
IMPROVED DEPTH MAP UPSAMPLING

USING ITERATIVE JOINT TRILATERAL FILTER

by

Yuksel Karahan

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Electrical &
Computer Engineering

Winter 2018

c© 2018 Yuksel Karahan
All Rights Reserved

IMPROVED DEPTH MAP UPSAMPLING

USING ITERATIVE JOINT TRILATERAL FILTER

by

Yuksel Karahan

Approved:
Gonzalo R. Arce, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College Engineering

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Gonzalo R. Arce. I

want to express appreciation for giving me the opportunity to be part of his research

group. Special thanks to the Turkish Educational Ministry that has been supporting

me during the study. Also, thanks to Juan Florez for taking the UD depth dataset

measurements used in this research and for his helpful comments. Cenk Demir, thanks

for helping me run the experiment. Carlos Mendoza, thanks for your advice and for

acting as an instructor to me. Thanks also to Ria and Sara for their proofreading

as well. Thanks to Hoover, Claudia, Abdullah, Mariano, Edgar, Xiao, Chen, Juan

Becerra, Alejandro, Angela, Karelia, and Laura, a group of amazing people.

Last but not the least, my thanks also go to my mother, father, sisters, and

brothers. Without them, I would not have come this far. Thanks go out to Gina

Puentes and her family for their moral support. The unique appreciation goes to my

princess, little angel Sara Lorin who is my source of motivation. The more can be said

for my friends Mehmet Emin Akdogan and Jan Sher Khan who have supported and

motivated me all the way. Finally, I would like to give my sincerest apologies for all

those helping hands, whose names I may have missed unintentionally.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi
LIST OF FIGURES . vii
ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

2 BILATERAL FILTERING TECHNIQUE AND ITS
EXTENSIONS . 4

2.1 Bilateral Filter . 4
2.2 Joint Bilateral Filter . 6
2.3 Joint Bilateral Upsampling . 7
2.4 The Trilateral Filter . 8
2.5 Joint Trilateral Upsampling . 10
2.6 Joint Trilateral Filter . 12

3 A TAXONOMY OF FRAMEWORK ALGORITHMS 16

3.1 Diagnosis of Depth Discontinuity Regions in SR Depth Image 16
3.2 Structure-Aware Onion-Peel Algorithm 18

4 ITERATIVE JOINT TRILATERAL FILTER 24

5 EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION . . . 28

5.1 Data Sets . 28
5.2 Performance Evaluation Metrics . 28

5.2.1 Bad Pixel Percentage . 29
5.2.2 MSE . 29
5.2.3 PSNR . 29

iv

5.2.4 SSIM . 30

5.3 Experiment and Results . 30

6 CONCLUSION . 37

BIBLIOGRAPHY . 39

v

LIST OF TABLES

5.1 Comparison of BPP, MSE, PSNR, and SSIM with Upsampling Factor
4X and 8X for τ = 8 . 31

5.2 Comparison of BPP for Each Dataset with Upsampling Factor 4X for
Varying τ Values . 32

5.3 Comparison of BPP, MSE, PSNR, and SSIM with Upsampling Factor
4X and 8X for τ = 4 . 34

5.4 Comparison of BPP for Each Dataset with Upsampling Factor 4X for
Varying Window Sizes . 34

vi

LIST OF FIGURES

2.1 Illustration of Bilateral Filter . 5

2.2 Flowchart of Joint Trilateral Filter 12

2.3 Gradients of Two Adjacent Pixels 13

3.1 Depth Discontinuity Identification 17

3.2 Union of Depth Discontinuity Regions 18

3.3 Onion Peel Filtering . 19

3.4 Incorrect Onion Peel Filtering . 19

3.5 Pixel Refinement Process . 20

3.6 Canny Edge Loop Disconnection 22

4.1 Flowchart of the Iterative Joint Trilateral Filter 24

4.2 Illustration of the Iterative Joint Trilateral Filter 25

4.3 Illustration of the Difference of Refined Region 26

4.4 Illustration of the Refined Region After each Iteration 26

4.5 Illustration of Filtered Two Near Depth Planes 27

5.1 Visual Comparison of the JTF and JTFite Results of Teddy Depth
Map . 30

5.2 Zoom Version of UD Depth Dataset 31

5.3 Visual Comparison of UD depth dataset 33

vii

5.4 Visual Comparison of Cones, Venus, Dolls(two ROIs) and Midd2
Depth Maps . 35

5.5 Visual Comparison of Moebius, Reindeer, Kitchen1, Kitchen2 and
Store1 Depth Maps . 36

viii

ABSTRACT

Typical depth sensor cameras have a lower resolution compared to RGB cam-

eras. In this work, inspired by the Joint Trilateral Filter (JTF), an iterative JTF

(JTFite) approach is presented to improve the visual quality of the depth discontinu-

ity regions. Our framework takes into consideration the utilization of the difference of

refined pixels’ values and the canny edge of the JTF, to obtain sharper edges. The

recent work on JTF is revisited by setting varying parameters which employs local

gradients information to avoid texture artifacts in a structure-aware onion filtering.

We extend the JTF by using traits of its local filtering technique to improve further

the edges of the objects in the depth map by post-filtering the updated region. The

proposed method enhances details of the textures in the depth map by emphasizing on

gradients of the drastic changes of the pixels values. The primary goal of this work is to

increase the depth resolution by a high-resolution RGB image to preserve sharp edges

and details of the textures. Visual and quantitative experimental results show that the

proposed method outperforms the JTF for depth map upsampling. We evaluate the

upsampled and filtered low-resolution (LR) depth maps with their associated ground

truth (GT) images.

ix

Chapter 1

INTRODUCTION

Depth maps have been playing an important task in entertainment, scientific

research, and medical imaging areas, and so on. Time-of-flight (ToF) camera, an

active-light range sensor, is the most well-known, which performs considerably well

and measures the depth at a high frame rate. ToF cameras (e.g., Microsoft Kinect)

use active sensing to measure the phase delay of the reflected near-infrared wave from

a scene to its light source to calculate the distance. The ToF depth camera, however,

is sensitive to illumination and noise; hence, it performs deficiently on rich-textured

scenes. Additionally, the typical sensor size of depth camera is limited compared to

an RGB camera; therefore, the captured data has low-resolution (LR) which leads to

poor compositions at objects’ boundaries. Thereupon, by taking into consideration the

depth map sensors and their application areas, researchers seek to improve the visual

quality of depth images.

The problem addressed above can be solved by upsampling the given low-

resolution map or by employing a high-resolution (HR) color image using its property

to meet particular applications. The most popular upsampling techniques increase the

depth maps’ resolution, such as, for example, bicubic or bilinear interpolation; how-

ever, while the interpolated version is a good estimator of super-resolution (SR), those

upsampling methods inescapably smooth the textures and blur the edges.

Recently, some proposals have focused mainly on image filtering techniques

for depth map upsampling, such as the Bilateral Filter (BF) or variations. BF is

a non-linear filtering method proposed by Tomasi and Madchuni [2], which smooths

the images while preserving edges. One of the most famous fast filtering methods

proposed by Kopf et al. [8], is the Joint Bilateral Filter (JBU), which similarly averages

1

the samples at LR image into HR depth maps to obtain improvement on the edges.

Equivalently, the Joint Bilateral Filter (JBF) proposed by Eisemann et al. [4], with the

support of a high resolution guided flash image, assumes the scene is motionless. These

approaches utilize LR depth input with a guidance color image and expect that the HR

image is registered and both depth and guided images possess similar discontinuities.

However, related work [2] fails when the guidance image is dark or noisy, and texture

artifacts appear in [8], [4] when the same depth plane exhibits rich color texture or

different depth regions show similar colors.

Lo et al. [1] proposed the Joint Trilateral Filter (JTF) to address texture arti-

facts by employing local gradients on depth maps. Lo applied a binary indicator to a

bicubic interpolated depth map to identify depth discontinuities. Later, they applied

JTF to the defined discontinuities in a structure-aware onion peel filtering to refine ob-

ject edges. Although adopting a registered HR guided color image with a local gradient

kernel can increase the depth details, the result suffers from distortion when objects in

the depth map exhibit sharp corners, similar range in depth border, and rich clustered

textures.

