matrices of F; and F, are the constant ma-
trices 24 and A®) | respectively, which are nonsingular, so all of the singular points are strongly
nondegenerate except (0,0,0). Since F' maps the 1l-axis onto the ray from the origin with slope 2
and the 2, 3-plane onto the ray from the origin with slope 1, we see that the set of singular values
here coincides with the boundary of the range.

Now consider, e.g., the rank-1 singular point £° := (0,0, 1), which F takes to the singular value
(1,1) on the boundary of the range. We find that N'(DF(£°)) = sp {e™),e(®}. As the curve x of
singular points we may take, say, a parametrization of any line segment through £°, lying in the
2, 3-plane, and not parallel to the basis-vector e(2) (to avoid a cusp on the corresponding image-
curve of singular values). A short computation shows that the quadratic form Qg on R? is given by
Qo (¢) = =8¢, for ¢ = ({;,(,) € R?, which is negative-semidefinite.

Example 4.1.2. Let F : R2 = R? be defined by
Fi(§):= (ﬁf - 1)3
Fy(§) =& (52 - 51)2

This example is discussed in Section 6, where it appears as Example 6.3. There, the singular points

) for 55(51552)€R2'

and singular values are found and displayed graphically. In particular, it is shown that the two lines
{€€R?|¢& = +1} comprise singular points, all of which are rank-1 and strongly nondegenerate
except for the two (£1,41). Moreover, at each such rank-1 singular point £°, the corresponding
quadratic form Qg reduces to the zero-form. The corresponding sets of singular values are the
positive and negative rays on the 2-axis, i.e., the mapping action of F' folds the line given by
& = —1 [by & = +1] at the point (—1,—1) [at the point (1,1)] and takes both halves onto the ray
{ (zy,25) | 2, =0, £, <0 [z5 > 0] } The graphical evidence indicates that each point on the latter
rays of singular values (except perhaps the origin) is locally covered from each of its two singular-
point preimages (at which the quadratic forms are trivial). We shall verify this for one such singular
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pair, say, the singular point £° := (1,2) and the corresponding singular value F(£°) = (0,1), which
will complete this example and the proof of Theorem 4.1.

Let the map G : Dy — R? be defined on the open square D, := (—1,1) x (0,2) in R? according
x) = \/x}/s +1

;v}/3+1

to

I for —1<2z; <1, 0<zy <2
1

G is clearly continuous. Moreover, one can show that G maps D, into the domain

D(F) := {55(51,52)‘0<§1 <V2, £ <& <§1+\/g}

with F(G(z)) = = for every = € D, while F takes D(F) into D with with G(F(£)) = ¢ for every
& € D(F), so the restriction F |D(F) is injective with inverse G. That is, F' takes the domain D(F’)
containing £° = (1,2) homeomorphically onto D containing F(£°) = (0,1), whence we conclude
that every neighborhood of €% is mapped to a neighborhood of F'(£°), i.e., F(£°) is locally covered
by F from its singular preimage £°. ]
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5. Discrimination of singular values: the general submanifold-domain.

Now we take up the more general case in which the domain Dy, is a differentiable N-dimensional
submanifold-without-boundary MY in some RMo, with the aim of extending the tests contained
in Theorem 4.1 (where the domain is an open set in RY). In fact, since the identification of fold
points and locally covered points is a completely local examination, we could proceed in practice by
covering M with codrdinate patches, using coordinate functions to transfer the analysis down into
open subsets of RV ~1, and applying Theorem 4.1. But we prefer to formulate a test involving only
quantities intrinsic to M, i.e., having a form that is independent of any particular coérdinate system.
We present such a test in Theorem 5.1; the result was obtained by first following the codrdinate-
system procedure just described and subsequently translating the outcome to a codrdinate-system
independent form.

We begin with the generalization of Proposition 4.1 to the present circumstances.

Proposition 5.1. Let Ny > N > 2. Let F : MY 5 R? be a mapping of class C' on the N-
dimensional submanifold-without-boundary M~ C RN of class C*. Suppose that £° is a rank-1
singular point of F for which hypotheses (H.1) and (H.2) hold.

(i) Let t — C(t) € MM, t; < t < t,, be a smooth curve of class C* with range in M" and
such that ((ty) = x(t,) (= €°) and ('(t,) ¢ N(DF(&°)). Then the curves t — F(x(t))
and t — F(((t)) have the same tangent vectors at the singular value F(&°).

(ii.) Let 7, denote any element of ToM that is not in the nullspace N'(DF(¢°)), i.e., which
satisfies |grady  F} (€°) 'T0|2 + |grady F, (€°) -T0|2 > 0 (such a 7, exists). Then a tangent
to the singular-value curve t — F(x(t)) at F(£°) is given by {grady.F, (€°) - 7o} +
{grady Fy (€°) - 7o Je®.

Proof. The proof consists in checking that the same sorts of computations used in the proof of
Proposition 4.1 can be extended to the present more general setting.

(4). The null space ' (DF(£°)) has dimension N —1, lies in the N-dimensional tangent space T M,
and does not contain x'(ty,) (which is nonzero). Therefore, we can represent the (nonzero) element
(' (to) of TeoM by ('(tg) = agx'(tg) + v for some o € R and vy € N (DF(£°)); ay must be nonzero,
since ('(ty) ¢ N (DF(£°)). Consequently, we compute

(F o C)I(to) = DF(C(to))CI(to) = DF(&"){%X'(%) + Vo} = aoDF(X(to))Xl(to) = (F °X)I(t0);

which completes the proof of (7).

(4). We construct a smooth curve ¢ with range in M”, passing through £ = x(t,), and having
tangent vector 7y at x(ty): Let (U, h) be a codrdinate system for M with £° € U. Since DR~ (h(£°))
is an isomorphism of RN onto T,oM, there is a (unique) 7, € RN with Dh~'(h(£°))7) = 7. By
setting ((t) := h™! (h (&%) + (t - to)?o) for all ¢ with |¢ — t,| sufficiently small, it is clear that the
range of ( lies in M, while ((t,) = £° and ('(ty) = Dh 1 (h(£°))7, = 7y, so that ¢ has the required
properties. Since ('(ty) ¢ N'(DF(£°)), we can apply part (i) of the Proposition to conclude that a
tangent vector to the singular-value curve at F(£°) in R? is given by the derivative of ¢t — F({(t))
evaluated at t = ¢3, which we compute as

DF (((to))¢' (tg) = DF (€)7o = {grady(Fy (€°) - 1o }e™ + {grady Fy (€°) - 7},
producing the result claimed. []
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Remarks. (1.) Of course, an element 7, of TeoM with the property required in statement ()
of Proposition 5.1 exists because £° is a rank-1 singular point of F, so that the null space of the
differential at £° is of dimension N — 1 in the tangent space of dimension N. For example, at least
one of gradyF; (EO) and grady,(Fy (50) is nonzero and that nonzero vector will serve as 7;. When
N = N,, 1, can be taken as an appropriate one of the standard unit-basis vectors, as in Section 4.

(2.) With obvious modifications, the remarks made following Proposition 4.1 carry over to the
present situation. That is, Proposition 5.1 provides the first step in computing the local mapping
direction at a sufficiently regular point of the local boundary of the range, since it implies a simple
recipe for computing a normal to the curve of singular values passing through such a value F' (fo);
Theorem 5.1 will provide the second step, i.e., the means for selecting which of the normals is the
mapped-side normal. Similarly, the conditions for a horizontal or vertical tangent to a singular-value
curve are easy to deduce from Proposition 5.1.

Our extension of Theorem 4.1 to the present setting retains the same form: to test whether a
given singular value is a fold point of the range or is locally covered, we identify an intrinsic quadratic
form whose definiteness properties provide the tell-tale, except in a borderline case.

For the statement of this theorem, we must prepare some definitions and notations. First,
consider a real-valued function f : MY — R of class C2. Let & € M. The definition of the (first)
differential df(£), a linear form on the tangent space T¢M, is reviewed in Appendix B. Now we
introduce the second quadratic differential of f at ¢ as a quadratic form d?f (&) on TM. For
this, we choose any coordinate system (U, h) for M with the coordinate patch U containing £&. We
write h. = h(C) for each ¢ € U, for brevity. The N RNo-vectors {h5] (h),h55 (he),--- b5 (he) }
form a basis for T.M. The metric, or first fundamental, tensor of the manifold M for (U, h) has
(covariant) components given on h(U) by

91(2) == hj; (2) - b5 (2), for z e h(U), for j,k=1,...,N;

the inverse of the matrix {g,,(2)} y, x is denoted by {g7*(2)} y, - The Christoffel symbols of the
second kind I‘il are defined on h(U) by

N .
, gm] z .
I\l]i!l(z) = Z 2( ){gkmal(z)_gklam(z)+gmlak(z)}a for th(U)a for Jakal:]-a---aN;
m=1

obviously, these vanish when N = N,. Now we can define the quadratic form 7 +— d®f(&7) on
T¢M by using covariant differentiation according to

N N
d*f(&T) =) {(foh_l),pq(h,;-) -y I‘I’,’,‘I(hg)(foh_l),m(hg)}r”r", for each 7€ TM,
p,q=1 m=1

in which the 7P are the contravariant components of T, such that T = 25:1 Th75), (h¢); explicitly,
these components are given by 77 = Zévzl gi"q(hg){T -h75y (hg)}. Finally, when the mapping F' :
MY 5 R s of class C?, the second quadratic differential of F at £ € M is defined to be the
n-quadratic form D*F(¢; -) : TM — R™ on the tangent space T.M with components d’F,(&; ),

I=1,...,n. Itisclear that these definitions do generalize those given for the case in which N = N,.

Remarks. (1.) One can show that the second quadratic differential defined in this way is an
object intrinsic to the manifold MY and the function f or mapping F, i.e., it is independent of the
particular codrdinate system for MY that is used in its definition.
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(2.) It is useful to have an alternate means for computing the second quadratic differential. At least
when N = N, — 1, if f is a C2-extension of f : MY — R to a full R¥o-neighborhood of M”, then
one also finds, for £ € M,

Ny

@f&7) = Y {5 + rn(67) - rad (€0, } 7,7, foreach T € T,

pyq=1

in which the 7, are the components of 7 with respect to the standard unit-basis vectors of R and
ky(&;7) is the normal-curvature vector of M at £ for the direction of 7, i.e., the (normal) curvature
vector of the geodesic passing through ¢ and having tangent vector 7 there (and 6, is the Kronecker
symbol). This result is independent of the particular extension f that is chosen for f; in particular,
when f is such that its gradient at & € M lies in the tangent space TeM (in which case it coincides
there with the manifold gradient grady;f(&)), the second term within the braces vanishes and the
result takes on an especially simple form involving only the second partial derivatives f, (&) A
verification of these assertions is somewhat lengthy, although straightforward; since we presently
have no real need for the results, we omit their proofs.

