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Abstract. This manuscript introduces a new vortex method based on elliptical Gaussian basis
functions. Each basis function translates, nutates, elongates and spreads through the action of the
local flow field and fluid viscosity. By allowing elements to deform, the method captures the effects of
local flow deviations with a fourth order spatial accuracy. This method uses a fourth order asymptotic
approximation to the Biot-Savart integrals for elliptical Gaussian vorticity distributions to determine
velocity and velocity derivatives. A robust adaptive refinement procedure reconfigures elements that
spread beyond the specified resolution. The high order convergence rate is verified by comparing
calculations with the vortex method to exact solutions in a variety of controlled experiments.

1. Introduction. This paper discusses a new, high spatial order vortex method
that approximates the vorticity field of a fluid flow with elliptical Gaussian basis
functions that translate, spread, elongate and rotate with the flow. The primary
justification for studying the properties of this method is to perform practical calcu-
lations with a small number of computational elements, but also the method possesses
interesting mathematical properties that are interesting in and of themselves.

Vortex methods, arguably more so than any other scheme used to compute fluid
flows, closely resemble a simplified physical model because the evolution of each com-
putational element approximates the evolution of a patch of vorticity. For certain
flows such as the Kida vortex in a linear flow, a “vortex method” consisting of a
single elliptical patch would represent an exact solution to the Euler equations [7].
In the context of this article, no such model exists for an elliptical Gaussian region
of vorticity because this region is not necessarily self-similar under the action of the
Navier-Stokes equations.

Vortex methods approximate the vorticity field as linear combination of either
delta functions (point vortices) or localized basis functions (vortex blobs). The latter
can be viewed as a regularization of the Biot-Savart kernel. The point vortex method
dates back to Rosenhead’s 1932 calculation of vortex sheet instabilities [21]. In a point
vortex calculation, each point vortex moves with the flow velocity measured at the
point vortices’ position, and the greatest difficulty in calculations using point vortices
is the singularity in the induced velocity field. As one increases the spatial resolu-
tion and the distance between computational elements decreases, the velocity field
increases asymptotically requiring smaller time steps. However, despite the stiffness
in point vortex dynamics, these methods are convergent in the sense that trajectories
of the computational elements will approach exact trajectories as one uses more and
more point vortices to approximate the field as shown by Goodman, Hou and Lowen-
grub [3]. However, there is no clear advantage to such a method over regularized
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methods which avoid the stiffness issue entirely, especially if the goal is to examine
solutions to the Navier-Stokes equations where viscous diffusion must be incorporated
somehow.

Regularizing the Biot-Savart velocity calculation is equivalent to using localized
distributions of vorticity rather than point vortices as computational elements, and
understanding how the basis functions evolve is the key to understanding the accu-
racy of the vortex method. The computational elements move with the flow velocity
at the centroid determined from a Biot-Savart integral. The shape of the blob is
justified either mathematically or physically as a regularization of the delta function.
For instance, Gaussian basis functions are a natural viscous regularization of a delta
function source of vorticity. Usually, though not always, the basis functions are radi-
ally symmetric, and the Biot-Savart integral has an analytic solution. References on a
wide variety of vortex method implementations can be found in [2, 12, 25]. In studying
the convergence properties of vortex methods, Beale and Majda proved that certain
radially symmetric functions would yield higher spatial accuracy based on moment
conditions [1, 12]. These moment conditions arise when integrating the basis function
against a Taylor expansion of the vorticity field. Typically, this inviscid analysis de-
composes the approximation into two parts, smoothing error and discretization error.
The former is caused by regularizing the Biot-Savart kernel, and the latter is caused
by interpolating the vorticity field with a finite array of elements separated by some
characteristic distance and is related to the number of continuous derivatives in the
basis function. Winkelsmans and Leonard provide good survey of various regulariza-
tions (basis function shapes) and their accuracies [31]. For instance, a Gaussian basis
function has second order smoothing error and infinite order discretization error. By
selecting an accurate regularization, one can boost the spatial accuracy of the inviscid
part of the vorticity calculation. In another approach, Lowengrub and Shelley have
boosted the order of Lagrangian schemes by coupling point vortex dynamics to an
underlying curvilinear coordinates system that does not necessarily move with the
fluid velocity as Lagrangian methods do [14]. Later, with Merriman, they expanded
this work by incorporating high-order corrections on a rectangular grid to achieve
fourth-order spatial accuracy [15]. A third approach is to have the dynamics of the
basis function coupled to the velocity field and its derivatives. This approach per-
mits more adaptivity in the vortex method toward whatever purpose concerns the
investigator. Furthermore, it is not necessary to restrict one’s analysis to the Euler
equations and then treat viscosity as a separate issue. The resulting method would
require the computational elements to have additional degrees of freedom to capture
the dynamics of the velocity field expansion. These additional degrees of freedom
correspond to a deforming basis function or “blob.”

Many investigators have explored both non-axisymmetric and deforming basis
functions in the hopes that they would adaptively resolve vorticity fields and passive
scalar fields. Meiburg developed a scheme in which radially symmetric blobs repre-
senting sections of a vortex sheet would expand or contract based on normal flow
deviations, but this scheme violates incompressibility and is specialized for vortex
sheets [18]. Marshall and Grant have used highly anisotropic elements to satisfy the
no-slip, no normal flow boundary conditions efficiently. Teng originally used rigid
elliptical patches to resolve boundary layers more efficiently and later used deforming
elliptical patches to simulate the evolution of vortex sheets [27, 28, 29]. This work
was not coupled to any adaptive refinement techniques though Teng does refer to the
necessity of some sort of refinement to make these methods work, and he establishes
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a theoretical O(l2 log l) rate of convergence for his method. Kida et. al. have used
simple core spreading and a second order core spreading method. The secord order
method is similar to that of Lu and Rossi based on an integral correction and con-
tinual regridding of the computational elements [16]. This group has shown that core
spreading without refinement or corrections is valid for small times while the corrected
method is valid for arbitrary finite times [10, 8, 9]. Independently, Rossi proposed a
corrected core spreading vortex method (CCSVM) which refines elements that have
grown beyond a specified core size [22]. This maintains spatial resolution for all finite
time at a cost of introducing more computational elements. Later, Shiels studied the
refinement process in greater detail [26]. To simulate the convection and diffusion
of passive scalar quantities, Leonard used deforming elliptical Gaussian basis func-
tions, noting that they remain self-similar under the linearized convection-diffusion
equations [13]. Up to this point, such approaches have not been considered for vor-
tex methods because there is no known Biot-Savart integral for elliptical Gaussians
that can be expressed in terms of elementary functions. Ojima & Kamemoto pro-
pose a scheme using deforming elements that stretch with local flow deviations, but
the resulting element is replaced with an isotropic element of equal volume at the
end of each timestep, thus avoiding having to calculate the Biot-Savart integral for
anisotropic elements [19].

This paper describes the essentials and some of the practicalities of the Elliptical
Corrected Core Spreading Vortex Method (ECCSVM), but some issues are left to
forthcoming manuscripts. This paper is self-contained in the sense that the method
is completely defined and analyzed. However, several issues that enhance its perfor-
mance considerably are beyond the scope of this work. Specifically, the error bounds
and details of the merging algorithm are left to a future article and do not add any-
thing to the understanding of ECCSVM. However, merging techniques do enhance
the efficiency of ECCSVM considerably. Also, fast summation methods make this
method substantially more practical as problem sizes grow large, but are also beyond
the scope of this paper. §2 is a broad overview of the numerical method. I derive
the ODEs governing the motion and evolution of elliptical basis functions in §3, and
discuss some of their properties. I also describe the behavior of this method relative to
integral invariants of the Navier-Stokes equations. I analyze the residual of linearized
vorticity dynamic operator applied to this method and determine a O(l4) spatial ac-
curacy. In this section, I also calculate a fourth order asymptotic expansion of the
velocity and velocity deviations fields induced by an elliptical Gaussian vorticity field
because there is no known expression for these Biot-Savart integrals as simple combi-
nations of elementary functions. In §4, I describe a spatial refinement procedure for
replacing a wide computational element with a configuration of thinner elements while
introducing a small controllable error. In §5, I perform some sample calculations and
verify that the anticipated rate of convergence is achieved. In §6, I discuss where one
can obtain the source code for ECCSVM and how one can reproduce all the results
discussed all the results discussed in this manuscript.