In this work, we present an iterative JTF (JTFite) to obtain sharper edges by

post-filtering the JTF result. We iterate the refined edges using the union of the Canny

edge of the JTF and the gradient of refined pixels’ differences. The proposed method

is inspired by the traits of the local structure of the JTF to solve distortion of defined

edges. We observe the pixels’ values after each iteration to track changes before and

after refining. The changes, naturally, appear in depth discontinuity regions. Since the

JTF does not update the pixels equally, some filtered regions exhibit drastic changes.

We applied a local gradient to the refined pixels’ differences which reveals a slope

of every pixel. The most considerable changes of pixels assign the direction of the

gradient. Henceforth, we unite gradient-applied regions with the Canny edge of JTF

to constrain the update range. JTFite reconstructs depth map edges considerably well

when two adjacent pixels exhibit similar depth but different color, where JTF fails.

Similarly, JTFite outperforms JTF when two adjacent pixels show similar color but

2

different depth planes.

This work shows that the proposed framework preserves details in the depth

map and outperforms JTF to some extent. The goal of this paper is to produce quality

HR depth maps out from the LR depth map using local filtering features highlighted

in the JTF technique. The remainder of the paper is organized as follows: Section II

briefly describes related algorithms of the bilateral filter and extensive details about

JTF. Section III features the framework of binary region identification and structure-

aware onion peel filtering. In section IV, the proposed method JTFite is presented.

Section V is the experimental results and evaluations. Section VI is the conclusion of

the work.

3

Chapter 2

BILATERAL FILTERING TECHNIQUE AND ITS EXTENSIONS

The Bilateral Filter is an advanced smoothing and edge-preserving image filter-

ing technique introduced by Tomasi and Madchuni [2] in 1998. The bilateral filter is

widely used in image processing, and it has been improved in many of its extensions

such as the Joint Bilateral Filter, Joint Bilateral Upsampling, and Joint Trilateral Fil-

ter. All of the extensions are well developed for specific imaging filtering tasks. A few

of them and their theoretical and mathematical explanations are presented here.

2.1 Bilateral Filter

The Bilateral Filter, introduced by Tomasi and Madchuni [2], is a widely used

technique that smooths an image while preserving edges, and the filter is broadly

applied in images to reduce the noise. Since it is not an iterative filtering method, BF

contains nonlinear weights of nearby pixel values. Those summations of weights are

delivered as a filtered result. The BF can be expressed as follows:

Ĩp =

∑
q∈Ω

f(||p− q||).g(||Ip − Iq||).Iq∑
q∈Ω

f(||p− q||).g(||Ip − Iq||)
(2.1)

In equation (2.1) p and q represent the pixel indices where p is the center and

q indicates its neighbor pixel under the spatial support Ω. A window w appoints the

spatial support by its size and restricts q in this frame. Ĩp is the filtered output at the

pixel p. f(||p−q||) and g(||Ip−Iq||) are two Gaussian kernels where f(.) is a spatial and

g(.) is a range kernel. The spatial kernel is applied to measure the Euclidean distance

from the center pixel, and the range is applied to describe the difference of intensity

4

Input

Spatial Weight f

Range Weight g

fxg for the central pixel

Output

Figure 2.1: The bilateral filter smooths the input image while preserving its edges. Each
pixel is updated by an average weighted of its adjacent pixels. Weights are calculated
by a spatial and range kernel under a spatial support. The figure is reproduced from
[23]. HTTP://doi.acm.org/10.1145/566570.566574

values between p and neighboring pixels q. Hence, the weights are not only assigned

by the geometric distance but also with the intensity closeness. The f(.) and g(.) in

equation (2.1) defined in a Gaussian form

f(||p− q||) = e−(||p−q||)2/2σ2
f and g(||Ip − Iq||) = e−(||Ip−Iq ||)2/2σ2

g ,

where σf and σg are spatial domain and intensity domain standard deviations respec-

tively. These parameters are dominating the fall-off of weights in the spectrum and

characterizing their adjacencies.

The denominator of (2.1) is called the normalization factor where it normalizes

the appointed weights accordingly, defined as follows:

kp =
∑
q∈Ω

f(||p− q||).g(||Ip − Iq||) (2.2)

The weights that contributed to all the pixels are displayed as normalized constant kp.

5

• BF is nonlinear, and its formulation is simple [3]. The averaged weight of its

neighbors replaces the emphasized pixel.

• The basic idea behind its simplicity is that there are only two parameters to

preserve the features: size and intensity.

• BF is a standard domain filtering, not an iterative method; therefore, it is

easy to set the parameters.

• It is efficient and fast when the computational time is crucial.

2.2 Joint Bilateral Filter

The Joint Bilateral Filter is an advanced edge-preserving image filtering tech-

nique introduced by Eisemann [4] and Petschnigg [6] that prevents image smoothing.

It may be known as the Cross Bilateral Filter because it mainly decouples edge pre-

serving and image smoothing. The technique is using a reference image Î instead of

input image I. The reference input Ĩ is an image that is captured from a different

source. The JBF, typically, assigns weights respect to pixel location and its color tex-

ture. Another way of saying this is that neighbor pixels get lower weight with greater

geometric distance and higher photometric difference. The JBF can be expressed as

follows:

Ĩp =

∑
q∈Ω

f(||p− q||).g(||Îp − Îq||).Iq∑
q∈Ω

f(||p− q||).g(||Îp − Îq||)
(2.3)

The new kernel g(||Îp − Îq||) is utilized to improve the quality of input where

Î is an image of the scene well illuminated. In equation (2.3) p is the center of the

kernel, and q is neighboring pixels under the spatial support Ω. The input image I and

the geometric distance kernel f(||p− q||) are the same that used in BF. Îp and Îq are

the pixel intensities at the center pixel p and its neighbor q respectively where Î is a

6

displacement of I. The denominator of (2.3) is normalization factor where the second

kernel is utilized from the reference input and as follows:

kp =
∑
q∈Ω

f(||p− q||).g(||Îp − Îq||).

It can be seen that the JBF technique depends on a high contrast and scene

illumination. In the case of a dark and noisy scene, the contribution from the second

kernel g(||Ip − Iq||) to the BF is going to be inadequate due to the lack of intensity

range. Fundamentally, the JBF technique [5] aims to associate two input images: one

captured with a flashlight [6] and another one out of light, to obtain an HR output

image.

•JBF performs well-removing noise [7]; therefore, the filter ensures better vi-

sual quality and outperforms Gaussian noise removal techniques regarding the PSNR

comparison.

• The JBF performs considerably well when the noise is high.

2.3 Joint Bilateral Upsampling

The Joint Bilateral Upsampling algorithm is an extension of the Bilateral Filter

introduced by Kopf et al. [8] that uses a low-resolution kernel instead of an upsampled

version. JBU reconstructs an HR output where JBF upsamples the input instead.

Given an HR color input, in-depth upsampling, JBU computes two Gaussian kernels

where the spatial filter is a truncated Gaussian kernel and the range filter from HR

image to upsample the LR depth input sparsely. Therefore, the technique is performing

well at preserving high frequencies.

The upsampled image S̃ is computed as follows:

S̃p =

∑
q↓∈Ω

f(||p↓ − q↓||).g(||Îp − Îq||).Sq↓∑
q↓∈Ω

f(||p↓ − q↓||).g(||Îp − Îq||)
(2.4)

In equation(2.4) p and q denote locations of pixels in HR guidance image Î, and

p↓ and q↓ indicate the corresponding locations in the input LR image S. Although,

7

the above equation is almost same compared to BF, the geometric distance kernel

f(||p↓ − q↓||) is set at LR input image S where the range kernel g(||Îp − Îq||) is set at

HR input image Î. Both kernels are Gaussian and can be expressed the same in the

BF where the spatial distance kernel f(.) is expressed respect to its pixel locations

f(||p↓ − q↓||) = e
−(||p↓−q↓||)

2
/

2σ2
f .

The denominator of (2.4) is a normalization factor where the first kernel is

employed from LR input image. It can be written explicitly as follows:

kp =
∑
q↓∈Ω

f(||p↓ − q↓||).g(||Îp − Îq||).