Let us introduce the quadratic form playing the central role in Theorem 5.1, the counterpart
and generalization of that introduced in Section 4. With €2 € M" denoting a rank-1 singular point
of the C2-map F : MY — R2, let {ué’)}j.v:‘ll be a basis for the (N — 1)-dimensional nullspace

N (DF(£°)) in the tangent space TeoM. The contravariant components of v’ (),

() = Z;V_ll ()P p (o), in which we again use the abbreviation heo = h(€°). We choose

are denoted by v
so that v
any element 7, of TeoM such that |gradyF, (€2) 'T0|2 + |grady F, (£°) '7'0|2 > 0; again, such 7, exist
because £° is a rank-1 singular point of F. With this notation, the quadratic form Q0 on RN-1 ig
defined by setting

N-1 N-1
Qeo(0) 1= {gradMFz (€%) 'To}d2F1 (50; Cj’/((lj)> - {gradMFl (3 -To}d2F2 (50; > ij(()j)>
Jj=1 j=1
N-1 N N
=3 { > {[gradMF2 (€9 .TO] [(F1 o h™), g (heo) — Z " (heo) (Fy 0 h71), m(hgﬂ)]
Jk=1 \p,g=1 m=1

N
_ [gradMFl (é‘o) . 7'0] [(F2 o h_l),pq(hfo) — Z F;ﬂ](hgo)(FQ [¢] h‘_l);m(hfo)] }Véj)py(gk)q}CjCka
m=1
for each ¢ = ({;);;"' € RV, (5.1)

It is clear that the definition reduces to that of Section 4 when NV = Nj.

Just as in the preceding section, we make a statement only about the “strongly nondegenerate
singular points” of our mappings.

Definition. Let F : MY — R™ be of class C2. A singular point £ of F' is strongly nondegenerate iff
D2F(§; V) is nonzero whenever v is a nonzero element, of N(DF(é)) C T M.

Theorem 5.1. Let Ny > N > 2. Let F': MY = R? bea mapping of class C® on the N-dimensional
submanifold-without-boundary M~ C RNo of class C3. Suppose that £ € M" is a rank-1 singular
point of F' for which the hypotheses (H.1)-(H.3) hold. Let the quadratic form Qg on RY-1 be
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defined as in (5.1), with the tangent vector 7, the nullspace-basis {uéj ) }j.vz_ll, and other notation as

established in that definition.

(i.) If the quadratic form Qg is definite, then the range is folded at the singular value F (£°)

with respect to £°.

ii.) Suppose that F and M are of class C°. If the quadratic form Qo is indefinite, then the
3
singular value F (£°) is locally covered by F from £°.

(#6i.) If the quadratic form Qg is semidefinite, then no conclusion can be drawn about the
singular value F(£°), i.e., it may be either on the local boundary of the range of F or

locally covered by F from £°.

Remarks. (1.) The conditions (7)—(7#) have the same geometric significance as in the setting of
Theorem 4.1. That is, the respective conditions indicate the situation of the tangent to the curve
of singular values at F' (50) in R? relative to the translated convex-cone range of the restriction of
the second quadratic differential of F' to the nullspace of its first differential, obtaining according to
whether the translated cone (i) meets the tangent line only at its vertex F(£°), (i) contains in its
interior (at least) a ray in the tangent line, or (7i7) contains in its boundary (at least) a ray in the

tangent line.

(2.) Again, when N = 2 the quadratic form Q¢o is defined just on R, and so can be only definite or

trivial-semidefinite.

(3.) Following the statement of Theorem 4.1, we remarked on the identification of the local mapping
direction when conclusion (i) obtains, so that F(fo) is on the local boundary of the range. With

the necessary (and obvious) modifications, those remarks can be extended to the present case.

Proof of Theorem 5.1. The statements in the case N = N, are proven in Theorem 4.1, so we
suppose now that N, > N. In fact, we reduce the present proof entirely to that previous case by
first using a codrdinate system to transfer the setting to an open set in R, in which we can apply the
appropriate form of Theorem 4.1. It transpires that the quadratic form figuring in that application
of Theorem 4.1 is just a multiple of the form defined in the statement of the present theorem, and so
the two forms have the same definiteness properties. Thus, the proof will be effectively completed

by reduction to the previous case.

With this plan in mind, let (U, h) be a codrdinate system for M with £° contained in the patch
U, and consider the mapping F o h~! : h(U) — R2, of class C* on the open set h(U) C RV, which
has the same range as the restriction of F to U. It is clear that t — h(x(t)) is a Cl-smooth curve
of rank-1 singular points of F o h=!. Moreover, since h carries U homeomorphically onto h(U), it
is also easy to see that F(£°) = F(x(ty)) is locally covered by F from & = x(t,) iff it is locally
covered by Foh™ ! from hy, = h(£°) (and so the range of F is folded at F(£°) from £° iff the range
of Foh™! is folded at F(£%) from h(£°)). Since £° is a nondegenerate singular point of F such
that F (50) is not a cusp, i.e., such that the tangent vector x'(t,) does not belong to the nullspace
DF(&O), it will follow from computations given below that hgo is a nondegenerate singular point of
Foh™" for which Foh™" (heo) is not a cusp. Consequently, we may apply Theorem 4.1 to formulate
a test of the behavior of F o h™! : h(U) — R? at its singular point heo and use the results as a test
of the behavior of F at its singular point £° = x(¢,).
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To set up this application, we must study the quadratic form given in (4.4) that is appropriate
for Foh™"'. To this end, we first generate a basis for the null space N'(D(F oh™')(heo)) C RY

from the given basis {Véj) }jvz_ll for N(DF(£°)) C ToM. We have DF(x(tO))V(gj) =0, or
N .
(Froh™),,(heo))" =0, for 1=1,2, for j=1,...,N—1,
gq=1
from which we infer that a basis for N'(D(F o h™')(h,)) is given by {ﬁéj) = Zévzl e };.V:_ll;

observe that this basis is expressed in terms of the standard unit-basis vectors e{? for RN, as
required in (4.4). Now, choosing any integer m, in {1,..., N} such that [(F1 o h_l),m0 (§0)]2 +

[(Fyoh™t), m, (€9)] ® > 0, with the elements prepared we construct the version Q, , of the quadratic
£

form on RV—1! given in (4.4) that is appropriate for the application of Theorem 4.1 to Foh™! (recall
that heo = h(£9) = h(x(ty))):

-1
Q9 (0) = (Fyoh™), (heo)d*(Fy o h7Y) (hgo; Cjﬁéj))

€0
Jj=1

- (F1 o h*l)’mo (hgo)d2(F2 o hil) (hgo; i@ﬁéﬂ)
=SS o1 ) o)

- (Fl o h_1)7m0 (hgo) (F2 o h_1)7pq(h§0)]V(gj)pyék)q}cjgk’

for each ¢ = ((;)N' € RV-1. (5.2)

Now we want to exploit the hypothesis that ¢° is a rank-1 singular point of F' to show that, in
fact, we have Qg0 = aQ,, . for some nonzero «. To see this, we observe first that, since the matrix
3

{(Fl o h—l)”n(hgo)} . has rank 1, each of its 2 x 2 minors must vanish; in particular, the N — 1
2%

minors involving the my'" column vanish, so we have
(Fyoh™), m(heo) (Fy 0 hil):mo(hgf!) — (Fyoh™), p(heo) (Fy 0 hil):mo(th) =0,
for m=1,...,N. (5.3)
Consequently, by setting

(Fl [e] h_l),m(hgo)
(F]_ o h*l),mo (hgo)

if  (Fyoh™),m, (heo) #0,

(Fy o h™), m(heo)
(Fyo h—l)ij(hgo)

if (F,o h—l),mo (heo) =0,
we can write
(Fyoh™), m(heo) = (Fy 0 b7, 4, (heo)
(Fyoh™), m(heo) = o (Fy 0 h™Y), 1, (heo)
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Clearly, we can use (5.3) to rewrite first the expressions appearing within the innermost square
brackets on the right in (5.2) as

[(Fz"h*l)amo(hng)(Fﬂh*)’pq(h) (Froh™?), O(hgo)(F2°h71)ﬂpq(h£°)]

N

= [(B 0 17). 1 (o) | [ (B 0 B71), (o) = D Do) (Fy 0 h7), (o)

m=1

[ ) ) [0 17,0 — 3 T ) (7). )]

finally, we can use (5.4) to show that the latter is, in turn, a nonzero multiple of the expression

N
[gradMF2 (x(to)) .TO] [(F1 o h7Y), plheo) = D Tpi(heo) (Fy o h—l),m(hgo)]
N
— [radaci (x(to)) - 7o) [ (Fa 0 h™") (o) = 3 Thilheo) (Fy 0 h™"), (o)

all for p and ¢ =1,...,N. In fact, (5.4) allows us to write

N
grady F (x o= (Foh™t), (heo)7d
p=1

N

{Za%}ﬂoh Ysmg (heo),  for 1=1,2,

=1

so that, by setting o := Zivzl apTg , it is easy to see that we do indeed arrive at the claimed equality

Qeo = aﬁheo on RN~'. Moreover, a does not vanish, since at least one of gradyF} (€°) - 7 and

grady Fy (.fo) - Ty is nonzero. Thus, Qg and ﬁh . have the same definiteness properties.
¢

Now, completion of the reasoning is a matter of simple checking. If Q.0 is definite, then the
same is true of éheo’ so that the range of Foh™ " is folded at F(£°) with respect to hgo, whence the
range of F' is folded at F({O) with respect to €0, as well. If Qo is indefinite, a similar argument leads
to the conclusion that F(EO) is locally covered by F from &9, provided F' and M have the additional
smoothness required in statement (77), so that the corresponding assertion of Theorem 4.1 can be
invoked. Finally, Qg0 is semidefinite iff the same is true of éhfo; in case of semidefiniteness, it is easy
to manufacture examples like those given in Theorem 4.1 to show that either possibility may still
occur. 0

56



6. Examples.
All of the examples are gathered in this section.

The examples are intended to reinforce all of the definitions and developments of the previous
sections, such as local covering of a value and folding of the range, not just the procedure for
computation of Pareto-minimal points. Examination of a variety of mappings not only brings out
the breadth of behavior possible even in this most elementary setting with n = 2, but also places in
perspective the results established here by indicating the cases that remain to be studied, involving,
e.g., strongly degenerate singular points and semidefinite quadratic forms (cases not covered in
Theorems 4.1 and 5.1). Since it seems best to demonstrate an idea or result within the simplest
possible setting, fairly detailed developments are provided for some of the most elementary mappings.

We depict the ranges of the mappings in the various examples by computing and plotting
the images of grids of points in the domain, taking sufficiently many points that the patterns are
clear and we may extrapolate from the indicated trends with reasonable certainty. All of the plots
have been generated with the computer-algebra system Maple. Naturally, a tool such as Maple
or Mathematica proves to be an indispensable aid in studying the properties of mappings between
euclidean spaces.

The first two examples involve the germs of the only two generic singularities possible for
mappings from R? into itself taking the origin to itself; cf., e.g., MARTINET [14].

Example 6.1 (The Whitney fold). Let F : R?> — R? be defined by
’ for §E (&1762) € R2'

The mapping action is completely transparent here: the range R, = { (z1,25) | Ty >0 }, the closed
upper half-plane formed by the “folding” (and vertical stretching) of the domain-plane along the

& -axis. The matrix of the differential DF(£) is given for each & by (é (2) ¢
2

easily that the singular points are all rank-1 and comprise the &, -axis, which is mapped bijectively

), whence it follows

onto itself by F. Thus, the set of singular values here is the z;-axis, which is clearly the included
boundary of the range (coinciding here with the boundary of the range). Each singular point is
completely singular, since no singular value has a regular-point preimage. This mapping sends none
of its singular points to the interior of its range, and so generates no spurious boundary in its range.
It should be noted that the singular points form a 1-manifold, while the null space of the differential
at each singular point is just the span of the basis-vector e = (0,1), which is orthogonal to the
tangent space; this is in accord with the observation that the image F’ (EF) of the singular points
is smooth, i.e., exhibits no cusps. The mapping is so simple that an illustrative plot is unnecessary.

