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A computational study of magnetic-shielding tensors of spin-½ heavy nuclei in 

solids has been carried out by employing relativistic DFT and cluster models. The 

performance of various theoretical treatments and cluster models has been investigated 

by comparing the agreement between theory and experiment as a metric of the 

goodness of the calculation. 

A significant amount of effort in this study has been dedicated to the 

development of cluster models for accurate calculation of magnetic-shielding tensors 

in the solid state. The performance of cluster models of various sizes, symmetries, as 

well as clusters with different net charges and with preparation by different truncation 

methods have been studied. The convergence of calculated principal components with 

cluster size is monitored in benchmark calculations. The results suggest that inclusion 

of higher coordination shells in the molecular cluster is generally necessary for 

quantitative predictions of magnetic-shielding tensors. However, it has been found 

possible to reduce the size of these computationally expensive molecular-cluster 

calculations with limited effect on the calculated NMR parameters by carefully 

introducing the frozen core approximation and locally dense basis sets.  

For network solids, a new formalism, which employs pseudo-atoms with 

altered nuclear charges and parameters obtained from bond-valence theory, is 

proposed for the truncation of clusters. This model has been applied to a large 

selection of systems with success. The performance of the cluster models in network 
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solids is also compared to models that account for the full translational symmetry of 

the extended system (periodic boundary conditions with GIPAW) for lighter nuclei 

such as 29Si and 31P. 

The importance of treating a system with the relativistic Hamiltonian for 

accurate prediction of principal components of the magnetic-shielding tensor of heavy 

nuclei (207Pb, 199Hg, 125Te and 119Sn) is demonstrated within the cluster approach. The 

results demonstrate that inclusion of the spin-orbit component in the ZORA 

Hamiltonian is essential to obtain good agreement with experimental results. It is 

shown that spin-orbit effects on the principal components are strongly dependent on 

the oxidation state and coordination geometry about the NMR nuclei.  

Finally, the performance of hybrid functionals (B3LYP and PBE0) is examined 

for the prediction of magnetic-shielding tensors of 207Pb, 125Te and 119Sn. The results 

show that employing hybrid functionals improves agreement between theory and 

experiment, compared to GGA functionals. This improvement is more noticeable in 

the case of 207Pb than it is for 125Te and 119Sn.        
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INTRODUCTION 

1.1 Motivation of the Study 

Calculation of magnetic resonance properties with quantum chemistry methods 

has become an important research tool in the last two decades.[1-3] Accurate 

predictions of nuclear magnetic resonance (NMR) parameters from first principles can 

predict the correlations between the experimental NMR data, and the electronic 

structure and connectivity of a system, giving rationalizations of empirical relations 

and providing explanations when empirical relations do not suffice. In general, such 

calculations have reached a certain maturity for the light nuclei such as 13C or 1H, and 

they are often employed for enhanced interpretations of experimental spectra.[4-6] For 

heavy nuclei such as 199Hg or 207Pb, however, calculations of magnetic resonance 

properties still remain challenging for otherwise established quantum chemical 

methods. [1, 7, 8] This situation is due to the large number of electrons present in the 

heavy nuclei and to the relativistic effects associated with the high nuclear charge.[9, 

10] For this reason, careful methodological optimizations are needed for reliable and 

accurate calculations that can be performed using reasonable computational resources. 

In the solid state, the full tensor interaction for magnetic shielding or 

quadrupolar coupling gives a description of a three-dimensional structure.[11, 12] The 

theoretical treatment of these tensor quantities often requires a model for the 

crystalline nature of the material.[3, 13] Two methods have been proposed for the 

calculation of magnetic properties in solids: (1) use of periodic boundary conditions 
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(PBC) based on the full crystal symmetry,[5, 14-16] and (2) use of model clusters that 

define the local environment.[17-22] Unfortunately, PBC-based quantum chemistry 

methods are not suitable for systems containing heavy nuclei, because the required 

relativistic methods and higher level ab-initio methods have not been implemented in 

the currently-available PBC formalisms. For cluster modelling, there is, of course, a 

larger selection of program packages and methodologies available. However, this 

approach requires the optimization of various parameters such as cluster size, cluster 

charge, and local symmetry around nuclei.[22]               

The aim of this study is to establish a framework for the cluster modelling, 

which allows accurate predictions of the magnetic-shielding tensor for heavy nuclei. 

To do this, we shall test the performance of different types of cluster models with 

respect to size, symmetry, charge, and termination methods for well-characterized 

solids containing heavy nuclei. The convergence of the magnetic shielding 

components will be investigated for different cluster sizes, as an indicator of the 

quality of the cluster modelling. 

Another motivation for our study is to understand the effects of various 

theoretical treatments on the magnetic shielding tensor of heavy nuclei in solids. In 

solids, comparison between theory and experiment for all principal components of the 

shielding tensor, instead of the single isotropic value, provides a more stringent test for 

the performance of the current quantum chemistry methods in benchmarking magnetic 

shielding calculations. 

1.2 Overview 

This dissertation is organized as follows: The first chapter briefly introduces 

some of the basic principles of solid-state NMR (SSNMR). This chapter also covers 
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the existing literature on the SSNMR of spin ½ heavy nuclei such as 207Pb and 199Hg. 

Chapter two deals with the theoretical concepts of quantum chemistry that are 

important for understanding the remainder of this study. This chapter includes general 

background information on density functional theory (DFT), relativistic quantum 

chemistry methods, and the calculation of magnetic-shielding tensor from first 

principles. Chapter three describes specific computational methodologies employed in 

this work. The main focus of this chapter is the formulation of cluster models for 

different types of solids. Chapter four introduces magnetic shielding calculations for 

molecular solids using cluster models. In this chapter, calculated principal components 

of the shielding tensor using various cluster models are compared to experimental data 

for 199Hg-containing materials. The performance of different approximations in the 

theoretical treatment of clusters is investigated. In chapter five, we introduce magnetic 

shielding calculations for network solids using cluster models. Different termination 

schemes for clusters are investigated with respect to convergence of principal 

components. Additionally, benchmark calculations of the cluster models for network 

solids are compared with PBC methods for non-relativistic systems containing 31P and 

29Si nuclei. In chapter six, the effect of coordination chemistry and electronic structure 

on the magnetic shielding tensor are investigated for 207Pb and 119Sn containing solids. 

Our focus in this chapter is to provide a link between the performance of different 

theoretical treatments and the coordination chemistry of the heavy nuclei-containing 

solids. Finally, in chapter seven, the results of these investigations are summarized, 

with some prediction of the subsequent developments that may enhance this 

methodology. 
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1.3 Basic Principles of Solid-State Nuclear Magnetic Resonance 

SSNMR spectroscopy is a powerful technique that is applied in various fields 

of chemistry, materials science, engineering, and geology. The applications of 

SSNMR include, but are not limited to, catalysis and zeolite systems,[12, 23, 24] 

structure elucidation of amorphous solids and proteins,[25, 26] and dynamics of 

chemical processes.[27-32] The theory of SSNMR spectroscopy and its applications 

have been reviewed and can be found in ref. [5, 12, 33-36]. In the following sections, 

we introduce some of the specific concepts in SSNMR related to the present 

theoretical work. 

1.3.1 Nuclear Interactions in External Magnetic Field 

NMR spectroscopy is based on the interaction of nuclear spins with the 

external magnetic field. For a non-isolated spin, the energy levels of the spin states are 

perturbed by the interactions with surrounding nuclei and electrons. These 

perturbations can yield important information about the chemical environment of the 

NMR-active nucleus. For a spin (I ≥ ½), the interactions are expressed by the 

Hamiltonian [34]       

 𝐻spin = 𝐻Z + 𝐻RF + 𝐻DC + 𝐻CS + 𝐻J + 𝐻QC (1.1) 

The components of the Hamiltonian in Eq. 1.1 are summarized as follows:  

The Zeeman Hamiltonian (HZ) describes the interaction between each spin and the 

applied external magnetic field. This interaction is responsible for the energy splitting 

of spin states that occurs when a spin is placed in a magnetic field.  It is often assumed 

that the coupling described by the Zeeman Hamiltonian is the strongest interaction felt 

by a spin.  HZ for a spin in an external magnetic field B0 and having a spin operator Iz 

is  
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 𝐻𝑍   =   − ℏ𝛾𝐵0𝐼𝑧 (1.2) 

where the z axis is assumed to be parallel to the direction of the external magnetic 

field,  is the gyromagnetic ratio of the spin, and  is Planck’s constant divided by 2 

The radio frequency Hamiltonian (HRF) characterizes the interaction of the spin 

with an applied radio frequency field in the NMR experiment. The radio frequency 

field may be pulsed or continuous, it may be weak or it may be strong, but usually its 

amplitude makes it a perturbation on the interaction with the applied external field.  

Like the static Zeeman interaction, HRF is also a Zeeman coupling to the time-

dependent radio frequency field, B1. 

The dipolar-coupling Hamiltonian,  HDC, reflects the direct pairwise interaction 

of two spins. The dipolar interaction between two unlike spins, I and S, with spin 

operators for the components along the magnetic field direction Iz and Sz, is given, in a 

strong external applied field, by  

 𝐻DC =
μ0

4π
(


𝐼


𝑆

𝑟3
) [1 − 3cos2θ]𝐼𝑧𝑆𝑧 (1.3) 

where r is the distance between the nuclei and θ is the angle between the external 

magnetic field and the vector r.  0 is the permeability of free space. 

The magnetic shielding interaction describes the effects of the electrons on the 

local magnetic field in the vicinity of a nucleus induced by their interaction with the 

external applied field.  The effect is usually defined as the difference between the 

resonance position of the nucleus and some reference material, called the chemical 

shift. The effective Hamiltonian, HCS, for this shielding effect is given by  

 HCS   =  𝛾𝐁𝐞𝐱𝐭. (1 −  𝛔). 𝐈 (1.4) 
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where  is the magnetic shielding tensor and zz is the diagonal component of the 

magnetic shielding tensor in the frame in which the external applied magnetic field is 

parallel to the z axis. 

The through-bond indirect spin-spin coupling between a pair of spins is given 

by the so-called J coupling Hamiltonian, HJ, between two spins I and S defined by the 

following expression   

 𝐻J    =    𝐈𝐉𝐈𝐒𝐒 (1.5) 

where JIS is the indirect spin-spin coupling tensor for the interaction between the 

spins. 

The quadrupolar coupling with an applied electric field gradient is an 

interaction unique to nuclei with I > ½. It is characterized by a contribution to the 

Hamiltonian of the form 

 𝐻𝑄    =    𝐈𝐐𝐈 (1.6) 

where Q is the quadrupole interaction tensor for the nucleus.  It depends on the 

strength of the electric-field gradient at the nuclear site and on a fundamental constant 

for the nucleus, the quadrupole moment.  Depending on the site and the nucleus, the 

quadrupole interaction may be the strongest interaction that a spin experiences, in 

which case it cannot be treated as a perturbation on the Zeeman coupling to the 

interaction with the applied external magnetic field. 

 These interactions furnish information about the connectivity, coordination, 

and electronic structure of a molecular system. In principle, NMR interactions may 

depend on the relative orientation of the external field and the molecular system.[11, 

12, 33-35] They are formally defined as rank-2 tensors. In the solution state, the 

effects of the dipolar coupling and the quadrupolar coupling vanish through first and 
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the second order, due to the rapid motion of the molecules, whereas the magnetic 

shielding and the J coupling interactions are reduced to the isotropic values of the full 

tensor. Hence, NMR spectra in solution state generally consist of sharp lines. For 

solids, however, the molecular motion is relatively limited compared to the solution 

state. As a result, NMR spectra of solids are affected by the orientation-dependent 

interactions which may make the spectra broader and complicated, particularly when 

the sample is powder containing multiple orientations of the principal axes of these 

interactions relative to the magnetic field.[11, 12, 34] 

1.3.2 Magnetic Shielding 

Among the interactions described in the previous section, magnetic shielding is 

by far the most investigated interaction through NMR spectroscopy. The magnetic 

shielding Hamiltonian is detected through the effects on the spins; however, it is 

explicitly a function only of the electronic structure of the system. Therefore, it 

provides information about the chemical bonding and structure in molecular 

systems.[11, 34]  

As mentioned, the magnetic shielding is formally a rank-2 tensor with nine 

independent components.[3, 37, 38] The generic form of the tensor may be written as 

  

 𝝈   =    [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] (1.7) 

The tensor in Eq. 1.7 can be divided to symmetric and antisymmetric parts. In 

general, only the symmetric part of the tensor, which has six independent components 

(σαβ = σβα), affects the NMR spectra because the antisymmetric contribution is either 

very small or zero.[3] In the principal-axis system (PAS), the magnetic shielding 
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tensor is diagonal. The three non-vanishing components of the tensor (the symmetric 

part) in its PAS are called principal components: σ11      σ22      σ33.[11, 34]  The 

remaining three determinants of the tensor are the Euler angles that relate the PAS to 

the experimental co-ordinate system.  From studies of powdered samples, it is not 

generally possible to determine these orientation parameters except under conditions 

of high point symmetry at the nuclear center. 

In the SSNMR experiment, the components of the magnetic-shielding tensor 

are not the measured quantity. Instead, the chemical shift (δ), the magnetic shielding 

relative to some reference material, is reported. The principal components of the 

magnetic-shielding tensor and the principal components of the experimentally 

observed chemical-shift tensor are related by the following expression 

 

 𝛿𝑖𝑖 =
𝜎𝑟𝑒𝑓 − 𝜎𝑖𝑖

1 − 𝜎𝑟𝑒𝑓
≈ 𝜎𝑟𝑒𝑓 − 𝜎𝑖𝑖 (1.8) 

In Eq. 1.8, the approximate expression can be used when σref    <<    1. This 

situation is usually true for light nuclei such as 1H and 13C. However, for heavy nuclei 

such as 199Hg or 207Pb, the reference shielding is usually in the order of thousands of 

ppm. For this reason, one needs to include the factor 1/(1 - σref), in experimental or 

theoretical calculations of chemical shifts for such nuclei. 

1.3.3 Magnetic-Shielding Anisotropy 

The NMR spectra of polycrystalline samples display frequencies resulting 

from different tensor orientations with respect to the magnetic field, due to random 

geometric distributions of crystallites, whose principal axes are randomly oriented 

relative to the frame of the applied magnetic field.[34] For each crystallite, the 

measurable magnetic shielding varies according to the orientation of the principal axes 
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of the magnetic-shielding tensor with respect to the magnetic field. If the electronic 

environment is spherical or tetrahedral, symmetry requires that all different 

orientations of the crystallite axes yield the same magnetic shielding constant (σ11 = 

σ22 = σ33); [3, 38] and all resonances for the various crystallites occur at one unique 

position in the spectrum. For nuclear sites for which the electronic environment has 

lower symmetries, at least one of the principal components on the magnetic-shielding 

tensor is required to be different from the others. For such systems, the SSNMR 

spectrum consists of a band which represents the distribution of magnetic shieldings.  

The resulting spectrum is called a powder pattern. In Figure 1.1, the orientations of the 

principal axes of chemical-shift tensor for CO2 is shown in the molecular frame.  The 

powder pattern for 13C nuclei in solid CO2 are indicated in Figure 1.1. [39] For CO2, 

the δ11 and δ22 components are degenerate due to the axial symmetry of the molecule, 

and they are in the plane perpendicular to the principal axis (C∞) of the molecule. 

Because these two components are not unique, there is technically an infinite number 

of pairs of orthogonal axes that could be defined as the 11 and 22 axes. The δ33 

component corresponds to the most shielded component and the 33 axis is along the 

C-O bond.  

The magnetic shielding anisotropy can be detected directly in the SSNMR 

experiment without any referencing. For this reason, comparison of calculated and 

experimental values of the magnetic-shielding anisotropy for a particular system can 

be used as a gauge for the performance of the theoretical methods, especially in 

benchmark calculations.  
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Figure  1.1 The orientation of the PAS for the 13C chemical-shift tensor in CO2 and the 

simulated powder pattern from the experimentally obtained principal components 

from ref. [39] 

1.3.4 Conventions for Reporting the Magnetic-Shielding Tensor 

The magnetic-shielding tensor (or the chemical-shift tensor) is defined by the 

three principal components, σ11, σ22, and σ33.The full tensor is also described by the 

orientations of the principal axes relative to some fixed axes in the sample. Such a 

description, in the general sense, requires the specification of three angles, and the full 

tensor requires 6 independent variables for complete specification.  The principal 

components σ11      σ22      σ33 are usually assigned in the frequency-ordered 

convention.[40] At least two other conventions are commonly used to report a 

magnetic-shielding tensor.  
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In Haeberlen’s convention,[11] the tensor is described by three parameters, the 

spherical components of the tensor, and the ordering convention discussed above is 

not necessarily followed. The isotropic shielding, σiso, refers to the center of gravity of 

the magnetic-shielding tensor relative to the resonance position of the bare nucleus. 

The shielding anisotropy, Δ (or sometimes Δσ), describes the largest separation of a 

component (in this case, called 33) from the isotropic shielding. The asymmetry, η, is 

a measure of the deviation from axial symmetry. The relationship between these 

parameters and the principal components is given in Equations 1.9. 

    

 𝜎iso =
𝜎11 + 𝜎22 + 𝜎33

3
 

(1.9a) 

 𝛥 =
3

2
( 𝜎33   −    𝜎iso) (1.9b) 

 𝜂 =
𝜎22 − 𝜎11

𝜎33 − 𝜎𝑖𝑠𝑜
 (1.9c) 

  Another convenient description of the magnetic-shielding tensor is the 

Maryland convention.[40] In this description, in addition to the isotropic shielding 

(Eq. 1.9a), two parameters describe the powder pattern. The span, Ω, describes the 

maximum width of the spectral powder pattern. The skew, κ, defines the relative 

position of σ22 to σiso. Figure 1.2 schematically shows powder patterns with axial 

symmetry (κ = +1.0 or -1.0) and nonaxial symmetry (κ = 0.0) The relations between 

these parameters and the principal components are given in equations 1.10. 

 

 𝛺 = 𝜎33 − 𝜎11 (1.10a) 

 𝜅 =
3(𝜎iso − 𝜎22)

𝛺
 (1.10b) 
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Figure 1.2 Schematic representations of powder patterns due to the chemical-shift 

dispersion, where κ = 1.0, 0.0 and -1.0. Ω is defined as the maximum width of the 

spectrum. 

In the previous discussion, the conventions for the magnetic-shielding tensor 

have been indicated.  The conventions for the chemical-shift tensor are similar, but 
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one should always be careful about the definitions of axes, particularly the 11 and 33 

axes.      

In this dissertation, calculated magnetic-shielding tensors and chemical-shift 

tensors are reported in the frequency-ordered convention or in the Maryland 

convention.  Equations 1.9 and 1.10 may be used to convert the information to other 

conventions.  Where known or calculated, the geometric information is reported, 

generally as Euler angles between the principal axis system and some fixed co-

ordinate system. 

1.4 SSNMR of Spin-½ Heavy Nuclei 

1.4.1 General Aspects of the SSNMR Experiment for Spin-½ Heavy Nuclei 

In general, experimental SSNMR of heavy metal nuclei such as 199Hg or 207Pb 

involves extra difficulties, as compared to SSNMR of nuclei like 13C, due to the large 

chemical-shift ranges and the long T1 relaxation times.[41-43] Additionally, broad 

powder patterns (with spans of thousands of ppm), arising from the significant 

chemical shift anisotropy, are often observed for powdered samples containing heavy 

nuclei. For samples having such powder patterns, uniform excitation of the entire 

range of the absorption spectrum is an experimental challenge. Despite these 

difficulties, SSNMR investigations of heavy nuclei are appealing because the 

magnetic shielding of these nuclei is usually very sensitive to local chemical 

environment. Some characteristic NMR properties of selected spin-½ heavy nuclei are 

provided in Table 1.1. 
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Table 1.1 NMR Properties of Spin-½ Heavy Nuclei.  

1.4.2 High Resolution SSNMR Techniques for Spin-1/2 Heavy Nuclei 

To obtain well-resolved and usable SSNMR spectra of heavy-nuclei-

containing materials, specialized techniques beyond single-pulse excitation are often 

required. In this section, I briefly discuss some of these techniques.  

1.4.2.1 Magic Angle Spinning 

Magic angle spinning (MAS) techniques involve rapid rotation of the sample 

around an axis inclined at 54.74º with respect to the external field, an angle referred as 

the “magic angle”. This special angle is chosen because interactions such as the 

dipole-dipole coupling and the first-order quadrupole coupling vary as (3cos2θ - 1), 

where  is the angle between the unique principal axis of the tensor and the magnetic 

field.  The expansion of these interactions in terms of the orientation of the axis of 

spinning also contains this same factor of the angle between the spinning axis and the 

magnetic field.  Thus, the time average of these first-order nuclear interactions 

vanishes when the frequency of spinning is greater than the magnitude of anisotropy, 

about an axis inclined at this “magic” angle. As a result, spinning of the sample at the 

magic angle causes at least partial suppression of these interactions’ effects, which 

Nucleus 
Natural 

Abundance (%) 

ν0 at 7.0459 T 

(MHz) 

Chemical Shift 

Range (ppm) 
119Sn 8.59 111.872 ~5000 

195Pt 33.7 64.497 ~15000 

199Hg 16.9 53.7325 ~5000 

205Tl 70.48 173.052 ~7000 

207Pb 22.1 62.7622 ~10000 
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enhances the resolution of SSNMR spectra acquired with rapid magic-angle 

spinning.[34]  When the spinning is “slow”, the result is a manifold of spinning 

sidebands caused by the frequency modulation of the interaction.  An illustration of 

MAS and its effect on the powder pattern under slow spinning is illustrated in Figure 

1.3. 

 
 

Figure 1.3 a) Schematic representation of MAS and b) the effect of MAS on the 

observed spectrum under conditions of slow spinning. 

MAS suppresses the effects of orientation-dependent terms in the magnetic 

shielding Hamiltonian completely when the spinning frequency is substantially higher 

than the anisotropy. For lower spinning frequencies, the resulting spectra is composed 

of spinning sidebands, which appear on either side of the isotropic peak with integer 

multiples of spinning rate. (Figure 1.3b.)  A careful analysis of the relative intensities 
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of the sidebands in this slow-spinning version of the spectrum allows one to retrieve 

information about the anisotropic components of the chemical-shift tensor, thereby 

giving access to the principal components.[44] 

1.4.2.2 Variable Offset Cumulative Spectroscopy  

For wide SSNMR powder patterns, the failure to excite the powder pattern 

uniformly over the entire resonance range results in distortions in the spectrum that 

directly affect the ability to determine the principal components of the chemical-shift 

tensor. In such situations, one may use variable offset cumulative spectroscopy 

(VOCS) to determine a minimally distorted band from a static sample.  In this 

procedure, a set of SSNMR spectra is recorded with systematic variation of the 

transmitter frequency from spectrum to spectrum. Each spectrum is collected using 

identical experimental parameters other than the transmitter frequency.  These spectra 

are added in the frequency domain, to yield the VOCS spectrum. The VOCS technique 

has been shown to reproduce the broad powder patterns of heavy-metal nuclei such as 

207Pb and 199Hg successfully.[43, 45-47] 

1.4.2.3 CPMG-type SSNMR Techniques  

Another useful technique to acquire high resolution SSNMR spectra of heavy 

nuclei involves application of sequences of pulses to manipulate the spin system in 

desired way. One particular example of this sort of technique is the application of 

multi-pulse techniques such as the Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence.[48-50] The CPMG sequence produces a series of spin echoes by the pulse 

sequence, [90ºx-τ-(180ºy-2τ-)n]. The spectrum resulting from the use of the CPMG 

experiment is called a spikelet spectrum, in which the band is frequency modulated to 
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produce a series of sidebands, the relative intensities of which can be used to 

determine the principal components of the tensor. This method typically improves the 

signal-to-noise ratio significantly by concentrating the response into the sidebands.   

For broad powder patterns, this substantially improves the detectability in a reasonable 

experimental time. Some applications of the CPMG pulse sequence to determining the 

chemical-shift tensors of heavy nuclei are given in ref. [51-54] 

Although the CPMG technique increases signal-to-noise ratio and spreads the 

power out across a somewhat wider band efficiently, for very wide bands there is still 

a substantial power drop-off at frequencies far from the transmitter frequency.  In an 

attempt to spread the power across the wider band, another technique is employed.  

This is the wideband uniform-rate smooth truncation (WURST) multi-pulse technique.  

[55-57] A WURST pulse is a phase- and amplitude-modulated pulse, the net effect of 

which is to spread the power over a range determined by the rate of slew of the 

frequencies and phases.  If the WURST pulse is an inversion pulse (effectively a  

pulse), one may use it in the CPMG sequence to excite a spikelet spectrum more 

uniformly over a wider range (often up to 500 kHz).  This is the so-called WURST-

CPMG sequence, resulting in significant reduction in experimental time to obtain the 

spikelet spectrum.  WURST-CPMG techniques have been shown to be quite useful for 

the acquisition of broad NMR patterns of heavy-nuclei, which may have spans of 

hundreds of kHz.[58-62]          

1.4.3       Correlation of Electronic and Solid-State Structure with NMR 

Parameters 

       Establishing the connection between the NMR parameters and the 

electronic structure of heavy-nuclei-containing solids is difficult. Various empirical 
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correlations of the chemical-shift tensors with structural and electronic properties of 

such systems have been proposed in the literature.[42, 63-65]  

      Among the spin-1/2 heavy nuclei in Table 1.1, 207Pb has received the most 

attention by chemists attempting to establish a structure-shift relation. For example, 

Fayon et al.[63] showed there is a linear correlation between mean Pb-O bond length 

or coordination number (C.N.) of 207Pb and the isotropic chemical shift. However, this 

linear relation does not hold for more covalent compounds such as α-PbO or Pb3O4. In 

yet another example, 207Pb nuclei in solid lead halides becomes less shielded with the 

decreasing electronegativity of the halide.[66] The trend of 207Pb chemical shifts for 

the lead halides and lead hydroxyhalides has been correlated with the inverse 

ionization potential of these compounds.[67]  Van Bramer et al.[68] have shown that 

the isotropic chemical shift of lead in materials containing lead(II) and oxyanions 

depends on the electronegativity of the central atom of the anion.  

The solid-state NMR studies of certain lead compounds have provided 

correlations between the chemical-shift tensor of and the lone-pair activity.[69] In 

general, the chemical-shift tensor of 207Pb with stereochemically active lone pair 

(hemidirected lead sites) exhibits large anisotropies (2000-4000 ppm) due to the 

asymmetry in the electron density distribution around the lead site.[43, 45, 53, 62-64, 

70-74] For these systems, the skew (κ) of the chemical-shift tensor is positive and 

close to 1.00, which indicates the existence of a significantly shielded principal 

component. For lead sites without a stereochemically active lone pair, the chemical-

shift tensor is more symmetric.[43, 63, 68]  The reported investigations of lead(IV) 

sites show that the range of isotropic chemical shifts for these sites is smaller than the 

range of chemical shifts of lead(II) sites. The lead(IV) sites also generally have 
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smaller anisotropies, similar to anisotropies reported for a lead(II) site with a 

stereochemically inactive lone pair.[75, 76] 

A similar trend can be observed for reported 119Sn chemical-shift tensors and 

lone-pair activity of tin site. In general, the reported spans of tin(II) sites are in the 

range of 700-1000 ppm[65, 77-81] whereas the spans of tin(IV) sites are 100-300 

ppm. In analogy to the hemidirected lead(II) sites, the 119Sn chemical-shift tensor for 

the +2 oxidation state exhibits skews close to 1.00.  

For 199Hg-containing compounds, Bowmaker and his collaborators have shown 

an empirical relationship between the anisotropy of the 199Hg chemical-shift tensor 

and the C.N. of mercury.[42, 82, 83] A relation between the symmetry of the mercury 

site and the asymmetry parameter, η, has been proposed for linear HgX2 and tetragonal 

planar HgX3 coordination geometries. For mercury compounds where C.N. = 2, the 

199Hg chemical-shift tensor may exhibit slight deviation from axial symmetry (δ11 = 

δ22 > δ33) due to small distortions from linearity.[42] Nevertheless, κ is larger than 0.8 

for most cases. The anisotropies of the chemical-shift tensors for such systems are in 

the range of 3000-4000 ppm. When C.N. = 3, the reported anisotropies of the 

chemical-shift tensors are smaller (1500-2000 ppm).[42]  

As an example of correlations for other nuclei, authors have proposed 

relationships between the chemical-shift tensors of 195Pt and 203/205Tl sites and 

electronic and solid-state structure of the materials. Some selected examples are given 

in the ref. [41, 60, 61, 84]. 

Currently, the trend is to NMR interaction tensors and their relationship to 

molecular structure using quantum chemical calculations.  It is this type of connection 

between NMR parameters and electronic and solid-state structure that is the topic of 
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this dissertation, specifically for heavy nuclei like 207Pb, 199Hg, and 119Sn.  Our 

hypothesis is that it is possible, with modern quantum chemical computations, to 

calculate NMR magnetic-shielding tensors with sufficient accuracy that comparison of 

predicted NMR parameters with experiment allows one to corroborate structure. 
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QUANTUM CHEMICAL CALCULATIONS OF NMR PARAMETERS 

2.1 Theoretical Framework of Density Functional Theory 

The primary objective of most state-of-the-art quantum chemical methods is to 

obtain approximate solutions to the non-relativistic many-body Schrodinger’s 

equation. Under the Born-Oppenheimer approximation, the many-body Schrodinger’s 

equation for an N-electron system is given in atomic units as: 
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In eq. 2.1, Ψ is the electronic wave function and E is the total electronic 

energy. The first term describes the kinetic energy of the N-electron system. The 

second term gives the potential energy of interaction between the electrons and nuclei, 

and the third term provides the potential energy of the electron-electron interactions. 

The presence of the electron-electron interaction term means that the many-body 

Schrodinger’s equation cannot be solved exactly. Hence, approximate quantum 

chemical methods have been developed to solve Schrodinger-like equations to define 

complex quantum systems.  These approximate methods include Hartree-Fock theory, 

Moller-Plesset perturbation theory (MPN), and coupled-cluster methods.[1] 

The central quantity of equation 2.1 is the electronic wave function, Ψ. It is a 

complex quantity that depends on 4N variables (3N spatial variables and N spin 

variables). As mentioned, solution of Eq. 2.1 to obtain the wave function can only be 
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approximate.  One may choose to focus not on the electronic wave function, but rather 

on a related quantity, the electron density, (r), defined in Eq. 2.2. 

  

 
𝜌(𝐫) = 𝑁 ∫ … ∫|Ψ(𝐱𝟏𝐱𝟐 … 𝐱𝐍)|2𝑑𝒔𝟏 𝐱𝟐 … 𝐱𝐍 (2.2) 

The motivation behind density functional theory (DFT) is to solve for the 

electronic density function, from which one may calculate properties that depend on 

the electronic state of a system.  In particular, focusing on the electron density reduces 

this complexity of solving for the wave function because ρ(r) depends only on the 3 

spatial co-ordinates.        

Using electron density rather than a wave function to obtain information about 

the many-electron systems dates back to early work by Thomas and Fermi in 1927. In 

this model, the electronic kinetic energy is derived from the quantum statistical theory 

of a uniform electron gas, whereas the electron-electron and electron-nuclear 

interactions are treated in a classical manner.  

