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1 Introduction

Brownian motion reflected on Brownian motion appeared in recent papers by Soucaliuc, Toth

and Werner (2000), Burdzy, Chen and Sylvester (2000) and Burdzy and Nualart (2001) in their

study of reflected Bronian motion and corresponding heat equation in domains with space-time

boundaries. In this paper, we study the upper and lower limiting behaviors of the Brownian

Motion reflected on Brownian Motion. Our starting point is the following beautiful result of

Burdzy and Nualart (2001).

Suppose that g(t) and Wt are independent Brownian motions starting from g(0) = W0 = 0.

Consider the Brownian motion Yt reflected on g(t), obtained from Wt by the means of the

Skorohod lemma. Here g should be thought of as a “fixed Brownian path.” Then

−Yt = (Wt + Ct)/
√

2, t ≥ 0

where Ct is a 3-dimensional Bessel process independent of Wt and starting from 0. A process

with the same distribution as {(Wt + Ct)/
√

2, t ≥ 0} is called a BMB-process in Burdzy and

Nualart (2001) and many useful properties are given.

The main goal of this paper is to present some “global” results for BMB-process and a

natural generalization. Namely

Theorem 1.1 Let X(t), X(0) = 0, be a d-dimensional (d ≥ 1) Bessel process independent of

W . Then

lim sup
t→∞

1√
t log log t

(
W (s) + X(s)

)
= 2 a.s. (1.1)

lim inf
t→∞

1√
t log log t

(
W (t) + X(t)

)
= −

√
2 a.s. (1.2)

and for d 6= 2

lim inf
t→∞

√
log log t

t
sup
s≤t

∣∣W (s) + X(s)
∣∣ =

π

2
a.s. (1.3)

In particular, we have for Yt, Brownian motion reflected on Brownian motion,

lim inf
t→∞

1√
t log log t

Y (t) = −
√

2 a.s. (1.4)

lim sup
t→∞

1√
t log log t

Y (t) = 1 a.s. (1.5)

and

lim inf
t→∞

√
log log t

t
sup
s≤t

∣∣Y (s)
∣∣ =

π√
8

a.s. (1.6)
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It is interesting to see that the behaviors in (1.4) and (1.6) for Y is exactly the same as

those for W . Furthermore, due to the time reversibility, their behaviors near time zero are also

the same.

Next we outline some of the tools we used. As it can be seen in the next section, the

main part of this work is to estimate the upper tail of the exit time from a suitable domain.

The approach we follow is to reduced our problem to the principal eigenvalue of the Markov

process (W (t), X(t)) killed upon the exit from the domain. This approach has been effectively

utilized by Donsker and Varadhan (1975-1983) in their fundamental work on Large deviations

for Markov processes and its applications, and by Pinsky (1985, 1995) and Rémillard (1994)

in various problems involving estimates of exponential type. In Donsker and Varadhan (1975),

the principal eigenvalue is represented in terms of the I-function in large deviation theory.

In Berestycki, Nirenberg and Varadhan (1994), the existence of the principal eigenvalue is

discussed in general setting. Our results require exact evaluation of the principal eigenvalue,

which is beyond the general theory. Fortunately, the generator we deal with is self-adjoint, in

which case the principal eigenvalue can be written as a computable quadratic variation. Some

techniques we use here are partially inspired by the work of Rémillard (1994). To be more

precise, we state our main probability estimate.

Theorem 1.2 Let W and X be given as in Theorem 1.1. Then for d 6= 2,

lim
t→∞

1

t
log P

{
sup
s≤t

|W (s)−X(s)| ≤ 1
}

= −π2

4
. (1.7)

Note that sups≤t |W (s) − X(s)| and sups≤t |W (s) + X(s)| have the same distribution and

we use minus sign for convenience in our proofs. Furthermore, as it can be seen in the next

section, we have the variation formula in the case d = 2, but could not evaluate it explicitly.

We strongly believe that both (1.3) and (1.7) hold for d = 2.

There are two ways to view the estimate in (1.7). The first can be stated as

lim
t→∞

1

t
log P

{
τΓ ≥ t

}
= −π2

4

where τΓ is the first exit time of (d + 1)-dimensional Brownian motion from the unbounded

domain

Γ = {(x, y) ∈ Rd × R : −1 < y − |x|2 < 1}.