2. Natural Adaptivity and the Need for Refinement and Merging.
Though the principle advantage of Lagrangian methods is their natural adaptivity,
Lagrangian schemes also have some significant shortcoming, particularly growth in
the number of computational elements. When simulating flows near boundaries, vor-
ticity is created through the no-slip boundary condition and thus new computational
elements must be introduced into the flow. Though redistribution techniques do not
appear to suffer from this shortcoming, they rely upon computational elements al-
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ready being present near solid boundaries, sometime in the form of “ghost particles,”
to exchange vorticity with the wall. Even in flows without boundaries, viscous diffu-
sion will transport vorticity across streamlines requiring some technique of generating
new elements in previously irrotational regions of the flow if one wishes to maintain
spatial accuracy. With core spreading methods, this occurs when the width of a given
blob grows with time. To maintain spatial accuracy however, one must replace wide
elements with thinner elements periodically, and so the problem size grows.

Unfortunately, not all computational elements in a vortex simulation are neces-
sary. For instance, if several elements of the same shape overlap exactly, they can
be replaced by a single element without any change in spatial accuracy. Likewise, a
single element can replace overlapping dissimilar elements at the cost of introducing
small errors into a simulation. A merging algorithm based on this philosophy has been
analyzed for Gaussian basis functions and has played an important role in extended
calculations [23, 24]. Thus, a core spreading algorithm will have the following general
structure.

1. Initialize all vortex elements.
2. The computational elements move and evolve. Solve the system of

ODEs governing the evolution of the computational elements.
3. New elements are generated as needed. If any elements grow wider than

a specified tolerance, replace them with a configuration of thinner elements.
4. Redundant elements are merged with one another, if possible. If a

collection of elements can be replaced by a single element while introducing
an error beneath a specified threshold, replace the collection with a single
element.

5. Return to step 2.

This algorithm can be generalized to other vortex methods besides ECCSVM. For
instance, vorticity redistribution strategies must introduce new elements to diffuse
vorticity away from compact regions. In any method with solid boundaries, vorticity
must be introduced to satisfy the no-slip boundary condition. Naturally, a merging
algorithm would benefit any method.

The issue of problem size control is different from gridded, spectral or finite ele-
ment methods. For the latter methods, the problem size is specified and the resolution
together with the qualities of the exact solution determine the quality of the approx-
imation. For instance, errors enter into any calculation if the computational domain
lacks proper coverage for a given problem. On the other hand, core spreading La-
grangian methods will always maintain adequate coverage of the physical domain, but
the specified resolution may require the problem size to grow. For adaptive schemes,
the quality of the solution is specified by the resolution, and the problem size grows
to accommodate the specified tolerances.

3. The Vortex Method. This section describes the specifics of ECCSVM. Sev-
eral aspects make it more complex than most Lagrangian schemes. For one, it arises
from a higher order approximation of the Navier-Stokes equations. Also, basis func-
tions deform as well as move with the flow. The differential equations governing this
deformation, when expressed in terms of geometric variables, have singularities that
must be considered. Also, in order to establish convergence properties, one must
bound certain basis function parameters. With these results, one can then analyze
the spatial accuracy of the scheme. Finally, one must find an accurate and compu-
tationally feasible means of calculating flow velocities and derivatives induced by an
elliptical Gaussian distribution of vorticity.
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3.1. The Continuous Formulation of Convergence. The governing equa-
tions are the two-dimensional, incompressible Navier-Stokes equations which can be
written in terms of vorticity, ω(x, y, t):

∂tω + (~u · ∇)ω = ν∇2ω

∇ · ~u = 0 (3.1)

where ~u(x, y, t) is the fluid velocity and ω = (∇ × ~u) · ẑ. Since the flow is two-
dimensional, the vorticity is directed exclusively in the vertical direction and is treated
as a scalar quantity.

In previous work on core spreading vortex methods, an alternative formulation of
convergence is proposed wherein the spatial accuracy is measured in terms of the abil-
ity of the semi-discrete vortex method to approximate solutions of the Navier-Stokes
equations [12, 22]. To quantify the spatial accuracy for any Lagrangian method for
solving (3.1), Leonard proposed examining the continuous residual of the approximate
scheme. This residual can be defined in terms of an operator

Rf = ∂tf + ~u · ∇f − ν∇2f (3.2)

where f(x, y, t) is any sufficiently differentiable function and ∇ · ~u = 0. For the fully
nonlinear Navier-Stokes operator. f = ∇ × ~u. To estimate the spatial accuracy
of the high order method, we consider the linearized operator where ~u is a known
function, not determined by f . Thus, the exact velocity field ~u and its derivatives are
known, bounded quantities in this analysis. Within this framework, f is any function
including an exact solution or an approximate solution obtained using a numerical
method, and we refer to Rf as the residual or error associated with f at each point
in space and time. If ω designates an exact solution to (3.1), then

Rω = 0. (3.3)

If we let ω̂(x, y, t) designate an approximation using some numerical scheme, in general
we do not expect the residual, Rω̂, to be zero.

For a core spreading vortex method where the vorticity field is discretized into
blobs that move and spread as usual

ω̂ =

N∑

i=0

f(γi, ~x− ~xi, σi)

f(γ, ~x, σ) =
γ

4πσ2
exp

(
|~x|2

4σ2

)
, (3.4)

one finds that

Rω̂ =

N∑

i=0

∇~xf(γi, ~x− ~xi, σi) · [~u(~xi) − ~u(~x)], (3.5)

suggesting that this residual quantity is bounded by differences between the exact
and approximate velocity across the support of each basis function [22]. That is to
say, each basis function satisfies the local equation

∂tf + ~u(~xi) · ∇f − ν∇2f = 0. (3.6)
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If a basis function, g, satisfied the local equation

∂tg + [~u(~xi) +D~u(~xi)(~x − ~xi)] · ∇g − ν∇2g = 0, (3.7)

where D~u is the matrix of partial derivatives of ~u, the residual for ω̂ would be

Rω̂ =

N∑

i=0

∇~xg · [~u(~xi) +D~u(~xi)(~x − ~xi) − ~u(~x)]. (3.8)

Once can see that (3.7) is a closer approximation to (3.2) and so (3.8) should be of
higher order. A Gaussian will not satisfy (3.7), but an elliptical Gaussian will, and
this is the basis of the high spatial order vortex method.

3.2. The Evolution of Elliptical Gaussians. Elliptical Gaussians have five
internal degrees of freedom: position, ~xi(t), orientation, θi(t), major axis, ai(t), and
core width, σi(t). To approximate a solution to the Navier-Stokes equations, these
basis functions translate, rotate, elongate and spread under the convective action of
the linearized flow field and the diffusive action of viscosity. A single basis function
has the form

g(~x; γi, ~xi, σi, ai, θi) =

γi
4πσ2

i

exp

{
−

[ci(x− xi) + si(y − yi)]
2/a2

i + [−si(x− xi) + ci(y − yi)]
2a2
i

4σ2
i

}
(3.9)

where ci = cos(θi) and si = sin(θi). This formulation where the product of the
semi-major and semi-minor axes is unity isolates the core size parameter, σi, and the
aspect ratio, a2

i . Implementing geometric variables rather than a general quadratic
form as Leonard and Teng have done permits one to more easily control the relevant
convergence parameters, but the distinction is a minor one for all intents and purposes.
Of course, the entire vorticity field is approximated as a linear combination of these
basis functions.

ω̂(~x, t) =

N∑

i=0

g(~x; γi, ~xi, σi, ai, θi) (3.10)

With the exception of γi, all indexed parameters evolve with time.

