
LARGE SCALE MACHINE LEARNING FOR THE

DETECTION AND CLASSIFICATION OF MALWARE

by

Sean Kilgallon

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Financial
Services Analytics

Summer 2018

c© 2018 Sean Kilgallon
All Rights Reserved

LARGE SCALE MACHINE LEARNING FOR THE

DETECTION AND CLASSIFICATION OF MALWARE

by

Sean Kilgallon

Approved:
Bintong Chen, Ph.D.
Director of the Institute for Financial Services Analytics

Approved:
Bruce Weber, Ph.D.
Dean of Lerner College of Business & Economics

Approved:
Douglas J. Doren, Ph.D.
Interim Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
John Cavazos, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Bintong Chen, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Starnes Walker, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Michael Silas, Ph.D.
Member of dissertation committee

TABLE OF CONTENTS

LIST OF TABLES . vii
LIST OF FIGURES . viii
ABSTRACT . x

Chapter

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 5

2.1 Malware Analysis . 5

2.1.1 Static Analysis . 5

2.1.1.1 Malware’s Executable Code 6

2.2 Malware Datasets . 7

2.2.1 Datasets . 8

2.3 Feature Characterization . 8

2.3.1 Basic . 8
2.3.2 Byte . 10
2.3.3 Assembly . 10

2.3.3.1 Operation Level . 12
2.3.3.2 Block Level . 12
2.3.3.3 Function Level . 13
2.3.3.4 Spectral Features . 13

2.3.4 Feature Summary . 13

iv

2.3.5 Preprocessing . 15

2.4 Deep Neural Networks . 15

2.4.1 Artificial Neural Networks . 16
2.4.2 Deep Learning . 17
2.4.3 Theano: Our Deep Learning Implementation 20
2.4.4 Machine Learning in the Cloud 20
2.4.5 Comparing Models . 21

2.4.5.1 Cross-Validation . 22

2.4.6 AWS Cloud Infrastructure . 22

2.5 Literature Overview . 23

3 MALWARE FAMILY CLASSIFICATION 28

3.1 Dynamic Analysis . 28
3.2 Malware Family Classification . 30

4 EFFICIENT CLASSIFICATION OF MALWARE USING DEEP
LEARNING . 34

4.1 Motivation . 34
4.2 Methodology . 38

4.2.1 Training . 38

4.2.1.1 Malware Classification Models 38
4.2.1.2 Meta-Model . 40

4.2.2 Model Configuration . 41
4.2.3 Dataset . 42

4.3 Results . 42
4.4 Discussion . 46

4.4.1 Meta-Model . 46
4.4.2 Time Savings . 46

4.5 Related Work . 47

v

5 FEATURE AND MODEL SEARCH 49

5.1 Model Search . 49

5.1.1 Titan Supercomputer . 49
5.1.2 Experiment and Results . 50

5.1.2.1 Model Configurations 51
5.1.2.2 Dataset . 51
5.1.2.3 Results . 52

5.1.3 Further Experimentation . 55

5.1.3.1 Dataset . 56
5.1.3.2 Results . 57

5.1.4 Related Work . 60

5.2 Feature Search . 63

5.2.1 Preliminary Work: Single Feature Models 63
5.2.2 Genetic Algorithms . 64

5.2.2.1 Feature Search . 65
5.2.2.2 Results . 67
5.2.2.3 Further Analysis . 68

5.2.3 Related Work . 69

6 CONCLUSION AND FUTURE WORK 76

6.1 Conclusion . 76
6.2 Future Work . 77

6.2.1 Datasets . 77
6.2.2 Feature Search . 78
6.2.3 Model Search . 79

BIBLIOGRAPHY . 80

vi

LIST OF TABLES

2.1 List of Static Feature Sets . 9

2.2 List of Static Feature Sets . 14

3.1 Results for Malware Family Classification Model 32

4.1 Composition of Malware Dataset 43

4.2 Precision and Recall Results . 45

5.1 Number of Configurations per Number of Hidden Layers 51

5.2 Composition of Malware and Goodware Dataset 52

5.3 Top Ten Model Configurations . 53

5.4 Top Five Model Configurations . 63

5.5 All Available Features . 70

5.6 Optimal Feature Set Using Fittest Individual 73

vii

LIST OF FIGURES

2.1 Extracting graphs and features from malware code 7

2.2 Extracting string features of a malware 10

2.3 Creation of the Byte-Entropy Histogram 11

2.4 Depiction of code graph extracted from Radare2 output. 12

2.5 Perceptron Model . 16

2.6 Neural Network Structure . 18

2.7 AWS Machine Learning Platform 24

3.1 Dynamic analysis pipeline . 30

3.2 Static and Dynamic Features . 31

3.3 Training the Malware Family Classification Model 31

3.4 Hybrid Malware Family Classification Model 32

3.5 Malware Family Classification Confusion Matrix 33

4.1 Cost of Static Characterizations . 37

4.2 Deployment Stage of Deep Learning Platform 39

4.3 Accuracy results for malware classification models (B,BB,BBA) and
meta-model. 44

4.4 Accuracy results for malware families predicted using our malware
classification models (B,BB,BBA). 44

5.1 Confusion Matrix for Best Performing Model 54

viii

5.2 All 5-Fold Cross Validation Results for Exhaustive Model Search . . 56

5.3 Closer Look at 5-Fold Cross Validation Results for Exhaustive Model
Search . 57

5.4 Best Epoch Error Results for Exhaustive Model Search 58

5.5 Training Times for Model Search 59

5.6 Box and Whisker for Average Training Times 60

5.7 Pipeline for scaled model search experiment 61

5.8 New Model Search Results with Large Scale Dataset 62

5.9 Single Feature Perceptron Model Results 71

5.10 Depiction of a chromosome in the genetic algorithm 72

5.11 Crossover Process . 72

5.12 Genetic Algorithm Pipeline . 73

5.13 Minimum Error Individuals per Generation 74

5.14 Average Error Amongst all Individuals per Generation 75

ix

ABSTRACT

Bad actors have embraced automation and current malware analysis systems

cannot keep up with the ever-increasing load of malware being created daily. As a re-

sult, traditional malware detection and classification techniques using expert systems

and brittle heuristics are outdated and ineffective. We introduce deep learning mod-

els based on inexpensive static features gathered from large scale malware datasets

to generate robust and efficient malware detection and malware family classification

predictions.

Static analysis is performed by dissecting or disassembling the malware’s binary

file and studying the components without executing it. Furthermore, static analysis is

generally much faster than most malware analysis techniques. However, some static

analysis of malware can be computationally expensive and not all static analysis should

be considered for every sample in a large malware dataset. We introduce a meta-model

trained using deep learning that finds the simplest classifiers to characterize and as-

sign malware into their corresponding families. Using static analysis of malware, we

generate descriptive features to be used in conjunction with deep learning, in order to

predict malware families. Our meta-model can determine when simple and less expen-

sive malware characterization will suffice to accurately classify malicious executables,

or when more computationally expensive descriptions are required.

x

One of the most important components of training deep learning models, par-

ticularly deep neural networks, is finding the optimal model configuration and feature

set combinations. Most applications of deep learning, specifically neural networks, use

heuristics or trial-and-error to find the optimal model configurations. We implemented

a large scale model configuration search using supercomputing resources to produce

the most accurate deep learning model given a feature set. In addition, we construct a

genetic algorithm used to find the optimal subset of static analysis features. This result

provides us with the ability to construct extremely accurate deep learning models for

malware detection and malware family classification.

xi

Chapter 1

INTRODUCTION

Malware (i.e. malicious software) is software that is intended to damage, dis-

able, or steal vital information from computer systems. Common examples of malware

include computer viruses, worms, Trojan horses and ransomware [73]. For example,

the WannaCry ransomware attack in May 2017 was an example of a randsomware at-

tack which targeted computers running the Microsoft Windows operating system by

encrypting data and demanding ransom payments [57]. Traditionally, companies pro-

tected themselves from malware using anti-virus programs such as Norton or McAfee.

These programs work by creating a unique identifier (i.e. a hash) for each malware

sample. This unique identifier is stored in a database that is pushed in patches to

the antivirus program running on an end point. An end point is a device (i.e. lap-

tops, tablets, mobile phones) connected to our organization’s central network. These

connections create attack paths for security threats. All incoming files on a user’s

computer can be checked against the database of the antivirus program that contains

signatures of all known malware samples. One problem with this technique is that

zero-day or unseen malware will not be in the antivirus’ database and therefore will

not be detected [21, pp. 34-44]. This problem is compounded by the fact that malware

1

creators have embraced automation to develop programs that can take a malware sam-

ple and automatically change it slightly with the effect of changing its unique identifier

[34]. Automation tools can generate large numbers of malware variants and traditional

techniques to detect malware no longer scale with the ncreasing the size of the threat

landscape.

Current malware analysis systems tend to exhibit high detection rates for previ-

ously analyzed malware, for which signatures have been generated, but fail at detecting

zero-day exploits for which malware is unavailable [12, pp. 110-115]. Therefore, the

need for advanced techniques to be able to detect and classify malware is necessary. As

cyber-attacks are growing in complexity and sophistication, the use of machine learning

techniques has become indispensable for firms to become more efficient in recognizing

patterns that constitute a risk to their information.

Creating a robust malware detection system requires extensive analysis of a

malware sample. The two main ways of analyzing malware are static and dynamic

analysis. Static analysis is a method of reverse engineering that is done by extracting

a malware’s code without executing the actual program [20, pp. 76-79]. An example of

a static feature captured through static analysis could be computing the file’s entropy

or measuring the distribution of bits in the file. For example, one can predict with a

high probablitiy that a file with high entropy is encrypted. Dynamic analysis refers

to executing a file in an isolated environment or sandbox and monitoring its behavior

to generate a report for further examination [86]. An example of a feature collected

through dynamic analysis would be the list of web sites the file tries to access when

2

run.

The results of static analysis on the malware files will be characterized in terms

of basic file information, byte level information, and the reverse engineered assembly

code. These characterizations will make up the feature vectors we use to train our

machine learning models. One of the characterization techniques we use is to represent

the malware’s executable code as a graph. We scan this graph in increasing granularity

in order to characterize the important aspects of the malware’s code. We use simple

features such as the strings in the file, which can be an effective characterization tech-

nique [37, pp. 9-17]. These feature vectors can then be preprocessed in various ways

to maximize the accuracy of the prediction models.

Malware detection is a binary classification problem where a model takes as

input static features of a file and the model predicts if a file is malware or not [73].

Malware family classification is a multiclass problem where a model is used to predict

what family a malware belongs to [5, pp. 3-14]. A malware family generally character-

izes how a malware can infect computers what important capabilities a malware has

and how to remediate that threat. This information is vital to a cybersecurity analyst.

In our research, we build highly accurate malware detection and family clas-

sification models using large scale datasets. Using the cloud platform we have built,

we have analyzed the cost of producing various malware characterizations and have

created models that keep time cost low while having high accuracy predictions. Our

machine learning platform gives us the ability to create comprehensive models of our

data and train them continuously or in batches until the desired accuracy is reached.

3

We explore supercomputing methods of searching for the best model configuration

using all features to produce the highest accuracy prediction. Also, we use genetic al-

gorithms to search for the best subset of features that can produce very high accuracy

predictions.

The experiments that we discuss in this dissertation will make contributions

to the current research landscape of malware detection and family classification using

machine learning. We seek to overcome some of the challenges that exist in large-scale

malware characterization and machine learning including how to scale static analysis to

an extreme scale, creating cost efficient and effective deep learning models for detecting

and classifying malware, and knowing which features and models work best for training

on very large datasets.

4

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we will describe background information and related work. We

first discuss malware analysis which we use to create features. We then build datasets

comrpised of these features to construct machine learning models. We describe our

features in more detail and explain our cloud computing platform which will allow us

to scale our analysis and machine learning process.

2.1 Malware Analysis

The first step in creating machine learning models is the creation of a dataset.

The dataset is comprised of features extracted from the analysis of malware. Malware

can be analyzed using two main methods: static and dynamic analysis. In the next

sections we will describe static and dynamic analysis and how it is accomplished in our

machine learning pipeline.

2.1.1 Static Analysis

Static analysis is a method of extracting a malware’s code without executing the

actual program and was first introduced in the field of malware detection in 1995 [20,

pp. 76-79] [52, pp. 541-566]. In contrast to dynamic analysis which can take minutes

to hours, static analysis of a malware can typically be performed in less than a second.

5

Automated tools like portable reverse engineering frameworks can help extract static

features from a malware binary in a very accurate and effective manner, providing

valuable insights about the intent of the suspicious file. Nevertheless, because of ob-

fuscation techniques, static analysis alone is not enough to detect or classify malicious

code [59, pp. 421-430]. We use Radare2 (r2), an open-source reverse engineering com-

piler, to extract static features to supplement our dynamic analysis [66]. Radare2 is

designed as a lightweight tool to help disassemble software. It implements an advanced

command line interface for moving around a file, analyzing data, disassembling, binary

patching, data comparison, searching, replacing, visualizing and it can be scripted with

a variety of languages, including Ruby, Python, Lua, and Perl. The reason we use this

tool is that it is open-sourced, there is significant community support, and that static

features can be extracted fast and cheaply.

In our pipline, our goal is to be able to analyze very large datasets upwards of one

million malware samples. This scale of malware analysis lends itself to static analysis

as it can be completed much faster and cheaper than dynamic analysis. However, we

do potentially lose important information that could characterize the malware by not

including dynamic analysis. We will discuss this further in Section 3.1.

2.1.1.1 Malware’s Executable Code

Performing static analysis of an executable requires reverse engineering of the

malware’s executable code1. Figure 2.1 depicts how a call graph with features at each

1a set of instructions executed directly by a computer’s central processing unit

6

node is constructed from the output of a disassembler. A call graph represents calling

relationships between subroutines in a computer program. Each node in the graph

represents a procedure and each edge indicates that the preceeding node calls the

subsquent node.