The Thomas-Fermi model is a very crude approximation to the total energy of 

a many-electron system; however, it illustrates how the energy of a system can be 

determined purely from the electron density, instead of from the electronic wave 

function. Although crude, it serves as a theoretical starting point for what is now 

known as density functional theory (DFT).[2, 3] 

2.1.1 Kohn-Sham Formalism of Density Functional Theory 

Although the Thomas-Fermi model gives a recipe to approximate the energy 

from the electron density of a system containing many electrons, modern DFT 

originated with papers by Hohenberg and Kohn in 1964,[4] and Kohn and Sham in 
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1965.[5] In the first paper, Hohenberg and Kohn proved two key theorems of DFT, 

known as Hohenberg-Kohn (HK) theorems. The first HK theorem shows that there is 

a one-to-one mapping of external potential to ground state density, up to an arbitrary 

additive constant. The second HK theorem shows the existence of a variational 

principle for the energy functional of the electron density, thus allowing one to find 

the best functional possible for describing a system.  

Although the HK theorems provide the formal proof of the central importance 

of the electron density in determining the ground-state energy of a system, the paper 

by Kohn and Sham in 1965 provides the practical equations to calculate the ground-

state energy. In the Kohn-Sham (KS) formalism, the energy functional, E[ρ(r)], is 

given by eq. 2.3. [2]            

 

E[𝜌(𝐫)] = T[𝜌(𝐫)] + J[𝜌(𝐫)] + ∫ 𝑉(𝐫)ext 𝜌(𝐫)𝑑𝐫 + Exc[𝜌(𝐫)] (2.3) 

The right hand side of eq. 2.3 collects the kinetic energy (T), classical coulomb 

energy (J), and non-classical exchange-correlation energy (Exc) as functionals of the 

density. In this expression, the explicit forms of T[ρ(r)]  and Exc[ρ(r)] are not known 

and must be approximated. In fact, the errors in the Thomas-Fermi model mainly 

result from the description of the kinetic energy functional by using the uniform 

electron gas model. In the KS formalism, the kinetic energy functional is expressed in 

a similar fashion to Hartree-Fock theory, as indicated in eq. 2.4. 

 

T[𝜌(𝐫)] = −
1

2
∑ ∫〈𝜙𝑖|∇𝑖

2|𝜙𝑖〉 𝑑𝐫

𝑁

𝑖

 (2.4) 
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In this equation, ϕi is a one-electron orbital of a non-interacting fictitious 

system.  These orbitals are known as KS orbitals. The relation between KS orbitals 

and the real interacting system is given by eq. 2.5.      

 

𝜌𝑜(𝐫) = ∑|𝜙𝑖|2

𝑁

𝑖

 (2.5) 

where ρo(r) is the exact electron density of the interacting system obtained from the 

one-electron orbitals of the artificial non-interacting system. This relation is provided 

in the KS formalism by choosing an effective potential (dependent on the exchange-

correlation functional) such that the resulting one-electron orbitals satisfy the relation 

given in eq. 2.4. 

The introduction of orbitals leads to the central equation of KS-DFT, which is 

obtained by combining eq. 2.3, 2.4 and 2.5. After some rearrangement, the one-

electron KS equation is expressed as: 

 
(−

1

2
∇𝑖

2 + 𝑣(𝐫)ext + ∫
𝜌(𝐫′)

|𝐫 − 𝐫′|
𝑑𝐫 + 𝑣XC(𝐫)) 𝜙𝑖 = 𝜀𝜙𝑖 (2.6) 

Here, the exchange-correlation potential is formally defined as the following 

functional derivative expression:       

 
𝑣XC(𝐫) =

δExc[𝜌(𝐫)]

δ𝜌(𝐫)
 (2.7) 

In eq. 2.6, the coulomb potential and the exchange-correlation potential depend 

on the electron-density. As a result, the KS equations can only be solved using self-

consistent-field (SCF) methods. The general procedure starts with the introduction of 

an auxiliary basis-set expansion for the one-electron orbitals:[1] 
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𝜙𝑖 = ∑ 𝑐𝑖𝑣𝜓𝑣

𝑀

𝑣

 (2.8) 

  The basis-set expansion of one-electron orbitals reduces the integro-

differential form of eq. 2.6 to a computationally easier matrix equation form. To solve 

this equation, an initial guess for the expansion coefficients (Eq. 2.8) must be 

specified. This is usually done by using the symmetry properties of the system at hand. 

From this initial guess, matrix form of eq. 2.6 can be solved iteratively until a 

convergence threshold is achieved. Finally, the total energy and other desired 

properties of the system can be evaluated from this final density of the SCF cycle. 

2.1.2 Exchange-Correlation Functionals 

The KS formalism of DFT described briefly in the previous section is exact, in 

theory. However, this is far from the reality of practice, because the exactness of this 

formalism requires complete knowledge of the form of Exc[ρ(r)] (or the potential form 

of the functional, vxc(r)), which then yields all non-classical interactions of the many-

electron system.  

The main goal of modern DFT is to find a good approximation for the 

Exc[ρ(r)].  In general, modern DFT formalisms differ only with respect to Exc[ρ(r)]. As 

a result, DFT formalisms are named in the literature and textbooks using acronyms 

which refer to Exc[ρ(r)]. For example, the famous hybrid functional named B3LYP is 

an acronym for Becke 3-parameter exchange[6] and Lee, Yang and Parr 

correlation.[7] Today, there is a large selection of exchange-correlation functionals 

which have been implemented in various program packages. In this section, some of 

the most common exchange-correlation functionals are discussed briefly.   
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2.1.2.1 Local Density Approximation (LDA) 

Local density (or local spin density) approximation (LDA) is the first step in 

the quest for the universal Exc[ρ(r)]. The very first LDA approach was employed by 

Kohn and Sham in the original DFT paper.[5] In this approximation, exchange and 

correlation energies of a given system are approximated by the energy of the 

homogenous electron gas. The exchange-correlation functional in LDA is expressed 

by the following relation: 

 
EXC

LDA[𝜌(𝐫)] = ∫ 𝜌(𝐫)𝜀XC(𝜌(𝐫))𝑑𝐫 (2.9) 

In this expression, εXC(ρ(r)) is the exchange-correlation energy of the 

homogenous electron gas per electron. The exchange part of εXC is known analytically, 

whereas the correlation part can be obtained by employing accurate Monte-Carlo 

simulations.  The LDA functional is local in the sense that the functional depends only 

on the local values of ρ(r). Despite this drastic approximation at its core, LDA can 

predict molecular properties of certain systems successfully. However the accuracy of 

LDA is still insufficient for most chemical systems. 

2.1.2.2 Generalized Gradient Approximation (GGA) 

The generalized gradient approximation (GGA) produces the next generation 

of exchange-correlation functionals for the DFT formalism. In GGA, Exc[ρ(r)] 

depends on density, as well as the gradient of density at each point in space. The 

exchange-correlation functional within GGA is expressed generically as:      

 
EXC

GGA[𝜌(𝐫)] = ∫ 𝜌(𝐫)𝜀XC(𝜌(𝐫), ∇𝜌(𝐫))𝑑𝐫 (2.10) 

GGA functionals are still local, in a mathematical sense. However, they 

include corrections beyond LDA (homogenous electron density) via the gradient of the 
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electron density, to account for inhomogeneity in the system. For many chemical 

systems, the GGA functionals yield much better results than LDA with a comparable 

scaling factor. As a result, GGA serves as the basic machinery of DFT today for most 

chemical applications. Some famous GGA functionals include BP86, Becke’s 

exchange functional[8] and Perdew’s correlation functional,[9] and PBE, the Perdew-

Burke-Ernzerhof exchange-correlation functional. [10]    

2.1.2.3 Hybrid Functionals 

Hybrid functionals are the next successful alternative to calculate Exc[ρ(r)]. 

The idea behind the introduction of hybrid functionals is to include the exact exchange 

term from HF theory. Hybrid functionals are generally composed of linear 

combination of different terms, where the contributions of those terms are fitted by 

comparison to experiment or post-ab initio methods. For example, the Exc[ρ(r)] for the 

B3LYP [3, 6] functional is expressed as:     

 EXC
B3LYP[𝜌(𝐫)] = EXC

LDA + 𝑎0(EX
HF − EX

LDA) + 𝑎𝑋(EX
GGA − EX

LDA)

+ 𝑎𝐶(EC
GGA − EC

LDA) (2.11) 

Here, the fitted parameters are a0 = 0.20,  aX = 0.72 and aC = 0.81. The other 

widely used hybrid functionals include PBE0[11, 12], B1LYP[13], and B1PW91[14]. 

In general, hybrid functionals show improvement over GGA functionals for chemical 

applications.[2, 15]  

In this dissertation, some applications of hybrid functionals to the prediction of 

magnetic shielding of heavy nuclei are discussed in the following chapters. However, 

the calculation of Exc[ρ(r)] in hybrid functionals requires the calculation of exchange 

energy from HF theory using one-electron orbitals. This procedure involves numerical 

determination of two-electron integrals, which is the bottleneck in quantum chemistry 
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methods. Thus, the computational time in use of hybrid functionals is considerably 

greater than that for their GGA counterparts. 

2.1.3 On the Accuracy of DFT 

The KS-DFT is, by no means, a flawless theory. Despite its popularity among 

computational chemists, there are still some areas where the errors in DFT results in 

failures to accurately predict the physicochemical properties. A large number of 

problems in DFT are caused by self-interaction error. The self-interaction error refers 

to the non-physical interaction of an electron by itself.[2, 16-18] The self-interaction is 

cancelled via construction of the exchange contribution in the HF formalism. 

However, since the exchange is only approximated in DFT by the exchange-

correlation functional, a residual self-interaction remains. An important example of 

self-interaction error in DFT is the application to stretched H2
+, the simplest molecule 

in chemistry. In this example, DFT predicts a total energy that is significantly lower 

than the exact total energy from HF theory at longer bond lengths. This failure of DFT 

is caused by the non-physical delocalization of the electron density as a result of self-

interaction of the electron.[18]  

Another important issue in approximate DFT is the meaning of KS orbitals and 

their eigenvalues. In KS-DFT, orbitals are only introduced as a mathematical trick to 

obtain a better approximation for the kinetic energy by using eq. 2.4 and 2.5. For this 

reason, it is often claimed that KS orbitals have no physical meaning, in a strict sense. 

Additionally, there is no equivalence of Koopmans’ theorem in DFT, which would 

relate the KS eigenvalues to the ionization potentials of a given system in the frozen-

orbital approximation. However, the relation between the energy of the highest 

occupied level and first ionization potential was shown by Janak for exact DFT.[19]  
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The physical meaning of KS orbitals is still an issue for debate among 

theoretical chemists and physicists.[20-22] In practice, KS orbitals and their 

eigenvalues have been used successfully in many qualitative and quantitative 

descriptions of chemical properties. 

2.2 Introducing Relativity in Quantum Chemistry Methods 

   The impact of relativistic effects in chemistry is a broad and active research 

area. Some famous textbook examples of the relativistic effects include the yellow 

color of gold, why mercury is liquid at room temperature, the observed lanthanide 

contractions, and the inert-pair effect of the 6s orbital in thallium(I) and lead(II).[23-

25] Recently, it was shown by Ahuja et al.[26] that 1.7-1.8 V of the standard voltage 

in car batteries (2.13 eV) arise from relativistic effects in PbO2. In another striking 

example, Hrobarik et al.[27] showed that about 30 ppm deshielding of 1H chemical 

shifts are the result of spin-orbit (SO) relativistic effects. 

In the preceding section, we have briefly introduced the many-body 

Schrodinger equation and KS-DFT. However, our discussion was strictly within the 

non-relativistic limit, which means that all the effects arising from the finite speed of 

light (c ≈ 137.03599 au) are ignored. According the Einstein’s theory of special 

relativity, all physical laws and equations must be invariant under Lorentz 

transformation.  Eq. 2.1 is not invariant under such a transformation. Therefore, one 

needs another set of equations to account the relativistic effects in chemical 

applications.[28] 
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2.2.1 Dirac Equation 

   The starting point for relativistic quantum chemistry is the equation proposed 

by Dirac in 1928.[29] The relativistic Hamiltonian for a free particle is expressed in 

eq. 2.12. 

 𝐻 = √𝑚2𝑐4 + 𝑝2𝑐2 (2.12) 

From eq. 2.12, one may obtain a wave equation upon the canonical substitution 

of momentum with its operator form. However, the resulting equation is still not 

Lorentz invariant because the orders of the derivatives for space and time co-ordinates 

are different. At this point, Dirac realized that eq. 2.12 could be linearized by 

introducing matrices, as shown in eq. 2.13. 

 𝐻 = √𝑚2𝑐4 + 𝑝2𝑐2 = 𝑐𝛂. 𝐩 + 𝛃𝑚𝑐2 (2.13) 

 In this equation, α and β are the 4  4 Dirac matrices which are expressed in 

the block matrix form by the following expression; 

 
𝛂 = (

02 𝛔
𝛔 02

) ;  𝛃 = (
I2 02

02 −I2
) (2.14) 

where σ (σ = σx, σy, σz ) are 2  2 Pauli spin matrices and I2 is the 2  2 identity 

matrix and 02 is the 2  2 zero matrix. In this form, Dirac’s equation can be written, 

after some rearrangements, in atomic units as 

 
𝐻𝐷𝛹𝐷 = (

𝑉 𝑐𝛔. 𝐩

𝑐𝛔. 𝐩 𝑉 − 2𝑐2) = 𝐸𝛹𝐷 (2.15) 

    There are two important aspects of Eq. 2.15. Firstly, the spin of the electron 

is incorporated in Dirac’s equation explicitly through the introduction of Pauli 

matrices in the linearization of the Hamiltonian in eq. 2.13. In contrast, electron spin 

can be introduced into the non-relativistic quantum mechanics only by an ad-hoc 

assumption. The other important aspect of eq. 2.15 is the fact that it has both positive 
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and negative energy solutions. The negative energy solutions of Dirac’s equation 

eventually led to the idea of the existence of anti-particle states of electrons, called 

positrons.  Nowadays, we consider this the birth of quantum field theory, although 

Dirac initially dismissed the negative-energy solutions of the problem when it was 

first published.  

In quantum chemistry, we generally seek the solutions of eq. 2.15 that 

correspond to the positive-energy spectrum. As we see below, the solutions may be 

grouped into two components, the so-called large and small components.  As an 

approximation, it is often typical that one seeks the positive-energy solutions only with 

the large components.                  

2.2.2 Four-Component and Two-Component Relativistic Methods 

Due to the 4  4 matrix form of eq. 2.15, the eigenvector solutions of this 

equation are composed of four components: 

 

𝛹𝐷 = (

𝜓1

𝜓2

𝜓3

𝜓4

) = (
𝜓𝐿

𝜓𝑆
) ; 𝜓𝐿 = (

𝜓1

𝜓2
) , 𝜓𝑆 = (

𝜓3

𝜓4
) (2.16) 

In eq. 2.16, the eigenvector solution is grouped into the large component, (ψL) 

and the small component (ψS) of the Dirac wave function. For the positive-energy 

spectrum, the contribution of the small component is much smaller than that of the 

large component. If eq. 2.15 and 2.16 are combined, the following expressions are 

obtained.  

 𝑉𝜓𝐿 + 𝑐𝛔. 𝐩𝜓𝑆 = 𝐸𝜓𝐿 (2.17a) 

 𝑐𝛔. 𝐩𝜓𝐿 + (𝑉 − 2𝑐2)𝜓𝑆 = 𝐸𝜓𝑆 (2.17b) 
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In eq. 2.17, the small and large components of the Dirac wave function are 

coupled by the following relation. 

 
𝜓𝑆 =

1

2𝑐
𝑘𝛔. 𝐩𝜓𝐿 (2.18a) 

 
𝑘 = (1 −

𝑉 − 𝐸

2𝑐2
)

−1

 (2.18b) 

In the four-component relativistic formalism, one seeks solutions to both small 

and large components via simultaneous solutions of the equations in 2.17. However, 

early attempts with an auxiliary basis set suffered from the so called ‘variational 

collapse’ [30, 31] when small and large components were varied independently. This 

problem can be overcome by relating the basis sets for small and large components via 

eq. 2.18a, which is referred as the kinetic balance approximation.[32]  Using eq. 2.18a, 

one eliminates the small component of the Dirac wave function and sees solutions for 

only the large component. This approach yields the following eigenvalue equation for 

the large component only: 

 
[𝑉 +

1

2
𝛔. 𝐩𝑘𝛔. 𝐩] 𝜓𝐿 = 𝐸𝜓𝐿 (2.19) 

This equation is not practical since the Hamiltonian operator depends on k (and 

E). At this point, one may decouple the small and large components completely by 

employing Foldy-Wouthuysen transformations,[33] which leads to exact two-

component relativistic methods. Another approach is to construct approximate 

decoupling schemes by expanding k in a power series. This formalism leads to quasi-

relativistic two-component methods. A famous example of such a method is called 

the zeroth order regular approximation (ZORA),[34-36] which is discussed in the 

following sub-section.  
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2.2.3 Zeroth Order Regular Approximation 

It is possible to obtain a more practical expression for the Hamiltonian in Eq. 

2.19 by employing a power series expansion for k. 

 
𝑘 = (1 −

𝑉 − 𝐸

2𝑐2
)

−1

= 1 + ∑ (
𝑉 − 𝐸

2𝑐2
)

𝑛∞

𝑛=1

 (2.20) 

At the first order of this expansion, one gets the Pauli Hamiltonian after some 

manipulation. 

 
𝐻𝑃𝑎𝑢𝑙𝑖 = 𝑉 +

𝑝2

2
−

𝑝4

8𝑐2
+

𝑉𝑝2

8𝑐2
+

𝑖

4𝑐2
𝛔. (𝛁𝑉𝐩) (2.21) 

In eq. 2.21, first two terms on the right hand side recover the non-relativistic 

Hamiltonian. The third term is called the mass-velocity operator, which yields 

relativistic corrections to the kinetic energy due to the mass-increase effect in special 

relativity. The fourth term is the Darwin term, which gives a correction to the potential 

near the nucleus. The last term is the spin-orbit coupling term. It should be noted that 

the Pauli Hamiltonian transforms to the non-relativistic Hamiltonian at the limit (c → 

∞).  

Another expansion[34] can be made for k by the following relation:   

𝑘 =
𝑐2

2𝑐2 − 𝑉
(1 +

𝐸

2𝑐2 − 𝑉
)

−1

=
𝑐2

2𝑐2 − 𝑉
+ (

𝑐2

2𝑐2 − 𝑉
) ∑ −1𝑛 (

𝐸

2𝑐2 − 𝑉
)

𝑛∞

𝑛=1

 
(2.22) 

At the zeroth order of this expansion series, one can get the ZORA 

Hamiltonian after some arrangements, which is expressed by eq. 2.23. 
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𝐻𝑍𝑂𝑅𝐴 = 𝑉 +

1

2
𝛔. 𝐩 (

𝑐2

2𝑐2 − 𝑉
) 𝛔. 𝐩

= 𝑉 +
1

2
𝐩 (

𝑐2

2𝑐2 − 𝑉
) 𝐩 +

𝑖

2
(

𝑐

2𝑐2 − 𝑉
)

2

𝛔. (𝛁𝑉 × 𝐩) 
(2.23) 

The ZORA Hamiltonian includes the familiar spin-orbit coupling term even at 

the zeroth order of expansion. The complete Hamiltonian in Eq. 2.23 is referred as the 

ZORA/spin-orbit Hamiltonian. If the spin-orbit coupling term is neglected, one gets 

the ZORA/scalar Hamiltonian.  

 The ZORA Hamiltonian gives valence-shell properties and orbital energies of 

heavy elements, as can four-component relativistic methods.[36] However, the core 

levels of systems modeled by the ZORA Hamiltonian generally have substantial 

errors,[37] as a result of the truncation at zeroth order of the expansion of the k in Eq. 

2.22. In this expansion, the terms with the constant E are neglected. This neglect is 

justified for the valence shell orbitals where E is relatively small. However, this 

approximation carries inherent errors for the core levels where E is large.    

2.3 Theory of Magnetic Shielding 

Magnetic shielding is the electronic contribution to the interaction between the 

magnetic moment of the nucleus (μn) and the external magnetic field (B0). This 

interaction can be expressed by the following Hamiltonian; 

 
𝐻Spin = 𝛍n𝛼(1 − 𝜎𝛼𝛽)𝐁0𝛽;  𝛔 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

] (2.24) 

In this equation, σ is the magnetic-shielding tensor, a rank-2 tensor. It is 

specified by nine independent components. However, the point symmetry at the 

nuclear site may reduce the number of independent components. The earliest attempt 
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at a theory of magnetic shielding was given by Lamb in 1941.[38] His theory 

considered an explicitly spherically symmetric charge distribution around the nucleus. 

A more general nonrelativistic quantum-mechanical formalism of magnetic shielding 

was developed by Ramsey in 1950, which gave expressions for the magnetic shielding 

in terms of perturbation corrections to the energy caused by the coupling of the spins 

to the external field mediated by the electrons.[39]      

2.3.1 Formulation of Magnetic Shielding from Double Perturbation Theory 

The formal definition of the magnetic-shielding tensor is given as the second-

order mixed derivative of the total energy with respect to the component of the 

magnetic moment of the nucleus and the component of the external magnetic field, as 

shown in eq. 2.25. 

 
𝜎𝛼𝛽 =

𝜕2𝐸

𝜕𝛍α𝜕𝐁𝛽
|

𝛍α=𝟎,𝐁𝛃=𝟎

 (2.25) 

For such mixed properties expressed as a second-order energy derivative, one 

can apply double (or multiple) perturbation theory and the sum over states formula to 

obtain an explicit expression for the property.[39-43] In the generic formulation of 

double perturbation theory, the Hamiltonian is expanded in Taylor series using the 

arbitrary perturbation parameters λ and κ.          

 𝐻 = 𝐻0 + 𝜅𝐻10 + λ𝐻01 + 𝜅λ𝐻11 + 𝜅2𝐻20 + ⋯ (2.26a) 

 𝐸 = 𝐸0 + 𝜅𝐸10 + λ𝐸01 + 𝜅λE11 + 𝜅2𝐸20 + ⋯ (2.26b) 

At this point in the derivation, one defines the second-order mixed property 

E11, by employing a perturbation approach, as shown in eq. 2.27. 
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𝐸11 =

𝜕2𝐸

𝜕λ𝜕𝜅
|

λ=𝟎,𝜅=𝟎

 

= ⟨𝛹0|𝐻11|𝛹0⟩ + 2 ∑
⟨𝛹0|𝐻10|𝛹𝑛⟩⟨𝛹𝑛|𝐻01|𝛹0⟩

𝐸𝑛 − 𝐸0
𝑛≠0

 
(2.27) 

To relate the perturbation energy of eq. 2.27 to the magnetic-shielding tensor, 

one defines the Hamiltonian in the presence of an external magnetic field and a 

nuclear magnetic moment. This Hamiltonian (in the non-relativistic limit) reads, for 

an N electron system, as          

 

𝐻 = − ∑
1

2

𝑁

𝑖

[𝛁𝑖 + 𝐀0(𝑖) + 𝐀𝑛(𝑖)]2 − ∑ ∑
𝑍𝑖

𝑟𝑖𝑘

𝑀

𝑘

𝑁

𝑖

+ ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖

 (2.28) 

where A0 and An are the vector potentials for the external magnetic field and nuclear 

magnetic moment, given in eq. 2.29.  

 
𝐀0(𝑖) =

1

2
𝐁0 × 𝐫𝑖0, 𝐫𝑖0 = 𝐫𝑖 − 𝐑0 (2.29a) 

 
𝐀𝑛(𝑖) =

𝛍𝑛 × 𝐫𝑖𝑛

𝑟𝑖𝑛
3

, 𝐫𝑖𝑛 = 𝐫𝑖 − 𝐑𝑛 
(2.29b) 

In eq. 2.29, R0 is the position of the gauge origin and Rn is the position of the nuclear 

magnetic moment. The expansion of the Hamiltonian in eq. 2.28 around μn and B0 

beyond zero order yields the relevant terms to define the magnetic-shielding tensor.  

 

𝐻11 =
1

2𝑐2
∑

(𝐫𝑖0. 𝐫𝑖𝑛 − 𝑟𝑖0𝑟𝑖𝑛)

𝑟𝑖𝑛
3

𝑁

𝑖

 (2.30a) 

 

𝐻10 =
1

𝑐2
∑

𝐋𝑖𝑛

𝑟𝑖𝑛
3

𝑁

𝑖

 

(2.30b) 
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𝐻01 =
1

2
∑ 𝐋𝑖0

𝑁

𝑖

 

(2.30c) 

where Li0 and Lin are angular momentum operators for electron i with respect to the 

gauge origin and to the nucleus respectively. Insertion of the equations in 2.30 into Eq. 

27 gives the expression for the magnetic shielding in atomic units:   

 
𝜎 = ⟨𝛹0|𝐻11|𝛹0⟩ + 2 ∑

⟨𝛹0|𝐻10|𝛹𝑚⟩⟨𝛹𝑚|𝐻01|𝛹0⟩

𝐸𝑚 − 𝐸0
𝑚≠0

 (2.31) 

There are certain aspects of eq. 2.31 that are quite important for quantum 

chemical calculations of the magnetic-shielding tensor.  The expression for the 

magnetic-shielding tensor (eq. 2.31) shows that there are two contributions. The first 

term in eq. 2.31 is called the diamagnetic term.  It depends solely on the ground-state 

wave function. The second term is called the paramagnetic term, which involves both 

ground- and excited-state wave functions. However, the physical meaning of this 

separation into two terms for practical calculations in chemical systems is subject to 

debate due to gauge dependence.[44, 45]  Different choices of gauge origin, R0, of the 

origin of the vector field, result in different parsing of the magnetic-shielding into to 

the two terms.  The gauge dependence in these terms cancels each other out 

completely, if the exact wave function or a variational approximation of the wave 

function using a complete basis set is employed.      

Eq. 2.31 is theoretically exact in the non-relativistic limit, because all the 

terms relevant to magnetic shielding are collected in the perturbation expansion. In 

practical applications, however, this is not true, as the exact form of the ground state 

wave-function is generally not available for use in this expression, and approximations 

to the form of the wave function must be used.  
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Eq. 2.28 is not appropriate for calculation of magnetic shielding when one 

must include the effects of relativity. [24, 46, 47] Inclusion of relativistic effects 

requires modification of the form of eq. 2.31. For example, in the ZORA formalism 

for inclusion of the relativistic effects, the expression for the magnetic shielding 

involves the familiar diamagnetic and paramagnetic terms in eq. 2.31. But, the 

formalism produces additional terms in the expression, which arise from spin-orbit 

coupling that occur naturally in the application of the ZORA Hamiltonian.[48, 49] 

2.3.2 Gauge Origin Dependence 

As mentioned in the previous subsection, the paramagnetic and diamagnetic 

components of the shielding expression depend on the choice of gauge for the vector 

potential. The gauge-dependent terms cancel out perfectly in the limit of an infinite 

basis set. However, in practical calculations where a finite basis set is employed, the 

calculated magnetic shielding depends on the choice of gauge origin (or choice of the 

co-ordinate system for the molecule). This dependence is called the gauge-origin 

problem, or lack of gauge invariance. For some examples of gauge dependence in 

common magnetic shielding calculations, readers are referred to references [44, 45, 

47]. 

 There have been various methods proposed to solve the gauge-origin problem 

in magnetic shielding calculations. One commonly employed method is through the 

use of gauge-including atomic orbitals (GIAO). This approach was first employed by 

London in 1937[50] for calculations of electronic energies in an external magnetic 

field. Later, the method was adapted for magnetic shielding calculations by Pople[51, 

52] and by Ditchfield.[41] In the GIAO method, the atomic orbitals (or basis 
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functions) are modified to include a phase factor that depends on the gauge origin, as 

expressed in eq. 2.32. 

 𝜙𝑣
𝐺𝐼𝐴𝑂(𝐁𝟎) = 𝑒𝑖𝐀𝒗.𝐫𝜒𝑣 (2.32) 

 The GIAO method has been implemented in various ab initio methods, 

including DFT methods for magnetic shielding calculations that include relativistic 

effects.[53, 54] The convergence of calculated magnetic shielding with respect to basis 

set size is much faster with GIAOs when compared to other common-origin methods. 

Other than GIAO, additional methods to account for the gauge dependence in 

magnetic-shielding calculations include the methods called individual gauge for 

localized orbitals (IGLO), localized orbital/local origin method (LORG), and the 

polarization propagator approximation (PPA).[47, 55]  

2.3.3 Magnetic Shielding Calculations for Many-Electron Systems 

To calculate the magnetic shielding within the framework of DFT, the first step 

is to solve the KS equations (Eq. 2.6) for the ground-state density without the presence 

of a perturbing magnetic field. Subsequently, the contributions to eq. 2.31 are obtained 

as a sum over one-electron states. In this formalism, the ground-state wave function is 

replaced by products of one-electron KS orbitals, from which one obtains the ground-

state energy. For the excited states, virtual KS orbitals are used in a similar manner. 

The transformed DFT equation of the magnetic shielding for N occupied and M virtual 

KS orbitals is shown in eq. 2.33. 
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(2.33) 

In equation 2.33, hab represents the one-electron form of the perturbation 

operators given in eq. 2.30. 𝑉xc
′ (𝐁0) refers to the response of the exchange-correlation 

potential to the external magnetic field. For functionals that depend on the density, or 

the gradient of the density (such as LDA or GGAs), the response of the exchange-

correlation functional vanishes because of the neglect of current-density terms. This 

neglect leads to uncoupled DFT equations. The uncoupled DFT formalism allows 

calculation of the magnetic shielding by eq. 2.33 in one step, once the SCF solution is 

obtained for the many-electron system. For hybrid functionals that include the HF 

exchange term, the response of the functional depends on how the orbitals are 

perturbed by the external field. This mixing leads to coupled DFT equations, which 

are solved iteratively. For this reason, using hybrid functionals in magnetic-shielding 

calculations increases the computational time significantly, compared to GGA 

functionals. For a relativistic Hamiltonian that includes spin-orbit coupling such as the 

Hamiltonian in the ZORA formalism, the response of the exchange-correlation 

functional does not vanish even in the case of GGAs.[56] For heavy nuclei, the 

inclusion of the response term increases the magnetic shielding by around 500 ppm.         

2.4 Literature Review of Magnetic Shielding Calculations for Spin-½ Heavy 

Nuclei 

Calculations of magnetic shielding for heavy nuclei such as 119Sn, 199Hg, 205Tl 

and 207Pb generally require some level of relativistic theory in the model Hamiltonian 
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and a sufficiently large basis set, due to large number of electrons. Over the last two 

decades, the implementation of various relativistic methods in quantum chemistry and 

the rapid increase in computing power have allowed significant developments in the 

calculation of magnetic shielding for such heavy nuclei. There still remain some areas 

such as the accurate prediction of the absolute shielding scale, the inclusion of electron 

correlation effects, and the modelling of solution and solid-state effects that hamper 

accurate calculation of magnetic shielding for heavy nuclei. 