JBU, a method inspired by BF, has a powerful ability to upsample hues for

colorization and exposure map for tone mapping [9]. As BF does, the technique is sim-

ilarly averaging the samples at LR image that the weights calculated by neighboring

pixels where the contribution varies within the spatial distance and color difference.

Kopf’s JBU technique upsamples the LR image, considering depth discontinuities lo-

cally which makes it a fast filtering method.

• JBU obtains an HR S̃ depth result that can preserve edges that are consistent

with the HR input image Î [11]. In other words, the upsampled image S̃ is inclusive

of the high-frequency components of the HR guidance image Î.

• The guidance image is sampled sparsely during the filtering process; therefore,

it is independent of an upsampling factor.

• Since the filtering process takes into account a small spatial footprint; the

JBU can be computed fast. It also applied to gigapixel images by Kopf et al. [16] to

upsample tone mapping solutions.

2.4 The Trilateral Filter

The first Trilateral Filter introduced by P.Choudhury et al. [12] in 2003, is an

extension of the Bilateral Filter for edge-preserving smoothing operations. The main

aim is to combine a gradient and intensity BF with a pyramid-based method to limit

8

filter range. It starts with BF application on gradients of the input image to determine

discontinued image regions. Authors define slopes on those discontinuities and tilt the

BF before applying to the intensity of the input image. With the tilting process, the

range kernel is remodeled as a spatial filter [9]. Conclusively, the output pixel’s range is

limited by the tilted BF where the filtering process focuses on a set of pixels that share

similar gradient values. Overall, the trilateral filter addresses three contributions:

(i) Tilting

The filtering window is tilted by Gθ to address high-gradient regions. The gradi-

ents of the input can be formulated as follows:

Gθ(x) =
1

kθ(x)

∞∫
∞

5Iin(x+ ζ)c(ζ)s(|| 5 Iin(x+ ζ)−5Iin(x)||) dζ (2.5)

The normalization factor kθ(x) is defined as

kθ(x) =

∞∫
∞

c(ζ)s(|| 5 Iin(x+ ζ)−5Iin(x)||) dζ. (2.6)

The domain kernel c(.) is a Gaussian function, a location-dependent weight

provider, and ζ is an offset vector determine the positions around x. Iin is the

input data; the Gθ(x) is tilted vector output where s(.) is a range filter. To

find the modified local values, authors define: P (x, ζ) = Iin(x) + Gθ.ζ, and by

substucting from Iin, they gets I4(x, ζ) = Iin(x + ζ) − P (x, ζ). Finally, adding

s(.), c(.) and I4(ζ) together, the output Iout(x) can be expressed as follows:

Iout(x) = Iin(x) +
1

k4(x)

∞∫
∞

I4(x+ ζ)c(ζ)s(I4(x, ζ))fθ(x, ζ) dζ. (2.7)

fθ(x, ζ) = [0, 1] and local weights are normalized by k4(x):

k4(x) =

∞∫
∞

c(ζ)s(I4(x, ζ))fθ(x, ζ) dζ.

9

(ii) Automatic fθ:Adaptive Neighborhood

By applying a threshold R to obtain a binary form, the authors aim to limit the

smoothed adjacent points connected to x by fθ.

fθ(x, ζ) =

1 if ||Gθ(x+ ζ)−Gθ(x)|| < R

0 otherwise

(2.8)

(iii) Self-Adjusting Parameters

By the third contribution, the authors aim to avoid hand-tuned parameters to

improve reconstruction by refraining generalization of parameters. Put another

way, the user sets an initial parameter σcθ where the neighborhood size is assigned

automatically to smooth the regions in the output image. This parameter controls

seven other internal ones

σsθ = β(||max(Gavg(x)−min(Gavg(x))||), (2.9)

and β is set empirically.

• The highlighted features of Trilateral Filter is that the method smooths the

image while preserving the edges which allows a fragmentary gradient approxi-

mation [12].

• Self-Adjusting Parameters allows one to use only one parameter, which makes

the method almost a parameter-free technique.

• The trilateral filter has the ability to abstract noise from image details.

2.5 Joint Trilateral Upsampling

Inspired by Joint Bilateral Filter, Li et al.[11] further presented the Joint Trilat-

eral Upsampling, which takes into account an LR input depth image, a corresponding

HR color image, and an HR depth guidance map that are generated by the LR depth

map. Li et al. proposed the JTU algorithm that works iteratively to overcome texture

copying artifacts that are caused by high-intensity differences between neighboring pix-

els. If there is a high weight set to a neighbor pixel, then one can conclude that the

10

intensity difference will be high, likewise, if there is low weight set to a neighbor, the

filtering process will generate a smooth result.

The upsampled image S̃ is computed as follows:

S̃p =

∑
q↓∈Ω

f(||p↓ − q↓||).g(||Îp − Îq||).h(||Ĩp − Ĩq||).Sq↓∑
q↓∈Ω

f(||p↓ − q↓||).g(||Îp − Îq||).h(||Ĩp − Ĩq||)
(2.10)

The new kernel h(||Ĩp − Ĩq||) is utilized to improve the quality of output to

preserve the edges and avoiding texture copying artifacts, where Ĩ is an HR depth map,

generated from the input LR image to preserve edge information. Î and S denote the

intensity of HR color guidance image and LR input depth image respectively, where S̃

is the JTU output. p, q, p↓ and q↓ denote the locations of the pixels where they have

the same usage as so in the JBU.

Although the equation is almost the same compared to JBU, the addition Gaus-

sian depth filter kernel h(.) is set at HR input depth map, and defined as:

h(||Ĩp − Ĩq||) = e
−(||Ĩp−Ĩq ||)

2
/

2σ2
h . (2.11)

The denominator of (2.10) is normalization factor where the third kernel h(.) is

employed on HR depth input. It can be decomposed discretely as follows:

kp =
∑
q↓∈Ω

f(||p↓ − q↓||).g(||Îp − Îq||).h(||Ĩp − Ĩq||)

Authors aim to take advantage of using an additional kernel to avoid a direct

use of LR depth in the upsampling process, where the kernel filter is generated on HR

depth, utilizing the edge contents as well as reducing the noise. The function of the

third kernel is preserving the edge information that HR guidance image Î contains.

• The highlighted features of JTU is that the method obtains a Gaussian kernel

h(.) that preserves edges consistent with the HR input image Î [11]. In other words,

the JTU is inclusive of the high-frequency components of the HR guidance image by

converging at the edge iteratively.

• JTU avoids texture copying artifact that caused by intensity differences.

11

Inputs

LR Depth

HR RGB

Intensity

CannyEdge

HR Depth

BinaryMask

Horizontal Vertical

Gradient
Images

JTF

Result

Figure 2.2: Flowchart of Joint Trilateral Filter [1]. The JTF smooths an input image
while preserving its edges.

2.6 Joint Trilateral Filter

Inspired by Joint Bilateral Filter, Lo et al. [1] further introduced the Joint

Trilateral Filter(JTF), which considers an LR input depth image and a registered HR

color image. The authors’ proposed method aims to overcome color inconsistency that

occurs between HR color image and a depth map. The inconsistency can appear under

two circumstances: when two adjacent pixels have the same color but different depth

values and when those two neighbor pixels are in the same depth but have different

colors. As mentioned earlier by Li et al. [11] these inconsistencies will lead the artifacts

because of large intensity differences between neighboring pixels. The objective of Lo

et al. [1] is to solve the second case inconsistency by the JTF algorithm that as follows:

S̃p =

∑
q∈Ω

f(||p−q||).g(||Îp − Îq||).d(||Gp −Gq||).M(q).Sq∑
q∈Ω

f(||p− q||).g(||Îp − Îq||).d(||Gp −Gq||).M(q)
(2.12)

Recall the JBF weighting; the JTF assigns weights respect to pixel location and its

color texture. In other words, neighbor pixels get lower weight with greater geometric

distances and larger intensity differences. JTF is an extension of the JBF to bypass the

12

p q

Depth Input

LR

p q

Interpolated Depth

HR: S

p q

1st order Gradient

GH,1

p q

2nd order Gradient

GH,2

Figure 2.3: Even though, two adjacent pixels p and p have similar value at 1st order
gradient, they would show different values at 2nd order gradient which allows us a
better filtering. Adapted from [1].

gradient reversal artifacts occurring. The filtering process of JTF is firstly done under

the guidance image Î, which is a color one, and the interpolation of LR input depth

map S. The pixel locations that are denoted by p and q have the same usage as in the

JBF, where f(.) and g(.) have been employed similarly. The last term M is a binary

mask that generated by the Identication of Depth Discontinuity Regions(IDDR)

algorithm. Identification of depth map region will be in the next chapter. Essentially,

M decides if the neighbor pixel is reliable or not;

where M(q) = 1− Punreliable (2.13)

S̃p is the filter output, and the denominator of the JTF is a normalization factor

where the third kernel d(.) and M are also employed to weight the local pixels. It can

be decomposed discretely as follows:

kp =
∑
q∈Ω

f(||p− q||).g(||Îp − Îq||).d(||Gp −Gq||).M(q).