First, the executable is disassembled into functions, blocks, and operations.

Second, the disassembled code is transformed into a graph-like data-structure (e.g.,

call graph). Third, a feature graph is extracted from the graph. These features can

then be used as input to our machine learning models.

Figure 2.1: Extracting graphs and features from malware code.

2.2 Malware Datasets

Training a machine learning model is extremely dependent on the chosen dataset.

Neural networks require huge datasets to train accurate models especially given a deep

network with a large number of hidden layers. Due to the sheer number of malware

samples we intend to analyze and train on, static analysis will be our primary method

of analyzing malware. Contrary to static analysis, dynamic analysis requires a large

amount of time to run. In this section, we describe the datasets we intend to build to

solve the problems of malware detection and malware family classification.

7

2.2.1 Datasets

We will obtain up to a million malware samples from Reversing Labs [69] to be

used as our training dataset. We obtained results on the malware family classification

problem on a much smaller dataset of a few thousand samples. The largest curated

malware dataset we have used consisted of 270,000 malware samples from 27 distinct

families. However, we keep in mind that more malware is not necessarily better and that

a curated, balanced dataset is what is most desired. For the malware detection problem,

goodware will be gathered from a diverse set of Windows OS platforms including XP,

7, 8, and 10 for both 32-bit and 64-bit architectures. The goodware will include

official Windows software pre-installed with the OS and popular open-source Windows

applications.

2.3 Feature Characterization

In this section, we describe the feature characterization techniques used to rep-

resent a malware sample. The three main groups of features we use to characterize a

malware are basic, byte, and assembly features. We will describe each group and the

characterization techniques in detail. A table summarizing the groups and correspond-

ing features can be seen in Table 2.1. A full feature description of all 47 final feature

variations can be seen in Figure 5.5.

2.3.1 Basic

In this section, we present three static features we gather from the malware files

also introduced by Saxe, et al. [77, pp. 11-20]. These features are constructed from

8

Static Feature Set Groups
Group Features Computational Cost

Strings
Basic Metadata 1-5 seconds

Import
Byte Byte-Entropy Histogram 1 second

Function
Assembly Block Up to 30 seconds

Operations (with timeout)

Table 2.1: This table shows the static feature set characterizations and their shapes.

the list of strings included in the file, the metadata table, and the import table of the

Portable Executable (PE) Header. The PE format is a data structure that encapsulates

the information necessary for the Windows OS to load the executable code. The ASCII

Strings are obtained using the string GNU tool. The python module pefile is used

to extract the metadata and import tables from the PE Header. We create a fixed sized

feature vector given either a list of ASCII strings or extracted import and metadata

information from the PE Header. The arbitrary length of ASCII strings is transformed

into a feature vector of length 256. First, each string is “hashed” to an integer between

zero and the desired vector length. Second, an histogram of these hashes is produced

by counting the occurrences of each values. The result is a vector of positive integers

of the desired size. This is a best practice from Saxe, et al. [77, pp. 11-20], to be able

to convert the variable string output into a fixed size array. Figure 2.2 shows how a

list of strings is transformed into a fixed size feature vector.

9

Figure 2.2: Feature extraction from malware file’s strings

2.3.2 Byte

Byte-entropy histograms are an expressive representation of files and can be

used as a state-of-the-art characterization of files suitable for deep neural networks [77,

pp. 11-20]. To construct this characterization, we scan files using a sliding window of

length 1024 with a step size of 256 bytes. We compute an entropy for each window using

the histogram of bytes. Finally, histograms are accumulated in the 2D byte-entropy

histogram in one of 256 entropy bins. The process of generating the byte-entropy

histrograms is shown in Figure 2.3.

2.3.3 Assembly

One powerful method of characterizing malware is a assembly characterization.

This technique corresponds to an expressive method of representing assembly code

10

Figure 2.3: First, the file is scanned by a sliding window of length 1024 with a step of
256 bytes. Then, for each window, the bytes histogram is extracted and the associated
entropy is computed. Pairs of byte and entropy are collected for all windows. Finally,
the pairs are counted in the bytes-entropy histogram.

extracted from executables. We use Radare2 [66], a free and open-source disassem-

bler, to analyze executable files. The advantage of Radare2 is that it “disassembles”

many kinds of executables, including x86, ARM, Bytecode (Java), Javascript (from

HTML files), etc. Figure 2.1 depicts how the call graph with features at each node

is constructed from the output of a disassembler such as Radare2. We parse Radare2

output and extract the results of call and control-flow analyses into one data-structure

depicted in Figure 2.4. This data-structure is a graph of operations linked by calls

(curved arrows), branches (angled arrows), and fallthroughs (thin straight arrows).

To apply machine learning, we need to extract feature vectors from each node

in the data-structure where each node corresponds to a block in the original code. We

extract this representation by scanning this data-structure from operations to blocks

to functions level. Along the way, we extract statistics about each level that we accu-

mulate. This gives us three different levels of granularity.

11

Figure 2.4: Depiction of code graph extracted from Radare2 output.

2.3.3.1 Operation Level

The whole-program instruction-flow-graph (WPIFG) connects operations using

calls, branches, and fallthroughs. For each operation, one feature vector is generated

containing statistics: operation kind and size.

2.3.3.2 Block Level

The whole-program control-flow-graph (WPCFG) connects blocks based on the

calls and branches. Each block is characterized by two feature vectors: statistics and

instruction 1-grams. The statistics include the block’s size and edges statistics, but

also aggregate the average statistics of its operations. The instruction 1-grams are

histograms of the sequences of one operation presented as vector.

12

2.3.3.3 Function Level

The call-graph (CG) connects functions based on the calls. Each function is

characterized by two feature vectors: statistics and instruction 1-grams. One function’s

statistics include the function’s information and the average statistics of its blocks and

operations.

2.3.3.4 Spectral Features

The three graphs (WPIFG, WPCFG, and CG) we collect during our disassembly

analysis contain information characterizing malware at different levels of code. We use

these graphs to create spectral features at the function, block and operation level.

Each graph is saved in the form of an adjacency matrix comprised of nodes and edges.

Depending on the graph, nodes are functions, blocks, or operations and edges are the

connections between the nodes. Eigenvalues are generated from the laplacian of the

adjacency matrix. The top twenty eigenvalues are saved for use in our deep learning

models as they are an expressive characterization of the assembly graphs at different

layers of code.

2.3.4 Feature Summary

We categorize our feature sets in three main groups: basic, byte, and assembly

features. In Table 2.1 and Table 2.2, we summarize the feature sets considered in our

experiments. In addition to the feature sets listed, we collect metrics during our anal-

yses which we also use as input. These features are small in size, but contain valuable

information. With so many features, we need to consider the possible preprocessing

13

transformations that could aid in the construction of our machine learning models. We

will discuss this in the next section.

The computational cost of producing our features can be seen in Table 2.1. Basic

features are generated by multiple tools running asynchronously where each analysis

can take around one second. Byte features are generated using optimized C code

and depend on the size of the file, but remains extremely efficient. Assembly features

take the longest to produce as we use Radare2 to conduct a number of analyses. We

currently have a timeout of 30 seconds for assembly features to limit the runtime of

certain analyses that can take hours or even days to complete.

Static Feature Sets
Characterization Format Size

Strings vector 256
Basic Metadata vector 256

Import vector 256
Histogram vector 256

Byte Byte-Entropy Histogram matrix [16, 256]
statistics matrix [20, 19]

Function 1-grams matrix [20, 54]
eigenvalues vector 20
statistics matrix [20, 8]

Block 1-grams matrix [20, 54]
eigenvalues vector 20
statistics vector 20

Operation 1-grams matrix [20, 54]
eigenvalues vector 20

Table 2.2: This table shows the static feature set characterizations and their shapes.

14

2.3.5 Preprocessing

After the raw features are generated using malware analysis, we consider trans-

formations to aid in training of our models. Certain feature sets are more effective

after being transformed rather than using the original representation. Normalization

has proven very effective at removing the machine learning model’s ability to learn the

invariants of the dataset instead of the key features. Absolute values of features could

be important, but small values may be lost when the whole dataset is normalized. To

prevent this, we also present to the neural network logarithms of each feature. Our

three preprocessing techniques we use are as follows:

• ID - identity, no preprocessing

• log - compute the logarithm of each element

• norm - normalize the tensor2 (Can provide row, column, or global normalization)

2.4 Deep Neural Networks

Deep Learning is a subfield of machine learning concerned with algorithms in-

spired by the structure and function of the brain called artificial neural networks. In

this section, we will present neural networks, how they are trained, our method of

implementation, and how we compare models.

2a multidimensional array

15

2.4.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are models made up of interconnected arti-

ficial neurons. A model of an individual neuron can be seen in Figure 2.5. The output

of this single neuron model is therefore:

y = σ(w0 ∗ x0 + w1 ∗ x1 + w2 ∗ x2 + b),

where xi are the inputs of the neuron, wi are the respective weights for each of the xi,

σ is the activation function, and b which is called the bias. The activation function

is typically a sigmoidal function such as the hyperbolic tangent (tanh) or the logistic

function.

Figure 2.5: This figure depicts an individual neuron in a neural network structure.

Artificial neural networks (ANNs) can be viewed as weighted directed graphs in

which the nodes comprise of neurons and the edges are conections between the neurons.

16

Based on the graph’s architecture there exist two main categories:

• feed-forward networks

• recurrent networks

In feed-forward networks, or in our case multilayered perceptrons, the neurons

are connected in one direction and contain no loops. In feed-forward networks infor-

mation flows in one direction and samples are independent of each other which in a

sense makes this network memory-less. On the other hand, recurrent networks have

feedback paths in which the input to the neuron is modified with each sample. In this

paper, we focus on feed-forward networks or multilayered perceptrons (MLPs).

MLPs are typically fully-connected where all outputs of one layer are inputs to

the next layer. An example of an MLPs structure can be seen in Figure 2.6. The

strucuture of an MLP starts with an input layer of fixed size, a hidden layer which

can be comprised of multiple layers, and an output layer which holds the result of the

network. MLPs are incredibly powerful and Hornik et al. [31, pp. 251-257] [32, pp. 359-

366], has proven that given a sufficient number of layers with non-linear activation

functions, an MLP can approximate any (measurable) function.

2.4.2 Deep Learning

In this section, we discuss how neural networks are trained. Neural networks are

trained with a goal of producting a network that correctly predicts the target function

17

Figure 2.6: This is the general structure of a multilayered perceptron.

φ : Rn → Rm. The training set α ⊂ Rn is comprised of input samples x ∈ α where

φ(x) is known for all samples. The function realized by the network we denote as f(x).

The most popular neural network algorithm is the back-propagation algorithm

proposed in the 1980’s [72, p. 1] and is normally used in conjunction with an optimiza-

tion method such as gradient descent. The goal is to find the values of the parameters

Θ that minimize a loss function L. It is common to use the L2 norm as the loss

function, e.g., L(x) = ‖φ(x)− f(x)‖2. The back-propagation can be seen below:

1. Forward propagation: Compute the loss function for all nodes in the network.

L(x) = ‖φ(x)− f(x)‖2

18

2. Backward propagation: Compute ∂L
∂ρ

(x) for all parameters ρ in the network.

3. Update: For all ρ ∈ Θ,

ρ← ρ− ` ∗ ∂L
∂ρ

where ` ∈ R∗+ is the learning rate.

The back-propagation algorithm starts with evaluting the output at each node

for a given sample. The backward propagation step evaluates the influence of each

parameter ρ on the loss function. The update step is based on gradient descent in

which the parameters ρ are updated. Each sample in the training set will use the back-

propagation algorithm to update the parameters of the network. One pass through the

training set is denoted as an epoch and many epochs are required to train a network.

The learning rate, `, the number of layers, size of the layers, and the activa-

tion function of each layer are part of the hyper-parameters of the network. Hyper-

parameters affect the convergence of the learning algorithm. These parameters can-

not be directly estimated from the data and therefore must be chosen by the practi-

tioner. Methods to automate this tuning process without domain knowledge include

grid search [10, pp. 153-160], random search [11, pp. 281-305], bayesian optimization

[25, pp. 3460-3468], covariance matrix adaptation evolution strategy using GPUs [53],

and non-probabilistic radial basis function surrogate model [35].

Deep neural networks are neural networks comprised of many layers of neurons.

The idea of deep neural networks was introduced soon after neural networks [38] [39,

pp. 364-378]. Around the turn of the century, the interest in deep neural networks was

19

newed with the increase of compute capabilities with tools such as cloud computing

and GPUs.

2.4.3 Theano: Our Deep Learning Implementation

Our experiments are conducted using Theano which is a numerical computation

library. We have build our own deep learning framework around Theano to implement

deep learning algorithms and help facilitate training our deep neural networks. Our

framework does not consider any specific use-case and provides low-level primitives. By

doing so, it permits us to define any neural network we might need. In addition, this

framework has been constructed to scale infinitely for very large datasets on distributed

memory systems.

2.4.4 Machine Learning in the Cloud

Deep neural networks have proven to be a powerful method of solving hard

problems, but when coupled with large amounts of training data, it has also proven

to be computationally intensive. Powerful hardware is necessary for training complex

neural networks with large amounts of data, and using cloud-based services is a cost-

efficient way of achieving this. In the case of model and feature set exploration, many

models have to be trained simultaneously and the best way to do this is to scale the

number of cloud instances to fit our compute requirements. In Section 5.1, we leverage

supercomputing resources to help facilitate our computation needs.