Example 6.2 (The Whitney cusp). Let F : R> — R? be defined by
Fi () =&
Fy(§) =66+ 8

After a bit of study, the mapping action here becomes almost as evident as that of the Whitney
fold. We observe first that the range is now all of R?. In fact, for each £, € R, the range of the
R-valued function &, — f51 (52) = &5 + £,&, is all of R, whence the assertion follows immediately,

) for €E(§15£2)€R2'

since it is now clear that any given full vertical line has a full vertical-line preimage in the domain.
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“vertical-line”

In particular, the (global) boundary of the range is void. Examination of the same
functions also reveals the finer structure of the range. Indeed, if £; > 0, then fE1 takes R bijectively
onto itself. At £, = 0 a transition occurs, so that for & < 0, f51 has one local maximum and one local
minimum, at F./—¢ /3, respectively, and the points ({;,2,) in the range with |z,| < 2(—£,/3)

3
have three preimages, while those with z, = i2(—§1 /3) * have two and all others have one. The

3
2

formation of geometric “folds” in the range leading out from the origin is practically visible here
algebraically. Graphically, all of this is reflected in Figure 1, which depicts the images of domain-
points lying in a certain square uniform grid. In particular, it is apparent that a cusp is formed
at the origin, where the folds meet. (The blurring visible along the positive z;-axis near the origin
does not indicate that points there have more than a single preimage, but arises from the finite size

of the plotted “point-symbols.”)

Now, let us compare the previous picture for agreement with that obtained by studying the
singular points and values of F. The matrix of the differential DF(£) is given for each £ by
(1 0 2). It follows that the singular points are all rank-1 and determined by the con-

& & +3&
dition & + 33 = 0, so that they form the parabola { (—3t,t) |t € R }, which is shown in red and
magenta in Figure 2. The set of singular values, the image of this parabola under F, is then de-
scribed parametrically by { (—3t%,—2t%) [t € R }; this curve appears in Figure 3 superimposed on
the plotted range values, where it evidently falls on the “folds” in the range formed by the mapping

action already described (the colors in Figure 3 correspond to the respective colors of the preimages

in Figure 2).

La

Fig. 1. The range of the Whitney cusp. Fig. 2. Singular points and preimages of sin-
gular values of the Whitney cusp; discs
to be mapped.
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None of the singular points except (0,0) is completely singular. Indeed, we find that each of
the singular values except the cusp at the origin has a regular preimage, as well as its singular-
point preimage; it is easy to check that these regular preimages are described parametrically by
{(-3t?,-2t) |t € R } (in which the parameter has the same meaning as in the previous two para-
metric descriptions), and so form the green parabola shown in Figure 2. Consequently, each singular
value except (0,0) is locally covered from a regular-point preimage and must belong to the interior
of the range, as we have already decided directly. In Figure 2 appear two circles of radius 1/2, one
(in cyan) centered on the parabola of singular points at (—3,1) and one (in blue) centered on the
parabola of regular preimages of singular values at (—3, —2); both centers correspond to ¢t = 1 in the
parametric descriptions and are mapped by F to the singular value (—3, —2). The respective images
of the interiors of these circles under F' are shown in Figure 4 and Figure 5, as collections of mapped
points in the same respective colors. In Figure 4, the image of the interior of the cyan circle has
apparently been “folded” along the curve of singular values, with (—3,—2) placed on the boundary
of the image, while in Figure 5 one observes the apparent full image-neighborhood providing a local
covering of (—3, —2) in the range. These figures can be viewed as paradigms for “folding” and “local
covering,” respectively. The origin of the three preimages for range-points lying “inside the cusp” is
explained again here: two of the preimages come from neighborhoods of the singular points and the
folding action of the mapping, while one preimage comes from the simple local covering associated
with any regular point. Similarly, one can regard the singular values on the fold as the borderline
cases possessing but two preimages, range-points “outside the cusp” being images of single regular

points.

Fig. 3. Singular values of the Whitney cusp. Fig. 4. Image of disk about singular point and
mapped-side normals.
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Let us show that Theorem 4.1.i can be applied to verify that each singular value except (0, 0)
does belong to 0 R, i.e., that the range is folded at each such singular value from its singular-
point preimage in the analytical sense, as well as in the geometric sense. We adhere to the notation
of Theorem 4.1. The curve of singular points is given here by ¢ — x(t) = (—3t>,¢). When ¢ is a
singular point DF(£), becomes (22 8), whence it is evident that we always have N (DF(£)) =
sp{e® := (0,1)}. Of course, the tangent space sp {x'(0)} to the parabola of singular points at the
origin is precisely N’ (DF(O)), so that we do indeed have a cusp in the singular values corresponding
to the parameter-value ¢, = 0, in the sense of the definition of Section 2; that value is therefore not

covered under Theorem 4.1. Then, for ¢, nonzero, we must take my = 1; we find Fy,; (x(t,)) =1

and Fy, { (x(ty)) = t,. Since the Hessian matrices are just (Fl,lm(§)) = (8 8) and (F2,lm(£)) =

((1) (13§ ), a short computation shows that d*F, (X(to); Ce@)) =0and d*F, (X(to); Ce(2)) = 6t,(2
2

for every ¢ € R. This implies that (0,0) is the only strongly degenerate singular point and gives,
with 60 = X(t0)7

ng (C) = o (X(tO))d2F1 (X(tO); <.6(2)) -,y (X(to))d2F2 (X(to); Ce(z))

= (t0) (0) = (1) (6tC*) = —6toC*.

We conclude that Qo is definite for every nonzero t,, more precisely, positive-definite for ¢, < 0 and
negative-definite for ¢, > 0. Therefore, Theorem 4.1.i says that the range is folded at every singular
value F(x(t,)) with respect to x(,), for t, # 0. To sum up, we can assert that all of the nonzero
singular values, shown in Figure 3, do indeed belong to the local included boundary of the range,
but all are spurious boundary-points, since each is locally covered from its regular-point preimage
and so lies in the interior Ry’. In particular, we conclude by this alternate route that the global
included boundary of the range must be empty (in agreement with the direct algebraic reasoning,

which says that the global boundary itself is empty).

Finally, we shall compute a mapped-side normal at each point of the local included boundary
of the range (except the origin) and check—for agreement with the previous reasoning—that such
a normal always points “into the cusp.” Applying the rule based on the definiteness of Qg0 that is
derived in Section 4, we find that a mapped-side normal at the singular value F(X(to)) corresponding

to the nonzero parameter value ¢ is

—sgn(to){F2,1(X(t0))5(1) - F1:1(X(t0))5(2)}= —sgn(to){toa(l) - 5(2)}-

It is easy to see that these do in fact point in the directions anticipated, since the top [bottom)]
branch of the singular-value curve corresponds to t, < 0 [to ¢, > 0]. Two such mapped-side normals

are shown in Figure 4.
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Fig. 5. Image of disk about regular point. Fig. 6. Singular points of Example 3; discs to
be mapped.

The computations here demonstrate the sequence of operations to be followed in the more
difficult cases, as well.

The next example illustrates two “pathological” ways in which points of the local included
boundary can be contained in the interior of the range.

Example 6.3. Let F: R2 — R? be defined by

Fi¢) = (&-1)°
F(6) = &(& &)

The range is the union of the point (—1,0) and the open half-plane lying to the right of the line
described by z; = —1: R = { (z,,2,) | z; > =1} U{(-1,0)}. In fact, the entire &,-axis is mapped
to the point (—1,0), while F;(¢) > —1 whenever £, # 0. Moreover, given any (z;,7,) € R? with
z; > —1, there are two nonzero &, of opposite sign, satisfying (F (&,&,) =) (& — 1)3 = z,; if one
of these, call it &F, is chosen with &z, > 0, then there is at least one &, such that F,(&F,&,) = z,.
66, (&7 — 1) 0
For each &, the matrix of the differential DF(£) is . The
(& —3&) (& — &) 26(&L - &)

singular points of F' are therefore the solutions of &7 (&7 — 1)2 (&, — &) = 0 and so comprise the four
lines described by & = 0, & = %1, and &, = £;. The three points (0,0), (=1,—-1), and (1,1) are
clearly rank-0 singularities, while all others are rank-1. The singular values are then produced as

’ for 55(51552)€R2'

follows: the line described by &; = 0 is mapped to the one value (—1,0); the line given by & = —1
[by & = +1] is “folded over” at the point (—1,—1) [at the point (1,1)] and both halves are mapped
onto the ray { (z;,2,) |z, =0, z, <0 [z, > 0] }; the line given by &, = ¢ is “folded over” at the
point (0,0) and both halves are mapped onto the ray { (z,,) |z, > —1, ; =0}. The lines of
singular points are shown in Figure 6 along with eight circles of radius 0.4 centered at various points
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boundary of range

Fig. 7. Singular values of Example 3 and images of disks.

on those lines; the corresponding rays of singular values appear in Figure 7, along with “discrete
images” of the discs interior to the circles (the domain-points and image-values are color-matched).

We consider in turn each of the lines of singular points, summarizing its properties and the
relation of the corresponding set of singular values to the range. We record first the Hessian matrices

of the components of F":

(& -1)(¢-1) 0 36 -26 —26 +6
(Fiim(©) =6 and (B, 1(6)) =2
0 0 —26 + & &
» {(&,8) | &, = 0}: The matrix of the differential DF(0,&,) is just (2)2 8), so the nullspace of
2

DF(0,&,) is sp {e®} except for & = 0, which gives the rank-0 point (0,0). The Hessian matrices
-2,

2
quickly finds that D2F((O,§2); Ce(2)) = 0 for every real £, and (; thus, every singular point (0,¢,)
is strongly degenerate, and Theorem 4.1 has nothing to say about them. It is not so surprising to

displayed above reduce, respectively, to 6 (é 8) and 2 ( %) With these expressions, one

discover this degeneracy when one recalls that all of the singular points here are mapped to (—1,0).

» { (£1,&) | & = £1}: The matrix of the differential DF(£1,&,) is (& F 1) (5 0¢3 02>, show-
, _

ing that the nullspace of DF(+1,&,) is sp {(1,F(& F3)/2) } except for the case & = +1, which

gives the rank-0 point (£1,+1). The Hessian matrices now appear as, respectively, (8 8)
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46, +6 26, T4 . . . _
and 2( 2%, ¥ 4 o ) from which we find that d*F} ((:(:1,§2),:FC(§2 F 1)/2) = 0 and

d2F2((ﬂ:1,§2);$C(§2 F 1)/2) = F(3/2)¢2(&, ¥ 1)° for every real ¢ and £, # +1. This shows
first that every such singular point (£1,£,) is strongly nondegenerate, so now we should deter-
mine which of the cases of Theorem 4.1 obtains. The curves of singular points are given simply by
t — xE(t) := (£1,t). With any ¢, # +1, we find that we may take my = 2, since Fy,,(x*(ty)) =0,
Fy,,(x*(ty)) = +2(t; ¥ 1). By combining these expressions, we come to tao (¢) = 0 for every real
¢, with €2 := x(t,). Therefore, the quadratic forms are semidefinite-trivial, and we are in case (iii)
of Theorem 4.1. The graphical evidence in Figure 7 seems to indicate that the singular values cor-
responding to rank-1 singular points in the present case are, however, locally covered from their
singular-point preimages. This is verified (analytically) in Example 4.1.2 for the particular singular
point (1,2) and the corresponding singular value (0, 1).