To derive the evolution equations for the basis function parameters, we apply
(3.8),

∂tg(~x; γi, ~xi, σi, ai, θi) + [~u(~xi) +D~u(~xi)(~x− ~xi)] · ∇~xg(~x; γi, ~xi, σi, ai, θi) =

ν∇2g(~x; γi, ~xi, σi, ai, θi). (3.11)

where ~u(~x) and D~u(~x) arise from Biot-Savart integrations on the Gaussian basis func-
tions. Several expansions and manipulations, explained more completely in Appendix
A, yield the following discrete dynamical system describing the motion and deforma-
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tion of the computational elements:

d

dt
~xi =

[
ui
vi

]

d

dt
(σ2
i ) =

ν

2
(a2
i + a−2

i )

d

dt
(a2
i ) = 2[d11,i(c

2
i − s2i ) + (d12,i + d21,i)cisi]a

2
i +

ν

2σ2
i

(1 − a4
i )

d

dt
θi =

d21,i − d12,i

2
+

[
d21,i + d12,i

2
(s2i − c2i ) + 2d11,isici

]
(a−2
i + a2

i )

(a−2
i − a2

i )
(3.12)

where ~u(~xi) =
[
ui

vi

]
and D~u(~xi) has elements d11,i = du

dx(~xi), d12,i = du
dy (~xi), etc.

From system (3.12), one observes certain properties in these elliptical Gaussians.
The first equation is no surprise. From the second equation, one can see that elonga-
tion of the basis functions augments spreading as one might expect. As with CCSVM,
the width, σi, must be numerically controlled by adaptive refinement. This procedure
will be described in more detail in §4, but here we will use the fact that the refine-
ment procedure exists and guarantees that σi < l where l is a controllable numerical
parameter associated with the accuracy of the method.

In the third equation of (3.12), one can see that in the absence of viscosity, basis
functions can elongate exponentially. However, the growth of the aspect ratio is
bounded above by

a2
i ≤ e2λM t (3.13)

where λM is the largest positive value of λi over a relevant spatial or temporal domain
and

λi = d11,i(c
2
i − s2i ) + (d12,i + d21,i)cisi. (3.14)

For this linearized analysis, we assume ~u and its derivatives are known and bounded,
so one can be certain that λM exists. While this paper focuses on ν 6= 0, it is important
to note that unlimited growth in the aspect ratio as t → ∞ is catastrophic for both
the spatial accuracy as discussed studied later in this section and the asymptotics for
the Biot-Savart integral in §3.5.

To analyze this method, the typical domain is the trajectory of a computational
element through the flow, or perhaps the entire flow over all space and time. The
bound, λM , is valid for all indices, i and all time and assumes unit initial aspect ratios.
If ν 6= 0, viscosity naturally regulates the elongation, and there is an upper bound,
a2
i ≤ a2

M :

a2
M =

2λM l
2

ν
+

√
4λ2

M l
4

ν2
+ 1 = RE +

√
R2

E
+ 1. (3.15)

Thus, the maximum elongation of each basis function is controlled by the dimension-
less quantity

RE =
2λM l

2

ν
(3.16)

which from this point on shall be referred to as the basis function Reynolds num-
ber somewhat related to the grid Reynolds number used to analyze finite difference
schemes.
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Herein lies a hidden advantage of corrected core spreading methods. We shall
see later that the spatial accuracy of this method is O(l2(a2 − a−1)). Thus, an
investigator might be tempted to use two numerical parameters to control l and
a2 − a−1, respectively. In fact, we have just see that this is not necessary. For small
l (and therefore small basis function Reynolds number), we can expand (3.15) as

a2
M ≈ 1 +RE +

1

2
R2

E + . . . = 1 +O(l2) (3.17)

Thus, a2−a−2 = O(l2), and l is the only relevant numerical parameter for this scheme,
and no additional adaptive refinement is required to force the method to converge.

In the fourth equation, we see that rotation is induced through two distinct mech-
anisms. The first term on the right hand side corresponds to revolution due to pure
rotation in D~u. The second term corresponds to rotation induced by strain that is
not aligned with the major or minor axis. This latter term can be a source of stiffness
in the system if ai is close to 1. If a1 is not close to unity, the evolution equations can
be solved directly.

Since one expects some aspect ratios to remain close to 1 in typical flow regimes,
it is crucial that one deal with this stiffness when solving the evolution equations
(3.12) for the vorticity field. When ai is close to unity, the orientation of the element
rapidly moves toward an equilibrium where the two terms in the evolution equation
balance one another. Dropping indices from this point onward, we can calculate these
equilibria by setting d

dtθ = 0 in (3.12).

d21 − d12

2
(a−2 − a2)(c2 + s2) +

[
d21 + d12

2
(s2 − c2) + 2d11sc

]
(a−2 + a2) = 0 (3.18)

Collecting like terms in c and s and dividing by c2, one arrives as a quadratic equation
for tan θ. Solving this equation, one finds that the four equilibria (two from the
quadratic plus two from the twofold symmetry of the basis function) are described by

tan(θ±) = −k ±

√
k2 +

a−2d12 + a2d21

a2d12 + a−2d21
,

k =
d11(a

2 + a−2)

a2d12 + a−2d21
(3.19)

Of course, one root corresponds to a stable equilibrium and the other corresponds
to an unstable equilibrium. If a is close to unity and the problem is very stiff, one
can effectively and accurately integrate (3.12) by assuming that the orientation of
the computational element is evolving through stable, local equilibrium so that θ ≡
θ(D~u, a) found by solving (3.19). Therefore, one integrates only a and σ in time.

The analysis in the section can be summarized as follows:

• In a linearized regime where the velocity field is known, the basis function
Reynolds number (3.16) remains bounded, independent of the dynamics of
the basis function.

• If ν 6= 0, the aspect ratio of every blob is bounded by (3.15).
• One can numerically integrate (3.12) directly except when ai passes through

unity. In this case, one can integrate the system by enslaving the orientation
variable to the aspect ratio and width, and proceeding directly.



ELLIPTICAL GAUSSIAN VORTEX METHODS 1 9

3.3. The High Spatial Order Residual. As noted earlier, one can examine
the accuracy of a vortex method by considering the residual of (3.2). This section is
not intended to be a full convergence proof. A full convergence proof would follow the
same form as that which was used for CCSVM (described in [22]), but the essential
changes which examine the deformation terms are contained here. We linearize the full
vorticity dynamics operator, R, and suppose that the velocity field and the deviation
tensor is specified. Though the full nonlinear problem is more challenging, the rate of
convergence is the key issue, and the linear problem establishes the rate of convergence
as l → 0, because the computed velocity field converges to the true velocity field in
this same limit.

A new issue that is unique to using elliptical Gaussians is that the computed
velocity field is, in fact, an approximation of the Biot-Savart integral for the approx-
imate vorticity field, ω̂. In other words, the velocity field and velocity field deviation
calculation is an approximation based on an approximation. As will be shown in
§3.5, the approximation to the Biot-Savart integral is fourth order in 1 − ai. Since
1−a2

i = O(l2) and 1−a2
i = (1−ai)(1+ai), the approximation to the velocity field and

its derivatives converges with a O(l8) which far exceeds the overall spatial accuracy
of the method.

The total residual of a computational element under the dynamics of (3.12) is

∫ ∞

−∞

∫ ∞

−∞

R [g(~x)] d~x =

∫ ∫
∇g · [−

1

2
D2~u(~xi)(~x − ~xi, ~x− ~xi)

−
1

3!
D3~u(~xi)(~x− ~xi, ~x− ~xi, ~x− ~xi)

−
1

4!
D4~u(~xi)(~x− ~xi, . . . , ~x− ~xi)

−
1

5!
D5~u(~ξi)(~x− ~xi, . . . , ~x− ~xi)]d~x, (3.20)

where D2~u(~xi) (the “Hessian”) is a second order tensor or bilinear operator of velocity
derivatives evaluated at the basis function center, ~xi. Similarly, D3~u(~xi) is a trilinear

operator of velocity derivatives. For the last term in the expansion, ~ξi is a point on
the line segment joining ~x and ~0. From this point on, the tensors (including their
constituents) are evaluated at ~xi, and references to ~xi will be excluded in the interest
of brevity. Without loss of generality, let us assume that the basis function (3.9) is
located at the origin and oriented along the coordinate axes so that ~xi = ~0, ci = 1
and si = 0. Then,

∇g =
γi

8πσ4
exp

[
−

(
x(1)

)2

4σ2
i a

2
i

−

(
x(2)

)2
a2
i

4σ2
i

] [(
x(1)

)
a−2
i(

x(2)
)
a2
i

]
. (3.21)

Here, it is convenient to use index notation so that x(1) = x and x(2) = y because we
will have many repeated indices when analyzing the D3~u term of (3.20).