The new term d(.) is used to avoid texture artifacts by performing at depth

varying regions. The Gaussian kernel d(||Gp−Gq||) is computing the absolute difference

of second-order gradients on central pixel p and its neighboring pixels q. The process

13

is applied in both horizontal and vertical directions where the weights are assigned by

choosing the maximum value. The filter kernel described as:

||Gp −Gq|| = max(|GV,2
p −GV,2

q |, |GH,2
p −GH,2

q |) (2.14)

GV,2 and GH,2 are the second-order gradients along vertical and horizontal directions

respectively. The process puts two inputs from both directions to choose the maximum

value which assigns a weight that contributes filtering respect to p and q values. Par-

ticularly, a greater weight will be appointed from neighboring pixels as long as those

adjacent pixels share similar values.

The signed second-order derivatives are derived from the first-order of depth

map image. The first-order gradients are calculated on bicubic interpolated image S

along both directions.

GV,1(m,n) =

∣∣∣∣S(m+ 1, n)− S(m− 1, n)

2

∣∣∣∣, (2.15)

GH,1(m,n) =

∣∣∣∣S(m,n+ 1)− S(m,n− 1)

2

∣∣∣∣. (2.16)

GV,1 and GH,1 denote the first-order gradients along vertical and horizontal directions

respectively, and (m,n) denote pixel locations. Even though two adjacent pixels belong

to a distinct depth region, they may carry similar gradient values since the first-order

gradient is a directional change in the intensity. Therefore, the authors included the

second-order one to address local variation in the first-order to reduce the texture

copying artifacts effect. Finally, the second order gradients can be expressed respect

to GV,1 and GH,1 as follows:

GV,2(m,n) =
GV,1(m+ 1, n)−GV,1(m− 1, n)

2
, (2.17)

GH,2(m,n) =
GH,1(m,n+ 1)−GH,1(m,n− 1)

2
. (2.18)

14

Thus, the authors desire to suppress the artifacts by generating weights from only the

neighbor pixels that possess similar depth features, which allows preservation of the

rich color texture and edge components.

15

Chapter 3

A TAXONOMY OF FRAMEWORK ALGORITHMS

With a given LR depth image, for an HR depth estimation, the LR depth map

is interpolated via bicubic interpolation. The aim of the work is improving the edge

reconstruction and the visual content. Lo et al. [1] proposed the identification of

depth discontinuity regions which are based on dividing the image into sunblocks with

a dynamic programming. The identified discontinuity regions proceed in an improved

onion peel filtering called the Structure-Aware Onion Peel Algorithm.

3.1 Diagnosis of Depth Discontinuity Regions in SR Depth Image

The insufficiency of the sensors of the depth cameras and the environmental

effects may cause incomplete scene capturing, which may result in blur on edges or

the loss of information in a particular range. The resolution input depth image can be

enhanced by upsampling; however, the interpolated image contains blurry edges and

smoothed textural regions.

The process of Diagnosis of Depth Discontinuity Regions (DDDR) starts with

an application of quadtree decomposition which divides an image into equal-sized

sub-blocks; then the decomposition continues testing each macro-block to determine

whether it meets the user-defined criteria or not. In our case, initially, the interpolated

depth image is divided into non-overlapping 16x16 size sub-blocks. Thereupon, the size

of the image should be adjusted by the power of 2 accordingly. The procedure carries

forward by computing a calculation of the depth range for each sub-block. The extent

is computed by taking the absolute value of the minimum and maximum differences

for each block and repeated one by one. The next step is checking whether the range

is greater than a predefined threshold τ or not. If the range exhibits a higher value

16

(a) (b) (c)

(d) (e)

? ?
? ?
? ?
? ?
? ? ? ?
? ? ? ?

(f)

Figure 3.1: An example of the depth discontinuity identification by shifting one pixel.
Orange lines show the original sub-block borders. Red dashed frame shows one pixel
shifting. (a) The original depth map. (b) Sub-block lines for the original patch. (c)The
end of identification for the original patch. (d) One pixel shifted. (e) Sub-block lines
for one pixel shifted patch. (f) The identified region in the shifted patch.

than the threshold, the process will further split the sub-block into four macro-blocks

with the size 8x8. The process will continue until the smallest block’s size reaches

the size 2x2. The implementation is executed via dynamic programming which allows

one to break down the problem into subproblems. This quadtree decomposition will

reveal the depth discontinuity by designating the smallest sub-blocks. If the range in

the minimum size of 2x2 is higher than the threshold than the block will be set 1,

otherwise 0. Therefore, the Binary Mask that is called Pedge constructed with zeros

and ones, where ones depict the edges of depth planes.

However, the identification might fail when two adjacent pixels share the differ-

ent depth values along an object’s boundary. On that account, even though there is a

distinct depth contrast, if the related pixels are sub-blocked in their depth plane then

there is no edge detection(see Fig. 3.1(a, b, c)). In Fig. 3.1(b) and (c), distinct depth

pixels do not intervene; therefore, no discontinuity is detected. To solve this problem,

as shown in Fig. 3.1(d) and (e), Lo et al. shifted the interpolated depth image by 1

pixel in both vertical and horizontal directions. Similarly, the quadtree decomposition

17

is applied in both directions, and the identification successfully marked as shown in

Fig. 3.1(f). Finally, the union of those masks is the desired one(see Fig. 3.2).

HR depth map

1px shifted QD

Original QD

Pedge Shifted

Pedge Original

Union of two

Figure 3.2: An example of the union of depth discontinuity regions. One pixel shifted-

depth map is at top line, and the original one is at the bottom. The image on the right

side called Pedge is the union of the two binary indicators.

3.2 Structure-Aware Onion-Peel Algorithm

An onion-peeling algorithm(OPA) is an approach that peels away a two-dimensional

convex set S of n points. Consider S̃ to be the remaining points in the set. The algo-

rithm aims to compute the S̃ and peel away all features until none is remaining. This

recursive method is called the onion-peeling of S. Inspired by OPA, the authors present

Structure-Aware Onion-Peel Algorithm(SAOPA) to refine the pixels that marked depth

regions. SAOPA is an extension of current OPA where the algorithm is including the

binary mask Pedge to update the edges of the upsampled depth image.

As explained in the previous section, Binary Mask, Pedge (see Fig. 3.2(a))

contains zeros and ones, and only those pixels with ones will be updated. Ones are

labeled unreliable and zeros are labeled reliable.

18

? ? ?
? ? ? ? ?
? ? ? ? ? ?

? ? ? ? ? ?
? ? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

? ? ?
? ? ? ? ?
? ? ? ? ? ?

? ? ? ? ? ?
? ? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

?
? ?

? ?
? ?

? ?
?
?
?
?

Figure 3.3: Illustration of OPA. The top figures are binary map images where bottom
the images are corresponding depth map. The white pixels are depth discontinuity,
and orange ones are marked to be filtered. The last column is the filtered ones.

SAOPA starts with initializing Pedge = Punreliable and the JTF filtering

will be applied to each pixel that identified as a discontinuity region. For pixel p,

if Punreliable =1, the eight neighbors of p will be checked; if there is at least one

reliable pixel around p, then the filtering will proceed; otherwise, it will be skipped

at this iteration. As a remark, the pixels marked 1 (depth discontinuity region) are

unreliable, and the rest (zeros; belong to a distinct depth plane) are reliable.

As illustrated in Fig. 3.3 the identified region is white and filtering part marked(orange).