» {(£,&) & =& }: All three of the rank-0 singular points (—1,—1), (0,0), and (1,1) belong to
this collection; we eliminate these from consideration, without further explicit reminders. The matrix

of the differential DF(£;,&;) appears as 6&; (£2 —1)2 ((1) 8) , so we find the nullspace of DF (£, &;)
to be sp {e(®}. The Hessian matrices have the respective forms 6¢; (¢ — 1)2(5¢2 — 1) ((1] 8) and

2%, (_11 _11). Now we get dF, ((£,6);Ce®) = 0 and d°F, ((&,6);¢e®) = 26,¢? for every
real (; in particular, every pertinent singular point is strongly nondegenerate. With x(t) := (¢, )
here, we choose for ¢, any value except —1, 0, and 1 and set up the corresponding quadratic form
Qgo. We find that we must now take m, = 1, and compute Fy,;(x(ty)) = 6to(t5 — 1)2 and
Fy,1(x(ty)) = 0. An easy manipulation then leads to Qo (¢) = —12t5 (¢ — 1)2C2 for every real ¢ and
all ¢, except the three excluded; we conclude that Q.o is always negative-definite, so that the range
is folded at all of the corresponding singular values with respect to their singular-point preimages,
by Theorem 4.1.i. Finally, we compute mapped-side normals to the line of singular values, for each
t,: because of the persistent negative-definiteness, we may take such a normal in every case to be
—{Fy,, (x(te))e® — Fy, 1 (x(ty))e®} = 6ty (12 — 1)°c?, i.e., the mapped-side normal points down
when t, < 0 (corresponding to the color blue in Figure 6 and Figure 7) but points up when t, > 0
(indicated by the color cyan in the figures).

These conclusions agree with Figure 7, in which we observe the folds in the range falling atop
one another along the horizontal axis for z; > —1, but having opposite mapped-side normals, typical
examples of which are shown in the figure; the result is that all of the singular values in this case
belong to the interior of the range, but none of them is locally covered from any preimage. This
demonstrates the second, “pathological,” means by which a singular value may be in the interior of
the range, cited in the discussion of Section 3.

One should contrast a feature of the next example with the previous one: again, we find a
manifold of singular values falling on top of another, but now the local mapping directions coincide,
producing a part of the genuine boundary instead of a part of the spurious boundary:

Example 6.4. Let F : R? — R? be given by
2 2
Fi(§) = (51 - 3) - (52 - 4)

Fy&) = (6 -3)"+ (& -1)°
63
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Figure 8 gives some indication of a piece of the range of F'. The singular points of this mapping
are found in Example 1.1 (where the matrix of DF(£) is displayed) to comprise the two lines
{¢eR ¢ =3} and { & € R* | & = 5/2}, which appear in Figure 9 along with some other curves
that will be explained. We recall also that all of the singular points are rank-1. The singular values
of F, i.e., the images of the lines of singular points, are shown in Figures 10, 11, and 12, which
are color-codrdinated with Figure 9. Thus, the line {5 € R? |§1 = 3} of singular points, in red
and magenta, is mapped to the red and magenta parabola of singular values, while the blue and
maroon line {§ e R? |§2 =5/ 2} of singular values is mapped to the blue line of singular values,
the line being folded in half under the map, with one half-image falling atop the other. The point
(3,5/2), at which the singular-point lines intersect, is taken over to the point (—9/4,9/4) at which
all of the singular-value images meet. Since the matrix of DF(3,5/2) is just 2 (8 gg), it is clear
that the cusp condition, viz., that the tangent space to the singular-point curve be contained in the
nullspace of the differential, is fulfilled at the point (3,5/2) relative to the singular-point line given
by & = 5/2, but not relative to the singular-point line given by £, = 3; this explains the appearance
of the singular-value curves at and near (—9/4,9/4), where the (smooth) parabola touches the cusp
of the folded line. Figure 10 shows how the singular values fit with the piece of the range appearing

in Figure 8; Figure 11 gives a view of the singular values alone, magnified relative to the preceding

one.
10+
180
5,,
160
[\ 4
N N
L ) 75 0 5 ‘3:,,7, 710
_5,,
430
10+
-60 40 20 U % iy
Fig. 8. Range of F' in Example 4. Fig. 9. Singular points and preimages of sin-

gular values, Example 4, showing discs
to be mapped.

A search yields regular-point preimages only for each of the singular values lying on the magenta
(“upper”) half-parabola; in fact, each of these values has two regular-point preimages, one on the

green half-parabola shown in Figure 9 and another on the gold half-parabola. In particular, each
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Fig. 10. Singular values and the range of F' in Fig. 11. Magnified view of the singular values
Example 4. of Example 4.

point on the upper half-parabola of singular values must then lie in the interior of the range (as
already indicated graphically).

One can apply the test of Theorem 4.1.7 to find that all of the singular values—including those
on the magenta half-parabola just noted as possessing regular preimages—are on the local boundary
of the range. That is, one discovers that the appropriate quadratic form is definite at each singular
point. This is to be anticipated on the basis of the graphical evidence provided in Figure 12, which
shows color-matched discrete images of the interiors of the circles appearing in Figure 9, which
are centered at typical points on the singular- and regular-point preimage-curves. Specifically, in
Figure 12 we see the “full-neighborhood” images of the interiors of the green and gold circles, while
the image of each of the discs centered on a singular-point line is folded along the respective singular-
value curve; at each of the latter four images is shown a normal vector pointing in the local mapping
direction there, computed according to the rule described. Since the maroon and blue arrows point
in the same direction, the blue line of singular values falls not in the interior of the range, but on
the boundary. As indicated, this should be compared with the behavior exhibited in the previous

example.

Apropos of the procedure described in Section 3 under step (A.I.0), observe that we could have
computed the mapped-side normals shown in Figure 12 prior to searching for regular preimages for
the singular values. On the basis of that calculation, it is clear that we could have eliminated all of
the maroon and blue singular points as prospective Pareto minima along with the red and magenta
singular points that are preimages of the piece of the singular-value parabola lying between the
points of tangency with the axes (most easily seen in Figure 11); we would have avoided in this way
the global search for preimages conducted for the corresponding singular values. While this is not
so important for the present example, such a finding would constitute a significant saving in a more

complex situation.
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Fig. 12. Images of the discs of Fig. 9 under the map F' of Example 4.

Finally, we can conclude that the ray { (3,&,) | —oo < &, < 1} forms the set of Pareto minima
for this F' of Example 4, since the red lower-half parabola of singular values is tangent to the 1-axis
at the image of the singular point (3,1).

Remark. Upon inspecting Figure 8, in which a discrete representation of the range has been
generated by mapping points on a grid with lines parallel to the codrdinate axes in R?, one is led
to conjecture for the case N = n = 2 that the included boundary of the range lies in the enwvelope
formed by the images of an appropriate one-parameter family of curves in the domain. A statement
of this sort can be formulated and proven without too much difficulty. We shall report on this in a
note elsewhere.

When N is increased from 2 to 3, so that the domain-space becomes R?, the image of the
(two-dimensional) null space of the gradient at a rank-1 singularity under the biquadratic map given
by the second quadratic differential is a convex cone with generally nonempty interior. In this case,
the full statement of Theorem 4.1 comes into play. The next example demonstrates this and also
features singular values that do not lie on the local included boundary of the range, i.e., singular
values that are locally covered from their (only) singular-point preimages.

Example 6.5. Let F : R® — R2? be defined according to
2 2
Fi(§):= (51 - 1) + (52 - 4) + §§

2 2 5 (7 for &=(6,&,8&) € R
F(8):=(&-3)"+(&-1)" = (6 —-2)

The matrix of DF'(£) is easily found to be 2 ('51 -l &4 & ) From this it follows

§ -3 & -1 —§+2
that all singular points of F' are rank-1 and comprise the hyperbola described parametrically (using
the 3-codrdinate) by { (z——l—’ 2 —1)’ z) ‘ z#1 } A view of this hyperbola appears in Figure 13,
with segments in red, magenta, blue, and cyan, for reference; the color breaks are chosen—with
hindsight—to correspond to the parameter-values z, := 0 (red/magenta) and z, := %(26)1/ ‘i1

(blue/cyan), since the corresponding singular values turn out to be geometrically significant. Also
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Fig. 13. Singular points of F' in Example 5, and Fig. 14. Singular values of F’ and images of balls
balls to be mapped in Figure 13, Example 5.

shown in Figure 13 are four balls of unit radius, one per segment, in the same respective colors,
and centered at the singular points corresponding to the parameter-values z; := —6 (red), z, := %
(magenta), zg 1= % (blue), and 2z, := 7 (cyan). The images of the singular points, i.e., the singular
values, and the images of the balls in R? are shown in Figure 14. The extents of the blue and cyan
images relative to the corresponding curve-segments of singular values are not very clear in Figure 14,
so a magnified view of the images of balls with the same centers but doubled radius 2 is provided in
Figure 15. From these representations of the ball-images, one suspects that all of the singular values
are fold points of the range, i.e., belong to the local boundary of the range, except those of the blue
curve-segment, which appear to be locally covered from their singular-point preimages.

A magnified view of the behavior of the blue and cyan singular values near the 1-axis in the
plane reveals the presence of a cusp. It can be checked that the cusp occurs at the image of the
singular point corresponding to the parameter-value z,, or approximately at (15.276031,0.111457),
by finding the singular point at which the tangent to the singular-point curve belongs to the nullspace
of the differential. Evidently, the cusp forms the transition-point between the locally covered and
the local-boundary singular points on the blue/cyan curve.

Let us apply the local quadratic-form tests of Theorem 4.1 to each of the four (typical) sin-

gular points already selected. For example, for z, := z?:f (magenta) the singular point is &' :=
(-2, 122, ;’I) and the corresponding singular val/ue is found as (%ZGZ’ 1—%—(?) The matrix of the dif-
-6 9 3/2
. 1 . . 1
ferential DF (£') is computed as (_10 15 5/2) , 80 a basis for the nullspace N'(DF(¢')) can be
taken as {(—3/2,0, -6), (0, —3/2,9)}. The Hessian matrices for F, and F, are constant here, at
1 00 1 0 O
210 1 0)Jand2| 0 1 O |, respectively. By combining these results, we find the matrix
0 01 0 0 -1

585/2 —432

of the quadratic form Q.1 to be ( —432 1305/2

), from which the eigenvalues of Q. are found
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Fig. 15. Magnified view of images of balls as in Fig. 16. Magnified view of singular values of F
Figure 13 (of twice the radius). near cusp, Example 5.

as {g, 1—828—1} By performing the similar computations for the other three sample singular points,
one finds the eigenvalues {8064, 3—%1898—0} for z; :== —6 (red), {—3112‘?’5@, %51—4} for z5 := % (blue),

and {—9408, —ﬁg%} for z, := 7 (cyan). Consequently, the quadratic forms corresponding to the
red, magenta, and cyan singular points are definite, while the form is indefinite at the blue singular
point. This agrees with the plot of Figure 17, which depicts discretely the (translated) convex-cone
image of the nullspace of the differential DF'(£P) under the second-quadratic-differential map, just
as in the statement of Theorem 4.1, at each of the four selected singular values &!,. .., &%, Clearly,
only the blue cone contains a ray on the line tangent to the singular-value curve at the cone vertex,
while each of the red, magenta, and cyan cones touches its singular-value curve-segment only at the
cone vertex. Therefore, following along the program outlined in Section 3, we can discard the blue
singular values from further consideration, since they must belong to the interior of the range. All
of the other singular values lie on the local boundary of the range, and so remain in contention as
possible genuine boundary points.