In the first combination of terms in (3.20), one sees that

∇g ·D2~u(~0)(~x, ~x) =
γi

8πσ4
i

exp

[
−

(
x(1)

)2

4σ2
i a

2
i

−

(
x(2)

)2
a2
i

4σ2
i

]
∂2uj

∂xk∂xm

xjxkxm, (3.22)

where one sums over repeated indices. Since the partial derivatives composing the
Taylor coefficients are evaluated at the center of the basis function and therefore
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remain fixed, any combination of j, k,m will involve an odd moment on the elliptical
Gaussian. Therefore,

∫ ∫
∇g ·D2~u(~0)(~x, ~x)d~x = 0. (3.23)

On the surface, it would appear that the second combination of terms has even mo-
ments and so will determine the rate of convergence for the whole method. I save this
portion for last because it is contains a pleasant surprise in this respect. Similar to
the first combination, the third combination in (3.20),

∫∫
∇g ·D4~u(~0)(~x, ~x, ~x, ~x)d~x = 0 (3.24)

for the same reason. The last term actually determines one piece of the convergence
rate

∫∫
∇g ·D5~u(ξi)(~x, . . . , ~x)d~x = O(l4) (3.25)

because σi ≤ l.

Returning to the second combination, even moments are possible:

∫∫
∇g ·D3~u(~0)(~x, ~x, ~x)d~x =

∫∫
γi

8πσ4
exp(. . .)

∂3uj

∂xk∂xm∂xn

xjxkxmxn.

=

∫∫
γi

8πσ4
exp(. . .)


 ∂3u(1)

∂(x(1))
3

(
x(1)

)4

+

3
∂3u(1)

∂x(1)∂(x(2))2

(
x(1)

)2 (
x(2)

)2

+

3
∂3u(2)

∂(x(1))
2∂x(2)

(
x(1)

)2 (
x(2)

)2

+

∂3u(2)

∂(x(2))
3

(
x(2)

)4


 d~x. (3.26)

Applying incompressibility to the two middle expressions in the summation yields

∫∫
∇g ·D3~u(~0)(~x, ~x, ~x)d~x =

∫∫
γi

8πσ4

∂3uj

∂xk∂xm∂xn

exp(. . .)xjxkxmxnd~x

=

∫∫
γi

8πσ4
exp(. . .) ×




∂3u(1)

∂(x(1))3

[(
x(1)

)4

− 3
(
x(1)

)2 (
x(2)

)2
]

+

∂3u(2)

∂(x(2))3

[(
x(2)

)4

− 3
(
x(1)

)2 (
x(2)

)2
]
 d~x.(3.27)
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Evaluating the integral, one finds
∫∫

∇g ·D3~u(~0)(~x, ~x, ~x)d~x =
γi

8πσ4
12σ4

i (a
−4
i + a4

i − 2)

=
3γi
2π

(a−2 − a2)2. (3.28)

Since convergenc will depend upon the total residual, γi plays no role in the rate of
convergence. Since |a−1−a| ≤ 2RE = O(l2) and if we make the reasonable restriction
that γi = O(l2), we can see that the contribution from the third differential tensor is
O(l4), proving the following theorem.

Theorem 1. If ~u and its derivatives are specified and bounded, the residual from
the vorticity dynamics operator, (3.2), induced by an elliptical Gaussian basis function
acting under system (3.12) is O(l4).

We have established in this section that deforming basis functions induce fourth
order spatial errors over the entire domain. This error estimate using residuals is not
restricted to a particular norm, so that even uniform error estimates are possible as
they were for CCSVM. We have also eluded to the necessity of a refinement procedure
that will be discussed in §4 so that basis functions will not spread beyond a specified
width l.

3.4. Integral Invariants. The vorticity dynamics equations (3.2,3.3) have many
known integral invariants, so one hopes that the computational method also preserves
these properties. Of course, a convergent method will satisfy these properties approx-
imately, but some methods have the advantage of mimicking the physical structure of
solutions to Navier-Stokes (3.2,3.3) by capturing certain integral invariants exactly.
Unfortunately, ECCSVM does not have the property of exactly preserving first or
second integral moments. Since merging and refinement (see §4) preserve all first and
second moments, only the dynamics of ECCSVM will affect the integral invariants of
the approximation.

Satisfying the first moment of vorticity is a problem for vortex methods using
blobs of dissimilar width [12] though for corrected core spreading methods these dis-
crepancies are controlled automatically by the parameter α because it both restricts
the variation in σi and bounds ai close to unity. Solutions of Navier-Stokes also satisfy
satisfies the relation

d

dt

(∫∫
|~x|2ωd~x

)
= 4ν

∫∫
ωd~x (3.29)

for the second moment of vorticity. For an elliptical Gaussian blob of unit circulation,
the second moment is given by 2σ2

i (a
2
i +a−2

i ). Here, indices are not necessary because
this only concerns one blob. The evolution of the second moment is derived from the
system (3.12).

d

dt
[2σ2(a2 + a−2)] = 4ν − σ2(a−2 − a2)

[
d11(c

2 − s2) + cs(d12 + d21)
]

(3.30)

Of course, the first term is the exact physical integral invariant. The second term is
O(l4) because σ2 ∈ [α2σ2, σ2] and

|a−2 − a2| ≤ 2RE = O(l2). (3.31)

The remaining term involves the flow derivatives which are assumed to be bounded.
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3.5. Asymptotic Calculation of Velocity and Velocity Derivatives.. The
evolution equations for the elliptical Gaussian basis functions depend upon ~u and D~u,
but unlike the most other basis functions used for vortex methods, there is no known
expression for these induced fields in terms of simple functions. However, the induced
velocity and velocity deviations can be written as a regular perturbation in the small
parameter

ε =
a− 1

a+ 1
, (3.32)

expanding these field as a deviates from unity. A fourth order approximation produces
excellent agreement with the exact solution in the near field, and it automatically
converges in the far field where the aspect ratio is not important. Since the dynamics
of ECCSVM in the appropriate convergent limit also forces a2

i − 1 = (ai − 1)(ai + 1)
to converge to zero, the asymptotic approximation is guaranteed to converge to the
exact velocity field in the same limit.

Without loss of generality, the elliptical Gaussian element basis function is cen-
tered at the origin, and its major and minor axes are aligned with the coordinate axes
(θ = 0):

f(R; γ, σ, a) =
γ

4πσ2
e−R

2/4σ2

, (3.33)

R2 = x2/a2 + y2a2. (3.34)

The variable R is a continuous index of level sets of the elliptical Gaussian element.
Though one could express the velocity fields as a full two dimensional Biot-Savart
integral, one can also use the fact that the streamfunction (and therefore all deriva-
tives) of an elliptical patch of vorticity with unit density and semimajor and minor
axes of l1 and l2 can be determined using elliptical coordinates [11]:

ψ =





1
2π(l1+l2)

(
x2

l1
+ y2

l2

)
, (x, y) ∈ E(l1, l2)

1
2π

[
ln
(
α+β
l1+l2

)
+

x2

α
+ y2

β

α+β

]
, (x, y) /∈ E(l1, l2)

(3.35)

α =
√
l21 + ξ (3.36)

β =
√
l22 + ξ (3.37)

1 =

(
x2

l21 + ξ

)
+

(
y2

l22 + ξ

)
(3.38)

where E(l1, l2) is the support of the ellipse and

~u =

[
u

v

]
=

[
−∂ψ
∂y

∂ψ
∂x

]

.