Top figures indicate Binary Mask, Pedge, and bottom ones are the corresponding depth

image. The process will scan the whole region; once it completed, the Punreliable and

upsampled depth image will be updated.

? ?
? ? ?

? ? ?
? ? ?

?
?

(a) (b)

Figure 3.4: An example of possible incorrect filtering. (a) The yellow pixel is labeled
to be filtered. (b) The ground truth image. It can be seen that the filtering will assign
incorrect depth value.

19

? ?
? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ?

? ? ?
?

(a)

? ?
? ? ? ? ?

? ? ? ? ? ?
? ? ? ? ?

? ? ?
?

(b)

? ?
? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ?
?

(c)
? ?
? ? ? ? ?

? ? ? ? ?
? ? ? ? ?

? ? ?
?

(d)

? ?
? ?

? ?
? ? ?

?

(e)

? ?
? ?

? ?
? ? ?

?

(f)

Figure 3.5: This is an illustration of the JTF filtering. Unreliable pixels are marked
white, Canny is red, and the current pixel is presented in yellow color. (a) p does not
connect to Canny. The filtering will proceed if at least one adjacent pixels is reliable.
(b) p is connecting Canny; therefore, four adjacent pixels are checked(blue). (c) p is
connecting Canny, but there is no reliable pixel in its neighborhood. (d) The filtering
will be skipped at this iteration. (e) p is on the Canny edge. The filtering will proceed
if all adjacent pixels are reliable except those are on the Canny edge. (f) The filtering
will be skipped since there is an unreliable pixel around. Adapted from [1].

However, the OPA might fail when the refined pixel is part of a specific region,

as shown in Fig.3.4. To avoid incorrect filtering, the authors applied a Canny edge

detector to three channels of RGB image and then utilized the union of them into

the process. An example of the process is illustrated in Fig. 3.5 where the filtering

pixel p is shown is yellow color, green square is the window of its neighbor pixels. The

unreliable pixels are labeled with a question mark, and the red pixels represent the

Canny edge. The filtering process will be classified into three cases for a pixel p if there

is at least one reliable pixel in its neighborhood.

• For an unreliable pixel that does not connect and is not on the Canny edge,

as shown in Fig. 3.5(a)(the yellow pixel is the target), the filtering will proceed. The

pixels without a question mark are reliable and belong to distinct depth region.

• For an unreliable pixel that has at least one reliable pixel around and that

20

is not on but connecting Canny edge as shown in Fig. 3.5(b) the filtering will have

proceeded if one of its four neighbors is reliable, otherwise, it will be skipped(see Fig.

3.5(d)). The blue lines enclose the pixels of interest.

• Finally, an unreliable pixel that is on the Canny edge as shown in Fig. 3.5(e)

will be filtered if all its four neighbors are reliable except those on Canny edge, other-

wise, it will be skipped as shown in Fig 3.5(f).

The above classification will decrease the number of unreliable pixels signifi-

cantly. However, the filtering fails when the Canny edge exhibits a loop that is caused

by color texture(see Fig. 3.6(e)). The loop in Canny obstructs filtering to refine un-

reliable pixels. To detect and break the loop, the authors used the magnitude of the

first-order gradient of the interpolated depth image and set the lowest point zero. Af-

ter breaking the loop, as shown in Fig. 3.6(d), the filtering can be completed. The

gradient magnitude is calculated as∣∣∣G1(m,n)
∣∣∣ =

√(
GV,1(m,n)−GH,1(m,n)), (3.1)

where (m,n) are pixel indices. As an example demonstrated in Fig.3.6, one can see

that the SAOPA filters Punreliable and update all pixels until none is remaining.

21

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: This is an example of the Canny edge suspension that prevents filtering.

(a)Canny edge loop(Teddy). (b) The corresponding location at the ground truth image.

(c)The Binary Mask where the white pixels are unreliable. (d) Breaking of the Canny

edge. (e)(f)(g)(h) are corresponding locations of RGB, LR depth map, the Upsampled

depth map, and JTF result respectively.

22

Algorithm 1 Structure-Aware Onion-Peel Filtering [1]

Require: Input: S :interpolated depth map; I: color image; Punreliable: binary
mask of discontinuity region
Output: S̃: refined depth map
1: Compute 1st-order gradient GV,1, GH,1 on S Eq. (8)(9)
2: Compute gradient magnitude G1(x, y) Eq. (6)
3: Compute 2nd-order gradient GV,2, GH,2 Eq. (10)(11)
4: Apply Canny detector on I to obtain Canny edge-constrained binary map

Ensure: Initialize: S̃ ← S ; P̃ unreliable← Punreliable
while number of unreliable pixel 6= 0 do
Punreliable = 1
reset count← 0 the number of unreliable pixels refined each iteration
for i = 1; i ≤ imgHeight; i+ + do
for j = 1; j ≤ imgWidth; j + + do
if Punreliable(i, j) = 1 then
if (i, j) is not adjacent to Canny then
S(i, j)← apply JTF to S(i, j) Eq. (7)
P̃ unreliable(i, j)← 0 ; count+ +

else if (i, j) is adjacent to Canny then
if at least one of 4-neighbors is reliable then
S(i, j)⇐ apply JTF to S(i, j) Eq. (7)
P̃ unreliable(i, j)← 0 ; count+ +

else
Continue

end if
else if (i, j) is on Canny then
if all eight neighbors are reliable except those on Canny then
S(i, j)⇐ apply JTF to S(i, j) Eq. (7)
P̃ unreliable(i, j)← 0 ; count+ +

else
Continue

end if
end if

end if
end for

end for
if count = 0 then
{no refined pixel at this iteration} find the min(G1(x, y)) in G1 and set Canny
zero at this location

end if
end while

The end of the pseudo-code of structure-aware onion-peel filtering.

23

Chapter 4

ITERATIVE JOINT TRILATERAL FILTER

Inspired by JTF, an iterative edge-improving Joint Trilateral Filter (JTEite)

implemented in this work (see Fig. 4.1). At the expense of computational time, the

new approach is re-filtering the output with the union of the Canny edge of the JTF

result and the gradient of the difference of updated regions (see Fig. 4.2). In other

words, after the first filtering, the difference of refined region in depth map is calculated

and saved as Diff (see Fig. 4.2(b)). Naturally, the Diff image will look like the depth

discontinuity map. Afterward, the application of gradients on Diff will reveal a slope

which is a direction assigned by the refined pixels values. We applied a binary operation

on Diff thenceforth to determine the only values that are greater than the default

threshold [22]. The filtering concentrates on the more significant changes hereby to

Inputs

LR Depth

HR RGB

Intensity

CannyEdge

HR Depth

BinaryMask

Horizontal Vertical

Gradient
Images

JTF

Result

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Diff

JTFite

Figure 4.1: Flowchart of Iterative Joint Trilateral Filter. JTFite aims to improve the
visual quality by re-updating the refined pixels with respect to their value charges. The
iterative process is shown in red arrows.

24

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTF[1]

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Gradient of Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Canny of JTF
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Union of two

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTFite

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTF[1]

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Gradient of Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Canny of JTF
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Union of two

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTFite

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTF[1]

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Gradient of Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Canny of JTF
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Union of two

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTFite
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTF[1]

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Gradient of Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Canny of JTF
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Union of two

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTFite

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTF[1]

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Gradient of Diff

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Canny of JTF
50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Union of two

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

JTFite
Figure 4.2: Illustration of the Iterative Joint Trilateral Filter(JTFite). It is recon-
structed from union of gradient of Diff and Canny edge of JTF result.

assures the JTFite filters a precise interval at the border of depth maps. The Diff

Fig. 4.1 displays the flowchart of the JTFite technique for depth map upsampling, and

the details of each component will be introduced in this chapter.

Recall that the interpolated depth map contains blur at the edges and has poor

textural details. The filtering process will not uniformly update all-region, therefore,

at each iteration, the weights will not be ideally assigned because of blur and artifacts.

Ideally, along with a depth border, a high contrast is expected at the adjacent pixels

which lie on sides of the edge. However, JTF results fail to get a sharp contrast on

the edge because the interpolation smooths the border. The transition between depth

planes is considerably soft and has a broader length compared to the window size w.