Among the various NMR-active heavy nuclei, 199Hg has been addressed more 

thoroughly by computational chemists in benchmark calculations than other nuclei. 

For example, Wolff et al.[49] have shown the importance of relativistic effects to 

predict experimental trends for 199Hg magnetic shielding in the HgX2 series (X=CN, 

Cl, Br etc.). For similar systems, calculations with ZORA and Douglass-Kroll-Hess 

(DKH) Hamiltonian show the particular importance of spin-orbit coupling terms for 

accurate predictions of experimental chemical shifts and anisotropies for 199Hg-

containing systems.[57, 58] Recently, benchmark calculations which employ four-

component methods were applied to 199Hg magnetic-shielding calculations. These 

investigations have particular importance for establishing an accurate absolute-

shielding scale for 199Hg.[59, 60] The comparison of 199Hg magnetic-shielding 

constants obtained using the ZORA formalism and four-component methods shows 

that calculations with the ZORA formalism underestimate the shielding constants by 

more than 2000 ppm compared to the four-component methods. However, both 

methods predict similar trends for the chemical shifts. This result is due to the large 

systematic errors introduced by the ZORA approximation that affects mostly the core 

levels. These errors cancel out by the definition of chemical shifts via referencing, as 



 

 48 

ZORA has been shown to produce valence level integrals with comparable accuracy to 

four-component theories.[37] 

Relativistic benchmark calculations have been applied to other heavy nuclei, as 

well. In these studies, large spin-orbit-induced contributions to the absolute magnetic 

shielding and the chemical shift were observed, as was seen for 199Hg. Some selected 

examples include studies of 183W, 195Pt, and 207Pb.[48, 61-65] In the benchmark 

studies of 119Sn and 125Te,[66, 67] the authors have concluded that spin-orbit effects 

are not significant for the predictions of chemical shifts whereas they have non-

negligible contributions to the absolute magnetic shielding. 

Calculations of magnetic-shielding tensors of heavy nuclei in solid materials 

are rather limited in the literature. This scarcity of examples is partially due to the lack 

of periodic boundary condition (PBC) methods to incorporate relativistic spin-orbit 

effects. Another challenge for PBC methods is the large number of electrons in the 

heavy-nucleus-containing systems. As a result, such studies generally involve a cluster 

ansatz to model the solid-state system. The cluster approach has only been applied to 

produce qualitative predictions of experimental trends for chemical shifts and spans 

of heavy nuclei.[68-73] 
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COMPUTATIONAL METHODS 

3.1 Magnetic Shielding Calculations in Solid State 

Calculations of magnetic-shielding tensor for heavy nuclei in solids require the 

treatment of two additional dimensions that are not generally encountered in 

"standard" quantum chemical calculations on molecules in solution or in the gas 

phase.  First, the electrons must be treated as relativistic particles, in part because of 

the high nuclear charge.[1, 2] Second, unlike solution state, the periodic structure of 

the solid has effects that are not averaged by rapid motion.[3] To address the latter, 

two methods have been proposed to predict NMR parameters of nuclei in solids:  use 

of periodic boundary conditions based on the full crystal symmetry,[4-6] and the 

treatment of model molecular clusters that define the local environment of the NMR 

nucleus.[6-8] This section provides a general description of these two methodologies. 

3.2  Periodic Boundary Calculations and the GIPAW Approach 

Periodic boundary calculations generally employ a plane-wave basis and the 

pseudopotential approximation.[6] The generic formula for wave functions described 

in terms of the plane-wave basis sets is given in Eq. 3.1, 

 
Ψ𝑛𝐤(𝐫) = ∑ 𝑐𝑛𝐤(𝐆)

𝐆

𝑒𝑖(𝐤+𝐆)𝐫 (3.1) 

where the sum is over the reciprocal lattice vectors G. The basis set is truncated by 

defining a cut-off energy, Ecut, which is given by Eq. 3.2.   
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𝐸𝑐𝑢𝑡 =
ℏ2(𝐤 + 𝐆)2

2𝑚
 (3.2) 

 In this truncation scheme, the reciprocal lattice vectors with lower kinetic 

energy than the predefined maximum cut-off energy are kept in the basis-set 

expansion of the wave function. One advantage of this scheme is that it allows 

systematic control of convergence of the calculated property. 

An important drawback of the plane-wave basis is representation of the wave 

function in the region near the nucleus. The true oscillatory behavior of the core and 

valence states that are close to the core region requires a large number of planewave 

functions to model the actual wave function. This problem is not encountered in 

atomic-basis sets (Slater type or Gaussian type) and is solely due to the mathematical 

form of the plane-wave functions in the Eq. 3.1.  

It is convenient to replace the coulomb potential and potential due to the core 

electrons by a smoother effective potential to address the effect of electrons in this 

region. This formalism is known as the pseudopotential method. There are several 

schemes proposed for the construction of the effective potential.[6] Some common 

choices include the norm-conserving pseudopotential [9] and the ultrasoft 

pseudopotential.[10]      

In the last ten years, periodic-boundary calculations have become popular for 

the predictions of NMR parameters in solids of known structure.[6] An important 

method which employs periodic-boundary conditions was developed by Sebastiani et 

al. with the use of localized Wannier orbitals, as implemented in the program 

CPMD.[5, 11] Another popular formalism is the Gauge Included Projected 

Augmented Wave (GIPAW) method of Pickard and Mauri,[4] which extends the 

PAW formalism introduced by van de Walle and Blöchl.[12] For many cases, 
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impressive correlations have been obtained by the GIPAW approach between 

experimental and calculated SSNMR parameters. For nuclei such as 13C [13-15], 29Si 

[16, 17] and 31P [18], the GIPAW approach has achieved sufficient accuracy for 

practical applications. However, there are still cases where GIPAW predictions, within 

the current implementation, deviate from experiment significantly. Some known 

problematic cases include 19F, 43Ca,[19-21] and heavy nuclei such as 119Sn, 207Pb and 

209Bi.[22-24] For a more detailed explanation of the GIPAW method, readers are 

referred to a recent review by Bonhomme et al.[6] 

3.2.1 Approximate Cluster Models 

Magnetic-shielding calculations using model clusters that simulate the local 

solid-state environment are an alternative to period-boundary calculations. Essentially, 

the cluster approximation involves defining a region within the crystal structure, 

which is extended around the NMR nuclei. At this point, one can perform a non-

periodic molecular calculation with atomic-basis sets on the cluster input. The cluster 

approximation is particularly suitable for magnetic-shielding calculations since the 1/r3 

dependence of the shielding tensor (Eq. 2.30) [25] can be exploited for fast 

convergence of calculated parameters with increasing cluster size. In early studies, 

Tossell [7, 26, 27] investigated the effects of next-nearest neighbors on magnetic 

shielding for 15N and 23Na by employing molecular clusters to mimic the solid-state 

structure. Similarly, Valerio et al.[28] employed molecular-cluster-based calculations 

for magnetic shielding of 29Si and 27Al in zeolite structures. In these cases, it was 

shown that more accurate chemical-shift and quadrupolar parameters result when the 

cluster size is sufficiently large to reflect the nature of local electronic structure around 

the NMR nuclei.  
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3.2.2 Comparison of GIPAW and Cluster Models for Magnetic Shielding 

Calculations in Solids 

Ideally, both periodic-boundary methods employing the GIPAW formalism 

and cluster methods should yield the same results, provided that the clusters are 

sufficiently large, and the same level of theory is employed in the computation. In 

practice, these methods have certain qualities and deficiencies when applied to 

magnetic-shielding calculations of solid materials. A comparison of the main aspects 

of these two methods is given as: [29] 

 Periodic-boundary calculations, by definition, include the translational 

symmetry and the local point group symmetry of the NMR nuclei. In the 

cluster approximation, the translational symmetry is neglected. The local point 

group symmetry, however, can be conserved if the cluster is extended 

symmetrically around the nuclei of interest.  

 Periodic-boundary calculations do not involve any parametrization prior to the 

computational setup. On the other hand, a large number of parameters such as 

size, charge, termination method, and symmetry constraints must be set for 

cluster models. 

 Termination of the clusters from the extended structure of the solid can result 

in dangling bonds and uncompensated charge. Quantum chemical modelling of 

such systems usually yields either non-convergence during the self-consistent-

field (SCF) cycle or a difficult convergence, which signals an unphysically 

small HOMO-LUMO gap for the system. In comparison, periodic-boundary 

calculations do not have this problem. 

   In general, periodic-boundary calculations are computationally more 



 

 58 

expensive than cluster methods. Current limitations of GIPAW in terms of 

electrons per unit cell can be reached rather quickly for solids containing heavy 

nuclei. 

 There is a larger selection of quantum chemistry methods in terms of density 

functionals (hybrids and meta-hybrids), correlation methods (coupled cluster, 

MP2), and relativistic methods (ZORA/Spin-orbit, four-component relativistic) 

as well as basis sets available for cluster calculations. In comparison, GIPAW 

calculations can be employed only with DFT at LDA and GGA levels.  

 The availability of quantum chemistry program packages which can perform 

magnetic-shielding calculations is considerably limited for periodic-boundary 

calculations.  

Despite certain disadvantages, cluster modelling has the potential to become a 

valuable tool for accurate predictions of magnetic-shielding tensors in solids. Cluster 

models are particularly more suitable for heavy-metal-containing systems, as the 

inclusion of relativistic effects is crucial for such nuclei.[1, 2] Additionally, magnetic-

shielding calculations with spin-orbit effects and exchange-correlation effects beyond 

GGA can become important for further development and benchmarking of GIPAW 

methods.  

3.3 Definition of Cluster Models for Solids 

For the calculations of magnetic-shielding tensors using cluster models, the 

quality of the predicted properties depends critically on the cluster setup.[29] In this 

section, the formulation of cluster models for different types of solids is discussed in 

detail. It is often necessary to define cluster models for molecular solids and covalent 
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or ionic-network solids separately, since major differences exist in the cluster 

modelling, in terms of termination scheme and computational treatment of the clusters.       

3.3.1 Definition of the Cluster Models for Molecular Solids 

Molecular solids are characterized by the relatively strong intramolecular 

interactions between atoms of the molecule, and by weaker intermolecular 

interactions.  In Figure 3.1, extended solid-state structures of two molecular solids, 

HgCl2 [30] and lead(IV) acetate [31] are illustrated.  

 

Figure 3.1 Extended solid state structures of a) HgCl2 and b) lead(IV) acetate, which 

are illustrated in the ball-and-stick model. 

For modelling of a molecular solid with a cluster, there is a natural choice for 

the termination scheme of the cluster, in which the clusters are defined without 

breaking any intramolecular bonds. Therefore, the resulting molecular clusters do not 

suffer from dangling bonds or uncompensated charge. In general, SCF convergence 
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for such clusters can be achieved without further approximations, similar to the case of 

isolated molecules.[15, 32]  

In this study, three types of molecular clusters are defined with respect to their 

sizes: a) small clusters b) large clusters and c) extended clusters.  A pictorial 

representation of small, large, and extended clusters for the case of HgCl2 are shown in 

Figure 3.2. Small clusters consist of only the atoms with NMR nuclei (199Hg) and the 

nearest neighbors (Cl). A large cluster includes the central Cl-Hg-Cl molecule and the 

next-nearest neighbors of NMR nuclei and Cl atoms in the central molecule. For the 

proper termination of the cluster, the remainder of the molecules, of which the next-

nearest neighbor atoms are a part, are included. The total charge on the cluster 

becomes zero with this treatment. Extended clusters include the next-nearest neighbors 

to the large cluster and the atoms to complete the molecules.  

 There are certain aspects of this cluster definition which require more 

attention. First, the assignment of the region which designates the next-nearest 

neighbors can be difficult to assess. In the case of HgCl2, the nearest neighbors of the 

Hg atom are two covalently bonded Cl atoms. However, the number of atoms in the 

next-nearest-neighbor region of the Hg center depends on a user-defined cut-off 

radius. This radius is set as 4.0 Å in our definition of the large cluster shown in Figure 

3.2 and the resulting next-nearest region of Hg includes six Cl atoms. The quality of 

predicted properties and the length of computational time depend on the definition of 

next-nearest region critically. For some cases, it is necessary to perform a series of 

calculations to see the effect of the cut-off radius on the predicted magnetic-shielding 

tensor.  
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Figure 3.2 Comparison of a) small, b) large, and c) extended clusters of HgCl2. The 

small cluster consists of the NMR-active nucleus and the nearest neighbors to the 

NMR-active nucleus. A large cluster consists of the central molecule with its NMR-

active nuclei and its nearest neighbors, as well as next-nearest neighbors to NMR 

nuclei (blue) and the ligands (red), and the  atoms to complete the molecules (orange). 

An extended cluster includes the next-nearest neighbors of the large cluster and atoms 

to complete the molecules. 
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Another important issue is to check the convergence of the magnetic-shielding 

tensor with respect to the size of the clusters. For this reason, extended clusters, which 

include an additional coordination shell compared to large clusters, are introduced. 

The test for convergence often requires benchmark calculations and careful 

approximations in quantum chemistry methods with well-behaved systems, since such 

calculations can reach the limits of capability of the current computer systems easily.   

3.3.2 Definition of Cluster Models for Ionic or Covalent Network Solids 

The main disadvantage of the use of cluster models occurs when one attempts 

to extend these methods to ionic or covalent network solids. In that case, any 

termination of the periodic nature of the solid yields dangling bonds and 

uncompensated charge in the model cluster. Quantum chemical modelling of such 

systems usually yields either non-convergence during the self-consistent-field (SCF) 

cycle or a difficult convergence, which signals a very small HOMO-LUMO gap for 

the system. For both situations, the resulting NMR parameters cannot be trusted, and 

one must seek alternative ways to model the structure. 

Ideally, the local point group symmetry of the NMR nucleus is conserved if the 

model cluster is generated through increasing numbers of coordination shells around 

the center. In Figure 3.3, this formalism is illustrated for the case of NaF. The clusters 

include up to first, third, and fifth coordination shell clusters around Na. In this system, 

both Na and F atoms occupy Oh sites in its crystal structure.[33] The Oh symmetry is 

also conserved for the central Na atom (the NMR nucleus) in all clusters shown in 

Figure 3.3. The total charge on the cluster that contains the first coordination shell is (-

5), determined from the formal charges of Na, (+1) and F (-1). In clusters that contains 
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third and fifth coordination shell, the total charges increase to (-25) and (-61) 

respectively.  

   

 

Figure 3.3 Cluster models for NaF that contains a) the first coordination shell, [NaF6]
5- 

b) the third coordination shell, [Na19F44]
25- and c) the fifth coordination shell, 

[Na85F146]
61-. 

It is possible to generate clusters of NaF with zero total charge. However, such 

clusters still contain dangling bonds (terminal Na and F atoms with coordination 
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number that is less than six) and the local symmetry of the central atom cannot be 

preserved since the clusters are not symmetrically extended. Because of the latter, 

calculations employing such clusters yield non-vanishing magnetic-shielding 

anisotropy, even though the tensor should be spherically symmetric. [29] 

3.3.2.1 Termination of the Cluster for a Network Solid 

Using a cluster model of network solids, one often sees oscillatory behavior in 

the SCF cycle, a result of nearly degenerate energy levels of the frontier orbitals, 

which are dominated by atomic orbitals of the terminal atoms in the cluster 

boundaries. Some recipes have been introduced in the literature to achieve reliable 

SCF convergence in cluster calculations. One solution to this practical problem is to 

add hydrogens to terminal atoms of the cluster) to stabilize the cluster.[7, 8, 34] This 

method has been employed to obtain converged solutions with meaningful NMR 

parameters in solids for a variety of systems. There are, however, some problems with 

this method. First, the positions of hydrogen atoms are generally determined 

somewhat arbitrarily, which results in a large range of uncertainty in the calculated 

magnetic-shielding tensor components. Secondly, this method is not suitable for 

systems where terminal atoms exhibit a large variety of coordination geometries and 

addition of hydrogen may cause overstabilization or understabilization of the 

frontier orbitals. In this case, the SCF cycle remains oscillatory and further treatment 

of terminal atoms is generally required. 

In other termination schemes, the cluster is embedded in an array of classical 

point charges to stabilize the terminal atoms and to compensate for long-range 

coulombic interactions.[29, 35] This approach is known as the Embedded Ion 

Method (EIM). In this formalism, the charge array is usually truncated by performing 
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an Ewald summation over atomic sites, which allows the exact calculation of the 

electrostatic potential in ideal ionic solids.  Various approaches are proposed for the 

determination of point charge values and the treatment of quantum/classical interface. 

The basic machinery and some of the applications of the EIM methods have 

been reviewed by Weber and Gunne recently.[29] The EIM method has been applied 

to calculations of magnetic-shielding tensors with some success. However, there are 

problems associated with the excess charge on the quantum region of the cluster.  

3.3.2.2 Bond Valence Model Approach in Cluster Models 

The problem of SCF convergence may be addressed by a new method applied 

to cluster models.  In this scheme, pseudo-atoms with non-integer nuclear charges 

(Znuc) are generated [36-38] to replace the terminal atoms of the cluster. This 

procedure aims to stabilize the energy levels of frontier orbitals centered on terminal 

atoms. We refer to this model as ‘valence modification of terminal atoms’ or VMTA.  

In the VMTA model, one must select a range of Znuc for the pseudo-atom 

generation. A possible selection can be made such that the residual charge on the 

cluster is minimized. For example, the charge on the NaF cluster, [Na19F44]
25- , which 

is shown in Figure 3.3b, can be reduced to 0.08 if the terminal fluorine atoms (Znuc = 

9.00) are replaced by pseudo-fluorines (Znuc = 9.66). In this method, the different 

coordination environments of terminal fluorine atoms are not taken into account since 

all fluorine atoms are replaced with the same pseudo-atom. Therefore, the SCF 

problems resulting from overstabilization or understabilization of the frontier orbitals 

may still exist.     

The VMTA method can be further improved by using the bond-valence theory 

of I. D. Brown and his collaborators to specify appropriate charges on the terminal 
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atoms.[39-42] This method has been called the bond-valence approach, so that its 

application to the VMTA method we abbreviate as VMTA/BV.    In this method, a set 

of pseudo atoms with various Znuc are generated according to the sum of the bond 

strengths of the terminal atoms. The bond strength (S) for a terminal atom is calculated 

using the central equation of the bond-valence model: 

 
𝑆  =    ∑ exp (

𝑅𝑖0 − 𝑅𝑖

𝑏𝑖
)

𝑖

 (3.3) 

In Eq. 3.3, Ri is the bond length between two atoms in a pair containing the 

terminal atom.  Ri0 and bi are fitted bond valence parameters tabulated in a recent 

review of the bond-valence model.[42] In the VMTA/BV scheme, the parameter Ri0 is 

slightly modified from the reported values, so that the total bond strength of an atom 

with a complete coordination sphere corresponds to the oxidation state of that atom in 

a given cluster. For the terminal atoms, the bond strength, S, is calculated using Eq. 

3.3 and the modified Znuc of the terminal atom (Zmod) is calculated from Eq. 3.4. 

 𝑍𝑚𝑜𝑑 = 𝑍𝑛𝑢𝑐 + 𝛥 𝑆 (3.4a) 

 𝛥 𝑆 = 𝑉𝑎 − 𝑆 (3.4b) 

where ΔS is the difference between the valence of the terminal atom, Va, and the 

calculated bond strength of the terminal atom in the cluster. In other words, ΔS 

corresponds to the missing coordination bond strength of the terminal atom. 

As an example of the VMTA/BV method, terminal oxygen atoms with 

different coordination spheres are illustrated in Figures 3.4a and 3.4b for the third 

coordination shell clusters of α-PbO and β-PbO, respectively. For α-PbO, there is only 

one unique Pb-O bond length in the crystal structure.[43] Therefore, the bond strength 

and Zmod of the terminal oxygen atoms only depend on the number of lead atoms 
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coordinated to the terminal oxygen atom.  In Figure 3.4a, there are two distinct 

terminal oxygen sites.  O1 is coordinated to a single lead site, and O2 is coordinated to 

two lead sites with the same bond length. Calculated bond strengths from the 

summation in Eq. 3.3 are 0.50 and 1.00 valence units (vu) for O1 and O2 respectively. 

Because the bond strength of oxygen having complete coordination (i.e., surrounded 

by four lead atoms) is 2.00 vu, Zmod for each of the two types of terminal oxygen 

atoms in these clusters is calculated to be 9.50 and 9.00 vu for O1 and O2, 

respectively.   

For β-PbO, calculation of bond strengths is not as simple, due to lower 

symmetry and multiple Pb-O bond lengths in the structure.[44] As a result, there is 

more variation in the number of distinct terminal oxygen sites. The calculated bond 

strengths are 0.37, 0.61, 0.64, 0.99, and 1.01vu for O1 to O5, respectively. 

 

Figure 3.4    Different terminal oxygen sites according to the bond valence model in a) 

α-PbO and b) β-PbO. 

 

b)
 

a)
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The effect of VMTA/BV on the energy levels of a cluster is illustrated in 

Figure 3.5 for the third coordination shell geometry of -PbO.  

 

Figure 3.5 Energy levels for the third coordination cluster of α-PbO. The occupied 

levels are shown in black whereas unoccupied levels are shown in red.  These 

qualitative calculations are carried out with BP86 functionals and the ZORA/spin-orbit 

Hamiltonian. 

For a cluster without any treatment of the terminal atoms, there is no clear 

difference in energy between the HOMO and LUMO levels. As a result, convergence 

under SCF is difficult or impossible as the algorithm becomes oscillatory as shown in 

Figure 3.6. Upon closer inspection, it is seen that the frontier MOs are mostly 

dominated by the p orbitals of the terminal oxygen atoms. When Znuc for the atoms is 
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adjusted as described, these levels are stabilized, due to an additional component of 

the nuclear potential that creates the energy difference between the HOMO and 

LUMO levels. As a result, SCF convergence is achieved easily for clusters modified 

by VMTA/BV. (Figure 3.6) 

 

 

Figure 3.6 Graphical illustration of convergence versus number of SCF cycles for a 

DFT calculation that employs the α-PbO cluster without VMTA/BV modification 

(shown by the blue line) and for a DFT calculation using a cluster where the terminal 

atoms are modified by the VMTA/BV method (shown by the red line). 

3.4 Computational Protocols 

In this dissertation, computations employing cluster models are performed 

using the ADF (ADFv2010, ADFv2013 and ADFv2014) suite of programs.[45-47] 
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The calculations are generally carried out at the DFT level using GGA functionals 

(BP86 and PBE) [48-50] and hybrid functionals (B3LYP and PBE0), unless otherwise 

specified.[51-56] Relativistic effects are treated with the ZORA Hamiltonian at the 

scalar and spin-orbit levels.[57-60] In some cases, non-relativistic DFT is employed 

for benchmark calculations. All-electron triple zeta double polarization (TZ2P/AE) 

basis sets are employed for the NMR nuclei and the nearest neighbors. For the rest of 

the cluster, various types of basis sets (triple zeta single polarization or TZP, and 

double zeta or DZ) are employed for comparison. For outer shells of the cluster, the 

frozen core approximation (FCA) is employed to reduce the computational time when 

GGA density functionals are employed.[61, 62] Finally, the magnetic-shielding 

tensors are computed with the NMR module by employing the GIAO formalism [63, 

64], as implemented in ADF.[2, 65-68] 

Some calculations employing periodic-boundary conditions are carried out 

using the CASTEP program package[69] using DFT at the GGA level and with the 

GIPAW algorithm.[4] The core-valence interactions are treated by ultrasoft 

pseudopotentials that are generated on the fly.[10, 70] The wave functions are 

expanded (using Eq. 3.2) with a cut-off energy of 600 eV, which is generally sufficient 

to model these systems. 
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MAGNETIC SHIELDING CALCULATIONS FOR MOLECULAR SOLIDS 

CONTAINING 199HG NUCLEI 

4.1 Introduction 

In this chapter, I present calculations of magnetic-shielding tensors for 199Hg 

nuclei in molecular solids. The calculations are carried out by employing the cluster 

approach for molecular solids described in chapter 3. The effect of molecular-cluster 

size on the calculated magnetic-shielding tensors of a suite of mercury-containing 

materials is systematically evaluated. I also examine the effect of application of the 

frozen core approximation (FCA) in calculating the magnetic-shielding tensor. I 

examine the effect of neglect of various parts of the relativistic Hamiltonian in NMR 

calculations by treating molecular clusters at different levels of theory.  The aim is to 

provide examples of how various approximations affect the prediction of NMR 

parameters in solids. 

All clusters discussed herein are formed from experimental X-ray geometries 

found in the literature.[1-8]  The set includes materials with relatively small first-

coordination shells, and does not contain examples of large mercury-containing 

complexes. For solid systems with hydrogen atoms, e.g. Hg(acetate)2 and 

Hg2(NO3)2·2H2O, [3, 4] an optimization of hydrogen positions was carried out on 

small clusters at the ZORA/scalar level with the BP86 density functional and the 

TZ2P/AE basis set.  The mercury-containing molecular solids (and their 

crystallographic data) covered in this survey are given in Table 4.1. For some selected 

Chapter 4 
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systems (Hg2Cl2 and HgBr2), the co-ordinates of the atomic positions are given in 

Appendix A.    

Table  4.1 Reference Codes and Space Groups for the Investigated Mercury-

containing Solids. 

Crystal System Reference Codea Space Group 

Hg(SCN)2 10304  C12/m1 

Hg(CN)2 412315 I42d 

Hg(SeCN)2 Bowmaker et al.[7] P21/c 

Hg(CO2CH3)2 Allmann et al.[3] P21/a 

HgCl2 23277 Pnma 

HgBr2 39319 Cmc21 

Hg2Cl2 23720 I4/mmm 

K[Hg(SeCN)3] Bowmaker et al.[7] P21/n 

Hg2(NO3)2·2H2O 1958 P121/n1 

a) Codes from the Inorganic Crystal Structure Database[9], or 

structures are from literature where references are given. 

 

4.2 The Effect of Cluster Size and Charge on Magnetic Shielding 

4.2.1 Model Clusters of Hg2Cl2 

I have investigated the effect of cluster size on the magnetic shielding of 

Hg2Cl2 in clusters formed from the X-ray crystal structure (Figure 4.1). All 

calculations were performed within the ZORA/Spin-Orbit framework while 

employing a TZ2P/All-Electron (TZ2P/AE) basis set. For convenience, the predicted 

NMR chemical-shift principal components are calculated by comparison to the 
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calculated absolute shielding of the isolated dimethylmercury (DMM) molecule at the 

same level of theory, 7965 ppm. The calculated NMR parameters are tabulated in 

Table 4.2, along with the experimental results.  

 

Figure 4.1 Various molecular clusters of Hg2Cl2, as discussed in the text. 

For cluster I, which consists of the isolated Hg2Cl2 unit, the calculated 

isotropic shift is about 580 ppm more negative than the experimental value, whereas 

the span is in error by almost 2000 ppm. This error in the span mostly arises from an 

error in the δ33 component of the chemical-shielding tensor, whereas the other two 

components are within 100 ppm of the respective experimental values. 
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Cluster II includes the extended coordination shell of the 199Hg nucleus of 

interest.  The added atoms (compared to cluster I) are the four Cl- ions. The distance 

from the mercury nucleus to these additional chlorine centers is 3.21 Å, compared to 

the Hg-Cl bond distance of 2.43 Å.[5] The addition of these four chlorine centers 

significantly improves the calculated value of δ33 relative to the neglect of these 

centers in cluster I. The introduction of these centers, however, causes significant 

errors in the values of δ11 and δ22 that were not seen for cluster I. The calculated span 

is much smaller than the experimental span.  Cluster II does not have certain 

symmetry elements that cluster I does, in particular the mirror plane between the two 

Hg centers.  It appears that this lack of symmetry is one possible cause of the 

difference between the values of these two components for cluster I and cluster II. 

Table  4.2 Calculated 199Hg NMR Chemical Shifts for Model Clusters of Hg2Cl2. 

Model cluster δ11 (ppm) δ22 (ppm) δ33 (ppm) δiso (ppm) Ω (ppm) Residuala 

Experiment 236 236 -3452 -993 3688 ----- 

Cluster I 285 285 -5280 -1570 5520 1056 

Cluster II -1588 -1588 -3541 -2239 1937 1490 

Cluster III -803 -804 -3859 -1822 3031 881 

Cluster IV -1 -1 -4063 -1355 4030 402 

Cluster V 598 598 -5113 -1306 5665 1003 

Cluster VI -66 -66 -3676 -1269 3582 278 

a) 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  √
1

3
∑ (𝛿𝑖𝑖

𝑐𝑎𝑙𝑐 −  𝛿𝑖𝑖
𝑒𝑥𝑝)

23
𝑖=1  
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Cluster III adds elements to include the mirror symmetry that was lost in the 

definition of cluster II.  Compared to cluster II, cluster III has four additional chlorine 

centers present. Calculations on cluster III give an isotropic shift that is 800 ppm more 

negative than the experimental value, whereas the span is underestimated by about 700 

ppm.  In general, all the calculated principal components of cluster III are more 

shielded than the experimental values. This observation is often the fingerprint of 

excess charge on the molecular cluster, which is the case for both cluster II and cluster 

III, having charges of -4 and -8, respectively.  

Cluster IV is designed to compensate charge by termination with hydrogen 

atoms. These hydrogen atoms are inserted along the mercury-chlorine bond axis at 

0.127 nm from the chlorine.  This position maintains the symmetry at the mercury site 

whose NMR parameters we calculate.  The compensation of charge, while maintaining 

the symmetry, decreases the isotropic shielding of the Hg center compared to that of 

cluster III. Additionally, residuals of the principal components are much smaller than 

those of cluster III. Saturation of the dangling bonds to decrease charge on the cluster 

is important in using clusters to model the local structure in solids for calculating 

NMR parameters, as these calculations show. However, in such treatments, the 

calculated chemical-shift tensor is usually dependent on the positions of the hydrogen 

atoms. 

In cluster V, we include only the Hg2Cl2 units which contain the four next-

nearest Hg atoms to the NMR nucleus of interest. The Hg-Hg distances between the 

Hg2Cl2 units are 0.448 nm. As expected, inclusion of next-nearest Hg centers has a 

smaller effect on NMR parameters than inclusion of the next-nearest Cl centers, since 

the Hg-Hg distance is larger than the Hg-Cl distance. Moreover, since the next-nearest 
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chlorines are missing in this cluster, the agreement between experiment and 

calculation is not good. Compared to cluster I, there is a considerable difference 

between the principal components, which indicates that next-nearest Hg atoms should 

be included in the extended coordination shell in designing the cluster.   

In cluster VI, not only is the first coordination shell present, but the extended 

coordination shell and next-nearest neighbors are also included.  Additionally, the 

structure is completed by adding atoms to produce uncharged Hg2Cl2 units, as shown 

in Figure 4.1. Inclusion of these additional centers improves the calculated values of 

the chemical-shift tensor components, so that the residual is the smallest of any of the 

clusters examined.  We have found that, with available computational resources, a 

residual of 200 ppm or less for these kinds of heavy atoms indicates a reasonable 

model cluster.  With this accuracy and the known wide ranges of shifts for 199Hg, 

calculation with these cluster models allows assignment of shifts to nuclei in unique 

structural motifs. 