The streamfunction induced by an elliptical blob can be expressed as an infinite
sum of uniform elliptical patches. For each value of R in (3.33), the constituent patch
would have density πR2(−∂Rf)dR and axes l1 = Ra and l2 = R/a. Adding all these
patches together to form an elliptical Gaussian blob, one can calculate the value of
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the streamfunction at a point (x̄, ȳ)

ψ(x̄, ȳ) = −

∫ R̄

0

ψ1∂RfR
2dR−

∫ ∞

R̄

ψ2∂RfdR (3.39)

ψ1 =
1

2




(
x̄2

α + ȳ2

β

)

α+ β
+ ln

(
α+ β

Ra+R/a

)


ψ2 =
1

2

x̄2

a2 + ȳ2a2

a+ 1/a

α =
√
R2a2 + ξ

β =

√
R2

a2
+ ξ (3.40)

Rather than using the implicit relation in equation (3.38), we can use the quadratic
solution

ξ =
1

2



ρ̄

2 −R2

(
a2 +

1

a2

)
+

√[
R2

(
a2 +

1

a2

)
− ρ̄2

]2
+ 4R2(R̄2 −R2)



 (3.41)

where ρ̄2 = x̄2 + ȳ2 and R̄2 = x̄2

a2 + ȳ2a2. Important limits to be used later are ξ → ρ̄2

as R → 0 and ξ → 0 as R→ R̄.
While ψ2 is constant with respect to R making the second term on the right side

of (3.39) elementary to integrate, ψ1 is not readily expressed in terms of the variable
R making the first term problematic. However, one can approximate ψ1 in powers
of the small parameter ε. Expanding in ε rather than R has the advantage that ε
can be made to be a truly small parameter. The parameter R is not guaranteed
to be small relative to σ since one may wish to use the streamfunction virtually
anywhere in the domain, so the series may converge slowly. Also, expanding in ε will
yield a uniformly valid approximation of ψ1 over the entire domain. The elliptical
radius, R, is the natural variable of integration. At the same time, R̄ is a parameter
representing one possible combination of x̄ and ȳ. One of many possible complements

is T̄ where T̄ 2 = x̄2

a2 − ȳ2a2. Combined with the fact that the streamfunction must
retain a twofold symmetry about the major and minor axes, the streamfunction can be
expressed as a function of R̄ and T̄ . One could also use coordinates radially symmetric
coordinates such as x̄2 + ȳ2 and x̄2− ȳ2, but it was found that these parameters yields
less accurate streamfunction approximations because they do not explicitly contain
information about the elliptical geometry. For instance, a term involving x̄2 + ȳ2 must
be corrected at the next order of ε to express information about the elliptical radius.

From (3.32), we can use

a =
1 + ε

1 − ε
, (3.42)

to find that

ρ̄2 = R̄2 + 4εS̄2 − 8ε2R̄2 + −20ε3S̄2 + 48ε4R̄2 +O(ε5), (3.43)

where S̄2 = x̄2 − ȳ2, so that

S̄2 = T̄ 2 + 4εR̄2 + 8ε2T̄ 2 + 12ε3R̄2 + 16ε4T̄ 2 +O(ε5), (3.44)
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Fig. 3.1. A example of the accuracy of the fourth order asymptotic expansion of Ψ1. A second-
order (squares) and fourth-order (diamonds) expansion are shown together with the exact function
(circles). The aspect ratio of 5.44. . . (ε = 0.4) is chosen intentionally to be large to demonstrate
that the fourth order approximation is quite robust. The streamfunction is calculated with x̄ = 1 and
ȳ = 1 on the left and x̄ = 1

2
and ȳ = 1 on the right.

and therefore

ρ̄2 = R̄2 + 4εT̄ 2 + 8ε2R̄2 + 12ε3T̄ 2 + 16ε4R̄4 +O(ε5). (3.45)

Substituting the expression above into the streamfunctions (3.40) and (3.41) and
expanding in powers of ε, one obtains

ψ1 =
1

4

[
1 + ln

(
R̄2

R2

)]
+ ε

(
T̄ 2

R̄2
−

1

2

T̄ 2R2

R̄4

)
+

ε2
[
1 − 2

T̄ 4

R̄4
+

(
−2 + 4

T̄ 4

R̄4

)
R2

R̄2
+

(
1 − 2

T̄ 4

R̄4

)
R4

R̄4

]
+

ε3
[
16

3

T̄ 6

R̄6
− 5

T̄ 2

R̄2
+

(
37

2

T̄ 2

R̄2
− 24

T̄ 6

R̄6

)
R2

R̄2
+

(
−24

T̄ 2

R̄2
+ 32

T̄ 6

R̄6

)
R4

R̄4
+

(
10
T̄ 2

R̄2
−

40

3

T̄ 6

R̄6

)
R6

R̄6

]
+

ε4
[
−4 + 20

T̄ 4

R̄4
− 16

T̄ 8

R̄8
+

(
20− 136

T̄ 4

R̄4
+ 128

T̄ 8

R̄8

)
R2

R̄2
+

(
−42 + 324

T̄ 4

R̄4
− 320

T̄ 8

R̄8

)
R4

R̄4
+

(
40− 320

T̄ 4

R̄4
+ 320

T̄ 8

R̄8

)
R6

R̄6
+

(
−14 + 112

T̄ 4

R̄4
− 112

T̄ 8

R̄8

)
R8

R̄8

]
+O(ε5)

ψ2 =
1

2

[
1

2
R̄2 + εT̄ 2 − ε3T̄ 2

]
+O(ε5). (3.46)

Since ψ2 does not vary with R, the main concern is that ψ1 remain accurate over
R ∈ [0, R̄].

In addition to being an excellent approximation to the exact streamfunction (see
Fig. (3.1)), the asymptotic approximation (3.46) has two important advantages. First,
the fourth order approximation in ε (3.46) can be integrated exactly in equation (3.39)
because derivatives of (3.46) involve only even powers of R. Therefore, calculating
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velocities and velocity deviations is simply a matter of differentiating the exact ex-
pression with respect to x̄ and ȳ. No term from the “Leibnitz rule” is retained
when differentiating because ψ is continuous and continuously differentiable across
the boundary at R = R̄. Second, incompressibility is exactly preserved both locally
and globally using the approximate streamfunction as would not be case if one were
to numerically approximate the Biot-Savart integrals.

Observing that the fourth order approximation for the streamfunction involves
only zeroth, second, fourth and sixth moments of ∂Rf , we anticipate that all integrals
approximating velocities, u = −∂yψ, v = ∂xψ, as well as velocity deviations ∂xu =
−∂xyψ, etc. will involve integrals of the form,

I = −

∫ R̄

0

R2(C0 + C1R
2 + C2R

4 + C3R
6 + C4R

8)∂RfdR− C5f(R̄)

=
γ

2π

{
2C0 + 16C1σ

2 + 192C2σ
4 + 3072C3σ

6 + 61440C4σ
8

−

[
C0

(
R̄2

2σ2
+ 2

)
+ C1

(
R̄4

2σ2
+ 4R̄2 + 16σ2

)

+C2

(
R̄6

2σ2
+ 6R̄4 + 48R̄2σ2 + 192σ4

)

+C3

(
R̄8

2σ2
+ 8R̄6 + 96σ2R̄4 + 768σ4R̄2 + 3072σ6

)

+C4

(
R̄10

2σ2
+ 10R̄8 + 160σ2R̄6 + 1920σ4R̄4 + 15360σ6R̄2 + 61440σ8

)

−
C5

2σ2

]
exp

(
−
R̄2

4σ2

)}
. (3.47)

The coefficients, Ci, (i = 0, 1, 2, 3, 4), have been determined after many manipulations
and reductions. One can exploit symmetries in ψ and reduce the amount of work by
a factor of two by storing intermediate variables cEven

i and cOdd
i , listed in Table (3.1).