20

We have built a scalable cloud platform to complete the malware analysis dis-

cussed in Section 2.1. For static analysis, cloud instances are initialized which con-

tinuously poll for analysis requests. Once a request is made, our software proceeds

to download malware binaries, conduct static analysis, and submit the results to a

cloud data store. For dynamic analysis, we have created a scalable platform in which

malware can be submitted for analysis in a sandbox environment hosted on the cloud.

The results of the analysis are submitted to the same cloud data store.

Our platform is able to track the cost of analysis, the time required to analyze

malware samples, and much more. Also, we can track the time and cost of producing

our deep neural network models. We can use this information to compare the cost of

producing the dataset, the cost of training the model, and the resulting accuracy. In

a realistic environment, models need to be created per the business requirements and

should take into account the dollar and time cost of producing a model.

2.4.5 Comparing Models

When machine learning is used to solve a task, multiple algorithms are used to

build various models until the best model is found. To construct the best model for a

specific task, we generally evaluate the ability of these models to generalize what was

learned on a training set to predict targets given a testing set. This process requires

both a proper experimental setup and a measure of the accuracy of a given model. We

use (n-fold) cross-validation and different measures of accuracy.

21

2.4.5.1 Cross-Validation

Cross-validation is a model validation technique which tests how well the model

performs and is able to generalize to an independent dataset. The process of cross-

valiating is to partition the dataset into complementary subsets performing the model

training on one subset and validating the model with the other. Multiple rounds of

this are performed with different subsets and the validation results are averaged to find

a final prediction estimate.

Typically, we use n-fold cross-validation in which the dataset is split into n

subsets of the same size. Cross-validation is performed n times and the validation

accuracies are averaged for a final result. Zeng et al. [90, pp. 1-12] proposed a method

that provides balanced intraclass distributions when partitioning a dataset into multi-

ple folds. This method uses stratification, which means that all folds contain the same

number of instances for each classification target, giving them the same class distribu-

tion as the original dataset. This method of cross-validation is what we use for all our

experiments.

2.4.6 AWS Cloud Infrastructure

Our machine learning platform is hosted on Amazon Web Services (AWS) where

we do most of our training, dataset creation, and analysis of malware. AWS offers

reliable, scalable, and inexpensive cloud computing services as well as well as many

storage services. The ability to add compute power on-demand for training models or

analyzing malware is powerful. The four main services we work with are:

22

• Elastic Compute Cloud (EC2) with Auto Scaling Group (ASG) to host the ap-

plications in a scalable way,

• DynamoDB to store the descriptions of the models, datasets, and to record ac-

curacy metrics while training models,

• Simple Storage Service (S3) to store the datasets and the parameters of the

trained models, and

• Simple Queue Service (SQS) to distribute jobs.

In Figure 2.7 depicts the process of training our machine learning models. Spot

instances are used to reduce the cost of training models. Spot instances allows users to

bid on spare Amazon EC2 computing capacity. Since Spot instances are often available

at a discount compared to On-Demand pricing, we can significantly reduce the cost of

training models. These instances are self-contained compute machines that pull from

the job queue, load the dataset and model and produce results. These results are then

stored in our S3 buckets and DynamoDB. A bucket is a unit of storage in AWS object

storage service S3. Amazon’s DynamoDB acts as a fast and flexible NoSQL database

service for storing our results.

2.5 Literature Overview

Malware analysis is a necessary step in generating data and therefore features

to train machine learning classifiers. A subset of the best analysis methods, tools, and

techniques were surveyed by Uppal et al. [83, pp. 103-120]. Static analysis techniques

23

Figure 2.7: This figure shows our configurable AWS platform we have built to train
our models.

have also been recently surveyed and analyzed [61, pp. 440-450]. A dataset of Android

malware was used in conjunction with static analysis to train and produce accurate

malware detection models [74, pp. 141-147] [6]. Shabtai et al. [79, pp. 16-29] trained

many machine learning classifiers using static analysis as input to conduct malware

detection. However, static analysis has limitations such as when malware exhibits

code obfuscation techniques or if it is packed [59, pp. 421-430].

The use of Cuckoo [22] to conduct dynamic analysis has been confirmed as

an effective malware analysis tool [65, pp. 225-236] [85, pp. 1-6]. In addition, the

efficiency of dynamic analysis has been improved by leveraging the fact that most

malware samples are variants of existing malware [8, pp. 1871-1878]. Dynamic analysis

can be used in conjunction with Support Vector Machines for the detection of malware

[4, pp. 247-258] [29, pp. 45-54]. Firdausi et al. [26, pp. 201-203] conducted a survey

of machine learning techniques used to build malware detection models. Dynamic or

behavioral analysis has also been used to cluster malware families [71, pp. 639-668].

24

Most malware detection classification models only use static or dynamic analy-

sis, but not both. However, Spreitzenbarth et al. [81, pp. 141-153] created a sandbox

that combines both static and dynamic analysis. Also, Santos et al. [27, p. 56] imple-

mented a method to use both static and dynamic analysis features to detect malware

at a high accuracy. The use of machine learning for the detection and classification of

malware is expansive and has been surveyed at length [47].

Malware detection research is even more necessary as millions of malware are

being introduced into the wild every day. Many machine learning classifiers are trained

using static analysis to detect malware including Bayesian classifiers, rule-based meth-

ods, decision trees and ensemble methods to produce highly accurate models [3, pp. 55-

62] [75, pp. 64-82] [89, pp. 313-320] [87, pp. 25-36]. In addition to static analysis, de-

tection models can be made using dynamic analysis features using classifiers including

Random Forest, K-Nearest Neighbor and many other machine learning algorithms [1,

pp. 86-103] [80] [88, pp. 37-42] [14, pp. 13-20] [42]. Anderson et al. [5, pp. 3-14] bridged

the gap between static and dynamic analysis by combining them into a singular model.

However, all of these studies have been on relatively small datasets that only reach tens

of thousands of malware samples. Yerima et al. [77, pp. 11-20] conducted a study using

static analysis and machine learning to create an accurate model using over 400,000

malware samples. Dahl et al. [23, pp. 3422-3426] used a proprietary Microsoft platform

to analyze 2.6 million malware to create a 99.5% accurate malware detection system.

In addition to experiments that produce high accuracy malware detection mod-

els, many researchers have looked at specific difficulties with the robustness of these

25

models. Demontis et al. [24] analyzed Android malware detection models ability to

detect evasive malware and created a platform to mitigate malware evasiveness. In

addition, Chen et al. [19] investigated the robustness a cyber system to learn to detect

new malware over time. Techniques for determining malware variants have been ex-

amined by Cesare et al. [16, pp. 181-189] and for determining malware similarity using

parallelization [78, pp. 69-77]. Specifically for malware detection, feature selection has

been scrutinized both experimentally and heuristically [9, pp. 113-120] [41].

Malware family classification is a difficult problem as the input to the models are

similar to the detection problem, but the predicted output has to include many different

malware families. Similarly to malware detection research, both static and dynamic

analysis features have been explored as input to machine learning models. Research

involving static features include using Opcode sequences and clustering for classification

[62, pp. 95-107], using function and printable string information [37, pp. 9-17], and

using N-grams for classification [76, pp. 251-256]. In addition to static analysis, Ahmadi

et al. [2, pp. 183-194] includes expert analysis to machine learning model increasing

accuracy to over 99%. Dynamic features is used in conjunction with clustering to

generate separate behavioral families of malware with impressive results [56, pp. 251-

266]. The use of both static and dynamic features in a classification model is applied

on small datasets of a couple thousand samples [36, pp. 646-656] up to the hundreds

of thousands of samples [50, pp. 422-433]. For malware that is packed or polymorphic,

malware classification and detection is more difficult as analysis techniques may not

generate helpful features. Cesare et al. [17, pp. 1193-1206] creates a classification

26

model with this in mind. Converting static analysis results into images has proven to

be an effective input for malware classification methods as well [60] [28]. The speed of

malware classification was reviewed by Moonsamy et al. [58, pp. 176-188] who proposed

feature reduction to classify malware faster.

Feature selection and model exploration has to be considered in order to build

the best neural networks for a given problem. In the context of cybersecurity, the

number of features that can be generated by an individual malware sample is enormous.

The best feature selection methods have been surveyed for a general problem [18,

pp. 16-28] and on selecting the most relevant features and examples from the dataset

[13, pp. 245-271]. Ranveer et al. [68] tests the best feature selection methods in the

context of malware detection, but only for a subset of the potential static features.

Our research extends the current literature landscape by creating a feature set

that is well beyong the breadth of any related research in both malware detection and

malware family classification. We introduce a novel cost-based deep learning model

that focusses on speed and accuracy where most research focusses solely on accuracy.

Furthermore, we introduce an exhaustive model search using supercomputing resources

and a genetic algorithm for feature selection to produce accurate models using a much

more robust feature set than the current research exhibits.

27

Chapter 3

MALWARE FAMILY CLASSIFICATION

In this chapter, we will discuss our results for the malware family classification

problem. Malware can be categorized into a malware family which is a grouping of

malware based on common characteristics. If the malware family of an unknown mal-

ware sample can be predicted, so can the characteristics and important capabilities

of that malware. For example, if an unknown malware sample is predicted to be a

member of the malware family Zbot, we can predict that the malware’s main focus is

on stealing sensitive online banking information, e.g., credit card numbers, pin codes,

and passwords. This information can be used by security analysis for further remem-

diation of the malware since vital information of the malware would be known such

as its threat level, contagion danger, and capabilities. In the next section, we describe

an experiment of classifying a dataset of malware into their corresponding malware

families.

3.1 Dynamic Analysis

Dynamic malware analysis has emerged as the state-of-the-art detection ap-

proach that compensates for the shortcomings of signature-based techniques [86]. In

this type of analysis, a malicious file is executed in an isolated environment or sandbox,

28

and its behavior is monitored and reported for further examination. While this tech-

nique is a much more robust method of identifying malware than traditional signature-

based techniques, dynamic analysis still suffers from limitations due to the ability of

anti-sandbox malware to detect the presence of the monitored environment, and to

stop execution or perform benign activities if a sandbox is detected [45, pp. 287-301].

It also takes longer to perform dynamic analysis than signature-based techniques or

static analysis. This barrier becomes even more dramatic, as malware authors continue

to add logic to detect whether their malware is being executed in virtualized environ-

ments, hindering the ability of dynamic analysis systems to detect certain malware as

a threat. We study the additional information dynamic analysis provides to the prob-

lem of malware family classification. These results show that dynamic analysis does

improve performance and should be used. However, a tradeoff has to be considered

between the cost and time resources of dynamic analysis because it is far more ex-

pensive and time consuming than static analysis. A depiction of the dynamic analysis

pipeline can be seen in Figure 3.1. First, we launch EC2 spot instances that contain

custom built Windows images that can communicate with our Cuckoo server. Cuckoo

is an advanced, extremely modular, and 100% open source automated malware analysis

system [22]. Cuckoo is used as our dynamic analysis engine as it is the number one

malware analysis system used for research and it has significant community support.

The output of Cuckoo analysis generates a behavioral report of the malware contained

in a JSON object. Microsoft’s core set of application programming interfaces (APIs)

available in the Microsoft Windows operating systems. The API calls of the malware

29

are then extracted and then converted into a histogram for use as a feature.

Figure 3.1: Depiction of the dynamic analysis workflow.

3.2 Malware Family Classification

An evalutation of the malware family classification model was conducted on a

small dataset [43]. For this dataset, we prepared 3320 malware samples for character-

ization using static and dynamic analysis. We used Radare2 for static analysis and

Cuckoo for dynamic analysis as described in Section 3.1. The figure below shows the

static features extracted from the static analysis results. These four features (byte

features, PE import features, string features, and PE Metadata features) are a subset

of the features described in the feature characterization section (Section 2.3). The

dynamic features that are used to build our machine learning models correspond to

API calls from all malware seen in the dataset, which are generated from dynamic

analysis. In addition, each of the malware’s dynamic features is comprised of an API

call histogram of 301 dimension. These features are concatenated into a hybrid feature

set which we used to train a model as shown in Figure 3.3. We then evaluate the model

with a dataset of unseen malware as shown in Figure 3.4.

Our hybrid malware family classification model is trained and validated using

10-fold cross validation and can be seen in Figure 3.4. A separate test set is used to

30

Figure 3.2: This figure shows the breakdown of static and dynamic features extracted
from the analysis stage.

Figure 3.3: This figure shows the process of training the Malware Family Classification
Model.

test the accuracy of the model. We test the accuracy of several models shown below

with the highest accuracy being neural networks. The accuracy of the model is around

92% which is good for only using 3320 samples with a small number of features. Table

3.1 shows the results of the many machine learning algorithms we evaluated.

The confusion matrix for this experiment is shown in Figure 3.5. The matrix

31

Figure 3.4: This figure is the malware family classification model, which is trained on
both dynamic and static features combined into a hybrid feature set.

Table 3.1: Results for Malware Family Classification Model

Classifier Accuracy Precision Recall
Neural Network 92.18% 89.19% 86.87%
Random Forest 91.70% 89.60% 84.12%

Support Vector Machines 91.58% 88.21% 85.49%
Decision Tree 89.31% 82.53% 81.66%

K-Nearest Neighbors 88.78% 81.67% 78.84%

shows that there were very few misclassifications and the size of the dataset seems to

point to a lower accuracy than what was actually achieved. The following work for

the malware family classification model will expand the dataset, the number of feature

sets, and will focus on deep supervised learning using neural networks. Creating a

large scale experiment with a focus on building deep neural networks provides us with

a much more accurate model.

32

Figure 3.5: This figure shows the confusion matrix for the Malware Family Classifica-
tion Model

33

Chapter 4

EFFICIENT CLASSIFICATION OF MALWARE USING DEEP
LEARNING

In this chapter, we use deep learning to build a meta-model that finds the sim-

plest classifiers to characterize and assign malware into their corresponding families.