It makes sense to compute the mapped-side normals at the red, magenta, and cyan singular
values. Such a computation at this point would clearly allow us to discard all of the magenta singular
points, but none of the red and cyan ones.

Let us next seek regular-point preimages for the singular values; even though the magenta and
blue values have been eliminated, we shall include them for the present purposes of illustration. We
find regular preimages for neither the red nor the magenta singular values, but such preimages are
found for the cyan singular values; the latter are therefore also in the interior of the range and so
must be eliminated from further consideration. For example, Figure 18 shows, for the cyan singular
value corresponding to z, := 7, the one (original) singular-point preimage at (13/6,9/4, 7) along with
an entire closed curve of regular-point preimages. One finds regular preimages of the blue singular
values, as well. Thus, e.g., Figure 19 shows an entire closed curve of preimages of the blue singular
value corresponding to z; := 7/5, one of which is the original singular-point preimage, the remainder
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Fig. 17. Convex-cone image of nullspace of first differential at selected singular points, Example 5.

being regular-point preimages; a second view of these is given in Figure 20. Another view of all of
these preimages appears in Figure 21, along with two balls, one gold and one orange, centered at
typical regular points chosen on the respective preimage curves. As a further check, discrete images
of the latter balls are shown in Figure 22, where they certainly appear to cover the singular-value

images of the respective centers of the balls.

Since each of the red and magenta singular values has but one singular preimage, while hy-
pothesis (x) of Proposition 3.1 clearly holds here (since the map F' has appropriate polynomial
components), we can apply that Proposition to conclude that the (global) included boundary of
the range of this F' is exactly the red/magenta 1-manifold of singular values. Figure 23, showing
a discrete depiction of a portion of the range, i.e., the images of many points under F', supports
this conclusion. Finally, we decide that the set of Pareto minima for this F' coincides with the red

quarter-hyperbola of (completely) singular points, shown in Figure 13.
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Fig. 20. Preimages of the typical blue singular Fig. 21. Preimages of singular values of F' and
value, Example 5. balls, Example 5.

Our final example, falling under case (B) of Section 3, illustrates the use of Theorem 2.2,
Theorem 5.1, and Proposition 3.2 in finding the boundary of the range and the Pareto minima of

an R?-valued map defined on the closure of a ball in RV.

Example 6.6. Let N > 2 and ¢ > 0. Here is the definition of a map G : Bf_,V(O) — R? that we shall
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Fig. 22. Images of balls in Figure 21 under F' of Fig. 23. Range of F' in Example 5.
Example 5.
call the Dolph-AKK map:
G(§) ==-p-¢
, for |§|N <o (6.1)

Gy (&) == (W§) €

In (6.1), W is the operator induced on RN by the Gram-matrix with elements {W and

N Pq}NxN
8= (ﬁp)pzl, where

0, -
W,y = /0 w,(8)w, (0) df, and 3, := wP(E)’
and the functions w,, are given by
w,(6) := cos (pkd cos §) — cos (prd cosby), p,g=1,...,N,

for some 6, € (0,7/2) and positive & and §. The Dolph-AKK map G is developed in [1] in a
study of the optimization of the radiation pattern of a symmetric, broadside, line array of 2N + 1
electromagnetic dipoles. The arguments &, k = 1,..., N, represent the “excitation coefficients” of
2N of the paired, symmetrically arranged dipole-sources, while the coefficient of the center dipole
is to be adjusted so that the main lobe of the radiation pattern covers the angular sector [—6,,6,)
(with nulls at the endpoints), for a chosen angle 6,. The number § is the dipole separation distance,
and k is the wavenumber.

Specifically, for a selected value of p > 0, it is desired to determine all sets of excitation
coefficients ¢ that are constrained in magnitude by |£| ~ < o and realize Pareto-optimal values for
two costs: (1) the peak value of the radiation pattern (to achieve a maximal value) and (2) the
radiated power owing to the side-lobes (to obtain a minimal value). The respective components
of G(&) essentially give these properties of the radiation pattern corresponding to the argument &.
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Fig. 24. Singular points of Dolph-AKK map for N = 3, kd = 5.0, 6, = 97/20, o = 1.

Strictly, however, the first component of G(§) should be defined to be —|ﬁ . §| instead of just —f-¢&,
but the absolute value can be dropped on the basis of a symmetry argument, provided it is then
kept in mind that the range of the “actual” mapping is obtained by “folding” the range of the map
G defined above along the vertical axis so that the righthand half falls atop the lefthand half; in
particular, this doubles the number of preimages of each value by including the reflection in the
origin of each original preimage. The “actual” Pareto minima are then to be reckoned accordingly,
which requires that one include also the singular points obtained by reflecting in the origin of RV
all of the Pareto minima found for the map G defined here.

The formulation in [1] is a modification of the original set-up of C.L. DoLPH[8], who worked
to minimize the maximum value in the side lobes, for a given main-beam width and peak power;
this explains the name given here to the map G.

Guided by the outline of Section 3 for case (B), we begin by seeking all of the singular points of
the restriction of G to the interior Bi,v (0) of the domain. G is not differentiable at 0; at any £ # 0 we
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Fig. 25. Singular points of Dolph-AKK map for N = 3; a second view.

find grad G, (§) = —B and grad G, (¢) = {G, (6)}_1W§ . Clearly, neither gradient vanishes, so we find
that the singular points in the interior of the domain are rank-1 and comprise the nonzero elements
of sp {W '3} having magnitude less than g. It follows that the corresponding singular values in R?
are given by the set of points of the form (—tug, |t|u2/2) for 0 < |t| < o/|W='8| . in which g :=
(W~18)-B, i.e., by the two line segments joining the origin and the points {o/|W 18| . } (£14, péﬂ).
It is easy to check analytically that each of these singular values has no other preimages, regular or
singular, even when we consider G as defined on all of RY. Moreover, the application of the test
of Theorem 4.1 reveals that the quadratic form Q; is definite for every singular point &, so each
of the singular values belongs at least to the local boundary of the range of G. We can therefore
conclude already that all of these singular values belong in fact to the global boundary of the range
of G, by applying Proposition 3.1 to the restriction of the map G to the ball Bév (0) with the origin
removed. This assertion can be corroborated by using the generalized Cauchy-Schwarz inequality
to check that the inequality G,(€) > u5"/?|G; (€)] holds for all €.
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Fig. 26. Singular values of Dolph-AKK map for N = 3, k6 = 5.0, 8, = 97/20, o = 1.

Next, we must carry out the corresponding singular-point analysis for the restriction G* :=
G | Sé,v (0) of G to the boundary of the domain. It is easy to compute here the surface gradients of
the components G and G5 of G*. That is, at a point & € SZ,V (0) we need only find the tangential
component of the gradient of G (regarded as extended to all of RV in the obvious manner) at &.
Accordingly, with £ := |§ |;V1£, we get

AL A

grady(Gi(€) = —f+(8-€)¢  and gradMG;(§)=%{W&—((W&)-é)é} for [¢|y =e.

Clearly, grady(G7(§) = 0iff £ = £, with 3, := g|,6|;rlﬂ, while grad,(G5(§) =0iff £ € Si,v(O) is an
eigenvector of W. Thus, G* has a rank-0 singular point at 3, iff 3, is an eigenvector of W, in which
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case —f, is also a rank-0 singular point; otherwise, =4, are rank-1 singular points (and a curve of
singular values in R? passing through the image of either of these two points under G* will have a
vertical tangent at that image, if it has a tangent there at all).

Let us suppose from this point that W has only simple eigenvalues and that 3, is not an
eigenvector of W. Then, denoting by A, ..., Ay the (positive) eigenvalues of W arranged in, say,
increasing order, and by {fl, ceey é N} an ordered collection of corresponding eigenvectors forming
an orthonormal set in R, in addition to the two singular points at +.3 »» G™ also has rank-1 singular
points at igél, ., xol N on Sév (0). (Note that a curve of singular values in R? passing through the
image under G* of any of the latter 2N points will have a horizontal tangent at that image, if it has
a tangent there.) These are all of the singular points at which one of the surface gradients of the
components of G* vanishes.

Fig. 27. Singular values of the Dolph-AKK map for N =4, kd = 5.0, §, = 97/20, o = 1.
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More generally, if £ € Sév (0) and & # 0 ,» one finds that £ is a singular point of G* iff there exist
A and b € R such that W¢& = A + bB. Besides encompassing the eigenvectors already introduced,
this condition yields, corresponding to each A that is not an eigenvalue of W, two additional rank-1
singular points as +a,, with
o(W—AI)"'p

a, = - (X not an eigenvalue of W).
MW - aD7T18],

The a, can be computed easily by, for example, using the spectral representation of (W — AI)~'3.

For k = 1,...,N, easy manipulations produce the limiting values lim) 1+ ay = ¥, and
lim/\_»‘ki a, = Fsgn (6 - fk)gfk, the latter provided that 3 - fk #£0;if 8- é‘k = 0, the second pair of
limits are easy to work out, but somewhat more involved to display and describe. For simplicity, we
shall suppose that 3 - fk # 0 for each k. Consequently, on the boundary Si,v (0) of the domain of G,
the curves A = *a,, for A running through each of the N 4 1 open intervals in R determined by the
N eigenvalues of W, comprise curves of singular points of G*, symmetric with respect to the origin
and connecting the points £43,, :I:gfl, ey :I:g(fN in the indicated manner, i.e., not continuously as
the parameter A increases. However, the union of the images, along with the limiting endpoints,
will form two connected paths on the sphere. Observe also that the curves of singular points on
the surface include +a,, which are the points at which the line segments of interior singular points,
already found above, emerge to meet the boundary of the domain. Thus, the curves of singular points
on the surface of the sphere are connected by the line of interior singular points passing through the
center of the sphere. Recall that these results hold under the hypothesis that W has only simple
eigenvalues, while 3 - (fk #0for k =1,...,N; the situation becomes much more complicated if these

conditions are not fulfilled.

The accompanying figures illustrate the main features of this geometrical situation for N = 3
and N =4, with o =1, k6 = 5.0, and 6, = 97/20 in both cases. Thus, in Figure 24 and Figure 25 we
show two views of the singular points for V = 3, the first a “hidden-line” view in which the sphere is
opaque, the second a “wire-frame” view in which the sphere is transparent. The “plus-minus” pairs
of eigenvectors are labelled as 1p, im,..., 3m, the points +0, are indicated by bp and bm, and the
endpoints of the segment of interior singular points by Intp and Intm. The colored curve-segments
are just those already described, each connecting an eigenvector with either another eigenvector or
one of the points +3,. In Figure 25, the line of interior singular points is visible, half in green and

half in turquoise, divided by the center of the unit ball.

The singular values, i.e., the images of the singular points shown in Figure 24 and Figure 25,
appear in Figure 26. The three figures illustrating the case N = 3 are color-keyed, red being mapped

to red, etc. The images of the eigenvectors, of £03,, and of the endpoints of the interior singular
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Fig. 28. Applying Theorem 5.1 to the Dolph-AKK map; N =4, k6 = 5.0, 6, = 97/20, o = 1.

values are indicated in Figure 26. In particular, the points of horizontal or vertical tangents are as
predicted.