For u = −∂yψ,

Ci = −
ȳ

2

(
cEven
i − cOdd

i

)
, (3.48)

and for v = ∂xψ,

Ci =
x̄

2

(
cEven
i + cOdd

i

)
. (3.49)

Similarly, one can use the fourth order expand of ψ1 to evaluate second spatial
derivatives that are necessary to calculate flow deviations. The necessary additional
intermediate coefficients are tabulated in Table (3.2). For ∂yu = −∂yyψ,

Ci = −
1

2

(
cEven
i − cOdd

i

)
−
ȳ2

R̄2

(
dEven
i − dOdd

i

)
, (3.50)

and for ∂xv = ∂xxψ,

Ci =
1

2

(
cEven
i + cOdd

i

)
+
x̄2

R̄2

(
dEven
i + dOdd

i

)
. (3.51)
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Function

cEven
0

1
R̄2

[
1 − 4ε T̄

2

R̄2 + ε2
(
−8 + 16 T̄

4

R̄4

)
+ ε3

(
52 T̄

2

R̄2 − 64 T̄
6

R̄6

)
+

ε4
(
48− 288 T̄

4

R̄4 + 256 T̄
8

R̄8

)]

cOdd
0 0

cEven
1

ε
R̄4

[
4 T̄

2

R̄2 + ε
(
16− 48 T̄

4

R̄4

)
+ ε2

(
−244 T̄

2

R̄2 + 384 T̄
6

R̄6

)
+

ε3
(
−288 + 2400 T̄

4

R̄4 − 2560 T̄
8

R̄8

)]

cOdd
1

ε
R̄4

[
−2 + ε16 T̄

2

R̄2 + ε2
(
26 − 96 T̄

4

R̄4

)
+ ε3

(
−288 T̄

2

R̄2 + 512 T̄
6

R̄6

)]

cEven
2

ε2

R̄6

[
−8 + 32 T̄

4

R̄4 + ε
(
352 T̄

2

R̄2 − 640 T̄
6

R̄6

)
+

ε2
(
656− 6464 T̄

4

R̄4 + 7680 T̄
8

R̄8

)]

cOdd
2

ε2

R̄6

[
−16 T̄

2

R̄2 + ε
(
−64 + 256 T̄

4

R̄4

)
+ ε2

(
1312 T̄

2

R̄2 − 2560 T̄
6

R̄6

)]

cEven
3

ε3

R̄8

[(
−160 T̄

2

R̄2 + 320 T̄
6

R̄6

)
+ ε
(
−640 + 7040 T̄

4

R̄4 − 8960 T̄
8

R̄8

)]

cOdd
3

ε3

R̄8

[(
40− 160 T̄

4

R̄4

)
+ ε
(
−1920 T̄

2

R̄2 + 3840 T̄
6

R̄6

)]

cEven
4

ε4

R̄10

(
224− 2688 T̄

4

R̄4 + 3584 T̄
8

R̄8

)

cOdd
4

ε4

R̄10

(
896 T̄

2

R̄2 − 1792 T̄
6

R̄6

)

cEven
5 1
cOdd
5 −2ε+ 2ε3

Table 3.1

Table of coefficients for velocity calculations

For ∂yv = −∂xu = ∂xyψ, some intermediate variables can be recycled once again.

C0 =
x̄ȳ

R̄2
dEven
0

C1 =
x̄ȳ

R̄2
dEven
1

C2 =
x̄ȳ

R̄2
e2

C3 =
x̄ȳ

R̄2
e3

C4 =
x̄ȳ

R̄2
e4

C5 = 0 (3.52)

While a second order expansion in ε was not sufficiently close to the streamfunction
(see Fig. (3.1)) for the calculation of either first or second derivatives, Fig. (3.2)
demonstrates that the fourth order approximation yields very accurate results.

4. Adaptive Refinement (Splitting Elements). Spatial refinement plays the
same role for ECCSVM as it does for CCSVM. In CCSVM, a Gaussian blob which has
spread beyond a prescribed spatial resolution l would be replaced an overlapping con-
figuration of “thinner” blobs. The new configuration would approximate the original
element in same sense whether it is minimizing errors or conserving moments. One
should observe that the original refinement procedure for CCSVM only conserved a



ELLIPTICAL GAUSSIAN VORTEX METHODS 1 17

Function

dEven
0

1
R̄2

[
−1 + 8ε T̄

2

R̄2 + ε2
(
16 − 48 T̄

4

R̄4

)
+ ε3

(
−168 T̄

2

R̄2 + 256 T̄
6

R̄6

)
+

ε4
(
−160 + 1248 T̄

4

R̄4 − 1280 T̄
8

R̄8

)]

dOdd
0 0

dEven
1

ε
R̄4

[
−12 T̄

2

R̄2 + ε
(
−48 + 192 T̄

4

R̄4

)
+ ε2

(
1020 T̄

2

R̄2 − 1920 T̄
6

R̄6

)
+

ε3
(
1248− 12672 T̄

4

R̄4 + 15360 T̄
8

R̄8

)]

dOdd
1

ε
R̄4

[
8 − ε96 T̄

2

R̄2 + ε2
(
−168 + 768 T̄

4

R̄4

)
+ ε3

(
2496 T̄

2

R̄2 − 5120 T̄
6

R̄6

)]

dEven
2

ε2

R̄6

[
8 − 160 T̄

4

R̄4 + ε
(
−1408 T̄

2

R̄2 + 3840 T̄
6

R̄6

)
+

ε2
(
−2768 + 36160 T̄

4

R̄4 − 53760 T̄
8

R̄8

)]

dOdd
2

ε2

R̄6

[
128 T̄

2

R̄2 + ε
(
512− 2560 T̄

4

R̄4

)
+ ε2

(
−13568 T̄

2

R̄2 + 30720 T̄
6

R̄6

)]

dEven
3

ε3

R̄8

[(
480 T̄

2

R̄2 + −2240 T̄
6

R̄6

)
+ ε
(
1920− 38400 T̄

4

R̄4 + 71680 T̄
8

R̄8

)]

dOdd
3

ε3

R̄8

[(
−320 + 1920 T̄

4

R̄4

)
+ ε
(
21760 T̄

2

R̄2 − 53760 T̄
6

R̄6

)]

dEven
4

ε4

R̄10

(
−224 + 13440 T̄

4

R̄4 − 32256 T̄
8

R̄8

)

dOdd
4

ε4

R̄10

(
−10752 T̄

2

R̄2 + 28672 T̄
6

R̄6

)

dEven
5 0
dOdd
5 0

e2

ε2

R̄6

[
40− 160 T̄

4

R̄4 + ε
(
−1920 T̄

2

R̄2 + 3840 T̄
6

R̄6

)
+

ε2
(
−3600 + 41280 T̄

4

R̄4 − 53760 T̄
8

R̄8

)]

e3
ε3

R̄8

[(
1120 T̄

2

R̄2 − 2240 T̄
6

R̄6

)
+ ε
(
4480− 53760 T̄

4

R̄4 + 71680 T̄
8

R̄8

)]

e4
ε4

R̄10

(
−2016 + 24192 T̄

4

R̄4 − 32256 T̄
8

R̄8

)

Table 3.2

Table of coefficients for velocity deviation calculations

composite second moment (
∫∫

(x2 + y2)f(x, y)dxdy). In the case of elliptical Gaus-
sian basis functions, it is possible to conserve all second moments. Necessarily, any
refinement process must reduce the core width to maintain consistency.