Using static analysis of malware, we generate descriptive features to be used in con-

junction with deep learning in order to predict malware families. Our meta-model

can determine when simple and less expensive malware characterization will suffice to

accurately classify malicious executables, or when more computationally expensive de-

scriptions are required. Finally, our meta-model is able to predict the simplest features

and models to classify malware with an accuracy of up to 90%.

4.1 Motivation

Deep learning has recently emerged as the state-of-the-art technique for malware

detection and classification, due to increasing computational capabilities and extensive

datasets [77]. It has been proven that deep learning models can help analysts achieve

breakthrough results in terms of both high accuracy, and low false positive rates for

malware characterization [84] and classification [46].

34

To train these deep learning architectures, relevant features must be extracted

from the code of malicious executables. One of the most widely used techniques for an-

alyzing malware and extracting relevant features corresponds to static analysis. Static

analysis is a method of reverse engineering that extracts code from a malicious file with-

out executing the malware binary [44]. Moreover, static analysis is orders of magnitude

faster than other techniques used for analyzing malware such as dynamic analysis [51].

In addition, static techniques observe the entire structure of malware and characterize

all possible execution paths of a malicious sample, while dynamic malware analysis is

limited to a single execution path that was executed by the program [61].

On the other hand, static analysis approaches are not without limitations of

their own, i.e. it is well-known that they suffer from packing and obfuscation. However,

several cybersecurity companies, such as Reversing Labs, have developed automated

analysis technologies to remove all packing, obfuscation, and protection artifacts from

malicious binaries and extract all internal objects with their metadata [70]. These

unpacked objects can be used for further analysis and feature set extraction using

different disassemblers.

Nevertheless, finding the set of static features that are relevant for the clas-

sification of malware is a complex task. In addition, extracting static features can

be computationally expensive. Figure 4.1 shows the cost of producing three static

characterizations (bytes, basic, and assembly) for datasets of varying sizes.

Byte-level analysis considers the raw bytes in malware binaries, and can be used

to generate bytes-entropy histograms to identify the amount of information associated

35

with various bytes distributions in malicious files. Although byte features usually de-

pend on the size of the file, they remain extremely efficient and take less than a second

to produce, even for significantly large files. Basic features, such as the list of strings

included in a malicious executable and the import table of the Portable Executable

(PE) header, can normally be generated by multiple tools running concurrently, but

take longer to produce than bytes features. Assembly features characterize a malware’s

disassembled code into graph-like data structures such as call and control flow graphs

[84]. Feature vectors are extracted from different granularities of the code, i.e., oper-

ations, blocks and functions, resulting in three different levels of granularity that we

can use to characterize a malware’s code. These features, however, take the longest to

extract and should not be used for every sample of a malware dataset. As a result, it is

important to evaluate the cost of generating these features versus the accuracy of the

deep learning models that can be constructed using different static characterizations

of malware.

We use deep learning to construct highly accurate malware family classification

models for a large malware dataset. Using the cloud platform we discussed in Section

2.4.6, we analyze the cost of producing various static characterizations of malware

versus the accuracy of our models. The results of static analysis on the malware files

are characterized in terms of basic file information, byte level information, and reverse

engineered assembly code. These characterizations make up the feature vectors we

use to train our deep learning models. Given that generating assembly features are

computationally expensive, we construct a meta-model that identifies when simpler

36

[0
M

B-1
26

M
B)

[1
26

M
B-2

40
M

B)

[2
40

M
B-3

77
M

B)

[3
77

M
B-5

66
M

B)

[5
66

M
B-1

07
5M

B)

[1
07

5M
B-2

89
09

1M
B)

10−1

100

101

102

0.
03

0.
04 0.
04

0.
05 0.
06

0.
18

1.
55 2.

40 3.
43

8.
29

7.
91

19
.4

2

7.
42

18
.5

5

24
.1

8

30
.7

1

35
.3

8 77
.9

4

Malware File Size (MB)

T
im

e
(s

)

Bytes
Basic

Assembly

Figure 4.1: This figure depicts the cost of producing different static characterizations of
malware. Analysis of malicious code at the byte-level is extremely efficient and takes
less than a second to generate. Producing basic features, such as strings, normally
requires more time than bytes features. Assembly features extracted from call and
control flow graphs take the longest to produce, and are one of the most expensive
static characterizations of malware.

and less expensive characterizations, such as byte features, are enough for correctly

classifying malicious samples, and determine when basic and assembly features are

required to produce a better prediction. By constructing a set of features of increasing

cost and predictive power, we can reduce the overall time it takes to generate features

for a large malware dataset, as we only generate the most costly features for a small

subset of the entire malware corpus. Our results show that our ”meta-model” is able

to predict the malware families with an accuracy of up to 87%, using only the simplest

and most inexpensive features for most of our samples.

37

4.2 Methodology

In this chapter, we develop models that are able to accurately classify malware

into their corresponding families. These models are built using a variety of static

analysis features that characterize files in terms of bytes, basic, and assembly features.

The goal of our research is to construct a meta-model that accurately predicts which

malware family prediction model to use to classify a specific malware sample, with the

shortest execution time.

4.2.1 Training

We design our experiments to create a meta-model that selects the simplest

model to use between three malware classifiers constructed using our three static feature

sets. All our models can be used to correctly predict the family to classify a specific

malware sample. We show that our meta-model obtains the best accuracy of any of

our models, with an execution time that is comparable to the least expensive models.

4.2.1.1 Malware Classification Models

We construct three different malware family classification models trained using

input from the three different malware characterizations. We name these three models

after the corresponding static features they are trained on: Bytes (B), Bytes-Basic

(BB) and Bytes-Basic-Assembly (BBA). We trained our models using deep neural

networks (DNNs) on each of the static feature sets, since deep learning scales much

better than other machine learning techniques when the size of our data grows to

millions of malware.

38

Figure 4.2: The left-hand side of this figure shows the general architecture of our
malware classification models: Bytes (B), Bytes-Basic (BB) and Bytes-Basic-Assembly
(BBA). For each of the three models, we split the dataset into five stratified folds:
three of which are used for training, one for validation and one for testing. The cross-
validation process is repeated five times and the results from the testing folds are used
as input to the meta-model. Additionally, the right-hand side of this figure shows the
pipeline for our meta-model. The meta-model’s input features correspond to a feature
vector of bytes, and the targets are one of the three classification models, Bytes (B),
Bytes-Basic (BB) or Bytes-Basic-Assembly (BBA). The input data is again split in
five folds: three for training, one for validation, and one for testing, and the cross-
validation process is executed five times. The test set then predicts which malware
family classification model to select (B, BB, BBA).

Figure 4.2 shows the deployment stage of our deep learning platform. We first

split the dataset into five stratified folds. We then train the B, BB, and BBA models

with three of the folds, while selecting a random fold as a validation set. The models

are then used to predict the malware families of our samples in the remaining fold.

The cross-validation process is then repeated five times, with each of the five folds

used exactly once as a testing fold.

We choose to use 5-fold cross validation and break down our malware dataset

into the aforementioned folds (three for training, one for validation, and one for testing)

to ensure that the reported accuracy is representative of the models ability to generalize

what is learned from the training set. It also guarantees that all observations are used

for both training and validation, and each sample is used for testing exactly once. The

39

results from the five testing folds are then used to create the input dataset for our

meta-model.

For each of the samples in our malware dataset, we gather information regarding

whether our three models were able to produce an accurate classification. A correct

prediction is denoted as “True”, whereas an incorrect classification is labeled as “False”.

If a malicious sample is correctly classified by more than two models, we choose the

simplest and most inexpensive model that yielded a correct prediction. For instance, if

all B, BB and BBA models generate a correct classification, we choose B, i.e., Bytes, as

the target for our meta-model training dataset because the static analysis to construct

B is computationally less expensive than BB and BBA.

4.2.1.2 Meta-Model

The evaluation results of the malware family classification models are used as

input to our meta-model. Given a malware sample, our meta-model should choose the

most cost efficient model that still produces a correct prediction. If the evaluation is

that no model produces a correct family classification, the Bytes model will be chosen.

The right-hand side of Figure 4.2 shows the architecture of our meta-model.

The input vectors are byte features extracted from malicious binaries. The targets cor-

respond to three classes: Bytes (B), Bytes-Basic (BB), Bytes-Basic-Assembly (BBA),

indicating the classifier required to correctly categorize a malware sample. 5-fold cross

validation is used to assess the effectiveness of our meta-model, where three folds are

used for training, one for validation and one for testing. The test set predicts which

40

model to choose (B, BB, BBA) to classify our malicious executables into their corre-

sponding families.

4.2.2 Model Configuration

To build our malware family classification models and meta-model, we evaluated

different deep feed-forward neural networks with varying depths and structures using

Theano. These models were trained for over two hundred epochs, and their results

were compared in terms of error rate. Our preliminary results showed that several

models took more than one hour to perform one epoch of training, rendering them

impractical for our large-scale experiments. Even after several days of training, the

error rates yielded by certain models was still much higher than the one obtained by

much simpler architectures.

The configuration that produced the best results corresponded to a deep neural

network model consisting of five hidden layers (512,512,128,128,64), with a Rectified

Linear Units (ReLU) activation function for all hidden layers. It has been demonstrated

that ReLU activation functions can speed up learning in the initial training stages,

by maintaining a stable gradient descent convergence rate during the first sessions or

iterations of the model [77]. For the output layer, we use the softmax function to ensure

that the output of the model is a probability distribution. The softmax function (also

called normalized exponential function) compresses a vector of arbitrary real values

into a probability distribution.

41

4.2.3 Dataset

We obtained a malware dataset from Reversing Labs pertaining to a stream of

malicious executables targeting financial institutions. These malware come from forty

families, designed to infect a variety of MS Windows versions including XP, 7, 8, and 10

for both 32-bit and 64-bit architectures. Furthermore, the dataset contained samples

that were gathered over a span of twelve years (2006-2018), with most of the files being

collected in 2014 and 2016. For the experiments presented in this paper, we randomly

subsampled each family with more than one thousand files, and used the maximum

number of available samples per family. This left us with a dataset comprised of nine

different families. Table 4.1 shows the breakdown of our dataset.

Furthermore, our dataset was curated to guarantee the extraction of relevant

information from the malicious files. It is a well-known fact that most of the Windows

malware are packed [82], and static analysis approaches fail at extracting meaningful

features from malware. Our dataset provider removed all packing, obfuscation, and

protection artifacts from the binary files to extract all internal objects with their meta-

data. As a result, the unpacked malware were available for further analysis using our

disassemblers.

4.3 Results

In this section, we present the major results from analyzing our malware dataset

of over 100000 samples using our deep learning platform. As indicated in Figure 4.3,

the malware classification model based on all of our static features (BBA) produced

42

Table 4.1: Composition of Malware Dataset

Name Type Count
Andromeda virus 2222

Shifu spyware 2257
Cutwail downloader 3509
Banker spyware 14596
Banload downloader 15483
Inject virus 15483

Injector trojan 15483
Ramnit trojan 15483

Zbot downloader 15483

the highest accuracy (90.07%). However, it also required the longest amount of time

to be trained and validated (41.67 hours), because that model uses all three static

characterizations extracted from the malware. On the other hand, the model based on

bytes (B) features, the least expensive characterization of our malware dataset, was

able to produce modest results for the classification of malware. It achieved an overall

accuracy rate of over 86.36%, and also took the least amount of time to train and

validate out of the three classification models. This shows the high predictive power

of bytes features, as this particular static characterization of malware holds enough

information to accurately classify many malware binaries, which can be accomplished

under a reasonable amount of time (17.28 hours).

In addition, we computed the accuracy, precision, and recall for each malware

family in order to analyze the individual performance of our classifiers across class

labels. As shown in Figure 4.4 and Table 4.2, the results generally improve as we use

the most computationally expensive classifier (BBA) for most of our malware families.

However, this model is not necessarily the best when predicting malware as being part

43

B BB
BBA

M
et

a-
M

od
el

80

82

84

86

88

90

86.36

88.86

90.07 90.42

Deep Learning Model

A
cc

u
ra

cy
(%

)

Figure 4.3: Accuracy results for malware classification models (B,BB,BBA) and meta-
model.

In
je
ct

or

Ban
ke

r

Ban
lo

ad
In

je
ct

Zbot

Ram
ni

t

Cut
wai

l

A
nd

ro
m

ed
a

Sh
ifu

92

93

94

95

96

97

98

99

100

101

92
.7

0

94
.3

2

94
.5

8

95
.9

1

96
.9

7

99
.2

9

99
.4

0

99
.6

1

99
.9

4

93
.3

2

95
.6

0

95
.9

2

95
.6

5

98
.0

2

99
.6

8

99
.8

1

99
.7

4

99
.9

7

95
.1

1

95
.5

2

95
.7

7

96
.6

7

97
.8

3

99
.6

6

99
.7

3

99
.8

8

99
.9

9

Malware Family

A
cc

u
ra

cy
(%

)

B BB BBA

Figure 4.4: Accuracy results for malware families predicted using our malware classi-
fication models (B,BB,BBA).

44

Table 4.2: Precision and Recall Results

Metric Model Andromeda Banker Banload Cutwail Inject Injector Ramnit Shifu Zbot

Recall
B 99.63 84.56 78.80 90.26 92.39 71.56 97.95 99.77 90.49

BB 99.29 90.10 85.14 97.16 93.08 72.81 99.13 99.34 93.75
BBA 99.89 85.21 84.95 95.17 93.67 81.50 99.09 99.56 91.46

Precision
B 91.44 76.92 84.76 92.58 79.53 85.79 97.35 97.34 89.38

BB 94.61 79.79 87.07 97.29 79.33 92.19 98.78 99.34 93.11
BBA 97.32 85.54 85.44 96.96 83.59 87.46 98.64 99.78 94.45

of the Banload, Cutwail, and Ramnit families. The accuracy, precision, and recall

results indicate that the classifier based on bytes and basic features (BB) achieves

excellent results. For instance, the precision results show that given all the samples that

were labeled as Cutwail, our BB model was correct 97.29% of the time, outperforming

the results obtained for the other two models (92.58% and 96.96% for B and BBA,

respectively).