In this setup, the generator is the half Laplacian on Rd+1 and the domain is the part between

two parallel right corns. Our approaches detailed in the next section work in this setting
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in principle but more details are needed in the evaluation of the resulting variation formula.

Other related interesting problems and techniques on the first exit times of higher dimensional

Brownian motion from unbounded domains can be found in Bañuelos, DeBlassie and Smits

(2001), Li (2001).

The second way can be stated as

lim
t→∞

1

t
log P

{
τG ≥ t

}
= −π2

4
(1.8)

where τG is the first exit time of the diffusion process (X(t), W (t)) from the unbounded domain

G = {(x, y) ∈ R+ × R : |y − x| < 1}. (1.9)

In this setup, the generator is

Lf(x, y) =
1

2
4f(x, y) +

d− 1

2x

∂

∂x
f(x, y), (x, y) ∈ R+ × R. (1.10)

This is the way we handle the problem in the next section.

Next we make some simple observations. We assume throughout this paper that W (t), Wj(t), j =

1, 2, · · · d are independent standard Brownian motions and thus we can use the representation

X(t) =

(
d∑

j=1

Wj(t)
2

)1/2

= |Bd(t)|2

where Bd(t) = (W1(t), · · · , Wd(t)) ∈ Rd is the standard d-dimensional Brownian motion. It is

well known and follows from rotation invariant that as process,

{(W (t), W1(t)) : t ≥ 0} =

{(
W (t) + W1(t)√

2
,
W (t)−W1(t)√

2

)
: t ≥ 0

}
and thus as process,

{W (t) + |W1(t)| : t ≥ 0} = {
√

2 max(W (t), W1(t)) : t ≥ 0}

by using 2 max(a, b) = a+ b+ |a− b|. This allows us to obtain the following sharp lower bound

in the case d = 1:

P
(

sup
0≤s≤t

|W (s) + |W1(s)|| ≤ 1

)
= P

(√
2 sup

0≤s≤t
|max(W (s), W1(s))| ≤ 1

)
≥ P

(
−1 ≤

√
2W (s) ≤ 1,

√
2W1(s) ≤ 1∀0 ≤ s ≤ t

)
= P

(√
2 sup

0≤s≤t
|W (s)| ≤ 1

)
· P
(√

2 sup
0≤s≤t

W1(s) ≤ 1

)
.
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For d ≥ 1, an easy upper and lower bounds for the probability estimate in Theorem 1.2 can be

found by using the well known estimates

lim
t→∞

1

t
log P

(
sup

0≤s≤t
X(s) ≤ 1

)
= −j2

ν/2 (1.11)

where jν is the smallest positive zero of the Bessel function Jν , ν = (d− 2)/2, and j−1/2 = π/2.

The above estimate can be obtained either from the exact distribution result due to Ciesielski

and Taylor (1962) or from a general principle eigenvalue approach detailed in Donsker and

Varadhan (1976). Now by using the simple fact that

P
(

sup
0≤s≤t

|W (s) + X(s)| ≤ 1

)
≤ P

(
sup

0≤s≤t
|W (s)| ≤ 1

)
via Anderson’s inequality, and

P
(

sup
0≤s≤t

|W (s) + X(s)| ≤ 1

)
≥ P

(
sup

0≤s≤t
|W (s)| ≤ λ

)
· P
(

sup
0≤s≤t

|X(s)| ≤ 1− λ

)
for λ = j

2/3
−1/2/(j

2/3
−1/2 + j

2/3
ν ), we have

−(j
2/3
−1/2 + j2/3

ν )3/2 ≤ lim
t→∞

1

t
log P

(
sup

0≤s≤t
|W (s) + X(s)| ≤ 1

)
≤ −j2

−1/2/2 = −π2/8.

In particular, combining the above estimate with Theroem 1.2, we see that for −1 < ν < −1/2,

jν ≥ (21/3 − 1)3/2J−1/2 = (21/3 − 1)3/2π/2.