Adaptive refinement for ECCSVM with four elements is a direct adaptation of
adaptive refinement for CCSVM [22]. Rather than arranging the configuration uni-
formly around the element centroid, one arranges the elements on an ellipse around
the centroid. Without loss of generality, the arrangement can be considered to have
its centroid at the origin and its principal axes aligned with the cardinal axes. Using
(3.9) with θ = 0 for can examine the difference between an element and four thinner
replacements:

δω̂ = g(~x; γ, (0, 0), σ, a, 0)−

[g(~x; γ/4, (rσ/a, 0), ασ, a, 0) + g(~x; γ/4, (−rσ/a, ), ασ, a, 0)+

g(~x; γ/4, (0, raσ), ασ, a, 0) + g(~x; γ/4, (0,−raσ), ασ, a, 0)] (4.1)

where α is a controllable parameter governing the accuracy of the refinement process
and r must be determined. If one is trying to conserve moments, one of the advantages
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Fig. 3.2. Sample velocity (left) and velocity derivative (right) calculations for an elliptical
Gaussian element. In this case, ε = 0.2 corresponding to an aspect ratio of 2.25. One can see that
corresponding symbols cover one another indicating a very accurate match between the asymptotic
approximation and the “exact” quantity that is calculated numerically to machine precision.

of this procedure using four elements is that it preserves the aspect ratio of the
original element. This system automatically conserves zeroth and first moments by
construction. The symmetries built into this form also allow one to conserve all second
moments with an appropriate choice of r = 2σ

√
(1 − α2).

While conserving moments was the approach originally proposed by Rossi in [22],
Shiels studied refinement to a greater extent in [26]. Shiels tried a variety of different
configurations other than one to four, but found that none substantially affected the
induced refinement error. Shiels observed that combinations and cancellations during
an extended simulation would affect the cumulative affect of refinement. Shiels per-
formed an exhaustive search for an optimal function, r = f(α)σ, that would minimize
the cumulative refinement error through a series of refinement events. He computed
f(α) by collecting optimal values of f in a number of Lamb monopole simulations,
and from his data for the interval 0.6 ≤ α ≤ 0.8, he proposed a linear model:

f(α) = 3.9− 3.6α.

Unfortunately, accumulations and cancellations are strongly dependent on the flow
structure, so that what might be optimal for one flow, may not be for another. Also,
this particular linear model is inconsistent as α → 1.

At least at this point, local analysis of a single refinement event is the best way
to proceed. Conserving second moments,

f(α) = 2
√

1 − α2,

may not result is the least induced refinement error. This is true both instanta-
neously (see Fig. (4.1)) and as a cumulative effect for the Lamb-Oseen monopole
[26]. However, it is a consistent means of determining f(α). Fig. (4.1) compares a
numerically-computed optimal curve to both the linear model and the model which
conserves the second moment. To find a consistent fit to the optimal computation,
we seek a function the form

f(α) =
√

(1 − α)(C1α+ C2).

The best (least squares) fit to this curve using the data in Fig. (4.1) is

f(α) =
√

(1 − α)(9.7052α− 1.7235) (4.2)
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Fig. 4.1. Refinement radius (left) and instantaneous induced errors (right) for 1 → 4 refine-
ment. The “optimal” curve is calculated numerically to minimize the induced l2 error for a single
splitting event. The second moment curve converges to the optimal curve as α → 1. The linear
model is inconsistent. However, it should also be noted that Sheils only performed his computations
over a limited range of α from 0.6 to 0.8, and in this subrange, the linear model outperforms the
conservative second moment radii.

provides an excellent fit to the numerically computed curve as seen in Fig. (4.1).
With the exception of the linear model, the error induced by a single refinement

event will go to zero as α → 1. However, the number of refinements will grow as α→ 1
because elements are not being refined as much. Knowing that 1

2 (a2 + a−2) ≥ 1, one
can see from (3.12) that if ∆t is the interval between refinement events,

∆t ≤
l2(1 − α2)

ν
. (4.3)

Rossi analyzed the second moment method as applied to CCSVM and determined its
convergence rate over a fixed duration for any α to be O(l2) + O[l(1 − α2)]. While
the same method of analysis is not applicable to ECCSVM, the procedure is similar
enough that one would expect similar convergence behavior although the question
remains open.

5. Sample Calculations. The spatial convergence rate of ECCSVM is demon-
strated by using it to compute the flow induced by an Lamb-Oseen monopole which
has known exact solutions. We choose one corresponding to a circulation of π and an
initial core size of 1/4:

ω(~x, t) =
1

4( 1
16 + νt)

exp

[
−

|~x|2

4( 1
16 + νt)

]
(5.1)

Here, we choose the viscosity to be ν = 1
100 . While ECCSVM maintains its accuracy

using spatial refinement, we shall intentionally integrate the flow over a short enough
time to avoid refinement and therefore avoid refinement-induced errors. By removing
this effect, we eliminate all sources of error except spatial error and temporal integra-
tion error. To gauge nonlinear effects, we perform each computation both in a linear
regime where the exact velocity is specified, and a nonlinear regime where the flow is
computed via the Biot-Savart integration.
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Each flow is integrated out to T = 0.1 which corresponds to about 1/30th of a
turnover with a timestep of 2.5 × 10−3 for a total of 40 steps. The system (3.12) is
integrated using a split step scheme. The particle trajectories are integrating using
a third order Adams-Bashforth scheme. The width, aspect ratio and orientation
advance using a fourth order Runge-Kutta scheme that is dependent upon a second
order midpoint velocity field computation. As usual for vortex methods, it is the
velocity field which dominates the computational effort.

Each initial condition was generated by seeding the flow with basis functions of
initial core size σ2

0 and aspect ratio a2
0 6= 1. The latter is necessary because we know

that the total spatial error is O(l4) +O[(a2
M − a−2

M )2]. While it is true that a2
M − a−2

M

scales with l2 over time, if one used a2
0 = 1 as an initial condition, one would have to

integrate the flow for long periods of time to wait for the aspect ratios to reach their
equilibrium values. To initiate the simulation with exact initial data and specified
initial core areas and aspect ratios, we use the following convolution:

1

4πσ2
exp

[
−
|~x|2

4σ2

]
=

h(a1, σ1) ∗ h

([
σ2 − σ2

1a
2
1

σ2 − σ2
1/a

2
1

] 1
4

,
[
σ4 + σ4

1 − σ2σ2
1(a

2
1 + a−2

1 )
] 1

4

)
(5.2)

where

h(a, σ) =
1

4πσ2
exp

[
−
x2/a2 + y2a2

4σ2

]
. (5.3)

This convolution is related to the exact deregularization discussed in [24] for perturbed
Gaussian monopoles. Using this deregularization, one can choose the initial width
and aspect ratio of the basis functions, and use them to express the desired initial
condition ((5.1) at t = 0), to a precision which is substantially greater than the spatial
and temporal errors in the flow computation. For each simulation, the initial aspect
ratio is chosen to be a value close to the theoretical a2

M . Even though a2
M varies over

the spatial domain, only one value may be chosen to use (5.3), so a typical value is
selected. The overlap between elements is fixed to maintain a constant discretization
error for all simulations.

The Lamb-Oseen vortex was simulated over a range of core areas varying over a
decade to validate the fourth order accuracy of ECCSVM. The problem size increases
roughly 32-fold as the spatial errors are reduced by a factor of approximately 200. For
the nonlinear computations, I implemented a fast multipole solver based on Green-
gard and Rokhlin’s algorithm, but modified substantially for ECCSVM [4]. For the
nonlinear studies, computation times varied from several minutes at low resolution to
over an hour for high resolution runs on an SGI MIPS R12000 using one processor.

The results of the simulations, as displayed in Fig. (5.1), show that ECCSVM is
a fourth order method in full agreement with the linear analysis for both the linear
and nonlinear simulations. Since the core size does not remain constant during the
simulation, we use the approximate average core size

σ2
0 +

1

2
νT

to represent the cumulative effect of the spatial errors.
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Fig. 5.2. Convergence of ECCSVM over a modest period of time with all effects included. On
the left, weighted means such as < σ2 >=

∑
γiσ

2

i
can be used to estimate the two dominant terms

in the spatial error. The subscripts 1 and 2 refer to low (l = 2× 10−2, α = 0.8) and high resolution
(l = 10−2, α = 0.95394) simulations, respectively. The refinement parameter, α is chosen to force
the refinement errors to match a fourth order spatial error reduction. At the center and right, one
sees that merging can stabilize the growth in problem size. In these measurements, no information is
presented about the nature of the merging event, and one should know that a single merging event can
involve many elements being collapsed into a single one. Elements are merged at regular intervals,
and the merger-induced errors are not large relative to spatial errors and refinement errors for the
time series shown.