On the other hand, our classifiers yielded average results for the Banker and

Banload families. This phenomenon can be explained from the connection between

these two malware classes, as Banload is a family of trojans that includes code to

download other malware, usually members of the Banker family [55]. As a result, this

connection might have hindered the ability of our classifiers to distinguish between these

two malware families and make accurate predictions. Similarities in the malicious code

of samples for both Inject and Injector families can also explain the modest outcomes

generated by our classification models.

For our meta-model, we ran two configurations: a single layer perceptron and a

deep learning model similar to the configuration used for our three malware classifica-

tion models. This allowed us to quantify the improvements that could be obtained by

45

using deep neural networks in contrast to simpler neural network architectures. Our

meta-model, trained using a deep neural network, was able to achieve a much higher

accuracy (90.42%) compared to a simple perceptron model (which yielded an average

accuracy of 83.22%) to select the simplest model to classify the samples in our dataset.

4.4 Discussion

4.4.1 Meta-Model

The results for our meta-model show that by using bytes features only, we can

determine the simplest classifier to correctly assign malware into their corresponding

families. Therefore, our meta-model guarantees a speed up for the problem of pre-

dicting malware families, as it estimates when less expensive malware characterization,

such as byte features, will suffice to accurately classify malware. Our meta-model also

correctly predicts the small fraction of malware that require computationally expensive

static analysis, such as basic and assembly features. This enables us to decrease the

overall time it takes to generate features for a large malware corpus. By using our

meta-model to predict the simplest features and models that work best for different

malware datasets, we can scale static analysis to upwards of 10-100 million malware

samples, as we will only have to use the most expensive static characterizations for a

small fraction of the malware in the dataset.

4.4.2 Time Savings

The time required for bytes analysis of a malware is on average 0.06 seconds

and is therefore the fastest of our static analysis techniques, and also explains why we

46

have chosen this feature set to train our meta-model.

The meta-model’s time cost is computed by taking the predictions made across

each fold by the meta-model, finding the associated cost of the predicted model (B,

BB, BBA) for each malware sample in the fold, and computing an average over all

samples. Although the meta-model shows slightly higher time cost (7.23 seconds) than

the BB model (4.12 seconds), it provides drastically reduced time cost in contrast to

the BBA model (which takes over 60 seconds to construct the features for that model).

In summary, our meta-model can achieve an accuracy similar to the BBA model, with

a running time similar to the BB model.

4.5 Related Work

Furthermore, there are a few related works in the area of neural networks applied

to malware classification, based on different characterizations of malicious executables.

Dahl et al. [23] used random projections to reduce the dimensionality of malware binary

features. Using this reduced input space of strings, and API tri-grams extracted from

their malicious samples, they tested multiple neural network architectures, achieving

an error rate of 0.49% for a single neural network configuration.

Huang and Stokes [33] introduced a comparison between shallow neural networks

and deep learning architectures for the problem of malware classification. Focusing on

multi-task learning rates, the authors demonstrated that by employing a two-hidden

layer configuration, it was possible to get modest improvements compared to a single

hidden layer architecture, and achieved error rates of over 2.94% for the classification

47

of malware.

A study similar to the work presented in this paper was published by Ahmadi

et al. [2]. In their research, features such as metadata, byte-entropy histograms, byte-

sequences, number of api calls, and string length were extracted from the hex view

and assembly view of a dataset of approximately 20,000 malware. Using XGBoost, a

parallel implementation of the gradient boosting tree classifier, the authors managed

to select relevant features to classify malware, with an overall accuracy of 99.8%.

In addition, we improve upon the results introduced by Ahmadi et al., be-

cause our meta-model can determine the simplest features and models that work best

for different unseen malware datasets. As shown in our work, cheap and fast static

characterization of malware, such as bytes features, holds enough predictive power to

accurately classify malware, and more expensive characterizations such as basic and

assembly features are not always required. Furthermore, some families might only need

a specific type of features to be correctly classified (e.g., bytes and basic features for

cutwail, as shown in Section 4.3). By leveraging our meta-model, we can generate

the most expensive static characterizations only for a small subset of a large malware

corpus, allowing us to scale static analysis to upwards of 100 million malware samples.

48

Chapter 5

FEATURE AND MODEL SEARCH

In this chapter, we will describe experiments intended to refine our deep learning

models for the malware family classification problem. One of the most important parts

of training deep learning models, particularly deep neural networks, is finding the best

model configuration and feature set combination. The following sections will discuss

the results of our search respectively.

5.1 Model Search

Finding the most accurate model for detecting and classifying malware is our

goal. The number of models that need to be trained and validated are a function of

the number of hidden layers, their sizes, and other variables such as learning rates.

Obtaining a model that provides robust and accurate predictions depends on the in-

put features and the model’s configuration. In this section, we use supercomputing

resources to achieve an optimal deep learning model.

5.1.1 Titan Supercomputer

Titan [48] is a supercomputer built by Cray at Oak Ridge National Laboratory

for use in a variety of science projects. It is comprised of both CPUs and GPUs and

is the first such hybrid to perform over 10 petaFLOPS. In this experiment, we need

49

to train a huge amount of varying models to compare their effectiveness at classifying

malware samples. In our previous experiments, we used an AWS framework to complete

the training of our models. However, given the exreme scale of our search space, we

require huge compute capabilities that only a supercomputer can provide. We achieve

a great speedup in training time using Titan as we can train all models simultaneously.

Titan contains 18,688 physical compute nodes, each with a processor and phys-

ical memory. Each of these compute nodes contains a 16 core processor with 32 GB of

RAM. Spider, Titan’s extremely high-performance file system, has over 26,000 clients,

providing 32 petabytes of disk space and can move data at more than 1 TB/s. As

we will detail in the next section, by using these resources we can train and validate

all 791 deep learning models in parallel using 248 compute nodes while storing their

model data and results instantaneously across sessions.

5.1.2 Experiment and Results

In this section, we will detail our initial Titan model search experiments. In

the field of malware detection and classification there is minimal effort in choosing the

”best” model configuration or model hyperparameters. In most cases, a few model

designs are selected and tested and the best is chosen from that select group. This

experiment is an exhaustive search of model configurations to find the optimal deep

learning model for classifying malware samples into families.

50

5.1.2.1 Model Configurations

Discovering the best model configuration for a neural network is a difficult task

as most researchers rely on previous domain knowledge or expert systems to design

their models. For this experiment, we choose our search to contain a number of hidden

layers from one to five and the hidden layer sizes range from 8 to 512 by powers of two.

Previous experiments have shown that more than 5 hidden layers have not produced

better results than smaller models. Also, hidden layer sizes below 8 were not ideal as

the number of targets, or number of malware families, we are trying to classify is 8.

The only other stipulation on model configuration is that the hidden layer sizes must

be decreasing from the first hidden layer. The number of configurations per hidden

hidden layer can be seen in Table 5.1.

Table 5.1: Number of Configurations per Number of Hidden Layers

Hidden Layer Size Count
One 7
Two 28

Three 84
Four 210
Five 462
Total 791

5.1.2.2 Dataset

Similarly to the dataset we described in 4.2.3, we obtained our malware samples

from Reversing Labs and selected a subset to use for our model search. Contrary to the

dataset in 4.2.3, we removed confounding malware families that are extremely similar

in their characteristics and behaviors to get a more accurate prediction.

51

Initially, we optimized the size of our dataset to the number of parallel models we

could train on a single Titan core. By using a dataset on the scale of ten thousand, we

were able to make use of every available CPU on each core giving us 100% utilization

of our requested nodes. Using a much larger dataset on the scale of one hundred

thousand, the 32 GB of RAM per node described in Section 5.1.1 would not be enough

to fully utilize each nodes compute capability. The breakdown of malware families can

be seen in Table 5.2. We choose to include Goodware in our dataset as our model’s

can be considered both a malware detector and malware classification model.

Table 5.2: Composition of Malware and Goodware Dataset

Name Type Count
Andromeda virus 1250

Banker spyware 1250
Cutwail downloader 1250

Goodware benign 1250
Inject virus 1250

Ramnit trojan 1250
Shifu spyware 1250
Zbot downloader 1250
Total 10,000

5.1.2.3 Results

The exhaustive model search was computed on Titan by 5-fold cross validation

using the dataset disucssed in the previous section. All 791 models and their corre-

sponding error rates sorted by hidden layer size can be seen in Figure 5.2. From this

figure, we can see that there exists a tight grouping of error rates for sizes one through

three, while sizes four and five have a much greater dispersion. This dispersion is most

likely due to the sheer number of models generated by the exhaustive search. We can

52

also see that every model with hidden layer sizes of two and three contain smaller error

rates than every model with one hidden layer. A closer look at models with less than

five hidden layers can be seen in Figure 5.3

The number of hidden layers that achieves the lowest error rate in the search is

four, but there is a great dispersion of error rates for models of that size. Models with

five hidden layers have an even greater dispersion, with most models being worse than

smaller models. Furthermore, these large models take significantly longer to train than

their smaller counterparts. The top ten model configurations can be seen in Table 5.3.

The most accurate model configuration’s confusion matrix can be seen in Figure 5.1.

As we saw in Section 3.2 and confirmed in this experiment, inject and zbot are difficult

malware families to classify.

Table 5.3: Top Ten Model Configurations

of Hidden Layers Model Configuration Error Rate
4 256-128-16-16 5.05%
4 256-128-64-32 5.08%
3 512-256-128 5.09%
3 512-32-8 5.1%
4 256-128-64-64 5.11%
4 512-512-256-128 5.12%
3 256-32-32 5.12%
3 256-128-32 5.12%
4 128-128-128-16 5.12%
5 256-256-128-64-16 5.13%

Every model evaluated in the model search can be seen in Figure 5.4. This figure

shows the error rate of the epoch that achieved the highest accuracy for all 791 models.

From the figure, we can deduce that most models that attain their best accuracy before

epoch 140 do not achieve a low error rate. Models that continue to learn past epoch

53

Figure 5.1: This figure shows the confusion matrix for the top performing model out
of all 791 models tested.

140 tend to outperform most models. This information would be essential to know in

a non-exhaustive model search or a feature search. Models that do not decrease their

error rates significantly before 140 epochs could be discarded early.

The time to train a model is a significant factor in determining the optimal

model configuration. Figure 5.5, shows a simple breakdown of model training times

per epoch which are split by their respective hidden layer sizes. Due to parallelization

in the neural network training code, the average time to train per epoch is relatively the

54

same across all model configurations. However, the maximum training times seem to

increase with hidden layer size which most likely denotes a problem with parallelization

due to 100% CPU utilization on the supercomputing node. The large minimum training

time for one hidden layer models is most likely due to the small search space as there

are only seven models with that configuration. Figure 5.6 shows a more in-depth

breakdown of the model’s training times per epoch in a box-and-whisker plot.

Further experimentation is completed in the next sections based on the output of

this model search. In the next section, we discuss experiments to check the robustness of

our exhaustive model search. In Section 5.2.2.1, we discuss using a Genetic Algorithm

to search for the optimal subset of all features. We have chosen the simplest model in

the top 5 performing models from this experiment as we will be using less features to

generate highly accurate models.

5.1.3 Further Experimentation

Selecting the best model configuration depends on the targets of the model, the

input features used, and in some instances the dataset used to train the model. In this

section, we posit that our model search does not depend on the specific dataset used to

train the models and the optimal models will remain optimal given a different dataset.

In this experiment, we increase the number of malware families slightly and

the size of the dataset tenfold. In order to test the effectiveness of our model search,

we select ten top performers, middle performers, and bad performers from the model

configurations based on their error rates on the smaller dataset. The pipeline for our

55

Figure 5.2: This figure shows the results of our exhaustive model search run on the
Titan supercomputer separated by the hidden layer size of the model. Due to the sheer
number of four and five hidden layer models, there is a greater dispersion among error
rates than smaller model configurations. One hidden layer is not enough to obtain a
good error rate as every model with two and three hidden layers performs better.

scaled up experiment can be seen in Figure 5.7.

5.1.3.1 Dataset

For this section, we designed an experiment to test the results of our exhaustive

model search on a new, much larger dataset. In Section 4.2.3, we described a dataset

that is ten times larger than the one used in the previous section. The breakdown of

the malware samples families and counts can be seen in Table 4.1. Using this dataset,

our new experiments will provide us with confirmation that the leading models selected

56

Figure 5.3: This figure shows a closer look at the hidden layer sizes from one to four.
The lowest error rate is found in a model configuration with four hidden layers.

from the model search are robust to changes in dataset composition and size.

5.1.3.2 Results

The results of this experiment provide further evidence that given a static feature

set, top model performers tend to remain top performers with seperate datasets. In

Figure 5.8, you can see the results of the model configurations on a new dataset. The

original sections (top, middle and bottom model performers) were tested with a new

dataset to determine if they remain in the same section of performance when ranked.

70% of the top model performers from the exhaustive search are ranked in the

top performers in the new experiment. This result provides us with a good indication

57

Figure 5.4: This figure shows the best epoch resulting in the lowest error rate for every
model in the exhaustive search. Between epochs 140 and 200 there exhibits a tight
grouping of high accuracy models. In general, models that have best epochs below 140
tend to not learn as well and therefore exhibit a lower accuracy.

that with a static feature set, optimal model configurations tend to remain good per-

formers for malware detection and malware family classification given a new dataset.