Finally, we mention the following heuristic argument which is suggestive but seems impos-

sible to produce a rigorous upper or lower bound. We observe that for fixed s ≥ 0,

W (s) + X(s) = W (s) + sup
|x|2=1

d∑
j=1

xjWj(s) = sup
|x|2=1

(
W (s) +

d∑
j=1

xjWj(s)

)
and for fixed x ∈ Rd with |x|2 = 1,

W (s) +
d∑

j=1

xjWj(s) =
√

1 + |x|22Ŵ (s) =
√

2Ŵ (s)

in distribution where Ŵ is a standard Brownian motion. Jointly, our Theorem 1.2 implies

lim
t→∞

1

t
log P

(
sup

0≤s≤t
|W (s) + X(s)| ≤ 1

)
= lim

t→∞

1

t
log P

(
sup

0≤s≤t
|
√

2W (s)| ≤ 1

)
= −π2

4

where the last equality follows from (1.11).

The rest of the paper is organized as follows. In Section 2, we present the proof of Theorem

1.2 viewed as the first exit time of the diffusion process (X(t), W (t)) from the unbounded

domain G. They are necessary for the proofs of Theorem 1.1 and important in their own. In

Section 3, we give the proof of Theorem 1.1 which also requires some large deviation estimates.
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2 The first exit time and principal eigenvalue

Consider the diffusion process (X(t), W (t) with state space R+ × R and generator given in

(1.10). It is easy to see that as a linear operator on the Hilbert space L2(R+ ×R, π), L is self

adjoint, where π is the measure on R+ ×R given by

π(dx, dy) = xd−1dxdy

and

< Lf, f >π= −
∫

R+×R

|∇f(x, y)|2xd−1dxdy

if f is smooth enough. Write

|f |π =

(∫
R+×R

f 2(x, y)xd−1dxdy

)1/2

.

For an open domain D (with respect to the relative Euclidian topology on R+ ×R) in the

space R+ ×R we define

τD = {t ≥ 0; (X(t), W (t)) 6∈ D}.

Define the semigroup Tt (t ≥ 0) by

Ttf(x, y) = E (x,y)

(
f(X(t), W (t))I{τD≥t}

)
.

Note that P(x,y){τD = 0} = 0 for each (x, y) ∈ D. We have T0 = id. Let C∞
0 (D) be the class

of of functions f continuous on D̄, infinitely differentiable in D and f(∂D) = 0. Notice that

R+×R is a whole space in our setting. In other words a open set D in R+×R may contain the

vertical line segment {(x, y); x = 0 and − 1 < y < 1}, in which case the line segment should

not be viewed as a part of ∂D. By a trivial extension, all functions f in C∞
0 (D) can be viewed

as the functions defined on R+ ×R with f = 0 outside D. For each f ∈ C∞
0 (D),

f(XτD∧t, WτD∧t)−
∫ τD∧t

0

Lf(X(s), W (s))ds

is a martingale. Hence, using the fact that f(∂D) = 0,

1

t

(
Ttf(x, y)− f(x, y)

)
=

1

t

∫ t

0

E (x,y)

(
Lf(X(s), W (s))I{τD≥s}

)
ds −→ Lf(x, y)

as t → 0 and (x, y) ∈ D. Thus the generator LD of Tt coincides with L on C∞
0 (D). Since

C∞
0 (D) is a core we have Tt = etLD on C∞

0 (D).
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Recall the G is given in (1.9). We now prove that

lim
t→∞

1

t
log P

{
max
s≤t

|W (s)−X(s)| < 1
}

= −1

2
inf

|f |π=1, f∈C∞0 (G)

∫
G

|∇f(x, y)|2xd−1dxdy (2.1)

where, by the notations we introduced, C∞
0 (G) is the class of continuous functions f(x, y) on

Ḡ which is infinitely differentiable and f(x, y) = 0 if y − x = ±1.

To show the lower bound we need only to show

lim inf
t→∞

1

t
log P

{
max
s≤t

|W (s)−X(s)| < 1
}
≥ −1

2

∫
G

|∇f(x, y)|2xd−1dxdy (2.2)

for every f ∈ C∞
0 (G) with |f |π = 1 and K = support(f) ⊂ G being compact.