4.2.2 Isolated Molecule versus Large Cluster 

In this section, NMR parameters for the mercury compounds, using large-

cluster models and small-cluster models, are reported. The model clusters are shown 

in Figure 4.2. The calculated NMR chemical-shift parameters are tabulated in Table 

4.3, along with reported experimental values.  The σref for determining chemical shifts 

is taken as the intersection of the best-fit linear correlation for each type of cluster 

(Figure 4.3a and 4.3b).  These values are 7853 ppm and 8043 ppm for small and large 

clusters, respectively. 
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Figure 4.2 Small (left) and large (right) cluster models for the mercury-containing 

molecular solids. 
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Table 4.3 NMR Chemical-Shift Parameters for Small and Large Model Clusters of 
199Hg-Containing Solids. 

Model clusters 
δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso 

(ppm) 

Ω 

(ppm) 
Residual 

Hg(SCN)2 
      

Experiment[10] -81 -328 -3390 -1300 3309 ----- 

Small Cluster 351 -1154 -4694 -1832 5006 926 

Large Cluster 198 -501 -3663 -1322 3830 246 

Hg(CN)2 
      

Experiment[11] -33 -381 -3773 -1396 3740 ----- 

Small Cluster -101 -106 -5490 -1899 5347 1005 

Large Cluster 51 -3 -4081 -1344 4099 286 

Hg(SeCN)2 
      

Experiment[7] -503 -1337 -3440 -1760 2937 ----- 

Small Cluster -617 -1176 -4601 -2131 3953 680 

Large Cluster -503 -1339 -3434 -1759 2908 4 

Hg(Acetate)2  
      

Experiment[10] -1859 -1947 -3685 -2497 1826 ----- 

Small Cluster -1757 -2052 -4688 -2832 2908 585 

Large Cluster -1948 -2076 -3639 -2554 1678 94 

HgCl2  
      

Experiment[10]  -282 -573 -4019 -1625 3737 ----- 

Small Cluster -134 -135 -5369 -1598 5194 765 

Large Cluster -242 -299 -4311 -1617 4036 232 

HgBr2 
      

Experiment[12]  -1945 -1945 -3293 -2394 1348 ----- 

Small Cluster -2128 -2128 -5331 -3195 3178 1186 
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Large Cluster -1898 -1930 -3383 -2403 1473 59 

Hg2Cl2 
      

Experiment[12]  236 236 -3452 -993 3688 ----- 

Small Cluster Hg(1) 172 172 -5392 -1683 5520 1121 

Small Cluster Hg(2) 172 172 -5392 -1683 5520 1121 

Large Cluster Hg(1) 13 12 -3598 -1191 3582 201 

Large Cluster Hg(2) 42 42 -3598 -1172 3611 180 

K[Hg(SCN)3] 
      

Experiment [7] 49 -323 -1941 -738 1990 ----- 

Small Cluster -169 -710 -2373 -1084 2187 358 

Large Cluster 161 -201 -1808 -616 1953 123 

Hg2(NO3)2·2H2O       

Experiment[10] -435 -497 -3669 -1534 3234 ----- 

Small Cluster Hg(1) -1614 -1676 -5215 -2835 3572 1312 

Small Cluster Hg(2) -1551 -1656 -5214 -2807 3635 1288 

Large Cluster Hg(1) -988 -1078 -4058 -2042 3045 515 

Large Cluster Hg(2) -813 -1092 -4056 -1987 3217 464 

 

In general, calculations on small clusters predict isotropic chemical shifts (δiso) 

to within 300 – 1000 ppm of the experimental values.  As seen in Table 4.3, the 

deviations of the principal components of the chemical-shift tensor calculated for 

small clusters are often more severely in error (relative to experimental data) than the 

isotropic shifts.  The differences between computed spans (which do not depend on 

errors in referencing) and experimental spans often exceed 1000 ppm. For this reason, 

conclusions about the quality of models based on the near agreement of a calculated 

isotropic chemical shift with an experimental chemical shift can be misleading. More 
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importantly, the principal components of a chemical-shift tensor reflect important 

properties of the electronic structure that cannot be discerned by concentrating on the 

isotropic chemical shift alone. [13, 14]  For example, the isotropic chemical shift of 

HgCl2 calculated with a small cluster is only 27 ppm from the experimental value, but 

the calculated span deviates by 1457 ppm from the experimental value. 

The spans calculated for large clusters are closer to the experimental values for 

all cases examined. Additionally, there is better agreement between experimental and 

predicted isotropic chemical shifts, as well as better agreement between calculated and 

experimental principal components of the shift tensor, as can be discerned from the 

smaller residuals for the large clusters.   With the exception of the hydrated mercurous 

nitrate, the residuals of all the large-cluster-model calculations are near or below 200 

ppm, which seems to be some limit for clusters of this size for these systems.  But, 

even for the hydrated mercurous nitrate, the large-cluster model gives better 

agreement with experiment than the small-cluster model. 

The performance of small- and large-cluster models is shown graphically in 

Figures 4.3 and 4.4.  In Figure 4.3, the correlation between calculated chemical-

shielding tensor components and experimental chemical-shift tensor components is 

shown for small clusters.  In Figure 4.4, the same correlation is shown for large 

clusters. The correlation for the large clusters has a slope that deviates by only 3% 

from the ideal slope of -1, whereas the linear correlation for the small clusters deviates 

by 35% from this ideal value. 
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Figure 4.3 Correlation diagram for the calculated principal components of the 

magnetic-shielding tensor and the principal components of the experimental chemical-

shift tensor for the 199Hg-containing systems modelled using small clusters. The blue 

line is the best-fit linear correlation. For the small clusters, calc = -1.3518 exp + 7854 

and the R2 value of the correlation is 0.934.  The dashed line shows the ideal behavior. 

(calc = -exp + 7854) 
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Figure 4.4 Correlation diagram for the calculated principal components of the 

magnetic-shielding tensor and the principal components of the experimental chemical-

shift tensor for the 199Hg-containing systems modelled using large clusters. The red 

line is the best-fit linear correlation. For the large clusters, calc = -1.0352 exp + 8042 

and the R2 value of the correlation is 0.981.  The dashed line shows the ideal behavior. 

(calc = -exp + 8042) 

From the intercept of the best-fit linear correlation lines in Figures 4.3 and 4.4, 

the absolute shielding of DMM can be estimated within the approximate two-

component ZORA/spin-orbit framework for large and small clusters. Within this 

framework, the absolute shielding of DMM is predicted to be 7854 ppm by the small 

clusters and 8042 ppm by the large clusters.  In separate calculations on an isolated 

DMM molecule at the same level of theory and with either (a) a fully optimized 
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the predicted isotropic shielding in case (a) is 8120 ppm, and in case (b) it is 7965 

ppm. In a previous study, Taylor et al.[16] showed (with the same level of theory that 

the absolute shielding of DMM is between 7929 and 8095 ppm.   

The shielding constant of DMM has also been calculated by means of four-

component relativistic methods.[17, 18]  Within the four-component DFT theory, the 

absolute shielding of DMM is found to be 10299 ppm, whereas the Dirac-Hartree-

Fock (DHF) formalism gives a value of 12417 ppm. Wodynski et al.[19] report that 

ZORA reproduces only 75-79% of the shielding values of the four-component results 

for the heavy metals of the sixth row of the periodic table. Despite the underestimation 

of the shielding constants, Arcisauskaite et al.[17] showed that 199Hg shielding 

constants calculated with ZORA/spin-orbit and with four-component DFT follow a 

similar trend, and the chemical shifts calculated with these two methods are in 

agreement within 60 ppm. Autschbach shows that the valence–shell properties such as 

chemical shift and J coupling are well described in the ZORA formalism.[20-22]  This 

observation is supported by our findings that calculations using ZORA produce results 

in agreement with experiment. 

In Ramsey's formulation [23], the shielding is evaluated as an integral of 

operators which vary as 1/r3, where r is the distance from the electron to the nucleus of 

interest. One expects that major contributions to NMR shielding are predominantly 

from orbitals that place the electron near the nucleus. For solids, the positions of 

nearby atoms are exceedingly important in determining the general structure of 

orbitals.  Comparison of the results for small and large clusters shows that medium-to-

long-range effects must be taken into account to determine meaningful NMR tensor 

parameters.  
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There are two factors that contribute to the difference between the results for 

small clusters and for large clusters. First, missing atoms in the near region in the 

small cluster for a 199Hg-containing system may affect the magnetic shielding. A 

secondary effect results from the fact that the nearest neighbors of the ligands are not 

included in the small clusters. As a result, the molecular orbitals (MOs) forming Hg-L 

bonds are largely localized, which would not adequately represent the structural 

effects on magnetic shielding. Both effects depend on the crystal structure, and they 

contribute differently to the 199Hg shielding in the two models. 

4.3 The Effect of Basis Set and Frozen Core Approximation 

The frozen core approximation (FCA) is commonly used in many applications 

to trim the computational time.[24]  It is generally thought that the deep core electrons 

are not strongly influenced by changes that may influence the valence electrons. I have 

investigated whether use of the FCA for these clusters yields reliable NMR parameters 

by the following procedure.  For the large clusters of Figure 4.2, the electrons of the 

first coordination shell near the nucleus of interest were treated with an all-electron 

(AE) basis set, whereas the rest of the cluster was treated with the FCA. TZP and DZ 

basis sets with a frozen large core are used in the part of the cluster treated with the 

FCA. (The details of the frozen core basis sets are given in Table B1 in Appendix B) 

4.3.1 Correlation of Experimental and Calculated 199Hg principal components 

Figure 4.5 shows the correlation between the calculated magnetic-shielding 

principal components with FCA(DZ)/AE basis set versus the experimental chemical-

shift principal components. The same correlation is shown for the FCA(TZP)/AE basis 

set in Figure 4.6. In Table 4.4, the results of the calculations employing the FCA are 
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given for various mercury-containing solids. The σref values are taken as the 

intersections of the best-fit linear correlation (Figure 4.5 and 4.6) for each type of 

basis set.  

Table 4.4 Comparison of Calculated 199Hg NMR Parameters Using the Frozen Core 

Approximation (FCA) for Remote Regions with Calculations Using the All-Electron 

(AE) Method for All Regions of the Cluster. 

Model clusters 
δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso 

(ppm) 

Ω 

(ppm) 
Residual 

Hg(SCN)2 -81 -328 -3390 -1300 3309 
 

FCA(DZ)/AE 209 -557 -3588 -1312 3766 242 

FCA(TZP)/AE 197 -503 -3644 -1316 3810 240 

All-electron 198 -501 -3663 -1322 3830 246 

Hg(CN)2 -33 -381 -3773 -1396 3740 
 

FCA(DZ)/AE 29 -13 -4072 -1352 4068 276 

FCA(TZP)/AE 53 12 -4080 -1339 4099 292 

All-electron 51 -3 -4081 -1344 4099 286 

Hg(SeCN)2
 -503 -1337 -3440 -1760 2937 

 

FCA(DZ)/AE -516 -1256 -3516 -1763 2975 64 

FCA(TZP)/AE -484 -1332 -3436 -1751 2928 12 

All-electron -503 -1339 -3434 -1759 2908 4 

Hg(Acetate)2 -1859 -1947 -3685 -2497 1826 
 

FCA(DZ)/AE -1908 -2030 -3691 -2543 1768 38 

FCA(TZP)/AE -1935 -2061 -3629 -2542 1681 85 

All-electron -1948 -2076 -3639 -2554 1678 94 

HgCl2 -282 -573 -4019 -1625 3737 
 

FCA(DZ)/AE -249 -316 -4303 -1622 4021 222 
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FCA(TZP)/AE -232 -309 -4305 -1615 4040 226 

All-electron -242 -299 -4311 -1617 4036 232 

HgBr2 -1945 -1945 -3293 -2394 1348 
 

FCA(DZ)/AE -1867 -1895 -3395 -2386 1516 80 

FCA(TZP)/AE -1894 -1922 -3324 -2380 1418 37 

All-electron -1898 -1930 -3383 -2403 1473 59 

Hg2Cl2 236 236 -3452 -993 3688 
 

FCA(DZ)/AE Hg(1) -21 -21 -3687 -1243 3636 250 

FCA(DZ)/AE Hg(2) -5 -5 -3687 -1232 3652 239 

FCA(TZP)/AE Hg(1) -2 -3 -3582 -1196 3551 209 

FCA(TZP)/AE Hg(2) 28 28 -3582 -1176 3581 186 

All-electron Hg(1) 13 12 -3598 -1191 3582 201 

All-electron Hg(2) 42 42 -3598 -1172 3611 180 

K[Hg(SCN)3] 49 -323 -1941 -738 1990 
 

FCA(DZ)/AE 214 -221 -1772 -593 1970 148 

FCA(TZP)/AE 164 -210 -1807 -617 1955 121 

All-electron 161 -201 -1808 -616 1953 123 

Hg2(NO3)2·2H2O -435 -497 -3669 -1534 3234  

FCA(DZ)/AE Hg(1) -990 -1014 -4047 -2017 3032 489 

FCA(DZ)/AE Hg(2) -820 -1084 -4048 -1984 3201 461 

FCA(TZP)/AE Hg(1) -993 -1069 -4070 -2044 3053 516 

FCA(TZP)/AE Hg(2) -820 -1090 -4066 -1992 3220 468 

All-electron Hg(1) -988 -1078 -4058 -2042 3045 515 

All-electron Hg(2) -813 -1092 -4056 -1987 3217 464 
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Figure  4.5 Correlation diagram for the calculated principal components of the 

magnetic-shielding tensor determined with the FCA(DZ)/AE basis set, and the 

principal components of the experimental chemical-shift tensor for the 199Hg-

containing molecular solids. For this correlation, calc = -1.0354 exp + 8085 and the 

R2 value of the correlation is 0.980.  The dashed line shows the ideal behavior. (calc = 

-exp + 8085) 
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Figure 4.6 Correlation diagram for the calculated principal components of the 

magnetic-shielding tensor determined with the FCA(TZP)/AE basis set, and the 

principal components of the experimental chemical-shift tensor for the 199Hg-

containing molecular solids. For this correlation, calc = -1.0316 exp + 8055 and the 

R2 value of the correlation is 0.980.  The dashed line shows the ideal behavior. (calc 

= -exp + 8055) 

From the correlation, σref is found to be 8055 ppm or 8085 ppm, respectively, 

for FCA(TZP)/AE and FCA(DZ)/AE basis sets. The results determined with 

FCA(TZP)/AE are closer to the all-electron results, as expected. The difference 

between principal components calculated with the FCA(TZP)/AE and the AE basis 

sets does not exceed 25 ppm for most cases. The largest difference is 59 ppm for δ33 of 

HgBr2. The differences between principal components determined with FCA(DZ)/AE 

compared to the all-electron basis set are slightly larger. Nevertheless, given the 
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accuracy of the NMR calculations on heavy nuclei, calculations using the FCA for the 

remote atoms and calculations with the full all-electron basis set produce almost the 

same NMR parameters.  In fact, Figures 4.5 and 4.6 show that the correlation for 

results using the FCA with TZP basis set is slightly closer to the ideal case than for 

results using the full all-electron basis set for the large clusters. This difference is 

within the uncertainty of the experimental measurements. The two calculations 

essentially give the same results within experimental error. 

4.3.2 Comparison of Computational Time; All Electron vs. Frozen Core 

Although there are very small differences in the computed NMR parameters, 

there is a substantial difference in computational time that favors using the FCA. In 

Table 4.5, we compare the computational time and number of Cartesian functions 

employed for selected calculations, when using the all-electron basis set versus the 

FCA(TZP)/AE and FCA(DZ)/AE basis sets.  

Table 4.5 Computational Time (CT) and Number of Cartesian Functions (cf) for 

Selected AE and FCA Large Cluster Calculations.   

 AE FCA(TZP)/AE FCA(DZ)/AE 

Model clusters  # of cf CT (s) # of cf CT (s) # of cf CT (s) 

Hg2Cl2 4264 209040 2584 13020 2080 1037 

HgCl2 3030 20160 1840 2940 1406 1260 

Hg(CN)2 2706 15240 1716 3540 1206 1200 

HgBr2 2409 14460 1822 2460 1432 600 
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The calculations with the triple-zeta basis set generally take longer than those 

with the double-zeta basis set, but they are both substantially shorter than a calculation 

on the same cluster using the all-electron wave function.  For example, the all-electron 

calculation for a large cluster of Hg2Cl2 took nearly 2.5 days, whereas the 

FCA(TZP)/AE treatment of the same cluster required 3.6 hours and the FCA(DZ)/AE 

treatment took only 35 minutes. These results indicate that the FCA can be applied to 

the peripheral portions of large clusters in solid-state NMR calculations with minimal 

introduction of significant errors. 

 

4.3.3 Convergence of Magnetic Shielding with Cluster Size  

An important criterion in the cluster-based approach is the convergence of 

NMR parameters with increasing cluster size. Since the computational requirements 

are considerably low with FCA basis sets, it is possible to investigate whether 

calculated parameters are converged with these larger clusters. For this reason, the 

principal components of the magnetic-shielding tensor are calculated for Hg(SCN)2 

and Hg2Cl2 at the BP86/ZORA/Spin-Orbit level of theory with the FCA/TZP/AE basis 

set. The molecular clusters are extended another coordination shell from the ‘large 

clusters (extended clusters) as explained in Chapter 3. The resulting extended clusters 

for Hg(SCN)2 and Hg2Cl2 are displayed in Figure 4.7. Table 4.6 shows the comparison 

of chemical-shielding components for large clusters and extended clusters of 

Hg(SCN)2 and Hg2Cl2.  
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Figure 4.7 Extended cluster models for Hg(SCN)2 and Hg2Cl2.  

For Hg(SCN)2, the large cluster and the extended cluster produce similar  

results. The differences between σ33 and σ11 are 22 ppm and 9 ppm, whereas σ22 is the 

same for the large cluster and the extended cluster. The difference in σiso is only 4 

ppm.  For Hg2Cl2, the differences are slightly larger than those of Hg(SCN)2. The 

largest difference is for σ33 (79 ppm). On the other hand, the differences for σiso are 5 

ppm and 13 ppm for Hg(1) and Hg(2) respectively. For all calculated principal 

components, the variation between the two clusters is less than 1%, which would be a 

valid convergence criterion for heavy-nucleus shieldings. 
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Table 4.6 Comparison of 199Hg NMR Parameters of Large Clusters and Extended 

Clusters of Hg(SCN)2 and Hg2Cl2 Using the Frozen Core Approximation 

Model clusters 
σ11  

(ppm) 

σ22  

(ppm) 

σ33  

(ppm) 

σiso  

(ppm) 

Hg(SCN)2     

Large cluster 7860 8554 11670 9361 

Extended cluster 7869 8554 11648 9357 

Hg2Cl2     

Large cluster Hg(1) 8058 8058 11609 9242 

Large cluster Hg(2) 8028 8028 11609 9222 

Extended cluster Hg(1) 8089 8090 11531 9237 

Extended cluster Hg(2) 8088 8088 11530 9235 

 

4.4 Relativistic Effects on 199Hg Magnetic Shielding 

An important consideration in the calculation of magnetic shielding of heavy 

nuclei such as 199Hg, 207Pb, and 119Sn is the inclusion of relativistic effects.[25-28]  

Including relativistic terms in the Hamiltonian increases the computational time, 

which makes it of some practical importance to determine how significantly these 

affect the calculated magnetic shielding. These effects are investigated by comparing 

results of calculations that (a) neglect all relativistic terms (nonrelativistic results) with 

(b) results of calculations that include only scalar relativistic corrections, and with (c) 

results of calculations that include the full spin-orbit interaction for large clusters.   

Figure 4.8 shows the correlation between calculated magnetic shieldings and 

experimental chemical shifts for all tensor components of the large clusters, when the 
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system is treated with only nonrelativistic terms.  The linear correlation has a slope of 

-0.667 and an intercept of 6221 ppm. 

   

Figure 4.8 Correlation diagram for the calculated principal components of the 

magnetic-shielding tensor at the nonrelativistic level of theory (BP86/AE), and the 

principal components of the experimental chemical-shift tensor for the 199Hg-

containing molecular solids. For this correlation, calc = -0.667exp + 6221 and R2 is 

0.841.  The dashed line shows the ideal behavior. 

Figure 4.9 shows a similar correlation for the same systems when only scalar 

relativistic corrections are considered at ZORA level.   The slope of the linear 

correlation is -0.695 for this system and the intercept is 5976 ppm.  The inclusion of 
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the scalar relativistic terms improves agreement with the experimental data marginally 

over the nonrelativistic results. 

 

Figure 4.9 Correlation diagram for the calculated principal components of the 

magnetic-shielding tensor at ZORA/scalar level of theory, and the principal 

components of the experimental chemical-shift tensor for the 199Hg-containing 

molecular solids. For this correlation, calc = -0.695exp + 5965 and the R2 value of the 

correlation is 0.806.  The dashed line shows the ideal behavior. 

The data of Figure 4.4 show the result of inclusion of relativistic effects at the 

spin-orbit level.  The slope of the linear correlation line is -1.035 and the intercept is 

8042 ppm. Thus, within 3.5%, the slope of this linear trend is correct. In addition, 

comparison of Figures 4.4, 4.8 and 4.9 shows that scatter about the ideal line is much 
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smaller when the ZORA spin-orbit Hamiltonian is used.  Significantly, there is a 

systematic error of approximately 2000 ppm in the predicted value of the magnetic 

shielding of DMM when the spin-orbit terms are neglected.  From these calculations, 

it is clear that one must include spin-orbit relativistic terms in the Hamiltonian when 

calculating magnetic shieldings of mercury-containing solids. 
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MAGNETIC SHIELDING CALCULATIONS FOR NETWORK SOLIDS 

EMPLOYING CLUSTERS ADAPTED FROM BOND VALENCE THEORY 

5.1 Introduction 

In this chapter, magnetic-shielding calculations employing cluster models are 

presented for covalent- or ionic-network solids containing nuclei 207Pb, 31P and 29Si. 

The calculations are carried out with the method of valence modification of terminal 

atoms using bond valence (VMTA/BV), the details of which are introduced in Chapter 

3. This chapter consists of three parts. The first part is devoted to test calculations with 

different cluster models on α-PbO and β-PbO. Some arguments regarding the 

symmetry and charge of the clusters are given in this section. In the second part, the 

application of the VMTA/BV model is shown for magnetic-shielding calculations of 

207Pb-containing solids. Finally, calculated magnetic-shielding tensors of lighter nuclei 

such as 31P and 29Si by the GIPAW procedure with periodic boundary conditions 

(PBC) and the VMTA/BV cluster-based approach are compared for benchmark 

purposes.  

The materials investigated in this study are selected by the following criteria: 

a) the solid state structures of the systems must have been resolved with high-quality 

diffraction studies; b) the principal components of the chemical-shift tensors for the 

NMR nuclei of interest must have been measured by SSNMR techniques with a high 

degree of accuracy. In Tables 5.1, the investigated lead-containing solids [1-10] and 

their crystallographic information are tabulated. The same type of information is given 

Chapter 5 
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in Tables 5.2 and 5.3 for silicon-containing solids [11-19] and phosphorus-containing 

solids [20-25], respectively. For some selected systems (α-PbO and Pb3O4), the co-

ordinates of the atomic positions used in model clusters are given in Appendix A. 

Table 5.1 Reference Codes and Crystallographic Data for Lead-Containing Solids 

Table 5.2 Reference Codes and Crystallographic Data for Silicon-Containing Solids 

Crystal System Reference Codea Space Group 
Unique Pb(II) Sites 

by Symmetry 

α-PbO 15466  P4/nmm  1 

β-PbO 40180 Pbcm 1 

Pb3O4 4106 P42/mbc 1b 

Pb2SnO4 31482 Pbam 2 

PbF2 154994 Pnma 1 

PbCl2 27736 Pnma 1 

PbBr2 202134 Pnma 1 

PbClOH 404572 Pnma 1 

PbBrOH 404573 Pnma 1 

PbIOH Lutz et al Pnma 1 

PbSiO3 26812 P2/n 3 

Pb3(PO4)2 14247 C2/c 2 

a) Codes are from the Inorganic Crystal Structure Database, or the structures are from the literature if no 

code is given. 

b) There is also a unique Pb(IV) site for this system. 

Crystal System Reference Code Space Group 
Unique Si Sites by 

Symmetry 

α-quartz 162490 P3221 1 

Li2Si2O5 67110 Pbcn 1 
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Table 5.3 Reference Codes and Crystallographic Data for Phosphorus-Containing 

Solids 

5.2 Magnetic Shielding Calculations on α-PbO and β-PbO 

This section presents the effects of size, charge and point group symmetry of 

model clusters on calculated magnetic-shielding tensors in network solids. All 

calculations in the section were carried out at the BP86/TZ2P level of theory with the 

ZORA/spin-orbit Hamiltonian.  

Na2SiO3 15388 Cmc21 1 

Na2Si2O5 34669 Pcnb 1 

Mg2SiO4 12124 Pbnm 1 

MgSiO3 64629 Pbca 2 

CaSiO3 201537 P-1 3 

Ca3Si2O7 2282 P121/a1 2 

CaMgSiO5 202280 Pbnm 1 

Crystal System Reference Codea Space Group 
Unique P Sites by 

Symmetry 

Mg3(PO4)2 31005 P121/n1 1 

Mg2P4O12 4280 C12/c1 2 

Mg2P2O7 15326 B121/c1 2 

MgP4O11 300214 P121/c1 4 

Li6O6P18·3H2O 85734 R-3mH 1 

Ca4P2O9 160461 P1211 4 

SnHPO4 25033 P121/c1 1 
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5.2.1 Effect of Termination Method and Cluster Size on the 207Pb Magnetic 

Shielding Tensor 

Clusters of α-PbO and β-PbO with different sizes, as well as the effects of 

cluster size on predicted principal components of the shielding tensor, were 

investigated by the HA, VMTA and VMTA/BV methods. Clusters up to the first, 

third, and fifth atomic coordination shells around the NMR nucleus are shown in 

Figure 5.1. Only the odd-numbered coordination shells are considered, because 

clusters terminated with lead atoms are inherently difficult to handle computationally.  

 

Figure 5.1 First, third and fifth coordination shell geometries of α-PbO. The terminal 

oxygen atoms are shown in red circles. The corresponding β-PbO clusters have the 

same bonding network with differences in bond lengths and angles.   

The calculated NMR parameters for clusters of the two different forms of PbO 

(α-PbO and β-PbO) using the HA, VMTA, and VMTA/BV methods are given in 

Table 5.4.  The method used in each case is given by its abbreviation and the prefix 

gives the maximum coordination shell in the cluster.   
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Table 5.4 Principal Components of the 207Pb Magnetic-Shielding Tensor, Reduced 

Chemical Shifts and Residuals (R) for Various Cluster Models of α-PbO and β-PbO. 

α-PbO 

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

Δδ11 

(ppm) 

Δδ22 

(ppm) 

Δδ33 

(ppm) Ra 

Experiment[26]    1100 1100 -2200 _____ 

1-HA 9400 9400 10645 415 415 -830 969 

1-VMTA 7385 7385 9681 765 765 -1531 473 

1-VMTA/BV 9451 9451 11269 606 606 -1212 699 

3-HA 6204 6204 8918 905 905 -1809 276 

3-VMTA 5861 5861 8870 1003 1003 -2006 137 

3-VMTA/BV 5887 5889 8827 981 979 -1960 170 

5-HA 5935 5935 8922 995 995 -1991 148 

5-VMTA 5936 5936 8906 990 990 -1980 156 

5-VMTA/BV 5914 5915 8900 996 994 -1990 148 

β-PbO 

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

Δδ11 

(ppm) 

Δδ22 

(ppm) 

Δδ33 

(ppm) R 

Experiment[26]    1293 1233 -2527 ______ 

1-HA 9125 9533 10871 718 310 -1028 1069 

1-VMTA 7109 7525 9537 948 532 -1480 754 

1-VMTA/BV 8630 9283 11516 1180 527 -1706 629 

3-HA 5956 6406 9270 1255 805 -2059 367 

3-VMTA 5747 6228 9273 1335 855 -2190 294 

3-VMTA/BV 5655 6197 9352 1413 871 158 261 

5-HA 6136 6150 9630 1169 1155 -2324 144 

5-VMTA 6098 6172 9593 1190 1115 -2305 157 

5-VMTA/BV 6100 6150 9581 1177 1127 -2304 158 

𝑎) 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  √
1

3
∑(𝛥𝛿𝑖𝑖

𝑐𝑎𝑙𝑐 − 𝛥𝛿𝑖𝑖
𝑒𝑥𝑝)

2
3

𝑖=1
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In Table 5.4, the reduced chemical shifts are defined by the following 

relation: 

 𝛥𝛿𝑖𝑖 = 𝛿𝑖𝑖 − 𝛿𝑖𝑠𝑜 = 𝜎𝑖𝑠𝑜 − 𝜎𝑖𝑖  (5.1) 

For α-PbO and β-PbO, the predicted principal shielding components for a 

model cluster terminated at the first coordination sphere strongly depend on the 

termination method, with values that can be different from one another by more than 

2000 ppm. On the other hand, for clusters of -PbO and -PbO including atoms up to 

the third coordination shell, the predicted principal shielding components are 

significantly less dependent on the termination method.  For example, the largest 

difference between values found with different methods (in this case, VMTA and HA) 

is only 343 ppm, the difference for σ11 (= σ22) of α-PbO. There are only small 

differences in the principal components calculated by the VMTA or the VMTA/BV 

method, showing that these two methods are similar.  The maximum difference for 

calculated components by these two methods is no greater than 100 ppm. 

For clusters that include the fifth coordination shell of α-PbO or β-PbO, the 

principal components calculated using the three termination methods agree with each 

other to within 50 ppm. This agreement reflects the fact that the various termination 

methods have little effect on the shielding values calculated for fifth-coordination-

sphere clusters chosen to represent these network solids. 

A comparison of the calculated values to experimental results is illustrated 

with the residuals of the components of the reduced chemical-shift tensor. (Table 5.4) 

These residuals are generally smaller for larger clusters.  For clusters containing only 

the first coordination shell, the residuals range from 473 ppm to 1069 ppm. For 

clusters containing up to the third coordination shell, the residuals range from 137 
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ppm to 367 ppm. For clusters containing up to the fifth coordination shell, the 

residuals range only from 144 to 158 ppm.  The larger the clusters, regardless of 

termination method, the closer the calculated components are to the experimental 

components. 

5.2.2 Symmetry Requirements for Calculated Principal Components 

The local symmetry of the electronic environment surrounding the NMR-

active nucleus affects the values of the principal components of the magnetic-shielding 

tensor. We have deliberately perturbed the symmetry of cluster models of α-PbO to 

determine the extent of this effect.  In Figure 5.2 is shown an example, in which a 

fifth-coordination-shell cluster model is perturbed by adding up to the seventh 

coordination shell along the + x axis. 

  

Figure 5.2 Distorted fifth coordination-shell cluster of α-PbO. The added coordination 

in the x-direction is shown in red circles, and the central 207Pb nucleus is highlighted 

in green.  
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For the calculated magnetic-shielding parameters in Table 5.5, I have used 

models extended by two coordination shells in the + x direction for the first-, third-, 

and fifth-coordination-shell cluster models to lower the symmetry at the site of the 

NMR-active nucleus. 