The top five performing models of the new experiment can be seen with their original

rankings in Table 5.4.

However, the middle and bottom ranked results from the exhaustive search did

not contain the same result as the top performers on a new dataset. In fact, the

worst performers from the model search tended to perform better than the middle

models. This may be a case in which both middle and bottom performing models

in the model search are simply bad performing models and that the sheer number of

models produced in the exhaustive model search allowed them to be ranked higher

than other outliers. Combining the middle and bottom performance sections together,

58

1 2 3 4 5

0

50

100

150

200

250

300

350

400

450

500

550

20
1.

95

21
4.

31

21
7.

75

20
0.

36

17
6.

06

13
6.

21

56
.3

2

62
.7

4

48
.1

1

48
.5

3

31
9.

64

43
2.

38

49
1.

73 52
0.

35

50
8.

30

Hidden Layer Size

T
im

e
(i

n
S
ec

on
d
s)

Average Minimum Maximum

Figure 5.5: This figure shows the average, minimum, and maximum training times per
epoch for all models of a given hidden layer size. On average, each hidden layers models
take around 200 seconds per epoch to train. As the dataset is relatively small, most
of the RAM can be used for parallelization in the hidden layer training code which
allows them to be trained almost simultaneously. The maximum training times are
increasing with hidden layer size because in worst-case there is no parallelization and
training takes longer with a larger model.

59

Figure 5.6: This figure depicts a box and whisker plot for all average training times
within models. We can clearly see that models of four and five hidden layers contain a
large number of statistical outliers. An interesting insight is that models of two hidden
layers are the only models that contain outliers that train very fast which could be a
result of good parallelization.

85% of the models are correctly placed which is added evidence that both middle and

bottom performance sections are equally bad performing model configurations.

5.1.4 Related Work

Finding the best model for a specific application is a very difficult problem to

complete fully and with great certainty. Some applications of malware detection such

as Menahem et al. [54, pp. 1483-149] get around searching for the best base classifier

and choose to create ensemble methods to combine classifiers into more accurate and

60

Figure 5.7: This figure shows the pipeline for further experiments with our exhaustive
model search results. This experiment to to see whether or not the exhaustive model
search results depend on the specific dataset or are generalizable for any of our malware
sample datasets based on using every feature available. We take 10 models from the
top, middle and bottom performers of the model search and train them using 5-fold
cross validation on a much larger, scaled up dataset with more malware families. If
the results stay in similar groups of performance, we can say with confidence that the
model search results are generalizable.

robust models.

Within deep learning, there needs to be investigation in the correct model con-

figuration and hyperparameters. Grosse et al. [30] completes this task by creating

models with layer sizes from one to four and varying hidden layer sizes from 10 to

300 while the hyperparameters were chosen based on previous knowledge. This kind

of exhaustive search is similar to our search, but on a much smaller scale. Within a

61

Top Middle Bottom

1

2

3

4

5

6

7

Original Model Results Section

N
u

m
b

er
of

M
o
d

el
s

in
S

ec
ti

on

Top 10 Middle 10 Bottom 10

Figure 5.8: This figure shows the results of our new experiment to test the models
from our model search experiment on a new, much larger dataset. The results for the
middle and bottom tier models are mixed. However, most top tier models from the
original model search appear in the top performing models of this search.

62

Table 5.4: Top Five Model Configurations

Original Result Model Configuration Error Rate
7 256-32-32 9.38%
4 512-32-8 9.44%
8 256-128-32 10.5%
3 512-256-128 11.5%
2 256-128-64-32 11.7%

different field of research Potok et al. [64, pp. 47-55], uses TITAN supercomputer and

evolutionary optimization to search for the optimal deep learning topology given the

MNIST handwriting dataset.

5.2 Feature Search

Feature set exploration is computationally intensive, but a very important part

of deep learning. In Chapter 4, we discuss the varying costs of our feature sets and

how we can create a low cost and highly accurate model. In this section, we focus

on what are the most important features to use as input to produce highly accurate

models. We start by discussing exploratory preliminary work which shows the varying

predictability of singular features. Then, we will discuss more advanced techniques in

finding optimal feature sets using genetic algorithms.

5.2.1 Preliminary Work: Single Feature Models

A natural starting point for finding the top performing features is to build

models with a single feature as input. Using all bytes, basic and assembly features and

every possible combination of normalization methods that were applicable to those

features we obtain 47 distinct features we will use as inputs. All 47 features, their

63

categories, and normalization methods can be seen in Table 5.5. The single feature

models were built with our deep learning framework we described in Section 2.4.4.

The dataset we used for this experiment is over 100,000 malware samples and

was introduced in Section 4.2.3. The model architecture we used was a simple per-

ceptron model which should give a fair estimate of the features prediction power. The

results of the experiment can be seen in Figure 5.9 and are ordered from most accurate

to least accurate.

As the results indicate, single feature models are not robust enough to accurately

predict a malware’s family even though most models are better than a random guess

(11.11% accuracy with nine families). However, the results do show a pattern of the

best features to use in our malware family classification models. The top ten performers

used byte or basic feature categories. Specifically, the best basic analysis performers

were features obtained from extracting PE Header information. This is an interesting

conclusion as byte and basic features are the least costly to produce, but seem to have

tremendous predictive power.

5.2.2 Genetic Algorithms

A genetic algorithm is a heuristic search inspired by Charles Darwin’s theory of

natural evolution. Genetic algorithms are used widely to produce optimal solutions to

problems in many fields. The key components in a genetic algorithm include:

• A population of individuals

• Fitness function

64

• Selection Method

• Crossover (or recombination)

• Mutation

The biggest challenge in creating a genetic algorithm is translating the prob-

lem into a chromosome that represents an individual. A chromosome is made up of

a set number of genes and the initial population is created by constructing a random

chromosome for each individual. A fitness function is used to evaluate the individual

so that the population can be ranked so that selection can occur. Selection is usu-

ally completed by taking the top performers of the population and potentially some

low performers and selecting them as breeders. These breeders perform crossover by

exchanging part of their chromosomes to create children. Each child created has a

small chance of their chromosome mutating or changing slighly. One pass through this

process is called a generation and in most cases, many generations must be completed

before an optimal solution is found.

5.2.2.1 Feature Search

In this section, we will describe the feature search we implement using genetic

algorithms. We select a neural network model with three hidden layers of size 512, 32,

and 8. This model configuration performed well under both experiments performed

with two seperate datasets described in Section 5.1. The dataset we use is described in

Section 5.1.2.2 and consists of eight malware families with a combined 10,000 malware

65

samples. We use a small dataset for our initial test as the genetic algorithm normally

takes many generations to converge to an optimal solution. The input of model is

determined by the chromosome of the individual which we will describe below.

In our genetic algorithm, a gene is an individual feature. The chromosome is

made up of all 47 available features, or genes, represented by a 0 or a 1 if the feature does

not exist or exists in the model respectively. Each individual can then be represented

by a binary array of length 47 which further represents a subset of features which will

be used as input for our neural network. In Figure 5.10, a depiction of the chromosome

and an example of an individual gene is shown.

Each individual is trained and tested using 5-fold cross-validation for which

an error rate is computed. Each model is trained 50 epochs, which is enough to

accurately evaluate the feature set’s predictability. The fitness function for this genetic

algorithm is the error rate of the model. A population consists of 20 individuals.

The top 6 performers are selected as breeders and 2 random ”lucky” individuals are

chosen from the remaining 14. These breeders are selected randomly to exchange

information and create children by selecting a single crossover point to create two new

chromosomes. The process of crossover can be seen in Figure 5.11. Then, each gene in

each chromosome in the population has a mutation rate of 5%. This means that there

is a 5% chance of mutation for the each bit to change from a 0 to a 1 or vice versa.

The full genetic algorithm pipeline for this application can be seen in Figure 5.12.

66

5.2.2.2 Results

The goal of the genetic algorithm should be to find the best set of input features

given a specific deep learning model configuration. In each generation, the best model

is selected based on the minimum error rate amongst all individuals. The difference

between the current generation’s minimum error model and the last will become our

heuristic for stopping criteria. When the difference becomes close to 0, we assert that

the genetic algorithm has found the optimal feature set. We also record the average

error rate amongst all individuals within a generation. This metric will provide us with

more validation that our stopping criteria is correct and our local minimum is in fact

global.

In this experiment, we find the fittest individual, and therefore optimal feature

set, in generation 43 with an error rate of 7.04%. The minimum error difference becomes

zero at generation 42, which posits that the individuals are close to a local or global

minimum in terms of error rate. We continue evaluating the genetic algorithm almost

four times as long as this minimum to allow for other local minimum’s to be seen. Zero

minimum difference is not seen again after 160 generations and no other feature set

attains a smaller minimum error. With this in mind, we deduce that the best feature

set within generation 43 is a global minimum.

A graph of the individual with the minimum error rate in each generation can

be seen in Figure 5.13. We also look at the average error rates of all individuals within

each generation. In Figure 5.14, we can see that generation 43 is very close to a

global minimum for average error which occurs in generation 38. We can infer that the

67

generations around this global minimum will contain the fittest individuals within our

entire search.

The fittest individual’s genetic composition can be seen in Figure 5.6. The

feature number corresponds to the numbers in Table 5.5 and to a value of 1 in the

individual’s chromosome at that index. The optimal feature set uses only 21 out

of the potential 47 features. This is a drastic reduction of the feature space, which

reduces the cost of generating such features during analysis and the time cost of training

and validating our deep learning models. We continue improving the results of this

experiment in the next section.

5.2.2.3 Further Analysis

The top overall performer from the best generation was chosen to be trained

further. Initially, we train the models 50 epochs to decide whether the feature set

is learning efficiently. We train the overall performer to 200 epochs and select the

optimal error rate for that model. In doing this, we obtained a 5.41% error rate which

is a highly accurate model for this dataset.

This model contains only 21 out of the possible 47 available features and is

almost as accurate as our best model in Section 5.1.2.3 which contains all 47 features.

The genetic algorithm’s best model is not as accurate as our best model for this dataset,

but it does provide a lower-cost and faster training model. As most of the features

that were chosen were byte features, we use most of our low-cost and fast to produce

features while selecting the best higher cost features from the basic and as categories.

68

5.2.3 Related Work

Feature selection is a large part of making accurate and efficient machine learn-

ing models. Baldangombo et al. [7] uses information gain to select the best PE header

information for malware detection. Raman et al. [67] experimented with different fea-

ture selection methods on PE header features to find a minimal set of features that

obtained a reasonable detection rate. Dahl et al. [23, pp. 3422-3426] collects data

from the malware’s process memory and API calls. Feature reduction is then com-

pleted using mutual information and then random projections to further reduce the

feature space. Using behavioral data, Lin et al. [49, pp. 965-992] uses TF-IDF (term

frequency-inverse document frequency) and PCA to reduce the dimentionality of the

feature space for malware classification.

In android malware detection, feature selection and reduction methods have

been extensively surveyed by Pehlivan et al. [63]. Ranveer et al. [68] compared feature

extraction methods used for malware detection and surveyed strengths and weaknesses

of the current literature in all malware detection platforms.

Using neural networks, Jiang et al. [40, pp. 890-895] also uses PE header infor-

mation, but creates their own feature selection algorithm based on information gain

to reduce their features for malware detection. Some researchers choose to use combi-

nations of feature selection methods. Cepeda et al. [15, pp. 560-566] uses chi-squared

feature reduction in addtion to Mean Decrease in Accuracy (MDA) and Mean Decrease

in Impurity (MDI) feature selection methods to reduce the dimensions of the Virustotal

data which is used for malware detection.

69

Table 5.5: All Available Features

Feature # Feature Category Feature Normalization

1 bytes metrics ID
2 bytes metrics logcount
3 bytes histogram ID
4 bytes histogram logcount
5 bytes histogram freq
6 bytes byte-entropy histogram ID
7 bytes byte-entropy histogram logcount
8 bytes byte-entropy histogram normalize
9 bytes byte-entropy histogram normalize-bytes
10 bytes byte-entropy histogram normalize-entropy
11 basic metrics ID
12 basic metrics logcount
13 basic strings ID
14 basic strings logcount
15 basic strings normalize
16 basic metadata ID
17 basic metadata logcount
18 basic metadata normalize
19 basic import ID
20 basic import logcount
21 basic import normalize
22 assembly stats ID
23 assembly stats logcount
24 assembly 1grams ID
25 assembly 1grams logcount
26 assembly 1grams freq
27 assembly-spectrums functions-eigenvals ID
28 assembly-spectrums functions-stats ID
29 assembly-spectrums functions-stats logcount
30 assembly-spectrums functions-stats normalize
31 assembly-spectrums functions-1grams ID
32 assembly-spectrums functions-1grams logcount
33 assembly-spectrums functions-1grams normalize
34 assembly-spectrums blocks-eigenvals ID
35 assembly-spectrums blocks-stats ID
36 assembly-spectrums blocks-stats logcount
37 assembly-spectrums blocks-stats normalize
38 assembly-spectrums blocks-1grams ID
39 assembly-spectrums blocks-1grams logcount
40 assembly-spectrums blocks-1grams normalize
41 assembly-spectrums operations-eigenvals ID
42 assembly-spectrums operations-stats ID
43 assembly-spectrums operations-stats logcount
44 assembly-spectrums operations-stats normalize
45 assembly-spectrums operations-1grams ID
46 assembly-spectrums operations-1grams logcount
47 assembly-spectrums operations-1grams normalize

70

Figure 5.9: This figure displays results of our single feature perceptron models. All 47
feature and normalization method combinations are displayed with their corresponding
error rates.