We fix an open domain D in R+ ×R with compact closure such that K ⊂ D ⊂ D̄ ⊂ G.

and (0, 0) ∈ D. Let pD

(
t; (x, y)

)
be the density (with respect to the Lebesgue measure) of the

measure

µ(A) = P{τD ≥ t; (X(t), W (t)) ∈ A}.

Then combining results of Azencott (1984) and Leandre (1987, e.g. Theorem 11.3), we have

inf(x,y)∈K pD

(
to; (x, y)

)
> 0 for some to > 0, see also Stroock and Varadhan (1979).

By Markov property

P{τD ≥ t} = E (0,0)

[
I{τD≥to}P(X(to),W (to)){τD ≥ t− to}

]
=

∫
P(x,y){τD ≥ t− to}pD

(
to, (x, y)

)
dxdy

≥ |f |−1
∞ sup{xd−1; (x, y) ∈ K}−1 inf

(x,y)∈K
pD

(
to, (x, y)

) ∫
f(x, y)P(x,y){τD ≥ t− to}xd−1dxdy

≥ |f |−2
∞ sup{xd−1; (x, y) ∈ K}−1 inf

(x,y)∈K
pD

(
to, (x, y)

) ∫
fTt−tofxd−1dxdy

= c

∫
fe(t−to)LDfxd−1dxdy = c < f, e(t−to)LDf >π

where the third step follows from

P(x,y){τD ≥ t− to} = E (x,y)

(
I{τD≥t−to}

)
≥ |f |−1

∞ E (x,y)

(
f(Xt, Wt)I{τD≥t−to}

)
= |f |−1

∞ Tt−tof(x, y).

We now consider the spectral structure of the self adjoint operator LD. By Jensen’s in-

equality

< f, e(t−to)LDf >π=

∫ 0

−∞
e(t−to)λEf (dλ) ≥ exp

{
(t− to)

∫ 0

−∞
λEf (dλ)

}
7



= exp
{

(t− to) < LDf, f >π

}
= exp

{
− (t− to)

1

2

∫
G

|∇f(x, y)|2xd−1dxdy
}

Here we have used the fact that Ef (dλ) is a probability measure due to∫ 0

−∞
Ef (dλ) = |f |2π = 1.

Hence (2.1) holds.

On the other hand, using the fact that P
{

maxs≤t X(s) ≥ t2} ≤ e−δt2 for any δ > 0 and t

large, we have

lim sup
t→∞

1

t
log P

{
max
s≤t

|W (s)−X(s)| < 1
}
≤ lim sup

t→∞

1

t
log P

{
τDt ≥ t

}
where Dt = {(x, y) ∈ R+ ×R : 0 ≤ x < t2 and |y − x| < 1}.

Next we observe

P
{
τDt ≥ t

}
= E (0,0)

[
I{τDt≥1}P(X(1),W (1)){τDt ≥ t− 1}

]
≤ E (0,0)

[
I((X(1),W (1))∈Dt}P(X(1),W (1)){τDt ≥ t− 1}

]
= C

∫
Dt

P(x,y){τDt ≥ t− 1}xd−1 exp
{
− x2 + y2

2

}
dxdy

≤ C

∫
Dt

P(x,y){τDt ≥ t− 1}xd−1dxdy.

Given ε > 0, let Dε
t be the ε-neighborhood of Dt in R+ ×R and choose a f0 ∈ C∞

0 (Dε
t) such

that f0 ≥ 0 is bounded and f0 ≥ 1 in Dt. Then∫
Dt

P(x,y){τDt ≥ t− 1}xd−1dxdy

≤
∫

Dt

f0(x, y)E (x,y)

[
f0

(
X(t− 1), W (t− 1)

)
I{τDt≥t−1}

]
xd−1dxdy

≤
∫

Dε
t

f0(x, y)E (x,y)

[
f0

(
X(t− 1), W (t− 1)

)
I{τDε

t
≥t−1}

]
xd−1dxdy

= < f0, e
(t−1)LDε

t f0 >π≤ |f0|2π exp
{

(t− 1) sup
|f |π=1, f∈C∞0 (Dε

t )

< f, LDε
t
f >π

}
≤ C1t

2 exp
{
− (t− 1)

1

2
inf

|f |π=1, f∈C∞0 (Dε
t )

∫
Dε

t

|∇f(x, y)|2xd−1dxdy
}

≤ C1t
2 exp

{
− (t− 1)

1

2
inf

|f |π=1, f∈C∞0 (Gε)

∫
Gε

|∇f(x, y)|2xd−1dxdy
}

.