In practice, a vortex computation will include spatial refinement and some form
of problem size control whether it is merging or some other technique. To gauge the
impact of these effects, I computed the statistics for the Lamb-Oseen computation
over a modest duration during which time computational elements would undergo
refinement and merging. Aside from errors from the temporal integration, there are
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spatial errors, refinement-induced errors and merging errors. The first two have been
discussed in some detail in this paper. In Fig. (5.2), one can see that high spatial
accuracy can be maintained in the presense of refinement and merging if the param-
eters are chosen appropriately. (For instance, if one does not reduce the refinement
parameter, α, refinement errors will dominate the computation and there is no point
in trying to improve the spatial resolution.) In stabilizing the problem size, one would
expect that merging error would eventually swamp the computation after a long time,
but up to that point, spatial and refinement errors would determine the accuracy of
the vortex method. In the figure, one can see that true fourth order behavior is never
realized. The reason is not that merging or refinement has generated great-than-
expected errors in the flow. Rather, the low resolution computation is performing
better than one would expect because (αl)2 for the low resolution experiment is not
precisely twice the size of (αl)2 for the high resolution experiment. This is shown
clearly in Fig. (5.2) sometime between t = 0.4 and t = 0.5. Initially, the performance
of ECCSVM climbs as the low resolution core sizes grow, but the high resolution
cores remain constrained in a narrow range through steady refinement and merging.
Sometime between t = 0.4 and t = 0.5, most of the elements in the low resolution
experience undergo refinement, effectively dropping their widths back down to αl and
similarly dropping the ratio of core sizes. After this point, we see the performance
ratio drop, as we would expect, not from any source of error in the high resolution
experiment but rather because elements in the low resolution experiment are not wide
all the time.

6. Open Source Distribution. This algorithm has been implemented in the
programming language C, and scaled for parallel operations using the Message Passing
Interface (MPI). This implementation along with a variety of related tools is available
at no cost at the following World Wide Web sites:

http://sherlock.math.uml.edu/BlobFlow

http://www.math.udel.edu/∼rossi/BlobFlow

The simulations in this paper were performed with BlobFlow version 2.0. The lin-
earized calculations were generated with a very slight modification.

The open distribution of source code for complex algorithms such as ECCSVM is
in the public interest for several reasons.

1. Open source distribution of complex algorithms like these saves investigators
considerable time and effort coding from manuscripts into a programming
language. For instance, coding and debugging the asymptotic approximation
to the Biot-Savart integral for elliptical Gaussian basis functions requires a
substantial investment of time that is unnecessary if an open source imple-
mentation is available.

2. The distribution of source code allows other investigators to reproduce the
experiments and examples in this paper, and examine them in greater detail,
allowing more intensive study of the topics covered in this manuscript and
related manuscripts.

3. Open source distribution makes the algorithm easily available to the scien-
tific community for uses other than those discussed in this paper. In fact,
the widespread availability of modifiable source code permits the broader ap-
plication of the general algorithm to other areas of research not specifically
envisioned by the author.

4. A community of mathematicians and scientists working with an open source
distribution can more quickly modify, optimize and extend the current im-
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plementation than a single person.
There is substantial discussion of open source software in the information technology
fields mostly centered around intellectual property, reliability and interoperability
(see [5, 6, 20, 30] for example,) but relatively little in the computational mathematics
community where reproducibility and scrutiny is paramount. All the parameter files
used the generate the data discussed in this article are available from the author. The
author hopes that making the program open to the entire scientific community will
result in better mathematics, better science and better tools for investigators.

7. Concluding Remarks and Future Work. The use of deforming ellipti-
cal Gaussian basis functions for Lagrangian schemes has yielded a naturally adap-
tive scheme with a high spatial accuracy. More than anything else, the underlying
motivation is to boost the accuracy of Lagrangian schemes without sacrificing the
compactness of the basis function. ECCSVM achieves this result for fully viscous
calculations, but the per element computational cost for the Biot-Savart integration
is higher than for axisymmetric basis functions. In practice, ECCSVM uses a fast
multipole summation routine, so the high cost of the Biot-Savart calculation only
affects direct interactions, not the far-field calculations.

This introduces numerous avenues for further exploration, both by improving the
numerics for better accuracy and performance, and by extending the method to in-
corporate more physical effects. All vortex methods would be improved with high
accuracy time integration routines. With fourth order spatial accuracy, one would
hope to find a fourth order method in time as well. In ECCSVM, we see that the
trajectories are expensive to integrate, but the evolution of the internal parameters
such as σ or a is relatively cheap to calculate. In general, this is typical for all vortex
methods: The velocity field computation uses most of the resources while regridding,
viscous diffusion and other corrections are cheap. Since velocity calculations are ex-
pensive, most investigators use “Adams family” multistep methods, but typically one
is forced to operate at a low order because the computational elements are interrupted
at regular intervals by refinement, regridding or other necessary processes. Also, a
higher order refinement procedure would improve ECCSVM substantially. In §5, we
see that α must be increased substantially to match the spatial order of the method,
and so at high resolutions, a tug-of-war develops between refinement and merging.

Adding constraints for solid boundaries using panel methods would be a simple
extension, and the elliptical basis functions will resolve boundary layers more effi-
ciently than radially symmetric boundary layers as Marshall, Grant and Teng have
found [17, 27]. More challenging still would be extending this method to three dimen-
sions. Though increasing dimensionality adds several new challenges, particularly in
evaluating the streamfunction, these problems are accessible using asymptotics similar
to those employed here.

Finally, we see that this high order method is a new tool for exploring vorticity
dynamics in high Reynolds number flows, and not only does the method work well,
but the linear analysis of the residual accurately describes the actual convergence
properties of the method. The improved spatial resolution and adaptivity make this
scheme a natural choice for problems involving vorticity-dominated flows. At the
same time, improving the spatial accuracy by introducing deforming computational
elements in vortex methods opens the door to a variety of interesting extensions and
improvements to the method that have yet to be fully explored.
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Appendix A. Derivation of Elliptical Gaussian Basis Function Dynam-
ics.

We begin by choosing the origin to the center of the basis function and orienting
(3.9) along the principal axes (θ = θi) which we shall refer to as X and Y . We force
this coordinate system to satisfy the local equation (3.7). In the interest of brevity,
all indices i are dropped and we focus on a single basis function. As before, we denote
the X and Y components of ~u as u(1) and u(2) respectively. Expanding in powers of X
and X , we can equate each coefficient with zero to derive the appropriate dynamical
system, and set θ = 0. We drop all indices except on ~x and ~xi to distinguish between
the independent variable and the position of the vortex element.

O(1) :−
1

σ2

d

dt
(σ2) + ν

(
a−2 + a2

)

2σ2
= 0 (A.1)

O(X) :a−2(
d

dt
xi − u(1)) = 0 (A.2)

O(Y ) :a2(
d

dt
yi − u(2)) = 0 (A.3)

O[X2] :
d

dt
(σ2)a−2 + σ2a−4 d

dt
(a2) − 2σ2d11a

−2 − νa−4 = 0 (A.4)

O[Y 2] :−
d

dt
(σ2)a2 − σ2 d

dt
(a2) + 2σ2d11a

2 − νa4 = 0 (A.5)

O[XY ] :−σ2 dθ

dt
(a−2 − a2) − σ2[d12a

−2 + d21a
2] = 0 (A.6)

Clearly, the evolution of the basis function width in (3.12) arises from (A.1):

dσ2

dt
= ν(a2 + a−2).

The obvious evolution equations for position, ~xi in (3.12), come from (A.2) and (A.3).
Combining the evolution equation for σ2 with (A.4) and (A.5), one obtains an equation
for the evolution for a2 in principal coordinates:

da2

dt
= 2a2d11 +

ν

2σ2
(1 − a4)

From (A.6), one arrives at an evolution equation for the orientation of the basis
function. Changing back to standard coordinates, one obtains the dynamical system
presented in §3. The decomposition of evolution equation for the orientation into
rotational and strain-induced motions in equation (3.12) is accomplished through
further algebraic manipulation.
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