71

Figure 5.10: This figure describes the definition of a chromosome within our genetic
algorithm. Each gene represents a single feature where a 1 is that the feature is an
input to the model and 0 is the opposite. There are 47 genes which make up our
chromosome which fully expresses the input features of the model.

Figure 5.11: This figure describes the process of crossover within our genetic algorithm.
The two parents are chosen from the available breeders and a random crossover point
is selected. All genes to the right of the crossover point are swapped between the two
chromosomes. The resulting two chromosomes are the resulting children and begin to
fill the next generation’s population. The mutation process happens after crossover is
completed.

72

Figure 5.12: This figure describes the full pipeline of the genetic algorithm. First,
a population of 20 individuals are created randomly to start the process. Then, each
individual is evaluated using 5-fold cross validation. The resulting error values are used
to select the fittest individuals and a few lucky individuals to be parents. Crossover is
completed and a new set of children are created. These children go through random
mutations of their chromosomes and become the new generations initial population.
This pipeline recurses until an optimal answer is acheived.

Table 5.6: Optimal Feature Set Using Fittest Individual

Feature # Feature Category Feature Normalization
1 bytes metrics ID
2 bytes metrics logcount
3 bytes histogram ID
4 bytes histogram logcount
5 bytes histogram freq
6 bytes byte-entropy histogram ID
7 bytes byte-entropy histogram logcount
9 bytes byte-entropy histogram normalize-bytes
11 basic metrics ID
16 basic metadata ID
17 basic metadata logcount
20 basic import logcount
22 assembly stats ID
23 assembly stats logcount
25 assembly 1grams logcount
27 assembly-spectrums functions-eigenvals ID
29 assembly-spectrums functions-stats logcount
30 assembly-spectrums functions-stats normalize
33 assembly-spectrums functions-1grams normalize
40 assembly-spectrums blocks-1grams normalize
45 assembly-spectrums operations-1grams ID

73

Figure 5.13: This figure shows each generation’s fittest individual chosen by error rate.
The error rate declines until a minimum error is seen. The algorithm reaches other
local minimum, but this graph shows the global minimum.

74

Figure 5.14: This figure shows the average error of all individuals in each generation.
We use this graph to obtain more evidence that our fittest individual is in fact a
global minimum. We can see that the global minimum for average error is close to our
minimum error feature set. Generations around this global minimum will contain the
fittest individuals which infers that our optimal feature set is a global minimum.

75

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation, we have described using machine learning for the detec-

tion and classification of malware. Using static analysis of malware we can generate

descriptive features to be used in conjunction with deep supervised learning models

in order to predict a file’s maliciousness. Our contribution to the research fields of

malware detection and malware family classification includes: feature set and model

exploration, exploring the tradeoffs in dataset size, accuracy of malware detection and

classification models, and the cost of producing large-scale datasets and deep learning

models.

This work advances the state-of-the-art in the fields of malware detection and

malware family classification. Malware datasets in the current literature are far too

small to create realistic models for the detection or classification of malware. Reducing

the cost of generating large malware datasets will allow researchers to more easily

create realistic datasets to train on. Using our meta-model design, security analysts

can make less costly, faster, and more accurate malware detection and malware family

classification predictions. We have discovered the best static features to be used in both

malware detection and malware family classification models so that we can increase

76

the accuracy of our models and reduce the time it takes to generate static features. In

addition, we have explored the best model configurations to use given basic, byte and

assembly features and we have documented the optimal architectures. We hope that

further research in this area provides us with even faster and more accurate malware

detection models to secure any organization.

6.2 Future Work

This research can be viewed as the start of cost efficient large scale machine

learning for malware detection and malware family classification. There is much more

work to be completed to expand on these experiments and to further validated them.

Some ideas for future work are presented below.

6.2.1 Datasets

Much of the work presented in this dissertation focuses on how to build large

scale machine learning models while keeping monetary and time cost low. The largest

dataset we build for use in these experiments is on the scale of one hundred thousand.

In a realistic environment, we would want to train our machine learning models on

millions of malware samples. These malware samples should be balanced between

malware families and should represent as many families as possible. Validating the

results of these experiments, specifically the meta-model discussed in Section 4, should

be completed with a large-scale realistic dataset.

Some of the data transformation we use are best practices from previous re-

search. Specifically, the basic features we generate are transformed into fixed sized

77

vectors and this transformation can be completed in many ways. The technique has

many factors such as the hashing function and the size of the vector which can be

changed to produce a different end result. The predictability of new transformations

should be researched.

Time is an important characteristic to understand in malware detection. In

our case, we looked at reducing the time it takes from malware analysis to detection.

However, an organization faces threats of constant malware attacks. Therefore, time-

series analysis of malware detection must be completed. Our models can be validated

by testing their effectiveness in a period of time, re-training them with the new malware

attacks, and further validating them in the next time period. This will show our models

effectiveness to learn from previous attacks.

6.2.2 Feature Search

In Section 5.2.2.1, we discuss a feature search using genetic algorithms to find

the best subset of our complete feature set. Our feature search was validated by finding

providing a 55% reduction in the feature space while obtaining nearly the same accuracy

as our best model configuration using all features. This feature search could be further

validated by comparing its effectiveness with different feature reduction technique such

as PCA.

The genetic algorithm we developed for our feature search could include genes

to represent model configurations as well. This would allow us to test the best fea-

ture sets to use with specific models which may generate more accurate models than

78

searching the model and feature space separately. This would require a large number

of generations and would have to be more parallelizable to be able to run in linear

time.

6.2.3 Model Search

The exhaustive model search using Titan included searching for the best deep

neural network model configuration. Hyperparameters of the model configuration such

as the learning rate or the activation function chosen for each hidden layer are not

considered and could be important to the overall accuracy of the network. The addition

of these hyperparameters would require vast amounts of compute requirements. Given

the results of our model search we have uncovered many termination conditions that

could be implemented that would reduce the search space dramatically.

79

BIBLIOGRAPHY

[1] Yousra Aafer, Wenliang Du, and Heng Yin. “Droidapiminer: Mining api-level

features for robust malware detection in android.” In: International Conference

on Security and Privacy in Communication Systems. Springer. 2013, pp. 86–103.

[2] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and

Giorgio Giacinto. “Novel feature extraction, selection and fusion for effective

malware family classification.” In: Proceedings of the Sixth ACM Conference on

Data and Application Security and Privacy. ACM. 2016, pp. 183–194.

[3] Faraz Ahmed, Haider Hameed, M Zubair Shafiq, and Muddassar Farooq. “Using

spatio-temporal information in API calls with machine learning algorithms for

malware detection.” In: Proceedings of the 2nd ACM workshop on Security and

artificial intelligence. ACM. 2009, pp. 55–62.

[4] Blake Anderson, Daniel Quist, Joshua Neil, Curtis Storlie, and Terran Lane.

“Graph-based malware detection using dynamic analysis.” In: Journal in com-

puter Virology 7.4 (2011), pp. 247–258.

[5] Blake Anderson, Curtis Storlie, and Terran Lane. “Improving malware classifica-

tion: bridging the static/dynamic gap.” In: Proceedings of the 5th ACM workshop

on Security and artificial intelligence. ACM. 2012, pp. 3–14.

80

[6] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and CERT Siemens. “DREBIN: Effective and Explainable Detection of Android

Malware in Your Pocket.” In: Network and Distributed System Security Sympo-

sium. 2014.

[7] Usukhbayar Baldangombo, Nyamjav Jambaljav, and Shi-Jinn Horng. “A static

malware detection system using data mining methods.” In: arXiv preprint arXiv:1308.2831

(2013).

[8] Ulrich Bayer, Engin Kirda, and Christopher Kruegel. “Improving the efficiency

of dynamic malware analysis.” In: Proceedings of the 2010 ACM Symposium on

Applied Computing. ACM. 2010, pp. 1871–1878.

[9] Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh.

“A survey on heuristic malware detection techniques.” In: 5th Conference on

Information and Knowledge Technology (IKT). IEEE. 2013, pp. 113–120.

[10] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. “Greedy

layer-wise training of deep networks.” In: Advances in neural information pro-

cessing systems. 2007, pp. 153–160.

[11] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter opti-

mization.” In: Journal of Machine Learning Research 13 (2012), pp. 281–305.

81

[12] Jonathan J Blount, Daniel R Tauritz, and Samuel A Mulder. “Adaptive rule-

based malware detection employing learning classifier systems: a proof of con-

cept.” In: IEEE 35th Annual Computer Software and Applications Conference

Workshops (COMPSACW). IEEE. 2011, pp. 110–115.

[13] Avrim L Blum and Pat Langley. “Selection of relevant features and examples in

machine learning.” In: Artificial intelligence 97.1 (1997), pp. 245–271.

[14] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visag-

gio. “Detecting android malware using sequences of system calls.” In: Proceedings

of the 3rd International Workshop on Software Development Lifecycle for Mobile.

ACM. 2015, pp. 13–20.

[15] Carlos Cepeda, Dan Lo Chia Tien, and Pablo Ordóñez. “Feature selection and

improving classification performance for malware detection.” In: Big Data and

Cloud Computing (BDCloud), Social Computing and Networking (SocialCom),

Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-

SustainCom), 2016 IEEE International Conferences on. IEEE. 2016, pp. 560–

566.

[16] Silvio Cesare and Yang Xiang. “Malware variant detection using similarity search

over sets of control flow graphs.” In: IEEE 10th International Conference on

Trust, Security and Privacy in Computing and Communications (TrustCom).

IEEE. 2011, pp. 181–189.

82

[17] Silvio Cesare, Yang Xiang, and Wanlei Zhou. “Malwise—an effective and efficient

classification system for packed and polymorphic malware.” In: IEEE Transac-

tions on Computers 62.6 (2013), pp. 1193–1206.

[18] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection methods.”

In: Computers & Electrical Engineering 40.1 (2014), pp. 16–28.

[19] Sen Chen, Minhui Xue, Lingling Fan, Shuang Hao, Lihua Xu, and Haojin Zhu.

“Hardening Malware Detection Systems Against Cyber Maneuvers: An Adver-

sarial Machine Learning Approach.” In: arXiv preprint arXiv:1706.04146 (2017).

[20] Brian Chess and Gary McGraw. “Static analysis for security.” In: IEEE Security

& Privacy 2.6 (2004), pp. 76–79.

[21] Mihai Christodorescu and Somesh Jha. “Testing malware detectors.” In: ACM

SIGSOFT Software Engineering Notes 29.4 (2004), pp. 34–44.

[22] Cuckoo. In: (). url: https://cuckoosandbox.org.

[23] George E Dahl, Jack W Stokes, Li Deng, and Dong Yu. “Large-scale malware clas-

sification using random projections and neural networks.” In: Acoustics, Speech

and Signal Processing (ICASSP), 2013 IEEE International Conference on. IEEE.

2013, pp. 3422–3426.

[24] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp,

Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. “Yes, Machine

Learning Can Be More Secure! A Case Study on Android Malware Detection.”

In: IEEE Transactions on Dependable and Secure Computing (2017).

83

https://cuckoosandbox.org

[25] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. “Speeding Up

Automatic Hyperparameter Optimization of Deep Neural Networks by Extrap-

olation of Learning Curves.” In: International Joint Conference on Artificial In-

telligence. 2015, pp. 3460–3468.

[26] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al. “Analysis of machine

learning techniques used in behavior-based malware detection.” In: Second Inter-

national Conference on Advances in Computing, Control and Telecommunication

Technologies (ACT). IEEE. 2010, pp. 201–203.

[27] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. “Malware analysis and classi-

fication: A survey.” In: Journal of Information Security 5.02 (2014), p. 56.

[28] Felan Carlo C Garcia, II Muga, and P Felix. “Random Forest for Malware Clas-

sification.” In: arXiv preprint arXiv:1609.07770 (2016).

[29] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. “Structural

detection of android malware using embedded call graphs.” In: Proceedings of the

2013 ACM workshop on Artificial intelligence and security. ACM. 2013, pp. 45–

54.

[30] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and

Patrick McDaniel. “Adversarial perturbations against deep neural networks for

malware classification.” In: arXiv preprint arXiv:1606.04435 (2016).

[31] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks.”

In: Neural networks 4.2 (1991), pp. 251–257.

84

[32] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward

networks are universal approximators.” In: Neural networks 2.5 (1989), pp. 359–

366.

[33] Wenyi Huang and Jack W Stokes. “MtNet: a multi-task neural network for dy-

namic malware classification.” In: Detection of Intrusions and Malware, and Vul-

nerability Assessment. Springer, 2016, pp. 399–418.

[34] Nwokedi Idika and Aditya P Mathur. “A survey of malware detection tech-

niques.” In: Center for Education and Research in Information Assurance and

Security (CERIAS) 48 (2007).

[35] Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Annette Shoemaker.

“Hyperparameter Optimization of Deep Neural Networks Using Non-Probabilistic

RBF Surrogate Model.” In: arXiv preprint arXiv:1607.08316 (2016).

[36] Rafiqul Islam, Ronghua Tian, Lynn M Batten, and Steve Versteeg. “Classification

of malware based on integrated static and dynamic features.” In: Journal of

Network and Computer Applications 36.2 (2013), pp. 646–656.

[37] Rafiqul Islam, Ronghua Tian, Lynn Batten, and Steve Versteeg. “Classification

of malware based on string and function feature selection.” In: Second Cybercrime

and Trustworthy Computing Workshop (CTC). IEEE. 2010, pp. 9–17.

[38] Alekseui Grigorevich Ivakhnenko and Valentin Grigorevich Lapa. Cybernetic pre-

dicting devices. New York, CCM Information Corp., 1996.

85

[39] Alexey Grigorevich Ivakhnenko. “Polynomial theory of complex systems.” In:

IEEE transactions on Systems, Man, and Cybernetics 1.4 (1971), pp. 364–378.