From the X-ray crystal structure, the Pb sites in α-PbO have C4v site symmetry. 

[1] By symmetry constraints, the skew (κ) is either -1.00 (σ11 < σ22 = σ33) or +1.00 (σ11 

= σ22 < σ33). Experimentally, α-PbO has a skew of +1.00. [26-28] Calculated NMR 

parameters for the symmetric and perturbed clusters are presented in Table 5.5. 

Table 5.5 Principal Components of the 207Pb Magnetic-shielding Tensors of 

Symmetric and Perturbed Clusters of α-PbO 

α-PbO σ11  

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

σiso 

(ppm) 

Ω 

(ppm) 
κ 

1syma 9451 9451 11269 10057 1818 1.00 

1pertb 8183 8578 10964 9241 2781 0.72 

Difference 1268 873 305 816 -963 0.28 

3syma 5887 5889 8827 6868 2940 1.00 

3pertb 5734 5875 8737 6782 3004 0.91 

Difference 153 14 90 86 -64 0.09 

5syma 5914 5915 8900 6910 2986 1.00 

5pertb 5906 5909 8888 6901 2982 1.00 

Difference 8 6 2 9 4 0.00 

aSymmetric cluster 
bPerturbed cluster 
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 For a cluster that contains the first coordination shell, the differences between 

principal components of symmetric and perturbed clusters are 1268, 873 and 305 ppm 

for σ11, σ22 and σ33, respectively, with a predicted κ of 0.72 for the perturbed structure. 

For a cluster that includes the third coordination shell, κ is 0.91, only 0.09 from the 

ideal value. For this cluster model, the differences range only between 14 and 153 

ppm for the principal components. For a model containing coordination shells through 

the fifth coordination shell, the differences between the calculated principal 

components of the perturbed and symmetric models are very small.  The calculated κ 

for both clusters are +1.00, within 1%. These results, along with the results in Table 

5.4, indicate that the principal values of the magnetic-shielding tensor converge to a 

limit for a cluster that contains up to the fifth coordination shell of 207Pb.   Deviations 

from symmetry occurring at the edges of a cluster of sufficient size seem to have 

minimal effects on the derived magnetic-shielding tensor and its symmetry at this 

level of precision.  

5.2.3 Effects of the Charge on the Terminal Atoms  

For α-PbO, the VMTA/BV method predicts 9.50 and 9.00 for Zmod of the two 

types of terminal oxygen atoms. I investigate how the value of Zmod in the range of 

9.30 to 9.70 and 8.80 to 9.20 for these two sites, respectively, affects the predicted 

NMR magnetic-shielding parameters.  For these models, the total charge on a cluster 

depends on the size of the cluster as well as Zmod of the two terminal oxygen sites, as 

indicated in Table 5.6.  As seen in Figure 5.3 and 5.4 respectively, σiso and Ω are 

linearly correlated with the deviation, ΔZmod, of Zmod from the optimal values (9.50 

and 9.00).  For the cluster containing only the first coordination sphere, the variation 

of the isotropic shielding and the span with Zmod is large.  In changing Zmod by 0.4, the 
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isotropic magnetic shielding varies by over 2000 ppm and the span varies by over 

1000 ppm.  On the other hand, for the largest cluster (through the fifth coordination 

sphere), the isotropic shielding differs by 157 ppm and the span varies by 55 ppm, at 

most, showing the lack of sensitivity to Zmod in large clusters. 

Table 5.6 Dependence of the Predicted Magnetic-shielding Tensor of -PbO on the 

Total Charge on a Cluster Extending to the Fifth Coordination Shell 

Zmod on O1 

and O2 

Charge 

of the 

Cluster  

Mulliken 

Charge on Pb 

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

σiso 

(ppm) 

Ω 

(ppm) 

9.30, 8.80 -4.0 1.344 6005 6006 8959 6990 2954 

9.40, 8.90 -2.0 1.364 5957 5959 8928 6948 2971 

9.50, 9.00 0.0 1.381 5914 5915 8900 6910 2986 

9.60, 9.10 2.0 1.395 5874 5876 8873 6874 2999 

9.70, 9.20 4.0 1.408 5839 5841 8848 6843 3009 

 

The overall charge on the cluster is partially delocalized onto other atoms in 

the cluster.  As an example, from Table 5.6, there is a small, but strong, positive 

correlation between the Mulliken charge on the central lead atom and Zmod of the 

terminal oxygen sites in this fifth-coordination-shell model. In addition, the magnetic-

shielding components are correlated with the Mulliken charge on the central lead 

atom, showing that magnetic shielding reflects the delocalization of charge. The 

change in the principal components of magnetic shielding with the Mulliken charge 

demonstrates that there is a somewhat stronger effect on the two degenerate 

components (σ11 and σ22) than on the unique component (σ33).  This difference 

between the unique component and the non-unique components in their dependence 
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on delocalization of charge suggests that more electron density from delocalization 

ends up in orbitals the principal direction of which is in the 1-2 plane, rather than in 

orbitals whose orientation is perpendicular to that plane.  This change is also reflected 

in the gradual change of Ω with total charge on the cluster. These variations of 

magnetic-shielding parameters with charge on the cluster are even stronger for smaller 

clusters, as shown in Figure 5.3 and 5.4. 

 

Figure 5.3 The effect of Zmod on isotropic shielding for models that extend through the 

first (blue), third (red), and fifth (black) coordination shells for α-PbO. ΔZmod is the 

deviation of Zmod from the optimal values determined by the VMTA/BV method.    
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Figure 5.4 The effect of Zmod on calculated span for models that extend through the 

first (blue), third (red), and fifth (black) coordination shell for α-PbO. ΔZmod is the 

deviation of Zmod from the optimal values determined by the VMTA/BV method. 

5.3 VMTA/BV Model for 207Pb Magnetic Shielding Calculations for Various 

Lead-Containing Solids 

Comparisons between experimental and calculated principal components of the 

207Pb magnetic shielding tensors are presented for a variety of lead-containing 

materials in Table 5.1. The calculations are carried out with cluster models that are 

terminated using the VMTA/BV model.  In this model, the bond strengths are 

calculated using equations 3.3 and 3.4, with parameters, Ri0 and bi, tabulated in the 

Table B2 in Appendix B. The calculations were carried out with BP86 density 

functional, unless indicated otherwise. The relativistic effects were treated with the 
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for the NMR nuclei and the first coordination shell, whereas DZ/FCA is employed for 

the rest of the cluster. The cluster models for some selected systems are shown in 

Figure 5.5.   

   
 

Figure 5.5 First and third coordination-shell clusters for selected systems investigated 

in this work. The TZ2P/AE (all-electron) region is shown in the ball-and-stick model, 

whereas the region where FCA/DZ is used is shown by a stick model.   
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5.3.1 Effect of Cluster Size 

The relationship between experimental and calculated principal components of 

the 207Pb shielding tensors of these various materials is displayed in Figure 5.6 for the 

first-coordination-shell model and in Figure 5.7 for the third-coordination-shell model. 

The calculated magnetic-shielding tensor data of these correlations are tabulated in 

Table B3 in Appendix B. Results for the first-coordination-shell model show a strong 

scatter of the data, with R2 of only 0.608 for a linear correlation. Even for qualitative 

predictions, NMR parameters obtained using the first-coordination-shell model to 

represent the structure cannot be trusted for these kinds of network solids, as 

compared to the situation for molecular solids in the previous chapter, and calculations 

with this model are not reported in subsequent analyses.  

Use of a model that includes structure through the third coordination shell 

greatly improves the correlation between experimental and calculated principal 

components, as can be seen in Figure 5.7. For the linear correlation, R2 = 0.983 and the 

slope of the best-fit linear correlation line is -0.869, with an intercept of 8643 ppm. 

The slope of the correlation line deviates by 13% from the ideal case, which has a 

slope of -1. 

The predicted absolute magnetic shielding of the reference material, 

tetramethyllead (TML), from a linear correlation is 9990 ppm for the model that 

includes only up to the first coordination shell.  A similar linear correlation of the 

third-coordination-shell model gives a value of 8653 ppm. The absolute shielding of 

TML calculated from a model of the molecular solid based on the reported X-ray 

structure [29] with optimized hydrogen atom positions gives a value of the isotropic 
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shift of TML of 8136 ppm.  There is a significant difference between this estimated 

shielding of TML and that extracted from the linear correlation of Figure 5.6.  On the 

other hand, the value extracted from Figure 5.7 is much closer to the predicted 

shielding of TML based on its solid-state structure. 

 

Figure 5.6 The correlation between experimental and calculated principal components 

for the first coordination-shell model (). The equation of the linear correlation line for 

the first-coordination-shell model is: σcal = -0.541δexp + 9990 with R2 = 0.608. The 

dotted line shows ideal behavior (with a slope of -1). 
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Figure 5.7 The correlation between experimental and calculated principal components 

for the third coordination-shell model (). The equation of the linear correlation line 

for the first-coordination-shell model is: σcal = -0.869δexp + 8643 with R2 = 0.983. The 

dotted line shows ideal behavior (with a slope of -1). 

5.3.2 Relativistic Effects 

In general, for heavy atoms, the contributions to the shielding due to the 

relativistic nature of the electrons are significant. [30-33] For the third-coordination-

shell model, we compare magnetic-shielding tensors of the suite of materials in Table 

5.1 determined with inclusion of only scalar relativistic corrections to  the magnetic-

shielding tensors determined using the full spin-orbit relativistic Hamiltonian.  The 

treatment is at the ZORA/DFT level of theory. The correlation of experimental and 

theoretical principal components and spans is shown in Figure 5.8 and 5.9, 

respectively.  
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Figure   5.8 The correlation between principal components of the magnetic shielding 

and experimental chemical shift of various lead-containing solids:  () with inclusion 

of only scalar relativistic terms; () with inclusion of all relativistic corrections 

through spin-orbit effects.  The calculations were carried out on a third-coordination-

shell model at the ZORA/DFT level. The equation of the correlation line for the 

principal components is: σcal = -0.365δexp + 7060 with R2 = 0.887 for ZORA/scalar 

calculations, and σcal = -0.869δexp + 8643 with R2 = 0.983 for ZORA/spin-orbit 

calculations. The dotted line shows ideal behavior. 
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Figure 5.9 The correlation of magnetic-shielding span with experimental span of the 

various lead-containing solids: () with inclusion of only scalar relativistic terms; () 

with inclusion of all relativistic corrections through spin-orbit effects.  For the span, 

the correlation is: Ωcal = 0.281Ωexp with R2 = 0.871 for ZORA/scalar calculations and 

Ωcal = 0.866Ωexp with R2 = 0.962 for ZORA/spin-orbit calculations. The dotted line 

shows ideal behavior.   

The slope of the correlation line for shielding principal components with 

experimental chemical- shift components is -0.365 when only scalar relativistic effects 

are included, whereas the slope of the correlation line for magnetic-shielding principal 

components when the full relativistic Hamiltonian is used is -0.869.  Neither is the 

ideal value of -1, but the inclusion of spin-orbit relativistic terms gives a correlation 

much closer to the ideal than does the inclusion of only scalar relativistic effects in the 

ZORA Hamiltonian, showing that spin-orbit terms cannot be neglected in calculations 
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of magnetic shieldings of 207Pb.   A similar result for the 199Hg magnetic shielding of 

solids was observed in the previous chapter. 

The predicted magnetic shielding of TML from the correlation at the scalar 

relativistic level is 7060 ppm, whereas a calculation for an isolated TML molecule at 

this scalar relativistic level gives a shielding of 5171 ppm, a difference of 1889 ppm.  

At ZORA/spin-orbit level, this difference is calculated as 507 ppm which indicates 

that inclusion of the spin-orbit correction is essential to achieve better agreement with 

the calculated reference shielding from calculation on the reference molecule. 

The span of a tensor is independent of the reference.  In Figure 5.9, the 

correlation of the predicted and experimental spans is shown for these lead-containing 

solids.  At the ZORA/scalar level of theory, the slope of the best-fit linear correlation 

of 0.281 deviates significantly from the ideal value of +1.  At the ZORA/spin-orbit 

level of theory, the slope of the best-fit linear correlation is 0.866, much closer to the 

ideal value.  This disparity again demonstrates that spin-orbit terms must be included 

in calculations of magnetic shielding of 207Pb solids. 

One striking feature of Figure 5.9 is that the predicted NMR parameters 

obtained by use of the scalar relativistic terms systematically underestimate the span 

of the shielding tensor (σ33-σ11), as compared to values calculated at the spin-orbit 

level.  The spin-orbit calculation also underestimates the span as compared to the 

experiment, but by a substantially smaller difference. Similar results have been shown 

for 207Pb previously, [34, 35] and for 199Hg in this study.  



 

 122 

5.3.3 Accuracy of Calculated Principal Components of the 207Pb Shielding 

Tensor 

It is shown in the sections above that it is possible to achieve a good 

correlation between experimental and theoretical principal components of a wide array 

of lead-containing materials, provided one uses the full spin-orbit-including 

Hamiltonian at the ZORA level and creates clusters using the VMTA/BV model with 

inclusion of structure at least to the third coordination shell. Even at this level of 

approximation, the correlation between predicted and experimental results may 

deviate from the ideal case (in which the slope of the correlation line is exactly -1). In 

this section, some remarks and results on the accuracy of theoretically and 

experimentally determined 207Pb magnetic-shielding tensor are given in order to 

understand the possible source of the deviations between experiment and theory.  

5.3.3.1 Clusters and the VMTA/BV Model 

In sections 5.2 and 5.3, it is seen that one must include extended solid-state 

effects by using structural models that account for contributions to the magnetic 

shielding from atoms in at least the third coordination shell about the nucleus of 

interest.  Inclusion of effects through the fifth coordination shell demonstrates that 

agreement slightly improves by the addition of further atoms as shown in Figure 5.10 

for selected lead-containing materials. However, the slope of the correlation lines 

approaches the ideal case by only about 2%, and the improvement in fit is negligible, 

suggesting that extending the cluster further is likely to give no substantial 

improvement in agreement between theory and experiment. 

Cluster models, without the use of VMTA/BV theory, have been applied to 

calculations of 207Pb principal components in other solid systems. [34-36] In those 

examples, the ZORA/spin-orbit Hamiltonian was applied at the BP86 level of density 
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functional theory, and no additional treatment was applied to the terminal atoms.  For 

all investigated systems, the span, Ω, is consistently underestimated by the model, 

whether in molecular or network solids.  This underestimation cannot therefore be 

attributed to the use of VMTA/BV for termination of the cluster. 

 

Figure  5.10 The correlation of the principal components of the experimental chemical-

shift tensor and the predicted shielding tensor for α-PbO, β-PbO, Pb2SnO4, Pb3O4 and 

PbSiO3 using fifth-coordination-shell cluster models. For the fifth-coordination-shell 

model, the correlation line is σcal = -0.910δexp + 8690 with R2 = 0.986. The dotted line 

shows ideal behavior. The equation of the correlation line for the third-coordination-

shell model for the same data set is: σcal = -0.891δexp + 8689 with R2 = 0.983. 

5000

7000

9000

11000

-3500 -1500 500 2500

C
a

lc
u

la
te

d
 S

h
ie

ld
in

g
 (

p
p

m
)

Experimental Chemical Shift (ppm)



 

 124 

5.3.3.2 Relativistic Effects at the ZORA/Spin-Orbit Level 

The importance of relativistic effects on shielding of heavy nuclei such as 

207Pb has been investigated previously.[30] The present results also indicate the 

necessity of inclusion of spin-orbit effects for calculation of magnetic shielding for 

these heavy nuclei. It has been shown that the absolute shielding constants for heavy 

nuclei calculated with ZORA at the spin-orbit level differ considerably from results 

that are carried out by four-component relativistic methods. [37-39] Autschbach [40] 

has shown that this difference mainly results from hyperfine integrals involving the 

core levels. He has also shown that the hyperfine integrals over the valence shells may 

be evaluated at the ZORA level with accuracy close to that achievable by calculation 

with four-component relativistic methods. [40] As a result, the heavy-nucleus 

chemical shifts determined at the ZORA level of approximation agree well with those 

calculated with the four-component formalism.  For molecular solids like some Hg-

containing materials, the principal components of chemical-shift tensors have been 

shown to be predicted with good accuracy using the ZORA Hamiltonian. The present 

results show that 207Pb chemical shifts of network solids calculated at the ZORA level 

of approximation also agree reasonably well with experiment.  To the author’s 

knowledge, there are no reported calculations of 207Pb chemical shifts with the four-

component formalism, but the present results obtained with the ZORA approximation 

suggest that they would also be in agreement.  

   

5.3.3.3 Effect of the Density Functional by Introducing Exact Exchange 

GGA functionals are the common choice for relativistic magnetic-shielding 

calculations due to efficient scaling of the methods in both SCF and NMR routines.  
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For light nuclei such as 13C and 29Si, introducing exact exchange (via hybrid 

functionals) improves the correlation between experimental and calculated chemical 

shifts. [41] Recently, hybrid density functionals have been introduced for relativistic 

calculations of magnetic shielding and spin-spin coupling constants. [42-44] In Table 

5.7, the principal components and spans of 207Pb magnetic-shielding tensors for five 

materials, which are evaluated with the BP86 or B3LYP functionals, are compared. 

Table 5.7 Predicted Principal Components of 207Pb Magnetic-Shielding Tensors, 

Determined at Either the ZORA/BP86 Level of Theory or the ZORA/B3LYP Level of 

Theory on a Cluster Extending to the Third Coordination Shell. 

BP86 

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

σiso 

(ppm) 

Ω 

(ppm) 

α-PbO 5887 5889 8827 6868 2940 

β-PbO 5655 6197 9352 7068 3697 

PbSiO3 (site 1) 7459 7995 10331 8595 2872 

PbSiO3 (site 2) 7829 8249 10522 8867 2693 

PbSiO3 (site 3) 7940 8532 10281 8918 2341 

B3LYP 

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

σiso 

(ppm) 

Ω 

(ppm) 

α-PbO 5862 5865 8919 6882 3058 

β-PbO 5572 6119 9587 7092 4015 

PbSiO3 (site 1) 7419 7960 10551 8643 3133 

PbSiO3 (site 2) 8009 8484 11030 9174 3021 

PbSiO3 (site 3) 8027 8679 10710 9139 2683 

 

There are two characteristics of the shielding parameters determined by the 

calculations with B3LYP and with BP86.  Firstly, the difference of the B3LYP and 



 

 126 

BP86 values of 33 for a particular material is always larger than the difference of 

either 11 or 22.  Secondly, the spans, Ω, calculated with B3LYP are always larger 

than those calculated with BP86. In comparing to experiment, the predicted span 

determined with B3LYP is always closer to the experiment than spans calculated with 

BP86. 

In Figure 5.11, the correlation between experimental and calculated principal 

components of 207Pb shielding tensors at the BP86 and B3LYP levels of theory are 

shown. As expected from the comparison of spans, Ω, the slope of the correlation line 

determined with the hybrid functional (B3LYP) is -0.985, much closer to the ideal 

value than the correlation line for the same parameters determined at the BP86 level of 

theory (-0.895), demonstrating that the use of hybrid functionals accounts for 

contributions to the magnetic shielding more completely than the use of GGA 

functionals like BP86. The effects of exchange and hybrid functionals are investigated 

in more detail for 207Pb magnetic-shielding tensor and the results are discussed in 

Chapter 6.  
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Figure 5.11 The effect of B3LYP on the calculated principal components of sites in α-

PbO, β-PbO and PbSiO3 for the third-coordination-shell model. The equation of the 

correlation line is: σcal = -0.985δexp + 8781 with R2 = 0.987. The equation of the 

correlation line for the model using BP86 for the same data set is: σcal = -0.898δexp + 

8605 with R2 = 0.987.  The dotted line shows ideal behavior. The values of the slope 

show how use of B3LYP approaches the ideal behavior. 

5.3.3.4 Experimental Uncertainty  

Due to the challenging nature of the spectroscopy of nuclei like 207Pb having 

wide powder patterns, there are uncertainties associated with the experimental data. 

This uncertainty affects the quality of comparisons like those in Figure 5.11. In 

addition, uncertainty about structural parameters derived from X-ray or neutron 

diffraction measurements contribute to uncertainty in the predicted values. In Table 

5.8 are the results of several reports of experimental chemical-shift parameters of α-
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PbO and β-PbO. The measured principal components may vary by as much as 200 

ppm, depending on the report. Averaging these three independent measurements, one 

obtains average values with uncertainties of up to 200 ppm, as given in Table 5.8.  The 

uncertainty in principal components ranges from about 50 to 170 ppm.  The 

uncertainties in the span, which is independent of the reference, are 190 ppm and 146 

ppm (about 5-6%), implying that we cannot distinguish the experimental values 

differing by less than about 100 ppm. 

Table 5.8 Experimental 207Pb Chemical-Shift Tensors of the Two Forms of PbO. 

α-PbO 

δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso 

(ppm) 

Ω 

(ppm) 

Gabuda et al. [26] 3030 3030 -270 1930 3300 

Fayon et al. [27] 2977 2977 -137 1939 3114 

Zhao et al. [28] 2984 2984 -334 1878 3318 

Average 299748 299748 -247169 191655 3244190 

β-PbO 

δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso 

(ppm) 

Ω 

(ppm) 

Gabuda et al. [26] 2820 2760 -1000 1527 3820 

Fayon et al. [27] 2945 2573 -972 1515 3917 

Zhao et al. [28] 2953 2695 -1040 1536 3993 

Average 2906126 2676160 -100458 152618 3910146 

 

Apart from approximations in the computational formalism that may contribute 

to the uncertainty in predicted values of the principal components, the uncertainty may 

also reflect uncertainty in X-ray and neutron diffraction structural parameters used in 

the definition of the cluster. Dmitrenko et al. [36, 45] showed that calculated 207Pb 
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chemical-shift parameters can vary significantly for small changes in bond length and 

bond angle. They also show that calculated NMR parameters may vary by as much as 

200 ppm, depending on the X-ray geometry used to define the system. For these 

reasons, we conclude that agreement between experiment and theory for the 207Pb 

principal components of a chemical-shift tensor of ±5% is agreement within the 

current levels of combined uncertainty. 

5.4 Performance of PBC and VMTA/BV Models on Magnetic Shielding 

Calculations for Non-Relativistic Systems: the Case of 29Si and 31P 

In this section, 29Si and 31P magnetic-shielding tensors in covalent-network 

solids (Tables 5.2 and 5.3) are investigated using periodic and cluster-based 

calculations.  The PBC are carried out using the GIPAW approach with the PBE 

density functional and the planewave basis set with cut-off energy of 600 eV. The core 

orbitals are replaced by ultrasoft pseudopotentials (USPPs) generated on the fly (OTF).  

In the cluster-based calculations of magnetic shielding, two all-electron (AE) 

basis sets were employed for different regions of the cluster.  The central region of the 

cluster, which consisted of the central Si or P site and the four directly-adjacent 

oxygen sites, was given the larger AE TZ2P basis set.  The atomic sites located further 

from the center were given the smaller AE TZP basis set.  Charge compensation on 

the outermost atomic shells was accomplished through the VMTA/BV method.  

Calculations on clusters were performed using the GGA-PBE functional and the 

hybrid functional PBE0.  The PBE0 functional results from the admixture of 25% 

Hartree-Fock (HF) exchange with the GGA-PBE functional.  Two example clusters 

are shown in Figure 5.12. 
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Figure 5.12 Illustration of third-coordination-shell clusters for Mg2SiO4 and 

Mg3(PO4)2.  The TZ2P region is shown in ball-and-stick model and the TZP region is 

shown as a wireframe model. 

5.4.1 Cluster Size and Magnetic Shielding in 29Si- and 31P-Containing Solids 

A series of test magnetic-shielding calculations using model clusters of various 

sizes is summarized in Table 5.9 for α-quartz, Na2SiO3, Mg2P4O12, and Mg3(PO4)2.  

The clusters are expanded around the NMR-active nucleus up to the first, third, and 

fifth coordination shells. 

Experimental chemical shifts (relative to a reference compound) have been 

converted to the magnetic-shielding scale using proposed empirical conversions.  The 

reference shielding constants are 368.5 ppm (tetramethylsilane) [46] for 29Si  and 

328.4 ppm (85% H3PO4) [47] for 31P nuclei.  As can be seen in Table 5.9, the residuals 

between calculated and experimental magnetic shielding for the third and fifth 

coordination shells differ from each other in the range of 1 – 2 ppm.  However, 

differences in computed residuals between first- and third-coordination-shell clusters 

are significantly larger, with the highest deviation being around 50 ppm.   
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Table 5.9 Principal Components of Experimental and Computed Magnetic-Shielding 

Tensors, Isotropic Magnetic Shielding, and Span for First, Third, and Fifth 

Coordination-Shell Clusters of α-quartz, Na2SiO3, Mg2P4O12, and Mg3(PO4)2 

Determined with VMTA/BV Model. 

Model Cluster 
11  

(ppm) 

22  

(ppm) 

33  

(ppm) 

iso
  

(ppm) 

  

(ppm) 

Residual  

(ppm) 

α-quartz 

Experiment 471.1 475.5 477.6 474.7 6.5 --- 

First shell 440.7 441.5 442.5 441.6 1.8 33.2 

Third shell 447.0 450.3 456.4 451.2 9.4 23.6 

Fifth shell 447.5 449.9 459.2 452.2 11.7 22.7 

Na2SiO3 

Experiment 388.2 429.4 519.1 445.6 130.9 --- 

First shell 401.4 432.8 483.8 439.3 82.4 21.8 

Third shell 357.9 395.9 499.0 417.6 141.1 28.5 

Fifth shell 363.9 398.1 495.0 419.0 131.2 26.8 

Mg2P4O12 (P1 site) 

Experiment 272.5 329.4 487.0 363.0 214.5 --- 

First shell 240.8 280.6 403.6 303.8 162.9 58.7 

Third shell 262.6 317.3 479.4 353.1 216.8 10.0 

Fifth shell 258.7 316.8 489.9 355.1 231.2 10.9 

Mg3(PO4)2 

Experiment 315.7 325.7 344.2 328.5 28.5 --- 

First shell 293.7 303.7 327.1 308.2 33.4 20.5 

Third shell 303.4 317.5 331.3 317.4 27.9 11.3 

Fifth shell 305.4 313.5 336.0 318.3 30.6 10.4 
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The similarity in residuals computed for the third and fifth coordination shells 

suggests that third-coordination-shell clusters are sufficiently large to model the 

magnetic shielding. 

The lowest residuals between calculation and experiment for the three sizes of 

model clusters examined are generally seen for the third- and fifth-coordination-shell 

clusters.  For Na2SiO3, the lowest value of R is found for the first coordination shell.  

However, this deviation from the general trend appears to be the result of accidental 

cancellation of errors, as indicated by the calculated spans.  The experimental span of 

130.9 ppm is more in line with the values calculated for the third- and fifth-

coordination-shell clusters (141.1 ppm and 131.2 ppm, respectively) than with the 

span for the first-coordination shell cluster (82.4 ppm). 

5.4.2 Effect of Basis Set in Cluster-based and Period Boundary Calculations 

Calculated magnetic-shielding tensors depend strongly on basis sets and 

electronic-state approximations such as pseudopotentials used in the calculation.  

Results obtained near the basis-set limit can be used to compare computational 

methodologies because finite-basis-set effects are minimized.[48] To test the 

convergence of computed NMR parameters with respect to the basis-set size, plane-

wave pseudopotential calculations were run on α-quartz and Mg3(PO4)2 with cutoff 

energies of 200 eV, 400 eV, 600 eV, and 800 eV.  Similarly, all-electron cluster-based 

calculations were run on the same systems, for which the Slater-type all-electron basis 

set on the central SiO4 or PO4 tetrahedra was DZ, DZP, TZP, and TZ2P, in increasing 

order of degrees of freedom.  The results of these calculations are presented in Table 

5.10. 
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Table 5.10 Calculated 29Si and 31P Principal Components of Magnetic-Shielding 

Tensors for Various All-Electron Slater-Type and Pseudopotential Plane-Wave Basis 

Sets. 

Basis Set 
11 

(ppm)
22 

(ppm)
33 

(ppm)
iso 

(ppm)


ppm

α-quartz 

DZ 451.9 463.0 471.8 462.2 19.8 

DZP 451.7 454.5 464.4 456.9 12.6 

TZP 448.1 451.7 457.7 452.5 9.5 

TZ2P 447.0 450.3 456.4 451.2 9.4 

200 eV 413.2 424.0 426.7 421.3 13.5 

400 eV 427.6 431.4 435.1 431.4 7.5 

600 eV 426.8 430.6 434.5 430.6 7.7 

800 eV 426.7 430.2 434.2 430.4 7.5 

Mg3(PO4)2 

DZ 304.9 321.0 335.3 320.4 30.4 

DZP 300.8 316.6 330.9 316.1 30.1 

TZP 304.2 319.1 332.8 318.7 28.6 

TZ2P 303.4 317.5 331.3 317.4 27.9 

200 eV 258.3 262.7 284.7 268.6 26.4 

400 eV 267.8 273.8 297.2 279.6 29.4 

600 eV 268.6 274.4 297.9 280.3 29.3 

800 eV 268.6 274.4 297.9 280.3 29.3 

 

The difference in the calculated principal components of the magnetic-

shielding tensor derived with the TZP basis set, as compared to those determined with 

the TZ2P basis set (or in going from a cutoff energy of 600 eV to a cutoff energy of 
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800 eV for the GIPAW calculations) is negligible.  In GIPAW calculations, individual 

principal components of the computed magnetic-shielding tensor differ by no more 

than 0.4 ppm between cutoff energies of 600 eV and 800 eV.  In the cluster 

calculations, the largest difference in computed magnetic shielding between TZP and 

TZ2P is 1.6 ppm.  Similarly, the largest difference in calculated spans between 600 eV 

and 800 eV is 0.2 ppm and the largest difference in spans between TZP and TZ2P is 

0.7 ppm. 

The periodic and cluster-based computational methodologies yield NMR 

parameters that differ significantly.  At the basis-set limit (600 eV or TZ2P), the 

magnetic shielding is predicted to be larger when using Slater-type basis functions 

than when using plane waves.  For α-quartz, the difference in computed isotropic 

shielding is about 21 ppm; for Mg3(PO4)2, the difference in isotropic shielding is about 

37 ppm.  However, both methods predict similar values of the span, indicating that the 

two methods predict similar differences between nuclei in different chemical 

environments, but different absolute shieldings, even with sufficiently large basis set. 

5.4.3 Comparison of Periodic and Cluster Models for 29Si and 31P-Containing 

Solids 

In Figure 5.13 and 5.14, the correlation plots between experimental and 

calculated principal components are shown for 29Si- and 31P-containing solids (Table 

5.2 and 5.3) respectively. Experimental chemical shifts are converted to the magnetic-

shielding scale using the reference shielding values given in section 5.4.1. As 

suggested in the previous section, magnetic-shielding constants obtained using the AE 

cluster-based methods are substantially more shielded than those obtained with the 

GIPAW method. 
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Figure 5.13 Correlation between calculated and experimental principal components 

of magnetic-shielding tensors for 29Si-containing materials.  Values obtained using the 

GIPAW approach are shown in blue, and results obtained using the VMTA/BV cluster 

approach are shown in red.  Results were computed at the PBE level of theory.  The 

best-fit correlations are given as solid lines. 
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Figure 5.14 Correlation between calculated and experimental principal components of 

magnetic-shielding tensors for 31P-containing materials.  Values obtained using the 

GIPAW approach are shown in blue, and results obtained using the VMTA/BV cluster 

approach are shown in red.  Results were computed at the PBE level of theory.  The 

best-fit correlations are given as solid lines. 