Since the singular points cannot be depicted when N = 4, only the singular values for that
case (with the other parameters retaining their values), are plotted, in Figure 27. The same general
features are observed there, the major difference being the greater number of cusps relative to the
case N = 3, so the remaining observations on this Example 6 will be made in reference to N = 4.
From Figure 27, it is easy to guess the locations of the boundaries of the ranges of G and G*, as well as
the images of the Pareto minima of G. However, we want to know whether our analytical predictions
agree with these obvious conjectures. We have already shown that the two lower line segments, in
green and turquoise, the images of the interior singular points, form part of the global boundary of
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the range of G. We should next apply Theorem 5.1 to examine the other singular values. Here, we
shall merely display a few of the results of this application, passing over the computationally essential
aspects such as the determination of, and construction of bases for, the nullspace of the differential
of G*, the calculation of the second quadratic differential, etc. Thus, the convex cones in Figure 28
were generated from the recipe of Theorem 5.1, to demonstrate the testing of a few singular values
(those located at the vertices of the cones). That is, just as in Figure 17 for Example 5, the situation
of the convex cone at each singular value is a graphical indication of the definiteness property of
the pertinent quadratic form corresponding to the singular-point preimage for that value; we are
not providing here the eigenvalues of the quadratic forms—which, of course, are all that one need
determine in an ordinary computation. Clearly, each of the tests depicted in Figure 28 and indicated
by the red, navy-blue, green, and the two violet cones, indicates a definite quadratic form, hence a
singular value on the local boundary of the range; the one test indicating a singular value locally
covered from the singular preimage, and so belonging to the interior of the range, is that for the black
cone near the center of the figure, where the quadratic form is revealed as indefinite. Repeated trials
lead to the conclusion that only the singular values contained between cusps have corresponding
indefinite forms, and so are implied by Theorem 5.1 to belong to the interior of the range of G*,
hence of G; these values can therefore be discarded. All of the other singular values have definite
quadratic forms, and so are fold points of the range. To decide about these latter fold points, we are
reduced to seeking other preimages, in particular, regular preimages. After carrying out a number
of such searches, it appears that we can find regular-point preimages under G* for (1) the black and
violet singular values lying below the point of intersection of those curves on the vertical axis, near
(0.0,1.7), (2) the gold and orange singular values farther down (including those already disqualified
by the quadratic-form testing), and (3) the (barely visible) cyan and navy-blue singular values lying
above the point of intersection of those curves on the vertical axis, near (0.0,0.9). For none of the
remaining singular values of G* can we find any preimages other than its original singular preimage;
on the strength of Proposition 3.1 we conjecture, therefore, that these form the boundary of the
range of G*, with the latter range itself occupying the “tooth-shaped” area lying on and within
those remaining curves of singular values, i.e., listing the pieces of its boundary in clockwise order
starting from the lower left, that region bounded by the red, the turquoise, part of the violet, part of
the black, the green, the magenta, most of the navy-blue, and most of the cyan curves in Figure 28.

According to the third step in the search procedure for case (B), we must find and exclude those
points of the boundary of the range of G* belonging to the image of the ball Bf(0) under G itself.
Many numerical trials indicate that these are precisely the remaining cyan and navy-blue singular
values forming the “bottom” portion of the boundary of the range of G*, i.e., of the remaining
singular values, we have been able to find for only those points regular preimages under G. When
these singular values are discarded, the remaining points comprise just the original “obvious” guess
for the boundary of the range of G; our contention remains a conjecture, of course. In any event,
this example indicates the extent to which we can presently conduct a definitive and completely
conclusive search in those cases for which we can make no firm conclusions concerning the outcomes
of the global searches required.

With the same caveat, we could provide an analytical description of the “apparent” Pareto
minima for the map G, since we can completely specify the preimages of the conjectured Pareto-
point images here. Note that one must take some care in this near the intersection of the red curve
and the green line of singular values, since not all of the red values there are Pareto-point images.
Finally, apropos of the original (physical-model) problem, one should now recall our initial remark,
to the effect that we must also include as Pareto minima for the “actual” Dolph-AKK map the
preimages of the reflections in the vertical axis of the Pareto images just described for G, i.e., one
must include the reflections in the origin of the Pareto minima found for G.

This completes our presentation of examples illustrating the general developments of Sections 1—-
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7. Conclusion.

We have attacked the problem of locating the Pareto-optimal points of a differentiable mapping
F {DF C RNO} — R™ by seeking procedures for first finding the included boundary of the range
of such a map, then looking in the preimage of that set for the Pareto optima. For the basic setting,
in which the domain Dy is an N-submanifold-without-boundary of class C!, we have given the
fundamental necessary condition in Theorem 2.2: only singular points of F' can be mapped by F
to the boundary of its range, so that all Pareto optima of F' belong to its collection of (completely)
singular points. But then it is discovered that, in general, F' will map many of its singular points
to the interior of its range, not to the boundary of its range. This latter circumstance forces us to
seek means for discriminating between those singular values belonging to the interior of the range
and those singular values lying on the boundary of the range. For this testing, we have given some
sufficient conditions in Theorem 4.1 (for the open-set domain) and Theorem 5.1 (for the general
manifold-domain). We have outlined a systematic search procedure based on results such as these.

We also indicated a search procedure for the commonly occurring case in which the domain Dy
is the closure of a bounded, regular open set in RY. To handle that setting, we naturally proposed
to break the domain down into interior-manifold and boundary-manifold(s), analyze the action of
F on each piece by using the tests developed for the manifold domain, then combine the results
appropriately.

We illustrated all of the developments and ideas with simple first examples. In some of these
examples, we could locate all of the Pareto minima systematically and completely by following the
steps of the proposed procedures, i.e., we could do this even without the “crutch” provided by
the visualization tools in the Maple computer-algebra system. In the harder example discussed,
Example 6.6, we relied after a certain point on numerical trials and plausibility arguments coupled
with visual inspection to “complete” the determination of the Pareto minima.

Generally, the examples indicate the areas in which our testing results are lacking. Thus, we
propose some lines along which future work should progress:

(1.) Results analogous to those of Theorems 4.1 and 5.1 must be developed for the cases in which
n > 2. This is especially important, since one commonly finds applications involving three or
more cost functions.

(2.) A deeper analysis is required to handle the case of indeterminacy in Theorems 4.1 and 5.1, when
the quadratic form turns out to be semidefinite.

(3.) Theorems 4.1 and 5.1 should be extended to cover singular points that are strongly degenerate.

(4.) The gaps remaining in the search procedures outlined in Section 3 should be eliminated, in
particular, by discerning more completely the ways in which a value can belong to the interior
of the range when it is not locally covered from some preimage.

Finally, we list two further projects that are presently under way:

(5.) We must begin the accumulation of a body of experience in applying the theorems proven here
to the study of physical applications. As an initial step in this direction, by employing the
present, procedures one can rework studies that have already been analyzed in the literature by
some other means; cf., e.g., [1], [5], and the works listed in [17].

(6.) There are numerous applications that are properly formulated only when the domain Dy is
taken to be some type of set in an infinite-dimensional Banach or Hilbert space or even, more
generally, a linear topological space (while the range of F' remains in some R"). It is therefore
important to find out the forms of the extensions to such settings of the results that have
been developed here in the finite-dimensional-domain case. Once those extensions are better
understood, one can begin to study the matter of approximating Pareto optima of a map
defined on an infinite-dimensional space by solving the corresponding problem posed for the
restriction of the map to some finite-dimensional subspace, since the latter may offer a more
tractable—indeed, indispensable—approach for the actual numerical computations.
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Appendix A. The range of a biquadratic map.

Let Q = (QI,Q2) : RV — R? be a mapping with (symmetric, homogeneous) quadratic-form com-
ponents, i.e., with

N
Qe = Al foreach €€RY, for I=1land?2, (A.1)

j.k=1

in which A® and A®) are real symmetric N x N matrices. Naturally, we call such a map “bi-
quadratic.” In searching for the boundary of the range of a general R?-valued map, one needs some
information about the range of a biquadratic map; in that case, the matrices A" and A® will
be, respectively, the Hessian matrices of real C2-functions F; and F,, evaluated at some point. We
develop the needed results in this Appendix.

The most important qualitative fact about the range of a biquadratic map is contained in

Proposition A.1. Let Q = (Q,,Q,) : RN — R? be a biquadratic map. The range R, := Q(RY)
of Q) is a convex cone with vertex at the origin in R?.

Proof . Tt is clear that whenever z is in the range and a > 0, then az is also in the range. Therefore,
the range R, is certainly a cone with vertex at the origin. To verify that R, is convex, we must
show that the (perhaps degenerate) line segment joining Q(¢') and Q(€?) is in R, whenever £' and
€2 € RV; we may suppose here that both ¢' and £2 are nonzero. For that, it suffices to show that
the line segment joining Q(£') and Q(&?) lies in the range of the restriction of @ to the subspace
spanned by &' and £2. But the latter restriction can be recast as a biquadratic map on R?, so it
suffices, in turn, to check that the convexity obtains just when N = 2—which is easily carried out
directly.

Indeed, now let Q : R — R? be given by

az? + 2bx,x, + cz’
Q(z) := , for == (z,,7,) € R2. (A.2)
dz? + 2ex zy + f23

By using the codrdinate-transformation relations under a simple translation and rotation, it is an
easy exercise to verify that the image of the unit circle under this Q is a proper ellipse when
(a —c)e — (d — f)b # 0 and a degenerate ellipse, i.e., a closed line segment (perhaps even passing
through the origin) or a point, when (a —c)e — (d— f)b = 0. Thus, we see that in every case a convex
cone results by constructing all rays emanating from the origin and passing through the image of
the unit circle; since that construction also produces exactly the full range R, the assertion of the
Proposition follows.

(This strategy of proof was lifted from KATO [12], where it is employed to show that the numer-
ical range of an operator in a complex Hilbert space is a convex subset of the complex plane.) [J

Remarks. (1.) Thus, the range of a nontrivial biquadratic map is either the entire plane or a
straight line through the origin or a “wedge” with vertex at the origin and vertex angle not exceeding
7 radians; in the latter case, the wedge may be degenerate, i.e., it may be a ray emanating from
the origin. Evidently, the wedge may not include its collinear bounding rays when the vertex angle
is m radians. For example, in the setting Q : R2 — R? used in the proof, when the image of the
unit circle is a proper ellipse passing through the origin, then the range R4 will be the union of the
origin and the open half-plane containing the remainder of the ellipse.
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(2.) It is clear from the proof that Proposition A.1 is also correct when the domain RY is replaced
by any real inner-product space (finite- or infinite-dimensional) and the components @); are given by
quadratic forms on the space.

(3.) In passing, we point out that we can get quantitative information on the location of the convex-
cone range of a biquadratic map by either of two approaches, both of which lead to the study of
a generalized eigenvalue problem constructed from the matrices figuring in the two quadratic-form
components of the biquadratic map. Indeed, the basic result in the main text says that we are to
seek the included boundary of the range by looking amongst the singular values. With Q : RY — R?
a biquadratic map having components Q; and @, given by (A.1), since grad Q,(§) = 2A0¢ for 1 =1,
2, we see that £ € RY is a singular point of Q) iff the set { AV, AP ¢} is linearly dependent. Clearly,
the linear dependence obtains iff either

AWe=0 or APe—_xAW¢=0 forsome IeR (A.3)

(or both); a nonzero £ satisfying (A.3) then reveals a ray of singular values in the range, of undefined
slope if @;(£) = 0 and of slope X if Q,(£) # 0. All points of the included boundary of the range
must lie on the rays identified in this manner. Alternately, we can seek the extreme values of the
slopes of the lines comprising the convex-cone range, by looking amongst the critical values of the

_Q®
e

It is easy to check that ¢ is a critical point of the real function y iff Q,(€) # 0 and AP ¢—pu (&) AME =
0, i.e., iff u(€) is a real eigenvalue of the same generalized problem that appears in (A.3), with

ratio

(&) € € RV \ Q7 '{0}.

corresponding eigenvector &; in that case, a corresponding ray of singular values of @ is determined
by Q(£), which will have slope u(£). One must seek separately rays of singular values of undefined
slope. But such computations alone will not in general serve to identify the range completely, since
they reveal only the possible locations of the included boundary. For example, if we find that the loci
of singular values reduces to the origin alone, we still cannot conclude that the range of ) must be
all of R?2. We will not pursue these questions further here, since they are somewhat of a digression.