To solve this problem, we unite a precise Canny edge of filtered JTF with a gradient

of Diff to constrain discontinuity region and to obtain sharper edges.

Fig. 4.4 shows the depth discontinuity regions after each iteration. The JTFite

automatically computes the Diff after each iteration to filter remaining regions. It

can be seen that the change of pixel values is decreasing by increasing the number of

25

JTF result(a)

∑

Upsampled depth(c)

0

10

20

30

40

50

Diff(b)

+ –

JTF result(a)

∑

Upsampled depth(c)

0

10

20

30

40

50

Diff(b)

+ –

JTF result(a)

∑

Upsampled depth(c)

0

10

20

30

40

50

Diff(b)

+ –

JTF result(a)

∑

Upsampled depth(c)

0

10

20

30

40

50

Diff(b)

+ –

Figure 4.3: Illustration of the Difference of Refined Region(Diff). We subtract inter-
polated HR depth from JTF result. Lighter color depicts drastic changes.

iteration. In this experiment, we iterate ten times the JTF result to assure there is a

distinct transition between depth planes.

JTF performs well on avoiding texture artifacts by employing local gradients

on depth maps. Although their algorithm focuses particularly on the case when two

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

Figure 4.4: Illustration of the of Refined Region After each Iteration. At each iteration
the JTFite focuses on the changes of pixel values. The iteration will continue until the
generated values are similar to previous input depth map.

26

215 220 225 230 235 240 245 250

280

285

290

295

300

305

215 220 225 230 235 240 245 250

280

285

290

295

300

305

Figure 4.5: Illustration of Filtered Two Near Depth Planes. The left figure is the
output of the JTF, and the right one is the result of the JTFite. It can be seen that
JTFite pronounces the edge of two near depth planes even they exhibit an approximate
depth level.

adjacent pixels present the same color and, different depth plane, JTFite derives higher

contrast and precise border at the depth maps. Additionally, JTFite performs better

when two adjacent pixels exhibit different colors but similar depth planes. In the

experimental section, we also show that JTFite refines the depth planes successfully

even when the planes show similar depth values. In other words, our approach obtains

sharper edges of similar color depths even though those depth levels are quite near to

each other (see Fig. 4.5).

It can be seen that our proposed iterative JTFite obtains sharper edges by

post-filtering the JTF result. This work shows that the proposed framework preserves

details in the depth map and outperforms JTF to some extent.

27

Chapter 5

EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION

To evaluate the performance of our upsampling method, we implemented the

algorithm on eleven datasets from three sources. In the following sections, the datasets,

quality metrics, and visual and quantitative experimental results are presented.

5.1 Data Sets

The proposed algorithm JTFite and JTF are implemented on eleven datasets

from Middlebury [14], NYU Depth V2 [20], and UD depth dataset. Images from Mid-

dlebury are synthetic where NYU and UD provide real-world data with corresponding

color images. The resolutions of experimental unsigned integer 255 type depth images

of Middlebury, NYU, and UD, are 368448, 480640 and 236x316 pixels, respectively. In

the experiment, NYU and Middlebury HR depth images are down-sampled and than

upsampled using two upsampling factor 4X and 8X. However, the UD dataset is only

upsampled to its corresponding RGB resolution which is 944x1264. For a fair compar-

ison, same parameters are applied for each dataset. The binary identification region

threshold τ is set 8, standard deviations σf for f(.), σg for g(.), and σd for d(.), are set

0.5, 0.3 and 0.5 respectively, also the Canny edge detector’s standard deviation σcanny

and the threshold are set 1.5 and 0.35.

5.2 Performance Evaluation Metrics

To evaluate the performance of the JTFite and JTF algorithms and the effects

of differing its parameters, some quantitative metrics are applied to determine their

performance. In this implementation, the following are the quality measures computed

dependent upon the known ground truth image.

28

5.2.1 Bad Pixel Percentage

The Bad Pixel Percentage (BPP) measures the total number of pixels that

the absolute value of reconstructed and GT image differences that is greater than a

predefined threshold. In other words, any difference greater than the threshold between

GT filtered output is considered bad pixels.

BPP =
1

N

∑
x,y

(|dRC(x, y)− dGT (x, y)| > δd) (5.1)

N is the total number of pixels where x, y, and δd are pixel indices and the threshold

respectively. dRC and dGT are JTF result and Ground truth images. In this experiment;

δd = 1.0, same value used in [1] and [15]. The optimal value of BPP is 0.

5.2.2 MSE

MSE is a cumulative squared error between the reconstructed data and the

reference one. This enables us to analyze mathematically which method grants better

results.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[dRC(i, j)− dGT (i, j)]2 (5.2)

mn are the size of image, height, and width respectively. The optimal value of MSE

is 0.

5.2.3 PSNR

PSNR is characterized as the ratio of the image’s peak value (signal energy) to

the MSE observed between the filtered image and the ground truth. Essentially, it is

the assessment of the quality of the images by evaluating maximum possible data value

over its cumulative squared error noise that affects the quality of its representation.

PSNR = 10 log10

(
(max {I})2

MSE

)
(5.3)

max{I}2 is the maximum possible pixel value of the image, where it is equal to

255 for 8 bit image. The higher PSNR, the better the result.

29

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

Figure 5.1: This is an example of Teddy where the left image is the ground truth, and
right small figures are the zoom version of the corresponding images. The top small
figures are GT, RGB, and LR depth map; the small bottom figures are interpolated
depth map, JTF result, and JTFite result respectively.

5.2.4 SSIM

The Structural Similarity (SSIM) index is a technique for measuring the sim-

ilarity between two images [13]. The SSIM index can be described as a measure of

one of the images being filtered, and an available image is inferred as a reference. The

SSIM is defined by the following formula as proposed by Wang et. al [13],

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (5.4)

where µx , µy and σx, σy are averages and the variances of x or y respectively. σxy is

covariance of x and y, and C1, C2 are constant values to stabilize the division with

the weak denominator. In this experiment, default parameters are used. The optimum

value of SSIM is 1.

5.3 Experiment and Results

The first step to assess the result is the visual representation. The analysis has

been done comparing the filtered output with GT, and its corresponding LR inter-

polated HR and RGB images. There are also zoom versions of images presented for

reader evaluation on objects in the images.

30

Comparison of BP%, MSE, PSNR, and SSIM with upsampling factor 4X and 8X
Datasets

tho8w3x3

BP% BP%

Ite.

MSE MSE

Ite.

PSNR PSNR

Ite.

SSIM% SSIM%

Ite.
Teddy 4X 2.88 2.80 95.26 104.10 28.34 27.96 95.17 94.81
Cones 4.22 4.16 236.81 242.94 24.39 24.28 87.14 87.17
Venus 0.71 0.72 8.54 8.32 38.82 38.93 98.14 98.19
Dolls 5.15 4.88 37.49 39.14 32.39 32.20 95.67 95.55
Midd2 2.29 2.28 72.84 74.09 29.51 29.43 93.42 93.32
Moebius 4.01 3.84 44.88 47.51 31.61 31.36 95.95 95.72
Reindee 3.73 3.67 81.34 84.25 29.03 28.88 93.54 93.61
Kitchen1 4.94 4.90 3.15 4.28 43.15 41.82 99.02 98.90
Kitchen2 5.62 5.51 2.75 3.12 43.74 43.20 98.87 98.88
Store1 3.26 3.27 2.43 2.41 44.28 44.30 99.01 99.09
Teddy 8X 5.19 5.17 163.34 164.70 26.00 25.96 91.77 91.84
Cones 7.70 7.67 148.67 150.88 26.41 26.34 89.18 89.37
Venus 1.96 1.96 16.80 16.67 35.88 35.91 97.34 97.37
Dolls 9.39 9.37 54.28 53.90 30.78 30.82 93.13 93.34
Midd2 3.89 3.87 49.56 49.65 31.18 31.17 93.64 93.67
Moebius 6.97 6.96 70.30 70.73 29.66 29.63 93.15 93.28
Reindee 6.91 6.87 62.13 61.55 30.20 30.24 93.72 93.95
Kitchen1 13.17 13.15 8.70 9.38 38.73 38.41 97.85 97.78
Kitchen 12.68 12.57 7.86 7.86 39.18 39.18 97.50 97.53
Store1 6.31 6.28 7.70 6.90 39.27 39.74 97.65 97.81

Table 5.1: The experimental results of the JTFite and JTF are presented using the

same parameters for τ = 8. Addition to BP% and MSE, PSNR and SSIM of the

filtered images are added for further evaluations.