For 29Si-containing solids, linear regressions on the GIPAW and VMTA/BV 

cluster datasets yield the following best-fit relations; 

 𝜎𝑖𝑖
𝐺𝐼𝑃𝐴𝑊 = (1.05 ± 0.02) 𝜎𝑖𝑖

𝑒𝑥𝑝 − (67 ± 7) 𝑝𝑝𝑚, 𝑅2 = 0.991 (5.2) 

 𝜎𝑖𝑖
𝑉𝑀𝑇𝐴/𝐵𝑉

= (1.02 ± 0.02) 𝜎𝑖𝑖
𝑒𝑥𝑝 − (33 ± 9) 𝑝𝑝𝑚, 𝑅2 = 0.986 (5.3) 

For 31P-containing solids, the following relations are obtained. 

 𝜎𝑖𝑖
𝐺𝐼𝑃𝐴𝑊 = (1.10 ± 0.01) 𝜎𝑖𝑖

𝑒𝑥𝑝 − (85 ± 4) 𝑝𝑝𝑚,  𝑅2 = 0.996 (5.4) 
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 𝜎𝑖𝑖
𝑉𝑀𝑇𝐴/𝐵𝑉

= (1.04 ± 0.01) 𝜎𝑖𝑖
𝑒𝑥𝑝 − (24 ± 5) 𝑝𝑝𝑚, 𝑅2 = 0.993 (5.5) 

The largest differences between the correlations obtained from GIPAW 

calculations and the cluster calculations are in the intercept of the correlation lines. 

The calculated principal components with cluster models are generally more shielded 

than those calculated with GIPAW method. This result is probably due to the 

pseudopotential approximation [49] employed in GIPAW calculations. In comparison, 

the slope of the correlation lines and the quality of the linear fit are quite similar 

between two methods. This comparison shows that cluster models with intermediate 

sizes can reach or extend the accuracy of PBCs in magnetic-shielding calculations. 

One advantage of using cluster models is the ability to employ density 

functionals beyond GGAs in NMR calculations. In this aspect, the hybrid functional 

PBE0 (25% HF exchange) is employed for calculations of magnetic-shielding tensors 

of the same set of 29Si and 31P-containing solids. The correlation plots of this analysis 

are given in the Figure B1 and Figure B2 in Appendix B. Comparison of the 

experimental and calculated principal components yields the following best-fit 

relations; 

 

29Si :     𝜎𝑖𝑖
𝑉𝑀𝑇𝐴/𝐵𝑉

= (1.00 ± 0.02) 𝜎𝑖𝑖
𝑒𝑥𝑝 − (10 ± 10) 𝑝𝑝𝑚, 𝑅2 = 0.983 (5.6) 

31P : 𝜎𝑖𝑖
𝑉𝑀𝑇𝐴/𝐵𝑉

= (1.00 ± 0.01) 𝜎𝑖𝑖
𝑒𝑥𝑝 − (1 ± 4) 𝑝𝑝𝑚, 𝑅2 = 0.994 (5.7) 

It should be noted that the slopes of the correlation lines obtained at the PBE0/TZ2P 

level do not differ from unity to within experimental error, whereas the results 

obtained with the pure GGA-PBE method do, and the intercepts of the correlation 

lines for PBE0/TZ2P are much closer to zero than those observed with the GGA-PBE 
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method. The latter indicates that it is possible to calculate absolute magnetic 

shieldings using the PBE0 functional. 
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EFFECT OF COORDINATION CHEMISTRY AND OXIDATION STATE ON 

MAGNETIC SHIELDING TENSOR 

6.1 Introduction 

In this chapter, calculations of principal components of the magnetic-shielding 

tensor for a variety of 207Pb-, 119Sn-, and 125Te-containing solids are presented. The 

investigated systems exhibit a variety of coordination environments and oxidation 

states. Some remarks on the inclusion of spin-orbit effects in ZORA Hamiltonian are 

made, based on the observed results of the calculations. For 119Sn and 125Te nuclei, the 

arguments in the literature regarding the importance of the relativistic effects are re-

evaluated. Additionally, the effect of exact Hartree-Fock (HF) exchange via hybrid 

functionals on the calculated magnetic-shielding tensors are investigated for 207Pb-, 

119Sn-, and 125Te-containing solids. The motivation of this study is to provide the link 

between level of theory, electronic and coordination structure of NMR nuclei, and the 

accuracy of calculated NMR parameters.  

6.2 The Relation between Coordination Chemistry and Magnetic Shielding of 
207Pb nuclei 

Lead has a versatile coordination chemistry due to its ability to adopt different 

geometries.[1-3]  The solid-state structures of lead compounds reflect these different 

geometries, often because of the presence of a lone pair.[4] Electronic structures 

generally fall into one of three categories: (a) lead(II) centers with a stereochemically 
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active lone pair,  (b) lead(II) centers with a stereochemically inactive lone pair, and (c) 

lead(IV) centers without the lone pair. (Figure 6.1a.)  

 
 

Figure 6.1     (a) Classification scheme of lead coordination in the solid state; (b) 

schematic structures of hemidirected and holodirected Pb centers.  The 

orange ball represents the lead atom and red balls represent, bonding 

ligands.  In the holodirected geometry, ligands are approximately 

uniformly distributed about the lead center, whereas in the hemidirected 

geometry, ligands tend to be non-uniformly distributed. 
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The effects of the lone pair are readily observable in the X-ray diffraction 

structures of lead-containing compounds (Figure 6.1b). For groups (b) and (c), the 

coordination geometry of lead is holodirected [5-10] and for group (a), it is 

hemidirected.[5, 11-14] Other structural parameters such as coordination number and 

Pb-ligand bond length are also correlated with the lone-pair activity, suggesting that 

lone-pair activity is a strong determinant of electronic state in lead(II) compounds.[4, 

15] 

The various classes of lead coordination compounds have solid-state nuclear 

magnetic (SSNMR) fingerprints.[16] In general, 207Pb SSNMR spectra of 

hemidirected lead(II) coordination systems show chemical-shift tensors with large 

spans () due to the asymmetric electron density distribution around the lead site.[17-

19] For such materials, the skew (κ) of the 207Pb shielding tensor tends to be positive 

and close to 1.00, indicating the existence of a significantly shielded unique principal 

component of the chemical-shift tensor. By comparison, 207Pb SSNMR measurements 

of holodirected lead(II) systems exhibit a tensor that has a smaller span than for 

hemidirected sites.[17-19] The 207Pb SSNMR literature for lead(IV) systems is sparser 

than for lead(II), but reports suggest that these sites generally have small chemical-

shift spans, similar to holodirected lead(II) sites.[20-23] In addition, the range of 

isotropic 207Pb chemical shifts of lead(IV) sites is, in general,  smaller than that of 

either hemidirected or holodirected lead(II) sites. Table 6.1 gives experimental 

structural [5-13, 24, 25] and 207Pb NMR chemical-shift parameters [17-21, 23, 26] for 

fourteen lead-containing solids, which are investigated in this study. 
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Table 6.1 Experimental Crystallographic Data and 207Pb Chemical Shifts of Lead-

Containing Materials  

 

The computations, in this part, were carried out using either the BP86 or 

B3LYP density functional. An all-electron TZ2P basis set was used for the first-

Compounds 
Space 

Group 

Lead 

C.N.a 

δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso
 

(ppm) 

Ω 

(ppm) 

Hemidirected  Lead(II) Systems 

1. α-PbO P4/nmm 4 3030 3030 -270 1930 3300 

2. β-PbO Pbcm 4 2820 2760 -1000 1527 3820 

3. Pb3O4, lead(II) P42/mbc 4 1968 1496 -1079 795 3047 

4. Pb2SnO4, site I Pbam 4 1900 1825 -1330 798 3230 

5. Pb2SnO4, site II  4 1810 1560 -1385 662 3195 

6. PbSiO3, site I P2/n 3-6 1215 726 -1663 93 2878 

7. PbSiO3, site II  4-6 1089 584 -2170 -166 3259 

8. PbSiO3, site III   838 287 -2223 -366 3061 

Holodirected  Lead(II) and Lead(IV) Systems 

9. Pb3(PO4)2, site I C2/c 8 -2759 -2931 -2969 -2886 210 

10. PbCO3 Pbnm 9 -2311 -2481 -3075 -2622 764 

11. Pb3O4, lead(IV) P42/mbc 6 -1008 -1141 -1166 -1105 158 

12. Ca2PbO4 Pbam 6 -910 -1041 -1314 -1088 404 

13. Pb(OAcb)4 P21/n 8 -1692 -1938 -1988 -1873 296 

14. Pb(BBc)4 I41/a 8 -1722 -1972 -1972 -1889 250 

The chemical shift tensor is given, in the Maryland convention,  by frequency-ordered 

principal components 

(δ11 ≥ δ22 ≥ δ33) and by δiso = (δ11 + δ22 + δ33)/3, Ω = δ33 - δ11 and κ = 3(δ22 - δiso)/ Ω. 

a)C.N. = coordination number 

b) OAc = acetate 

c) BB = o-benzylbenzoate 
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coordination sphere of the cluster. The remainder of the cluster was treated with the 

all-electron DZ basis set. Relativistic effects were incorporated at the ZORA/scalar or 

ZORA/spin-orbit level. 

The input geometries of the clusters were created from X-ray or neutron 

diffraction structures of the solids. For network solids, the bond valence model for 

modification of terminal atoms (VMTA/BV) was employed for the termination of 

clusters, as described in Chapter 3. For lead(IV) tetraacetate (Pb(OAc)4)  and lead(IV) 

tetra(o-benzylbenzoate) (Pb(BB)4), no modification of the terminal atoms was 

necessary due to the molecular nature of these solids.[7, 8] For their cluster models, 

hydrogen positions were optimized at the ZORA/scalar/BP86/TZ2P level of theory. 

All clusters included atoms up to the third coordination shell, with the NMR-active 

nucleus at the center of the cluster. Examples of the clusters for two selected systems 

are given in Figure 6.2. 

 

Figure  6.2 Cluster models for (a) Ca2PbO4 and (b) Pb(BB)4. The highlighted regions 

(shown in ball-and-stick models) represent the first coordination shell for the lead 

center.  These atoms are treated with the TZ2P basis set. The higher coordination 

shells (shown with stick models) are treated with the DZ basis set. 
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6.2.1 Relativistic Effects on Principal Components: ZORA/Scalar vs. 

ZORA/Spin-Orbit 

A plot of experimental tensor principal components versus principal 

components calculated with the ZORA/scalar Hamiltonian is given in Figure 6.3. A 

similar plot of experimental principal components versus principal components 

calculated using the ZORA/spin-orbit Hamiltonian is given in Figure 6.4.  Table 6.2 

gives the best-fit linear correlations between experimental and calculated data.  In this 

table, the correlations of the holodirected and the hemidirected systems are considered 

separately, as well as the overall correlation of the complete set for each calculational 

protocol. 

At the ZORA/scalar relativistic level, the correlation between calculated and 

experimental data deviates significantly from the ideal case (slope = -1), as seen in 

Figure 6.3. R2 for the correlation (Table 6.2) for the complete data set is only 0.479, a 

poor linear correlation between theory and experiment. However, the correlations of 

principal components for only the hemi-directed sites (blue symbols) and the 

correlation of principal components for only the holodirected sites (red symbols) are 

substantially stronger, evidence that the groups correspond to two distinct 

subpopulations at this level of theory. The distinction between the hemidirected and 

the holodirected groups is the principal reason for the poor correlation when all 

components are considered as a single group.  The correlation line for the holodirected 

systems at the ZORA/scalar level of theory has a slope of -1.22, much closer to the 

expected ideal dependence than that of the hemidirected systems, which has a slope of 

-0.33. (Table 6.2) 
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Figure  6.3 The correlation between experimental and calculated principal components 

for calculations at the BP86/ZORA/scalar relativistic level of theory. Data for 

hemidirected geometries are indicated by blue symbols, whereas data for holodirected 

lead centers are indicated by red symbols. The dotted line in each graph shows the 

ideal behavior (a relation with a slope of -1).  The best-fit linear correlations are given 

in Table 6.2. 
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Figure 6.4 The correlation between experimental and calculated principal components 

for at the BP86/ZORA/spin-orbit relativistic level of theory. The dotted line in each 

graph shows the ideal behavior. The best-fit linear correlations are given in Table 6.2. 

A similar correlation of experimental components and principal components 

calculated with the ZORA/spin-orbit Hamiltonian shows much closer agreement with 

the ideal behavior for both holodirected and hemidirected subgroups, with R2 being 

greater than 0.97 for both. (Table 6.2.) The complete group has a similarly high 

correlation coefficient.  Figure 6.4 shows that the two subsets (holodirected and 

hemidirected) have similar trends.  In each case, the slope of the correlation line is not 

exactly -1, but it is consistently closer to -1 than one obtains in the ZORA/scalar-

relativistic case.   The conclusion of this comparison is that it is essential, in the case 
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of 207Pb NMR spectroscopy, to utilize the full spin-orbit relativistic Hamiltonian in 

making predictions of magnetic shielding. A similar relation was observed for the 

207Pb-containing solids investigated in the previous chapter as well. 

Table 6.2 Linear Regression Correlations of Experimental 207Pb Chemical-Shift 

Tensor Principal Components with Calculated 207Pb Magnetic-Shielding Tensor 

Principal Components, Using the BP86 Functional and the ZORA/Scalar Relativistic 

Hamiltonian or the ZORA/Spin-Orbit Relativistic Hamiltonian.       

  

 

 

 

 

 

 

 

 

 

 

 

The intercepts of the best-fit equations in Table 6.2 (σ at δ = 0) predict the 

absolute shielding of the reference material, tetramethyllead (TML). One may also 

calculate this quantity directly.  The calculated absolute shielding of TML (determined 

from calculation on an isolated TML molecule with the ZORA/scalar relativistic 

Hamiltonian) is 5171 ppm, in reasonable agreement (within 400 ppm) with the 

intercept (4803 ppm) found for the holodirected materials.  On the other hand, the 

ZORA/scalar value of the intercept (7063 ppm) for the hemidirected materials is 

Compounds Best-fit correlation line R2 

BP86/ZORA/scalar 

 

Hemidirected only σcalc = -0.33δexp + 7063 0.804 

Holodirected only σcalc = -1.22δexp + 4803 0.954 

All results σcalc = -0.28δexp + 6846 0.479 

BP86/ZORA/spin-orbit 

Hemidirected only σcalc = -0.89δexp + 8621 0.976 

Holodirected only σcalc = -1.17δexp + 7814 0.983 

All results σcalc = -0.86δexp + 8516 0.974 
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approximately 2000 ppm larger. The structure of TML shows that it is a lead(IV) site 

with holodirected geometry. One expects that TML should evidence NMR shielding 

that is correlated with other holodirected materials, and that is what is observed.  

The shielding of an isolated TML molecule calculated with the ZORA/spin-

orbit Hamiltonian is 8136 ppm.  This value can be compared to the extrapolated 

intercept of the set of holodirected materials (7814 ppm), and is within 350 ppm of 

that value.  The intercept of the complete set (8516 ppm) is ~400 ppm larger than the 

calculated shielding of isolated TML, at this level of theory.  In general, inclusion of 

spin-orbit terms provides closer agreement between the predicted absolute shielding of 

TML and the intercepts obtained from correlation of the different subgroups.    

To make the point more clearly, Figure 6.5 shows the differences between 

207Pb shielding components calculated with the ZORA/spin-orbit Hamiltonian and the 

shielding components calculated with the ZORA/scalar Hamiltonian.  

For all cases except σ11 of β-PbO, the components obtained with the 

ZORA/spin-orbit Hamiltonian are more shielded than components obtained with the 

ZORA/scalar Hamiltonian. The differences in principal components show a distinct 

dependence on the coordination and oxidation state of lead. (Figure 6.5.) Compounds 

1-8 contain hemidirected sites, whereas compounds 9-14 contain either holodirected 

sites or lead(IV) sites.  σ33 (the difference between ZORA/spin-orbit and 

ZORA/scalar in the most shielded calculated component) is significantly larger than 

σ11 or σ22 for hemidirected sites. In fact, σ33 is larger than 2000 ppm for all 

systems we have examined.  For compounds 9-14, the change in the principal 

components obtained from the two relativistic methods is more uniform and ranges 

between 2200 and 3139 ppm.  In all cases, the use of the full spin-orbit Hamiltonian 
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makes every principal component more shielded.  For hemidirected sites, the most 

shielded direction (33) is affected most; in the case of holodirected sites or lead(IV) 

sites, all three components are affected roughly equally by the inclusion of spin-orbit 

terms. 

 

Figure  6.5    The difference (Δσ) between 207Pb components calculated using the full 

ZORA/spin-orbit Hamiltonian and components calculated using the ZORA/scalar 

Hamiltonian. The numbering scheme for labeling lead-containing compounds is given 

in Table 6.1. 

In Figure 6.6 are shown the orientations of the 207Pb magnetic-shielding 

tensors’ axes of α-PbO and lead(IV) acetate in the local frames.  For α-PbO, the 33 

principal axis of the tensor is parallel to the axis of the molecular orbital that primarily 

results from linear combination of the Pb 6s and 6p atomic orbitals. (Figure 6.6a.) For 

the same system, the 11 and 22 axes are in the plane formed by the lead atoms in the 

crystal. As seen in Figure 6.5, the spin-orbit effects in α-PbO (and in other hemi-
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directed systems) are substantially larger for σ33 than for σ11 and σ22. On the other 

hand, for lead(IV) acetate, the 33 axis of the tensor is nearly aligned with the longest 

Pb-O bond (2.31 Å), as shown in Figure 6.6b. In this system, the 6s orbital makes 

contributions mainly to the bonding orbitals.  For lead(IV) acetate, all three 

components of the tensor are more uniformly affected by the spin-orbit interaction, as 

seen in Figure 6.5.   

 

Figure 6.6 The orientation of shielding tensors and the MOs with significant 6s (Pb-

centered) contributions are shown for (a) α-PbO and (b) Pb(OAc)4. The σ22 component 

is perpendicular to the page for both systems. 

In Chapter 5, calculations of magnetic shielding for hemidirected systems 

show that the use of a nonrelativistic Hamiltonian or a scalar relativistic Hamiltonian 

results in a significant underestimation of the span (), by up to 2500 ppm. The 
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present results (Figure 6.5) suggest that this underestimation results from the absence 

of the contributions of the spin-orbit terms to 33.  

To the author’s knowledge, calculations of lead (IV) magnetic-shielding 

tensors have not been reported.  Mitchell et al.[27] have investigated 119Sn isotropic 

chemical shifts using the GIPAW approach with scalar relativistic pseudopotentials 

for a mixture of tin(II)- and tin(IV)-containing systems. Their results indicate that the 

calculated tin(II) isotropic shieldings deviate from experiment more strongly than do 

calculated isotropic shieldings for tin(IV) sites.[27] These findings are consistent with 

the current results for 207Pb shielding, suggesting that inclusion of spin-orbit effects 

are probably crucial for the calculation of 119Sn magnetic-shielding tensors, as well. 

The impact of spin-orbit coupling on the calculated 119Sn magnetic shielding tensors is 

discussed in section 6.3.  

6.2.2 The Effect of Density Functional on Calculated 207Pb Principal 

Components: BP86 vs. B3LYP 

An algorithm for the calculation of exact Hartree-Fock (HF) exchange has 

recently allowed hybrid DFT calculations of NMR parameters with ZORA.[28, 29] 

Inclusion of HF exchange generally improves the agreement between experimental 

chemical shifts and calculated magnetic shieldings, as compared to calculations with 

GGA functionals such as BP86.[30-33] In this section, I discuss the performance of a 

hybrid functional (B3LYP with 20% HF exchange) for the calculations of 207Pb 

magnetic-shielding tensors. In Figure 6.7, a plot of experimental and calculated tensor 

principal components is shown for calculations at B3LYP/ZORA/spin-orbit levels of 

theory. Table 6.3 shows equations for the best-fit linear correlations of the data in 
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Figure 6.7, and the previously obtained best-fit linear correlations at 

BP86/ZORA/spin-orbit level for comparison. 

 
 

Figure  6.7 The correlation between principal components of the experimental 207Pb 

chemical-shift tensor and the principal components of the calculated 207Pb magnetic-

shielding tensor determined at the B3LYP(20% XC)/ZORA/spin-orbit level of theory. 

Holodirected lead centers are represented by blue symbols; hemidirected lead centers 

are represented by red symbols. The dotted lines show the expected ideal behavior. 

For the complete data set (hemidirected plus holodirected lead sites), the 

correlation obtained with the B3LYP functional is better than the correlation when the 

BP86 functional is used. The slope of the correlation line (-0.95) for data determined 
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with the B3LYP functional is within 5% of the ideal case, and the data are not as 

scattered about the best-fit correlation line. Even when the holodirected and 

hemidirected subgroups are analyzed separately, the calculation with a B3LYP 

functional is better than a calculation with the BP86 functional, as seen by comparing 

the slopes of the correlation lines. Use of the B3LYP functional also gives consistent 

values of the reference shielding, to within about 250 ppm.  The predicted reference 

shieldings of the subgroups calculated with the BP86 functional differ by ~800 ppm.  

These results demonstrate the importance of inclusion of HF exchange in magnetic-

shielding calculations for 207Pb sites with different coordination chemistries and 

oxidation states. 

Table 6.3 Linear Regression Correlations of Experimental 207Pb Chemical-Shift 

Tensor Principal Components with Calculated 207Pb Magnetic-Shielding Tensor 

Principal Components, Using the BP86 and B3LYP Functionals and the ZORA/Spin- 

Orbit Hamiltonian.     

Compounds 
Equation of the best-fit  

correlation line 
R2 

BP86/ZORA/spin-orbit 

Hemidirected  σcalc = -0.89δexp + 8621 0.976 

Holodirected  σcalc = -1.17δexp + 7814 0.983 

All σcalc = -0.86δexp + 8516 0.974 

B3LYP/ZORA/spin-orbit 

Hemidirected  σcalc = -0.97δexp + 8898 0.976 

Holodirected  σcalc = -1.04δexp + 8633 0.990 

All σcalc = -0.95δexp + 8853 0.987 
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In Figure 6.8, the difference between principal components calculated with a 

B3LYP functional and a BP86 functional.   

 

Figure 6.8 The difference between 207Pb components (Δσii) calculated using the 

B3LYP, and BP86 density functionals. Both sets of calculations are carried out using 

the ZORA/spin-orbit Hamiltonian. 

For the hemidirected lead sites (1-8), the difference in σ33 or Δσ33 is larger for 

each system than the change in σ11 or σ22. In this subset, Δσ33 ranges between 295-506 

ppm. In comparison, Δσ11 and Δσ22 are 245-84 ppm. This non-uniform effect of HF 

exchange on the calculated principal components alters the slope of the correlation 

line from -0.89 (BP86) to -0.97, indicating a better agreement between theory and 

experiment when hybrid functionals are employed. For systems 9-14 (holodirected 

sites), the differences between shielding components are generally larger than those 

for systems 1-8 (hemidirected sites). In this subset, Δσii range between 387-871 ppm. 
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The largest change in the principal components is observed for the lead(IV) site in 

Pb3O4. For all systems, the calculated principal components are more shielded when 

the B3LYP functional is employed. 

To understand the effect of HF exchange on principal components,  magnetic-

shielding tensors are calculated using the B3LYP functional, with variable amounts of 

HF exchange, for two systems: α-PbO (hemidirected) and lead(IV) acetate 

(holodirected). The results are shown in Table 6.4. 

Table 6.4 Effect of HF Exchange on 207Pb Magnetic-Shielding Tensors in α-PbO and 

Lead(IV) Acetate, Determined at the B3LYP Level of Theory. 

HF Exchange  

(%) 

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

α-PbO 

10 5831 5834 8752 

15 5846 5849 8834 

20 5862 5865 8919 

25 5877 5879 9007 

30 5891 5894 9096 

35 5905 5907 9187 

Lead(IV) Acetate    

10 10064 10347 10442 

15 10204 10475 10576 

20 10342 10602 10708 

25 10479 10728 10838 

30 10615 10853 10966 

35 10748 10976 11091 
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In both cases, inclusion of more HF exchange in the functional leads to more 

shielded principal components. For α-PbO, there is a somewhat stronger effect of HF 

exchange on σ33 than on σ11 and σ22. The change in σ33 over the range of 10%-35% HF 

exchange is 435 ppm. Over the same range, σ11 and σ22 change by less than 75 ppm. In 

the case of lead(IV) acetate, the change in principal components is more uniform than 

for α-PbO, with changes in principal components of 684, 629 and 648 ppm for σ11, σ22 

and σ33, respectively. 

Figure 6.9 shows the correlation of the calculated span (Ω = σ33 - σ11) of α-PbO 

as a function of the amount of HF exchange in the functional. A similar plot is shown 

for lead(IV) acetate in Figure 6.10 For both systems, there is a strong linear relation 

between calculated span and the fraction of HF exchange. In the case of α-PbO, the 

span increases as the fraction of HF exchange increases, from 2921 ppm at 10% HF 

exchange to 3282 ppm at 35% HF exchange. On the other hand, for lead(IV) acetate, 

the span decreases with increasing HF exchange, from 378 ppm at 10% HF exchange 

to 343 ppm at 35% HF exchange.  For the holodirected lead(IV) acetate, the span is 

approximately 10% of the span for the hemidirected α-PbO. For both cases, the 

calculated span is closer to the experimental value (Table 6.1) when including a higher 

percentage of HF exchange. This observation suggests that inclusion of more HF 

exchange in the B3LYP functional from the default 20% improves the calculated 207Pb 

NMR span. 
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Figure 6.9 The correlation between calculated span and fraction of HF exchange in the 

B3LYP functional for α-PbO. 
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Figure  6.10 The correlation between calculated span and fraction of HF exchange in 

the B3LYP functional for lead(IV) acetate. 

6.3 The Relation between Coordination Chemistry, Oxidation State and 

Magnetic Shielding of 119Sn nuclei 

Experimental 119Sn NMR parameters depend on the local coordination 

geometry and share important similarities with those of 207Pb as discussed in the 

previous section.[2, 34] For instance, tin(II) species generally exhibit hemidirected 

coordination chemistry [35-39] with characteristically wide chemical-shift spans of 

600–1200 ppm.[40-42] In contrast, tin(IV) species generally exhibit holodirected 

coordination chemistry [13, 43-47] with spans under 400 ppm. The differences in 

magnetic-shielding parameters between the two structural motifs reflect the fact that 

crystal structures of tin(II) compounds usually have large void spaces to accommodate 
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the lone pair of electrons, whereas the coordination geometry around tin(IV) sites is 

more nearly spherically symmetric. In the previous section, it is shown that 207Pb 

NMR parameters illustrate the differences among NMR parameters of lead nuclei at 

sites of different stereochemistry and how these differences are enhanced by 

relativistic effects, particularly by spin-orbit coupling. A similar result might be 

expected for 119Sn. 

Twelve tin-containing solids with known X-ray or neutron diffraction 

structures and with known principal components of the chemical-shift tensor 

determined by solid-state NMR spectroscopy have been investigated. In Table 6.5, the 

experimental SSNMR parameters [40, 42, 48-52] and some crystallographic 

information [13, 35-39, 43-47] are given for the investigated systems. The 

computations, in this section, were carried out using either PBE or PBE0 density 

functional. The all-electron (AE) TZ2P basis set was employed for the NMR-active 

nucleus (119Sn) and its first coordination shell, whereas the remainder of the cluster 

was treated with the smaller AE TZP basis set. Two example clusters, including a 

schematic of the partitioning of the basis sets, are illustrated in Figure 6.11. All 

clusters are treated with VMTA/BV model. Relativistic effects were incorporated at 

the ZORA/scalar or ZORA/spin-orbit level. Linear dependence threshold of 10-4 is 

applied for the cluster calculations employing PBE functional. For calculations 

employing the PBE0 functional, it was realized that a more stringent threshold 

parameter is necessary for the numerical problems associated with the linear 

dependence of the basis functions; therefore the threshold parameter was increased to 

5 × 10-3 in these calculations.  
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Table 6.5 Experimental Crystallographic Data and 119Sn Chemical Shifts of Tin-

Containing Materials. 

 

In this section, calculations employing model clusters are accompanied with 

periodic boundary calculations (PBC) which employs the GIPAW method.[53, 54]  

These calculations were performed at the PBE level with core orbitals replaced by 

ultrasoft pseudopotentials generated on the fly and with a plane-wave cutoff energy of 

600 eV.  Relativistic effects were included at the ZORA/scalar level through the 

pseudopotential approximation of Yates and co-workers.[55] 

 

Compound

s 

Space 

Group 

Tin 

C.N. 

δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso
 

(ppm) 

Ω 

(ppm) 

Tin(II) systems 

SnO P4/nmm 4 121 121 -867 -208 988 

SnHPO4 P121/c1 5 -606 -712 -1553 -957 947 

SnHPO3 I1c1 4 -290 -420 -1435 -715 1145 

SnC2O4 C12/c1 4-6 -523 -639 -1474 -879 951 

SnSO4 Pnma 4 -1047 -1070 -1679 -1265 632 

BaSnF4 P4/nmm 5 -596 -596 -1486 -893 890 

Tin(IV) systems 

SnO2 P42/mnm 6 -550 -573 -686 -603 136 

Ca2SnO4 Pbam 6 -459 -512 -664 -545 205 

SnS2 P-3m1 6 -730 -730 -835 -765 105 

Pb2SnO4 Pbam 6 -558 -566 -692 -605 134 

Na6Sn2S7 C12/c1 4 232 60 -107 62 339 

Sr2SnO4 Pccn 6 -510 -548 -681 -580 171 
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Figure 6.11 Cluster models for a) SnO and b) SnO2.  The central ball-and-stick region, 

representing the NMR-active 119Sn center and the first-coordination shell, are treated 

with the TZ2P basis set.  The outer coordination shells are treated with the smaller 

TZP basis set.  

6.3.1 Relativistic Effects on Principal Components of 119Sn: ZORA/Scalar vs. 

ZORA/Spin-Orbit 

All calculations discussed in this subsection were performed with the PBE 

density functional.  Figure 6.12 shows the correlations between the principal 

components of calculated magnetic-shielding tensors determined at PBE/GIPAW level 

and the principal components of experimental chemical-shift tensors. In comparison, 

Figure 6.13 and 6.14 shows the similar correlation plots for cluster calculations with 

PBE/ZORA/scalar and PBE/ZORA/spin-orbit level of theory respectively. Table 6.6 

presents the parameters of the linear best-fit lines for tin(II) and tin(IV)-containing 

solids. 