The “second-derivative test” developed in the main text derives essentially from the simple
observations made in the next proposition, concerning the determination of the position of a line
through the origin in R? relative to the range of a biquadratic map. For the statement it is convenient
to introduce the idea of a strongly nondegenerate biquadratic map (c¢f. the definition of strongly
nondegenerate singular point, given in Section 4):

Definition. A biquadratic map @ : RV — R2 is strongly nondegenerate iff Q(¢) # 0 for each
nonzero £ € RV,

Proposition A.2. Let Q = (Q,,Q,) : RN — R? be a biquadratic map. Let z = (z,,z,) € R?
with z # 0. Denote by I, the line in R* through 0 and z, and by [} := {(az;,az,)[a >0}
and [ = { (az;,az,) |a <0} the two rays emanating from 0 (excluding 0) and contained in .
Introduce a quadratic form g, on RY | corresponding to () and z, by setting

q,(&) = 2,Q(§) — 7,Q4(&) for £eRN.

(i.) Let us say that the form q, is weakly positive-definite [weakly negative-definite] iff ¢, (£) > 0
[< 0] whenever Q(§) # 0 and weakly definite iff the form has either of these properties.
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Then q, is weakly definite iff [, meets the range Rg only at 0. If the map @ is strongly
nondegenerate, then q, is definite iff [, meets the range R, only at 0.

(i6.) Let the convex-cone range R be other than a line through the origin; for this it is sufficient
that ) be strongly nondegenerate. Then the form g, is indefinite iff at least one of I} and
[, lies in the interior {’RQ}O of the range.

(#i3.) Let us say that the form g, is weakly positive-semidefinite [weakly negative-semidefinite] iff
q, is nonnegative [nonpositive] and there exists some £ € RN with q,(£) = 0 but Q(€) #0,
and weakly semidefinite iff the form has either of these properties.

Then q, is weakly semidefinite iff at least one of [ and [ lies in the included boundary
Rg ﬂaRQ of the range of ). If the map () is strongly nondegenerate, then g, is semidefinite
iff at least one of [ and [ lies in the included boundary RgNOR of the range of Q.

Remarks. (1.) A necessary condition for definiteness of the quadratic form g, in the Proposition
is the strong nondegeneracy of the biquadratic map Q.

(2.) With notation as in the Proposition, if we already know that the point z lies in the range
R, then assertions (ii) and () provide conditions that can be used to decide whether = belongs
to the interior or the boundary of the range, respectively, based on the indefiniteness or weak
semidefiniteness of the quadratic form ¢,. If we also know that () is strongly nondegenerate, then
the conditions are much simplified.

Proof of Proposition A.2. At the outset, note that the line [, and the two disjoint, open half-planes
II} and II; whose union is the complement of [, can be described as the sets of (y;,y,) € R for
which z,y,; — 2y, is zero, positive, and negative, respectively.

(i). In view of the characterizations just cited, we see that g, is weakly positive-definite [weakly
negative-definite], i.e., that ¢, (£) > 0 [< 0] whenever £ € RV and Q(&) # 0, iff Q(£) lies in I} [in
I, | whenever £ € RY and Q(¢) is not the origin in R?, i.e., iff R, \ {0} is contained in IT} [in
II;]. This establishes the first statement of (i). But if @ is strongly nondegenerate, then it is easy
to check that g, is weakly definite iff it is definite, so the second assertion of (i) follows immediately
from the first.

(#). Assume that R is not a line through the origin. Suppose first that g, is indefinite. Let ™,
&t e RN with ¢, (§7) <0 and ¢, (¢7) > 0. Since Q(¢7) € II; and Q(¢1) € I are then nonzero,
there are two rays emanating from 0 € R? (excluding 0) passing through these two points and lying
in IT; and I}, respectively; these rays also lie in the range of the biquadratic map @. The two rays
(with 0) bound two cones in R?, one of which contains [ in its interior while the other contains [
in its interior. If one of the vertex angles of the cones is less than 7 radians, then the corresponding
cone is convex and so must be contained in the convex cone R, (since that cone’s boundary is in
Rg)- Therefore, one of [, and [} belongs, in this first case, to {RQ}O. On the other hand, if each
cone has vertex angle 7 radians, i.e., if each is a closed half-plane, then the range must be one of
those half-planes or the full plane, since it is, by hypothesis, not the line formed by the two rays in
this case. In either of the latter cases, again we conclude that at least one of [ and [} is in {RQ}O.
Conversely, suppose that at least one of the rays [ and [} is contained in {’RQ}O. Let z lie on this
ray (so z # 0) and let the disc B3(z) be contained in R; this disc certainly meets both I and
II+. But then, for £~ € R? such that Q(¢£7) € B3(2) NI, we have g,(¢7) < 0, while for ¢+ € R?
such that Q (¢1) € Bj(z) N1}, we have g, (¢1) > 0, and we conclude that g, is indefinite.
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To complete the proof of (ii), we assume that @ is strongly nondegenerate and show that its
range cannot be a line through the origin. Suppose, to the contrary, that R is just a line through
the origin, say, that line determined by 0 and the nonzero point z = (21,2,). Then we have

2,Q1(8) — 210Q2(§) =0 for every £ € RN (A4)

(which just says that the range lies in the line). Now, if z; = 0, then @, is the zero-form and Q,
must be indefinite; we find that Q(&) = 0 for any nonzero £ such that @,(§) = 0, which is impossible,
since it violates the strong nondegeneracy of (). Thus, z; can only be nonzero, so that the slope of
R must be defined and Q; must be indefinite. But then we get Q(§) = 0 for any nonzero £ such
that Q,(§) =0, since (A.4) shows that also Q4(§) = (25/21) Q1 (&) = 0 for such a &, so we are again
forced to a violation of the assumed strong nondegeneracy of (). Therefore, the range of a strongly
nondegenerate biquadratic map cannot be a line.

(#4i). Assume first that the form g, is weakly positive-semidefinite. That is, suppose that g, (£) >0
for every £ € RV, so that the range R, lies in the closure IT¥, while there is some £ € RN with
q,(£%) = 0 but Q(£°) # 0. Clearly, Q(£°) belongs then to one of the rays I

~ and [, so that entire

ray is as well contained in the range. Moreover, the latter ray must also be in the boundary R,
since the range itself is contained in 3. Thus, the implication claimed in (éi4) holds in this case; the
argument is not essentially different when ¢, is negative-semidefinite. Conversely, suppose that at
least one of [ and [} lies in RgNARg. Then g, (£°) = 0 for some £° with Q(£°) contained in either
[ or [; obviously, Q(£°) # 0 for any such £°. Further, since Ry is a convex cone with vertex at the
origin, it must lie in one of the closed half-planes I, and E, so we also have either ¢, (£) > 0 for
every £ € RY or ¢, (£) <0 for every £ € RV, and we conclude that g, is indeed weakly semidefinite.
This establishes the first statement of (4). For the second statement, we argue just as in the proof
of (4): if @ is strongly nondegenerate, then g, is weakly semidefinite iff it is semidefinite, so that the
second assertion of (i) is just a consequence of the first.  [J

In general, singular values of a map from a subset of one euclidean space to another need not
lie on the boundary of the range. However, there is at least one special case of interest in which

?

we are assured that “almost every” singular value belongs to the boundary of the range—and the

interior of the range comprises regular values with perhaps one exception:

Proposition A.3. Let Q : R2 — R? be a biquadratic map; denote the matrices of the components
of @ by A and AP, so that

Q1(§) = (A(l)f) &

Q(§) = , for ¢ e€R2.
QQ('S) = (A(2)f) X3

(i.) Let & € R? with Q(£°) # 0 and suppose that Q(£°) lies in the interior {Rg}" of the range.
Then &0 is not a singular point of Q.

(#.) Let the quadratic form q on R? be defined by

4(€) = (AVE) (AP¢), — (ADg),(A®¢),,  for EeR.

Then q(£°) = 0 for some £° € R2 iff £° is a singular point of Q. Therefore, if £° € R? with
Q(£%) # 0, then q(&°) = 0 iff Q(£°) belongs to the boundary R of the range of Q.
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Proof. (i). Let ¢ € R? have the properties listed. Since grad Q;(¢) = 24W¢ for I = 1, 2, we
see that £° is a singular point of Q iff the set {AM¢0, AP0} is linearly dependent. Q(€°) is
contained in {R}°, so the range of Q is not a line through the origin. Therefore, since Q(¢£°) #
0, we can apply Proposition A.2.ii with 2 = Q(¢°) to conclude that the quadratic form & —
Q,(£9)9,(¢) — 9Q;(€°)Q,(€) on R? is indefinite. Then the (2 x 2) matrix of this form, which is just
Q,(£9)AM — 9, (€°).AP), has one positive and one negative eigenvalue, so it cannot have eigenvalue
zero, i.e., must be nonsingular:

Q,(E0)AME — 0 (€9 APE£0  foreach €R?, €#0.

Now suppose that c; A1) €0+, AP €0 = 0 for some real ¢, and ¢,. Then also ¢; Q; (£°)+¢,Q,(£°) = 0,
but we know that at least one of Q, (£°) and Q,(£°) is nonzero. Assume first that Q,(£°) # 0: then
¢y = —c; 0, (£9)/0,(€9), whence ¢, (92(50),4(1)50 —9Q, (§O)A(2)§0) = 0, which implies that ¢, = 0.
But then ¢,Q,(£%) = 0, so also ¢, = 0. In a similar fashion, the assumption that Q,(£°) # 0 again
forces the conclusion that ¢; = ¢, = 0. The set { AN, AR €0} is then in fact linearly independent,
so £9 is not a singular point of Q.

(#). Upon noting that 4¢(§) is just the determinant of the matrix of the derivative DQ(§) with
respect to the standard bases, the first assertion of (i) follows. Now suppose that £ € R? with
Q(£%) # 0: if Q(£°) belongs to IR o, then £2 must be a singular point of Q, so ¢(£°) = 0; conversely,
if the latter equality holds, then £° is a singular point of Q and statement () implies that Q(£°)
cannot belong to {Rg}°, so we must have Q(£°) € 0Ro. [

Finally, we verify a simple result that is needed in the proof of Theorem 4.1.

Proposition A.4. For each t in an open interval I C R let the biquadratic map Q, on R? be given

by
a,x? + 2b,z, Ty + ¢,
Q,(x) = , for == (x,7,) € R%,
dyx? + 2e,m, 75 + fLa
in which the real coeflicient-functions t — a;, t — b,, ..., t — f;, are continuous on I. Then the set

{terl | Ro, = R? } of values t in I at which the range of Q, is all of R? is open.