270 275 280 285 290 295 300 305

150

155

160

165

170

175

(a)

1080 1100 1120 1140 1160 1180 1200 1220

600

620

640

660

680

700

(b)

1080 1100 1120 1140 1160 1180 1200 1220

600

620

640

660

680

700

(c)

Figure 5.2: Visual comparison on zoom versions of UD depth dataset. (a) Given LR

depth map. (b) Interpolated HR depth map. (c) Proposed method JTFite result.

In Table 5.1 the numeric results of all datasets are presented with different

31

upsampling. Note that JTFite and JTF results are compared column by column. It

can be seen that the JTF results on NYU datasets Kitchen1, Kitchen2 and Store1 are

similar when compared the PSNR and SSIM where Middlebury results show JTFite

is performing better. Similarly, JTEite performs slightly better on NYU datasets,

and most of the Middlebury datasets when compared the BPP. However, implemented

JTF and proposed JTFite give poor MSE because of the interpolation of rich texture

images such as Cones. During the experiment, it was noted that when the object

contains too many sharper corners, the JTF algorithm produces higher MSE. The

experiment shows that even excluding refining regions, the calculated MSE is still high

due to down-sampling and upsampling. Also, PSNR and SSIM are considerably good

where JTF and JTFite give similar results.

In Fig. 5.2 and 5.3, the visual comparison of the UD depth dataset is presented,

and it can be seen that the edges are sharper at the right images. Different parameters

are used to evaluate the algorithm and found that τ =4 and window size 3x3 gives the

best result (See Table 5.3).

Comparison of BPP on JTFite and JTF results for upsampling factor 4X

4Xw3 Tdy Cones Venus Dolls Midd2 Mbs Rdeer Ktc1 Ktc2 Str1

4 JTF 2.66 4.12 0.71 4.73 2.33 3.72 3.65 5.01 5.45 3.15

6 2.78 4.16 0.70 4.91 2.32 3.81 3.66 4.97 5.59 3.22

7 2.85 4.21 0.70 4.98 2.31 3.86 3.72 4.96 5.62 3.24

8 2.88 4.24 0.71 5.04 2.29 3.90 3.73 4.96 5.62 3.25

10 2.92 4.25 0.72 5.12 2.28 3.95 3.75 4.94 5.63 3.26

4 JTFite 2.65 4.03 0.71 4.56 2.32 3.66 3.59 4.92 5.29 3.16

6 2.72 4.08 0.71 4.75 2.31 3.74 3.6 4.91 5.46 3.22

7 2.76 4.13 0.7 4.82 2.29 3.8 3.65 4.9 5.5 3.25

8 2.8 4.16 0.72 4.88 2.28 3.84 3.67 4.9 5.51 3.27

10 2.83 4.18 0.73 4.96 2.27 3.89 3.69 4.88 5.52 3.28

Table 5.2: The experimental results of the JTF and JTFite are presented along varying

τ values where the window size is 3 by 3.

Further, the algorithm is run by using different values of parameters to evaluate

their effect on refining the edges. In Table 5.2, 5.3, and 5.4, it can be seen that JTFite

32

Figure 5.3: Example depth map filtering of UD depth dataset with one ROI. The top
figures are HR RGB, LR depth, HR interpolated depth map, and JTFite. The bottom
figures are the zoom version of the HR RGB, LR depth, HR interpolated depth map,
and JTFite result respectively.

performs better than JTF itself in most cases when results are evaluated by BPP. The

zoom versions of all datasets is displayed in Fig. 5.1 for Teddy, Fig.5.5, and Fig.5.6 are

for the rest depth maps.

33

Comparison of BPP on JTFite and JTF results for upsampling factor 4X and 8X
Datasets

th4w3

BP% BP%

Ite.

MSE MSE

Ite.

PSNR PSNR

Ite.

SSIM% SSIM%

Ite.

CT(sc)

BRI

CT(sc)

SAOPF
Teddy 4X 2.66 2.65 95.62 103.75 28.33 27.97 95.15 94.78 0.88 0.39
Cones 4.12 4.03 235.47 241.27 24.41 24.31 87.30 87.32 0.73 0.26
Venus 0.71 0.71 8.42 8.14 38.88 39.03 98.19 98.26 0.39 0.31
Dolls 4.73 4.56 37.55 39.30 32.38 32.19 95.71 95.49 0.90 0.52
Midd2 2.33 2.32 72.91 73.84 29.50 29.45 93.42 93.32 0.56 0.17
Moebius 3.72 3.66 45.10 47.96 31.59 31.32 95.96 95.68 0.70 0.25
Reindeer 3.65 3.59 81.39 84.03 29.02 28.89 93.57 93.64 0.72 0.22
Kitchen1 5.01 4.92 3.30 4.52 42.95 41.58 99.01 98.86 1.39 0.58
Kitchen2 5.45 5.29 2.86 3.29 43.57 42.96 98.92 98.87 1.98 0.68
Store1 3.15 3.16 2.38 2.47 44.37 44.20 99.06 99.09 1.10 0.47
Teddy 8X 5.11 5.09 163.05 164.67 26.01 25.96 91.86 91.90 0.92 0.23
Cones 7.45 7.40 148.02 150.03 26.43 26.37 89.43 89.57 0.96 0.24
Venus 1.90 1.89 16.73 16.62 35.90 35.92 97.38 97.41 0.44 0.23
Dolls 9.15 9.14 54.04 53.81 30.80 30.82 93.32 93.42 1.05 0.29
Midd2 3.79 3.77 49.64 49.62 31.17 31.17 93.65 93.69 0.62 0.16
Moebius 6.82 6.81 70.06 70.84 29.68 29.63 93.38 93.40 0.78 0.23
Reindeer 6.77 6.74 62.37 62.03 30.18 30.20 93.81 93.97 0.81 0.20
Kitchen1 13.20 13.18 8.89 9.55 38.64 38.33 97.85 97.77 1.36 0.46
Kitchen2 12.63 12.52 8.15 8.20 39.02 38.99 97.53 97.56 1.27 0.37
Store1 6.31 6.29 7.28 6.48 39.51 40.01 97.77 97.92 1.05 0.42

Table 5.3: The experimental results of the JTF and JTFite are presented using the

same parameters where τ is 4 and window size is 3. CT BRI and CT SAOPF are the

computational time of JTFite for the Binary Region Identification and the Structure-

Aware Onion Peel Filtering respectively.

Comparison of BP%, MSE, PSNR, and SSIM with JTFite and JTF results
4Xth4 Tdy Cones Venus Dolls Midd2 Mbs Rdeer Ktc1 Ktc2 Str1
3x3 JTF 2.66 4.12 0.71 4.73 2.33 3.72 3.65 5.01 5.45 3.15
5x5 2.62 4.20 0.71 4.70 2.39 3.76 3.63 4.97 5.38 3.10
7x7 2.70 4.19 0.71 4.70 2.40 3.76 3.65 4.98 5.36 3.11
9x9 2.74 4.19 0.71 4.69 2.41 3.78 3.65 4.98 5.39 3.12
11x11 2.79 4.19 0.71 4.71 2.42 3.79 3.65 4.98 5.40 3.12
3x3 JTFite 2.65 4.03 0.71 4.56 2.32 3.66 3.59 4.92 5.29 3.16
5x5 2.65 4.12 0.69 4.52 2.37 3.69 3.55 4.83 5.16 3.09
7x7 2.74 4.11 0.69 4.53 2.37 3.71 3.6 4.85 5.15 3.13
9x9 2.82 4.11 0.69 4.53 2.38 3.72 3.59 4.85 5.17 3.15
11x11 2.86 4.10 0.69 4.55 2.38 3.73 3.6 4.85 5.19 3.15

Table 5.4: The experimental results of the JTF and JTFite are presented using the

same parameters where τ is 4.