[40] Qingshan Jiang, Xinxing Zhao, and Kai Huang. “A feature selection method

for malware detection.” In: Information and Automation (ICIA), 2011 IEEE

International Conference on. IEEE. 2011, pp. 890–895.

[41] Ban Mohammed Khammas, Alireza Monemi, Joseph Stephen Bassi, Ismahani

Ismail, Sulaiman Mohd Nor, and Muhammad Nadzir Marsono. “Feature selection

and machine learning classification for malware detection.” In: Jurnal Teknologi

77.1 (2015).

[42] Youngjoon Ki, Eunjin Kim, and Huy Kang Kim. “A novel approach to detect

malware based on API call sequence analysis.” In: International Journal of Dis-

tributed Sensor Networks 11.6 (2015).

[43] Sean Kilgallon, Leonardo De La Rosa, and John Cavazos. “Improving the Effec-

tiveness and Efficiency of Dynamic Malware Analysis with Machine Learning.”

In: International Symposium on Resilient Cyber Systems. 2017.

[44] Sean Kilgallon, Leonardo De La Rosa, and John Cavazos. “Improving the effec-

tiveness and efficiency of dynamic malware analysis with machine learning.” In:

Resilience Week (RWS), 2017. IEEE. 2017, pp. 30–36.

[45] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. “BareCloud: Bare-

metal Analysis-based Evasive Malware Detection.” In: USENIX Security. Vol. 2014.

2014, pp. 287–301.

86

[46] Bojan Kolosnjaji, Apostolis Zarras, George Webster, and Claudia Eckert. “Deep

learning for classification of malware system call sequences.” In: Australasian

Joint Conference on Artificial Intelligence. Springer. 2016, pp. 137–149.

[47] G Bala Krishna, V Radha, and K Venugopala Rao. “Review of Contemporary

Literature on Machine Learning based Malware Analysis and Detection Strate-

gies.” In: Global Journal of Computer Science and Technology 16.5 (2016).

[48] Oak Ridge National Laboratory. Titan Supercomputer. Retrieved from: https:

//www.olcf.ornl.gov/olcf-resources/compute-systems/titan/.

[49] Chih-Ta Lin, Nai-Jian Wang, Han Xiao, and Claudia Eckert. “Feature Selection

and Extraction for Malware Classification.” In: J. Inf. Sci. Eng. 31.3 (2015),

pp. 965–992.

[50] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. “Mar-

vin: Efficient and comprehensive mobile app classification through static and

dynamic analysis.” In: 39th Annual Computer Software and Applications Con-

ference (COMPSAC). Vol. 2. IEEE. 2015, pp. 422–433.

[51] LM Security. Static Malware Analysis. Retrieved from: http://resources.

infosecinstitute . com / malware - analysis - basics - static - analysis/.

2017.

[52] Raymond W Lo, Karl N Levitt, and Ronald A Olsson. “MCF: A malicious code

filter.” In: Computers & Security 14.6 (1995), pp. 541–566.

87

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
http://resources.infosecinstitute.com/malware-analysis-basics-static-analysis/
http://resources.infosecinstitute.com/malware-analysis-basics-static-analysis/

[53] Ilya Loshchilov and Frank Hutter. “CMA-ES for Hyperparameter Optimization

of Deep Neural Networks.” In: arXiv preprint arXiv:1604.07269 (2016).

[54] Eitan Menahem, Asaf Shabtai, Lior Rokach, and Yuval Elovici. “Improving mal-

ware detection by applying multi-inducer ensemble.” In: Computational Statistics

& Data Analysis 53.4 (2009), pp. 1483–1494.

[55] Microsoft. TrojanDownloader:Win32/Banload. Retrieved from: https://www.

microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?

Name=TrojanDownloader:Win32/Banload.

[56] Aziz Mohaisen, Omar Alrawi, and Manar Mohaisen. “Amal: High-fidelity, behavior-

based automated malware analysis and classification.” In: Computers & Security

52 (2015), pp. 251–266.

[57] Savita Mohurle and Manisha Patil. “A brief study of Wannacry Threat: Ran-

somware Attack 2017.” In: International Journal of Advanced Research in Com-

puter Science 8.5 (2017).

[58] Veelasha Moonsamy, Ronghua Tian, and Lynn Batten. “Feature reduction to

speed up malware classification.” In: Nordic Conference on Secure IT Systems.

Springer. 2011, pp. 176–188.

[59] Andreas Moser, Christopher Kruegel, and Engin Kirda. “Limits of static analysis

for malware detection.” In: Twenty-third Annual Computer security applications

conference. IEEE. 2007, pp. 421–430.

88

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Banload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Banload
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Banload

[60] Lakshmanan Nataraj, S Karthikeyan, Gregoire Jacob, and BS Manjunath. “Mal-

ware images: visualization and automatic classification.” In: Proceedings of the

8th international symposium on visualization for cyber security. ACM. 2011, p. 4.

[61] Hiran V Nath and Babu M Mehtre. “Static Malware Analysis Using Machine

Learning Methods.” In: International Conference on Security in Computer Net-

works and Distributed Systems. Springer. 2014, pp. 440–450.

[62] Swathi Pai, Fabio Di Troia, Corrado Aaron Visaggio, Thomas H Austin, and

Mark Stamp. “Clustering for malware classification.” In: Journal of Computer

Virology and Hacking Techniques 13.2 (2017), pp. 95–107.

[63] Uğur Pehlivan, Nuray Baltaci, Cengiz Acartürk, and Nazife Baykal. “The analysis

of feature selection methods and classification algorithms in permission based

Android malware detection.” In: Computational Intelligence in Cyber Security

(CICS), 2014 IEEE Symposium on. IEEE. 2014, pp. 1–8.

[64] Thomas E Potok, Catherine D Schuman, Steven R Young, Robert M Patton, Fed-

erico Spedalieri, Jeremy Liu, Ke-Thia Yao, Garrett Rose, and Gangotree Chakma.

“A study of complex deep learning networks on high performance, neuromorphic,

and quantum computers.” In: Proceedings of the Workshop on Machine Learning

in High Performance Computing Environments. IEEE Press. 2016, pp. 47–55.

[65] Yong Qiao, Yuexiang Yang, Jie He, Chuan Tang, and Zhixue Liu. “CBM: free,

automatic malware analysis framework using API call sequences.” In: Knowledge

Engineering and Management. Springer, 2014, pp. 225–236.

89

[66] Radare2. url: https://www.radare.org/r/.

[67] Karthik Raman. Towards classification of polymorphic malware. University of

California, Irvine, 2011. isbn: 1124517820.

[68] Smita Ranveer and Swapnaja Hiray. “Comparative analysis of feature extraction

methods of malware detection.” In: International Journal of Computer Applica-

tions 120.5 (2015).

[69] ReversingLabs. url: https://www.reversinglabs.com/.

[70] ReversingLabs. Active File Decomposition. Retrieved from: https://www.reversinglabs.

com/technology/active-file-decomposition.html.

[71] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. “Automatic

analysis of malware behavior using machine learning.” In: Journal of Computer

Security 19.4 (2011), pp. 639–668.

[72] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning

representations by back-propagating errors.” In: Cognitive modeling 5.3 (1988),

p. 1.

[73] Imtithal A Saeed, Ali Selamat, and Ali MA Abuagoub. “A survey on malware and

malware detection systems.” In: International Journal of Computer Applications

67.16 (2013).

[74] Justin Sahs and Latifur Khan. “A machine learning approach to android mal-

ware detection.” In: Intelligence and security informatics conference (eisic), 2012

european. IEEE. 2012, pp. 141–147.

90

https://www.radare.org/r/
https://www.reversinglabs.com/
https://www.reversinglabs.com/technology/active-file-decomposition.html
https://www.reversinglabs.com/technology/active-file-decomposition.html

[75] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. “Op-

code sequences as representation of executables for data-mining-based unknown

malware detection.” In: Information Sciences 231 (2013), pp. 64–82.

[76] Igor Santos, Carlos Laorden, and Pablo G Bringas. “Collective classification for

unknown malware detection.” In: Proceedings of the International Conference on

Security and Cryptography (SECRYPT). IEEE. 2011, pp. 251–256.

[77] Joshua Saxe and Konstantin Berlin. “Deep neural network based malware de-

tection using two dimensional binary program features.” In: Malicious and Un-

wanted Software (MALWARE), 2015 10th International Conference on. IEEE.

2015, pp. 11–20.

[78] Robert Searles, Lifan Xu, William Killian, Tristan Vanderbruggen, Teague For-

ren, John Howe, Zachary Pearson, Corey Shannon, Joshua Simmons, and John

Cavazos. “Parallelization of Machine Learning Applied to Call Graphs of Binaries

for Malware Detection.” In: Parallel, Distributed and Network-based Processing

(PDP), 2017 25th Euromicro International Conference on. IEEE. 2017, pp. 69–

77.

[79] Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan Glezer. “Detection

of malicious code by applying machine learning classifiers on static features: A

state-of-the-art survey.” In: Information Security 14.1 (2009), pp. 16–29.

91

[80] Priyank Singhal and Nataasha Raul. “Malware detection module using machine

learning algorithms to assist in centralized security in enterprise networks.” In:

ACM Computing Surveys (2012).

[81] Michael Spreitzenbarth, Thomas Schreck, Florian Echtler, Daniel Arp, and Jo-

hannes Hoffmann. “Mobile-Sandbox: combining static and dynamic analysis with

machine-learning techniques.” In: International Journal of Information Security

14.2 (2015), pp. 141–153.

[82] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas.

“SoK: deep packer inspection: a longitudinal study of the complexity of run-

time packers.” In: IEEE Symposium on Security and Privacy (SP). IEEE. 2015,

pp. 659–673.

[83] Dolly Uppal, Vishakha Mehra, and Vinod Verma. “Basic survey on malware anal-

ysis, tools and techniques.” In: International Journal on Computational Sciences

and Applications (IJCSA) 4.1 (2014), pp. 103–120.

[84] Tristan Vanderbruggen and John Cavazos. “Large-scale exploration of feature

sets and deep learning models to classify malicious applications.” In: Resilience

Week (RWS), 2017. IEEE. 2017, pp. 37–43.

[85] Mihai Vasilescu, Laura Gheorghe, and Nicolae Tapus. “Practical malware analy-

sis based on sandboxing.” In: Networking in Education and Research Joint Con-

ference: 13th Romanian educational and research network & 8th Research and

92

Educational Networking Association of Moldova Conference. IEEE. 2014, pp. 1–

6.

[86] Carsten Willems, Thorsten Holz, and Felix Freiling. “Toward automated dynamic

malware analysis using cwsandbox.” In: IEEE Security & Privacy 5.2 (2007).

[87] Suleiman Y Yerima, Sakir Sezer, and Gavin McWilliams. “Analysis of Bayesian

classification-based approaches for Android malware detection.” In: IET Infor-

mation Security 8.1 (2014), pp. 25–36.

[88] Suleiman Y Yerima, Sakir Sezer, and Igor Muttik. “Android malware detection

using parallel machine learning classifiers.” In: Next Generation Mobile Apps,

Services and Technologies (NGMAST), 2014 Eighth International Conference

on. IEEE. 2014, pp. 37–42.

[89] Suleiman Y Yerima, Sakir Sezer, and Igor Muttik. “High accuracy android mal-

ware detection using ensemble learning.” In: IET Information Security 9.6 (2015),

pp. 313–320.

[90] Xinchuan Zeng and Tony R Martinez. “Distribution-balanced stratified cross-

validation for accuracy estimation.” In: Journal of Experimental & Theoretical

Artificial Intelligence 12.1 (2000), pp. 1–12.

93

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Malware Analysis
	2.1.1 Static Analysis
	2.1.1.1 Malware's Executable Code

	2.2 Malware Datasets
	2.2.1 Datasets

	2.3 Feature Characterization
	2.3.1 Basic
	2.3.2 Byte
	2.3.3 Assembly
	2.3.3.1 Operation Level
	2.3.3.2 Block Level
	2.3.3.3 Function Level
	2.3.3.4 Spectral Features

	2.3.4 Feature Summary
	2.3.5 Preprocessing

	2.4 Deep Neural Networks
	2.4.1 Artificial Neural Networks
	2.4.2 Deep Learning
	2.4.3 Theano: Our Deep Learning Implementation
	2.4.4 Machine Learning in the Cloud
	2.4.5 Comparing Models
	2.4.5.1 Cross-Validation

	2.4.6 AWS Cloud Infrastructure

	2.5 Literature Overview

	3 Malware Family Classification
	3.1 Dynamic Analysis
	3.2 Malware Family Classification

	4 Efficient Classification of Malware Using Deep Learning
	4.1 Motivation
	4.2 Methodology
	4.2.1 Training
	4.2.1.1 Malware Classification Models
	4.2.1.2 Meta-Model

	4.2.2 Model Configuration
	4.2.3 Dataset

	4.3 Results
	4.4 Discussion
	4.4.1 Meta-Model
	4.4.2 Time Savings

	4.5 Related Work

	5 Feature and Model Search
	5.1 Model Search
	5.1.1 Titan Supercomputer
	5.1.2 Experiment and Results
	5.1.2.1 Model Configurations
	5.1.2.2 Dataset
	5.1.2.3 Results

	5.1.3 Further Experimentation
	5.1.3.1 Dataset
	5.1.3.2 Results

	5.1.4 Related Work

	5.2 Feature Search
	5.2.1 Preliminary Work: Single Feature Models
	5.2.2 Genetic Algorithms
	5.2.2.1 Feature Search
	5.2.2.2 Results
	5.2.2.3 Further Analysis

	5.2.3 Related Work

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Datasets
	6.2.2 Feature Search
	6.2.3 Model Search

	BIBLIOGRAPHY