Proof. First consider any ¢t € I. As noted in the proof of Proposition A.1, the image of the unit
circle in R? under Q, is either a proper ellipse, which obtains iff

(a; —¢)ey, — (dy — fi)by # 0, (A.5)
or a degenerate ellipse, which occurs precisely when the expression on the left in (A.5) vanishes. It
follows that the range RQ is all of R? iff the image of the unit circle is a proper ellipse enclosing
the origin. By supposing that (A.5) holds and transforming the equation of the image of the unit
circle to the standard form

ji +Cys =
by translation and/or rotation of the original y, , y,-codrdinate system to a g , J,-System, one derives
the necessary and sufficient condition for the ellipse to enclose the origin as
AZ 4+ 02 <1, (A.6)
in which (2, Z,) are the codrdinates of the original origin in the transformed system. A bit of algebra
produces the condition (A.6) as
2
(c,dy — asf,)” +4eia,c, + 4bid, f, — 4be,(asf, + ¢,d;) < 0. (A7)

Thus, Rg, = R? iff both (A.5) and (A.7) hold. But the set of ¢ € I for which both (A.5) and (A.7)
are satisfied is open, by the continuity of the coefficient-functions. []
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Appendix B. Submanifolds of euclidean spaces.

To fix the definitions and recall the fundamental facts for the convenience of the reader, we include
here a very compressed review of some basic developments and results concerning submanifolds of
euclidean spaces. The presentation can be kept at the simplest level, since we do not require the
general construction of differentiable manifolds. We consider here only manifolds without boundary;
throughout, the term “manifold” should be understood to mean “manifold-without-boundary” (and
similarly for “submanifold”). Essentially, we have augmented the presentation of FLEMING [9] with
the most elementary information about mappings of one manifold into another.

First definitions. Tet 1 < N < N, and ¢ > 1: a nonvoid subset MY C RMo is a submanifold of
class C1 and dimension N iff for each £ € M” there is an open RNo-neighborhood Ug of § and a
C9-map & : U, — R¥o~" such that the differential D®*(y) : R¥o — RNo~" has (maximal) rank
Ny — N for each y € U, and MY N U ={yel, | ®¢(y) = 0}. By an Ny-dimensional submanifold
of RMo is meant simply an open subset of RVo.

In the remainder of this Appendix, M" denotes an N-dimensional submanifold of RMo of class

7

(at least) C'; for brevity, we shall say simply “N-manifold (in RV ).” We may write just “M” in

place of “yN By & we always denote a point of M.

Tangent spaces. A nonzero Ny-vector 7 is a tangent vector to MY at £ iff it is the derivative
7 =1'(0) of a C'-smooth map 1 : (—e,e) = MY with ¢(0) = £ (i.e., of a “parametrized curve in
M” passing through &). The tangent space TM to M at £ is the collection of all tangent vectors to
M at £, with the zero-vector adjoined. Then, with the neighborhood U, and the map ¢ as in the
fundamental definition of “submanifold,” it follows that T, M is just the null space of the differential
D®¢(¢), and so forms an N-dimensional subspace of RYo. The (N, — N)-dimensional orthogonal
complement of T.M is termed the normal space to M at ; it is the linear span of the gradients

{grad ®{(¢), ..., grad 8§y (6)}.

Coordinate systems. Let M be of class C? (¢ > 1). A codrdinate system in M is a pair (U, h),
with U a relatively open subset of M and h : U — RY a homeomorphism of U onto an open set
h(U) C RY having inverse h ™1 : h(U) — U of class CY with the differential Dh~!(z) of rank N for ev-
ery z € h(U). When (U, h) is a codrdinate system for M, U is termed a codrdinate patch on M and h
a coordinate function; the codrdinates of a point & € U relative to this coérdinate system are just the
numbers hy (§), hy(§), ..., hn(§). It follows that M is covered with codrdinate systems, i.e., that each
point of M is contained in a codrdinate patch. Moreover, whenever the patches of two systems (U, h)
and ([7, h) overlap, the composition hoh ™1 : h(ﬁ nU) - iz(lj' NU) is a C!-diffeomorphism. Finally,
it is important to recall that, if £ € M and (U, h) is a codrdinate system about &, i.e., with £ con-
tained in the patch U, then the differential Dh~1(h(£)) is a linear-space isomorphism of RV onto the
tangent space T, M; in particular, the partial derivatives {h7] (h(£)),h7}% (h(€)),..., A7 (R(E))}
form a basis for T, M.

Differentiable maps between manifolds. Differentiable manifolds provide all of the underlying
structure necessary for introducing a reasonable property of “smoothness” for a map from one such
manifold into another. Let F : MY — N™ be a mapping carrying the N-dimensional submanifold
MY of RM into the n-dimensional submanifold N™ of R™0; both submanifolds are supposed to
be of class C9. F is said to be of class C iff whenever (U, h) is a codrdinate system in M" and
(V, k) is a codrdinate system in N™, the composition k o F' o h=! is of class C? where it is defined.
Supposing that F is of class C!, the differential DF(£) of F at £ is defined to be the linear operator
DF(¢) : TeM — TpeyN acting between the indicated tangent spaces according to the following rule:
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let 7 € T M and choose any codrdinate system (U, h) about £ for M and any codrdinate system (V, k)
about F(£) for N; then we can write 7 = Z;V:l h7, (h(£)), with uniquely determined expansion

coefficients {Tp}gzl relative to the basis {h7}, (h(&))}jf:1 for T M (the so-called “contravariant
components” of 7), and we define DF ()T € Ty N by

DF(¢)r = i{i (ko Foh™1),, q(h(g))fq}k—,} (k(F©))-

=1 “¢q=1

One can show that the differential is independent of the particular codrdinate systems (U, h) and
(V, k) about £ and F(£), respectively. The rank of the C'-map F : MY — N™ at £ € MY is naturally
defined to be the rank of the linear operator DF'(€) : TgMN = TrN™; from the definition given
above, it is clear that this coincides with the rank of the differential D(k o F o h=') (h(£)), i.e., with
the rank of the n x N matrix with elements (ko F o h=),, . (h(£)), independently of the codrdinate
systems selected.

Of special importance for present purposes in the study of Pareto optima is the setting F' :
MmN - R"™, i.e., when the codomain n-manifold is just R”. That case is also simpler to treat, since we
can use the coordinate system comprising R™ itself as coordinate patch along with the identity map
as coordinate function. It is useful to introduce first the manifold gradient grad,f for a real-valued
function f : M — R of class C'. Supposing that f is such a function and & € M, then the Ro-vector
grady f(§) is determined by the requirement that the differential df(§) = Df(§) : TM — R be
given by

df(§)T = gradye f(E) - 7 foreach 7 € TM;

the inner product here takes place in the containing euclidean space RMo. A short computation
produces the expression

N
grady f() = Y ' (M(&) (Fo h ™), (h(&))h1(R(9)),
Jil=1

in which (U, h) is any codrdinate system about £ for M and the matrix {g/(h(£))},, v is the
inverse of the matrix {g;, (h(€)) := b7} (h(€)) - b7 (h(€)) } v (the first fundamental, or metric,
tensor of the manifold M at £). One can also show that the manifold gradient can be computed as
the orthogonal projection in RMo onto TeM of the ordinary gradient grad f(§), in which f is any
C'-extension of f from a T, M-neighborhood of £ to a full R¥o-neighborhood of £.

Returning to a C'-map F = (Fl, ey Fn) : MY = R™, we obtain a representation for DF(£) in
terms of the manifold gradients of the components of F'. In fact, let 7 € T.M, choose any codrdinate
system (U, h) for M about &, and expand 7 = Z;Ll h73, (h(€)); denoting by eD 1=1,...,n,
unit basis vectors in R?, we get

n N n n

DF©r = 1Y (Fron™),,(n@)r* b = S-{ari(orr fe = 3 {gradyeric©) - 7 <t

=1 ‘¢=1 =1 =1

From these expressions, one can show that the rank of the operator DF(£), i.e., the rank of
F at &, is also given either by the rank of F o h™! at h(¢), i.e., by the rank of the matrix
{(Fr o), ,(h(€))}, x> Or by the maximal number of linearly independent manifold gradients
in {gradyF,(¢)},,, or by the rank of the Gram matrix {grady F;(¢) - grady F; ()} of the

nxXn
manifold gradients.
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Finally, we recall that the chain rule holds in its familiar form for compositions of differentiable
maps between manifolds. In the most important case for present considerations, let F' : MY = Re
and x : (t;,t,) = M"Y be C'-maps. Then the composition F oy : (t;,t,) = R, a curve in R", is of
class C!, with derivative given by

n

(F o X)'(t) = DF(X(t))x'(t) = Z{gradMFl (X(t)) -X’(t)}a(l) for ¢ <t<t,.
=1

We observe that the curve is smooth at the point (F o X) (t), i.e., possesses a tangent vector at that
point, iff x'(¢) does not belong to the nullspace N'(DF (x(t))).

87



10.

11.

12.

13.
14.

15.

16.

17.

18.

References

. Angell, T.S.,; A. Kirsch, and R.E. Kleinman, Multicriteria optimization in arrays, Proc. J. Int.

de Nice sur les Antennes, Nice, 1992.
Apostol, Tom M., Mathematical Analysis, 2"d ed., Addison-Wesley, Reading, MA, 1974.

Arnol’d, V.I., S.M. Gusein-Zade, and A.N. Varchenko, Singularities of Differentiable Maps, vol.
I, Birkhduser, Boston—Basel-Stuttgart, 1985.

Aubin, Jean-Pierre, Applied Functional Analysis, John Wiley & Sons, New York—Chichester—
Brisbane—Toronto, 1979.

Carmichael, D.G., Computation of Pareto optima in structural design, Int. J. Num. Meth.
Eng.15 (1980), 925-929.

Chillingworth, D.R.J., Differential topology with a view to applications, Pitman Publishing,
London, 1976.

Conlon, Lawrence, Differentiable Manifolds: A First Course, Birkhduser, Boston—Basel-Berlin,
1993.

Dolph, C. L., A current distribution for broadside arrays which optimizes the relationship be-
tween beam width and side lobe level, Proc. IRE 34 (1946), 335-348.

Fleming, Wendell, Functions of Several Variables, 2"4 ed., Springer-Verlag, New York-Heidel-
berg—Berlin, 1977.

Jahn, Johannes, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Meth-
oden und Verfahren der mathematischen Physik, Band 31, Verlag Peter Lang, Frankfurt am
Main, 1986.

Kantorovich, L.V., and G.P. Akilov, Functional Analysis, 2"4 ed., Pergamon Press, Oxford,
1982.

Kato, Tosio, Perturbation Theory for Linear Operators, 2"4 ed., Springer-Verlag, Berlin—Hei-
delberg—New York, 1976.

Livingston, A. E., verbal communication.

Martinet, Jean, Singularities of Smooth Functions and Maps, London Mathematical Society
Lecture Notes Series, No. 58, Cambridge University Press, Cambridge, 1982.

Munkres, James R., Elementary Differential Topology, Rev. Ed., Annals of Mathematics Stud-
ies, No. 54, Princeton University Press, Princeton, 1966.

Sawaragi, Yoshikazu, Hirotaka Nakayama, and Tetsuzo Tanino, Theory of Multiobjective Opti-
mization, Academic Press, Orlando, 1985.

Stadler, W., Multicriteria optimization in mechanics (a survey), Appl. Mech. Rev.37 (1984),
277-286.

Statnikov, Roman B., and Joseph B. Matusov, Multicriteria Optimization and Engineering,
Chapman & Hall, New York, 1995.

88