Hence we have

lim sup
t→∞

1

t
log P

{
max
s≤t

|W (s)−X(s)| < 1
}
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≤ −1

2
inf

|f |π=1, f∈C∞0 (Gε)

∫
Gε

|∇f(x, y)|2xd−1dxdy.

Letting ε −→ 0 we have

lim sup
t→∞

1

t
log P

{
max
s≤t

|W (s)−X(s)| < 1
}
≤ −1

2
inf

|f |π=1, f∈C∞0 (G)

∫
G

|∇f(x, y)|2xd−1dxdy. (2.3)

Therefore, (2.1) follows from (2.2) and (2.3).

It remains to show that

inf
|f |π=1, f∈C∞0 (G)

∫
G

|∇f(x, y)|2xd−1dxdy =
π2

2
. (2.4)

Given a ε > 0, we take

fε(x, y) = Cεe
−εx cos

π

2
(y − x)

where the constant Cε > 0 is determined by |fε|π = 1. One can easily check that∫
G

|∇fε(x, y)|2xd−1dxdy =
π2

2
+ ε2

by using |fε|2π = 1. Since ε is arbitrary, we have proved

inf
|f |π=1, f∈C∞0 (G)

∫
G

|∇f(x, y)|2xd−1dxdy ≤ π2

2
. (2.5)

On the other hand, by the substitution g(x, y) = x(d−1)/2f(x, y) we have that for each

f ∈ C∞
0 (G),

|∇f(x, y)|2 = x−(d−1)|∇g(x, y)|2 +
(d− 1)2

4
x−(d+1)g2(x, y)− (d− 1)x−dg(x, y)

∂

∂x
g(x, y).

For d ≥ 3, we have by definition of g that limx→0+ x−1g2(x, y) = 0. Note that∫
G

x−1g(x, y)
∂

∂x
g(x, y)dxdy

=

∫ 1

−1

dy

∫ y+1

0

x−1g(x, y)
∂

∂x
g(x, y)dx +

∫ ∞

1

dy

∫ y+1

y−1

x−1g(x, y)
∂

∂x
g(x, y)dx.

By using integration by parts we see that∫ y+1

0

x−1g(x, y)
∂

∂x
g(x, y)dx

=
1

2
x−1g2(x, y)

∣∣∣x=y+1

x=0
+

1

2

∫ y+1

0

x−2g2(x, y)dx

=
1

2

∫ y+1

0

x−2g2(x, y)dx.

9



Similarly, ∫ y+1

y−1

x−1g(x, y)
∂

∂x
g(x, y)dx =

1

2

∫ y+1

y−1

x−2g2(x, y)dx.

Therefore, ∫
G

x−1g(x, y)
∂

∂x
g(x, y)dxdy =

1

2

∫
G

x−2g2(x, y)dxdy.

Combining above calculation together, we have∫
G

|∇f(x, y)|2xd−1dxdy

=

∫
G

|∇g(x, y)|2dxdy +
(d− 1)2

4

∫
G

x−2g2(x, y)dxdy − (d− 1)

∫
G

x−1g(x, y)
∂

∂x
g(x, y)dxdy

=

∫
G

|∇g(x, y)|2dxdy +
((d− 1)2

4
− d− 1

2

)∫
G

x−2g2(x, y)dxdy.

And thus for d ≥ 3, ∫
G

|∇f(x, y)|2xd−1dxdy ≥
∫

G

|∇g(x, y)|2dxdy.

Hence we obtain

inf
|f |π=1, f∈C∞0 (G)

∫
G

|∇f(x, y)|2xd−1dxdy

≥ inf
{∫

G

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G) and

∫
G

g2(x, y)dxdy = 1
}

. (2.6)

In the case d = 1, (2.6) is automatically holds with equality.