For tin(II)-containing solids analyzed as a separate subset (Table 6.6), the 

correlation between calculated magnetic shielding and experimental chemical-shift 

values deviates significantly from ideal agreement at the ZORA/scalar level.  The 

deviation from the ideal case (slope = -1.00) is 29% and 23% for the linear best-fit 

lines obtained using periodic PBE/GIPAW and PBE/ZORA/scalar methods, 
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respectively.  The extrapolated shielding of the reference compound (tetramethyltin), 

σref, which is given by the intercept of the best-fit line, is 3019 ppm by the 

PBE/GIPAW method.  The PBE/ZORA/scalar value of σref is 2745 ppm.   

 

Figure 6.12 Correlations between calculated principal components of 119Sn magnetic-

shielding tensors and experimental 119Sn chemical-shift tensors for twelve tin-

containing solids, as determined with the PBE/GIPAW method.  Sn(II) sites are 

shown in red; Sn(IV) sites are shown in blue. 
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Figure  6.13 Correlations between calculated principal components of 119Sn magnetic-

shielding tensors and experimental 119Sn chemical-shift tensors for twelve tin-

containing solids, as determined with the PBE/ZORA/scalar and cluster method. 

Sn(II) sites are shown in red; Sn(IV) sites are shown in blue. 
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Figure 6.14   Correlations between calculated principal components of 119Sn magnetic-

shielding tensors and experimental 119Sn chemical-shift tensors for twelve tin-

containing solids, as determined with the PBE/ZORA/spin-orbit and cluster method. 

Sn(II) sites are shown in red; Sn(IV) sites are shown in blue. 

For the subset of tin(IV)-containing solids, the PBE/GIPAW and 

PBE/ZORA/scalar methods are much closer to the ideal value of -1.00.  However, the 

predicted reference shieldings predicted by the two methods differ by 531 ppm.  These 

results indicate that the predicted magnetic shieldings determined either with the 

cluster model treated with the ZORA/scalar Hamiltonian or with the GIPAW 

formalism are dependent on the oxidation state and the coordination geometry of the 

tin atom in the solid system. 
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When the cluster models are treated with ZORA/spin-orbit Hamiltonian, the 

correlation between calculated principal components of magnetic-shielding tensors 

and experimental principal components of chemical-shift tensors shows significant 

improvement. The improvement is particularly striking for tin(II)-containing solids, as 

shown in Table 6.6.  The parameters of the linear correlation lines (slope and σref) are 

more consistent between the subsets of tin(II) and tin(IV)-containing solids, 

emphasizing the importance of spin-orbit effects on the magnetic-shielding tensor of 

119Sn nuclei. 

Table 6.6 Linear-Regression Parameters for the Linear Relations Between Calculated 

Magnetic Shieldings and Experimental Chemical Shifts of 119Sn-Containing Solids 

Method slope 
σref 

(ppm) 
R2 

Tin(II)-containing solids 

PBE/GIPAW -0.71 ± 0.04 3019 ± 38 0.95 

PBE/ZORA/scalar -0.77 ± 0.06 2745 ± 60 0.91 

PBE/ZORA/spin-orbit -0.99 ± 0.03 2849 ± 34 0.98 

Tin(IV)-containing solids 

PBE/GIPAW -1.08 ± 0.10 2869 ± 55 0.89 

PBE/ZORA/scalar -1.00 ± 0.07 2338 ± 41 0.92 

PBE/ZORA/spin-orbit -0.99 ± 0.06 2875 ± 37 0.94 

All Systems 

PBE/GIPAW -0.77 ± 0.04 3001 ± 36 0.90 

PBE/ZORA/scalar -0.92 ± 0.07 2499 ± 52 0.85 

PBE/ZORA/spin-orbit -0.98 ± 0.03 2867 ± 22 0.97 
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In Table 6.7, the predicted chemical-shift parameters resulting from each 

method, along with reported experimental values are presented for the twelve tin-

containing solids. Calculated magnetic-shielding parameters have been converted to 

the chemical-shift scale using the predicted σref from the linear best-fit correlations for 

all systems given in Table 6.6. The residuals between the experimental and calculated 

principal components of the chemical-shift tensors are given in Table 6.7, which is a 

measure of the overall quality of performance of each computational methodology. 

Table 6.7 Calculated and Experimental NMR Parameters of 119Sn-Containing Solids 

Determined with Various DFT Methods. 

Compounds 
δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso 

(ppm) 

Ω 

(ppm) 

Residuala 

(ppm) 

Tin(II)-containing solids 

SnO 121 121 -867 -208 988 - 

PBE/GIPAW 145 145 -472 -61 617 229 

PBEZORA/scalar 45 45 -677 -196 722 126 

PBE/ZORA/spin-orbit 256 253 -793 -94 1049 117 

SnHPO4 -606 -712 -1553 -957 947 - 

PBE/GIPAW -564 -655 -1119 -779 555 254 

PBEZORA/scalar -874 -954 -1323 -1050 449 247 

PBE/ZORA/spin-orbit -669 -808 -1429 -969 760 97 

SnHPO3 -290 -420 -1435 -715 1145 - 

PBE/GIPAW -247 -409 -949 -535 702 282 

PBEZORA/scalar -602 -638 -1262 -834 660 241 

PBE/ZORA/spin-orbit -405 -430 -1402 -745 996 69 

SnC2O4 -523 -639 -1474 -879 951 - 
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PBE/GIPAW -421 -479 -965 -622 544 314 

PBEZORA/scalar -778 -816 -1266 -953 488 216 

PBE/ZORA/spin-orbit -587 -651 -1392 -877 805 61 

SnSO4 -1047 -1070 -1679 -1265 632 - 

PBE/GIPAW -834 -912 -1239 -995 405 297 

PBEZORA/scalar -1130 -1183 -1510 -1274 380 127 

PBE/ZORA/spin-orbit -1028 -1075 -1630 -1245 602 30 

BaSnF4 -596 -596 -1486 -893 890 - 

PBE/GIPAW -394 -394 -1073 -620 679 290 

PBEZORA/scalar -708 -708 -1340 -919 632 124 

PBE/ZORA/spin-orbit -520 -520 -1478 -839 958 62 

Tin(IV)-containing solids 

SnO2 -550 -573 -686 -603 136 - 

PBE/GIPAW -564 -617 -633 -605 69 41 

PBEZORA/scalar -471 -475 -631 -526 160 79 

PBE/ZORA/spin-orbit -605 -630 -785 -673 180 73 

Ca2SnO4 -459 -512 -664 -545 205 - 

PBE/GIPAW -415 -491 -597 -501 182 48 

PBEZORA/scalar -334 -389 -495 -406 161 141 

PBE/ZORA/spin-orbit -474 -529 -647 -550 173 16 

SnS2 -730 -730 -835 -765 105 - 

PBE/GIPAW -474 -475 -684 -544 211 226 

PBEZORA/scalar -456 -456 -527 -479 71 286 

PBE/ZORA/spin-orbit -741 -742 -819 -767 77 13 

Pb2SnO4 -558 -566 -692 -605 134 - 

PBE/GIPAW -410 -419 -512 -447 101 159 

PBEZORA/scalar -328 -421 -436 -395 108 216 
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For tin(IV)-containing solids, the performance of PBE/GIPAW shows some 

improvement over its performance in calculations of the chemical shifts in tin(II) 

systems.  For example, the accuracy of calculated principal components for SnO2, 

Ca2SnO4, Pb2SnO4 and Sr2SnO4 by the PBE/GIPAW method are comparable to results 

obtained with PBE/ZORA/spin-orbit methods. The agreement between experiment 

and PBE/GIPAW predictions are not as good for SnS2 and Na6Sn2S7.  In these latter 

systems, the first coordination shell around tin consists of sulfur atoms rather than 

oxygen atoms.  The magnitude of spin-orbit effects on 119Sn magnetic shielding is 

probably increased by the presence of the heavier sulfur atom in the coordination 

environment.  In these two cases, the residuals determined with the PBE/ZORA/spin-

orbit calculations are 13 and 29 ppm, respectively, whereas residuals by the 

PBE/ZORA/scalar are 286 and 199 ppm. 

To understand the effect of spin-orbit coupling on the 119Sn magnetic-shielding 

tensor, we present the differences (Δσii) between principal components of magnetic-

PBE/ZORA/spin-orbit -436 -468 -509 -471 73 139 

Na6Sn2S7 232 60 -107 62 339 - 

PBE/GIPAW 409 255 78 247 331 186 

PBEZORA/scalar 468 257 46 257 423 199 

PBE/ZORA/spin-orbit 249 41 -150 47 399 29 

Sr2SnO4 -510 -548 -681 -580 171 - 

PBE/GIPAW -551 -551 -805 -636 253 75 

PBEZORA/scalar -407 -412 -645 -488 238 100 

PBE/ZORA/spin-orbit -536 -539 -801 -625 265 71 



 

 173 

shielding tensors calculated at the PBE/ZORA/spin-orbit level and those calculated at 

the PBE/ZORA/scalar level (Figure 6.15).   

 

Figure 6.15 The differences (Δσii) in principal components of 119Sn magnetic-shielding 

tensors calculated with the PBE/ZORA/spin-orbit method and the PBE/ZORA/scalar 

method.  All calculations modeled the solid-state environment with the cluster-based 

VMTA/BV approach. 

It is evident that spin-orbit effects on magnetic-shielding tensors exhibit a 

strong dependence on the oxidation state of tin.  For tin(II)-containing systems, the 

contribution of spin-orbit effects on magnetic shielding is largest for the σ33 

component where Δσ33 are around 500 ppm.  The spin-orbit effects are lesser for σ11 

and σ22, with Δσii ranging between 154 - 260 ppm.  In comparison, the contribution of 

spin-orbit effects on each principal component of the magnetic-shielding tensor is 

more uniform for tin(IV)-containing systems, with Δσii varying between 435 - 654 

ppm.  The largest change in any magnetic-shielding tensor between PBE/ZORA/spin-

orbit and PBE/ZORA/scalar results is observed for SnS2 where Δσii is 654 ppm.  
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Indeed, among the tin(IV)-containing materials, the residuals of PBE/GIPAW and 

cluster-based PBE/ZORA/scalar results are highest for this compound, due to only 

partial cancellation of spin-orbit effects when magnetic shieldings are converted to 

chemical shifts. 

The results in Figure 6.15 for spin-orbit effects on the 119Sn magnetic-shielding 

tensor show a striking resemblance to the recently-investigated spin-orbit effects on 

coordination compounds of lead.  In the case of 207Pb-containing solids, spin-orbit 

effects show a similar dependence on the oxidation state (+2 or +4) and coordination 

geometry (hemidirected or holodirected) around the 207Pb nuclei.  The magnitudes of 

the spin-orbit effects for 119Sn and 207Pb are quite different, as expected.  Overall, the 

magnitude of spin-orbit effects (Δσii) for the investigated 119Sn-containing systems 

varies between 154 - 654 ppm.  In comparison, the spin-orbit effects on 207Pb 

magnetic-shielding tensor are generally 2000 - 3000 ppm.  This difference is likely 

due to the larger nuclear charge on 207Pb, resulting in a more efficient spin-orbit 

coupling. 

The accuracy of calculated NMR parameters for 119Sn nuclei has been 

systematically investigated for a series of isolated tin(IV) molecules by Bagno et al. 

[56] using the ZORA/scalar and ZORA/spin-orbit methods.  The results indicate that 

the both ZORA/scalar and ZORA/spin-orbit methods work quite well for predicting 

chemical shifts when no other heavy atom is bound to tin.[56]  In such systems, the 

predicted spin-orbit effects on the isotropic magnetic shielding vary by around 500 

ppm and mostly cancel out when magnetic shieldings are converted to the chemical-

shift scale.[56] These findings partially agree with the PBE/GIPAW and 

PBEZORA/scalar results for tin(IV)-containing solids.  However, for tin(II)-



 

 175 

containing solids, the assumption that spin-orbit effects will cancel out when 

computed magnetic-shielding parameters are converted to the chemical-shift scale is 

incorrect. 

The magnetic shielding (or absolute shielding) of tetramethyltin, or σref, can 

be estimated from the intersection of the best-fit correlation lines in Table 6.6. From 

the PBE/ZORA/spin-orbit method, σref is predicted to be 2867 ppm from the 

correlation obtained for all tin-containing systems. In comparison, a single calculation 

on tetramethyltin at the same level of theory gives 2852 ppm for σref, which is a 

discrepancy of only 15 ppm.   With the four-component relativistic DFT (with BP86 

functional), σref is computed as 3199 ppm.[57] It is clear that PBE/ZORA/spin-orbit 

underestimates σref by ~12% compared to the four-component DFT. The 

underestimation of absolute shieldings predicted by ZORA calculations has been 

discussed in the previous chapters. Nevertheless, the current results, as well as 

previous results on other heavy nuclei such as 207Pb and 199Hg, demonstrate that the 

ZORA/spin-orbit predictions for the chemical-shift tensor agree with the 

experimental values within ~2%, possibly due to the cancellation of higher-order 

relativistic effects beyond spin-orbit coupling. 

In the previous investigations of lighter nuclei such as 13C, 19F or 29Si, the 

performances of the GIPAW method and cluster models for the predictions of 

magnetic-shielding tensors in solids are similar, provided that sufficiently large 

clusters are used for the comparison.[55, 58-61] In contrast, the current results show 

that, although PBE/GIPAW and cluster-based PBE/ZORA/scalar methods yield 

similar trends for tin(II) and tin(IV)-containing solids, the two methods yield quite 

different results for σref (Table 6.6). 
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To compare the two methods in the absence of solid-state effects, calculations 

are performed on isolated molecules (SnF2, Sn(CN)2, Sn(OH)2, SnF4, Sn(CH3)4, and 

SnH4) containing 119Sn in oxidation states of +2 or +4. The results are shown in Table 

6.8. 

Table 6.8     Comparison of Calculated Magnetic Shieldings (σiso) for Tin-Containing 

Molecules using GIPAWa and ZORA/scalar Methods. 

Moleculeb σiso (ppm) 

 PBE/ZORA/scalar PBE/GIPAW 

SnF2 2854 2880 

Sn(CN)2 2053 2111 

Sn(OH)2 2465 2516 

SnF4 3002 3364 

Sn(CH3)4 2370 2829 

SnH4 2982 3354 

a) For GIPAW calculations the isolated molecular 

state is approximated by employing large unit cells. 

(a = 20 Å) 

b) Geometries are optimized at PBE/ZORA/scalar 

level of theory.  

 

For the tin(II) species (SnF2, Sn(CN)2, and Sn(OH)2), the calculated magnetic 

shieldings determined by the PBE/ZORA/scalar and PBE/GIPAW methods are quite 

similar, with the PBE/GIPAW approach yielding results that are more shielded by 26 - 

58 ppm. On the other hand, the calculated magnetic shieldings of the tin(IV) species 

(SnF4, Sn(CH3)4, and SnH4) are predicted by the PBE/GIPAW approach to be 362 - 

460 ppm more shielded. Therefore, one should expect that the calculated magnetic 
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shieldings with the PBE/ZORA/scalar Hamiltonian and the PBE/GIPAW method 

deviate from one another for 119Sn nuclei. Moreover, the difference in the calculated 

magnetic shieldings depends on the electronic structure of the system investigated. 

6.3.2 The Performance of Hybrid DFT Methods for the Calculated 119Sn 

Magnetic-Shielding Tensor 

In section 6.2, it is shown that introducing exact exchange via hybrid 

functionals improves the predicted principal components for 207Pb-containing solids. 

In this section, the performance of PBE0 functional (with 25% HF exchange) and 

ZORA/spin-orbit Hamiltonian is analyzed in a similar manner for the calculations of 

119Sn magnetic-shielding tensor.  

In Figure 6.16, the correlation between the principal components of the 

calculated magnetic-shielding tensor at the PBE0/ZORA/spin-orbit level of theory and 

the principal components of the experimental chemical-shift tensor is displayed. The 

slope of the correlation line when all systems are considered is -1.03 ± 0.02. On the 

other hand, there is less scatter about the best-fit line (R2
 = 0.99) than was obtained at 

the PBE/ZORA/spin-orbit level. In general, the calculated principal components 

obtained with the PBE0/ZORA/spin-orbit method are 100-200 ppm more shielded 

than the calculated principal components obtained with the PBE/ZORA/spin-orbit 

method. The predicted shielding of the reference compound is found to be 3003 ± 16 

ppm, indicating a slightly more shielded value obtained at PBE0/ZORA/spin-orbit 

level of theory than at the PBE/ZORA/spin-orbit level. 
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Figure 6.16 Correlation between calculated principal components of 119Sn magnetic-

shielding tensors and experimental 119Sn chemical-shift tensors for twelve tin-

containing solids.  Calculations were performed at the PBE0/ZORA/spin-orbit level of 

theory. Sn(II) sites are shown in red; Sn(IV) sites are shown in blue. 

In Table 6.9, the predicted principal components of the chemical-shift tensors 

at the PBE0/ZORA/spin-orbit level of theory and the experimental values are 

tabulated. For all tin-containing solids, the calculated residuals between theory and 

experiment are below 100 ppm and the largest residual (94 ppm) is seen for SnO. In 

general, the agreement between experiment and theory improves when PBE0 is 

employed instead of PBE. However, this improvement, for most of the cases, is quite 

small. As the NMR calculations employing hybrid functionals are considerably larger 

than for GGA functionals especially with a relativistic Hamiltonian, the latter may 
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remain the more cost effective option for the calculations of 119Sn magnetic-shielding 

tensor in similar systems.  

Table 6.9 Experimental and Calculated NMR Parameters of 119Sn-Containing Solids 

using Model Clusters and PBE0/ZORA/Spin-Orbit Level of Theory. 

Compounds 
δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso 

(ppm) 

Ω 

(ppm) 

Residual 

(ppm) 

Tin(II)-containing solids 

SnO 121 121 -867 -208 988 - 

PBE0/ZORA/spin-orbit 236 236 -885 -138 1121 94 

SnHPO4 -606 -712 -1553 -957 947 - 

PBE0/ZORA/spin-orbit -657 -813 -1547 -1006 890 66 

SnHPO3 -290 -420 -1435 -715 1145 - 

PBE0/ZORA/spin-orbit -363 -404 -1465 -744 1102 46 

SnC2O4 -523 -639 -1474 -879 951 - 

PBE0/ZORA/spin-orbit -618 -683 -1512 -938 894 65 

SnSO4 -1047 -1070 -1679 -1265 632 - 

PBE0/ZORA/spin-orbit -1011 -1015 -1715 -1247 704 43 

BaSnF4 -596 -596 -1486 -893 890 - 

PBE0/ZORA/spin-orbit -613 -613 -1571 -932 958 51 

Tin(IV)-containing solids 

SnO2 -550 -573 -686 -603 136 - 

PBE0/ZORA/spin-orbit -617 -639 -770 -675 153 73 

Ca2SnO4 -459 -512 -664 -545 205 - 

PBE0/ZORA/spin-orbit -536 -569 -713 -606 177 62 

SnS2 -730 -730 -835 -765 105 - 

PBE0/ZORA/spin-orbit -747 -747 -821 -772 75 16 
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Pb2SnO4 -558 -566 -692 -605 134 - 

PBE0/ZORA/spin-orbit -513 -558 -597 -556 85 61 

Na6Sn2S7 232 60 -107 62 339 - 

PBE0/ZORA/spin-orbit 252 21 -134 46 387 30 

Sr2SnO4 -510 -548 -681 -580 171 - 

PBE0/ZORA/spin-orbit -526 -531 -772 -610 246 54 

 

6.4 Effects of Relativistic Spin-Orbit Coupling and Hartree-Fock Exchange on 

Calculated Principal Components of Magnetic-Shielding Tensor for 125Te 

Nuclei 

The relativistic effects on the calculated NMR parameters of 125Te nuclei have 

been investigated previously on the isolated 125Te-containing molecules.[62-64] In 

these studies, authors claimed that the spin-orbit contributions to the chemical shifts 

are rather small, due to cancellation between different compounds when the chemical 

shifts are evaluated.[62-64] It should be noted that these conclusions were based on 

the correlations between experimental and calculated δiso of the 125Te-containing 

molecules rather than the principal components. In the previous sections, it is shown 

that the similar arguments for the 119Sn or 207Pb magnetic-shielding tensors become 

rather obsolete when the principal components of the magnetic-shielding tensor are 

investigated instead of the isotropic value. Additionally, the spin-orbit contributions to 

the magnetic-shielding tensor can depend strongly on the coordination geometry and 

the oxidation state of the nuclei of interest.  Here, a similar study involving 125Te-

containing solids is presented. In Table 6.10, the experimental SSNMR parameters 

[65-67] and crystallographic information [67-76] are given for the investigated 125Te-

containing solids. 
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Table 6.10 Experimental Crystallographic Data and 125Te Chemical Shifts of 

Tellurium-Containing Materials.  

 

The computations involving 125Te-containing solids were carried out with 

cluster models. PBE and PBE0 density functional and ZORA Hamiltonian were 

employed. The all-electron (AE) TZ2P basis set was employed for the NMR-active 

nucleus (125Te) and the first coordination shell around the NMR-active nucleus, 

whereas the remainder of the cluster was treated with the smaller AE TZP basis set. 

Compounds 
Space 

Group 

Te 

C.N. 

δ11 

(ppm) 

δ22 

(ppm) 

δ33 

(ppm) 

δiso
 

(ppm) 

Ω 

(ppm) 

TeO2 
P41212 4-6 2031 1558 736 1442 1295 

Te(OH)6, site I P121/n1  6 724 659 637 673 87 

Te(OH)6, site II  6 733 653 613 666 120 

TeCl4, site I C12/c1 6 2114 2093 1454 1887 660 

TeCl4, site II  6 2100 2057 1430 1862 670 

Li2TeO3 C12/c1 3 1929 1888 1349 1722 580 

Na2TeO3 P121/a1  3-4 2036 1971 1355 1787 681 

Ag2TeO3 P121/a1  3-4 1873 1801 1300 1658 573 

SnTe3O8 Ia-3 4-6 2164 1631 699 1498 1465 

β-TeO2 Pbca 5 2219 1716 710 1548 1509 

MgTe2O5 Pbcn 4-5 2165 1949 927 1680 1238 

(p-MeC6H4)2TeCl2, 

site I 
P21/n 4 1191 945 679 938 512 

(p-MeC6H4)2TeCl2, 

site II 
 4 1108 1004 743 952 365 

{(CH3)2SnTe}3, 

site I I41/a 2 -385 -652 -720 -586 335 

{(CH3)2SnTe}3, 

site II 
 2 -348 -842 -973 -721 625 
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6.4.1 Relativistic Effects on Principal Components of 125Te: ZORA/Scalar vs. 

ZORA/Spin-Orbit 

In Figures 6.17 and 6.18, the correlations between the principal components of 

calculated magnetic-shielding tensors are displayed for PBE/ZORA/scalar and 

PBE/ZORA/spin-orbit level of theories.  At PBE/ZORA/scalar level of theory, the 

correlation between experimental and calculated principal components of 125Te 

magnetic-shielding tensors yields the following best-fit relation; 

     𝜎𝑖𝑖
𝑍𝑂𝑅𝐴/𝑆𝐶

= (−0.81 ± 0.03) 𝛿𝑖𝑖
𝑒𝑥𝑝 + (2734 ± 39) 𝑝𝑝𝑚, 𝑅2 = 0.954 (6.1) 

At PBE/ZORA/spin-orbit level, the best-fit relation is; 

     𝜎𝑖𝑖
𝑍𝑂𝑅𝐴/𝑆𝑂

= (−1.02 ± 0.02) 𝛿𝑖𝑖
𝑒𝑥𝑝 + (3409 ± 28) 𝑝𝑝𝑚, 𝑅2 = 0.985 (6.2) 

When only scalar effects are included in the ZORA Hamiltonian, the slope of 

the best-fit line deviates from the ideal case by 19%. The scatter around the correlation 

line is rather small compared to the correlations obtained for 207Pb and 119Sn-

containing solids with ZORA/scalar Hamiltonian, as indicated by the R2 value (0.954) 

of the fit. When both scalar and spin-orbit terms are included in ZORA Hamiltonian 

(ZORA/spin-orbit), the slope of the best-fit line deviates only 2% from the ideal case. 

Additionally, the scatter around the best-fit line is reduced at ZORA/spin-orbit level 

compared to ZORA/scalar case. These results show that the inclusion of spin-orbit 

effects is also important to obtain the best agreement between theory and experiment 

for 125Te magnetic-shielding tensors. 

From the intersection of the best-fit line, the absolute shielding of the reference 

compound, Me2Te is predicted as 2734 and 3409 ppm at ZORA/scalar and 

ZORA/spin-orbit levels respectively. The absolute shielding of Me2Te, when 

calculated from the isolated molecule, becomes 2515 ppm for ZORA/scalar and 3237 
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ppm for ZORA/spin-orbit. In both cases, the predicted absolute shielding becomes 

larger by ~700 ppm when spin-orbit effects are included in the ZORA Hamiltonian. 

 

Figure 6.17 Correlations between calculated principal components of 125Te magnetic-

shielding tensors at PBE/ZORA/scalar level of theory and experimental 125Te 

chemical-shift tensors for the tellurium-containing solids tabulated in Table 6.10. The 

dotted line represents the best-fit line. 
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Figure 6.18 Correlations between calculated principal components of 125Te magnetic-

shielding tensors at PBE/ZORA/spin-orbit level of theory and experimental 125Te 

chemical-shift tensors for the tellurium-containing solids. The dotted line represents 

the best-fit line. 

In the previous sections, it is shown that the spin-orbit effects on the principal 

components depend strongly on the coordination geometry and the oxidation state of 

the NMR nuclei. In Figure 6.19, the differences between the principal components of 

125Te magnetic-shielding tensor calculated with the ZORA/spin-orbit Hamiltonian and 

the principal components calculated with the ZORA/scalar Hamiltonian are displayed 

for some selected 125Te-containing solids. As seen from Figure 6.19, the spin-orbit 

effects on 125Te magnetic-shielding tensors also show a strong dependence on 

oxidation state and coordination chemistry as well.  
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Figure 6.19 The differences (Δσii) in principal components of 125Te magnetic-shielding 

tensors calculated with the ZORA/spin-orbit method and the ZORA/scalar method.  

All calculations modeled the solid-state environment with the cluster-based 

VMTA/BV approach.  Magnetic-shielding calculations used the PBE functional. 

For TeO2 and β-TeO2 (tellurium is in +4 oxidation state), the contribution of 

spin-orbit effects on magnetic shielding is largest for the σ33 component (~500 ppm) 

whereas the spin-orbit effects for σ11 and σ22 range between 49 - 164 ppm. The spin-

orbit contribution to principal components for TeO2 and β-TeO2 shows a similar 

variation which was seen for hemi-directed lead(II) and tin(II) compounds. 
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 Te(OH)6 has two inequivalent tellurium(VI) sites in its crystal structure. Both 

sites exhibit holodirected coordination geometry. The spin-orbit contribution on each 

principal component of 125Te magnetic-shielding tensor in Te(OH)6 shows very little 

variation with Δσii ranging between 541-557 ppm.  

Among all the investigated 125Te-containing solids, the largest spin-orbit 

contributions are observed for the 125Te sites in {(CH3)2SnTe}3. The calculated Δσii 

ranges between 593-871 ppm. In this system, the oxidation state of the tellurium is -2 

and each tellurium site is bonded to two tin atoms. The large spin-orbit contributions 

are probably the result of both oxidation state of tellurium and HAHA relativistic 

effects between tin and tellurium. 

6.4.2 The Performance of Hybrid DFT Methods for the Calculated 125Te 

Magnetic-Shielding Tensor 

In Figure 6.20, the correlation between experimental and calculated principal 

components at PBE0/ZORA/spin-orbit level of theory is shown for the 125Te-

containing solids. The following best-fit relation is obtained from the correlation; 

     𝜎𝑖𝑖
𝑃𝐵𝐸0/𝑍𝑂𝑅𝐴/𝑆𝑂

= (−1.10 ± 0.02) 𝛿𝑖𝑖
𝑒𝑥𝑝 + (3656 ± 23) 𝑝𝑝𝑚, 𝑅2 = 0.991 (6.3) 

The slope of the correlation obtained with PBE0 functional shows an 

increasing deviation from the ideal case compared to the slope obtained with PBE 

functional. On the other hand, there is less scatter around the best-fit line and the R2 

value of the fit is larger than 0.99. The calculated principal components with PBE0 are 

more shielded than those calculated with PBE for all 125Te-containiing solids except 

Ag2TeO3. The predicted absolute shielding of the Me2Te, in the PBE0 case, is 3656 

ppm (Eq. 6.3), which is 247 ppm more shielded compared to the absolute shielding 

obtained with the PBE functional. Overall, the quality of the linear fit with PBE0 
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improves slightly compared to the PBE case, a similar result obtained for the 119Sn 

magnetic-shielding tensors.  

     

Figure 6.20 Correlation between calculated principal components of 125Te magnetic-

shielding tensors at PBE0/ZORA/spin-orbit level of theory and experimental 125Te 

chemical-shift tensors for the tellurium-containing solids. The dotted line represents 

the best-fit line. 
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CONCLUSION 

This dissertation provides a route for accurate prediction of magnetic-shielding 

tensors of heavy nuclei-containing solids, by employing the cluster approximation for 

extended systems, relativistic density functional theory (DFT). The performance of 

cluster models with differing charge, symmetry and size have been examined. 

Calculations at different level of theory (from periodic-boundary calculations to 

cluster calculations, from including relativistic properties to neglecting them, from 

using the frozen-core approximation to the use of all-electron basis sets, and from 

simple GGA functionals to hybrid functionals) have established a hierarchy of 

quantum chemical methods for accurate predictions of the magnetic-shielding tensor. 

Perhaps the most important result of this dissertation is that it is possible to 

calculate the magnetic-shielding tensor accurately for nuclei in extended systems 

using model clusters that represent only a certain region of a solid. From Ramsey’s 

expression for the magnetic-shielding tensor,[1] it is evident that the main 

contributions are determined by the form of the electronic wave function in a rather 

small region  around NMR nuclei, as a result of the 1/r3 dependency in the sum-over-

states formula. The results show that one can describe the wave function over that 

region with good accuracy by using properly built cluster models. The methods 

presented in this study have only been applied to calculations of magnetic-shielding 

tensors; however, they may be appropriate for calculation of other NMR observables 

such as EFG tensors or spin-spin couplings.  

Chapter 7 
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It is important to take the nature of the solid into account when modelling 

extended systems using cluster models. For molecular solids, the task is relatively easy 

because it is possible to build a cluster with proper symmetry and free of dangling 

bonds or excess charge. In chapter 4, it is shown that calculated principal components 

converge smoothly to the experimental values for such systems with increasing cluster 

size.  

For ionic or covalent network solids, one must deal appropriately with 

termination of the cluster to obtain a reasonable SCF solution to the many-body 

equation. For solid systems which evince large variations in bond lengths in the 

structure, modification of terminal-atom nuclear charge by a bond valence model, 

VMTA/BV, allows one to obtain meaningful SCF solutions for clusters representing a 

network solid. 

Another important result from this study is that the ZORA Hamiltonian, an 

approximation of the four-component (4c) Dirac Hamiltonian, works quite well for the 

predictions of chemical-shift tensors of heavy nuclei (199Hg, 207Pb, 119Sn and 125Te). 