34

Figure 5.4: Example of Cones, Venus, Dolls(two ROIs) and Midd2 LR depth inputs
compared to their corresponding GT, RGB, interpolated HR depth map and filtered
outputs. The columns present GT images,and the zoom of RGB, LR input depth
images, interpolated depth map, JTF result and JTF result with iteration respectively.

35

Figure 5.5: Visual Comparison of Moebius, Reindeer, Kitchen1, Kitchen2 and Store1
LR depth inputs compared to their corresponding GT, RGB, interpolated HR depth
map and filtered outputs. The columns present GT images,and the zoom of RGB, LR
input depth images, interpolated depth map, JTF result and JTF result with iteration
respectively.

36

Chapter 6

CONCLUSION

In this paper, we present the filtering technique Iterative Joint Trilateral Filter

(JTFite) for depth map upsampling. The proposed method employs spatial, range, and

gradient kernels as the JTF does while post-filtering the output depth map iteratively.

A given LR depth input is initially interpolated to have an SR estimator; however, the

upsampling causes textural blur and loss of the details. Thus, the method incorporates

a registered HR color image with an interpolated depth map to be able to be inclusive

of the high-frequency components.

Primarily, JTFite applies a binary identification method to the upsampled depth

map to identify depth discontinuities. Our method iterates the determined regions in a

structure-aware onion peel algorithm instead of a single filtering as the previous work

JTF does. The process divides the interpolated depth map into sub-blocks to apply

a quadtree decomposition to identify the depth map edges along object borders at

different depth planes. The defined region’s pixels are marked as unreliable for further

filtering. The filtering process is designed in a structure-aware onion peel filtering with

an outside-inward refining procedure that updates all marked pixels by the Canny

edge of the color image constraint, which is determined by the union of three channels.

JTFite also uses local gradients to prevent textural artifacts which means the weights

are assigned to adjacent pixels according to their gradient similarity. Our framework

carries on the traits of previous works by employing gradients of the difference of the

refined pixels. The gradients show how smooth the transition of the depth planes is

and the value of the most changes pixels. Later we synthesize a Canny edge of the

previously filtered output with those gradients to bound the next iteration.

37

Experimental results prove that the proposed method performs well reconstruct-

ing the edges by iterating. We repeat the iteration until the value of refinement pixels

do not change significantly. At this point, we observe that the edges of the depth maps

are recovered from the blur. Even the edge of two near depth planes can be observed

distinctly after certain iterations.

Consequently, our framework is based on the application of the gradient on

the refined pixels which belong to depth discontinuity regions. JTFite has been imple-

mented to reconstruct edges of HR depth images iteratively where it uses the differences

of refined pixel values. Visual and quantitative experimental results are displayed for

different parameters. There are many other open research questions can be addressed.

Which additional structures can be used to improve the depth map SR? What can be

done to make it even faster for a real-time application? Implementing the new tech-

nique and adapting the previous algorithmic frameworks run in this work has given an

insight that there are still much to do to have a better depth SR upsampling.

38

BIBLIOGRAPHY

[1] K. H. Lo, Y. C. F. Wang and K. L. Hua, ”Edge-Preserving Depth Map Upsampling
by Joint Trilateral Filter,” in IEEE Transactions on Cybernetics, vol. PP, no. 99,
pp. 1-14.

[2] C. Tomasi and R. Manduchi, Bilateral Filtering for Gray and Color Images, Pro-
ceedings of ICCV 1998, pp 839-846.

[3] G. Goyal, Impact and analysis of improved bilateral filter on TEM images in
International journals of science and research, vol. 3, no. 6, (2014).

[4] Eisemann, E. and Durand, F., 2004. Flash photography enhancement via intrinsic
relighting. ACM transactions on graphics (TOG), 23(3), pp.673-678.

[5] O. U. N. Jith and R. Venkatesh Babu Joint bilateral filtering based non local means
image de-noising, in the proceedings of IEEE transactions on image processing,
(2014).

[6] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama,
Digital photography with flash and no flash image pairs, in ACM SIGGRAPH ,
(2004), pp. 664-672.

[7] S. Deswal, S. Gupta and B. Bhushan, ”A Survey of Various Bilateral Filtering
Techniques,” International Journal of Signal Processing, Image Processing and
Pattern Recognition, vol. 8, no. 3, pp. 105-120, 2015.

[8] Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matt Uyttendaele. 2007.
Joint bilateral upsampling. ACM Trans. Graph. 26, 3, Article 96 (July 2007).

[9] Sylvain Paris, Pierre Kornprobst, Jack Tumblin and Frdo Durand (2009), ”Bilat-
eral Filtering: Theory and Applications”, Foundations and Trends in Computer
Graphics and Vision: Vol. 4: No. 1, pp 1-73.

[10] Y. Song and L. Gong, ”Analysis and improvement of joint bilateral upsampling
for depth image super-resolution,” 2016 8th International Conference on Wireless
Communications & Signal Processing (WCSP), Yangzhou, 2016, pp. 1-5.

[11] Li, Yangguang et al. Depth map super-resolution via iterative joint-trilateral-
upsampling. 2014 IEEE Visual Communications and Image Processing Conference
(2014): 386-389.

39

[12] Prasun Choudhury and Jack Tumblin. 2003. The trilateral filter for high con-
trast images and meshes. In Proceedings of the 14th (EGRW ’03). Eurographics
Association, Aire-la-Ville, Switzerland, 186-196.

[13] Z. Wang, Image Quality Assessment: from Error Visibility to Structural Similar-
ity,” IEEE Transactions on Image Processing, Vol. 13, No. 4, pp. 600612, Apr.
2004

[14] Middlebury Stereo. Accessed on Oct. 20, 2017. [Online]. Available:
http://vision.middlebury.edu/stereo/

[15] D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense twoframe stereo
correspondence algorithms, Int. J. Comput. Vis., vol. 47, nos. 13, pp. 742, 2001.

[16] Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F. Cohen. 2007.
Capturing and viewing gigapixel images. ACM Trans. Graph. 26, 3, Article 93
(July 2007).

[17] Pal, Chandrajit & Chakrabarti, Amlan & Ghosh, Ranjan. A Brief Survey of Recent
Edge-Preserving Smoothing Algorithms on Digital Images. (2015).

[18] Liu Ying-hui, Gao Kun and Ni Guo-qiang, ”An improved trilateral filter for Gaus-
sian and impulse noise removal,” 2010 The 2nd International Conference on In-
dustrial Mechatronics and Automation, Wuhan, China, 2010, pp. 385-388.

[19] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, Indoor segmentation and sup-
port inference from RGBD images, in Proc. Eur. Conf. Comput. Vis. (ECCV),
Florence, Italy, 2012, pp. 746760.

[20] NYU depth dataset V2. Accessed on Oct. 20, 2017. [Online]. Available:
http://cs.nyu.edu/∼ silberman/datasets/nyu depth v2.html

[21] S. A. Gudmundsson, H. Aanaes and R. Larsen, ”Environmental Effects on Mea-
surement Uncertainties of Time-of-Flight Cameras,” 2007 International Sympo-
sium on Signals, Circuits and Systems, Iasi, 2007, pp. 1-4.

[22] N. Otsu, ”A Threshold Selection Method from Gray-Level Histograms,” in IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66, Jan.
1979.

[23] Frdo Durand and Julie Dorsey. 2002. Fast bilateral filtering for the display of high-
dynamic-range images. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (SIGGRAPH ’02). ACM, New York, NY, USA,
257-266.

40

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Bilateral Filtering Technique and its Extensions
	2.1 Bilateral Filter
	2.2 Joint Bilateral Filter
	2.3 Joint Bilateral Upsampling
	2.4 The Trilateral Filter
	2.5 Joint Trilateral Upsampling
	2.6 Joint Trilateral Filter

	3 A taxonomy of framework algorithms
	3.1 Diagnosis of Depth Discontinuity Regions in SR Depth Image
	3.2 Structure-Aware Onion-Peel Algorithm

	4 Iterative Joint Trilateral Filter
	5 EXPERIMENTAL Setup, RESULTS, AND DISCUSSION
	5.1 Data Sets
	5.2 Performance Evaluation Metrics
	5.2.1 Bad Pixel Percentage
	5.2.2 MSE
	5.2.3 PSNR
	5.2.4 SSIM

	5.3 Experiment and Results

	6 Conclusion
	Bibliography