Next we consider the problem over a larger domain with some symmetry. Let G̃ = {(x, y) ∈
R2; |y − x| < 1}. By symmetry between x and y,

inf
{∫

G

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G) and

∫
G

g2(x, y)dxdy = 1
}

= inf
{∫

G̃

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G̃) and

∫
G̃

g2(x, y)dxdy = 1
}

≥ 2 inf
{∫

G̃

( ∂

∂x
g(x, y)

)2

dxdy; g ∈ C∞
0 (G̃) and

∫
G̃

g2(x, y)dxdy = 1
}

= 2 inf
{∫ ∞

−∞
dy

∫ y+1

y−1

( ∂

∂x
g(x, y)

)2

dx; g ∈ C∞
0 (G̃) and

∫
G̃

g2(x, y)dxdy = 1
}

(2.7)

where the first equality in (2.7) needs to be justified. Let

G′ = {(x, y) ∈ R2; (−x,−y) ∈ G}.

Then for each g ∈ C∞
0 (G̃) ∫

G̃

|∇g(x, y)|2dxdy

10



=

∫
G

|∇g(x, y)|2dxdy +

∫
G′
|∇g(x, y)|2dxdy

=

∫
G

|∇g(x, y)|2dxdy +

∫
G

|∇ḡ(x, y)|2dxdy

where ḡ(x, y) = g(−x,−y). Clearly, ḡ ∈ C∞
0 (G). Let

λG = inf
{∫

G

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G) and

∫
G

g2(x, y)dxdy = 1
}

.

Then ∫
G

|∇g(x, y)|2dxdy ≥ λG

∫
G

g2(x, y)dxdy

for every g ∈ C∞
0 (G). Therefore,∫

G̃

|∇g(x, y)|2dxdy ≥ λG

{∫
G

g2(x, y)dxdy +

∫
G

ḡ2(x, y)dxdy

}
= λG

{∫
G

g2(x, y)dxdy +

∫
G′

g2(x, y)dxdy

}
= λG

if
∫

G̃
g2(x, y)dxdy = 1.

On the other hand, if g ∈ C∞
0 (G) and

∫
G

g2(x, y)dxdy = 1 satisfies∫
G

|∇g(x, y)|2dxdy < ε + λG

we define g̃(x, y) ∈ C∞
0 (G̃) by g̃(x, y) = g(x, y)/

√
2 if (x, y) ∈ G and g̃(x, y) = g(−x,−y)/

√
2 if

(x, y) ∈ G′. Then ∫
G̃

g2(x, y)dxdy = 1

and ∫
G̃

|∇g̃(x, y)|2dxdy =

∫
G

|∇g(x, y)|2dxdy < ε + λG.

So

inf
{∫

G̃

|∇g(x, y)|2dxdy; g ∈ C∞
0 (G̃) and

∫
G̃

g2(x, y)dxdy = 1
}
≤ λG

and we finish the justification of (2.7).

Back to the estimate of the lower bound for (2.7). We start with a well known variational

identity (see, c.f., Strassen (1964))

inf
{∫ 1

−1

|h′(x)|2dx; h ∈ C∞
0 (−1, 1) and

∫ 1

−1

|h(x)|2dx = 1
}

=
π2

4
.

Under a simple substitution, this gives that for any y ∈ R and any h ∈ C∞
0 (y − 1, y + 1),∫ y+1

y−1

|h′(x)|2dx ≥ π2

4

∫ y+1

y−1

|h(x)|2dx.

11



Hence we have that for any g ∈ C∞
0 (G̃) with

∫
G̃

g2(x, y)dxdy = 1,∫ ∞

−∞
dy

∫ y+1

y−1

( ∂

∂x
g(x, y)

)2

dx ≥ π2

4

∫ ∞

−∞
dy

∫ y+1

y−1

g2(x, y)dx =
π2

4
.

In view of (2.7),

inf
|f |π=1, f∈C∞0 (G)

∫
G

|∇f(x, y)|2xd−1dxdy ≥ π2

2
. (2.8)

Finally, (2.4) follows from (2.5) and (2.8) and we finish the proof of Theorem 1.2.