On the other hand, the calculated absolute shieldings deviate from the results 

obtained from 4c relativistic DFT computations, which shows that the ZORA 

approximation can produce large errors for the contributions from the core levels.[2-5] 

For all the heavy nuclei investigated, the inclusion of spin-orbit terms in the 

ZORA Hamiltonian is essential to get magnetic shieldings that reflect the experimental 

chemical-shift data. One may get qualitative agreement in some cases by employing 

the ZORA Hamiltonian with only scalar relativistic terms, but for the highest 

accuracy, the spin-orbit components in the Hamiltonian must be included.  
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Spin-orbit effects are strongly dependent on the atomic number of the NMR 

nucleus. For 199Hg and 207Pb, the spin-orbit contributions to isotropic shielding are 

generally a few thousand ppm, whereas for 125Te and 119Sn, the spin-orbit 

contributions range between 300-800 ppm.  

    In chapter 4, the comparison of results on small clusters (often a single 

isolated unit) with large clusters demonstrates that, to predict the NMR magnetic 

shielding accurately, one must take into account the effects of the surrounding 

environment, and specifically one must treat the problem with a large cluster that 

maintains the point symmetry at the site of the nucleus of interest.  In some cases, the 

isotropic shift may be fortuitously predicted for an isolated unit, but the tensor 

components may be in substantial error.  The cluster model must be chosen so that the 

local site symmetry at the nucleus of interest is maintained, which determines the 

minimal size of the cluster.   

Of concern in calculation of magnetic shielding in these heavy-nuclei-

containing materials is the computation time that a large-cluster model may require.  I 

examined the use of the frozen-core approximation (FCA) for atomic centers removed 

from the locality of the nucleus of interest as a means to shorten this calculation time.  

The calculations show that using the FCA on more remote centers makes a minimal 

difference in computed NMR parameters, compared to calculations with models using 

the full all-electron basis set.   The use of the FCA for these more remote centers 

presents a substantial savings in computational time when compared with the all-

electron approach, and I suggest that using the FCA in this manner for computation of 

NMR parameters may allow one to specify the environment with larger clusters that 

better define the effects of structure, without sacrificing much accuracy. 
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In chapter 5, test calculations on various clusters demonstrate that the predicted 

principal components of the magnetic-shielding tensor are not dependent on the 

termination scheme when a cluster containing atoms through the fifth coordination 

shell is employed. For all termination schemes, the agreement between experiment and 

calculation improves as larger clusters are employed.  Most errors due to truncation of 

the structure are sufficiently minimized if one uses clusters terminated at the third 

coordination shell or higher. Including only the first coordination sphere in a cluster is 

usually not sufficient to account for longer-range effects. 

Calculations of 29Si and 31P magnetic-shielding constants in network solids 

obtained using the cluster model with VMTA/BV are compared to values obtained 

using the GIPAW approach, which treats the materials with periodic boundary 

conditions.  The cluster-based calculations lead to a modest increase in accuracy for 

relative chemical-shift parameters over those obtained by the GIPAW approach.  

Furthermore, the cluster-based calculations lead to a significant increase in accuracy 

for absolute magnetic-shielding parameters. Additionally, use of the hybrid functional 

PBE0 improves upon the GGA-PBE functional for calculations of the principal 

components of magnetic-shielding tensors of both 29Si and 31P sites.  The extrapolated 

shieldings of the reference compounds are predicted to be more shielded when using 

the PBE0 functional than is observed for the pure DFT functionals.   

In chapter 6, 207Pb, 119Sn and 125Te magnetic-shielding tensors have been 

calculated for materials containing NMR nuclei in different coordination geometries 

and oxidation states. At the ZORA/scalar relativistic level of theory, there is a 

significant inconsistency in correlations of 207Pb and 119Sn magnetic-shielding 

andchemical-shift principal components for the set of various chemical environments I 
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considered. The scatter for the total set of lead and tin compounds is large, and the 

predicted correlation is far from the ideal case. When spin-orbit (SO) effects are 

included in the ZORA Hamiltonian, the correlation between theory and experiment is 

significantly improved. The correlation parameters for both hemidirected and 

holodirected sites are quite similar, unlike the situation for the ZORA/scalar 

relativistic case. In the case of hemidirected sites with an oxidation state of +2, the 

poor performance of the ZORA/scalar relativistic Hamiltonian is largely the result of 

underestimation of σ33, the component that corresponds to the situation that the axis of 

the stereochemically active lone-pair orbital points along the magnetic field.  

For holodirected systems, the neglect of spin-orbit effects yields quite large 

differences, but the differences are similar for all three components. The spin-orbit 

effects on principal components show a similar dependence on oxidation state and 

coordination geometry for 125Te-containing solids, as well.              

As seen by calculations with the hybrid functional, there is a significant effect 

of inclusion of Hartree-Fock (HF) exchange for 207Pb nuclei than is usually done. The 

results demonstrate that employing hybrid functionals for 207Pb shielding calculations 

yields better agreement with experiment for both holodirected and hemidirected lead-

containing systems.  There is a strong dependence of the magnitude of the principal 

components on the amount of HF exchange introduced in the calculation.  Its effect is 

particularly noticeable on the span.  The results suggest that one should include more 

HF exchange in the functional than the default value of 20%, to have calculated 

principal components agree more closely with experiment.  

The agreement between calculated and experimental principal components of 

the magnetic-shielding tensor is improved further by the use of hybrid functionals for 
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119Sn and 125Te nuclei, as well. However, the improvement is relatively small in these 

cases, which suggest that the GGA functionals may remain the most cost-effective 

choice for calculations of 119Sn and 125Te magnetic-shielding tensors in similar 

systems. 
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CARTESIAN COORDINATES USED IN CLUSTER MODELS 

Small Cluster of Hg2Cl2 

 

Hg       4.13000000      -2.75300000       1.72500000 

Cl       9.08000000      -2.85700000       1.73900000 

Hg       6.65600000      -2.80600000       1.73300000 

Cl       1.70600000      -2.70200000       1.71900000  

 

Large Cluster of Hg2Cl2 

 

Cl      25.16300000      -0.14200000       6.12700000 

Cl      24.95800000       8.75800000       7.17700000 

Cl      25.34600000       4.83900000       2.21100000 

Cl      24.77400000       3.77700000      11.09300000 

Cl      25.06000000       4.30800000       6.65200000 

Cl      30.69700000       2.43200000       4.52900000 

Cl      19.81200000       2.26500000       3.80800000 

Cl      30.41100000       1.90100000       8.97100000 

Cl      19.52600000       1.73400000       8.25000000 

Cl      30.59500000       6.88200000       5.05400000 

Cl      19.71000000       6.71500000       4.33400000 

Cl      30.30900000       6.35100000       9.49600000 

Cl      19.42400000       6.18500000       8.77500000 

Cl      17.80500000      -0.25400000       5.64000000 

Cl      17.59900000       8.64600000       6.69000000 

Cl      17.98800000       4.72600000       1.72300000 

Cl      17.41600000       3.66500000      10.60600000 

Cl      17.70200000       4.19600000       6.16500000 

Cl      23.33900000       2.31900000       4.04200000 

Cl      12.45400000       2.15300000       3.32100000 

Cl      23.05300000       1.78800000       8.48300000 

Cl      12.16800000       1.62200000       7.76200000 

Cl      23.23600000       6.76900000       4.56700000 

Cl      12.35100000       6.60300000       3.84600000 

Cl      22.95000000       6.23800000       9.00900000 

Cl      12.06500000       6.07200000       8.28800000 

Appendix A 
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Hg      22.74400000      -0.17900000       5.96700000 

Hg      22.53900000       8.72100000       7.01700000 

Hg      22.92800000       4.80200000       2.05000000 

Hg      22.35500000       3.74000000      10.93300000 

Hg      22.64100000       4.27100000       6.49200000 

Hg      28.27800000       2.39500000       4.36900000 

Hg      17.39300000       2.22800000       3.64800000 

Hg      27.99200000       1.86400000       8.81000000 

Hg      17.10700000       1.69800000       8.09000000 

Hg      28.17600000       6.84500000       4.89400000 

Hg      17.29100000       6.67800000       4.17300000 

Hg      27.89000000       6.31400000       9.33600000 

Hg      17.00500000       6.14800000       8.61500000 

Hg      20.22400000      -0.21700000       5.80000000 

Hg      20.01800000       8.68300000       6.85000000 

Hg      20.40700000       4.76300000       1.88400000 

Hg      19.83500000       3.70200000      10.76600000 

Hg      20.12100000       4.23300000       6.32500000 

Hg      25.75800000       2.35600000       4.20200000 

Hg      14.87300000       2.19000000       3.48100000 

Hg      25.47200000       1.82500000       8.64400000 

Hg      14.58700000       1.65900000       7.92300000 

Hg      25.65500000       6.80600000       4.72700000 

Hg      14.77000000       6.64000000       4.00600000 

Hg      25.36900000       6.27500000       9.16900000 

Hg      14.48400000       6.10900000       8.44800000 

 

Small Cluster of HgBr2 

 

Hg      22.73200000     -13.10600000      -8.37700000 

Br      25.07500000     -13.67400000      -7.97100000 

Br      20.38800000     -12.54200000      -8.78100000 

 

Large Cluster of HgBr2 

 

Br      21.81300000     -14.55300000      -5.62400000 

Br      17.03200000     -11.04300000      -9.56300000 

Br      22.26400000     -15.84700000     -10.04400000 

Br      19.84300000      -8.86900000      -7.49000000 

Br      27.88600000     -11.50000000      -5.89800000 

Br      20.29400000     -10.16400000     -11.91000000 

Br      28.33700000     -12.79500000     -10.31900000 

Br      25.07500000     -13.67400000      -7.97100000 
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Br      22.52000000     -21.63200000      -5.90100000 

Br      25.33000000     -19.45800000      -3.82800000 

Br      25.78200000     -20.75300000      -8.24800000 

Br      21.66200000      -4.46700000      -8.59400000 

Br      22.11400000      -5.76200000     -13.01400000 

Br      18.85200000      -6.64100000     -10.66700000 

Br      17.12600000     -13.42100000      -6.43400000 

Br      17.57700000     -14.71600000     -10.85500000 

Br      20.38800000     -12.54200000      -8.78100000 

Br      23.19900000     -10.36900000      -6.70800000 

Br      27.15000000     -15.05600000      -4.93200000 

Br      23.65000000     -11.66300000     -11.12900000 

Br      27.60100000     -16.35100000      -9.35200000 

Br      24.33900000     -17.23000000      -7.00500000 

Hg      17.94000000      -8.84100000     -10.11600000 

Hg      20.75000000      -6.66700000      -8.04300000 

Hg      21.20200000      -7.96200000     -12.46300000 

Hg      19.47000000     -13.98400000      -6.03000000 

Hg      19.92200000     -15.27900000     -10.45000000 

Hg      23.42700000     -19.43000000      -6.45300000 

Hg      25.54300000     -10.93200000      -6.30400000 

Hg      26.23800000     -17.25700000      -4.38000000 

Hg      22.73200000     -13.10600000      -8.37700000 

Hg      25.99400000     -12.22700000     -10.72400000 

Hg      26.68900000     -18.55100000      -8.80100000 

 

First coordination shell cluster of α-PbO 

  

Pb      0.00000000       0.00000000       0.00000000 

O       1.40038000      -1.40038000      -1.18676000 

O      -1.40038000       1.40038000      -1.18676000 

O       1.40038000       1.40038000      -1.18676000 

O      -1.40038000      -1.40038000      -1.18676000 

Third coordination shell cluster α-PbO 

 

Pb      0.00000000       0.00000000       0.00000000 

O       4.20130000      -4.20130000      -1.18671000 

O       1.40047000      -4.20117000      -1.18661000 

O      -1.40047000      -4.20117000      -1.18661000 

O       4.20117000      -1.40047000      -1.18661000 

O       1.40038000      -1.40038000      -1.18676000 
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O       4.20117000       1.40047000      -1.18661000 

O      -4.20130000      -4.20130000      -1.18671000 

O      -1.40038000      -1.40038000      -1.18676000 

O      -4.20117000      -1.40047000      -1.18661000 

O       1.40038000       1.40038000      -1.18676000 

O      -1.40038000       1.40038000      -1.18676000 

O       4.20130000       4.20130000      -1.18671000 

O       1.40047000       4.20117000      -1.18661000 

O      -4.20117000       1.40047000      -1.18661000 

O      -1.40047000       4.20117000      -1.18661000 

O      -4.20130000       4.20130000      -1.18671000 

Pb       0.00000000      -2.80092000      -2.37349000 

Pb       2.80092000       0.00000000      -2.37349000 

Pb      -2.80092000       0.00000000      -2.37349000 

Pb       0.00000000       2.80092000      -2.37349000 

Pb       2.80090000      -2.80090000       0.00024000 

Pb      -2.80090000      -2.80090000       0.00024000 

Pb       2.80090000       2.80090000       0.00024000 

Pb      -2.80090000       2.80090000       0.00024000 

Fifth coordination shell cluster α-PbO 

  

Pb       0.00000000       0.00000000       0.00000000 

Pb      -5.71567935      -1.72821739       3.03116971 

Pb      -3.94554025       0.02877063       0.33666072 

Pb      -0.00000938       7.89124755      -0.67448670 

Pb      -0.00000256       3.94559772      -0.33721611 

O       9.96525954       0.02880240       0.33702816 

Pb      -0.00000256      -3.94560281       0.33715653 

Pb      -0.00000938      -7.89126622       0.67426826 

Pb       7.89112235      -0.05752131      -0.67349801 

O       7.99226205       2.01603104       0.33666642 

O       6.01954487       4.00309996       0.33652576 

O       7.99226205      -1.92966629       0.67387940 

O       6.01972185       0.05757833       0.67371857 

Pb       6.12097598       2.13116159       1.68389992 

O       6.01954487      -3.88794244       1.01092162 

Pb       6.12097598      -1.81453731       2.02109451 

Pb      -3.94536412      -3.91665478       0.67381699 

Pb      -7.89114112       0.05753743       0.67327662 

O       4.04678307       5.99027802       0.33629652 

O       2.07413165       7.97741221       0.33593234 
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O       4.04692012       2.04472927       0.67358744 

O       2.07405969       4.03200825       0.67333960 

O       4.04692012      -1.90078645       1.01076638 

O       2.07393351       0.08636727       1.01063075 

O       4.04678307      -5.84635372       1.34784062 

O       2.07405969      -3.85929094       1.34772036 

Pb       2.17546647       6.10550672       1.68340396 

O       2.07413165      -7.80473526       1.68465530 

Pb       2.17544383       2.15991219       2.02082347 

Pb       2.17544383      -1.78570217       2.35801101 

O       0.10132373       9.96482787       0.33578912 

Pb       2.17546647      -5.73133634       2.69496660 

O       0.10132373       6.01922763       0.67297505 

O      -1.87150467       8.00618611       0.67263091 

O       0.10134080       2.07337661       1.01038285 

O      -1.87139345       4.06078083       1.01002272 

O       0.10134080      -1.87187139       1.34753908 

O      -1.87125191       0.11513791       1.34729119 

O       0.10132373      -5.81775634       1.68454973 

O      -1.87139345      -3.83051833       1.68440380 

O       0.10132373      -9.76335661       2.02173604 

O      -1.87150467      -7.77596130       2.02135456 

Pb       3.94535900       3.91664972      -0.67387637 

Pb       3.94553513      -0.02877570      -0.33672029 

Pb      -1.77016985       6.13428062       2.02010288 

O      -3.84413731       6.04782325       1.00966407 

Pb      -1.77010795       2.18868547       2.35751517 

O      -3.84425389       2.10227637       1.34697677 

O      -5.81689911       4.08941670       1.34660131 

O      -3.84425389      -1.84323934       1.68415590 

O      -5.81707439       0.14389608       1.68380599 

O      -3.84413731      -5.78880843       2.02120869 

O      -5.81689911      -3.80162881       2.02096077 

Pb      -1.77010794      -1.75692888       2.69470273 

Pb      -1.77016985      -5.70256243       3.03166557 

Pb       3.94535900      -3.97419856       0.00046585 

O      -7.78963507       2.13112034       1.68341609 

Pb      -3.94536411       3.97419347      -0.00052561 

O      -7.78963507      -1.81457856       2.02061087 

O      -9.76261208       0.17266925       2.02049650 

Pb      -5.71567935       2.21748150       2.69397494 
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First coordination shell cluster of Pb3O4 

 

Pb       3.10600000      -7.56700000     -17.64300000 

O       2.60700000      -8.06600000     -19.74300000 

O       2.27500000      -9.42800000     -16.77600000 

O       5.08500000      -8.76600000     -17.97200000 

O       0.39800000      -7.58200000     -17.95400000 

Third coordination shell cluster of Pb3O4 

 

O       6.03100000      -7.16900000     -15.31700000 

O      -1.59400000      -8.40700000     -20.37100000 

O      -1.92700000      -9.76900000     -17.40400000 

O       6.36400000      -5.80700000     -18.28400000 

O       6.60100000     -11.03100000     -17.02600000 

O       6.93300000      -9.66900000     -19.99300000 

O       2.94000000      -6.70400000     -22.71000000 

O      -0.37400000      -5.88300000     -15.44600000 

O      -0.04100000      -4.52100000     -18.41300000 

O       1.94200000     -10.79000000     -13.80900000 

O       7.37200000     -12.72900000     -19.53400000 

O      -1.88900000      -3.61900000     -16.39100000 

O      -0.43800000      -8.98400000     -15.06200000 

O       8.28000000      -7.17200000     -20.51100000 

O       0.22700000      -6.26000000     -20.99600000 

O       7.61500000      -9.89600000     -14.57700000 

O       2.60700000      -8.06600000     -19.74300000 

O       2.27500000      -9.42800000     -16.77600000 

O       5.08500000      -8.76600000     -17.97200000 

O       0.39800000      -7.58200000     -17.95400000 

O       4.68400000      -9.66500000     -14.80000000 

O       5.35000000      -6.94100000     -20.73400000 

Pb       6.64900000      -7.73800000     -19.13900000 

Pb       6.31600000      -9.10000000     -16.17200000 

Pb       0.17400000      -9.59900000     -17.09000000 

Pb       0.50700000      -8.23700000     -20.05700000 

Pb       3.10600000      -7.56700000     -17.64300000 

Pb       5.66900000     -11.21000000     -19.02800000 

Pb       3.10100000     -11.15400000     -15.66100000 

Pb      -1.30500000      -6.06300000     -17.44700000 

Pb       3.76700000      -8.43000000     -21.59500000 

O       7.87900000      -8.07100000     -17.33900000 
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O       0.28200000     -10.25400000     -19.19300000 

O       1.11900000      -8.85100000     -22.08500000 

O       0.45300000     -11.57500000     -16.15100000 

Fifth coordination shell cluster of Pb3O4 

 

O      -5.44600000     -31.64300000     -21.59900000 

O      -5.48700000     -31.66400000     -18.31700000 

O       5.18100000     -28.39500000     -21.44700000 

O       5.14100000     -28.41600000     -18.16600000 

O       2.62400000     -27.89500000     -26.39800000 

O      -5.58800000     -29.03500000     -13.37900000 

O      -6.01500000     -20.96400000     -23.17900000 

O      -6.09600000     -21.00600000     -16.61700000 

O       0.74700000     -35.72900000     -23.18900000 

O       0.66600000     -35.77100000     -16.62600000 

O      -5.42600000     -28.95200000     -26.50400000 

O       2.46200000     -27.97700000     -13.27300000 

O      -8.69500000     -21.01400000     -21.57200000 

O      -5.52700000     -31.68400000     -15.03600000 

O      -8.73500000     -21.03500000     -18.29100000 

O      -2.90900000     -27.68800000     -28.10600000 

O      -5.40600000     -31.62200000     -24.88000000 

O      -4.74100000     -23.45000000     -24.82000000 

O       5.22200000     -28.37400000     -24.72800000 

O      -4.86300000     -23.51200000     -14.97600000 

O       5.10000000     -28.43600000     -14.88400000 

O      -3.11200000     -27.79200000     -11.70000000 

O       0.47400000     -32.79400000     -23.17400000 

O      -0.31100000     -28.16800000     -26.43600000 

O       0.39300000     -32.83600000     -16.61100000 

O      -0.47300000     -28.25100000     -13.31100000 

O      -4.17200000     -33.64000000     -19.95500000 

O     -10.46600000     -19.42600000     -19.94300000 

O       7.10700000     -27.13100000     -16.49200000 

O      -7.02500000     -33.38400000     -23.27000000 

O      -7.10600000     -33.42500000     -16.70800000 

O       7.18800000     -27.09000000     -23.05500000 

O       6.91200000     -30.00500000     -19.79500000 

O      -4.43600000     -19.22300000     -21.50800000 

O      -1.57400000     -34.12000000     -18.28500000 

O      -1.53300000     -34.09900000     -21.56600000 
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O      -4.47700000     -19.24400000     -18.22700000 

O      -4.68100000     -26.10000000     -26.47700000 

O      -3.16300000     -21.70900000     -23.14900000 

O      -4.84300000     -26.18200000     -13.35200000 

O      -3.24400000     -21.75000000     -16.58600000 

O      -9.87600000     -26.92500000     -19.98300000 

O       1.20800000     -23.28900000     -19.82300000 

O       5.31200000     -34.92500000     -19.84600000 

O       1.67600000     -23.35100000     -16.53600000 

O      -9.95800000     -27.45500000     -16.70500000 

O       1.75800000     -23.31000000     -23.09800000 

O      -9.87700000     -27.41300000     -23.26800000 

O      -7.23800000     -27.38400000     -21.59400000 

O      -2.95000000     -27.70900000     -24.82500000 

O      -2.99100000     -27.73000000     -21.54400000 

O      -4.78200000     -23.47100000     -21.53900000 

O       1.26800000     -25.93900000     -21.48000000 

O      -3.07200000     -27.77100000     -14.98100000 

O      -3.03100000     -27.75000000     -18.26200000 

O       0.88200000     -30.20700000     -18.23000000 

O      -4.82200000     -23.49200000     -18.25800000 

O       0.92300000     -30.18600000     -21.51100000 

O       1.22800000     -25.95900000     -18.19900000 

O      -7.27800000     -27.40500000     -18.31300000 

O       2.54200000     -28.42500000     -23.12100000 

O      -6.09700000     -21.49400000     -19.90200000 

O      -4.95700000     -29.01400000     -23.21700000 

O      -5.03800000     -29.05500000     -16.65400000 

O      -0.39200000     -27.72100000     -16.58900000 

O      -5.31200000     -26.12000000     -16.63900000 

O      -4.76200000     -26.14100000     -19.91500000 

O       2.46100000     -28.46600000     -16.55800000 

O       2.54300000     -27.93600000     -19.83600000 

O       0.94200000     -32.85600000     -19.88600000 

O      -5.50700000     -28.99300000     -19.94200000 

O      -0.31100000     -27.68000000     -23.15100000 

O      -5.23100000     -26.07900000     -23.20200000 

O      -0.39200000     -28.21000000     -19.87400000 

O       0.84200000     -30.22800000     -14.94800000 

O      -7.31900000     -27.42500000     -15.03100000 

O       1.30900000     -25.91800000     -24.76100000 

O       2.71400000     -34.44500000     -21.51600000 

O       1.18700000     -25.98000000     -14.91700000 
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O      -7.19700000     -27.36300000     -24.87500000 

O       2.67300000     -34.46600000     -18.23400000 

O       0.96300000     -30.16600000     -24.79200000 

Pb       0.59000000     -34.27200000     -21.54100000 

Pb       1.09500000     -28.06200000     -21.49500000 

Pb      -4.65000000     -21.36800000     -18.24200000 

Pb      -5.19500000     -27.59800000     -15.00600000 

Pb      -5.15500000     -27.57800000     -18.28800000 

Pb       1.05500000     -28.08300000     -18.21400000 

Pb       1.01400000     -28.10400000     -14.93300000 

Pb       0.55000000     -34.29300000     -18.25900000 

Pb      -4.60900000     -21.34700000     -21.52300000 

Pb      -5.11400000     -27.55700000     -21.56900000 

Pb      -5.07400000     -27.53600000     -24.85000000 

Pb       1.13600000     -28.04200000     -24.77700000 

Pb       3.63100000     -33.30000000     -19.85600000 

Pb      -6.66200000     -30.73600000     -16.68500000 

Pb       0.05200000     -25.03200000     -16.56600000 

Pb       4.38200000     -27.13500000     -16.52600000 

Pb      -3.68800000     -24.44000000     -16.60900000 

Pb      -8.03700000     -26.12300000     -16.67300000 

Pb      -2.15400000     -26.62600000     -13.32200000 

Pb      -1.99200000     -26.54400000     -26.44700000 

Pb       2.01700000     -31.15500000     -16.58100000 

Pb      -2.31300000     -29.05200000     -16.62100000 

Pb       4.22300000     -29.56100000     -19.82500000 

Pb       0.13300000     -24.99000000     -23.12900000 

Pb       2.53900000     -25.21000000     -19.81900000 

Pb       4.46300000     -27.09300000     -23.08900000 

Pb      -7.77700000     -19.87000000     -19.91200000 

Pb      -8.19600000     -28.54900000     -19.97200000 

Pb      -3.60600000     -24.39800000     -23.17100000 

Pb      -6.09400000     -24.22000000     -19.91900000 

Pb      -7.95600000     -26.08200000     -23.23600000 

Pb      -2.07300000     -26.58500000     -19.88400000 

Pb      -6.58100000     -30.69500000     -23.24800000 

Pb       2.09800000     -31.11400000     -23.14300000 

Pb      -0.38900000     -30.93500000     -19.89100000 

Pb      -4.17500000     -30.91500000     -19.93700000 

Pb      -2.23100000     -29.01100000     -23.18300000 

O       0.19800000     -35.70900000     -19.91400000 

O      -3.16200000     -21.22100000     -19.86400000 
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ADDITIONAL TABLES AND FIGURES 

Table B1 Frozen Inner Shells in FCA(TZP)/AE and FCA(DZ)/AE Basis Sets for the 

Elements in Large Clusters of 199Hg-Containing Solids  

Elements 
Frozen Core 

Orbitals* 

Hg […]4f 

S, Cl […]2p 

C, N, O, F […]1s 

Se, Br […]3p 

I […]4p 

*Frozen inner shells are up to and including 

the listed orbitals for the given elements. 

Table B2 R0 and b Parameters Used in the Bond Valence Modelling of the Clusters of 

Investigated Systems    

Appendix B 

Bond type R0 b 

α-PbO 
  

Pb-O 1.969 0.49 

β-PbO  
 

Pb-O 1.999 0.49 

Pb3O4  
 

Pb(II)-O 1.995 0.49 



 

 211 

 

 

 

Pb(IV)-O 2.029 0.37 

Pb2SnO4  
 

Pb-O 1.980 0.49 

Sn-O 1.926 0.37 

PbF2  
 

Pb-F 2.022 0.382 

PbCl2  
 

 

Pb-Cl 2.447 0.40  

PbBr2  
 

 

Pb-Br 2.597 0.40  

PbClOH  
 

 

Pb-Cl 2.583 0.40  

Pb-O 1.882 0.49  

PbBrOH  
 

 

Pb-Br 2.699 0.40  

Pb-O 1.893 0.49  

PbIOH  
 

 

Pb-I 2.900 0.386  

Pb-O 1.907 0.40  

PbSiO3    

Si-O 1.624 0.37  

Pb-O 1.997 0.49  

Pb3(PO4)2    

P-O 1.612 0.37  

Pb-O 1.977 0.49  
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Table B3 Calculated NMR Chemical Shielding Parameters  of First and Third 

Coordination Shell Clusters of Lead-Containing Systems Determined at ZORA-

SO/BP86 Level of Theory 

 

Model clusters  

σ11 

(ppm) 

σ22 

(ppm) 

σ33 

(ppm) 

σiso 

(ppm) 

Ω 

(ppm) 

κ 

α-PbO 
   

   

1-VMTA/BV 9451 9451 11269 10057 1818 1.00 

3-VMTA/BV 5887 5889 8827 6868 2940 1.00 

β-PbO 
   

   

1-VMTA/BV 8630 9283 11516 9810 2886 0.55 

3-VMTA/BV 5655 6197 9352 7068 3697 0.71 

Pb3O4 
   

   

1-VMTA/BV 8696 9233 11218 9716 2522 0.57 

3-VMTA/BV 7350 7353 9881 8195 2531 1.00 

Pb2SnO4   (site 1) 
   

   

1-VMTA/BV 8941 9198 11270 9803 2329 0.78 

3-VMTA/BV 7146 7251 10032 8143 2885 0.93 

Pb2SnO4   (site 2)       

1-VMTA/BV 8175 8727 11029 9311 2854 0.61 

3-VMTA/BV 7187 7296 9983 8155 2796 0.92 

PbF2 
   

   

1-VMTA/BV 11746 11865 12348 11986 603 0.60 

3-VMTA/BV 10784 10971 11049 10935 264 0.95 

PbCl2 
   

   

1-VMTA/BV 9521 9899 10276 9899 756 0.00 

3-VMTA/BV 9612 9664 10177 9818 565 -0.41 

PbBr2 
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1-VMTA/BV 8602 8940 9548 9030 946 0.29 

3-VMTA/BV 9108 9118 9802 9343 694 0.81 

PbClOH 
   

   

1-VMTA/BV 9226 9773 10730 9910 1503 0.27 

3-VMTA/BV 8516 8903 10275 9231 1759 0.56 

PbBrOH       

1-VMTA/BV 9251 9579 10341 9724 1090 0.40 

3-VMTA/BV 8530 8817 10088 9145 1558 0.56 

PbIOH 
   

   

1-VMTA/BV 8983 9121 9575 9227 592 0.53 

3-VMTA/BV 8618 8649 9860 9043 1242 0.63 

PbSiO3   (site 1)       

1-VMTA/BV 9725 10093 11950 10589 2225 0.67 

3-VMTA/BV 7459 7995 10331 8595 2872 0.97 

PbSiO3   (site 2)       

1-VMTA/BV 9270 9626 11705 10200 2435 0.71 

3-VMTA/BV 7829 8249 10522 8867 2693 0.63 

PbSiO3   (site 3)       

1-VMTA/BV 9742 10046 11792 10526 2050 0.70 

3-VMTA/BV 7940 8532 10281 8918 2341 0.69 

Pb3(PO4)2   (site 1)       

1-VMTA/BV 12169 12225 12702 12365 533 0.79 

3-VMTA/BV 11094 11159 11279 11178 185 0.49 

Pb3(PO4)2   (site 2)       

1-VMTA/BV 10797 11147 12268 11404 1471 0.52 

3-VMTA/BV 10092 10556 11654 10767 1562 0.29 
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Figure  B1 Correlation between calculated and experimental principal components of 

magnetic-shielding tensors for 29Si-containing materials.   Results were computed at 

the PBE0 level of theory.  The best-fit correlation is given as solid line. 
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Figure  B2 Correlation between calculated and experimental principal components of 

magnetic-shielding tensors for 31P-containing materials.   Results were computed at 

the PBE0 level of theory.  The best-fit correlation is given as solid line. 
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