We end this section with the following comment: From the proof of (2.8) one can see that

except the case d = 1, the infimum can not be reached. This may suggest that the following

eigenvalue problem

1

2
4f(x, y) +

d− 1

2x

∂

∂x
f(x, y) = −π2

2
f(x, y) (x, y) ∈ G and f(∂G) = 0

does not have a solution which is reasonably smooth in G (Recall that G contains the line

segment x = 0 with −1 < y < 1) unless d = 1, in which case the function

f(x, y) = cos
π

2
(y − x)

solves the equation. In the case d = 5, one can see that the function

f(x, y) = x−1 cos
π

2
(y − x)

solves above eigenvalue problem but f fails to be continuous at x = 0 with −1 < y < 1.

12



3 Limiting behaviors

Let Bd(t) be a d-dimensional Brownian motion independent of W (t). Since X
d
= |Bd|2, W

replace X(t) by |Bd(t)|2 in this section.

We first prove (1.3). By Theorem 1.2 and Borel-Cantelli Lemma, one can easily show that

lim inf
t→∞

√
log log t

t
max
s≤t

∣∣W (s) + |Bd(s)|2
∣∣ ≥ π

2
a.s.

On the other hand, let tk = kk and let λ > π/2 be fixed. By Theorem 1.2,

P
{

max
tk≤s≤tk+1

∣∣(W (s)−W (tk)
)

+ |Bd(s)−Bd(tk)|2
∣∣ ≤ λ

√
tk+1

log log tk+1

}
= P

{
max

s≤tk+1−tk

∣∣W (s) + |Bd(s)|2
∣∣ ≤ λ

√
tk+1

log log tk+1

}
≥ P

{
max
s≤1

∣∣W (s) + |Bd(s)|2
∣∣ ≤ λ

√
1

log log tk+1

}
= exp

{
− π2

4(λ2 + o(1))
log log tk+1

}
.

Consequently∑
k

P
{

max
tk≤s≤tk+1

∣∣(W (s)−W (tk)
)

+ |Bd(s)−Bd(tk)|2
∣∣ ≤ λ

√
tk+1

log log tk+1

}
= ∞.

Thus it follows from Borel-Cantelli lemma that,

lim inf
k→∞

√
log log tk+1

tk+1

max
tk≤s≤tk+1

∣∣(W (s)−W (tk)
)

+ |Bd(s)−Bd(tk)|
∣∣ ≤ λ a.s.

Letting λ −→ π/2 yields

lim inf
k→∞

√
log log tk+1

tk+1

max
tk≤s≤tk+1

∣∣(W (s)−W (tk)
)

+ |Bd(s)−Bd(tk)|
∣∣ ≤ π

2
a.s.

Next note that √
2tk log log tk = o

(√
tk+1

log log tk+1

)
and thus by the standard laws of iterated logarithm,

lim
k→∞

√
log log tk+1

tk+1

max
s≤tk

|W (s)| = 0 a.s.
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and

lim
k→∞

√
log log tk+1

tk+1

max
s≤tk

|Bd(s)|2 = 0 a.s.

Therefore the upper bound of (1.3) in Theorem 1.1 follows from

max
s≤tk+1

∣∣W (s) + |Bd(s)|2
∣∣

≤ max
tk≤s≤tk+1

∣∣(W (s)−W (tk)
)

+ |Bd(s)−Bd(tk)|2
∣∣+ max

s≤tk
|W (s)|+ max

s≤tk
|Bd(s)|2.

We finished the proof of (1.3) in Theorem 1.1.

To prove (1.1) and (1.2) in Theorem 1.1, we need some upper tail estimates. First we show

that

lim
λ→∞

λ−2 log P
{

max
t≤1

(
W (t) + |Bd(t)|2

)
≥ λ

}
= lim

λ→∞
λ−2 log P

{
W (1) + |Bd(1)|2 ≥ λ

}
= −1

4
(3.1)

and

lim
λ→∞

λ−2 log P
{

max
t≤1

(
−W (t)− |Bd(t)|2

)
≥ λ

}
= lim

λ→∞
λ−2 log P

{
−W (1)− |Bd(1)|2 ≥ λ

}
= −1

2
. (3.2)

Consider (W, Bd) as a Gaussian random element in C
{
[0, 1],Rd+1

}
. It follows from standard

large deviation estimate,

lim
λ→∞

λ−2 log P
{
λ−1(W, Bd) ∈ F

}
≤ − inf

(x,y)∈F
I(x, y)

for each close set F ∈ C
{
[0, 1],Rd+1

}
and

lim
λ→∞

λ−2 log P
{
λ−1(W, Bd) ∈ G

}
≥ − inf

(x,y)∈G
I(x, y)

for each open set G ∈ C
{
[0, 1],Rd+1

}
, where

I(x, y) =
1

2

∫ 1

0

{
|ẏ(t)|2 +

d∑
j=1

|ẋj(t)|2
}

.

Thus by contraction principle we only need to show

inf
maxt≤1

(
y(t)+|x(t)|2

)
=1

I(x, y) = inf
y(1)+|x(1)|2=1

I(x, y) =
1

4
(3.3)
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and

inf
maxt≤1

(
−y(t)−|x(t)|2

)
=1

I(x, y) = inf
−y(1)−|x(1)|2=1

I(x, y) =
1

2
. (3.4)

Note that

max
t≤1

(
y(t) + |x(t)|2

)
≤ max

t≤1

√
2
(
|y(t)|2 +

d∑
j=1

|xj(t)|2
)1/2

≤
√

2
√

I(x, y).

On the other hand,

y(1) + |x(1)|2 =
√

2
√

I(x, y)

by taking y(t) = x1(t) = · · · = xd(t) = ct for some positive constant. Hence (3.3) holds.

Similarly, we have

−y(1)− ||x(1)|| ≤ −y(t) ≤
(∫ 1

0

|ẏ(t)|2
)1/2

≤
√

I(x, y)

and,

−y(1)− ||x(1)|| =
√

I(x, y)

by taking y(t) = −ct and x1(t) = · · · = xd(t) = 0. Hence (3.4) holds.

For any r > 1, the upper bounds in (3.1) and (3.2) give, respectively, that∑
k

P
{

max
s≤rk

(
W (s) + |Bd(s)|2

)
≥ (2 + ε)

√
rk log log rk

}
< ∞

and ∑
k

P
{

max
s≤rk

(
−W (s)− |Bd(s)|2

)
≥ (

√
2 + ε)

√
rk log log rk

}
< ∞

where ε > 0 is arbitrary. So Borel-Cantelli Lemma gives that

lim sup
k→∞

1√
rk log log rk

max
s≤rk

(
W (s) + |Bd(s)|2

)
≤ 2 a.s.

and

lim sup
k→∞

1√
rk log log rk

max
s≤rk

(
−W (s)− |Bd(s)|2

)
≤
√

2 a.s.

By making r > 1 arbitrarily close to 1, we have one side of control for (1.1) and (1.2), by a

standard deterministic estimate.

Another side of control needs the lower bounds in (3.1) and (3.2), which gives that∑
k

P
{(

W (rk+1)−W (rk)
)

+ |Bd(r
k+1)−Bd(r

k)|2 ≥ (2− ε)
√

rk+1 log log rk+1
}

= ∞
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and∑
k

P
{
−
(
W (rk+1)−W (rk)

)
− |Bd(r

k+1)−Bd(r
k)|2 ≥ (

√
2− ε)

√
rk+1 log log rk+1

}
= ∞

for sufficiently large r > 1. By Borel-Cantelli lemma

lim sup
k→∞

1√
rk+1 log log rk+1

[(
W (rk+1)−W (rk)

)
+ |Bd(r

k+1)−Bd(r
k)|2
]
≥ 2− ε a.s.

lim sup
k→∞

1√
rk+1 log log rk+1

[
−
(
W (rk+1)−W (rk)

)
− |Bd(r

k+1)−Bd(r
k)|2
]
≥
√

2− ε a.s.

On the other hand, by the classic law of the iterated logarithm,

lim sup
k→∞

1√
rk+1 log log rk+1

(
|W (rk)|+ |Bd(r

k)|2
)
≤ 2

√
2r−1/2

Since r > 1 can be arbitrarily large and therefore ε > 0 arbitrarily small, we have established

the estimate of another side for (1.1) and (1.2).
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